1
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
2
|
Song T, Kim H, Son SW, Jo J. Synchronization of active rotators interacting with environment. Phys Rev E 2020; 101:022613. [PMID: 32168592 DOI: 10.1103/physreve.101.022613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 02/04/2020] [Indexed: 11/07/2022]
Abstract
Multiple organs in a living system respond to environmental changes, and the signals from the organs regulate the physiological environment. Inspired by this biological feedback, we propose a simple autonomous system of active rotators to explain how multiple units are synchronized under a fluctuating environment. We find that the feedback via an environment can entrain rotators to have synchronous phases for specific conditions. This mechanism is markedly different from the simple entrainment by a common oscillatory external stimulus that is not interacting with systems. We theoretically examine how the phase synchronization depends on the interaction strength between rotators and environment. Furthermore, we successfully demonstrate the proposed model by realizing an analog electric circuit with microelectronic devices. This bioinspired platform can be used as a sensor for monitoring varying environments and as a controller for amplifying signals by their feedback-induced synchronization.
Collapse
Affiliation(s)
- Taegeun Song
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Heetae Kim
- Data Science Institute, Faculty of Engineering, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Seung-Woo Son
- Asia Pacific Center for Theoretical Physics (APCTP), Pohang 37673, Korea.,Department of Applied Physics, Hanyang University, Ansan 15588, Korea
| | - Junghyo Jo
- Department of Statistics, Keimyung University, Daegu 42601, Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea.,Department of Physics Education and Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Abstract
Controlling the excess and shortage of energy is a fundamental task for living organisms. Diabetes is a representative metabolic disease caused by the malfunction of energy homeostasis. The islets of Langerhans in the pancreas release long-range messengers, hormones, into the blood to regulate the homeostasis of the primary energy fuel, glucose. The hormone and glucose levels in the blood show rhythmic oscillations with a characteristic period of 5-10 min, and the functional roles of the oscillations are not clear. Each islet has [Formula: see text] and [Formula: see text] cells that secrete glucagon and insulin, respectively. These two counter-regulatory hormones appear sufficient to increase and decrease glucose levels. However, pancreatic islets have a third cell type, [Formula: see text] cells, which secrete somatostatin. The three cell populations have a unique spatial organization in islets, and they interact to perturb their hormone secretions. The mini-organs of islets are scattered throughout the exocrine pancreas. Considering that the human pancreas contains approximately a million islets, the coordination of hormone secretion from the multiple sources of islets and cells within the islets should have a significant effect on human physiology. In this review, we introduce the hierarchical organization of tripartite cell networks, and recent biophysical modeling to systematically understand the oscillations and interactions of [Formula: see text], [Formula: see text], and [Formula: see text] cells. Furthermore, we discuss the functional roles and clinical implications of hormonal oscillations and their phase coordination for the diagnosis of type II diabetes.
Collapse
Affiliation(s)
- Taegeun Song
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | | |
Collapse
|
4
|
De Gaetano A, Gaz C, Panunzi S. Consistency of compact and extended models of glucose-insulin homeostasis: The role of variable pancreatic reserve. PLoS One 2019; 14:e0211331. [PMID: 30768604 PMCID: PMC6377092 DOI: 10.1371/journal.pone.0211331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/11/2019] [Indexed: 01/16/2023] Open
Abstract
Published compact and extended models of the glucose-insulin physiologic control system are compared, in order to understand why a specific functional form of the compact model proved to be necessary for a satisfactory representation of acute perturbation experiments such as the Intra Venous Glucose Tolerance Test (IVGTT). A spectrum of IVGTT’s of virtual subjects ranging from normal to IFG to IGT to frank T2DM were simulated using an extended model incorporating the population-of-controllers paradigm originally hypothesized by Grodsky, and proven to be able to capture a wide array of experimental results from heterogeneous perturbation procedures. The simulated IVGTT’s were then fitted with the Single-Delay Model (SDM), a compact model with only six free parameters, previously shown to be very effective in delivering precise estimates of insulin sensitivity and secretion during an IVGTT. Comparison of the generating, extended-model parameter values with the obtained compact model estimates shows that the functional form of the nonlinear insulin-secretion term, empirically found to be necessary for the compact model to satisfactorily fit clinical observations, captures the pancreatic reserve level of the simulated virtual patients. This result supports the validity of the compact model as a meaningful analysis tool for the clinical assessment of insulin sensitivity.
Collapse
Affiliation(s)
- Andrea De Gaetano
- CNR-IASI BioMatLab, Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica, Laboratorio di Biomatematica (Italian National Research Council - Institute for System Analysis and Computer Science - Biomathematics Laboratory), UCSC Largo A. Gemelli 8, Rome, Italy
| | - Claudio Gaz
- CNR-IASI BioMatLab, Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica, Laboratorio di Biomatematica (Italian National Research Council - Institute for System Analysis and Computer Science - Biomathematics Laboratory), UCSC Largo A. Gemelli 8, Rome, Italy
- Sapienza Università di Roma, Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG) (Department of Computer, Control and Management Engineering), Via Ariosto 25, Rome, Italy
- * E-mail: ,
| | - Simona Panunzi
- CNR-IASI BioMatLab, Consiglio Nazionale delle Ricerche, Istituto di Analisi dei Sistemi ed Informatica, Laboratorio di Biomatematica (Italian National Research Council - Institute for System Analysis and Computer Science - Biomathematics Laboratory), UCSC Largo A. Gemelli 8, Rome, Italy
| |
Collapse
|
5
|
Marinelli I, Vo T, Gerardo-Giorda L, Bertram R. Transitions between bursting modes in the integrated oscillator model for pancreatic β-cells. J Theor Biol 2018; 454:310-319. [PMID: 29935201 DOI: 10.1016/j.jtbi.2018.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 11/27/2022]
Abstract
Insulin-secreting β-cells of pancreatic islets of Langerhans produce bursts of electrical impulses, resulting in intracellular Ca2+ oscillations and pulsatile insulin secretion. The mechanism for this bursting activity has been the focus of mathematical modeling for more than three decades, and as new data are acquired old models are modified and new models are developed. Comprehensive models must now account for the various modes of bursting observed in islet β-cells, which include fast bursting, slow bursting, and compound bursting. One such model is the Integrated Oscillator Model (IOM), in which β-cell electrical activity, intracellular Ca2+, and glucose metabolism interact via numerous feedforward and feedback pathways. These interactions can produce metabolic oscillations with a sawtooth time course or a pulsatile time course, reflecting very different oscillation mechanisms. In this report, we determine conditions favorable to one form of oscillations or the other, and examine the transitions between modes of bursting and the relationship of the transitions to the patterns of metabolic oscillations. Importantly, this work clarifies what can be expected in experimental measurements of β-cell oscillatory activity, and suggests pathways through which oscillations of one type can be converted to oscillations of another type.
Collapse
Affiliation(s)
| | - Theodore Vo
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| | | | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
6
|
Lee B, Song T, Lee K, Kim J, Berggren PO, Ryu SH, Jo J. Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets. PLoS One 2017; 12:e0183569. [PMID: 28846705 PMCID: PMC5573301 DOI: 10.1371/journal.pone.0183569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022] Open
Abstract
Pancreatic islets can adapt to oscillatory glucose to produce synchronous insulin pulses. Can islets adapt to other oscillatory stimuli, specifically insulin? To answer this question, we stimulated islets with pulses of exogenous insulin and measured their Ca2+ oscillations. We observed that sufficiently high insulin (> 500 nM) with an optimal pulse period (~ 4 min) could make islets to produce synchronous Ca2+ oscillations. Glucose and insulin, which are key stimulatory factors of islets, modulate islet Ca2+ oscillations differently. Glucose increases the active-to-silent ratio of phases, whereas insulin increases the period of the oscillation. To examine the dual modulation, we adopted a phase oscillator model that incorporated the phase and frequency modulations. This mathematical model showed that out-of-phase oscillations of glucose and insulin were more effective at synchronizing islet Ca2+ oscillations than in-phase stimuli. This finding suggests that a phase shift in glucose and insulin oscillations can enhance inter-islet synchronization.
Collapse
Affiliation(s)
- Boah Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Taegeun Song
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Korea
| | - Kayoung Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Jaeyoon Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Per-Olof Berggren
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- * E-mail:
| |
Collapse
|
7
|
Asymptotic tracking and disturbance rejection of the blood glucose regulation system. Math Biosci 2017; 289:78-88. [PMID: 28495545 DOI: 10.1016/j.mbs.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/14/2016] [Accepted: 05/06/2017] [Indexed: 11/23/2022]
Abstract
Type 1 diabetes patients need external insulin to maintain blood glucose within a narrow range from 65 to 108 mg/dl (3.6 to 6.0 mmol/l). A mathematical model for the blood glucose regulation is required for integrating a glucose monitoring system into insulin pump technology to form a closed-loop insulin delivery system on the feedback of the blood glucose, the so-called "artificial pancreas". The objective of this paper is to treat the exogenous glucose from food as a glucose disturbance and then develop a closed-loop feedback and feedforward control system for the blood glucose regulation system subject to the exogenous glucose disturbance. For this, a mathematical model for the glucose disturbance is proposed on the basis of experimental data, and then incorporated into an existing blood glucose regulation model. Because all the eigenvalues of the disturbance model have zero real parts, the center manifold theory is used to establish blood glucose regulator equations. We then use their solutions to synthesize a required feedback and feedforward controller to reject the disturbance and asymptotically track a constant glucose reference of 90 mg/dl. Since the regulator equations are nonlinear partial differential equations and usually impossible to solve analytically, a linear approximation solution is obtained. Our numerical simulations show that, under the linear approximate feedback and feedforward controller, the blood glucose asymptotically tracks its desired level of 90 mg/dl approximately.
Collapse
|
8
|
Park DH, Song T, Hoang DT, Xu J, Jo J. A Local Counter-Regulatory Motif Modulates the Global Phase of Hormonal Oscillations. Sci Rep 2017; 7:1602. [PMID: 28487511 PMCID: PMC5431656 DOI: 10.1038/s41598-017-01806-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/06/2017] [Indexed: 11/18/2022] Open
Abstract
Counter-regulatory elements maintain dynamic equilibrium ubiquitously in living systems. The most prominent example, which is critical to mammalian survival, is that of pancreatic α and β cells producing glucagon and insulin for glucose homeostasis. These cells are not found in a single gland but are dispersed in multiple micro-organs known as the islets of Langerhans. Within an islet, these two reciprocal cell types interact with each other and with an additional cell type: the δ cell. By testing all possible motifs governing the interactions of these three cell types, we found that a unique set of positive/negative intra-islet interactions between different islet cell types functions not only to reduce the superficially wasteful zero-sum action of glucagon and insulin but also to enhance/suppress the synchronization of hormone secretions between islets under high/normal glucose conditions. This anti-symmetric interaction motif confers effective controllability for network (de)synchronization.
Collapse
Affiliation(s)
- Dong-Ho Park
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 37673, Korea
| | - Taegeun Song
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 37673, Korea
| | - Danh-Tai Hoang
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 37673, Korea.,Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America.,Department of Natural Sciences, Quang Binh University, Dong Hoi, Quang Binh, 510000, Vietnam
| | - Jin Xu
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 37673, Korea.,Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 37673, Korea. .,Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
9
|
Lee B, Song T, Lee K, Kim J, Han S, Berggren PO, Ryu SH, Jo J. Phase modulation of insulin pulses enhances glucose regulation and enables inter-islet synchronization. PLoS One 2017; 12:e0172901. [PMID: 28235104 PMCID: PMC5325581 DOI: 10.1371/journal.pone.0172901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/10/2017] [Indexed: 11/23/2022] Open
Abstract
Insulin is secreted in a pulsatile manner from multiple micro-organs called the islets of Langerhans. The amplitude and phase (shape) of insulin secretion are modulated by numerous factors including glucose. The role of phase modulation in glucose homeostasis is not well understood compared to the obvious contribution of amplitude modulation. In the present study, we measured Ca2+ oscillations in islets as a proxy for insulin pulses, and we observed their frequency and shape changes under constant/alternating glucose stimuli. Here we asked how the phase modulation of insulin pulses contributes to glucose regulation. To directly answer this question, we developed a phenomenological oscillator model that drastically simplifies insulin secretion, but precisely incorporates the observed phase modulation of insulin pulses in response to glucose stimuli. Then, we mathematically modeled how insulin pulses regulate the glucose concentration in the body. The model of insulin oscillation and glucose regulation describes the glucose-insulin feedback loop. The data-based model demonstrates that the existence of phase modulation narrows the range within which the glucose concentration is maintained through the suppression/enhancement of insulin secretion in conjunction with the amplitude modulation of this secretion. The phase modulation is the response of islets to glucose perturbations. When multiple islets are exposed to the same glucose stimuli, they can be entrained to generate synchronous insulin pulses. Thus, we conclude that the phase modulation of insulin pulses is essential for glucose regulation and inter-islet synchronization.
Collapse
Affiliation(s)
- Boah Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Taegeun Song
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Korea
| | - Kayoung Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Jaeyoon Kim
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Seungmin Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Per-Olof Berggren
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- * E-mail:
| |
Collapse
|
10
|
De Gaetano A, Gaz C, Palumbo P, Panunzi S. A Unifying Organ Model of Pancreatic Insulin Secretion. PLoS One 2015; 10:e0142344. [PMID: 26555895 PMCID: PMC4640662 DOI: 10.1371/journal.pone.0142344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/20/2015] [Indexed: 12/25/2022] Open
Abstract
The secretion of insulin by the pancreas has been the object of much attention over the past several decades. Insulin is known to be secreted by pancreatic β-cells in response to hyperglycemia: its blood concentrations however exhibit both high-frequency (period approx. 10 minutes) and low-frequency oscillations (period approx. 1.5 hours). Furthermore, characteristic insulin secretory response to challenge maneuvers have been described, such as frequency entrainment upon sinusoidal glycemic stimulation; substantial insulin peaks following minimal glucose administration; progressively strengthened insulin secretion response after repeated administration of the same amount of glucose; insulin and glucose characteristic curves after Intra-Venous administration of glucose boli in healthy and pre-diabetic subjects as well as in Type 2 Diabetes Mellitus. Previous modeling of β-cell physiology has been mainly directed to the intracellular chain of events giving rise to single-cell or cell-cluster hormone release oscillations, but the large size, long period and complex morphology of the diverse responses to whole-body glucose stimuli has not yet been coherently explained. Starting with the seminal work of Grodsky it was hypothesized that the population of pancreatic β-cells, possibly functionally aggregated in islets of Langerhans, could be viewed as a set of independent, similar, but not identical controllers (firing units) with distributed functional parameters. The present work shows how a single model based on a population of independent islet controllers can reproduce very closely a diverse array of actually observed experimental results, with the same set of working parameters. The model's success in reproducing a diverse array of experiments implies that, in order to understand the macroscopic behaviour of the endocrine pancreas in regulating glycemia, there is no need to hypothesize intrapancreatic pacemakers, influences between different islets of Langerhans, glycolitic-induced oscillations or β-cell sensitivity to the rate of change of glycemia.
Collapse
Affiliation(s)
- Andrea De Gaetano
- CNR-IASI BioMatLab (Italian National Research Council - Institute of Analysis, Systems and Computer Science - Biomathematics Laboratory), UCSC Largo A. Gemelli 8, 00168 Rome, Italy
| | - Claudio Gaz
- CNR-IASI BioMatLab (Italian National Research Council - Institute of Analysis, Systems and Computer Science - Biomathematics Laboratory), UCSC Largo A. Gemelli 8, 00168 Rome, Italy
- Sapienza Università di Roma, Department of Computer, Control and Management Engineering (DIAG), Via Ariosto 25, 00185 Rome, Italy
| | - Pasquale Palumbo
- CNR-IASI BioMatLab (Italian National Research Council - Institute of Analysis, Systems and Computer Science - Biomathematics Laboratory), UCSC Largo A. Gemelli 8, 00168 Rome, Italy
| | - Simona Panunzi
- CNR-IASI BioMatLab (Italian National Research Council - Institute of Analysis, Systems and Computer Science - Biomathematics Laboratory), UCSC Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
11
|
Yi L, Wang X, Dhumpa R, Schrell AM, Mukhitov N, Roper MG. Integrated perfusion and separation systems for entrainment of insulin secretion from islets of Langerhans. LAB ON A CHIP 2015; 15:823-32. [PMID: 25474044 PMCID: PMC4304979 DOI: 10.1039/c4lc01360c] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A microfluidic system was developed to investigate the entrainment of insulin secretion from islets of Langerhans to oscillatory glucose levels. A gravity-driven perfusion system was integrated with a microfluidic system to deliver sinusoidal glucose waveforms to the islet chamber. Automated manipulation of the height of the perfusion syringes allowed precise control of the ratio of two perfusion solutions into a chamber containing 1-10 islets. Insulin levels in the perfusate were measured using an online competitive electrophoretic immunoassay with a sampling period of 10 s. The insulin immunoassay had a detection limit of 3 nM with RSDs of calibration points ranging from 2-8%. At 11 mM glucose, insulin secretion from single islets was oscillatory with a period ranging from 3-6 min. Application of a small amplitude sinusoidal wave of glucose with a period of 5 or 10 min, shifted the period of the insulin oscillations to this forcing period. Exposing groups of 6-10 islets to a sinusoidal glucose wave synchronized their behavior, producing a coherent pulsatile insulin response from the population. These results demonstrate the feasibility of the developed system for the study of oscillatory insulin secretion and can be easily modified for investigating the dynamic nature of other hormones released from different cell types.
Collapse
Affiliation(s)
- Lian Yi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Nunemaker CS, Satin LS. Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. Endocrine 2014; 47:49-63. [PMID: 24610206 PMCID: PMC4382805 DOI: 10.1007/s12020-014-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/13/2014] [Indexed: 01/01/2023]
Abstract
Rhythms govern many endocrine functions. Examples of such rhythmic systems include the insulin-secreting pancreatic beta-cell, which regulates blood glucose, and the gonadotropin-releasing hormone (GnRH) neuron, which governs reproductive function. Although serving very different functions within the body, these cell types share many important features. Both GnRH neurons and beta-cells, for instance, are hypothesized to generate at least two rhythms endogenously: (1) a burst firing electrical rhythm and (2) a slower rhythm involving metabolic or other intracellular processes. This review discusses the importance of hormone rhythms to both physiology and disease and compares and contrasts the rhythms generated by each system.
Collapse
Affiliation(s)
- Craig S. Nunemaker
- Division of Endocrinology and Metabolism, Department of, Medicine, University of Virginia, P.O. Box 801413, Charlottesville, VA 22901, USA,
| | - Leslie S. Satin
- Pharmacology Department, University of Michigan Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
- Brehm Diabetes Research Center, University of Michigan, Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
| |
Collapse
|
13
|
Palumbo P, Ditlevsen S, Bertuzzi A, De Gaetano A. Mathematical modeling of the glucose–insulin system: A review. Math Biosci 2013; 244:69-81. [DOI: 10.1016/j.mbs.2013.05.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/10/2013] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
|
14
|
Yang GK, Fredholm BB, Kieffer TJ, Kwok YN. Improved blood glucose disposal and altered insulin secretion patterns in adenosine A(1) receptor knockout mice. Am J Physiol Endocrinol Metab 2012; 303:E180-90. [PMID: 22550063 DOI: 10.1152/ajpendo.00050.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by the inability of the pancreatic β-cells to secrete enough insulin to meet the demands of the body. Therefore, research of potential therapeutic approaches to treat T2DM has focused on increasing insulin output from β-cells or improving systemic sensitivity to circulating insulin. In this study, we examined the role of the A(1) receptor in glucose homeostasis with the use of A(1) receptor knockout mice (A(1)R(-/-)). A(1)R(-/-) mice exhibited superior glucose tolerance compared with wild-type controls. However, glucose-stimulated insulin release, insulin sensitivity, weight gain, and food intake were comparable between the two genotypes. Following a glucose challenge, plasma glucagon levels in wild-type controls decreased, but this was not observed in A(1)R(-/-) mice. In addition, pancreas perfusion with oscillatory glucose levels of 10-min intervals produced a regular pattern of pulsatile insulin release with a 10-min cycling period in wild-type controls and 5 min in A(1)R(-/-) mice. When the mice were fed a high-fat diet (HFD), both genotypes exhibited impaired glucose tolerance and insulin resistance. Increased insulin release was observed in HFD-fed mice in both genotypes, but increased glucagon release was observed only in HFD-fed A(1)R(-/-) mice. In addition, the regular patterns of insulin release following oscillatory glucose perfusion were abolished in HFD-fed mice in both genotypes. In conclusion, A(1) receptors in the pancreas are involved in regulating the temporal patterns of insulin release, which could have implications in the development of glucose intolerance seen in T2DM.
Collapse
Affiliation(s)
- Gary K Yang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
15
|
Zhang X, Daou A, Truong TM, Bertram R, Roper MG. Synchronization of mouse islets of Langerhans by glucose waveforms. Am J Physiol Endocrinol Metab 2011; 301:E742-7. [PMID: 21771970 PMCID: PMC3191549 DOI: 10.1152/ajpendo.00248.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/12/2011] [Indexed: 01/02/2023]
Abstract
Pancreatic islets secrete insulin in a pulsatile manner, and the individual islets are synchronized, producing in vivo oscillations. In this report, the ability of imposed glucose waveforms to synchronize a population of islets was investigated. A microfluidic system was used to deliver glucose waveforms to ∼20 islets while fura 2 fluorescence was imaged. All islets were entrained to a sinusoidal waveform of glucose (11 mM median, 1 mM amplitude, and a 5-min period), producing synchronized oscillations of fura 2 fluorescence. During perfusion with constant 11 mM glucose, oscillations of fura 2 fluorescence were observed in individual islets, but the average signal was nonoscillatory. Spectral analysis and a synchronization index (λ) were used to measure the period of fura 2 fluorescence oscillations and evaluate synchronization of islets, respectively. During perfusion with glucose waveforms, spectral analysis revealed a dominant frequency at 5 min, and λ, which can range from 0 (unsynchronized) to 1 (perfect synchronization), was 0.78 ± 0.15. In contrast, during perfusion with constant 11 mM glucose, the main peak in the spectral analysis corresponded to a period of 5 min but was substantially smaller than during perfusion with oscillatory glucose, and the average λ was 0.52 ± 0.09, significantly lower than during perfusion with sinusoidal glucose. These results indicated that an oscillatory glucose level synchronized the activity of a heterogeneous islet population, serving as preliminary evidence that islets could be synchronized in vivo through oscillatory glucose levels produced by a liver-pancreas feedback loop.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, 32306, USA
| | | | | | | | | |
Collapse
|
16
|
|
17
|
An islet population model of the endocrine pancreas. J Math Biol 2009; 61:171-205. [DOI: 10.1007/s00285-009-0297-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 04/14/2009] [Indexed: 10/20/2022]
|
18
|
Cobelli C, Man CD, Sparacino G, Magni L, De Nicolao G, Kovatchev BP. Diabetes: Models, Signals, and Control. IEEE Rev Biomed Eng 2009; 2:54-96. [PMID: 20936056 PMCID: PMC2951686 DOI: 10.1109/rbme.2009.2036073] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The control of diabetes is an interdisciplinary endeavor, which includes a significant biomedical engineering component, with traditions of success beginning in the early 1960s. It began with modeling of the insulin-glucose system, and progressed to large-scale in silico experiments, and automated closed-loop control (artificial pancreas). Here, we follow these engineering efforts through the last, almost 50 years. We begin with the now classic minimal modeling approach and discuss a number of subsequent models, which have recently resulted in the first in silico simulation model accepted as substitute to animal trials in the quest for optimal diabetes control. We then review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the analyses of their time-series signals, and on the opportunities that they present for automation of diabetes control. Finally, we review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers. We conclude with a brief discussion of the unique interactions between human physiology, behavioral events, engineering modeling and control relevant to diabetes.
Collapse
Affiliation(s)
- Claudio Cobelli
- Department of Information Engineering, University of Padova, Via Gradenigo 6B, 35131 Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Via Gradenigo 6B, 35131 Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Via Gradenigo 6B, 35131 Padova, Italy
| | - Lalo Magni
- Department of Computer Engineering and Systems Science, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giuseppe De Nicolao
- Department of Computer Engineering and Systems Science, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Boris P. Kovatchev
- Department of Psychiatry and Neurobehavioral Sciences, P.O. Box 40888, University of Virginia, Charlottesville, VA 22903 USA
| |
Collapse
|
19
|
Relationship between the level of fasting plasma glucose and beta cell functions in Chinese with or without diabetes. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200811010-00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
20
|
Gonze D, Markadieu N, Goldbeter A. Selection of in-phase or out-of-phase synchronization in a model based on global coupling of cells undergoing metabolic oscillations. CHAOS (WOODBURY, N.Y.) 2008; 18:037127. [PMID: 19045501 DOI: 10.1063/1.2983753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
On the basis of experimental observations, it has been suggested that glycolytic oscillations underlie the pulsatile secretion of insulin by pancreatic beta cells, with a periodicity of about 13 min. If beta cells within an islet are synchronized through gap junctions, the question arises as to how beta cells located in different islets of Langerhans synchronize to produce oscillations in plasma levels of insulin. We address this question by means of a minimal model that incorporates the secretion of insulin by cells undergoing glycolytic oscillations. Global coupling and synchronization result from the inhibition exerted by insulin on the production of glucose, which serves as the substrate for metabolic oscillations. Glycolytic oscillations are described by a simple two-variable model centered on the product-activated reaction catalyzed by the allosteric enzyme phosphofructokinase. We obtain bifurcation diagrams for the cases in which insulin secretion is controlled solely by the product or by the substrate of the metabolic oscillator. Remarkably, we find that the oscillating cells in these conditions synchronize, respectively, in phase or out of phase. Numerical simulations show that in-phase and out-of-phase synchronization can sometimes coexist when insulin release is controlled by both the substrate and the product of the metabolic oscillator. The results provide an example of a system in which the selection of in-phase or out-of-phase synchronization is governed by the nature of the coupling between the intracellular oscillations and the secretion of the biochemical signal through which the oscillating cells are globally coupled.
Collapse
Affiliation(s)
- Didier Gonze
- Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, CP 231, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
21
|
Abstract
Measurement of blood glucose concentration is central to the diagnosis and treatment of diabetes. Although there are large numbers of historic glucose measurements in individuals with diabetes, until recently there have been very few data sets that were recorded continuously or sampled frequently enough to reveal intrinsic blood glucose dynamics, or the change in blood glucose with time. There have even fewer such recordings from individuals not having diabetes to serve as a therapeutic target. As a result, blood glucose dynamics have generally not been used in the diagnosis or treatment of the disease. Although present blood glucose monitoring is based largely on discrete measurements, future monitoring will likely focus on analysis of blood glucose excursions. New measurements are now being obtained, and there is a need for new methods of analysis to extract the maximal information from the data. Several approaches are demonstrated here for characterization of blood glucose dynamics, and a patient profiling system is proposed. An example of new insights is the observation that there are four time scales of blood glucose variations in individuals without diabetes, and these time scales are modified or lost in diabetes.
Collapse
Affiliation(s)
- Farbod N Rahaghi
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093-0412, USA
| | | |
Collapse
|
22
|
Ritzel RA, Veldhuis JD, Butler PC. The mass, but not the frequency, of insulin secretory bursts in isolated human islets is entrained by oscillatory glucose exposure. Am J Physiol Endocrinol Metab 2006; 290:E750-6. [PMID: 16278244 DOI: 10.1152/ajpendo.00381.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin is secreted in discrete insulin secretory bursts. Regulation of insulin release is accomplished almost exclusively by modulation of insulin pulse mass, whereas the insulin pulse interval remains stable at approximately 4 min. It has been reported that in vivo insulin pulses can be entrained to a pulse interval of approximately 10 min by infused glucose oscillations. If oscillations in glucose concentration play an important role in the regulation of pulsatile insulin secretion, abnormal or absent glucose oscillations, which have been described in type 2 diabetes, might contribute to the defective insulin secretion. Using perifused human islets exposed to oscillatory vs. constant glucose, we questioned 1) whether the interval of insulin pulses released by human islets is entrained to infused glucose oscillations and 2) whether the exposure of islets to oscillating vs. constant glucose confers an increased signal for insulin secretion. We report that oscillatory glucose exposure does not entrain insulin pulse frequency, but it amplifies the mass of insulin secretory bursts that coincide with glucose oscillations (P < 0.001). Dose-response analyses showed that the mode of glucose drive does not influence total insulin secretion (P = not significant). The apparent entrainment of pulsatile insulin to infused glucose oscillations in nondiabetic humans in vivo might reflect the amplification of underlying insulin secretory bursts that are detected as entrained pulses at the peripheral sampling site, but without changes in the underlying pacemaker activity.
Collapse
Affiliation(s)
- R A Ritzel
- Larry Hillblom Islet Research Center, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, California 90095-7073, USA
| | | | | |
Collapse
|
23
|
Au S, Courtney CH, Ennis CN, Sheridan B, Atkinson AB, Bell PM. The effect of manipulation of basal pulsatile insulin on insulin action in Type 2 diabetes. Diabet Med 2005; 22:1064-71. [PMID: 16026374 DOI: 10.1111/j.1464-5491.2005.01607.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Disordered insulin pulsatility is associated with insulin resistant states including Type 2 diabetes. However, whether abnormal basal insulin pulses play a role in the pathogenesis of insulin resistance or are simply an associated feature remains undetermined. We investigated this relationship further by studying the effect of overnight (10 h) pulsatile insulin infusion on subsequent insulin sensitivity. METHODS We studied 17 Type 2 diabetic patients who underwent one of two protocols. In protocol A (10 patients) on two separate nights we infused insulin 0.1 mU/kg/min either in a constant infusion or in pulses every 13 min. Octreotide (0.43 microg/kg/h) was given to suppress endogenous insulin secretion and physiological replacement of glucagon (30 ng/kg/h) administered. Insulin sensitivity was measured using a hyperinsulinaemic euglycaemic clamp (2 mU/kg/min) next morning. In protocol B (seven patients), we employed the same experimental procedure but used a basal insulin infusion rate of 0.09 mU/kg/min in 7-min or 13-min pulses. RESULTS Appropriate pulse patterns were confirmed in each protocol. In protocol A, after overnight infusions, glucose infusion rates required to maintain euglycaemia at steady state hyperinsulinaemia were similar (33.9 +/- 5.2 vs. 31.2 +/- 4.1 micromol/kg/min; P = NS). In protocol B, after overnight infusions the glucose infusion rates required during hyperinsulinaemia were significantly lower during 7-min pulses (39.9 +/- 5.7 vs. 44.7 +/- 5.6 micromol/kg/min; P < 0.05). CONCLUSION There was no demonstrable priming effect derived from overnight pulsatile insulin compared with constant insulin infusion on subsequent insulin sensitivity in Type 2 diabetic subjects. The failure of 7-min pulses to exhibit an advantageous effect over 13-min pulses raises questions about the natural frequency of basal insulin pulses and their biological effect.
Collapse
Affiliation(s)
- S Au
- Regional Centre of Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | | | | | | | | | | |
Collapse
|
24
|
Pedersen MG, Bertram R, Sherman A. Intra- and inter-islet synchronization of metabolically driven insulin secretion. Biophys J 2005; 89:107-19. [PMID: 15834002 PMCID: PMC1366509 DOI: 10.1529/biophysj.104.055681] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin secretion from pancreatic beta-cells is pulsatile with a period of 5-10 min and is believed to be responsible for plasma insulin oscillations with similar frequency. To observe an overall oscillatory insulin profile it is necessary that the insulin secretion from individual beta-cells is synchronized within islets, and that the population of islets is also synchronized. We have recently developed a model in which pulsatile insulin secretion is produced as a result of calcium-driven electrical oscillations in combination with oscillations in glycolysis. We use this model to investigate possible mechanisms for intra-islet and inter-islet synchronization. We show that electrical coupling is sufficient to synchronize both electrical bursting activity and metabolic oscillations. We also demonstrate that islets can synchronize by mutually entraining each other by their effects on a simple model "liver," which responds to the level of insulin secretion by adjusting the blood glucose concentration in an appropriate way. Since all islets are exposed to the blood, the distributed islet-liver system can synchronize the individual islet insulin oscillations. Thus, we demonstrate how intra-islet and inter-islet synchronization of insulin oscillations may be achieved.
Collapse
Affiliation(s)
- Morten Gram Pedersen
- Department of Mathematics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
25
|
St Clair Gibson A, Goedecke JH, Harley YX, Myers LJ, Lambert MI, Noakes TD, Lambert EV. Metabolic setpoint control mechanisms in different physiological systems at rest and during exercise. J Theor Biol 2005; 236:60-72. [PMID: 15967183 DOI: 10.1016/j.jtbi.2005.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 02/12/2005] [Accepted: 02/17/2005] [Indexed: 10/25/2022]
Abstract
Using a number of different homeostatic control mechanisms in the brain and peripheral physiological systems, metabolic activity is continuously regulated at rest and during exercise to prevent catastrophic system failure. Essential for the function of these regulatory processes are baseline "setpoint" levels of metabolic function, which can be used to calculate the level of response required for the maintenance of system homeostasis after system perturbation, and to which the perturbed metabolic activity levels are returned to at the end of the regulatory process. How these setpoint levels of all the different metabolic variables in the different peripheral physiological systems are created and maintained, and why they are similar in different individuals, has not been well explained. In this article, putative system regulators of metabolic setpoint levels are described. These include that: (i) innate setpoint values are stored in a certain region of the central nervous system, such as the hypothalamus; (ii) setpoint values are created and maintained as a response to continuous external perturbations, such as gravity or "zeitgebers", (iii) setpoint values are created and maintained by complex system dynamical activity in the different peripheral systems, where setpoint levels are regulated by the ongoing feedback control activity between different peripheral variables; (iv) human anatomical and biomechanical constraints contribute to the creation and maintenance of metabolic setpoints values; or (v) a combination of all these four different mechanisms occurs. Exercise training and disease processes can affect these metabolic setpoint values, but the setpoint values are returned to pre-training or pre-disease levels if the training stimulus is removed or if the disease process is cured. Further work is required to determine what the ultimate system regulator of metabolic setpoint values is, why some setpoint values are more stringently protected by homeostatic regulatory mechanisms than others, and the role of conscious decision making processes in determining the regulation of metabolic setpoint values.
Collapse
Affiliation(s)
- A St Clair Gibson
- Brain Sciences Research Group, MRC/UCT Research Unit of Exercise Science and Sports Medicine, Sport Science Institute of South Africa, P.O. Box 115, Newlands 7725, South Africa.
| | | | | | | | | | | | | |
Collapse
|
26
|
Lambert EV, St Clair Gibson A, Noakes TD. Complex systems model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br J Sports Med 2005; 39:52-62. [PMID: 15618343 PMCID: PMC1725023 DOI: 10.1136/bjsm.2003.011247] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fatigue is hypothesised as being the result of the complex interaction of multiple peripheral physiological systems and the brain. In this new model, all changes in peripheral physiological systems such as substrate depletion or metabolite accumulation act as afferent signallers which modulate control processes in the brain in a dynamic, non-linear, integrative manner.
Collapse
Affiliation(s)
- E V Lambert
- University of Cape Town, Research Unit for Exercise Science and Sports Medicine, Sports Science of South Africa, P O Box 115, Newlands 7725, South Africa.
| | | | | |
Collapse
|
27
|
Bergman RN, Finegood DT, Kahn SE. The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes. Eur J Clin Invest 2002; 32 Suppl 3:35-45. [PMID: 12028373 DOI: 10.1046/j.1365-2362.32.s3.5.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin resistance and beta-cell dysfunction have important roles in the pathogenesis and evolution of type 2 diabetes. The development of precise methods to measure these factors has helped us to define the relationship between them and evidence is reviewed that changes in insulin sensitivity are compensated by inverse changes in beta-cell responsiveness such that the product of insulin sensitivity and insulin secretion (the disposition index) remains constant. While the disposition index promises to be a useful tool to predict individuals at high risk of developing type 2 diabetes, other factors that contribute to beta-cell dysfunction and mark disease onset and progression include impairments in proinsulin processing and insulin secretion, decreased beta-cell mass and islet amyloid deposition. Emerging data indicate that anti-diabetic agents, such as the thiazolidinediones that simultaneously target insulin resistance and beta-cell dysfunction, may have a beneficial impact on disease onset and progression. Several landmark clinical studies are underway to investigate if their initial promise is supported by data from large-scale trials.
Collapse
Affiliation(s)
- R N Bergman
- Diabetes Research Center, Keck School of Medicine, Department of Physiology and Biophysics, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
28
|
Meyer J, Sturis J, Katschinski M, Arnold R, Göke B, Byrne MM. Acute hyperglycemia alters the ability of the normal beta-cell to sense and respond to glucose. Am J Physiol Endocrinol Metab 2002; 282:E917-22. [PMID: 11882513 DOI: 10.1152/ajpendo.00427.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired glucose tolerance (IGT) and non-insulin-dependent diabetes mellitus (NIDDM) are associated with an impaired ability of the beta-cell to sense and respond to small changes in plasma glucose. The aim of this study was to establish whether acute hyperglycemia per se plays a role in inducing this defect in beta-cell response. Seven healthy volunteers with no family history of NIDDM were studied on two occasions during a 12-h oscillatory glucose infusion with a periodicity of 144 min. Once, low-dose glucose was infused at a mean rate of 6 mg x kg(-1) x min(-1) and amplitude 33% above and below the mean rate, and, once, high-dose glucose was infused at 12 mg x kg(-1) x min(-1) and amplitude 16% above and below the mean rate. Mean glucose levels were significantly higher during the high-dose compared with the low-dose glucose infusion [9.5 +/- 0.8 vs. 6.8 +/- 0.2 mM (P < 0.01)], resulting in increased mean insulin secretion rates [ISRs; 469.1 +/- 43.8 vs. 268.4 +/- 29 pmol/min (P < 0.001)] and mean insulin levels [213.6 +/- 46 vs. 67.9 +/- 10.9 pmol/l (P < 0.008)]. Spectral analysis evaluates the regularity of oscillations in glucose, insulin secretion, and insulin at a predetermined frequency. Spectral power for glucose, ISR, and insulin was reduced during the high-dose glucose infusion [11.8 +/- 1.4 to 7.0 +/- 1.6 (P < 0.02), 7.6 +/- 1.5 to 3.2 +/- 0.5 (P < 0.04), and 10.5 +/- 1.6 to 4.6 +/- 0.7 (P < 0.01), respectively]. In conclusion, short-term infusion of high-dose glucose to obtain glucose levels similar to those previously seen in IGT subjects results in reduced spectral power for glucose, ISR, and insulin. The reduction in spectral power previously observed for ISR in IGT or NIDDM subjects may be due partly to hyperglycemia.
Collapse
Affiliation(s)
- Jürgen Meyer
- Clinical Research Unit for Gastrointestinal Endocrinology, Department of Internal Medicine, Philipps University, 35033 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Pørksen N, Hollingdal M, Juhl C, Butler P, Veldhuis JD, Schmitz O. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 2002; 51 Suppl 1:S245-54. [PMID: 11815487 DOI: 10.2337/diabetes.51.2007.s245] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin concentrations oscillate at a periodicity of 5-15 min per oscillation. These oscillations are due to coordinate insulin secretory bursts, from millions of islets. The generation of common secretory bursts requires strong within-islet and within-pancreas coordination to synchronize the secretory activity from the beta-cell population. The overall contribution of this pulsatile mechanism dominates and accounts for the majority of insulin release. This review discusses the methods involved in the detection and quantification of periodicities and individual secretory bursts. The mechanism by which overall insulin secretion is regulated through changes in the pulsatile component is discussed for nerves, metabolites, hormones, and drugs. The impaired pulsatile secretion of insulin in type 2 diabetes has resulted in much focus on the impact of the insulin delivery pattern on insulin action, and improved action from oscillatory insulin exposure is demonstrated on liver, muscle, and adipose tissues. Therefore, not only is the dominant regulation of insulin through changes in secretory burst mass and amplitude, but the changes may affect insulin action. Finally, the role of impaired pulsatile release in early type 2 diabetes suggests a predictive value of studies on insulin pulsatility in the development of this disease.
Collapse
Affiliation(s)
- Niels Pørksen
- Department of Endocrinology and Metabolism M, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
30
|
Juhl C, Grøfte T, Butler PC, Veldhuis JD, Schmitz O, Pørksen N. Effects of fasting on physiologically pulsatile insulin release in healthy humans. Diabetes 2002; 51 Suppl 1:S255-7. [PMID: 11815488 DOI: 10.2337/diabetes.51.2007.s255] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin is released as secretory bursts superimposed on basal release. The overall contribution of secretory bursts was recently quantified as at least 75%, and the main regulation of insulin secretion is through perturbation of the amount of insulin released and the frequency of these secretory bursts. The mode of delivery of insulin into the circulation seems important for insulin action, and therefore physiological conditions that alter the pattern of insulin release may affect insulin action through this mechanism. To assess the mechanisms by which fasting changes the amount of insulin released and the frequency, amplitude, and overall contribution of pulsatile insulin secretion, we used a validated deconvolution model to examine pulsatile insulin secretion during 10 and 58 h of fasting in seven healthy subjects. The subjects were studied for 75 min before (0-75 min) and 75 min during (115-190 min) a glucose infusion (2.5 mg.kg(-1).min(-1)). We found that the pulsatile insulin release pattern was preserved and that, at fasting, overall insulin release is adjusted to needs by a reduced amount of insulin released (10.1 +/- 1.7 vs. 16.0 +/- 3.2 pmol/l/pulse, P < 0.05) but similar frequency (6.3 +/- 0.4 vs. 6.1 +/- 0.4 min/pulse) of the insulin secretory bursts. In both states, glucose infusion caused an increase (P < 0.05) in amount (100-200%) and frequency (approximately 20%). The impact of increased glucose concentration on pulse frequency seems distinct for in vivo versus in vitro pulsatile insulin secretion and may indicate the presence of a glucose-sensitive pacemaker, which initiates the coordinated secretory bursts. Increased insulin/C-peptide ratio at long-term fasting (6.0 vs. 9.1%, P < 0.01) indicates that the changes in insulin release patterns may be accompanied by changes in hepatic insulin extraction.
Collapse
Affiliation(s)
- Claus Juhl
- Department of Endocrinology and Metabolism M, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
31
|
Popovych O, Maistrenko Y, Mosekilde E. Loss of coherence in a system of globally coupled maps. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2001; 64:026205. [PMID: 11497675 DOI: 10.1103/physreve.64.026205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2000] [Indexed: 05/23/2023]
Abstract
We study the formation of symmetric (i.e., equally sized) or nearly symmetric clusters in an ensemble of globally coupled, identical chaotic maps. It is shown that the loss of synchronization for the coherent state and the emergence of subgroups of oscillators with synchronized behavior are two distinct processes, and that the type of behavior that arises after the loss of total synchronization depends sensitively on the dynamics of the individual map. For our system of globally coupled logistic maps, symmetric two-cluster formation is found to proceed through a periodic state associated with the stabilization either of an asynchronous period-2 cycle or of an asynchronous period-4 cycle. With further reduction of the coupling strength, each of the principal clustering states undergoes additional bifurcations leading to cycles of higher periodicity or to quasiperiodic and chaotic dynamics. If desynchronization of the coherent chaotic state occurs before the formation of stable clusters becomes possible, high-dimensional chaotic motion is observed in the intermediate parameter interval.
Collapse
Affiliation(s)
- O Popovych
- Institute of Mathematics, National Academy of Sciences of Ukraine, 01601 Kyiv, Ukraine
| | | | | |
Collapse
|
32
|
Abstract
Periodic oscillations appear to be a characteristic of insulin secretion at various different levels. Very rapid pulsations are seen in the isolated beta-cell and islet, while rapid (10- to 15-min) pulsations are seen both in the intact organism and in the isolated pancreas. Ultradian oscillations, particularly evident in situations of sustained exogenous glucose loading, appear to be a characteristic of intact organisms and have been hypothesized to be intrinsic to the normal glucose-insulin feedback system. Many of the features seen in experimental situations and in abnormalities of the system can be predicted by computer modelling of this system, supporting this hypothesis. A further theoretical feature of this hypothesis, borne out by experiment, is the ability to entrain insulin pulsatility by oscillations in an exogenous glucose infusion. Identification of defective ultradian oscillations and entrainment can identify subtle abnormalities of insulin sensitivity and pancreatic function, and restoration of normal function can be demonstrated after pharmaceutical intervention.
Collapse
Affiliation(s)
- J C Levy
- Diabetes Research Laboratories, The Oxford Centre for Diabetes, Endocrinology and Metabolism, The Radcliffe Infirmary, UK.
| |
Collapse
|
33
|
Tolić IM, Mosekilde E, Sturis J. Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion. J Theor Biol 2000; 207:361-75. [PMID: 11082306 DOI: 10.1006/jtbi.2000.2180] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mathematical model of the insulin-glucose feedback regulation in man is used to examine the effects of an oscillatory supply of insulin compared to a constant supply at the same average rate. We show that interactions between the oscillatory insulin supply and the receptor dynamics can be of minute significance only. It is possible, however, to interpret seemingly conflicting results of clinical studies in terms of their different experimental conditions with respect to the hepatic glucose release. If this release is operating near an upper limit, an oscillatory insulin supply will be more efficient in lowering the blood glucose level than a constant supply. If the insulin level is high enough for the hepatic release of glucose to nearly vanish, the opposite effect is observed. For insulin concentrations close to the point of inflection of the insulin-glucose dose-response curve an oscillatory and a constant insulin infusion produce similar effects.
Collapse
Affiliation(s)
- I M Tolić
- The Rugjer Boskovic Institute, Zagreb, Croatia.
| | | | | |
Collapse
|
34
|
Affiliation(s)
- T M Wallace
- Oxford Centre for Diabetes, Endocrinology and Metabolism, The Radcliffe Infirmary, UK
| | | |
Collapse
|
35
|
Sparacino G, Tombolato C, Cobelli C. Maximum-likelihood versus maximum a posteriori parameter estimation of physiological system models: the C-peptide impulse response case study. IEEE Trans Biomed Eng 2000; 47:801-11. [PMID: 10833855 DOI: 10.1109/10.844232] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maximum-likelihood (ML), also given its connection to least-squares (LS), is widely adopted in parameter estimation of physiological system models, i.e., assigning numerical values to the unknown model parameters from the experimental data. A more sophisticated but less used approach is maximum a posteriori (MAP) estimation. Conceptually, while ML adopts a Fisherian approach, i.e., only experimental measurements are supplied to the estimator, MAP estimation is a Bayesian approach, i.e., a priori available statistical information on the unknown parameters is also exploited for their estimation. In this paper, after a brief review of the theory behind ML and MAP estimators, we compare their performance in the solution of a case study concerning the determination of the parameters of a sum of exponential model which describes the impulse response of C-peptide (CP), a key substance for reconstructing insulin secretion. The results show that MAP estimation always leads to parameter estimates with a precision (sometimes significantly) higher than that obtained through ML, at the cost of only a slightly worse fit. Thus, a three exponential model can be adopted to describe the CP impulse response model in place of the two exponential model usually identified in the literature by the ML/LS approach. Simulated case studies are also reported to evidence the importance of taking into account a priori information in a data poor situation, e.g., when a few or too noisy measurements are available. In conclusion, our results show that, when a priori information on the unknown model parameters is available, Bayes estimation can be of relevant interest, since it can significantly improve the precision of parameter estimates with respect to Fisher estimation. This may also allow the adoption of more complex models than those determinable by a Fisherian approach.
Collapse
Affiliation(s)
- G Sparacino
- Department of Electronics and Informatics, University of Padova, Italy
| | | | | |
Collapse
|
36
|
Pørksen N, Juhl C, Hollingdal M, Pincus SM, Sturis J, Veldhuis JD, Schmitz O. Concordant induction of rapid in vivo pulsatile insulin secretion by recurrent punctuated glucose infusions. Am J Physiol Endocrinol Metab 2000; 278:E162-70. [PMID: 10644551 DOI: 10.1152/ajpendo.2000.278.1.e162] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin is largely secreted as serial secretory bursts superimposed on basal release, insulin secretion is regulated through changes of pulse mass and frequency, and the insulin release pattern affects insulin action. Coordinate insulin release is preserved in the isolated perfused pancreas, suggesting intrapancreatic coordination. However, occurrence of glucose concentration oscillations may influence the process in vivo, as it does for ultradian oscillations. To determine if rapid pulsatile insulin release may be induced by minimal glucose infusions and to define the necessary glucose quantity, we studied six healthy individuals during brief repetitive glucose infusions of 6 and 2 mg x kg(-1) x min(-1) for 1 min every 10 min. The higher dose completely synchronized pulsatile insulin release at modest plasma glucose changes ( approximately 0.3 mM = approximately 5%), with large ( approximately 100%) amplitude insulin pulses at every single glucose induction (n = 54) at a lag time of 2 min (P < 0.05), compared with small (10%) and rare (n = 3) uninduced insulin excursions. The smaller glucose dose induced insulin pulses at lower significance levels and with considerable breakthrough insulin release. Periodicity shift from either 7- to 12-min or from 12- to 7-min intervals between consecutive glucose (6 mg x kg(-1) x min(-1)) infusions in six volunteers revealed rapid frequency changes. The orderliness of insulin release as estimated by approximate entropy (1.459 +/- 0.009 vs. 1.549 +/- 0.027, P = 0.016) was significantly improved by glucose pulse induction (n = 6; 6 mg x kg(-1) x min(-1)) compared with unstimulated insulin profiles (n = 7). We conclude that rapid in vivo oscillations in glucose may be an important regulator of pulsatile insulin secretion in humans and that the use of an intermittent pulsed glucose induction to evoke defined and recurrent insulin secretory signals may be a useful tool to unveil more subtle defects in beta-cell glucose sensitivity.
Collapse
Affiliation(s)
- N Pørksen
- Department of Endocrinology and Metabolism M, Aarhus University Hospital, 8000 Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Understanding the in vivo functioning of endocrine-metabolic systems requires the quantitative knowledge of system parameters like production/utilization of substrales, secretion/degradation of hormones, and substrate-hormone signaling. Unfortunately, these system parameters are not directly accessible and an indirect measurement approach is needed based on a model of the system. We review first the principals of the model of system methodology focusing on compartmental and input-output modeling. Then, the model of system methodology is applied to the measurement of nonaccessible parameters/variables of the glucose system like glucose fluxes, insulin fluxes, and glucose-insulin signaling.
Collapse
Affiliation(s)
- C Cobelli
- Department of Electronics and Informatics, University of Padova, Italy
| | | |
Collapse
|
38
|
Fliser D, Schaefer F, Schmid D, Veldhuis JD, Ritz E. Angiotensin II affects basal, pulsatile, and glucose-stimulated insulin secretion in humans. Hypertension 1997; 30:1156-61. [PMID: 9369270 DOI: 10.1161/01.hyp.30.5.1156] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angiotensin II (Ang II) modulates the tissue response to insulin (insulin sensitivity), but the effect of Ang II on the secretion of insulin has not been investigated thus far. Nineteen healthy volunteers (17 male; mean age, 26+/-1 years) were studied. In a double-blind, randomized, placebo-controlled study, seven volunteers were allocated on three occasions in random order after an overnight fast to three interventions: (1) solvent (placebo) infusion; (2) infusion of 1.0 ng Ang II x kg(-1) x min(-1) (subpressor dose); and (3) infusion of 5.0 ng Ang II x kg(-1) x min(-1) (pressor dose). Frequent blood samples (each minute) were obtained for estimation of plasma insulin concentrations over a period of 120 minutes to assess basal and pulsatile insulin secretion. In an ancillary study, plasma glucose and insulin levels were measured after an oral glucose tolerance test while solvent (placebo) or Ang II was infused in 12 fasting healthy volunteers. Plasma insulin concentrations were measured immunoenzymatically (enzyme-linked immunosorbent assay). Insulin secretion pulses were analyzed with the deconvolution technique, and the regularity of insulin secretion was analyzed with the approximate entropy technique. Plasma insulin half-life was assessed using the hyperinsulinemic euglycemic clamp method. The pressor dose of Ang II reduced total, basal, and pulsatile insulin secretion, and this effect was highly significant (P<.01). The subpressor dose tended to suppress insulin secretion. The burst frequency (number of peaks) and the regularity of insulin secretion were not affected by administration of Ang II. After the oral glucose load, the insulinemic response was significantly lower and plasma glucose concentrations were significantly higher with infusion of Ang II compared with placebo. Ang II affects both the basal (nonpulsatile) and the pulsatile component of spontaneous insulin secretion and the glucose-stimulated insulin secretion in humans. This observation is of potential interest with respect to the interaction of Ang II and insulin, eg, in the genesis of hyperinsulinemia and hypertension.
Collapse
Affiliation(s)
- D Fliser
- Department of Internal Medicine, Ruperto-Carola University, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
39
|
Cavaghan MK, Ehrmann DA, Byrne MM, Polonsky KS. Treatment with the oral antidiabetic agent troglitazone improves beta cell responses to glucose in subjects with impaired glucose tolerance. J Clin Invest 1997; 100:530-7. [PMID: 9239399 PMCID: PMC508219 DOI: 10.1172/jci119562] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Impaired glucose tolerance (IGT) is associated with defects in both insulin secretion and action and carries a high risk for conversion to non-insulin-dependent diabetes mellitus (NIDDM). Troglitazone, an insulin sensitizing agent, reduces glucose concentrations in subjects with NIDDM and IGT but is not known to affect insulin secretion. We sought to determine the role of beta cell function in mediating improved glucose tolerance. Obese subjects with IGT received 12 wk of either 400 mg daily of troglitazone (n = 14) or placebo (n = 7) in a randomized, double-blind design. Study measures at baseline and after treatment were glucose and insulin responses to a 75-g oral glucose tolerance test, insulin sensitivity index (SI) assessed by a frequently sampled intravenous glucose tolerance test, insulin secretion rates during a graded glucose infusion, and beta cell glucose-sensing ability during an oscillatory glucose infusion. Troglitazone reduced integrated glucose and insulin responses to oral glucose by 10% (P = 0.03) and 39% (P = 0.003), respectively. SI increased from 1.3+/-0.3 to 2.6+/-0.4 x 10(-)5min-1pM-1 (P = 0.005). Average insulin secretion rates adjusted for SI over the glucose interval 5-11 mmol/liter were increased by 52% (P = 0.02), and the ability of the beta cell to entrain to an exogenous oscillatory glucose infusion, as evaluated by analysis of spectral power, was improved by 49% (P = 0.04). No significant changes in these parameters were demonstrated in the placebo group. In addition to increasing insulin sensitivity, we demonstrate that troglitazone improves the reduced beta cell response to glucose characteristic of subjects with IGT. This appears to be an important factor in the observed improvement in glucose tolerance.
Collapse
Affiliation(s)
- M K Cavaghan
- Department of Medicine, The University of Chicago and Pritzker School of Medicine, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
40
|
Ehrmann DA. Relation of functional ovarian hyperandrogenism to non-insulin dependent diabetes mellitus. BAILLIERE'S CLINICAL OBSTETRICS AND GYNAECOLOGY 1997; 11:335-47. [PMID: 9536214 DOI: 10.1016/s0950-3552(97)80040-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Up to 40% of women with polycystic ovary syndrome (PCOS) demonstrate some degree of glucose intolerance, either impaired glucose tolerance (IGT) or non-insulin dependent diabetes mellitus (NIDDM). Defects in insulin action have long-been recognized as characteristic in these women. Recently, evidence has been obtained which documents that insulin secretory dysfunction also contributes significantly to the observed glucose intolerance. This chapter will focus on the recent evidence supporting the specific roles of disordered insulin secretion and action, in the development of glucose intolerance in PCOS. In addition, the use of pharmacological agents that modify insulin action as therapeutic options for women with PCOS, will be discussed.
Collapse
Affiliation(s)
- D A Ehrmann
- Department of Medicine, University of Chicago, Pritzker School of Medicine, IL 60637, USA
| |
Collapse
|
41
|
Matschinsky FM, Collins HW. Essential biochemical design features of the fuel-sensing system in pancreatic beta-cells. CHEMISTRY & BIOLOGY 1997; 4:249-57. [PMID: 9235288 DOI: 10.1016/s1074-5521(97)90068-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The beta-cells of the pancreas control the blood levels of glucose and other nutrients by secreting insulin. They sense blood nutrient levels not by using a classical receptor-signaling system, but by detecting the products of nutrient metabolism. Mutations in this pathway can cause diabetes or hypoglycemia.
Collapse
Affiliation(s)
- F M Matschinsky
- Diabetes Research Center, University of Pennsylvania School of Medicine, 501 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6015, USA
| | | |
Collapse
|
42
|
Sparacino G, Cobelli C. Impulse response model in reconstruction of insulin secretion by deconvolution: role of input design in the identification experiment. Ann Biomed Eng 1997; 25:398-416. [PMID: 9084842 DOI: 10.1007/bf02648051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insulin secretion rate (ISR) in vivo can be reconstructed by deconvolution of plasma concentration of C-peptide (CP), a peptide co-secreted with insulin but not extracted by the liver and exhibiting linear kinetics. Deconvolution requires the knowledge of the CP impulse response. A two exponential model is usually chosen to describe the CP impulse response but three exponential and one exponential models have also been used. The purpose of this paper is to investigate the role of the CP impulse response model order in reconstructing ISR by deconvolution in three standard physiological/clinical situations: ultradian oscillations, rapid pulses, and biphasic response to a glucose stimulus. By resorting to simulation, we first show that, in each situation, the validity of impulse response models with different orders depends on the input chosen in the impulse response identification experiment. Real data are then used which support the simulation results.
Collapse
Affiliation(s)
- G Sparacino
- Dipartimento di Elettronica ed Informatica, Università di Padova, Italy
| | | |
Collapse
|
43
|
Scheen AJ, Sturis J, Polonsky KS, Van Cauter E. Alterations in the ultradian oscillations of insulin secretion and plasma glucose in aging. Diabetologia 1996; 39:564-72. [PMID: 8739916 DOI: 10.1007/bf00403303] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Normal insulin secretion includes oscillations with a period length of 80-150 min which are tightly coupled to glucose oscillations of similar period. To determine whether normal aging is associated with alterations in these ultradian oscillations, eight, modestly overweight, older men (65 +/- 5 years) and eight weight-matched young control subjects (25 +/- 4 years) were studied during 53 h of constant glucose infusion. Blood samples were collected every 20 min and insulin secretion rates were calculated by deconvolution. Ultradian oscillations of glucose and insulin secretion were evident in both groups. Pulse frequency was similar for glucose and insulin secretion, and was not affected by age. The absolute amplitude of the glucose oscillations was similar in both groups but their relative amplitude was slightly dampened in the older adults. Both the absolute and the relative amplitudes of insulin secretory oscillations were markedly reduced in the older subjects. The normal linear increase in the amplitude of insulin oscillations occurring with increasing amplitudes of glucose oscillations was still present in the older adults but analysis of covariance indicated that the slope was significantly lower than in the young control subjects (p < 0.0005), reflecting a decreased responsiveness of the beta cell to glucose changes. The temporal concordance between insulin and glucose oscillations, as estimated by pulse concomitancy and cross-correlation, was also lower in older subjects. The similarities between the alterations in the ultradian oscillations of insulin secretion and glucose in older healthy adults and those occurring in diabetic patients suggest that an impairment of beta-cell function may play a primary role in the deterioration of glucose tolerance in aging.
Collapse
Affiliation(s)
- A J Scheen
- Department of Medicine, University of Liège, Belgium
| | | | | | | |
Collapse
|
44
|
Byrne MM, Sturis J, Sobel RJ, Polonsky KS. Elevated plasma glucose 2 h postchallenge predicts defects in beta-cell function. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:E572-9. [PMID: 8928761 DOI: 10.1152/ajpendo.1996.270.4.e572] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Studies were performed in subjects with no known family history of diabetes, normoglycemic subjects who have first-degree relatives with non-insulin-dependent diabetes mellitus (NIDDM), and subjects with nondiagnostic oral glucose tolerance tests (NDX) or impaired glucose tolerance (IGT). Insulin sensitivity index (SI) was similar in all four groups. However, a number of defects in insulin secretion were seen in the NDX and IGT groups, including reduced first-phase insulin secretory responses in intravenous glucose in relation to the degree of insulin resistance, and reduced normalized spectral power of insulin secretion during oscillatory glucose infusion. The latter finding demonstrates a decreased ability of the beta-cell to detect and respond to the successive increases and decreases in glucose and therefore to be entrained by the exogenous glucose infusion. The ability of a low-dose glucose infusion to prime the insulin secretory response to a subsequent glucose stimulus was normal in subjects with IGT but reduced or absent in subjects with overt NIDDM. These studies demonstrate that a number of alterations in beta-cell function are detectable in nondiabetic first-degree relatives of subjects with NIDDM with mild elevations in the 2-h postchallenge glucose level, and these abnormalities antedate the onset of overt hyperglycemia and clinical diabetes.
Collapse
Affiliation(s)
- M M Byrne
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Ehrmann DA, Sturis J, Byrne MM, Karrison T, Rosenfield RL, Polonsky KS. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 96:520-7. [PMID: 7615824 PMCID: PMC185226 DOI: 10.1172/jci118064] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The increased prevalence of non-insulin-dependent diabetes mellitus (NIDDM) among women with polycystic ovary syndrome (PCOS) has been ascribed to the insulin resistance characteristic of PCOS. This study was undertaken to determine the role of defects in insulin secretion as well as familial factors to the predisposition to NIDDM seen in PCOS. We studied three groups of women: PCOS with a family history of NIDDM (PCOS FHx POS; n = 11), PCOS without a family history of NIDDM (PCOS FHx NEG; n = 13), and women without PCOS who have a family history of NIDDM (NON-PCOS FHx POS; n = 8). Beta cell function was evaluated during a frequently sampled intravenous glucose tolerance test, by a low dose graded glucose infusion, and by the ability of the beta cell to be entrained by an oscillatory glucose infusion. PCOS FHx POS women were significantly less likely to demonstrate appropriate beta cell compensation for the degree of insulin resistance. The ability of the beta cell to entrain, as judged by the spectral power for insulin secretion rate, was significantly reduced in PCOS FHx POS subjects. In conclusion, a history of NIDDM in a first-degree relative appears to define a subset of PCOS subjects with a greater prevalence of insulin secretory defects. The risk of developing NIDDM imparted by insulin resistance in PCOS may be enhanced by these defects in insulin secretion.
Collapse
Affiliation(s)
- D A Ehrmann
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
47
|
Sturis J, Scheen AJ, Leproult R, Polonsky KS, van Cauter E. 24-hour glucose profiles during continuous or oscillatory insulin infusion. Demonstration of the functional significance of ultradian insulin oscillations. J Clin Invest 1995; 95:1464-71. [PMID: 7706450 PMCID: PMC295628 DOI: 10.1172/jci117817] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Under basal and stimulated conditions, normal insulin secretion oscillates with periods in the ultradian 100-150-min range. To test the hypothesis that oscillatory insulin delivery is more efficient in reducing blood glucose levels than continuous administration, nine normal young men were each studied on two occasions during a 28-h period including a period of polygraphically recorded sleep. Endogenous insulin secretion was suppressed by somatostatin, a constant intravenous glucose infusion was administered, and exogenous insulin was infused either at a constant rate or in a sinusoidal pattern with a period of 120 min. The mean glucose level over the 28-h period was 0.72 +/- 0.31 mmol/liter lower when insulin was infused in an oscillatory pattern than when the rate of infusion was constant (P < 0.05). The greater hypoglycemic effect of oscillatory versus constant infusion was particularly marked during the daytime, with the difference averaging 1.04 +/- 0.38 mmol/liter (P < 0.03). Serum insulin levels tended to be lower during oscillatory than constant infusion, although the same amount of exogenous insulin was administered under both conditions. Ultradian insulin oscillations appear to promote more efficient glucose utilization.
Collapse
Affiliation(s)
- J Sturis
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
48
|
Sturis J, Knudsen C, O'Meara NM, Thomsen JS, Mosekilde E, Van Cauter E, Polonsky KS. Phase-locking regions in a forced model of slow insulin and glucose oscillations. CHAOS (WOODBURY, N.Y.) 1995; 5:193-199. [PMID: 12780173 DOI: 10.1063/1.166068] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a detailed numerical investigation of the phase-locking regions in a forced model of slow oscillations in human insulin secretion and blood glucose concentration. The bifurcation structures of period 2pi and 4pi tongues are mapped out and found to be qualitatively identical to those of several other periodically forced self-oscillating systems operating across a Hopf-bifurcation point. The numerical analyses are supplemented by clinical experiments. (c) 1995 American Institute of Physics.
Collapse
Affiliation(s)
- Jeppe Sturis
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637Physics Department, The Technical University of Denmark, DK-2800 Lyngby, DenmarkPhysics Department, The Technical University of Denmark, DK-2800 Lyngby, DenmarkDepartment of Medicine, The University of Chicago, Chicago, Illinois 60637Physics Department, The Technical University of Denmark, DK-2800 Lyngby, DenmarkDepartment of Medicine, The University of Chicago, Chicago, Illinois 60637
| | | | | | | | | | | | | |
Collapse
|
49
|
Sturis J, Pugh WL, Tang J, Ostrega DM, Polonsky JS, Polonsky KS. Alterations in pulsatile insulin secretion in the Zucker diabetic fatty rat. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:E250-9. [PMID: 8074204 DOI: 10.1152/ajpendo.1994.267.2.e250] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Insulin secretion from the isolated perfused pancreas is characterized by pulses occurring every 5-15 min. The present experiments were performed to explore the role of glucose in regulating these pulses. The pancreata from 12 Wistar (W), 12 Zucker diabetic fatty (ZDF), and 6 nondiabetic lean Zucker control (ZC) male rats were isolated and perfused at 37 degrees C with an oxygenated Krebs Ringer solution containing bovine serum albumin and glucose. In W and ZDF, insulin secretion was pulsatile during constant glucose, as assessed by pulse analysis (ULTRA). The pulse period in W was significantly shorter than in ZDF (7.1 +/- 0.6 vs. 14.7 +/- 1.0 min; P < 0.001), whereas the median relative pulse amplitude was not different. When glucose was administered as a series of 10-min sine waves, spectral analysis showed that the normalized spectral power at 10 min was greater in W and ZC compared with ZDF (34.2 +/- 5.9 and 32.9 +/- 2.9 vs. 3.2 +/- 0.9; P < 0.0001), demonstrating entrainment of the insulin pulses to the exogenous glucose oscillations in W and ZC but not in ZDF. Furthermore, in ZDF, the insulin secretory rates were not higher when 28 mM rather than 7 mM glucose were used. In additional studies, islets of Langerhans from one W, three ZDF, and three ZC rats were isolated and perifused using an oscillatory glucose concentration. Single and groups of islets were studied. Islets from diabetic rats demonstrated the same lack of entrainment by glucose seen in the perfused pancreas, suggesting that the defect is at the cellular level.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Sturis
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Illinois 60637
| | | | | | | | | | | |
Collapse
|
50
|
Pørksen N, Munn S, Ferguson D, O'Brien T, Veldhuis J, Butler P. Coordinate pulsatile insulin secretion by chronic intraportally transplanted islets in the isolated perfused rat liver. J Clin Invest 1994; 94:219-27. [PMID: 8040264 PMCID: PMC296300 DOI: 10.1172/jci117310] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the present studies we sought to address the following questions: do chronically transplanted intrahepatic islets (IHI-Tx) secrete insulin in a coordinate pulsatile manner, and, if so, is reestablishment of this coordinate pulsatility a function of time after transplantation? We studied isolated perfused livers at 10 mM glucose from 27 rats rendered diabetic with streptozotocin and then transplanted with approximately 2 x 10(3) islets, 2 (n = 5), 7 (n = 5), 30 (n = 5), and 200 (n = 12) d after transplantation. 12 out of 12 of the 200-d IHI-Tx secreted insulin in coordinate pulses (frequency 3.9 +/- 0.3 pulses/h, amplitude 15.2 +/- 2.4 nmol/min). In contrast, one out of five 2-d, zero out of five 7-d, and one out of five 30-d IHI-Tx showed pulsatile insulin secretion. Insulin secretion was markedly greater (76 +/- 13 vs 13 +/- 3 nmol/min, P < 0.0001) in the 200-d versus early IHI-Tx. Pentobarbital 25 micrograms/ml had no effect on total (13.9 +/- 3.9 vs 15.9 +/- 3.9 nmol/min), nonpulsatile (12.9 +/- 3.5 vs 14.1 +/- 3.3 nmol/min), or pulsatile (pulse amplitude 17.6 +/- 4.5 vs 20.0 +/- 4.2 nmol/min, pulse frequency 4.1 +/- 0.3 vs 4.0 +/- 0.7 pulses/h) insulin secretion. Using synaptophysin, islet innervation was documented in 12 out of 12 200-d IHI-Tx but in none of the early IHI-Tx. We conclude that established (approximately 200 d) IHI-Tx secrete insulin in a coordinate pulsatile manner and that establishment of coordinate pulsatile insulin secretion by IHI-Tx is accompanied by increased total insulin secretion and is associated with islet reinnervation.
Collapse
Affiliation(s)
- N Pørksen
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905
| | | | | | | | | | | |
Collapse
|