1
|
Ezaki O. Possible Extracellular Signals to Ameliorate Sarcopenia in Response to Medium-Chain Triglycerides (8:0 and 10:0) in Frail Older Adults. Nutrients 2024; 16:2606. [PMID: 39203743 PMCID: PMC11357358 DOI: 10.3390/nu16162606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In frail older adults (mean age 85 years old), a 3-month supplementation with a low dose (6 g/day) of medium-chain triglycerides (MCTs; C8:0 and C10:0) given at a meal increased muscle mass and function, relative to supplementation with long-chain triglycerides (LCTs), but it decreased fat mass. The reduction in fat mass was partly due to increased postprandial energy expenditure by stimulation of the sympathetic nervous system (SNS). However, the extracellular signals to ameliorate sarcopenia are unclear. The following three potential extracellular signals to increase muscle mass and function after MCT supplementation are discussed: (1) Activating SNS-the hypothesis for this is based on evidence that a beta2-adrenergic receptor agonist acutely (1-24 h) markedly upregulates isoforms of peroxisomal proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) mRNAs, promotes mitochondrial biogenesis, and chronically (~1 month) induces muscle hypertrophy. (2) An increased concentration of plasma acyl-ghrelin stimulates growth hormone secretion. (3) A nitrogen-sparing effect of ketone bodies, which fuel skeletal muscle, may promote muscle protein synthesis and prevent muscle protein breakdown. This review will help guide clinical trials of using MCTs to treat primary (age-related) sarcopenia.
Collapse
Affiliation(s)
- Osamu Ezaki
- Institute of Women's Health Science, Showa Women's University, Tokyo 154-8533, Japan
| |
Collapse
|
2
|
Deemer SE, Roberts BM, Smith DL, Plaisance EP, Philp A. Exogenous ketone esters as a potential therapeutic for treatment of sarcopenic obesity. Am J Physiol Cell Physiol 2024; 327:C140-C150. [PMID: 38766768 DOI: 10.1152/ajpcell.00471.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Identifying effective treatment(s) for sarcopenia and sarcopenic obesity is of paramount importance as the global population advances in age and obesity continues to be a worldwide concern. Evidence has shown that a ketogenic diet can be beneficial for the preservation of muscle quality and function in older adults, but long-term adherence is low due in part to the high-fat (≥80%), very low carbohydrate (<5%) composition of the diet. When provided in adequate amounts, exogenous ketone esters (KEs) can increase circulating ketones to concentrations that exceed those observed during prolonged fasting or starvation without significant alterations in the diet. Ketone esters first emerged in the mid-1990s and their use in preclinical and clinical research has escalated within the past 10-15 years. We present findings from a narrative review of the existing literature for a proposed hypothesis on the effects of exogenous ketones as a therapeutic for preservation of skeletal muscle and function within the context of sarcopenic obesity and future directions for exploration. Much of the reviewed literature herein examines the mechanisms of the ketone diester (R,S-1,3-butanediol diacetoacetate) on skeletal muscle mass, muscle protein synthesis, and epigenetic regulation in murine models. Additional studies are needed to further examine the key regulatory factors producing these effects in skeletal muscle, examine convergent and divergent effects among different ketone ester formulations, and establish optimal frequency and dosing regimens to translate these findings into humans.
Collapse
Affiliation(s)
- Sarah E Deemer
- Department of Kinesiology, Health Promotion & Recreation, University of North Texas, Denton, Texas, United States
| | - Brandon M Roberts
- US Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Eric P Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Dörner R, Hägele FA, Müller MJ, Seidel U, Rimbach G, Bosy-Westphal A. Effect of exogenous and endogenous ketones on respiratory exchange ratio and glucose metabolism in healthy subjects. Am J Physiol Cell Physiol 2024; 326:C1027-C1033. [PMID: 38314726 PMCID: PMC11193512 DOI: 10.1152/ajpcell.00429.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
This study examined the effect of exogenous ketone bodies (KB) on oxygen consumption (V̇o2), carbon dioxide production (V̇co2), and glucose metabolism. The data were compared with the effects of endogenous ketonemia during both, a ketogenic diet or fasting. Eight healthy individuals [24.1 ± 2.5 yr, body mass index (BMI) 24.3 ± 3.1 kg/m2] participated in a crossover intervention study and were studied in a whole-room indirect calorimeter (WRIC) to assess macronutrient oxidation following four 24-h interventions: isocaloric controlled mixed diet (ISO), ISO supplemented with ketone salts (38.7 g of β-hydroxybutyrate/day, EXO), isocaloric ketogenic diet (KETO), and total fasting (FAST). A physical activity level of 1.65 was obtained. In addition to plasma KB, 24-h C-peptide and KB excretion rates in the urine and postprandial glucose and insulin levels were measured. Although 24-h KB excretion increased in response to KETO and FAST, there was a modest increase in response to EXO only (P < 0.05). When compared with ISO, V̇o2 significantly increased in KETO (P < 0.01) and EXO (P < 0.001), whereas there was no difference in FAST. V̇co2 increased in EXO but decreased in KETO (both P < 0.01) and FAST (P < 0.001), resulting in 24-h respiratory exchange ratios (RER) of 0.828 ± 0.024 (ISO) and 0.811 ± 0.024 (EXO) (P < 0.05). In response to EXO there were no differences in basal and postprandial glucose and insulin levels, as well as in insulin sensitivity. When compared with ISO, EXO, and KETO, FAST increased homeostatic model assessment β-cell function (HOMA-B) (all P < 0.05). In conclusion, at energy balance exogenous ketone salts decreased respiratory exchange ratio without affecting glucose tolerance.NEW & NOTEWORTHY Our findings revealed that during isocaloric nutrition, additional exogenous ketone salts increased V̇o2 and V̇co2 while lowering the respiratory exchange ratio (RER). Ketone salts had no effect on postprandial glucose metabolism.
Collapse
Affiliation(s)
- Rebecca Dörner
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| | - Franziska A Hägele
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| | - Manfred J Müller
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| | - Ulrike Seidel
- Department of Food Sciences, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| | - Gerald Rimbach
- Department of Food Sciences, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| | - Anja Bosy-Westphal
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| |
Collapse
|
4
|
Hannaian SJ, Lov J, Hawley SE, Dargegen M, Malenda D, Gritsas A, Gouspillou G, Morais JA, Churchward-Venne TA. Acute ingestion of a ketone monoester, whey protein, or their co-ingestion in the overnight postabsorptive state elicit a similar stimulation of myofibrillar protein synthesis rates in young males: a double-blind randomized trial. Am J Clin Nutr 2024; 119:716-729. [PMID: 38215886 PMCID: PMC10972741 DOI: 10.1016/j.ajcnut.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Ketone bodies may have anabolic effects in skeletal muscle via their capacity to stimulate protein synthesis. Whether orally ingested exogenous ketones can stimulate postprandial myofibrillar protein synthesis (MyoPS) rates with and without dietary protein co-ingestion is unknown. OBJECTIVES This study aimed to evaluate the effects of ketone monoester intake and elevated blood β-hydroxybutyrate (β-OHB) concentration, with and without dietary protein co-ingestion, on postprandial MyoPS rates and mechanistic target of rapamycin complex 1 (mTORC1) pathway signaling. METHODS In a randomized, double-blind, parallel group design, 36 recreationally active healthy young males (age: 24.2 ± 4.1 y; body fat: 20.9% ± 5.8%; body mass index: 23.4 ± 2 kg/m2) received a primed continuous infusion of L-[ring-2H5]-phenylalanine and ingested one of the following: 1) the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET+PRO). Blood and muscle biopsy samples were collected during basal and postprandial (300 min) conditions to assess β-OHB, glucose, insulin, and amino acid concentrations, MyoPS rates, and mTORC1 pathway signaling. RESULTS Capillary blood β-OHB concentration increased similarly during postprandial conditions in KET and KET+PRO, with both being greater than PRO from 30 to 180 min (treatment × time interaction: P < 0.001). Postprandial plasma leucine and essential amino acid (EAA) incremental area under the curve (iAUC) over 300 min was greater (treatment: both P < 0.001) in KET+PRO compared with PRO and KET. KET, PRO, and KET+PRO stimulated postprandial MyoPS rates (0-300 min) higher than basal conditions [absolute change: 0.020%/h; (95% CI: 0.013, 0.027%/h), 0.014%/h (95% CI: 0.009, 0.019%/h), 0.019%/h (95% CI: 0.014, 0.024%/h), respectively (time: P < 0.001)], with no difference between treatments (treatment: P = 0.383) or treatment × time interaction (interaction: P = 0.245). mTORC1 pathway signaling responses did not differ between treatments (all P > 0.05). CONCLUSIONS Acute oral intake of a ketone monoester, 10 g whey protein, or their co-ingestion in the overnight postabsorptive state elicit a similar stimulation of postprandial MyoPS rates in healthy young males. This trial was registered at clinicaltrials.gov as NCT04565444 (https://clinicaltrials.gov/study/NCT04565444).
Collapse
Affiliation(s)
- Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Jamie Lov
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada
| | - Stephanie E Hawley
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada
| | - Manon Dargegen
- Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Divine Malenda
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada
| | - Ari Gritsas
- Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'activité Physique, Faculté des Sciences, UQAM, Montréal, Quebec, Canada
| | - José A Morais
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada; Division of Geriatric Medicine, McGill University, Montréal, Quebec, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada; Division of Geriatric Medicine, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
5
|
Verde L, Cacciapuoti S, Caiazzo G, Megna M, Martora F, Cavaliere A, Mattera M, Maisto M, Tenore GC, Colao A, Savastano S, Muscogiuri G, Barrea L. Very low-calorie ketogenic diet (VLCKD) in the management of hidradenitis suppurativa (Acne Inversa): an effective and safe tool for improvement of the clinical severity of disease. Results of a pilot study. J Transl Med 2024; 22:149. [PMID: 38350939 PMCID: PMC10863195 DOI: 10.1186/s12967-024-04853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Hidradenitis suppurativa (HS), an inflammatory-based dermatological condition often associated with obesity, poses significant challenges in management. The very low-calorie ketogenic diet (VLCKD) has shown efficacy in addressing obesity, related metabolic disorders, and reducing chronic inflammation. However, its effects on HS remain underexplored. In this prospective pilot study, we aimed to investigate the impact of a 28-day active phase of VLCKD on HS in a sample of treatment-naive women with HS and excess weight. METHODS Twelve women with HS and overweight or obesity (BMI 27.03 to 50.14 kg/m2), aged 21 to 54 years, meeting inclusion/exclusion criteria and agreeing to adhere to VLCKD, were included. Baseline lifestyle habits were assessed. The Sartorius score was used to evaluate the clinical severity of HS. Anthropometric parameters (waist circumference, weight, height, and body mass index), body composition via bioelectrical impedance analysis, levels of trimethylamine N-oxide (TMAO), oxidized low-density lipoprotein (oxLDL), and derivatives of reactive oxygen metabolites (dROMs) were assessed at baseline and after 28 days of the active phase of VLCKD. RESULTS VLCKD led to general improvements in anthropometric parameters and body composition. Notably, a significant reduction in the Sartorius score was observed after the intervention (Δ%: - 24.37 ± 16.64, p < 0.001). This reduction coincided with significant decreases in TMAO (p < 0.001), dROMs (p = 0.001), and oxLDL (p < 0.001) levels. Changes in the Sartorius score exhibited positive correlations with changes in TMAO (p < 0.001), dROMs (p < 0.001), and oxLDL (p = 0.002). CONCLUSION The 28-day active phase of VLCKD demonstrated notable improvements in HS severity and associated metabolic markers, highlighting the potential utility of VLCKD in managing HS and its association with metabolic derangements in women with overweight or obesity.
Collapse
Affiliation(s)
- Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Sara Cacciapuoti
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Matteo Megna
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Fabrizio Martora
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Annarita Cavaliere
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Maria Mattera
- Department of Clinical Medicine and Surgery, Section of Dermatology, University of Naples Federico II, Naples, Italy
| | - Maria Maisto
- ChimNutra labs, Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131, Naples, Italy
| | - Gian Carlo Tenore
- ChimNutra labs, Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131, Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| | - Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Centro Direzionale, Via Porzio, Isola F2, 80143, Naples, Italy.
| |
Collapse
|
6
|
Martins C, Nymo S, Aukan MI, Roekenes JA, Coutinho SR, Hunter GR, Gower BA. Association between ß-Hydroxybutyrate Plasma Concentrations after Hypocaloric Ketogenic Diets and Changes in Body Composition. J Nutr 2023; 153:1944-1949. [PMID: 37182692 DOI: 10.1016/j.tjnut.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Early studies show that ketogenic diets (KDs) lead to preferential loss of fat mass (FM), whereas preserving fat-free mass (FFM). Additionally, animal data support the anticatabolic effects of DL-3-hydroxybutyrate. From our knowledge, a potential association between ß-hydroxybutyrate (ßHB) plasma concentrations and changes in body composition has never been explored. OBJECTIVES The main aim of this analysis was to determine if ßHB plasma concentrations, following hypocaloric KDs, were associated with FM and FFM changes in men and women with obesity. METHODS Data from 199 individuals (BMI = 36.6 ± 4.3 kg/m2; age = 43.6 ± 9.8 y; 82 men) were collated from 3 weight loss studies employing common measures of body composition (air displacement plethysmography) and ßHB plasma concentration (ELISA). The association between ßHB and weight, FM and FFM loss (kg), and %FFM loss (%FFML) was investigated with Spearman correlation. Multivariable linear regression was used to determine if ßHB was a significant predictor of the changes in anthropometric variables, after adjusting for confounding factors. RESULTS ßHB was not associated with FFML (% or kg), but a weak positive association was seen with FM loss (r = 0.182, P = 0.01, n = 199) and a trend with weight loss (r = 0.128, P = 0.072, n = 199). ßHB was a significant predictor of both weight and FM loss (kg), after adjusting for age, sex, baseline BMI, and intervention study. CONCLUSIONS The magnitude of ketosis is not associated with FFM preservation. However, the higher the level of ketosis, the greater the weight and FM loss. Further studies are needed to confirm these findings and to explore the mechanisms involved. This trial was registered at clinicaltrials.gov identifier as NCT01834859, NCT04051190, NCT02944253.
Collapse
Affiliation(s)
- Catia Martins
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, Unites States; Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway.
| | - Siren Nymo
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Nord-Trøndelag Hospital Trust, Clinic of Surgery, Namsos Hospital, Namsos, Norway
| | - Marthe I Aukan
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jessica A Roekenes
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, Unites States
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, Unites States
| |
Collapse
|
7
|
Buga A, Kackley ML, Crabtree CD, Bedell TN, Robinson BT, Stoner JT, Decker DD, Hyde PN, LaFountain RA, Brownlow ML, O'Connor A, Krishnan D, McElroy CA, Kraemer WJ, Volek JS. Fasting and diurnal blood ketonemia and glycemia responses to a six-week, energy-controlled ketogenic diet, supplemented with racemic R/S-BHB salts. Clin Nutr ESPEN 2023; 54:277-287. [PMID: 36963874 DOI: 10.1016/j.clnesp.2023.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Single doses of exogenous ketone salts (KS) transiently increase circulating beta-hydroxybutyrate (BHB) (∼1 mM; 1-2 h) regardless of starting levels of ketosis; however, no studies have explored how sustained use of KS influences measures of ketonemia and glycemia. OBJECTIVES To determine the response to a hypocaloric, well-formulated ketogenic diet (KD), with and without the inclusion of two daily racemic KS doses (6 g R-BHB + 6 g S-BHB per serving) on 1) daily fasting capillary R-BHB and glucose (R-BHB/GLUfast), 2) bi-weekly 13 h diurnal BHB and glucose (R-BHB/GLUdiur), 3) three-hours post-KS ingestion kinetics (R-BHBKS), and 4) bi-weekly fasting plasma enantiomer-specific BHB (R/S-BHBplasma). METHODS Non-diabetic adults with overweight and obesity were randomized to receive a precisely measured hypocaloric KD (∼75 %en of maintenance) for six weeks, supplemented twice-daily with KS or placebo (PL). A non-randomized comparison group was provided an isonitrogenous/isoenergetic low-fat diet (LFD). All meals were provided to subjects. Capillary blood was collected daily to measure R-BHB/GLUfast and hourly for R-BHB/GLUdiur. Plasma was collected to measure R/S-BHBplasma, insulin, fasting glucose, and insulin resistance (HOMA-IR). Total AUC was calculated using the trapezoidal method. RESULTS Mean R-BHBfast increased significantly during KD + PL (1.0 mM BHB), an effect enhanced 26% during KD + KS. GLUfast AUC was -6% lower during KD + KS versus LFD. Mean R-BHBdiur increased 40% in KD + KS versus KD + PL, whereas GLUdiur decreased 13% during both KDs versus LFD. R-BHBKS peaked (Δ: ∼1 mM) 1 h after the morning KS dose, but not following the afternoon dose. Both R/S-BHBplasma increased during KD independent of KS inclusion. R-BHBplasma was 50-times greater compared to S-BHBplasma, and the KS augmented S-BHBplasma 50% more than PL. Fasting insulin and HOMA-IR decreased after 14 days independent of diet. CONCLUSIONS A hypocaloric KD was effective at reducing diurnal glucose compared to a LFD independent of weight loss, but twice-daily racemic KS ingestion during KD augmented ketonemia, both as R- and S-BHB, and decreased mean fasting glucose beyond a KD alone. The hypoglycemic effects of KD in combination with exogenous ketones merit further investigation.
Collapse
Affiliation(s)
- Alex Buga
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Madison L Kackley
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | | - Teryn N Bedell
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Bradley T Robinson
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Justen T Stoner
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Drew D Decker
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Parker N Hyde
- Department of Kinesiology, University of Northern Georgia, Dahlonega, GA 30597, USA
| | | | - Milene L Brownlow
- National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | | | - Deepa Krishnan
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jeff S Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Pappalardo C, Finocchi F, Pedrucci F, Di Nisio A, Ferlin A, De Toni L, Foresta C. Ketone Body β-Hydroxy-Butyrate Sustains Progressive Motility in Capacitated Human Spermatozoa: A Possible Role in Natural Fertility. Nutrients 2023; 15:nu15071622. [PMID: 37049462 PMCID: PMC10096601 DOI: 10.3390/nu15071622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Background Calorie restriction is recognized as a useful nutritional approach to improve the endocrine derangements and low fertility profile associated with increased body weight. This is particularly the case for dietary regimens involving ketosis, resulting in increased serum levels of ketone bodies such as β-hydroxy-butyrate (β-HB). In addition to serum, β-HB is detected in several biofluids and β-HB levels in the follicular fluid are strictly correlated with the reproductive outcome in infertile females. However, a possible direct role of ketone bodies on sperm function has not been addressed so far. Methods Semen samples were obtained from 10 normozoospermic healthy donors attending the University Andrology Unit as participants in an infertility survey programme. The effect of β-HB on cell motility in vitro was evaluated on isolated spermatozoa according to their migratory activity in a swim-up selection procedure. The effect of β-HB on spermatozoa undergone to capacitation was also assessed. Results Two hours of exposure to β-HB, 1 mM or 4 mM, proved to be ineffective in modifying the motility of freshly ejaculated spermatozoa isolated according to the migratory activity in a swim-up procedure (all p values > 0.05). Differently, sperm maintenance in 4 mM β-HB after capacitation was associated with a significantly higher percentage of sperm cells with progressive motility compared to β-HB-lacking control (respectively, 67.6 ± 3.5% vs. 55.3 ± 6.5%, p = 0.0158). Succinyl-CoA transferase inhibitor abolished the effect on motility exerted by β-HB, underpinning a major role for this enzyme. Conclusion Our results suggest a possible physiological role for β-HB that could represent an energy metabolite in support of cell motility on capacitated spermatozoa right before encountering the oocyte.
Collapse
|
9
|
Hiroux C, Schouten M, de Glisezinski I, Simon C, Crampes F, Hespel P, Koppo K. Effect of increased protein intake and exogenous ketosis on body composition, energy expenditure and exercise capacity during a hypocaloric diet in recreational female athletes. Front Physiol 2023; 13:1063956. [PMID: 36714318 PMCID: PMC9880233 DOI: 10.3389/fphys.2022.1063956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: Since low body weight is an important determinant of success in many sports such as gymnastics, martial arts and figure skating, athletes can benefit from effective weight loss strategies that preserve muscle mass and athletic performance. The present study investigates the effects of increased protein intake and exogenous ketosis on body composition, energy expenditure, exercise capacity, and perceptions of appetite and well-being during a hypocaloric diet in females. Methods: Thirty-two female recreational athletes (age: 22.2 ± .5 years; body weight: 58.3 ± .8 kg; BMI: 20.8 ± .2 kg·m-2) underwent 4 weeks of 30% caloric restriction and were randomized to receive either an increased daily amount of dietary protein (PROT, ∼2.0-2.2 g protein·kg-1·day-1), 3 × 20 g·day-1 of a ketone ester (KE), or an isocaloric placebo (PLA). Body composition was measured by DXA, resting energy expenditure (REE) by indirect calorimetry, exercise capacity during a VO2max test, appetite hormones were measured in serum, and perceptions of general well-being were evaluated via questionnaires. Results: The hypocaloric diet reduced body weight by 3.8 ± .3 kg in PLA, 3.2 ± .3 kg in KE and 2.4 ± .2 kg in PROT (Ptime<.0001). The drop in fat mass was similar between treatments (average: 2.6 ± .1 kg, Ptime<.0001), while muscle mass was only reduced in PLA and KE (average: .8 ± .2 kg, Ptime<.05), and remained preserved in PROT (Pinteraction<.01). REE [adjusted for lean mass] was reduced after caloric restriction in PLA (pre: 32.7 ± .5, post: 28.5 ± .6 kcal·day-1·kg-1) and PROT (pre: 32.9 ± 1.0, post: 28.4 ± 1.0 kcal·day-1·kg-1), but not in KE (pre: 31.8 ± .9, post: 30.4 ± .8 kcal·day-1·kg-1) (Pinteraction<.005). Furthermore, time to exhaustion during the VO2max test decreased in PLA (by 2.5 ± .7%, p < .05) but not in KE and PROT (Pinteraction<.05). Lastly, the perception of overall stress increased in PLA and PROT (p < .05), but not in KE (Pinteraction<.05). Conclusion: Increased protein intake effectively prevented muscle wasting and maintained exercise capacity during a period of caloric restriction in female recreational athletes. Furthermore, exogenous ketosis did not affect body composition, but showed its potential in weight management by preserving a drop in exercise capacity and REE and by improving overall stress parameters during a period of caloric restriction.
Collapse
Affiliation(s)
- Charlotte Hiroux
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Isabelle de Glisezinski
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Obesity research Laboratory, Paul Sabatier University, Toulouse, France,Physiological Functional Exploration Department, Toulouse University Hospitals, Toulouse, France
| | - Chantal Simon
- Carmen INSERM U1060, Human Nutrition Research Centre of Rhône-Alpes, NRA U1235, University of Lyon, Lyon, France
| | - François Crampes
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Obesity research Laboratory, Paul Sabatier University, Toulouse, France
| | - Peter Hespel
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium,*Correspondence: Katrien Koppo,
| |
Collapse
|
10
|
Hwang CY, Choe W, Yoon KS, Ha J, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients 2022; 14:nu14224932. [PMID: 36432618 PMCID: PMC9694619 DOI: 10.3390/nu14224932] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The ketone bodies (KBs) β-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, β-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.
Collapse
Affiliation(s)
- Chi Yeon Hwang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| |
Collapse
|
11
|
Klement RJ, Sweeney RA. Impact of a ketogenic diet intervention during radiotherapy on body composition: V. Final results of the KETOCOMP study for head and neck cancer patients. Strahlenther Onkol 2022; 198:981-993. [PMID: 35499696 PMCID: PMC9059453 DOI: 10.1007/s00066-022-01941-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/30/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Patients with head and neck cancer (HNC) are at risk of malnutrition, especially during radiochemotherapy. We aimed to study the impact of a ketogenic diet (KD) versus an unspecified standard diet (SD) on body composition and survival in HNC patients undergoing radio(chemo)therapy. METHODS As part of a controlled clinical trial, non-metastasized HNC patients were enrolled into either a KD (N = 11) or an SD (N = 21) group between May 2015 and May 2021. Body composition was measured weekly by bioimpedance analysis and analyzed using linear mixed effects models. Overall and progression-free survival was assessed during regular follow-up. RESULTS A total of 7 KD and 21 SD patients completed the study and were eligible for comparative analysis. Chemotherapy was significantly associated with declines in all body composition parameters, while the KD had opposing, yet nonsignificant effects. In patients receiving chemotherapy, average weekly reductions of body mass (BM) and skeletal muscle mass (SMM) were 0.9 kg and 0.31 kg in the KD group versus 1.2 kg and 0.57 kg in the SD group, respectively. Patients in the KD group receiving no chemotherapy achieved an average increase of 0.04 kg BM and 0.12 kg SMM per week. After a median follow-up of 42 months (range 6.7-78 months) there were no significant differences in progression-free or overall survival between the groups. CONCLUSION The KD may partially counteract the detrimental effects of radiochemotherapy on body composition in HNC patients. This should encourage further research into KDs in frail cancer patient populations and motivate their implementation as complementary therapy for selected patients.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.
| | - Reinhart A Sweeney
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| |
Collapse
|
12
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Prieto Maradona M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Albert O, Goumperis T, Knutsen HK. Safety of β-hydroxybutyrate salts as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2022; 20:e07449. [PMID: 36254193 PMCID: PMC9558159 DOI: 10.2903/j.efsa.2022.7449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on β-hydroxybutyrate (BHB) salts as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF consists of sodium, magnesium and calcium BHB salts, and is proposed to be used by adults as a food ingredient in a number of food categories and as food supplement. The data provided by the applicant about the identity, the production process and the compositional data of the NF over the course of the risk assessment period were overall considered unsatisfactory. The Panel noted inconsistencies in the reporting of the test item used in the subchronic toxicity study and human studies provided by the applicant. Owing to these deficiencies, the Panel cannot establish a safe intake level of the NF. The Panel concludes that the safety of the NF has not been established.
Collapse
|
13
|
Iacovides S, Maloney SK, Bhana S, Angamia Z, Meiring RM. Could the ketogenic diet induce a shift in thyroid function and support a metabolic advantage in healthy participants? A pilot randomized-controlled-crossover trial. PLoS One 2022; 17:e0269440. [PMID: 35658056 PMCID: PMC9165850 DOI: 10.1371/journal.pone.0269440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/12/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The ketogenic diet (KD) has been shown to result in body mass loss in people with disease as well as healthy people, yet the effect of the KD on thyroid function and metabolism are unknown. OBJECTIVE We aimed to determine the effects of a KD, compared with an isocaloric high-carbohydrate low-fat (HCLF) diet, on resting metabolic rate and thyroid function in healthy individuals. DESIGN Eleven healthy, normal-weight participants (mean(SD) age: 30(9) years) completed this randomized crossover-controlled study. For a minimum of three weeks on each, participants followed two isocaloric diets: a HCLF diet (55%carbohydrate, 20%fat, 25%protein) and a KD (15%carbohydrate, 60%fat, 25% protein), with a one-week washout period in-between. Importantly, while on the KD, the participants were required to remain in a state of nutritional ketosis for three consecutive weeks. Crossover analyses and linear mixed models were used to assess effect of diet on body mass, thyroid function and resting metabolic rate. RESULTS Both dietary interventions resulted in significant body mass loss (p<0.05) however three weeks of sustained ketosis (KD) resulted in a greater loss of body mass (mean (95%CI): -2.9 (-3.5, -2.4) kg) than did three weeks on the HCLF diet (-0.4 (-1.0, 0.1) kg, p < 0.0001). Compared to pre-diet levels, the change in plasma T3 concentration was significantly different between the two diets (p = 0.003), such that plasma T3 concentration was significantly lower following the KD diet (4.1 (3.8, 4.4) pmol/L, p<0.0001) but not different following the HCLF diet (4.8 (4.5, 5.2) pmol/L, p = 0.171. There was a significant increase in T4 concentration from pre-diet levels following the KD diet (19.3 (17.8, 20.9) pmol/L, p < 0.0001), but not following the HCLF diet (17.3 (15.7, 18.8) pmol.L, p = 0.28). The magnitude of change in plasma T4 concentration was not different between the two diets (p = 0.4). There was no effect of diet on plasma thyroid stimulating hormone concentration (p = 0.27). There was a significantly greater T3:T4 ratio following the HCLF diet (0.41 (0.27, 0.55), p < 0.0001) compared to pre-diet levels but not following the KD diet (0.25 (0.12, 0.39), p = 0.80). CONCLUSIONS Although the diets were isocaloric and physical activity and resting metabolic rate remained constant, the participants lost more mass after the KD than after the HCLF diet. The observed significant changes in triiodothyronine concentration suggest that unknown metabolic changes occur in nutritional ketosis, changes that warrant further investigation. TRIAL REGISTRATION Pan African Clinical Trial Registry: PACTR201707002406306 URL: https://pactr.samrc.ac.za/.
Collapse
Affiliation(s)
- Stella Iacovides
- Faculty of Health Sciences, Brain Function Research Group, School of Physiology, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Shane K. Maloney
- Faculty of Health Sciences, Brain Function Research Group, School of Physiology, University of the Witwatersrand, Parktown, Johannesburg, South Africa
- School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Sindeep Bhana
- Division of Endocrinology, Department of Endocrinology and Metabolism, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Zareena Angamia
- Division of Endocrinology, Department of Endocrinology and Metabolism, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Rebecca M. Meiring
- Faculty of Health Sciences, Movement Physiology Research Laboratory, School of Physiology, University of the Witwatersrand, Parktown, Johannesburg, South Africa
- Department of Exercise Sciences, University of Auckland, Newmarket, Auckland, New Zealand
| |
Collapse
|
14
|
Exogenous Ketone Supplements in Athletic Contexts: Past, Present, and Future. Sports Med 2022; 52:25-67. [PMID: 36214993 PMCID: PMC9734240 DOI: 10.1007/s40279-022-01756-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 12/15/2022]
Abstract
The ketone bodies acetoacetate (AcAc) and β-hydroxybutyrate (βHB) have pleiotropic effects in multiple organs including brain, heart, and skeletal muscle by serving as an alternative substrate for energy provision, and by modulating inflammation, oxidative stress, catabolic processes, and gene expression. Of particular relevance to athletes are the metabolic actions of ketone bodies to alter substrate utilisation through attenuating glucose utilisation in peripheral tissues, anti-lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. There has been long-standing interest in the development of ingestible forms of ketone bodies that has recently resulted in the commercial availability of exogenous ketone supplements (EKS). These supplements in the form of ketone salts and ketone esters, in addition to ketogenic compounds such as 1,3-butanediol and medium chain triglycerides, facilitate an acute transient increase in circulating AcAc and βHB concentrations, which has been termed 'acute nutritional ketosis' or 'intermittent exogenous ketosis'. Some studies have suggested beneficial effects of EKS to endurance performance, recovery, and overreaching, although many studies have failed to observe benefits of acute nutritional ketosis on performance or recovery. The present review explores the rationale and historical development of EKS, the mechanistic basis for their proposed effects, both positive and negative, and evidence to date for their effects on exercise performance and recovery outcomes before concluding with a discussion of methodological considerations and future directions in this field.
Collapse
|
15
|
White H, Heffernan AJ, Worrall S, Grunsfeld A, Thomas M. A Systematic Review of Intravenous β-Hydroxybutyrate Use in Humans - A Promising Future Therapy? Front Med (Lausanne) 2021; 8:740374. [PMID: 34621766 PMCID: PMC8490680 DOI: 10.3389/fmed.2021.740374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Therapeutic ketosis is traditionally induced with dietary modification. However, owing to the time delay involved, this is not a practical approach for treatment of acute conditions such as traumatic brain injury. Intravenous administration of ketones would obviate this problem by rapidly inducing ketosis. This has been confirmed in a number of small animal and human studies. Currently no such commercially available product exists. The aim of this systematic review is to review the safety and efficacy of intravenous beta-hydroxybutyrate. The Web of Science, PubMed and EMBASE databases were searched, and a systematic review undertaken. Thirty-five studies were included. The total beta-hydroxybutyrate dose ranged from 30 to 101 g administered over multiple doses as a short infusion, with most studies using the racemic form. Such dosing achieves a beta-hydroxybutyrate concentration >1 mmol/L within 15 min. Infusions were well tolerated with few adverse events. Blood glucose concentrations occasionally were reduced but remained within the normal reference range for all study participants. Few studies have examined the effect of intravenous beta-hydroxybutyrate in disease states. In patients with heart failure, intravenous beta-hydroxybutyrate increased cardiac output by up to 40%. No studies were conducted in patients with neurological disease. Intravenous beta-hydroxybutyrate has been shown to increase cerebral blood flow and reduce cerebral glucose oxidation. Moreover, beta-hydroxybutyrate reduces protein catabolism and attenuates the production of counter-regulatory hormones during induced hypoglycemia. An intravenous beta-hydroxybutyrate formulation is well tolerated and may provide an alternative treatment option worthy of further research in disease states.
Collapse
Affiliation(s)
- Hayden White
- Department of Intensive Care Medicine, Logan Hospital, Meadowbrook, QLD, Australia.,School of Medicine, Griffith University, Southport, QLD, Australia
| | - Aaron J Heffernan
- Department of Intensive Care Medicine, Logan Hospital, Meadowbrook, QLD, Australia.,School of Medicine, Griffith University, Southport, QLD, Australia
| | - Simon Worrall
- Department of Biochemistry and Molecular Biology, Faculty of Science, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander Grunsfeld
- Department of Neurosciences, Eastern Virginia Medical School, Sentara Healthcare, Norfolk, VA, United States
| | - Matt Thomas
- Department of Intensive Care Medicine, North Bristol NHS Trust, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Valenzuela PL, Castillo-García A, Lucia A, Naclerio F. Effects of Combining a Ketogenic Diet with Resistance Training on Body Composition, Strength, and Mechanical Power in Trained Individuals: A Narrative Review. Nutrients 2021; 13:nu13093083. [PMID: 34578961 PMCID: PMC8469041 DOI: 10.3390/nu13093083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 01/20/2023] Open
Abstract
Ketogenic diets (KD) have gained popularity in recent years among strength-trained individuals. The present review summarizes current evidence—with a particular focus on randomized controlled trials—on the effects of KD on body composition and muscle performance (strength and power output) in strength-trained individuals. Although long-term studies (>12 weeks) are lacking, growing evidence supports the effectiveness of an ad libitum and energy-balanced KD for reducing total body and fat mass, at least in the short term. However, no or negligible benefits on body composition have been observed when comparing hypocaloric KD with conventional diets resulting in the same energy deficit. Moreover, some studies suggest that KD might impair resistance training-induced muscle hypertrophy, sometimes with concomitant decrements in muscle performance, at least when expressed in absolute units and not relative to total body mass (e.g., one-repetition maximum). KD might therefore be a beneficial strategy for promoting fat loss, although it might not be a recommendable option to gain muscle mass and strength/power. More research is needed on the adoption of strategies for avoiding the potentially detrimental effect of KD on muscle mass and strength/power (e.g., increasing protein intake, reintroduction of carbohydrates before competition). In summary, evidence is as yet scarce to support a major beneficial effect of KD on body composition or performance in strength-trained individuals. Furthermore, the long-term effectiveness and safety of this type of diet remains to be determined.
Collapse
Affiliation(s)
- Pedro L. Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (P.L.V.); (A.L.)
| | | | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (P.L.V.); (A.L.)
- Physical Activity and Health Research Group (‘PaHerg’), Research Institute of the Hospital 12 de Octubre (‘imas12’), 28041 Madrid, Spain
| | - Fernando Naclerio
- Institute for Lifecourse Development, School of Human Sciences, Centre for Exercise Activity and Rehabilitation, University of Greenwich, London SE10 9LS, UK
- Correspondence: or
| |
Collapse
|
17
|
Henquin JC. Non-glucose modulators of insulin secretion in healthy humans: (dis)similarities between islet and in vivo studies. Metabolism 2021; 122:154821. [PMID: 34174327 DOI: 10.1016/j.metabol.2021.154821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Optimal metabolic homeostasis requires precise temporal and quantitative control of insulin secretion. Both in vivo and in vitro studies have often focused on the regulation by glucose although many additional factors including other nutrients, neurotransmitters, hormones and drugs, modulate the secretory function of pancreatic β-cells. This review is based on the analysis of clinical investigations characterizing the effects of non-glucose modulators of insulin secretion in healthy subjects, and of experimental studies testing the same modulators in islets isolated from normal human donors. The aim was to determine whether the information gathered in vitro can reliably be translated to the in vivo situation. The comparison evidenced both convincing similarities and areas of discordance. The lack of coherence generally stems from the use of exceedingly high concentrations of test agents at too high or too low glucose concentrations in vitro, which casts doubts on the physiological relevance of a number of observations made in isolated islets. Future projects resorting to human islets should avoid extreme experimental conditions, such as oversized stimulations or inhibitions of β-cells, which are unlikely to throw light on normal insulin secretion and contribute to the elucidation of its defects.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
18
|
Palmer BF, Clegg DJ. Euglycemic Ketoacidosis as a Complication of SGLT2 Inhibitor Therapy. Clin J Am Soc Nephrol 2021; 16:1284-1291. [PMID: 33563658 PMCID: PMC8455044 DOI: 10.2215/cjn.17621120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are drugs designed to lower plasma glucose concentration by inhibiting Na+-glucose-coupled transport in the proximal tubule. Clinical trials demonstrate these drugs have favorable effects on cardiovascular outcomes to include slowing the progression of CKD. Although most patients tolerate these drugs, a potential complication is development of ketoacidosis, often with a normal or only a minimally elevated plasma glucose concentration. Inhibition of sodium-glucose cotransporter-2 in the proximal tubule alters kidney ATP turnover so that filtered ketoacids are preferentially excreted as Na+ or K+ salts, leading to indirect loss of bicarbonate from the body and systemic acidosis under conditions of increased ketogenesis. Risk factors include reductions in insulin dose, increased insulin demand, metabolic stress, low carbohydrate intake, women, and latent autoimmune diabetes of adulthood. The lack of hyperglycemia and nonspecific symptoms of ketoacidosis can lead to delays in diagnosis. Treatment strategies and various precautions are discussed that can decrease the likelihood of this complication.
Collapse
Affiliation(s)
- Biff F. Palmer
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deborah J. Clegg
- Associate Dean for Research, College of Nursing and Health Professionals, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Palmer BF, Clegg DJ. Starvation Ketosis and the Kidney. Am J Nephrol 2021; 52:467-478. [PMID: 34350876 DOI: 10.1159/000517305] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The remarkable ability of the body to adapt to long-term starvation has been critical for survival of primitive man. An appreciation of these processes can provide the clinician better insight into many clinical conditions characterized by ketoacidosis. SUMMARY The body adapts to long-term fasting by conserving nitrogen, as the brain increasingly utilizes keto acids, sparing the need for glucose. This shift in fuel utilization decreases the need for mobilization of amino acids from the muscle for purposes of gluconeogenesis. Loss of urinary nitrogen is initially in the form of urea when hepatic gluconeogenesis is dominant and later as ammonia reflecting increased glutamine uptake by the kidney. The carbon skeleton of glutamine is utilized for glucose production and regeneration of consumed HCO3-. The replacement of urea with NH4+ provides the osmoles needed for urine flow and waste product excretion. Over time, the urinary loss of nitrogen is minimized as kidney uptake of filtered ketone bodies becomes more complete. Adjustments in urine Na+ serve to minimize kidney K+ wasting and, along with changes in urine pH, minimize the likelihood of uric acid precipitation. There is a sexual dimorphism in response to starvation. Key Message: Ketoacidosis is a major feature of common clinical conditions to include diabetic ketoacidosis, alcoholic ketoacidosis, salicylate intoxication, SGLT2 inhibitor therapy, and calorie sufficient but carbohydrate-restricted diets. Familiarity with the pathophysiology and metabolic consequences of ketogenesis is critical, given the potential for the clinician to encounter one of these conditions.
Collapse
Affiliation(s)
- Biff F Palmer
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, El Paso, Texas, USA
| | | |
Collapse
|
20
|
Horst EA, Kvidera SK, Baumgard LH. Invited review: The influence of immune activation on transition cow health and performance-A critical evaluation of traditional dogmas. J Dairy Sci 2021; 104:8380-8410. [PMID: 34053763 DOI: 10.3168/jds.2021-20330] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
The progression from gestation into lactation represents the transition period, and it is accompanied by marked physiological, metabolic, and inflammatory adjustments. The entire lactation and a cow's opportunity to have an additional lactation are heavily dependent on how successfully she adapts during the periparturient period. Additionally, a disproportionate amount of health care and culling occurs early following parturition. Thus, lactation maladaptation has been a heavily researched area of dairy science for more than 50 yr. It was traditionally thought that excessive adipose tissue mobilization in large part dictated transition period success. Further, the magnitude of hypocalcemia has also been assumed to partly control whether a cow effectively navigates the first few months of lactation. The canon became that adipose tissue released nonesterified fatty acids (NEFA) and the resulting hepatic-derived ketones coupled with hypocalcemia lead to immune suppression, which is responsible for transition disorders (e.g., mastitis, metritis, retained placenta, poor fertility). In other words, the dogma evolved that these metabolites and hypocalcemia were causal to transition cow problems and that large efforts should be enlisted to prevent increased NEFA, hyperketonemia, and subclinical hypocalcemia. However, despite intensive academic and industry focus, the periparturient period remains a large hurdle to animal welfare, farm profitability, and dairy sustainability. Thus, it stands to reason that there are alternative explanations to periparturient failures. Recently, it has become firmly established that immune activation and the ipso facto inflammatory response are a normal component of transition cow biology. The origin of immune activation likely stems from the mammary gland, tissue trauma during parturition, and the gastrointestinal tract. If inflammation becomes pathological, it reduces feed intake and causes hypocalcemia. Our tenet is that immune system utilization of glucose and its induction of hypophagia are responsible for the extensive increase in NEFA and ketones, and this explains why they (and the severity of hypocalcemia) are correlated with poor health, production, and reproduction outcomes. In this review, we argue that changes in circulating NEFA, ketones, and calcium are simply reflective of either (1) normal homeorhetic adjustments that healthy, high-producing cows use to prioritize milk synthesis or (2) the consequence of immune activation and its sequelae.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
21
|
Bharmal SH, Cho J, Alarcon Ramos GC, Ko J, Cameron-Smith D, Petrov MS. Acute Nutritional Ketosis and Its Implications for Plasma Glucose and Glucoregulatory Peptides in Adults with Prediabetes: A Crossover Placebo-Controlled Randomized Trial. J Nutr 2021; 151:921-929. [PMID: 33561274 DOI: 10.1093/jn/nxaa417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/30/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The potential of a ketone monoester (β-hydroxybutyrate; KEβHB) supplement to rapidly mimic a state of nutritional ketosis offers a new therapeutic possibility for diabetes prevention and management. While KEβHB supplementation has a glucose-lowering effect in adults with obesity, its impact on glucose control in other insulin-resistant states is unknown. OBJECTIVES The primary objective was to investigate the effect of KEβHB-supplemented drink on plasma glucose in adults with prediabetes. The secondary objective was to determine its impact on plasma glucoregulatory peptides. METHODS This randomized controlled trial [called CETUS (Cross-over randomizEd Trial of β-hydroxybUtyrate in prediabeteS)] included 18 adults [67% men, mean age = 55 y, mean BMI (kg/m2) = 28.4] with prediabetes (glycated hemoglobin between 5.7% and 6.4% and/or fasting plasma glucose between 100 and 125 mg/dL). Participants were randomly assigned to receive KEβHB-supplemented and placebo drinks in a crossover sequence (washout period of 7-10 d between the drinks). Blood samples were collected from 0 to 150 min, at intervals of 30 min. Paired-samples t tests were used to investigate the change in the outcome variables [β-hydroxybutyrate (βHB), glucose, and glucoregulatory peptides] after both drinks. Repeated measures analyses were conducted to determine the change in concentrations of the prespecified outcomes over time. RESULTS Blood βHB concentrations increased to 3.5 mmol/L within 30 minutes after KEβHB supplementation. Plasma glucose AUC was significantly lower after KEβHB supplementation than after the placebo [mean difference (95% CI): -59 (-85.3, -32.3) mmol/L × min]. Compared with the placebo, KEβHB supplementation led to significantly greater AUCs for plasma insulin [0.237 (0.044, 0.429) nmol/L × min], C-peptide [0.259 (0.114, 0.403) nmol/L × min], and glucose-dependent insulinotropic peptide [0.243 (0.085, 0.401) nmol/L × min], with no significant differences in the AUCs for amylin, glucagon, and glucagon-like peptide 1. CONCLUSIONS Ingestion of the KEβHB-supplemented drink acutely increased the blood βHB concentrations and lowered the plasma glucose concentrations in adults with prediabetes. Further research is needed to investigate the dynamics of repeated ingestions of a KEβHB supplement by individuals with prediabetes, with a view to preventing new-onset diabetes. This trial was registered at www.clinicaltrials.gov as NCT03889210.
Collapse
Affiliation(s)
- Sakina H Bharmal
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Jaelim Cho
- School of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Juyeon Ko
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Buga A, Kackley ML, Crabtree CD, Sapper TN, Mccabe L, Fell B, LaFountain RA, Hyde PN, Martini ER, Bowman J, Pan Y, Scandling D, Brownlow ML, O'Connor A, Simonetti OP, Kraemer WJ, Volek JS. The Effects of a 6-Week Controlled, Hypocaloric Ketogenic Diet, With and Without Exogenous Ketone Salts, on Body Composition Responses. Front Nutr 2021; 8:618520. [PMID: 33869263 PMCID: PMC8044842 DOI: 10.3389/fnut.2021.618520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Ketogenic diets (KDs) that elevate beta-hydroxybutyrate (BHB) promote weight and fat loss. Exogenous ketones, such as ketone salts (KS), also elevate BHB concentrations with the potential to protect against muscle loss during caloric restriction. Whether augmenting ketosis with KS impacts body composition responses to a well-formulated KD remains unknown. Purpose: To explore the effects of energy-matched, hypocaloric KD feeding (<50 g carbohydrates/day; 1.5 g/kg/day protein), with and without the inclusion of KS, on weight loss and body composition responses. Methods: Overweight and obese adults were provided a precisely defined hypocaloric KD (~75% of energy expenditure) for 6 weeks. In a double-blind manner, subjects were randomly assigned to receive ~24 g/day of a racemic BHB-salt (KD + KS; n = 12) or placebo (KD + PL; n = 13). A matched comparison group (n = 12) was separately assigned to an isoenergetic/isonitrogenous low-fat diet (LFD). Body composition parameters were assessed by dual x-ray absorptiometry and magnetic resonance imaging. Results: The KD induced nutritional ketosis (>1.0 mM capillary BHB) throughout the study (p < 0.001), with higher fasting concentrations observed in KD + KS than KD + PL for the first 2 weeks (p < 0.05). There were decreases in body mass, whole body fat and lean mass, mid-thigh muscle cross-sectional area, and both visceral and subcutaneous adipose tissues (p < 0.001), but no group differences between the two KDs or with the LFD. Urine nitrogen excretion was significantly higher in KD + PL than LFD (p < 0.01) and trended higher in KD + PL compared to KD + KS (p = 0.076), whereas the nitrogen excretion during KD + KS was similar to LFD (p > 0.05). Conclusion: Energy-matched hypocaloric ketogenic diets favorably affected body composition but were not further impacted by administration of an exogenous BHB-salt that augmented ketosis. The trend for less nitrogen loss with the BHB-salt, if manifested over a longer period of time, may contribute to preserved lean mass.
Collapse
Affiliation(s)
- Alex Buga
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Madison L. Kackley
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | | | - Teryn N. Sapper
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Lauren Mccabe
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Brandon Fell
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Rich A. LaFountain
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Parker N. Hyde
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Emily R. Martini
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Jessica Bowman
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Yue Pan
- Department of Radiology, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Debbie Scandling
- Department of Radiology, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Milene L. Brownlow
- Research and Development Department, Metagenics, Inc., Aliso Viejo, CA, United States
| | - Annalouise O'Connor
- Research and Development Department, Metagenics, Inc., Aliso Viejo, CA, United States
| | - Orlando P. Simonetti
- Department of Radiology, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - William J. Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
23
|
Martin-Arrowsmith PW, Lov J, Dai J, Morais JA, Churchward-Venne TA. Ketone Monoester Supplementation Does Not Expedite the Recovery of Indices of Muscle Damage After Eccentric Exercise. Front Nutr 2020; 7:607299. [PMID: 33364251 PMCID: PMC7752861 DOI: 10.3389/fnut.2020.607299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose: The purpose of this study was to evaluate the effects of a ketone monoester supplement on indices of muscle damage during recovery after eccentric exercise. Methods: In a randomized, double-blind, independent group design, 20 moderately active healthy young adults consumed 360 mg per kg−1 bodyweight of a ketone monoester (KET) or energy-matched carbohydrate (CON) supplement twice daily following eccentric exercise (drop jumps). Maximal isometric voluntary contraction (MIVC) torque, counter-movement jump (CMJ) height, and muscle soreness were measured before (PRE), and immediately (POST), 24 h and 48 h post-exercise. Blood samples were collected for analysis of β-hydroxybutyrate (β-OHB), creatine kinase (CK), and select pro- and anti-inflammatory cytokines. Results: Peak blood β-OHB concentration after supplement intake was greater (P < 0.001) in KET (4.4 ± 0.8 mM) vs. CON (0.4 ± 0.3 mM). Exercise increased CK concentration at 24 h and 48 h vs. PRE (time: P < 0.001) with no difference between KET and CON. Exercise reduced MIVC (KET: −19.9 ± 14.6; CON: −22.6 ± 11.1%) and CMJ (KET: −11.0 ± 7.5; CON: −13.0 ± 8.7%) at POST relative PRE; however, there was no difference between KET and CON on the recovery of MIVC at 24 h (KET: −15.4 ± 20.4; CON: −18.7 ± 20.1%) or 48 h (KET: −7.2 ± 21.2; CON: −11.8 ± 20.2%), or CMJ at 24 h (KET: −9.2 ± 11.5; CON: −13.4 ± 10.8) or 48 h (KET: −12.5 ± 12.4; CON: −9.1 ± 11.7). Muscle soreness was increased during post-exercise recovery (time: P < 0.001) with no differences between KET and CON. Monocyte chemoattractant protein-1 was greater (group: P = 0.007) in CON (236 ± 11 pg/mL) vs. KET (187 ± 11 pg/mL). Conclusion: In conclusion, twice daily ingestion of a ketone monoester supplement that acutely elevates blood β-OHB concentration does not enhance the recovery of muscle performance or reduce muscle soreness following eccentric exercise in moderately active, healthy young adults.
Collapse
Affiliation(s)
| | - Jamie Lov
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Jiaying Dai
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - José A Morais
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.,Division of Geriatric Medicine, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.,Division of Geriatric Medicine, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
24
|
Stubbs BJ, Koutnik AP, Goldberg EL, Upadhyay V, Turnbaugh PJ, Verdin E, Newman JC. Investigating Ketone Bodies as Immunometabolic Countermeasures against Respiratory Viral Infections. MED 2020; 1:43-65. [PMID: 32838361 PMCID: PMC7362813 DOI: 10.1016/j.medj.2020.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Respiratory viral infections remain a scourge, with seasonal influenza infecting millions and killing many thousands annually and viral pandemics, such as COVID-19, recurring every decade. Age, cardiovascular disease, and diabetes mellitus are risk factors for severe disease and death from viral infection. Immunometabolic therapies for these populations hold promise to reduce the risks of death and disability. Such interventions have pleiotropic effects that might not only target the virus itself but also enhance supportive care to reduce cardiopulmonary complications, improve cognitive resilience, and facilitate functional recovery. Ketone bodies are endogenous metabolites that maintain cellular energy but also feature drug-like signaling activities that affect immune activity, metabolism, and epigenetics. Here, we provide an overview of ketone body biology relevant to respiratory viral infection, focusing on influenza A and severe acute respiratory syndrome (SARS)-CoV-2, and discuss the opportunities, risks, and research gaps in the study of exogenous ketone bodies as novel immunometabolic interventions in these diseases.
Collapse
Affiliation(s)
| | - Andrew P Koutnik
- Institute for Human and Machine Cognition, Pensacola, FL, USA
- Department of Molecular Pharmacology and Physiology, USF, Tampa, FL, USA
| | | | - Vaibhav Upadhyay
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, UCSF, San Francisco, CA, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - John C Newman
- Buck Institute for Research on Aging, Novato, CA, USA
- Division of Geriatrics, UCSF, San Francisco, CA, USA
| |
Collapse
|
25
|
Walsh JJ, Myette-Côté É, Neudorf H, Little JP. Potential Therapeutic Effects of Exogenous Ketone Supplementation for Type 2 Diabetes: A Review. Curr Pharm Des 2020; 26:958-969. [PMID: 32013822 DOI: 10.2174/1381612826666200203120540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is among the most prevalent non-communicable lifestyle diseases. We propose that overnutrition and low levels of physical activity can contribute to a vicious cycle of hyperglycemia, inflammation and oxidative stress, insulin resistance, and pancreatic β-cell dysfunction. The pathophysiological manifestations of T2D have a particular impact on the vasculature and individuals with T2D are at high risk of cardiovascular disease. Targeting aspects of the vicious cycle represent therapeutic approaches for improving T2D and protecting against cardiovascular complications. The recent advent of exogenous oral ketone supplements represents a novel, non-pharmacological approach to improving T2D pathophysiology and potentially protecting against cardiovascular disease risk. Herein, we review the emerging literature regarding the effects of exogenous ketone supplementation on metabolic control, inflammation, oxidative stress, and cardiovascular function in humans and highlight the potential application for breaking the vicious cycle of T2D pathophysiology.
Collapse
Affiliation(s)
- Jeremy J Walsh
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Étienne Myette-Côté
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Helena Neudorf
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jonathan P Little
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
26
|
Stubbs BJ, Koutnik AP, Volek JS, Newman JC. From bedside to battlefield: intersection of ketone body mechanisms in geroscience with military resilience. GeroScience 2020; 43:1071-1081. [PMID: 33006708 PMCID: PMC8190215 DOI: 10.1007/s11357-020-00277-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Ketone bodies are endogenous metabolites that are linked to multiple mechanisms of aging and resilience. They are produced by the body when glucose availability is low, including during fasting and dietary carbohydrate restriction, but also can be consumed as exogenous ketone compounds. Along with supplying energy to peripheral tissues such as brain, heart, and skeletal muscle, they increasingly are understood to have drug-like protein binding activities that regulate inflammation, epigenetics, and other cellular processes. While these energy and signaling mechanisms of ketone bodies are currently being studied in a variety of aging-related diseases such as Alzheimer’s disease and type 2 diabetes mellitus, they may also be relevant to military service members undergoing stressors that mimic or accelerate aging pathways, particularly traumatic brain injury and muscle rehabilitation and recovery. Here we summarize the biology of ketone bodies relevant to resilience and rehabilitation, strategies for translational use of ketone bodies, and current clinical investigations in this area.
Collapse
Affiliation(s)
| | - Andrew P Koutnik
- Institute for Human and Machine Cognition, Pensacola, FL, USA.,Department of Molecular Pharmacology and Physiology, USF, Tampa, FL, USA
| | - Jeff S Volek
- Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - John C Newman
- Buck Institute for Research on Aging, Novato, CA, USA. .,Division of Geriatrics, UCSF, San Francisco, CA, USA.
| |
Collapse
|
27
|
Greaves G, Xiang R, Rafiei H, Malas A, Little JP. Prior ingestion of a ketone monoester supplement reduces postprandial glycemic responses in young healthy-weight individuals. Appl Physiol Nutr Metab 2020; 46:309-317. [PMID: 32941737 DOI: 10.1139/apnm-2020-0644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The main objective of this study was to determine whether acute ingestion of a ketone monoester (KME) supplement impacted mixed-meal tolerance test (MMTT) glucose area under the curve (AUC). Nineteen healthy young volunteers (10 males/9 females; age, 24.7 ± 4.9 years; body mass index, 22.7 ± 2.4 kg/m2) participated in a double-blind, placebo-controlled crossover study. Following overnight fasting (≥10 h), participants consumed 0.45 mL/kg of a KME supplement or taste-matched placebo followed by an MMTT 15 min later. Blood samples were collected every 15-30 min over 2.5 h. KME supplementation acutely raised β-hydroxybutyrate AUC (590%, P < 0.0001, d = 2.4) and resulted in decreases in blood glucose AUC (-9.4%, P = 0.03, d = 0.56) and nonesterified fatty acid (NEFA) AUC (-27.3%, P = 0.023, d = 0.68) compared with placebo. No differences were found for plasma insulin AUC (P = 0.70) or gastric emptying estimated by co-ingested acetaminophen AUC (P = 0.96) between ketone and placebo. Overall, results indicate that KME supplementation attenuates postprandial glycemic and NEFA responses when taken 15 min prior to a mixed meal in young healthy individuals. Future studies are warranted to investigate whether KME supplementation may benefit individuals with impaired glycemic control. Novelty: Acute ketone monoester supplementation 15 min prior to a mixed meal decreased postprandial glucose and NEFA levels without significantly impacting postprandial insulin or estimates of gastric emptying. Glucose- and NEFA-lowering effects of ketone monoester supplementation are apparently not mediated by changes in insulin release or gastric emptying.
Collapse
Affiliation(s)
- Grant Greaves
- Faculty of Medicine, The University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Richard Xiang
- Faculty of Medicine, The University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Hossein Rafiei
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Adeeb Malas
- Faculty of Medicine, The University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
28
|
Khodabakhshi A, Seyfried TN, Kalamian M, Beheshti M, Davoodi SH. Does a ketogenic diet have beneficial effects on quality of life, physical activity or biomarkers in patients with breast cancer: a randomized controlled clinical trial. Nutr J 2020; 19:87. [PMID: 32828130 PMCID: PMC7443288 DOI: 10.1186/s12937-020-00596-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Despite recent interest in the use of ketogenic diets (KDs) for cancer, evidence of beneficial effects is lacking. This study examined the impact of a randomly assigned KD on quality of life, physical activity and biomarkers in patients with breast cancer. Method A total of 80 patients with locally advanced or metastatic breast cancer and without a history of renal disease or diabetes were randomly assigned to either a KD or a control group for this 12-week trial. Concurrent with the first, third, and fifth chemotherapy sessions, quality of life, physical activity, and biomarkers (thyroid function tests, electrolytes, albumin, ammonia, ALP, lactate and serum ketones) were assessed. Dietary intake was also recorded on admission and the end of the treatment. Results No significant differences were seen in quality of life or physical activity scores between the two groups after 12 weeks; however, the KD group showed higher global quality of life and physical activity scores compared to the control group at 6 weeks (P = 0.02 P = 0.01). Also, serum lactate and ALP levels decreased significantly in the KD group compared to the control group at the end of the intervention (10.7 ± 3 vs 13.3 ± 4, 149 ± 71 vs 240 ± 164, P = 0.02 and P = 0.007, respectively). A significant inverse association was observed between total carbohydrate intake and serum beta-hydroxybutyrate at 12 weeks (r = − 0.77 P < 0.001). No significant differences between groups were observed in thyroid hormones, electrolytes, albumin, LDH or ammonia. Compliance among KD subjects ranged from 66.7 to 79.2% as assessed by dietary intake and serum ketones levels of > 0.5. Conclusion According to our results, besides a higher global quality of life and physical activity scores compared to the control group at 6 weeks, KD diet combined to chemotherapy in patients with breast cancer does not bring additional benefit about quality of life and physical activity at 12 weeks. However, decreases seen in levels of lactate and ALP in the KD group suggest that a KD may benefit patients with breast cancer. Trial registration This trial has been registered on Iranian Registry of Clinical Trials (IRCT) under the identification code: IRCT20171105037259N2 https://www.irct.ir/trial/30755
Collapse
Affiliation(s)
- Adeleh Khodabakhshi
- Department of Nutrition, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Maryam Beheshti
- Department of Nutrition and Dietetics, Mofid children's hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Koutnik AP, Poff AM, Ward NP, DeBlasi JM, Soliven MA, Romero MA, Roberson PA, Fox CD, Roberts MD, D'Agostino DP. Ketone Bodies Attenuate Wasting in Models of Atrophy. J Cachexia Sarcopenia Muscle 2020; 11:973-996. [PMID: 32239651 PMCID: PMC7432582 DOI: 10.1002/jcsm.12554] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/18/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cancer Anorexia Cachexia Syndrome (CACS) is a distinct atrophy disease negatively influencing multiple aspects of clinical care and patient quality of life. Although it directly causes 20% of all cancer-related deaths, there are currently no model systems that encompass the entire multifaceted syndrome, nor are there any effective therapeutic treatments. METHODS A novel model of systemic metastasis was evaluated for the comprehensive CACS (metastasis, skeletal muscle and adipose tissue wasting, inflammation, anorexia, anemia, elevated protein breakdown, hypoalbuminemia, and metabolic derangement) in both males and females. Ex vivo skeletal muscle analysis was utilized to determine ubiquitin proteasome degradation pathway activation. A novel ketone diester (R/S 1,3-Butanediol Acetoacetate Diester) was assessed in multifaceted catabolic environments to determine anti-atrophy efficacy. RESULTS Here, we show that the VM-M3 mouse model of systemic metastasis demonstrates a novel, immunocompetent, logistically feasible, repeatable phenotype with progressive tumor growth, spontaneous metastatic spread, and the full multifaceted CACS with sex dimorphisms across tissue wasting. We also demonstrate that the ubiquitin proteasome degradation pathway was significantly upregulated in association with reduced insulin-like growth factor-1/insulin and increased FOXO3a activation, but not tumor necrosis factor-α-induced nuclear factor-kappa B activation, driving skeletal muscle atrophy. Additionally, we show that R/S 1,3-Butanediol Acetoacetate Diester administration shifted systemic metabolism, attenuated tumor burden indices, reduced atrophy/catabolism and mitigated comorbid symptoms in both CACS and cancer-independent atrophy environments. CONCLUSIONS Our findings suggest the ketone diester attenuates multifactorial CACS skeletal muscle atrophy and inflammation-induced catabolism, demonstrating anti-catabolic effects of ketone bodies in multifactorial atrophy.
Collapse
Affiliation(s)
- Andrew P. Koutnik
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | - Angela M. Poff
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | - Nathan P. Ward
- Department of Cancer PhysiologyMoffitt Cancer Center, H. Lee Moffitt Cancer Center and Research InstituteTampaFLUSA
| | - Janine M. DeBlasi
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | - Maricel A. Soliven
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
| | | | | | - Carl D. Fox
- School of KinesiologyAuburn UniversityAuburnALUSA
| | | | - Dominic P. D'Agostino
- Department of Molecular Pharmacology and PhysiologyMorsani College of Medicine, University of South FloridaTampaFLUSA
- Institute for Human and Machine CognitionOcalaFLUSA
| |
Collapse
|
30
|
Cardiac ketone body metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165739. [PMID: 32084511 DOI: 10.1016/j.bbadis.2020.165739] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022]
Abstract
The ketone bodies, d-β-hydroxybutyrate and acetoacetate, are soluble 4-carbon compounds derived principally from fatty acids, that can be metabolised by many oxidative tissues, including heart, in carbohydrate-depleted conditions as glucose-sparing energy substrates. They also have important signalling functions, acting through G-protein coupled receptors and histone deacetylases to regulate metabolism and gene expression including that associated with anti-oxidant activity. Their concentration, and hence availability, increases in diabetes mellitus and heart failure. Whilst known to be substrates for ATP production, especially in starvation, their role(s) in the heart, and in heart disease, is uncertain. Recent evidence, reviewed here, indicates that increased ketone body metabolism is a feature of heart failure, and is accompanied by other changes in substrate selection. Whether the change in myocardial ketone body metabolism is adaptive or maladaptive is unknown, but it offers the possibility of using exogenous ketones to treat the failing heart.
Collapse
|
31
|
Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes. Med Oncol 2020; 37:14. [PMID: 31927631 DOI: 10.1007/s12032-020-1337-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
Abstract
Preclinical data provide evidence for synergism between ketogenic diets (KDs) and other oncological therapies. The aim of this systematic review was to summarize data from clinical studies that have tested KDs along with other treatments used within medical oncology. The PubMed database was searched using the key words "ketogenic" AND ("cancer" OR "glioblastoma"). A secondary search was conducted by screening the reference lists of relevant articles on this topic. Relevant studies for this review were defined as studies in which KDs were used complementary to surgery, radio-, chemo-, or targeted therapy and at least one of the following four outcomes were reported: (i) Overall survival (OS); (ii) progression-free survival (PFS); (iii) local control rate; (iv) body composition changes. Twelve papers reporting on 13 clinical studies were identified. Nine studies were prospective and six had a control group, but only two were randomized. KD prescription varied widely between studies and was described only rudimentarily in most papers. Adverse events attributed to the diet were rare and only minor (grade 1-2) except for one possibly diet-related grade 4 event. Studies reporting body composition changes found beneficial effects of KDs in both overweight and frail patient populations. Beneficial effects of KDs on OS and/or PFS were found in four studies including one randomized controlled trial. Studies in high-grade glioma patients were not sufficiently powered to prove efficacy. Evidence for beneficial effects of KDs during cancer therapy is accumulating, but more high-quality studies are needed to assess the overall strength of evidence.
Collapse
|
32
|
Myette-Côté É, Caldwell HG, Ainslie PN, Clarke K, Little JP. A ketone monoester drink reduces the glycemic response to an oral glucose challenge in individuals with obesity: a randomized trial. Am J Clin Nutr 2019; 110:1491-1501. [PMID: 31599919 PMCID: PMC6885474 DOI: 10.1093/ajcn/nqz232] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Exogenous ketones make it possible to reach a state of ketosis that may improve metabolic control in humans. OBJECTIVES The main objective of this study was to determine whether the ingestion of a ketone monoester (KE) drink before a 2-h oral-glucose-tolerance test (OGTT) would lower blood glucose concentrations. Secondary objectives were to determine the impact of KE on nonesterified fatty acid (NEFA) concentration and glucoregulatory hormones. METHODS We conducted a randomized controlled crossover experiment in 15 individuals with obesity (mean ± SD age: 47 ± 10 y; BMI: 34 ± 5 kg/m2). After an overnight fast, participants consumed a KE drink [(R)-3-hydroxybutyl (R)-3-hydroxybutyrate; 0.45 mL/kg body weight] or taste-matched control drink 30 min before completing a 75-g OGTT. Participants and study personnel performing laboratory analyses were blinded to each condition. RESULTS The KE increased d-β-hydroxybutyrate to a maximum of ∼3.4 mM (P < 0.001) during the OGTT. Compared with the control drink, KE reduced glucose (-11%, P = 0.002), NEFA (-21%, P = 0.009), and glucagon-like peptide 1 (-31%, P = 0.001) areas under the curve (AUCs), whereas glucagon AUC increased (+11%, P = 0.030). No differences in triglyceride, C-peptide, and insulin AUCs were observed after the KE drink. Mean arterial blood pressure decreased and heart rate increased after the KE drink (both P < 0.01). CONCLUSIONS A KE drink consumed before an OGTT lowered glucose and NEFA AUCs with no increase in circulating insulin. Our results suggest that a single drink of KE may acutely improve metabolic control in individuals with obesity. Future research is warranted to examine whether KE could be used safely to have longer-term effects on metabolic control. This trial was registered at clinicaltrials.gov as NCT03461068.
Collapse
Affiliation(s)
- Étienne Myette-Côté
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada,Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Hannah G Caldwell
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada,Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada,Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada,Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada,Address correspondence to JPL (E-mail: )
| |
Collapse
|
33
|
Khodabakhshi A, Akbari ME, Mirzaei HR, Mehrad-Majd H, Kalamian M, Davoodi SH. Feasibility, Safety, and Beneficial Effects of MCT-Based Ketogenic Diet for Breast Cancer Treatment: A Randomized Controlled Trial Study. Nutr Cancer 2019; 72:627-634. [DOI: 10.1080/01635581.2019.1650942] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Adeleh Khodabakhshi
- Department of Nutrition, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
- Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Mirzaei
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Mehrad-Majd
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sayed Hossein Davoodi
- Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Poffé C, Ramaekers M, Van Thienen R, Hespel P. Ketone ester supplementation blunts overreaching symptoms during endurance training overload. J Physiol 2019; 597:3009-3027. [PMID: 31039280 PMCID: PMC6851819 DOI: 10.1113/jp277831] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Overload training is required for sustained performance gain in athletes (functional overreaching). However, excess overload may result in a catabolic state which causes performance decrements for weeks (non-functional overreaching) up to months (overtraining). Blood ketone bodies can attenuate training- or fasting-induced catabolic events. Therefore, we investigated whether increasing blood ketone levels by oral ketone ester (KE) intake can protect against endurance training-induced overreaching. We show for the first time that KE intake following exercise markedly blunts the development of physiological symptoms indicating overreaching, and at the same time significantly enhances endurance exercise performance. We provide preliminary data to indicate that growth differentiation factor 15 (GDF15) may be a relevant hormonal marker to diagnose the development of overtraining. Collectively, our data indicate that ketone ester intake is a potent nutritional strategy to prevent the development of non-functional overreaching and to stimulate endurance exercise performance. ABSTRACT It is well known that elevated blood ketones attenuate net muscle protein breakdown, as well as negate catabolic events, during energy deficit. Therefore, we hypothesized that oral ketones can blunt endurance training-induced overreaching. Fit male subjects participated in two daily training sessions (3 weeks, 6 days/week) while receiving either a ketone ester (KE, n = 9) or a control drink (CON, n = 9) following each session. Sustainable training load in week 3 as well as power output in the final 30 min of a 2-h standardized endurance session were 15% higher in KE than in CON (both P < 0.05). KE inhibited the training-induced increase in nocturnal adrenaline (P < 0.01) and noradrenaline (P < 0.01) excretion, as well as blunted the decrease in resting (CON: -6 ± 2 bpm; KE: +2 ± 3 bpm, P < 0.05), submaximal (CON: -15 ± 3 bpm; KE: -7 ± 2 bpm, P < 0.05) and maximal (CON: -17 ± 2 bpm; KE: -10 ± 2 bpm, P < 0.01) heart rate. Energy balance during the training period spontaneously turned negative in CON (-2135 kJ/day), but not in KE (+198 kJ/day). The training consistently increased growth differentiation factor 15 (GDF15), but ∼2-fold more in CON than in KE (P < 0.05). In addition, delta GDF15 correlated with the training-induced drop in maximal heart rate (r = 0.60, P < 0.001) and decrease in osteocalcin (r = 0.61, P < 0.01). Other measurements such as blood ACTH, cortisol, IL-6, leptin, ghrelin and lymphocyte count, and muscle glycogen content did not differentiate KE from CON. In conclusion, KE during strenuous endurance training attenuates the development of overreaching. We also identify GDF15 as a possible marker of overtraining.
Collapse
Affiliation(s)
- Chiel Poffé
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Monique Ramaekers
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Ruud Van Thienen
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
| | - Peter Hespel
- Exercise Physiology Research GroupDepartment of Movement SciencesKU LeuvenLeuvenBelgium
- Bakala Academy‐Athletic Performance CenterKU LeuvenLeuvenBelgium
| |
Collapse
|
35
|
Klement RJ, Schäfer G, Sweeney RA. A ketogenic diet exerts beneficial effects on body composition of cancer patients during radiotherapy: An interim analysis of the KETOCOMP study. J Tradit Complement Med 2019; 10:180-187. [PMID: 32670812 PMCID: PMC7340871 DOI: 10.1016/j.jtcme.2019.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/26/2022] Open
Abstract
Background and aim Ketogenic diets (KDs) have gained interest as a complementary treatment for cancer patients. Here we present first results of our ongoing KETOCOMP study (NCT02516501) concerning body composition changes among rectal, breast and head & neck cancer (HNC) patients who consumed a KD during curative radiotherapy (RT). Experimental procedure Sixty-one patients eating a non-ketogenic diet were compared to 20 patients on a KD supplemented with 10 g essential amino acids on RT days. Body composition was measured prior to and weekly during RT using 8-electrode bioimpedance analysis. Longitudinal body composition data were analyzed using linear mixed effects models. Results and conclusion Patients on the KD exhibited nutritional ketosis, defined as serum β-hydroxybutyrate levels ≥0.5 mmol/l, in a median of 69.0% of blood measurements (range 0–100%) performed in our clinic. In rectal and breast cancer patients, KD was significantly associated with a loss of 0.5 and 0.4 kg fat mass per week (p = 0.00089 and 8.49 × 10−5, respectively), with no significant changes in fat free and skeletal muscle mass. In HNC patients, concurrent chemotherapy was the strongest predictor of body weight, fat free and skeletal muscle mass loss during RT, while consuming a KD was significantly associated with a gain in these measures. These preliminary results confirm prior reports indicating that KDs are safe to consume during standard-of-care therapy. They also provide an important first indication that KDs with ample amino acid intake could improve body composition during RT in curative cancer patients. Consumption of a ketogenic diet (KD) during radio(chemo-)therapy is feasible. In rectal and breast cancer patients, the KD significantly reduced fat mass. Fat-free mass and skeletal muscle mass were preserved by the KD. In head and neck cancer patients a KD influenced body composition opposite to chemotherapy.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital, Schweinfurt, Germany
| | - Gabriele Schäfer
- Department of Radiation Oncology, Leopoldina Hospital, Schweinfurt, Germany
| | - Reinhart A Sweeney
- Department of Radiation Oncology, Leopoldina Hospital, Schweinfurt, Germany
| |
Collapse
|
36
|
Thomsen HH, Rittig N, Johannsen M, Møller AB, Jørgensen JO, Jessen N, Møller N. Effects of 3-hydroxybutyrate and free fatty acids on muscle protein kinetics and signaling during LPS-induced inflammation in humans: anticatabolic impact of ketone bodies. Am J Clin Nutr 2018; 108:857-867. [PMID: 30239561 DOI: 10.1093/ajcn/nqy170] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
Background Acute inflammation, and subsequent release of bacterial products (e.g. LPS), inflammatory cytokines, and stress hormones, is catabolic, and the loss of lean body mass predicts morbidity and mortality. Lipid intermediates may reduce protein loss, but the roles of free fatty acids (FFAs) and ketone bodies during acute inflammation are unclear. Objective We aimed to test whether infusions of 3-hydroxybutyrate (3OHB), FFAs, and saline reduce protein catabolism during exposure to LPS and Acipimox (to restrict and control endogenous lipolysis). Design A total of 10 healthy male subjects were randomly tested 3 times, with: 1) LPS, Acipimox (Olbetam) and saline, 2) LPS, Acipimox, and nonesterified fatty acids (Intralipid), and 3) LPS, Acipimox, and 3OHB, during a 5-h basal period and a 2-h hyperinsulinemic, euglycemic clamp. Labeled phenylalanine, tyrosine, and urea tracers were used to estimate protein kinetics, and muscle biopsies were taken for Western blot analysis of protein metabolic signaling. Results 3OHB infusion increased 3OHB concentrations (P < 0.0005) to 3.5 mM and decreased whole-body phenylalanine-to-tyrosine degradation. Basal and insulin-stimulated net forearm phenylalanine release decreased by >70% (P < 0.005), with both appearance and phenylalanine disappearance being profoundly decreased. Phosphorylation of eukaryotic initiation factor 2α at Ser51 was increased in skeletal muscle, and S6 kinase phosphorylation at Ser235/236 tended (P = 0.074) to be decreased with 3OHB infusion (suggesting inhibition of protein synthesis), whereas no detectable effects were seen on markers of protein breakdown. Lipid infusion did not affect phenylalanine kinetics, and insulin sensitivity was unaffected by interventions. Conclusion During acute inflammation, 3OHB has potent anticatabolic actions in muscle and at the whole-body level; in muscle, reduction of protein breakdown overrides inhibition of synthesis. This trial was registered at clinicaltrials.gov as NCT01752348.
Collapse
Affiliation(s)
- Henrik H Thomsen
- Department of Medicine, Viborg Regional Hospital, Viborg, Denmark.,Department of Internal Medicine and Endocrinology MEA, Aarhus University, Aarhus, Denmark
| | - Nikolaj Rittig
- Department of Internal Medicine and Endocrinology MEA, Aarhus University, Aarhus, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Bioanalytical Unit, Aarhus University, Aarhus, Denmark
| | - Andreas B Møller
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Otto Jørgensen
- Department of Internal Medicine and Endocrinology MEA, Aarhus University, Aarhus, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Clinical Pharmacology, Aarhus University, Aarhus, Denmark
| | - Niels Møller
- Department of Internal Medicine and Endocrinology MEA, Aarhus University, Aarhus, Denmark
| |
Collapse
|
37
|
Abstract
Elite athletes and coaches are in a constant search for training methods and nutritional strategies to support training and recovery efforts that may ultimately maximize athletes’ performance. Recently, there has been a re-emerging interest in the role of ketone bodies in exercise metabolism, with considerable media speculation about ketone body supplements being routinely used by professional cyclists. Ketone bodies can serve as an important energy substrate under certain conditions, such as starvation, and can modulate carbohydrate and lipid metabolism. Dietary strategies to increase endogenous ketone body availability (i.e., a ketogenic diet) require a diet high in lipids and low in carbohydrates for ~4 days to induce nutritional ketosis. However, a high fat, low carbohydrate ketogenic diet may impair exercise performance via reducing the capacity to utilize carbohydrate, which forms a key fuel source for skeletal muscle during intense endurance-type exercise. Recently, ketone body supplements (ketone salts and esters) have emerged and may be used to rapidly increase ketone body availability, without the need to first adapt to a ketogenic diet. However, the extent to which ketone bodies regulate skeletal muscle bioenergetics and substrate metabolism during prolonged endurance-type exercise of varying intensity and duration remains unknown. Therefore, at present there are no data available to suggest that ingestion of ketone bodies during exercise improves athletes’ performance under conditions where evidence-based nutritional strategies are applied appropriately.
Collapse
|
38
|
Myette-Côté É, Neudorf H, Rafiei H, Clarke K, Little JP. Prior ingestion of exogenous ketone monoester attenuates the glycaemic response to an oral glucose tolerance test in healthy young individuals. J Physiol 2018; 596:1385-1395. [PMID: 29446830 DOI: 10.1113/jp275709] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS The recent development of exogenous ketone supplements allows direct testing of the metabolic effects of elevated blood ketones without the confounding influence of widespread changes experienced with ketogenic diets or prolonged fasting. In the present study, we determined the effect of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate ketone monoester on the glycaemic response and insulin sensitivity index during a 2 h oral glucose tolerance test (OGTT) in humans. The results obtained show that consuming a ketone monoester supplement 30 min prior to an OGTT reduced the glycaemic response and markers of insulin sensitivity without affecting insulin secretion. The findings of the present study provides evidence that ketone supplements could have therapeutic potential for future application as a glucose-lowering nutritional supplement. ABSTRACT The main objectives of the present study were: (i) to determine whether acute ingestion of ketone monoester (Kme ); (R)-3-hydroxybutyl (R)-3-hydroxybutyrate impacts plasma glucose levels during a standardized oral glucose tolerance test (OGTT) and (ii) to compare changes in insulin concentrations and estimates of insulin sensitivity after acute Kme supplementation. Twenty healthy participants (n = 10 males/females) aged between 18 and 35 years took part in a randomized cross-over study. After an overnight fast, participants consumed a Kme supplement (ΔG®; TΔS Ltd, UK, Oxford, UK; 0.45 ml kg-1 body weight) or placebo (water) 30 min before completing a 75 g OGTT. Blood samples were collected every 15-30 min over 2.5 h. The participants and study personnel performing the laboratory analyses were blinded to the study condition. Kme acutely raised blood d-beta-hydroxybutyrate (β-OHB) to 3.2 ± 0.6 mm within 30 min with levels remaining elevated throughout the entire OGTT. Compared to placebo, Kme significantly decreased the glucose area under the curve (AUC; -17%, P = 0.001), non-esterified fatty acid AUC (-44%, P < 0.001) and C-peptide incremental AUC (P = 0.005), at the same time as improving oral glucose insulin sensitivity index by ∼11% (P = 0.001). In conclusion, a Kme supplement that acutely increased β-OHB levels up to ∼3 mm attenuated the glycaemic response to an OGTT in healthy humans. The reduction in glycaemic response did not appear to be driven by an increase in insulin secretion, although it was accompanied by improved markers of insulin sensitivity. These results suggest that ketone monoester supplements could have therapeutic potential in the management and prevention of metabolic diseases.
Collapse
Affiliation(s)
- Étienne Myette-Côté
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Helena Neudorf
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Hossein Rafiei
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Jonathan Peter Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
39
|
Evans M, Patchett E, Nally R, Kearns R, Larney M, Egan B. Effect of acute ingestion of β-hydroxybutyrate salts on the response to graded exercise in trained cyclists. Eur J Sport Sci 2018; 18:376-386. [PMID: 29338584 DOI: 10.1080/17461391.2017.1421711] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acute ingestion of ketone salts induces nutritional ketosis by elevating β-hydroxybutyrate (βHB), but few studies have examined the metabolic effects of ingestion prior to exercise. Nineteen trained cyclists (12 male, 7 female) undertook graded exercise (8 min each at ∼30%, 40%, 50%, 60%, 70%, and 80% VO2peak) on a cycle ergometer on two occasions separated by either 7 or 14 days. Trials included ingestion of boluses of either (i) plain water (3.8 mL kg body mass-1) (CON) or (ii) βHB salts (0.38 g kg body mass-1) in plain water (3.8 mL kg body mass-1) (KET), at both 60 min and 15 min prior to exercise. During KET, plasma [βHB] increased to 0.33 ± 0.16 mM prior to exercise and 0.44 ± 0.15 mM at the end of exercise (both p < .05). Plasma glucose was 0.44 ± 0.27 mM lower (p < .01) 30 min after ingestion of KET and remained ∼0.2 mM lower throughout exercise compared to CON (p < .001). Respiratory exchange ratio (RER) was higher during KET compared to CON (p < .001) and 0.03-0.04 higher from 30%VO2peak to 60%VO2peak (all p < .05). No differences in plasma lactate, rate of perceived exertion, or gross or delta efficiency were observed between trials. Gastrointestinal symptoms were reported in 13 out of 19 participants during KET. Acute ingestion of βHB salts induces nutritional ketosis and alters the metabolic response to exercise in trained cyclists. Elevated RER during KET may be indicative of increased ketone body oxidation during exercise, but at the plasma βHB concentrations achieved, ingestion of βHB salts does not affect lactate appearance, perceived exertion, or muscular efficiency.
Collapse
Affiliation(s)
- Mark Evans
- a School of Health and Human Performance , Dublin City University , Dublin , Ireland
| | - Ella Patchett
- b School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health , University College Dublin , Dublin , Ireland
| | - Rickard Nally
- b School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health , University College Dublin , Dublin , Ireland
| | - Rachel Kearns
- b School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health , University College Dublin , Dublin , Ireland
| | - Matthew Larney
- b School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health , University College Dublin , Dublin , Ireland
| | - Brendan Egan
- a School of Health and Human Performance , Dublin City University , Dublin , Ireland.,b School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health , University College Dublin , Dublin , Ireland
| |
Collapse
|
40
|
Klement RJ. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med Oncol 2017; 34:132. [PMID: 28653283 DOI: 10.1007/s12032-017-0991-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022]
Abstract
Ketogenic diets (KDs) have gained popularity among patients and researchers alike due to their putative anti-tumor mechanisms. However, the question remains which conclusions can be drawn from the available human data thus far concerning the safety and efficacy of KDs for cancer patients. A realist review utilizing a matrix analytical approach was conducted according to the RAMESES publication standards. All available human studies were systematically analyzed and supplemented with results from animal studies. Evidence and confirmation were treated as separate concepts. In total, 29 animal and 24 human studies were included in the analysis. The majority of animal studies (72%) yielded evidence for an anti-tumor effect of KDs. Evidential support for such effects in humans was weak and limited to individual cases, but a probabilistic argument shows that the available data strengthen the belief in the anti-tumor effect hypothesis at least for some individuals. Evidence for pro-tumor effects was lacking completely. Feasibility of KDs for cancer patients has been shown in various contexts. The probability of achieving an anti-tumor effect seems greater than that of causing serious side effects when offering KDs to cancer patients. Future controlled trials would provide stronger evidence for or against the anti-tumor effect hypothesis.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Str. 10, 97422, Schweinfurt, Germany.
| |
Collapse
|
41
|
Vandoorne T, De Smet S, Ramaekers M, Van Thienen R, De Bock K, Clarke K, Hespel P. Intake of a Ketone Ester Drink during Recovery from Exercise Promotes mTORC1 Signaling but Not Glycogen Resynthesis in Human Muscle. Front Physiol 2017; 8:310. [PMID: 28588499 PMCID: PMC5440563 DOI: 10.3389/fphys.2017.00310] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/28/2017] [Indexed: 01/07/2023] Open
Abstract
Purpose: Ketone bodies are energy substrates produced by the liver during prolonged fasting or low-carbohydrate diet. The ingestion of a ketone ester (KE) rapidly increases blood ketone levels independent of nutritional status. KE has recently been shown to improve exercise performance, but whether it can also promote post-exercise muscle protein or glycogen synthesis is unknown. Methods: Eight healthy trained males participated in a randomized double-blind placebo-controlled crossover study. In each session, subjects undertook a bout of intense one-leg glycogen-depleting exercise followed by a 5-h recovery period during which they ingested a protein/carbohydrate mixture. Additionally, subjects ingested a ketone ester (KE) or an isocaloric placebo (PL). Results: KE intake did not affect muscle glycogen resynthesis, but more rapidly lowered post-exercise AMPK phosphorylation and resulted in higher mTORC1 activation, as evidenced by the higher phosphorylation of its main downstream targets S6K1 and 4E-BP1. As enhanced mTORC1 activation following KE suggests higher protein synthesis rates, we used myogenic C2C12 cells to further confirm that ketone bodies increase both leucine-mediated mTORC1 activation and protein synthesis in muscle cells. Conclusion: Our results indicate that adding KE to a standard post-exercise recovery beverage enhances the post-exercise activation of mTORC1 but does not affect muscle glycogen resynthesis in young healthy volunteers. In vitro, we confirmed that ketone bodies potentiate the increase in mTORC1 activation and protein synthesis in leucine-stimulated myotubes. Whether, chronic oral KE intake during recovery from exercise can facilitate training-induced muscular adaptation and remodeling need to be further investigated.
Collapse
Affiliation(s)
- Tijs Vandoorne
- Exercise Physiology Research Group, Department of Kinesiology, KU LeuvenLeuven, Belgium
| | - Stefan De Smet
- Exercise Physiology Research Group, Department of Kinesiology, KU LeuvenLeuven, Belgium
| | - Monique Ramaekers
- Exercise Physiology Research Group, Department of Kinesiology, KU LeuvenLeuven, Belgium
| | - Ruud Van Thienen
- Exercise Physiology Research Group, Department of Kinesiology, KU LeuvenLeuven, Belgium
| | - Katrien De Bock
- Exercise Physiology Research Group, Department of Kinesiology, KU LeuvenLeuven, Belgium.,Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH ZurichZurich, Switzerland
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, United Kingdom
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Kinesiology, KU LeuvenLeuven, Belgium
| |
Collapse
|
42
|
Evans M, Cogan KE, Egan B. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol 2017; 595:2857-2871. [PMID: 27861911 PMCID: PMC5407977 DOI: 10.1113/jp273185] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023] Open
Abstract
Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β-hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post-exercise recovery period, and the ability to utilise ketone bodies is higher in exercise-trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti-lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes.
Collapse
Affiliation(s)
- Mark Evans
- Institute for Sport and Health, School of Public Health, Physiotherapy and Sports ScienceUniversity College DublinBelfieldDublin4Ireland
| | - Karl E. Cogan
- Institute for Sport and Health, School of Public Health, Physiotherapy and Sports ScienceUniversity College DublinBelfieldDublin4Ireland
| | - Brendan Egan
- Institute for Sport and Health, School of Public Health, Physiotherapy and Sports ScienceUniversity College DublinBelfieldDublin4Ireland
- School of Health and Human PerformanceDublin City UniversityGlasnevinDublin9Ireland
| |
Collapse
|
43
|
Abstract
Cachexia represents progressive wasting of muscle and adipose tissue and is associated with increased morbidity and mortality. Although anorexia usually accompanies cachexia, cachexia rarely responds to increased food intake alone. Our knowledge of the underlying mechanisms responsible for cachexia remains incomplete. However, most states of cachexia are associated with underlying inflammatory processes and/or cancer. These processes activate protein degradation and lipolytic pathways, resulting in tissue loss. In this article, we briefly review the pathophysiology of cachexia and discuss the role of specific nutrient supplements for the treatment of cachexia. The branched chain amino acid leucine, the leucine metabolite beta-hydroxy-beta-methylbutyrate, arginine, glutamine, omega-3 long chain fatty acids, conjugated linoleic acid, and polyphenols have demonstrated some efficacy in animal and/or human studies. Optimal treatment for cachexia is likely aimed at maximizing muscle and adipose synthesis while minimizing degradation.
Collapse
Affiliation(s)
- Rafat Siddiqui
- Methodist Research Institute, 1812 N Capitol Ave, Wile Hall, Room 120, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
44
|
Palmer BF, Clegg DJ, Taylor SI, Weir MR. Diabetic ketoacidosis, sodium glucose transporter-2 inhibitors and the kidney. J Diabetes Complications 2016; 30:1162-6. [PMID: 27240541 DOI: 10.1016/j.jdiacomp.2016.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
Diabetic ketoacidosis is a serious metabolic condition that may occur in patients with either Type 1 or Type 2 diabetes. The accumulation of ketoacids in the serum is a consequence of insulin deficiency and glucagon excess. Sodium Glucose Transporter 2 (SGLT2) inhibitors are novel therapeutic treatments for improving glucose homeostasis in patients with diabetes. Through reductions in glucose reabsorption by the kidney, they lower serum glucose in patients with Type 2 diabetes and they improve glucose control whether used alone or in combination with other therapies. Mechanistically, these drugs increase serum ketoacids and increase glucagon production, which in some individuals, can lead to formation of diabetic ketoacidosis. This review will first focus in how the kidney normally handles ketoacids, and second will discuss how the SGLT2 inhibitors affect the kidney in such a way so as to enhance the risk for development of ketoacidosis in susceptible individuals.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deborah J Clegg
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Beverly Hills, California
| | - Simeon I Taylor
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Matthew R Weir
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
45
|
Klement RJ, Sweeney RA. Impact of a ketogenic diet intervention during radiotherapy on body composition: I. Initial clinical experience with six prospectively studied patients. BMC Res Notes 2016; 9:143. [PMID: 26946138 PMCID: PMC4779584 DOI: 10.1186/s13104-016-1959-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/25/2016] [Indexed: 12/27/2022] Open
Abstract
Background Based on promising preclinical data, ketogenic diets (KDs) have been proposed as supplementary measures for cancer patients undergoing standard-of-care therapy. However, data is still scarce on the tolerability and effects of KDs on cancer patients undergoing radiotherapy (RT). Here we present six cases of patients who underwent RT and concurrently consumed a self-administered KD in our clinic within a busy community hospital setting. Methods All patients were followed prospectively with measurements of blood parameters, quality of life and body weight and composition using bioelectrical impedance analysis. Results No adverse diet-related side effects occurred. Two patients had no elevated ketone body levels in serum despite self-reporting compliance to the diet. There was consensus that the KD was satiating and weight loss occurred in all patients, although this was only significant in two patients. Our data indicate that weight loss was mainly due to fat mass loss with concurrent preservation of muscle mass. Overall quality of life remained fairly stable, and all subjects reported feeling good on the diet. Tumor regression occurred as expected in five patients with early stage disease; however one subject with metastatic small cell lung cancer experienced slight progression during three cycles of combined chemotherapy + KD and progressed rapidly after ending the KD. Conclusions Our data lend support to the hypothesis that KDs administered as supportive measures during standard therapy are safe and might be helpful in preservation of muscle mass. Further studies with control groups are needed to confirm these findings and address questions regarding any putative anti-tumor effects. Based on the experience with these six cases we implemented further steps to improve issues with KD compliance and initiated a clinical study that is described in a companion paper.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.
| | - Reinhart A Sweeney
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.
| |
Collapse
|
46
|
Klement RJ, Sweeney RA. Impact of a ketogenic diet intervention during radiotherapy on body composition: II. Protocol of a randomised phase I study (KETOCOMP). Clin Nutr ESPEN 2016; 12:e1-e6. [PMID: 28531663 DOI: 10.1016/j.clnesp.2015.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND We have found that a ketogenic diet (KD) during the course of radiotherapy (RT) was feasible and led to a preservation or favorable changes of body composition. Based on these observations and theoretical considerations, we initiated a study to investigate the impact of a KD or a ketogenic breakfast intervention in patients undergoing RT. METHODS All patients presenting for curative RT with age between 18 and 75, body mass index between 18 and 34 kg/m2 and a histologically confirmed cancer of the breast, colorectum or head and neck region are considered for inclusion. Exclusion criteria are Karnofsky index <70, pregnancy, metallic body parts that interfere with bioimpedance analysis (BIA), type I diabetes, known enzyme defects that contradict a KD and renal insufficiency. Randomization is achieved by all consecutive patients first entering the control group and then an intervention group 1 until both groups contain 15 breast, 15 colorectal and 5 head and neck cancer patients. Intervention group 1 will receive each radiotherapy fraction after an overnight fast and subsequently ingest a ketogenic breakfast consisting of (i) 50-250 ml of a medium-chain triglyceride drink (betaquick®, vitaflo, Bad Homburg, Germany) plus (ii) 5-15 g amino acids (MAP, dr. reinwald healthcare gmbh+co kg, Schwarzenbruck, Germany). If willing to undertake a complete KD for the duration of RT, patients are entered into intervention group 2. Intervention group 2 does not have to fast prior to RT fractions but will be supplemented with MAP analogous to intervention group 1. The control group will not receive dietary advice to follow a KD or reduce carbohydrate intake. The objective is twofold: (i) to test whether the ketogenic interventions are feasibly, as measured by the number of dropouts; (ii) to see whether intervention groups 1 and 2 attain a better preservation of BIA phase angle than the control group. ENDPOINTS Primary endpoints are the feasibility of the interventions (measured through dropout rates), and changes in body weight and composition (measured through BIA). Secondary endpoints are changes in quality of life (EORTC questionnaires) and blood parameters as well as the occurrence and grade of toxicities and grade of regression after surgery in case of colorectal carcinomas.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital, Schweinfurt, Germany.
| | - Reinhart A Sweeney
- Department of Radiation Oncology, Leopoldina Hospital, Schweinfurt, Germany
| |
Collapse
|
47
|
Corkey BE, Shirihai O. Metabolic master regulators: sharing information among multiple systems. Trends Endocrinol Metab 2012; 23:594-601. [PMID: 22939743 PMCID: PMC3502692 DOI: 10.1016/j.tem.2012.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 07/17/2012] [Accepted: 07/21/2012] [Indexed: 12/14/2022]
Abstract
Obesity and diabetes are caused by defects in metabolically sensitive tissues. Attention has been paid to insulin resistance as the key relevant pathosis, with a detailed focus on signal transduction pathways in metabolic tissues. Evidence exists to support an important role for each tissue in metabolic homeostasis and a potential causative role in both diabetes and obesity. The redox metabolome, that coordinates tissue responses and reflects shared control and regulation, is our focus. Consideration is given to the possibility that pathosis results from contributions of all relevant tissues, by virtue of a circulating communication system. Validation of this model would support simultaneous regulation of all collaborating metabolic organs through changes in the circulation, regardless of whether change was initiated exogenously or by a single organ.
Collapse
Affiliation(s)
- Barbara E Corkey
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
48
|
Abstract
Amino-N is preserved because of the scarcity and nutritional importance of protein. Excretion requires its conversion to ammonia, later incorporated into urea. Under conditions of excess dietary energy, the body cannot easily dispose of the excess amino-N against the evolutively adapted schemes that prevent its wastage; thus ammonia and glutamine formation (and urea excretion) are decreased. High lipid (and energy) availability limits the utilisation of glucose, and high glucose spares the production of ammonium from amino acids, limiting the synthesis of glutamine and its utilisation by the intestine and kidney. The amino acid composition of the diet affects the production of ammonium depending on its composition and the individual amino acid catabolic pathways. Surplus amino acids enhance protein synthesis and growth, and the synthesis of non-protein-N-containing compounds. But these outlets are not enough; consequently, less-conventional mechanisms are activated, such as increased synthesis of NO∙ followed by higher nitrite (and nitrate) excretion and changes in the microbiota. There is also a significant production of N(2) gas, through unknown mechanisms. Health consequences of amino-N surplus are difficult to fathom because of the sparse data available, but it can be speculated that the effects may be negative, largely because the fundamental N homeostasis is stretched out of normalcy, forcing the N removal through pathways unprepared for that task. The unreliable results of hyperproteic diets, and part of the dysregulation found in the metabolic syndrome may be an unwanted consequence of this N disposal conflict.
Collapse
|
49
|
Higashino-Matsui Y, Shirato K, Suzuki Y, Kawashima Y, Someya Y, Sato S, Shiraishi A, Jinde M, Matsumoto A, Ideno H, Tachiyashiki K, Imaizumi K. Age-related effects of fasting on ketone body production during lipolysis in rats. Environ Health Prev Med 2011; 17:157-63. [PMID: 21850422 DOI: 10.1007/s12199-011-0231-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE The age-related effects of fasting on lipolysis, the production of ketone bodies, and plasma insulin levels were studied in male 3-, 8-, and 32-week-old Sprague-Dawley rats. METHODS The rats were divided into fasting and control groups. The 3-, 8- and 32-week-old rats tolerated fasting for 2, 5, and 12 days, respectively. RESULTS Fasting markedly reduced the weights of perirenal and periepididymal white adipose tissues in rats in the three age groups. The mean rates of reduction in both these adipose tissue weights during fasting periods were higher in the order of 3 > 8 > 32-week-old rats. Fasting transiently increased plasma free fatty acid (FFA), total ketone body, β-hydroxybutyrate, and acetoacetate concentrations in the rats in the three age groups. However, plasma FFA, total ketone body, β-hydroxybutyrate, and acetoacetate concentrations in the 3-week-old rats reached maximal peak within 2 days after the onset of fasting, although these concentrations in the 8- and 32-week-old rats took more than 2 days to reach the maximal peak. By contrast, the augmentation of plasma FFA, total ketone body, β-hydroxybutyrate, and acetoacetate concentrations in the rats in the three age groups had declined at the end of each experimental period. Thus, the capacity for fat mobilization was associated with tolerance to fasting. Plasma insulin concentrations in the rats in the three age groups were dramatically reduced during fasting periods, although basal levels of insulin were higher in the order of 32 > 8 > 3 week-old rats. CONCLUSION These results suggest that differences in fat metabolism patterns among rats in the three age groups during prolonged fasting were partly reflected the metabolic turnover rates, plasma insulin levels, and amounts of fat storage.
Collapse
Affiliation(s)
- Yuriko Higashino-Matsui
- Laboratory of Physiological Sciences, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Corbel HÃ, Geiger S, Groscolas R. Preparing to fledge: the adrenocortical and metabolic responses to stress in king penguin chicks. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2009.01619.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|