1
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
2
|
Bartholomew CL, Martins C, Gower B. Association between insulin sensitivity and lean mass loss during weight loss. Obesity (Silver Spring) 2024; 32:1156-1162. [PMID: 38803306 PMCID: PMC11141400 DOI: 10.1002/oby.24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE The study objective was to assess the relationship between insulin sensitivity and changes in total lean mass (LM) and appendicular LM (ALM) during weight loss. METHODS Individuals were randomly assigned to either a standard or a moderately reduced carbohydrate diet for 16 weeks. Body composition was assessed using dual-energy x-ray absorptiometry and insulin sensitivity index (SI) using an intravenous glucose tolerance test. Multiple linear regression was used to determine whether baseline SI was predictive of changes in total LM and ALM. RESULTS Participants (n = 57; baseline BMI 32.1 ± 3.8 kg/m2) lost an average of 6.8 ± 3.2 kg of body weight (p < 0.001), with 1.5 ± 2.6 kg coming from LM (p < 0.05) and 0.5 ± 0.73 kg from ALM (p < 0.05). Multiple regression analysis demonstrated that SI was inversely associated with changes in total LM (kilograms; β = 0.481, p < 0.001), after adjusting for baseline LM, fat mass, acute insulin response to glucose, and weight loss. Similar results were seen when assessing ALM loss (β = 0.359, p < 0.05). CONCLUSIONS Identifying individuals with low insulin sensitivity prior to weight loss interventions may allow for a personalized approach aiming at minimizing LM loss.
Collapse
Affiliation(s)
- Ciera L Bartholomew
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Catia Martins
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Barbara Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| |
Collapse
|
3
|
Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes 2022; 12:35. [PMID: 35931683 PMCID: PMC9356071 DOI: 10.1038/s41387-022-00213-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Branched-chain amino acid (BCAA) catabolism has been considered to have an emerging role in the pathogenesis of metabolic disturbances in obesity and type 2 diabetes (T2D). Several studies showed elevated plasma BCAA levels in humans with insulin resistance and patients with T2D, although the underlying reason is unknown. Dysfunctional BCAA catabolism could theoretically be an underlying factor. In vitro and animal work collectively show that modulation of the BCAA catabolic pathway alters key metabolic processes affecting glucose homeostasis, although an integrated understanding of tissue-specific BCAA catabolism remains largely unknown, especially in humans. Proof-of-concept studies in rodents -and to a lesser extent in humans – strongly suggest that enhancing BCAA catabolism improves glucose homeostasis in metabolic disorders, such as obesity and T2D. In this review, we discuss several hypothesized mechanistic links between BCAA catabolism and insulin resistance and overview current available tools to modulate BCAA catabolism in vivo. Furthermore, this review considers whether enhancing BCAA catabolism forms a potential future treatment strategy to promote metabolic health in insulin resistance and T2D.
Collapse
Affiliation(s)
- Froukje Vanweert
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Maintenance of Skeletal Muscle to Counteract Sarcopenia in Patients with Advanced Chronic Kidney Disease and Especially Those Undergoing Hemodialysis. Nutrients 2021; 13:nu13051538. [PMID: 34063269 PMCID: PMC8147474 DOI: 10.3390/nu13051538] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Life extension in modern society has introduced new concepts regarding such disorders as frailty and sarcopenia, which has been recognized in various studies. At the same time, cutting-edge technology methods, e.g., renal replacement therapy for conditions such as hemodialysis (HD), have made it possible to protect patients from advanced lethal chronic kidney disease (CKD). Loss of muscle and fat mass, termed protein energy wasting (PEW), has been recognized as prognostic factor and, along with the increasing rate of HD introduction in elderly individuals in Japan, appropriate countermeasures are necessary. Although their origins differ, frailty, sarcopenia, and PEW share common components, among which skeletal muscle plays a central role in their etiologies. The nearest concept may be sarcopenia, for which diagnosis techniques have recently been reported. The focus of this review is on maintenance of skeletal muscle against aging and CKD/HD, based on muscle physiology and pathology. Clinically relevant and topical factors related to muscle wasting including sarcopenia, such as vitamin D, myostatin, insulin (related to diabetes), insulin-like growth factor I, mitochondria, and physical inactivity, are discussed. Findings presented thus far indicate that in addition to modulation of the aforementioned factors, exercise combined with nutritional supplementation may be a useful approach to overcome muscle wasting and sarcopenia in elderly patients undergoing HD treatments.
Collapse
|
5
|
Coelho MOC, Monteyne AJ, Dunlop MV, Harris HC, Morrison DJ, Stephens FB, Wall BT. Mycoprotein as a possible alternative source of dietary protein to support muscle and metabolic health. Nutr Rev 2020; 78:486-497. [PMID: 31841152 DOI: 10.1093/nutrit/nuz077] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The world's population is expanding, leading to an increased global requirement for dietary protein to support health and adaptation in various populations. Though a strong evidence base supports the nutritional value of animal-derived dietary proteins, mounting challenges associated with sustainability of these proteins have led to calls for the investigation of alternative, non-animal-derived dietary protein sources. Mycoprotein is a sustainably produced, protein-rich, high-fiber, whole food source derived from the fermentation of fungus. Initial investigations in humans demonstrated that mycoprotein consumption can lower circulating cholesterol concentrations. Recent data also report improved acute postprandial glycemic control and a potent satiety effect following mycoprotein ingestion. It is possible that these beneficial effects are attributable to the amount and type of dietary fiber present in mycoprotein. Emerging data suggest that the amino acid composition and bioavailability of mycoprotein may also position it as a promising dietary protein source to support skeletal muscle protein metabolism. Mycoprotein may be a viable dietary protein source to promote training adaptations in athletes and the maintenance of muscle mass to support healthy aging. Herein, current evidence underlying the metabolic effects of mycoprotein is reviewed, and the key questions to be addressed are highlighted.
Collapse
Affiliation(s)
- Mariana O C Coelho
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mandy V Dunlop
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Hannah C Harris
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,School of Medicine, Dentistry and Nursing, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Douglas J Morrison
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Garibotto G, Picciotto D, Saio M, Esposito P, Verzola D. Muscle protein turnover and low-protein diets in patients with chronic kidney disease. Nephrol Dial Transplant 2020; 35:741-751. [PMID: 32378720 DOI: 10.1093/ndt/gfaa072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Adaptation to a low-protein diet (LPD) involves a reduction in the rate of amino acid (AA) flux and oxidation, leading to more efficient use of dietary AA and reduced ureagenesis. Of note, the concept of 'adaptation' to low-protein intakes has been separated from the concept of 'accommodation', the latter term implying a decrease in protein synthesis, with development of wasting, when dietary protein intake becomes inadequate, i.e. beyond the limits of the adaptive mechanisms. Acidosis, insulin resistance and inflammation are recognized mechanisms that can increase protein degradation and can impair the ability to activate an adaptive response when an LPD is prescribed in a chronic kidney disease (CKD) patient. Current evidence shows that, in the short term, clinically stable patients with CKD Stages 3-5 can efficiently adapt their muscle protein turnover to an LPD containing 0.55-0.6 g protein/kg or a supplemented very-low-protein diet (VLPD) by decreasing muscle protein degradation and increasing the efficiency of muscle protein turnover. Recent long-term randomized clinical trials on supplemented VLPDs in patients with CKD have shown a very good safety profile, suggesting that observations shown by short-term studies on muscle protein turnover can be extrapolated to the long-term period.
Collapse
Affiliation(s)
- Giacomo Garibotto
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Daniela Picciotto
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Michela Saio
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Pasquale Esposito
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Daniela Verzola
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| |
Collapse
|
7
|
Thein FS, Li Y, Nyunt MSZ, Gao Q, Wee SL, Ng TP. Physical frailty and cognitive impairment is associated with diabetes and adversely impact functional status and mortality. Postgrad Med 2018; 130:561-567. [PMID: 29949390 DOI: 10.1080/00325481.2018.1491779] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Ying Li
- Gerontology Research Programme, Department of Psychological Medicine, National University of Singapore, Singapore
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ma Shwe Zin Nyunt
- Gerontology Research Programme, Department of Psychological Medicine, National University of Singapore, Singapore
| | - Qi Gao
- Gerontology Research Programme, Department of Psychological Medicine, National University of Singapore, Singapore
| | - Shiou Liang Wee
- Geriatric Education and Research Institute, Singapore
- Faculty of Health and Social Sciences, Singapore Institute of Technology, Singapore
| | - Tze Pin Ng
- Geriatric Education and Research Institute, Singapore
- Gerontology Research Programme, Department of Psychological Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Morais JA, Jacob KW, Chevalier S. Effects of aging and insulin resistant states on protein anabolic responses in older adults. Exp Gerontol 2018; 108:262-268. [DOI: 10.1016/j.exger.2018.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/20/2018] [Accepted: 04/29/2018] [Indexed: 12/25/2022]
|
9
|
Effects of Low-Protein, and Supplemented Very Low-Protein Diets, on Muscle Protein Turnover in Patients With CKD. Kidney Int Rep 2018; 3:701-710. [PMID: 29854979 PMCID: PMC5976852 DOI: 10.1016/j.ekir.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 12/27/2022] Open
Abstract
Introduction Early studies have shown that patients with chronic kidney disease (CKD) are able to maintain nitrogen balance despite significantly lower protein intake, but how and to what extent muscle protein metabolism adapts to a low-protein diet (LPD) or to a supplemented very LPD (sVLPD) is still unexplored. Methods We studied muscle protein turnover by the forearm perfusion method associated with the kinetics of 2H-phenylalanine in patients with CKD: (i) in a parallel study in subjects randomized to usual diet (1.1 g protein/kg, n = 5) or LPD (0.55 g protein/kg, n = 6) (Protocol 1); (ii) in a crossover, self-controlled study in subjects on a 0.55 g/kg LPD followed by a sVLPD (0.45 g/kg + amino/ketoacids 0.1 g/kg, n = 6) (Protocol 2). Results As compared with a 1.1 g/kg containing diet, a 0.55 g/kg LPD induced the following: (i) a 17% to 40% decrease in muscle protein degradation and net protein balance, respectively, (ii) no change in muscle protein synthesis, (iii) a slight (by approximately 7%, P < 0.06) decrease in whole-body protein degradation, and (iv) an increase in the efficiency of muscle protein turnover. As compared with an LPD, an sVLPD induced the following: (i) no change in muscle protein degradation, and (ii) an approximately 50% decrease in the negative net protein balance, and an increase in the efficiency of muscle protein turnover. Conclusion The results of these studies indicate that in patients with CKD the adaptation of muscle protein metabolism to restrained protein intake can be obtained via combined responses of protein degradation and the efficiency of recycling of amino acids deriving from protein breakdown.
Collapse
|
10
|
Lysenko EA, Vepkhvadze TF, Lednev EM, Vinogradova OL, Popov DV. Branched-chain amino acids administration suppresses endurance exercise-related activation of ubiquitin proteasome signaling in trained human skeletal muscle. J Physiol Sci 2018; 68:43-53. [PMID: 27913948 PMCID: PMC10717082 DOI: 10.1007/s12576-016-0506-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
We tested whether post exercise ingestion of branched-chain amino acids (BCAA < 10 g) is sufficient to activate signaling associated with muscle protein synthesis and suppress exercise-induced activation of mechanisms associated with proteolysis in endurance-trained human skeletal muscle. Nine endurance-trained athletes performed a cycling bout with and without BCAA ingestion (0.1 g/kg). Post exercise ACCSer79/222 phosphorylation (endogenous marker of AMPK activity) was increased (~3-fold, P < 0.05) in both sessions. No changes were observed in IGF1 mRNA isoform expression or phosphorylation of the key anabolic markers - p70S6K1Thr389 and eEF2Thr56 - between the sessions. BCAA administration suppressed exercise-induced expression of mTORC1 inhibitor DDIT4 mRNA, eliminated activation of the ubiquitin proteasome system, detected in the control session as decreased FOXO1Ser256 phosphorylation (0.83-fold change, P < 0.05) and increased TRIM63 (MURF1) expression (2.4-fold, P < 0.05). Therefore, in endurance-trained human skeletal muscle, post exercise BCAA ingestion partially suppresses exercise-induced expression of PGC-1a mRNA, activation of ubiquitin proteasome signaling, and suppresses DDIT4 mRNA expression.
Collapse
Affiliation(s)
- Evgeny A Lysenko
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia.
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia.
| | - Tatiana F Vepkhvadze
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia
| | - Egor M Lednev
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia
| | - Olga L Vinogradova
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia
| |
Collapse
|
11
|
Abstract
Weight loss is the cornerstone of therapy for people with obesity because it can ameliorate or completely resolve the metabolic risk factors for diabetes, coronary artery disease, and obesity-associated cancers. The potential health benefits of diet-induced weight loss are thought to be compromised by the weight-loss-associated loss of lean body mass, which could increase the risk of sarcopenia (low muscle mass and impaired muscle function). The objective of this review is to provide an overview of what is known about weight-loss-induced muscle loss and its implications for overall physical function (e.g., ability to lift items, walk, and climb stairs). The currently available data in the literature show the following: 1) compared with persons with normal weight, those with obesity have more muscle mass but poor muscle quality; 2) diet-induced weight loss reduces muscle mass without adversely affecting muscle strength; 3) weight loss improves global physical function, most likely because of reduced fat mass; 4) high protein intake helps preserve lean body and muscle mass during weight loss but does not improve muscle strength and could have adverse effects on metabolic function; 5) both endurance- and resistance-type exercise help preserve muscle mass during weight loss, and resistance-type exercise also improves muscle strength. We therefore conclude that weight-loss therapy, including a hypocaloric diet with adequate (but not excessive) protein intake and increased physical activity (particularly resistance-type exercise), should be promoted to maintain muscle mass and improve muscle strength and physical function in persons with obesity.
Collapse
Affiliation(s)
| | | | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
12
|
Bellasi A, Di Micco L, Santoro D, Marzocco S, De Simone E, Cozzolino M, Di Lullo L, Guastaferro P, Di Iorio B. Correction of metabolic acidosis improves insulin resistance in chronic kidney disease. BMC Nephrol 2016; 17:158. [PMID: 27770799 PMCID: PMC5075179 DOI: 10.1186/s12882-016-0372-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/12/2016] [Indexed: 01/12/2023] Open
Abstract
Background Correction of metabolic acidosis (MA) with nutritional therapy or bicarbonate administration is widely used in chronic kidney disease (CKD) patients. However, it is unknown whether these interventions reduce insulin resistance (IR) in diabetic patients with CKD. We sought to evaluate the effect of MA correction on endogenous insulin action in diabetic type 2 (DM2) CKD patients. Methods A total of 145 CKD subjects (83 men e 62 women) with DM2 treated with oral antidiabetic drugs were included in the study and followed up to 1 year. All patients were randomly assigned 1:1 to either open-label (A) oral bicarbonate to achieve serum bicarbonate levels of 24–28 mmol/L (treatment group) or (B) no treatment (control group). The Homeostatic model assessment (HOMA) index was used to evaluate IR at study inception and conclusion. Parametric and non-parametric tests as well as linear regression were used. Results At baseline no differences in demographic and clinical characteristics between the two groups was observed. Average dose of bicarbonate in the treatment group was 0.7 ± 0.2 mmol/kg. Treated patients showed a better metabolic control as confirmed by lower insulin levels (13.4 ± 5.2 vs 19.9 ± 6.3; for treated and control subjects respectively; p < 0.001), Homa-IR (5.9[5.0-7.0] vs 6.3[5.3–8.2]; p = 0.01) and need for oral antidiabetic drugs. The serum bicarbonate and HOMA-IR relationship was non-linear and the largest HOMA-IR reduction was noted for serum bicarbonate levels between 24 and 28 mmol/l. Adjustment for confounders, suggests that serum bicarbonate rather than treatment drives the effect on HOMA-IR. Conclusions Serum bicarbonate is related to IR and the largest HOMA-IR reduction is noted for serum bicarbonate between 24 and 28 mmol/l. Treatment with bicarbonate influences IR. However, changes in serum bicarbonate explains the effect of treatment on HOMA index. Future efforts are required to validate these results in diabetic and non-diabetic CKD patients. Trial registration The trial was registered at www.clinicaltrial.gov (Use of Bicarbonate in Chronic Renal Insufficiency (UBI) study - NCT01640119)
Collapse
Affiliation(s)
- Antonio Bellasi
- Department of Nephrology and Dialysis, ASST-Lariana, Ospedale Sant' Anna, Como, (CO), Italy
| | - Lucia Di Micco
- Department of Nephrology and Dialysis, UOC Nefrologia, PO "A Landolfi", Via Melito, snc, I-83029, Solofra, (AV), Italy
| | - Domenico Santoro
- Department of Clinical and Experimental Medicine, Unit of Nephrology, University of Messina, Messina, Italy
| | - Stefania Marzocco
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano, (SA), Italy
| | - Emanuele De Simone
- Department of Nephrology and Dialysis, UOC Nefrologia, PO "A Landolfi", Via Melito, snc, I-83029, Solofra, (AV), Italy
| | - Mario Cozzolino
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Luca Di Lullo
- Department of Nephrology and Dialysis, Ospedale Parodi, Delfino, Colleferro, (Rome), Italy
| | | | - Biagio Di Iorio
- Department of Nephrology and Dialysis, UOC Nefrologia, PO "A Landolfi", Via Melito, snc, I-83029, Solofra, (AV), Italy.
| | | |
Collapse
|
13
|
Everman S, Meyer C, Tran L, Hoffman N, Carroll CC, Dedmon WL, Katsanos CS. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans. Am J Physiol Endocrinol Metab 2016; 311:E671-E677. [PMID: 27530230 PMCID: PMC5241558 DOI: 10.1152/ajpendo.00120.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/10/2016] [Indexed: 01/19/2023]
Abstract
Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P < 0.01) whole body phenylalanine rate of appearance (μmol·kg-1·min-1), indicating suppression of muscle proteolysis, in both the control (1.02 ± 0.04 vs 0.76 ± 0.04) and the BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA.
Collapse
Affiliation(s)
- Sarah Everman
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
| | - Christian Meyer
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
| | - Lee Tran
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona; Mayo Clinic in Arizona, Scottsdale, Arizona; and
| | - Nyssa Hoffman
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona; Mayo Clinic in Arizona, Scottsdale, Arizona; and
| | | | | | - Christos S Katsanos
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona; Mayo Clinic in Arizona, Scottsdale, Arizona; and
| |
Collapse
|
14
|
Abdulla H, Smith K, Atherton PJ, Idris I. Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis. Diabetologia 2016; 59:44-55. [PMID: 26404065 DOI: 10.1007/s00125-015-3751-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/19/2015] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS We aimed to investigate the role of insulin in regulating human skeletal muscle metabolism in health and diabetes. METHODS We conducted a systematic review and meta-analysis of published data that examined changes in skeletal muscle protein synthesis (MPS) and/or muscle protein breakdown (MPB) in response to insulin infusion. Random-effects models were used to calculate weighted mean differences (WMDs), 95% CIs and corresponding p values. Both MPS and MPB are reported in units of nmol (100 ml leg vol.)(-1) min(-1). RESULTS A total of 104 articles were examined in detail. Of these, 44 and 25 studies (including a total of 173 individuals) were included in the systematic review and meta-analysis, respectively. In the overall estimate, insulin did not affect MPS (WMD 3.90 [95% CI -0.74, 8.55], p = 0.71), but significantly reduced MPB (WMD -15.46 [95% CI -19.74, -11.18], p < 0.001). Overall, insulin significantly increased net balance protein acquisition (WMD 20.09 [95% CI 15.93, 24.26], p < 0.001). Subgroup analysis of the effect of insulin on MPS according to amino acid (AA) delivery was performed using meta-regression analysis. The estimate size (WMD) was significantly different between subgroups based on AA availability (p = 0.001). An increase in MPS was observed when AA availability increased (WMD 13.44 [95% CI 4.07, 22.81], p < 0.01), but not when AA availability was reduced or unchanged. In individuals with diabetes and in the presence of maintained delivery of AA, there was a significant reduction in MPS in response to insulin (WMD -6.67 [95% CI -12.29, -0.66], p < 0.05). CONCLUSIONS/INTERPRETATION This study demonstrates the complex role of insulin in regulating skeletal muscle metabolism. Insulin appears to have a permissive role in MPS in the presence of elevated AAs, and plays a clear role in reducing MPB independent of AA availability.
Collapse
Affiliation(s)
- Haitham Abdulla
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Kenneth Smith
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Philip J Atherton
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Uttoxeter Road, Derby, DE22 3DT, UK
| | - Iskandar Idris
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Uttoxeter Road, Derby, DE22 3DT, UK.
| |
Collapse
|
15
|
Sinclair AJ, Rodriguez-Mañas L. Diabetes and Frailty: Two Converging Conditions? Can J Diabetes 2015; 40:77-83. [PMID: 26683240 DOI: 10.1016/j.jcjd.2015.09.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is a disabling, chronic cardiovascular and medical disease with a tremendous health, social and economic burden in our ageing communities. It has a prevalence of 10% to 30% in people older than 65 years of age, and more than half of all subjects with diabetes in the United States are older than 60 years of age. The main impact of diabetes in older adults stems from its effect on function, both physical and cognitive, that finally impairs their quality of life, although the impact on survival is modest. Frailty has emerged during the past 2 decades as the most powerful predictor of disability and other adverse outcomes, including mortality, disability and institutionalization in older adults. In this article we explore the relationship between diabetes and frailty, and we recognize that they are intimately related chronic medical conditions that result in huge societal and personal health burdens.
Collapse
Affiliation(s)
- Alan J Sinclair
- Foundation for Diabetes Research in Older People, Diabetes Frail, Hampton Lovett, Droitwich, Worcestershire, UK; University of Aston, Birmingham, UK.
| | | |
Collapse
|
16
|
Sala D, Zorzano A. Differential control of muscle mass in type 1 and type 2 diabetes mellitus. Cell Mol Life Sci 2015; 72:3803-17. [PMID: 26091746 PMCID: PMC11113699 DOI: 10.1007/s00018-015-1954-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus--whether driven by insulin deficiency or insulin resistance--causes major alterations in muscle metabolism. These alterations have an impact on nutrient handling, including the metabolism of glucose, lipids, and amino acids, and also on muscle mass and strength. However, the ways in which the distinct forms of diabetes affect muscle mass differ greatly. The most common forms of diabetes mellitus are type 1 and type 2. Thus, whereas type 1 diabetic subjects without insulin treatment display a dramatic loss of muscle, most type 2 diabetic subjects show no changes or even an increase in muscle mass. However, the most commonly used rodent models of type 2 diabetes are characterized by muscle atrophy and do not mimic the features of the disease in humans in terms of muscle mass. In this review, we analyze the processes that are differentially regulated under these forms of diabetes and propose regulatory mechanisms to explain them.
Collapse
Affiliation(s)
- David Sala
- Development, Aging and Regeneration Program (DARe), Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, 08028, Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Garibotto G, Sofia A, Russo R, Paoletti E, Bonanni A, Parodi EL, Viazzi F, Verzola D. Insulin sensitivity of muscle protein metabolism is altered in patients with chronic kidney disease and metabolic acidosis. Kidney Int 2015; 88:1419-1426. [PMID: 26308671 PMCID: PMC4678169 DOI: 10.1038/ki.2015.247] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/05/2015] [Accepted: 06/25/2015] [Indexed: 12/23/2022]
Abstract
An emergent hypothesis is that a resistance to the anabolic drive by insulin may contribute to loss of strength and muscle mass in patients with chronic kidney disease (CKD). We tested whether insulin resistance extends to protein metabolism using the forearm perfusion method with arterial insulin infusion in 7 patients with CKD and metabolic acidosis (bicarbonate 19 mmol/l) and 7 control individuals. Forearm glucose balance and protein turnover (2H-phenylalanine kinetics) were measured basally and in response to insulin infused at different rates for 2 h to increase local forearm plasma insulin concentration by approximately 20 and 50 μU/ml. In response to insulin, forearm glucose uptake was significantly increased to a lesser extent (−40%) in patients with CKD than controls. In addition, whereas in the controls net muscle protein balance and protein degradation were decreased by both insulin infusion rates, in patients with CKD net protein balance and protein degradation were sensitive to the high (0.035 mU/kg per min) but not the low (0.01 mU/kg per min) insulin infusion. Besides blunting muscle glucose uptake, CKD and acidosis interfere with the normal suppression of protein degradation in response to a moderate rise in plasma insulin. Thus, alteration of protein metabolism by insulin may lead to changes in body tissue composition which may become clinically evident in conditions characterized by low insulinemia.
Collapse
Affiliation(s)
- Giacomo Garibotto
- Department of Internal Medicine, Division of Nephrology, Dialysis and Transplantation, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Antonella Sofia
- Department of Internal Medicine, Division of Nephrology, Dialysis and Transplantation, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Rodolfo Russo
- Department of Internal Medicine, Division of Nephrology, Dialysis and Transplantation, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Ernesto Paoletti
- Department of Internal Medicine, Division of Nephrology, Dialysis and Transplantation, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Alice Bonanni
- Department of Internal Medicine, Division of Nephrology, Dialysis and Transplantation, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Emanuele L Parodi
- Department of Internal Medicine, Division of Nephrology, Dialysis and Transplantation, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, Division of Nephrology, Dialysis and Transplantation, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine, Division of Nephrology, Dialysis and Transplantation, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
18
|
Trommelen J, Groen BBL, Hamer HM, de Groot LCPGM, van Loon LJC. MECHANISMS IN ENDOCRINOLOGY: Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review. Eur J Endocrinol 2015; 173:R25-34. [PMID: 25646407 DOI: 10.1530/eje-14-0902] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/02/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. OBJECTIVE To assess whether exogenous insulin administration increases muscle protein synthesis rates in young and older adults. DESIGN A systematic review of clinical trials was performed and the presence or absence of an increase in muscle protein synthesis rate was reported for each individual study arm. In a stepwise manner, multiple models were constructed that excluded study arms based on the following conditions: model 1, concurrent hyperaminoacidemia; model 2, insulin-induced hypoaminoacidemia; model 3, supraphysiological insulin concentrations; and model 4, older, more insulin resistant, subjects. CONCLUSIONS From the presented data in the current systematic review, we conclude that: i) exogenous insulin and amino acid administration effectively increase muscle protein synthesis, but this effect is attributed to the hyperaminoacidemia; ii) exogenous insulin administered systemically induces hypoaminoacidemia which obviates any insulin-stimulatory effect on muscle protein synthesis; iii) exogenous insulin resulting in supraphysiological insulin levels exceeding 50, 000 pmol/l may effectively augment muscle protein synthesis; iv) exogenous insulin may have a diminished effect on muscle protein synthesis in older adults due to age-related anabolic resistance; and v) exogenous insulin administered systemically does not increase muscle protein synthesis in healthy, young adults.
Collapse
Affiliation(s)
- Jorn Trommelen
- Department of Human Movement SciencesFaculty of Health, Medicine and Life Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, PO Box 616, 6200 MD Maastricht, The NetherlandsDivision of Human NutritionWageningen University, Wageningen, The Netherlands
| | - Bart B L Groen
- Department of Human Movement SciencesFaculty of Health, Medicine and Life Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, PO Box 616, 6200 MD Maastricht, The NetherlandsDivision of Human NutritionWageningen University, Wageningen, The Netherlands
| | - Henrike M Hamer
- Department of Human Movement SciencesFaculty of Health, Medicine and Life Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, PO Box 616, 6200 MD Maastricht, The NetherlandsDivision of Human NutritionWageningen University, Wageningen, The Netherlands
| | - Lisette C P G M de Groot
- Department of Human Movement SciencesFaculty of Health, Medicine and Life Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, PO Box 616, 6200 MD Maastricht, The NetherlandsDivision of Human NutritionWageningen University, Wageningen, The Netherlands
| | - Luc J C van Loon
- Department of Human Movement SciencesFaculty of Health, Medicine and Life Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, PO Box 616, 6200 MD Maastricht, The NetherlandsDivision of Human NutritionWageningen University, Wageningen, The Netherlands
| |
Collapse
|
19
|
Phillips BE, Atherton PJ, Varadhan K, Limb MC, Wilkinson DJ, Sjøberg KA, Smith K, Williams JP. The effects of resistance exercise training on macro- and micro-circulatory responses to feeding and skeletal muscle protein anabolism in older men. J Physiol 2015; 593:2721-34. [PMID: 25867865 DOI: 10.1113/jp270343] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Increases in limb blood flow in response to nutrition are reduced in older age. Muscle microvascular blood flow (MBF) in response to nutrition is also reduced with advancing age and this may contribute to age-related 'anabolic resistance'. Resistance exercise training (RET) can rejuvenate limb blood flow responses to nutrition in older individuals. We report here that 20 weeks of RET also restores muscle MBF in older individuals. Restoration of MBF does not, however, enhance muscle anabolic responses to nutrition. ABSTRACT The anabolic effects of dietary protein on skeletal muscle depend on adequate skeletal muscle perfusion, which is impaired in older people. This study explores fed state muscle microvascular blood flow, protein metabolism and exercise training status in older men. We measured leg blood flow (LBF), muscle microvascular blood volume (MBV) and muscle protein turnover under post-absorptive and fed state (i.v. Glamin to double amino acids, dextrose to sustain glucose ∼7-7.5 mmol l(-1) ) conditions in two groups: 10 untrained men (72.3 ± 1.4 years; body mass index (BMI) 26.5 ± 1.15 kg m(2) ) and 10 men who had undertaken 20 weeks of fully supervised, whole-body resistance exercise training (RET) (72.8 ± 1.4 years; BMI 26.3 ± 1.2 kg m(2) ). We measured LBF by Doppler ultrasound and muscle MBV by contrast-enhanced ultrasound. Muscle protein synthesis (MPS) was measured using [1, 2-(13) C2 ] leucine with breakdown (MPB) and net protein balance (NPB) by ring-[D5 ] phenylalanine tracers. Plasma insulin was measured via ELISA and indices of anabolic signalling (e.g. Akt/mTORC1) by immunoblotting from muscle biopsies. Whereas older untrained men did not exhibit fed-state increases in LBF or MBV, the RET group exhibited increases in both LBF and MBV. Despite our hypothesis that enhanced fed-state circulatory responses would improve anabolic responses to nutrition, fed-state increases in MPS (∼50-75%; P < 0.001) were identical in both groups. Finally, whereas only the RET group exhibited fed-state suppression of MPB (∼-38%; P < 0.05), positive NPB achieved was similar in both groups. We conclude that RET enhances fed-state LBF and MBV and restores nutrient-dependent attenuation of MPB without robustly enhancing MPS or NPB.
Collapse
Affiliation(s)
- Bethan E Phillips
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - Philip J Atherton
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - Krishna Varadhan
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - Marie C Limb
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - Daniel J Wilkinson
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - Kim A Sjøberg
- University of Copenhagen, Department of Exercise and Sport Sciences, Copenhagen, Denmark
| | - Kenneth Smith
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| | - John P Williams
- University of Nottingham, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Derby, UK
| |
Collapse
|
20
|
Mondello P, Mian M, Aloisi C, Famà F, Mondello S, Pitini V. Cancer Cachexia Syndrome: Pathogenesis, Diagnosis, and New Therapeutic Options. Nutr Cancer 2014; 67:12-26. [DOI: 10.1080/01635581.2015.976318] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Batistela E, Pereira MP, Siqueira JT, Paula-Gomes S, Zanon NM, Oliveira EB, Navegantes LCC, Kettelhut IC, Andrade CMB, Kawashita NH, Baviera AM. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin–proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet. Can J Physiol Pharmacol 2014; 92:445-54. [DOI: 10.1139/cjpp-2013-0290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin–proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.
Collapse
Affiliation(s)
- Emanuele Batistela
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Mayara Peron Pereira
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | - Silvia Paula-Gomes
- Department of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Neusa Maria Zanon
- Department of Physiology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Brandt Oliveira
- Department of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Isis C. Kettelhut
- Department of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Nair Honda Kawashita
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Rua Expedicionários do Brasil, 1621, CEP 14801 360, Araraquara, São Paulo, Brazil
| |
Collapse
|
22
|
Kirk-Ballard H, Kilroy G, Day BC, Wang ZQ, Ribnicky DM, Cefalu WT, Floyd ZE. An ethanolic extract of Artemisia dracunculus L. regulates gene expression of ubiquitin-proteasome system enzymes in skeletal muscle: potential role in the treatment of sarcopenic obesity. Nutrition 2014; 30:S21-5. [PMID: 24985101 DOI: 10.1016/j.nut.2014.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Obesity is linked to insulin resistance, a primary component of metabolic syndrome and type 2 diabetes. The problem of obesity-related insulin resistance is compounded when age-related skeletal muscle loss, called sarcopenia, occurs with obesity. Skeletal muscle loss results from elevated levels of protein degradation and prevention of obesity-related sarcopenic muscle loss will depend on strategies that target pathways involved in protein degradation. An extract from Artemisia dracunculus, termed PMI 5011, improves insulin signaling and increases skeletal muscle myofiber size in a rodent model of obesity-related insulin resistance. The aim of this study was to examine the effect of PMI 5011 on the ubiquitin-proteasome system, a central regulator of muscle protein degradation. METHODS Gastrocnemius and vastus lateralis skeletal muscle was obtained from KK-A(y) obese diabetic mice fed a control or 1% (w/w) PMI 5011-supplemented diet. Regulation of genes encoding enzymes of the ubiquitin-proteasome system was determined using real-time quantitative reverse transcriptase polymerase chain reaction. RESULTS Although MuRF-1 ubiquitin ligase gene expression is consistently down-regulated in skeletal muscle, atrogin-1, Fbxo40, and Traf6 expression is differentially regulated by PMI 5011. Genes encoding other enzymes of the ubiquitin-proteasome system ranging from ubiquitin to ubiquitin-specific proteases are also regulated by PMI 5011. Additionally, expression of the gene encoding the microtubule-associated protein-1 light chain 3 (LC3), a ubiquitin-like protein pivotal to autophagy-mediated protein degradation, is down-regulated by PMI 5011 in the vastus lateralis. CONCLUSION PMI 5011 alters the gene expression of ubiquitin-proteasome system enzymes that are essential regulators of skeletal muscle mass. This suggests that PMI 5011 has therapeutic potential in the treatment of obesity-linked sarcopenia by regulating ubiquitin-proteasome-mediated protein degradation.
Collapse
Affiliation(s)
| | - Gail Kilroy
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Britton C Day
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Zhong Q Wang
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - David M Ribnicky
- Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - William T Cefalu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
23
|
Smith GI, Villareal DT, Sinacore DR, Shah K, Mittendorfer B. Muscle protein synthesis response to exercise training in obese, older men and women. Med Sci Sports Exerc 2012; 44:1259-66. [PMID: 22246218 DOI: 10.1249/mss.0b013e3182496a41] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Physical activity and eating are two major physiological muscle growth stimuli. Although muscle protein turnover rates are not different in young and middle-aged men and women, we recently found that the basal rate of muscle protein synthesis is greater and the anabolic response to mixed-meal intake is blunted in 65- to 80-yr-old women compared with men of the same age. Whether older women are also resistant to the anabolic effect of exercise is not known. METHODS We measured the rate of muscle protein synthesis (both during basal, postabsorptive conditions and during mixed-meal intake) before and after 3 months of exercise training in obese, 65- to 80-yr-old men and women. RESULTS At the beginning of the study (before training) the basal, postabsorptive muscle protein fractional synthesis rate (FSR) was significantly greater in women than in men (0.064 ± 0.006%·h(-1) vs 0.039 ± 0.006%·h(-1), respectively, P < 0.01), whereas the meal-induced increase in the muscle protein FSR was greater in men than in women (P < 0.05). In men, exercise training approximately doubled the basal muscle protein FSR (P = 0.001) but had no effect on the meal-induced increase in muscle protein FSR (P = 0.78). In women, exercise training increased the muscle protein FSR by ~40% (P = 0.03) and also had no effect on the meal-induced increase in muscle protein FSR (P = 0.51). CONCLUSIONS These results suggest that there is significant sexual dimorphism not only in the basal, postabsorptive rate of muscle protein synthesis but also in the anabolic response to feeding and exercise training in obese, older adults.
Collapse
Affiliation(s)
- Gordon I Smith
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
24
|
Wagner AL, Urschel KL. Developmental regulation of the activation of translation initiation factors of skeletal muscle in response to feeding in horses. Am J Vet Res 2012; 73:1241-51. [DOI: 10.2460/ajvr.73.8.1241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Masgrau A, Mishellany-Dutour A, Murakami H, Beaufrère AM, Walrand S, Giraudet C, Migné C, Gerbaix M, Metz L, Courteix D, Guillet C, Boirie Y. Time-course changes of muscle protein synthesis associated with obesity-induced lipotoxicity. J Physiol 2012; 590:5199-210. [PMID: 22802586 DOI: 10.1113/jphysiol.2012.238576] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The object of the study was to investigate the sequential changes of protein synthesis in skeletal muscle during establishment of obesity, considering muscle typology. Adult Wistar rats were fed a standard diet for 16 weeks (C; n = 14), or a high-fat, high-sucrose diet for 16 (HF16; n = 14) or 24 weeks (HF24; n = 15). Body composition was measured using a dual-energy X-ray absorptiometry scanner. The fractional synthesis rates (FSRs) of muscle protein fractions were calculated in tibialis anterior (TA) and soleus muscles by incorporation of l-13C-valine in muscle protein. Muscle lipid and mitochondria contents were determined using histochemical analysis. Obesity occurred in an initial phase, from 1 to 16 weeks, with an increase in weight (P < 0.05), fat mass (P < 0.001), muscle mass (P < 0.001) and FSR in TA (actin: 5.3 ± 0.2 vs. 8.8 ± 0.5% day−1, C vs. HF16, P < 0.001) compared with standard diet. The second phase, from 16 to 24 weeks, was associated with a weight stabilization, a decrease in muscle mass (P < 0.05) and a decrease in FSR in TA (mitochondrial: 5.6 ± 0.2 vs. 4.2 ± 0.4% day−1, HF16 vs. HF24, P < 0.01) compared with HF16 group. Muscle lipid content was increased in TA in the second phase of obesity development (P < 0.001). Muscle mass, lipid infiltration and muscle protein synthesis were differently affected, depending on the stage of obesity development and muscle typology. Chronic lipid infiltration in glycolytic muscle is concomitant with a reduction of muscle protein synthesis, suggesting that muscle lipid infiltration in response to a high-fat diet is deleterious for the incorporation of amino acid in skeletal muscle proteins.
Collapse
Affiliation(s)
- Aurélie Masgrau
- French National Institute for Agricultural Research (INRA), UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Honors MA, Kinzig KP. The role of insulin resistance in the development of muscle wasting during cancer cachexia. J Cachexia Sarcopenia Muscle 2012; 3:5-11. [PMID: 22450024 PMCID: PMC3302982 DOI: 10.1007/s13539-011-0051-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 11/08/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer cachexia is a complex syndrome associated with multiple metabolic abnormalities. Insulin resistance is present in many cancer patients and may be one mechanism through which muscle wasting occurs. METHODS AND RESULTS The present review examines evidence in support of a role for insulin resistance in the development of muscle wasting during cancer cachexia and identifies areas for future research. Patients suffering from cancer cachexia tend to exhibit insulin resistance and improvements in insulin resistance have the potential to improve cachexia symptoms. In addition, evidence suggests that insulin resistance may occur prior to the onset of cachexia symptoms. CONCLUSIONS Further investigation of the role of insulin resistance in cancer cachexia is needed. The use of translational research in this area is strongly encouraged, and has important implications for clinical research and the treatment and prevention of cancer cachexia.
Collapse
Affiliation(s)
- Mary A. Honors
- Department of Psychological Sciences and Ingestive Behavior Research Center, Purdue University, West Lafayette, IN 47907 USA
| | - Kimberly P. Kinzig
- Department of Psychological Sciences and Ingestive Behavior Research Center, Purdue University, West Lafayette, IN 47907 USA
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907 USA
| |
Collapse
|
27
|
Geukers VG, Li Z, Ackermans MT, Bos AP, Jinfeng L, Sauerwein HP. High-carbohydrate/low-protein-induced hyperinsulinemia does not improve protein balance in children after cardiac surgery. Nutrition 2012; 28:644-50. [PMID: 22261573 DOI: 10.1016/j.nut.2011.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/03/2011] [Accepted: 09/27/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE In pediatric cardiac surgery, fluid-restricted low-protein (LoProt) diets account for cumulative protein deficits with increased morbidity. In this setting, we aimed to inhibit proteolysis by a high-carbohydrate (HiCarb)-intake-induced hyperinsulinemia and improve protein balance. METHODS The effect of a HiCarb/LoProt (glucose 10 mg · kg(-1) · min(-1)/protein 0.7 g · kg(-1) · d(-1)) versus a normal-carbohydrate (NormCarb)/LoProt (glucose 7.5 mg · kg(-1) · min(-1)/protein 0.3 g · kg(-1) · d(-1)) enteral diet on whole-body protein breakdown and balance was compared in a prospective, randomized, single-blinded trial in 24 children after cardiac surgery. On the second postoperative day, plasma insulin and amino acid concentrations, protein breakdown (endogenous rate of appearance of valine), protein synthesis (non-oxidative disposal of valine), protein balance, and the rate of appearance of urea were measured by using an isotopic infusion of [1-(13)C]valine and [(15)N(2)]urea. RESULTS The HiCarb/LoProt diet led to a serum insulin concentration that was three times higher than the NormCarb/LoProt diet (596 pmol/L, 80-1833, and 198 pmol/L, 76-1292, respectively, P = 0.02), without differences in plasma glucose concentrations. There were no differences in plasma amino acid concentrations, non-oxidative disposal of valine, and endogenous rate of appearance of valine between the groups, with a negative valine balance in the two groups (-0.65 μmol · kg(-1) · min(-1), -1.91 to 0.01, and -0.58 μmol · kg(-1) · min(-1), -2.32 to -0.07, respectively, P = 0.71). The serum cortisol concentration in the HiCarb/LoProt group was lower compared with the NormCarb/LoProt group (204 nmol/L, 50-544, and 532 nmol/L, 108-930, respectively, P = 0.02). CONCLUSION In children with fluid restriction after cardiac surgery, a HiCarb/LoProt diet compared with a NormCarb/LoProt diet stimulates insulin secretion but does not inhibit proteolysis further and therefore cannot be advocated for this purpose.
Collapse
Affiliation(s)
- Vincent G Geukers
- Pediatric Intensive Care Department, Emma Children's Hospital/Academic Medical Center, Amsterdam, Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Nguyen TQ, Maalouf NM, Sakhaee K, Moe OW. Comparison of insulin action on glucose versus potassium uptake in humans. Clin J Am Soc Nephrol 2011; 6:1533-9. [PMID: 21734082 DOI: 10.2215/cjn.00750111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Insulin has several physiologic actions that include stimulation of cellular glucose and potassium uptake. The ability of insulin to induce glucose uptake by cells is impaired in type 2 diabetes mellitus, but whether potassium uptake is similarly impaired is not known. This study examines whether the cellular uptake of these molecules is regulated in concert or independently. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Thirty-two nondiabetic and 13 type 2 diabetic subjects with normal GFR were given a similar, constant metabolic diet for 8 days. On day 9, they were subjected to a hyperinsulinemic euglycemic clamp for 2 hours. Serum and urinary chemistry were obtained before and during the clamp. Glucose disposal rate was calculated from glucose infusion rate during hyperinsulinemic euglycemia. Intracellular potassium and phosphate uptake were calculated by the reduction of extracellular potassium or phosphate content corrected for urinary excretion. RESULTS Although glucose disposal rate tended to be lower in type 2 diabetics, cellular potassium uptake was similar between diabetics and nondiabetics. Additionally, although glucose disposal rate was lower with increasing body mass index (R² = 0.362), cellular potassium (R² = 0.052), and phosphate (R² = 0.002), uptake rates did not correlate with body mass index. There was also no correlation between glucose disposal rate and potassium (R² = 0.016) or phosphate uptake (R² = 0.053). Conclusions Insulin-stimulated intracellular uptake of glucose and potassium are independent of each other. In type 2 diabetes, potassium uptake is preserved despite impaired glucose disposal.
Collapse
Affiliation(s)
- Trang Q Nguyen
- The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | |
Collapse
|
29
|
Chen KH, Cheng ML, Jing YH, Chiu DTY, Shiao MS, Chen JK. Resveratrol ameliorates metabolic disorders and muscle wasting in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 2011; 301:E853-63. [PMID: 21791624 DOI: 10.1152/ajpendo.00048.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is characterized by dysregulated energy metabolism. Resveratrol (RSV) has been shown to ameliorate hyperglycemia and hyperlipidemia in diabetic animals. However, its overall in vivo effects on energy metabolism and the underlying mechanism require further investigation. In the present study, electrospray ionization-tandem mass spectrometry was employed to characterize the urine and plasma metabolomes of control, streptozotocin-induced DM and RSV-treated DM rats. Using principal component analysis (PCA) and heat map analysis, we discovered significant differences among control and experimental groups. RSV treatment significantly reduced the metabolic abnormalities in DM rats. Compared with the age-matched control rats, the level of carnitine was lower, and the levels of acetylcarnitine and butyrylcarnitine were higher in the urine and plasma of DM rats. RSV treatment ameliorated the deranged carnitine metabolism in DM rats. In addition, RSV treatment attenuated the diabetic ketoacidosis and muscle protein degradation, as evidenced from the attenuation of elevated urinary methyl-histidine and plasma branched-chain amino acids levels in DM rats. The beneficial effects of RSV in DM rats were correlated with activation of hepatic AMP-activated protein kinase and SIRT1 expression, increase of hepatic and muscular mitochondrial biogenesis and inhibition of muscle NF-κB activities. We concluded that RSV possesses multiple beneficial metabolic effects in insulin-deficient DM rats, particularly in improving energy metabolism and reducing protein wasting.
Collapse
MESH Headings
- Adenylate Kinase/genetics
- Adenylate Kinase/metabolism
- Animals
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Cytokines/genetics
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Drug Evaluation, Preclinical
- Male
- Metabolic Diseases/etiology
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Metabolic Diseases/prevention & control
- Models, Biological
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Diseases/etiology
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Muscular Diseases/prevention & control
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Rats
- Rats, Sprague-Dawley
- Resveratrol
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Stilbenes/pharmacology
- Stilbenes/therapeutic use
- Streptozocin
- Wasting Syndrome/etiology
- Wasting Syndrome/genetics
- Wasting Syndrome/metabolism
- Wasting Syndrome/prevention & control
Collapse
Affiliation(s)
- Kuan-Hsing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Adeva MM, Calviño J, Souto G, Donapetry C. Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids 2011; 43:171-81. [PMID: 21984377 DOI: 10.1007/s00726-011-1088-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 09/15/2011] [Indexed: 12/17/2022]
Abstract
Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed.
Collapse
Affiliation(s)
- María M Adeva
- Hospital Juan Cardona c/ Pardo Bazán s/n, 15406, Ferrol, La Coruña, Spain.
| | | | | | | |
Collapse
|
31
|
Tardif N, Salles J, Guillet C, Gadéa E, Boirie Y, Walrand S. Obésité sarcopénique et altérations du métabolisme protéique musculaire. NUTR CLIN METAB 2011. [DOI: 10.1016/j.nupar.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Katsanos CS, Mandarino LJ. Protein metabolism in human obesity: a shift in focus from whole-body to skeletal muscle. Obesity (Silver Spring) 2011; 19:469-75. [PMID: 21164506 DOI: 10.1038/oby.2010.290] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Christos S Katsanos
- Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| | | |
Collapse
|
33
|
Glynn EL, Fry CS, Drummond MJ, Timmerman KL, Dhanani S, Volpi E, Rasmussen BB. Excess leucine intake enhances muscle anabolic signaling but not net protein anabolism in young men and women. J Nutr 2010; 140:1970-6. [PMID: 20844186 PMCID: PMC2955876 DOI: 10.3945/jn.110.127647] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Essential amino acids (EAA) stimulate skeletal muscle protein synthesis (MPS) in humans. Leucine may have a greater stimulatory effect on MPS than other EAA and/or decrease muscle protein breakdown (MPB). To determine the effect of 2 different leucine concentrations on muscle protein turnover and associated signaling, young men (n = 6) and women (n = 8) ingested 10 g EAA in 1 of 2 groups: composition typical of high quality proteins (CTRL; 1.8 g leucine) or increased leucine concentration (LEU; 3.5 g leucine). Participants were studied for 180 min postingestion. Fractional synthetic rate and leg phenylalanine and leucine kinetics were assessed on muscle biopsies using stable isotopic techniques. Signaling was determined by immunoblotting. Arterial leucine concentration and delivery to the leg increased in both groups and was significantly higher in LEU than in CTRL; however, transport into the muscle and intracellular availability did not differ between groups. MPS increased similarly in both groups 60 min postingestion. MPB decreased at 60 min only in LEU, but net muscle protein balance improved similarly. Components of mammalian target of rapamycin (mTOR) signaling were improved in LEU, but no changes were observed in ubiquitin-proteasome system signaling. Changes in light chain 3 and mTOR association with Unc-51-like kinase 1 indicate autophagy decreased more in LEU. We conclude that in 10 g of EAA, the leucine content typical of high quality proteins (~1.8 g) is sufficient to induce a maximal skeletal muscle protein anabolic response in young adults, but leucine may play a role in autophagy regulation.
Collapse
Affiliation(s)
- Erin L. Glynn
- Departments of Rehabilitation Science, University of Texas Medical Branch, Galveston, TX 77555
| | - Christopher S. Fry
- Departments of Rehabilitation Science, University of Texas Medical Branch, Galveston, TX 77555
| | - Micah J. Drummond
- Departments of Physical Therapy, University of Texas Medical Branch, Galveston, TX 77555,Departments of Rehabilitation Science, University of Texas Medical Branch, Galveston, TX 77555,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX 77555
| | - Kyle L. Timmerman
- Departments of Internal Medicine, Divisions of University of Texas Medical Branch, Galveston, TX 77555
| | - Shaheen Dhanani
- Departments of Internal Medicine, Divisions of University of Texas Medical Branch, Galveston, TX 77555
| | - Elena Volpi
- Departments of Internal Medicine, Divisions of University of Texas Medical Branch, Galveston, TX 77555,Departments of Geriatrics, University of Texas Medical Branch, Galveston, TX 77555
| | - Blake B. Rasmussen
- Departments of Physical Therapy, University of Texas Medical Branch, Galveston, TX 77555,Departments of Rehabilitation Science, University of Texas Medical Branch, Galveston, TX 77555,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX 77555,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Harber MP, Konopka AR, Jemiolo B, Trappe SW, Trappe TA, Reidy PT. Muscle protein synthesis and gene expression during recovery from aerobic exercise in the fasted and fed states. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1254-62. [DOI: 10.1152/ajpregu.00348.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this investigation was to assess mixed-muscle fractional synthesis rate (FSR) and the expression of genes involved in skeletal muscle remodeling after aerobic exercise in the fasted and fed states. Eight recreationally active males (25 ± 1 yr; V̇o2 max: 52 ± 2 ml·kg−1·min−1) performed 60-min of cycle ergometry at 72 ± 1% V̇o2 max on two occasions in a counter-balanced design. Subjects ingested a noncaloric placebo (EX-FAST) or a beverage containing (per kg body wt): 5 kcal, 0.83 g carbohydrate, 0.37 g protein, and 0.03 g fat (EX-FED) immediately and 1 h after exercise. FSR was assessed at rest and following exercise with the use of a l-[ring 2H5]-phenylalanine infusion combined with muscle biopsies at 2 and 6 h postexercise. mRNA expression was assessed at 2 and 6 h postexercise via real-time RT-PCR. FSR was higher ( P < 0.05) after exercise in both EX-FAST (0.112 ± 0.010%·h−1) and EX-FED (0.129 ± 0.014%·h−1) compared with rest (0.071 ± 0.005%·h−1). Feeding attenuated the mRNA expression ( P < 0.05) of proteolytic factors MuRF-1 (6 h) and calpain-2 (2 and 6 h) postexercise but did not alter FOXO3A, calpain-1, caspase3, or myostatin mRNA expression compared with EX-FAST. Myogenic regulatory factor (MRF4) mRNA was also attenuated ( P < 0.05) at 2 and 6 h postexercise in EX-FED compared with EX-FAST. These data demonstrate that a nonexhaustive bout of aerobic exercise stimulates skeletal muscle FSR in the fasted state and that feeding does not measurably enhance FSR between 2 and 6 h after aerobic exercise. Additionally, postexercise nutrient intake attenuates the expression of factors involved in the ubiquitin-proteosome and Ca2+-dependent protein degradation pathways. These data provide insight into the role of feeding on muscle protein metabolism during recovery from aerobic exercise.
Collapse
Affiliation(s)
| | - Adam R. Konopka
- Human Performance Laboratory, Ball State University, Muncie Indiana
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie Indiana
| | - Scott W. Trappe
- Human Performance Laboratory, Ball State University, Muncie Indiana
| | - Todd A. Trappe
- Human Performance Laboratory, Ball State University, Muncie Indiana
| | - Paul T. Reidy
- Human Performance Laboratory, Ball State University, Muncie Indiana
| |
Collapse
|
35
|
Timmerman KL, Lee JL, Fujita S, Dhanani S, Dreyer HC, Fry CS, Drummond MJ, Sheffield-Moore M, Rasmussen BB, Volpi E. Pharmacological vasodilation improves insulin-stimulated muscle protein anabolism but not glucose utilization in older adults. Diabetes 2010; 59:2764-71. [PMID: 20724580 PMCID: PMC2963534 DOI: 10.2337/db10-0415] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Skeletal muscle protein metabolism is resistant to the anabolic action of insulin in healthy, nondiabetic older adults. This defect is associated with impaired insulin-induced vasodilation and mTORC1 signaling. We hypothesized that, in older subjects, pharmacological restoration of insulin-induced capillary recruitment would improve the response of muscle protein synthesis and anabolism to insulin. RESEARCH DESIGN AND METHODS Twelve healthy, nondiabetic older subjects (71 ± 2 years) were randomized to two groups. Subjects were studied at baseline and during local infusion in one leg of insulin alone (Control) or insulin plus sodium nitroprusside (SNP) at variable rate to double leg blood flow. We measured leg blood flow by dye dilution; muscle microvascular perfusion with contrast enhanced ultrasound; Akt/mTORC1 signaling by Western blotting; and muscle protein synthesis, amino acid, and glucose kinetics using stable isotope methodologies. RESULTS There were no baseline differences between groups. Blood flow, muscle perfusion, phenylalanine delivery to the leg, and intracellular availability of phenylalanine increased significantly (P < 0.05) in SNP only. Akt phosphorylation increased in both groups but increased more in SNP (P < 0.05). Muscle protein synthesis and net balance (nmol · min(-1) · 100 ml · leg(-1)) increased significantly (P < 0.05) in SNP (synthesis, 43 ± 6 to 129 ± 25; net balance, -16 ± 3 to 26 ± 12) but not in Control (synthesis, 41 ± 10 to 53 ± 8; net balance, -17 ± 3 to -2 ± 3). CONCLUSIONS Pharmacological enhancement of muscle perfusion and amino acid availability during hyperinsulinemia improves the muscle protein anabolic effect of insulin in older adults.
Collapse
Affiliation(s)
- Kyle L. Timmerman
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas
| | - Jessica L. Lee
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas
| | - Satoshi Fujita
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Shaheen Dhanani
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas
| | - Hans C. Dreyer
- Department of Physical Therapy, University of Texas Medical Branch, Galveston, Texas
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Christopher S. Fry
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Micah J. Drummond
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Melinda Sheffield-Moore
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Blake B. Rasmussen
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas
- Department of Physical Therapy, University of Texas Medical Branch, Galveston, Texas
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Elena Volpi
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Corresponding author: Elena Volpi,
| |
Collapse
|
36
|
Puthucheary Z, Montgomery H, Moxham J, Harridge S, Hart N. Structure to function: muscle failure in critically ill patients. J Physiol 2010; 588:4641-8. [PMID: 20961998 DOI: 10.1113/jphysiol.2010.197632] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Impaired physical function and reduced physical activity are common findings in intensive care unit (ICU) survivors. More importantly, reduced muscle strength during critical illness is an independent predictor of survival. Skeletal muscle wasting as a direct consequence of critical illness has been suggested as the cause. However, data on the physiological processes regulating muscle mass, and function, in these critically ill patients are limited as this is not only a technically challenging research area, but also the heterogeneity of the patient group adds complexity to the interpretation of results. Despite this, clinical and research interest in this area is growing. This article highlights the issues involved in measurement of muscle function and mass in critically ill patients and the physiological complexities involved in studying these patients. Although the data are limited, this article reviews the animal and healthy human data providing a rational approach to the potential pathophysiological mechanisms involved in muscle mass regulation in critically ill patients, including the established muscle wasting 'risk factors' such as ageing, immobility and systemic inflammation, all of which are common findings in the general critical care population.
Collapse
Affiliation(s)
- Zudin Puthucheary
- Institute for Human Health and Performance, University College London and Division of Asthma Allergy and Lung Biology, Kings College London, London, UK.
| | | | | | | | | |
Collapse
|
37
|
Nicastro H, Artioli GG, Costa ADS, Solis MY, da Luz CR, Blachier F, Lancha AH. An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids 2010; 40:287-300. [PMID: 20514547 DOI: 10.1007/s00726-010-0636-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 05/17/2010] [Indexed: 12/11/2022]
Abstract
The characterization of the mechanisms underlying skeletal muscle atrophy under different conditions has been a constant focus of research. Among anti-atrophic therapies, amino acid supplementation, particularly with leucine, has received a lot of attention. Supplementation has been shown to have remarkable effects on muscle remodeling through protein turnover modulation. This may then impact physiological parameters related to muscle function, and even quality of life. In light of this, leucine supplementation could be a useful therapy for mitigating the atrophic effects of catabolic conditions. The purpose of this review is to present the major results of human studies evaluating the effects of leucine supplementation on structure and function of skeletal muscle in atrophic conditions such as muscle disuse, sarcopenia, and cancer.
Collapse
Affiliation(s)
- Humberto Nicastro
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
38
|
Magkos F, Wang X, Mittendorfer B. Metabolic actions of insulin in men and women. Nutrition 2010; 26:686-93. [PMID: 20392600 DOI: 10.1016/j.nut.2009.10.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 10/24/2009] [Indexed: 12/31/2022]
Abstract
Insulin is an important regulator of glucose, lipid, and protein metabolism. It suppresses hepatic glucose and triglyceride production, inhibits adipose tissue lipolysis and whole-body and muscle proteolysis, and stimulates glucose uptake in muscle. In this review we discuss what is currently known about the control of substrate metabolism by insulin in men and women. The data available so far indicate that women are more sensitive to insulin with regards to glucose metabolism (both in the liver and in muscle), whereas there are no differences between men and women in insulin action on lipolysis. Potential differences exist in the regulation of plasma triglyceride concentration and protein metabolism by insulin and in changes in insulin action in response to stimuli (e.g., weight loss and exercise) that are known to alter insulin sensitivity. However, these areas have not been studied comprehensively enough to draw firm conclusions.
Collapse
Affiliation(s)
- Faidon Magkos
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
39
|
Wilkes EA, Selby AL, Atherton PJ, Patel R, Rankin D, Smith K, Rennie MJ. Blunting of insulin inhibition of proteolysis in legs of older subjects may contribute to age-related sarcopenia. Am J Clin Nutr 2009; 90:1343-50. [PMID: 19740975 DOI: 10.3945/ajcn.2009.27543] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Reduced postprandial muscle proteolysis is mainly due to increased insulin availability. Whether rates of proteolysis in response to low physiologic doses of insulin are affected by aging is unknown. OBJECTIVES We tested the hypothesis that suppression of leg protein breakdown (LPB) by insulin is blunted in older subjects, together with blunted activation of Akt-protein kinase B (PKB). DESIGN Groups of 8 young [mean (+/-SD) age: 24.5 +/- 1.8 y] and older (65.0 +/- 1.3 y) participants were studied during euglycemic (5 mmol/L), isoaminoacidemic (blood leucine approximately 120 micromol/L) clamp procedures at plasma insulin concentrations of approximately 5 and approximately 15 microIU/mL for 1.5 h. Leg amino acid balance, whole-leg protein turnover (as dilution of amino acid tracers), and muscle protein synthesis were measured with D(5)-phenylalanine and [1,2-(13)C(2)]leucine. The kinase activity of muscle Akt-PKB and the extent of phosphorylation of signaling proteins associated with the mTOR (mammalian target of rapamycin) pathway were measured before and after the clamp procedures. RESULTS Basal LPB rates were not different between groups (66 +/- 11 compared with 51 +/- 10 nmol leucine x 100 mL leg(-1) x min(-1) and 30 +/- 5 compared with 24 +/- 4 nmol phenylalanine x 100 mL leg(-1) x min(-1) in young and older groups, respectively). However, although insulin at approximately 15 microIU/mL lowered LPB by 47% in the young subjects (P < 0.05) and abolished the negative leg amino acid balance, this caused only a 12% fall (P > 0.05) in the older group. Akt-PKB activity mirrored decreases in LPB. No differences were seen in muscle protein synthesis or associated anabolic signaling phosphoproteins. CONCLUSIONS At moderate availability, the effect of insulin on LPB is diminished in older human beings, and this effect may be mediated through blunted Akt-PKB activation.
Collapse
Affiliation(s)
- Emilie A Wilkes
- University of Nottingham, School of Graduate Entry Medicine and Health, Derby, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Phillips SM, Glover EI, Rennie MJ. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol (1985) 2009; 107:645-54. [PMID: 19608931 DOI: 10.1152/japplphysiol.00452.2009] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Unloading-induced atrophy is a relatively uncomplicated form of muscle loss, dependent almost solely on the loss of mechanical input, whereas in disease states associated with inflammation (cancer cachexia, AIDS, burns, sepsis, and uremia), there is a procatabolic hormonal and cytokine environment. It is therefore predictable that muscle loss mainly due to disuse alone would be governed by mechanisms somewhat differently from those in inflammatory states. We suggest that in vivo measurements made in human subjects using arterial-venous balance, tracer dilution, and tracer incorporation are dynamic and thus robust by comparison with static measurements of mRNA abundance and protein expression and/or phosphorylation in human muscle. In addition, measurements made with cultured cells or in animal models, all of which have often been used to infer alterations of protein turnover, appear to be different from results obtained in immobilized human muscle in vivo. In vivo measurements of human muscle protein turnover in disuse show that the primary variable that changes facilitating the loss of muscle mass is protein synthesis, which is reduced in both the postabsorptive and postprandial states; muscle proteolysis itself appears not to be elevated. The depressed postprandial protein synthetic response (a phenomenon we term "anabolic resistance") may even be accompanied by a diminished suppression of proteolysis. We therefore propose that most of the loss of muscle mass during disuse atrophy can be accounted for by a depression in the rate of protein synthesis. Thus the normal diurnal fasted-to-fed cycle of protein balance is disrupted and, by default, proteolysis becomes dominant but is not enhanced.
Collapse
Affiliation(s)
- S M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW This review reports recent findings on the multiple factors that regulate skeletal muscle growth in neonates. RECENT FINDINGS Skeletal muscle is the fastest growing protein mass in neonates. The high rate of neonatal muscle growth is due to accelerated rates of protein synthesis accompanied by the rapid accumulation of muscle nuclei. Feeding profoundly stimulates muscle protein synthesis in neonates and the response decreases with age. The feeding-induced stimulation of muscle protein synthesis is modulated by enhanced sensitivity to the postprandial rise in insulin and amino acids. Insulin and amino acid signaling components have been identified that are involved in the feeding-induced stimulation of protein synthesis in neonatal muscle. The enhanced activation of these signaling components in skeletal muscle of the neonate contributes to the high rate of muscle protein synthesis and rapid gain in muscle protein mass in neonates. SUMMARY Recent findings suggest that the immature muscle has a heightened capacity to activate signaling cascades that promote translation initiation in response to the postprandial rise in insulin and amino acids thereby enabling their efficient utilization for muscle growth. This capacity is further supported by enhanced satellite cell proliferation, but how these two processes are linked remains to be established.
Collapse
Affiliation(s)
- Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
42
|
Phillips SM. Insulin and muscle protein turnover in humans: stimulatory, permissive, inhibitory, or all of the above? Am J Physiol Endocrinol Metab 2008; 295:E731. [PMID: 18628353 DOI: 10.1152/ajpendo.90569.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 2008; 295:E595-604. [PMID: 18577697 PMCID: PMC2536736 DOI: 10.1152/ajpendo.90411.2008] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 06/21/2008] [Indexed: 01/07/2023]
Abstract
We determined the effects of intravenous infusion of amino acids (AA) at serum insulin of 5, 30, 72, and 167 mU/l on anabolic signaling, expression of ubiquitin-proteasome components, and protein turnover in muscles of healthy young men. Tripling AA availability at 5 mU/l insulin doubled incorporation of [1-(13)C]leucine [i.e., muscle protein synthesis (MPS), P < 0.01] without affecting the rate of leg protein breakdown (LPB; appearance of d(5)-phenylalanine). While keeping AA availability constant, increasing insulin to 30 mU/l halved LPB (P < 0.05) without further inhibition at higher doses, whereas rates of MPS were identical to that at 5 mU/l insulin. The phosphorylation of PKB Ser(473) and p70(S6k) Thr(389) increased concomitantly with insulin, but whereas raising insulin to 30 mU/l increased the phosphorylation of mTOR Ser(2448), 4E-BP1 Thr(37/46), or GSK3beta Ser(9) and decreased that of eEF2 Thr(56), higher insulin doses to 72 and 167 mU/l did not augment these latter responses. MAFbx and proteasome C2 subunit proteins declined as insulin increased, with MuRF-1 expression largely unchanged. Thus increasing AA and insulin availability causes changes in anabolic signaling and amounts of enzymes of the ubiquitin-proteasome pathway, which cannot be easily reconciled with observed effects on MPS or LPB.
Collapse
Affiliation(s)
- P L Greenhaff
- Centre for Integrated Systems Biology and Medicine, Univ. of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Improvement of blood glucose control and insulin sensitivity during a long-term (60 weeks) randomized study with amino acid dietary supplements in elderly subjects with type 2 diabetes mellitus. Am J Cardiol 2008; 101:82E-88E. [PMID: 18514633 DOI: 10.1016/j.amjcard.2008.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A decrease in lean muscular mass causes sarcopenia, a disease frequently found in the elderly population. The reduction of muscle mass may be responsible for reduced insulin sensitivity and decreased glucose uptake, thus increasing the risk for hyperglycemia and insulin-resistance syndrome in elderly subjects with type 2 diabetes mellitus. We therefore wanted to determine the effect of a special mixture of oral amino acids (AAs) on elderly subjects with type 2 diabetes. A randomized, open-label, crossover study was conducted in 34 subjects with diabetes (age range, 65-85 years) assigned to 2 distinct treatments (AAs and placebo). In spite of treatment with oral hypoglycemic drugs or insulin, all subjects were in poor metabolic control (glycated hemoglobin [HbA(1c)] >7%). The subjects studied had normal body weight (ie, body mass index within 19-23). AAs consisted of 70.6 kcal/day (1 kcal = 4.2 kJ) of 8 g of AA snacks, given at 10.00 am and 5.00 pm. Fasting and postprandial (1 hour and 2 hours) blood glucose, serum insulin, and homeostatic model assessment of insulin resistance (an index of insulin resistance) significantly decreased during AA treatment. Furthermore, a significant reduction of HbA(1c) levels was found throughout the study. No significant adverse effects were observed during the active treatment. We suggest that nutritional supplementation with a special mixture of oral AAs is safe and significantly improves metabolic control and insulin sensitivity in poorly controlled elderly subjects with type 2 diabetes. This effect was consistent during the long-term observation period of 60 weeks and was also present after the crossover from AAs to placebo.
Collapse
|
45
|
Abstract
There is widespread anecdotal evidence that growth hormone (GH) is used by athletes for its anabolic and lipolytic properties. Although there is little evidence that GH improves performance in young healthy adults, randomized controlled studies carried out so far are inadequately designed to demonstrate this, not least because GH is often abused in combination with anabolic steroids and insulin. Some of the anabolic actions of GH are mediated through the generation of insulin-like growth factor-I (IGF-I), and it is believed that this is also being abused. Athletes are exposing themselves to potential harm by self-administering large doses of GH, IGF-I and insulin. The effects of excess GH are exemplified by acromegaly. IGF-I may mediate and cause some of these changes, but in addition, IGF-I may lead to profound hypoglycaemia, as indeed can insulin. Although GH is on the World Anti-doping Agency list of banned substances, the detection of abuse with GH is challenging. Two approaches have been developed to detect GH abuse. The first is based on an assessment of the effect of exogenous recombinant human GH on pituitary GH isoforms and the second is based on the measurement of markers of GH action. As a result, GH abuse can be detected with reasonable sensitivity and specificity. Testing for IGF-I and insulin is in its infancy, but the measurement of markers of GH action may also detect IGF-I usage, while urine mass spectroscopy has begun to identify the use of insulin analogues.
Collapse
|
46
|
LeRoith D, Yakar S. Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. ACTA ACUST UNITED AC 2007; 3:302-10. [PMID: 17315038 DOI: 10.1038/ncpendmet0427] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 10/24/2006] [Indexed: 11/09/2022]
Abstract
Insulin-like growth factor (IGF) 1 is a member of a family that is involved in growth, development, cell differentiation, and metabolism. IGF1, IGF2 and insulin act primarily through tyrosine-kinase-linked receptors--the IGF1 receptor (IGF1R) and insulin receptor (IR). The IGF1R binds IGF1 and IGF2 with high affinity and the IR binds insulin with high affinity; however, since both receptors share a high degree of structural and functional homology, the IGF1R can bind insulin and the IR can bind the IGFs with reduced affinity. These two receptors can, moreover, form heterodimers, which bind both ligands. Upon binding to the receptors, cascades of tyrosine and serine kinases are stimulated to facilitate growth or metabolism. The IGF2 receptor is a scavenger receptor, and is, therefore, not involved in mediation of growth or metabolic effects of the IGF family and will not be discussed in the current article. IGF1 is a major gene target of growth hormone and its product mediates many of the actions of growth hormone on growth and development; however, IGF1 has actions distinct from those of growth hormone in carbohydrate, lipid, and protein metabolism. For example, excess growth hormone causes insulin resistance and hyperglycemia, whereas IGF1 has insulin-like effects that reduce blood glucose levels and has been used experimentally to treat both type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | |
Collapse
|
47
|
Chow LS, Albright RC, Bigelow ML, Toffolo G, Cobelli C, Nair KS. Mechanism of insulin's anabolic effect on muscle: measurements of muscle protein synthesis and breakdown using aminoacyl-tRNA and other surrogate measures. Am J Physiol Endocrinol Metab 2006; 291:E729-36. [PMID: 16705065 DOI: 10.1152/ajpendo.00003.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite being an anabolic hormone in skeletal muscle, insulin's anticatabolic mechanism in humans remains controversial, with contradictory reports showing either stimulation of protein synthesis (PS) or inhibition of protein breakdown (PB) by insulin. Earlier measurements of muscle PS and PB in humans have relied on different surrogate measures of aminoacyl-tRNA and intracellular pools. We report that insulin's effect on muscle protein turnover using aminoacyl-tRNA as the precursor of PS and PB is calculated by mass balance of tracee amino acid (AA). We compared the results calculated from various surrogate measures. To determine the physiological role of insulin on muscle protein metabolism, we infused tracers of leucine and phenylalanine into 18 healthy subjects, and after 3 h, 10 subjects received a 4-h femoral arterial infusion of insulin (0.125 mUxkg(-1)xmin(-1)), while eight subjects continued with saline. Tracer-to-tracee ratios of leucine, phenylalanine, and ketoisocaproate were measured in the arterial and venous plasma, muscle tissue fluid, and AA-tRNA to calculate muscle PB and PS. Insulin infusion, unlike saline, significantly reduced the efflux of leucine and phenylalanine from muscle bed, based on various surrogate measures which agreed with those based on leucyl-tRNA (-28%), indicating a reduction in muscle PB (P < 0.02) without any significant effect on muscle PS. In conclusion, using AA-tRNA as the precursor pool, it is demonstrated that, in healthy humans in the postabsorptive state, insulin does not stimulate muscle protein synthesis and confirmed that insulin achieves muscle protein anabolism by inhibition of muscle protein breakdown.
Collapse
Affiliation(s)
- Lisa S Chow
- Division of Endocrinology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
48
|
Fujita S, Rasmussen BB, Cadenas JG, Grady JJ, Volpi E. Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am J Physiol Endocrinol Metab 2006; 291:E745-54. [PMID: 16705054 PMCID: PMC2804964 DOI: 10.1152/ajpendo.00271.2005] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin promotes muscle anabolism, but it is still unclear whether it stimulates muscle protein synthesis in humans. We hypothesized that insulin can increase muscle protein synthesis only if it increases muscle amino acid availability. We measured muscle protein and amino acid metabolism using stable-isotope methodologies in 19 young healthy subjects at baseline and during insulin infusion in one leg at low (LD, 0.05), intermediate (ID, 0.15), or high (HD, 0.30 mUxmin(-1)x100 ml(-1)) doses. Insulin was infused locally to induce muscle hyperinsulinemia within the physiological range while minimizing the systemic effects. Protein and amino acid kinetics across the leg were assessed using stable isotopes and muscle biopsies. The LD did not affect phenylalanine delivery to the muscle (-9 +/- 18% change over baseline), muscle protein synthesis (16 +/- 26%), breakdown, or net balance. The ID increased (P < 0.05) phenylalanine delivery (+63 +/- 38%), muscle protein synthesis (+157 +/- 54%), and net protein balance, with no change in breakdown. The HD did not change phenylalanine delivery (+12 +/- 11%) or muscle protein synthesis (+9 +/- 19%), and reduced muscle protein breakdown (-17 +/- 15%), thus improving net muscle protein balance but to a lesser degree than the ID. Changes in muscle protein synthesis were strongly associated with changes in muscle blood flow and phenylalanine delivery and availability. In conclusion, physiological hyperinsulinemia promotes muscle protein synthesis as long as it concomitantly increases muscle blood flow, amino acid delivery and availability.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
49
|
Orellana RA, O'Connor PMJ, Bush JA, Suryawan A, Thivierge MC, Nguyen HV, Fiorotto ML, Davis TA. Modulation of muscle protein synthesis by insulin is maintained during neonatal endotoxemia. Am J Physiol Endocrinol Metab 2006; 291:E159-66. [PMID: 16478773 DOI: 10.1152/ajpendo.00595.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sepsis promotes insulin resistance and reduces protein synthesis in skeletal muscle of adults. The effect of sepsis on insulin-stimulated muscle protein synthesis has not been determined in neonates, a highly anabolic population that is uniquely sensitive to insulin. Overnight fasted neonatal pigs were infused for 8 h with endotoxin [lipopolysaccharide (LPS), 0 and 10 mug.kg(-1).h(-1)]. Glucose and amino acids were maintained at fasting levels, insulin was clamped at either fasting or fed (2 or 10 muU/ml) levels, and fractional protein synthesis rates were determined at the end of the infusion. LPS infusion induced a septic-like state, as indicated by a sustained elevation in body temperature, heart rate, and cortisol. At fasting insulin levels, LPS reduced fractional protein synthesis rates in gastrocnemius muscle (-26%) but had no effect on the masseter and heart. By contrast, LPS stimulated liver protein synthesis (+28%). Increasing insulin to fed levels accelerated protein synthesis rates in gastrocnemius (controls by +38%, LPS by +60%), masseter (controls by +50%, LPS by +43%), heart (controls by +34%, LPS by +40%), and diaphragm (controls by +54%, LPS by +29%), and the response to insulin was similar in LPS and controls. Insulin did not alter protein synthesis in liver, kidney, or jejunum in either group. These findings suggest that acute endotoxemia lowers basal fasting muscle protein synthesis in neonates but does not alter the response of protein synthesis to insulin.
Collapse
Affiliation(s)
- Renan A Orellana
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates St., Suite 9064, Houston, TX 77030-2600, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Guillet C, Boirie Y. Insulin resistance: a contributing factor to age-related muscle mass loss? DIABETES & METABOLISM 2006; 31 Spec No 2:5S20-5S26. [PMID: 16415762 DOI: 10.1016/s1262-3636(05)73648-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Structural and functional modifications occur in skeletal muscle during aging. These defects lead to impairment in muscle strength, contractile capacity and performance. Among factors implicated in this age-related loss of muscle mass, a dysregulation of protein synthesis and breakdown has frequently been reported. Insulin plays a major role in regulating muscle protein metabolism, since its action contributes to increase net gain of muscle protein in animal and humans. More recently, specific actions of insulin on various muscle proteins, notably mitochondrial proteins, have been demonstrated, suggesting that insulin is also a major regulating factor of mitochondrial oxidative phosphorylation in human skeletal muscle. Insulin resistance develops with aging, classically involving changes in glucose tolerance. However, the effect of insulin on protein metabolism is less well documented, and insulin resistance could be involved in age-related muscle protein loss, progressively leading to sarcopenia. Therefore in a more general concept, insulin resistance found in many clinical settings, could be considered as a contributor to muscle wasting.
Collapse
Affiliation(s)
- C Guillet
- Unité du Métabolisme Protéino-Energétique, UMR Université d'Auvergne/INRA, Centre de Recherche en Nutrition Humaine, CHRU de Clermont-Ferrand, France
| | | |
Collapse
|