1
|
de Souza Goncalves L, Chu T, Master R, Chhetri PD, Gao Q, Cil O. Mg2+ supplementation treats secretory diarrhea in mice by activating calcium-sensing receptor in intestinal epithelial cells. J Clin Invest 2024; 134:e171249. [PMID: 37962961 PMCID: PMC10786700 DOI: 10.1172/jci171249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Cholera is a global health problem with no targeted therapies. The Ca2+-sensing receptor (CaSR) is a regulator of intestinal ion transport and a therapeutic target for diarrhea, and Ca2+ is considered its main agonist. We found that increasing extracellular Ca2+ had a minimal effect on forskolin-induced Cl- secretion in human intestinal epithelial T84 cells. However, extracellular Mg2+, an often-neglected CaSR agonist, suppressed forskolin-induced Cl- secretion in T84 cells by 65% at physiological levels seen in stool (10 mM). The effect of Mg2+ occurred via the CaSR/Gq signaling that led to cAMP hydrolysis. Mg2+ (10 mM) also suppressed Cl- secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide by 50%. In mouse intestinal closed loops, luminal Mg2+ treatment (20 mM) inhibited cholera toxin-induced fluid accumulation by 40%. In a mouse intestinal perfusion model of cholera, addition of 10 mM Mg2+ to the perfusate reversed net fluid transport from secretion to absorption. These results suggest that Mg2+ is the key CaSR activator in mouse and human intestinal epithelia at physiological levels in stool. Since stool Mg2+ concentrations in patients with cholera are essentially zero, oral Mg2+ supplementation, alone or in an oral rehydration solution, could be a potential therapy for cholera and other cyclic nucleotide-mediated secretory diarrheas.
Collapse
|
2
|
Oak AA, Chu T, Yottasan P, Chhetri PD, Zhu J, Du Bois J, Cil O. Lubiprostone is non-selective activator of cAMP-gated ion channels and Clc-2 has a minor role in its prosecretory effect in intestinal epithelial cells. Mol Pharmacol 2022; 102:MOLPHARM-AR-2022-000542. [PMID: 35680165 PMCID: PMC9341254 DOI: 10.1124/molpharm.122.000542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Loss of prosecretory Cl- channel CFTR activity is considered as the key cause of gastrointestinal disorders in cystic fibrosis including constipation and meconium ileus. Clc-2 is proposed as an alternative Cl- channel in intestinal epithelia that can compensate for CFTR loss-of-function. Lubiprostone is an FDA-approved drug with Clc-2 activation as its presumed mechanism of action. However, relative contribution of Clc-2 in intestinal Cl- secretion and the mechanism of action of lubiprostone remain controversial due to lack of selective Clc-2 inhibitors. Using recently identified selective Clc-2 inhibitor AK-42, we characterized the roles of Clc-2 in Cl- secretion in human intestinal epithelial T84 cells. Clc-2 inhibitor AK-42 had minimal (15%) inhibitory effect on secretory short-circuit current (Isc) induced by cAMP agonists, where subsequently applied CFTR inhibitor (CFTRinh-172) caused 2-3 fold greater inhibition. Similarly, AK-42 inhibited lubiprostone-induced secretory Isc by 20%, whereas CFTRinh-172 caused 2-3 fold greater inhibition. In addition to increasing CFTR and Clc-2-mediated apical Cl- conductance, lubiprostone increased basolateral membrane K+ conductance, which was completely reversed by cAMP-activated K+ channel inhibitor BaCl2 All components of lubiprostone-induced secretion (Clc-2, CFTR and K+ channels) were inhibited by ~65% with the extracellular Ca2+-sensing receptor (CaSR) activator cinacalcet that stimulates cAMP hydrolysis. Lastly, EP4 prostaglandin receptor inhibitor GW627368 pretreatment inhibited lubiprostone-induced secretion by 40% without any effect on forskolin response. Our findings suggest that Clc-2 has minor role in cAMP-induced intestinal Cl- secretion; and lubiprostone is not a selective Clc-2 activator, but general activator of cAMP-gated ion channels in human intestinal epithelial cells. Significance Statement Cl- channel Clc-2 activation is the proposed mechanism of action of the FDA-approved constipation drug lubiprostone. Using first-in-class selective Clc-2 inhibitor AK-42, we showed that Clc-2 has minor contribution in intestinal Cl- secretion induced by lubiprostone and cAMP agonists. We also found that lubiprostone is a general activator of cAMP-gated ion channels in human intestinal epithelial cells (via EP4 receptors). Our findings clarify the roles of Clc-2 in intestinal Cl- secretion and elucidate the mechanism of action of approved-drug lubiprostone.
Collapse
Affiliation(s)
| | | | | | | | - Jie Zhu
- Stanford University, United States
| | | | | |
Collapse
|
3
|
Oak AA, Chhetri PD, Rivera AA, Verkman AS, Cil O. Repurposing calcium-sensing receptor agonist cinacalcet for treatment of CFTR-mediated secretory diarrheas. JCI Insight 2021; 6:146823. [PMID: 33400691 PMCID: PMC7934922 DOI: 10.1172/jci.insight.146823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Diarrhea is a major cause of global mortality, and outbreaks of secretory diarrhea such as cholera remain an important problem in the developing world. Current treatment of secretory diarrhea primarily involves supportive measures, such as fluid replacement. The calcium-sensing receptor (CaSR) regulates multiple biological activities in response to changes in extracellular Ca2+. The FDA-approved drug cinacalcet is an allosteric activator of CaSR used for treatment of hyperparathyroidism. Here, we found by short-circuit current measurements in human colonic T84 cells that CaSR activation by cinacalcet reduced forskolin-induced Cl– secretion by greater than 80%. Cinacalcet also reduced Cl– secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide (VIP). The cinacalcet effect primarily involved indirect inhibition of cystic fibrosis transmembrane conductance regulator–mediated (CFTR-mediated) Cl– secretion following activation of CaSR and downstream phospholipase C and phosphodiesterases. In mice, cinacalcet reduced fluid accumulation by more than 60% in intestinal closed loop models of cholera and traveler’s diarrhea. The cinacalcet effect involved both inhibition of CFTR-mediated secretion and stimulation of sodium-hydrogen exchanger 3–mediated absorption. These findings support the therapeutic utility of the safe and commonly used drug cinacalcet in CFTR-dependent secretory diarrheas, including cholera, traveler’s diarrhea, and VIPoma.
Collapse
Affiliation(s)
| | | | - Amber A Rivera
- Departments of Medicine and Physiology, University of California, San Francisco, California, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, California, USA
| | | |
Collapse
|
4
|
Li C, Wu D, Li J, Ji X, Qi L, Sun Q, Wang A, Xie C, Gong J, Chen W. Multicomponent crystals of clotrimazole: a combined theoretical and experimental study. CrystEngComm 2021. [DOI: 10.1039/d1ce00934f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Compared with clotrimazole, some multicomponent crystals showed an improvement in solubility and dissolution rate.
Collapse
Affiliation(s)
- Chang Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Di Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiulong Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xu Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Luguang Qi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qin Sun
- Shenyang Sinochem Agrochemicals R&D Co., Ltd, Shenyang, Liaoning, 110021 P. R. China
| | - Aiyu Wang
- Shandong Lukang Pharmaceutical Co., Ltd, Jining, Shandong, 272104, P. R. China
| | - Chuang Xie
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Junbo Gong
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Wei Chen
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Inhibition of CFTR-mediated intestinal chloride secretion by a fungus-derived arthropsolide A: Mechanism of action and anti-diarrheal efficacy. Eur J Pharmacol 2020; 885:173393. [DOI: 10.1016/j.ejphar.2020.173393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022]
|
6
|
Jakakul C, Kanjanasirirat P, Muanprasat C. Development of a Cell-Based Assay for Identifying K Ca3.1 Inhibitors Using Intestinal Epithelial Cell Lines. SLAS DISCOVERY 2020; 26:439-449. [PMID: 32830616 DOI: 10.1177/2472555220950661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of the KCa3.1 potassium channel has therapeutic potential in a variety of human diseases, including inflammation-associated disorders and cancers. However, KCa3.1 inhibitors with high therapeutic promise are currently not available. This study aimed to establish a screening assay for identifying inhibitors of KCa3.1 in native cells and from library compounds derived from natural products in Thailand. The screening platform was successfully developed based on a thallium flux assay in intestinal epithelial (T84) cells with a Z' factor of 0.52. The screening of 1352 compounds and functional validation using electrophysiological analyses identified 8 compounds as novel KCa3.1 inhibitors with IC50 values ranging from 0.14 to 6.57 µM. These results indicate that the assay developed is of excellent quality for high-throughput screening and capable of identifying KCa3.1 inhibitors. This assay may be useful in identifying novel KCa3.1 inhibitors that may have therapeutic potential for inflammation-associated disorders and cancers.
Collapse
Affiliation(s)
- Chanon Jakakul
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| |
Collapse
|
7
|
van der Horst J, Greenwood IA, Jepps TA. Cyclic AMP-Dependent Regulation of Kv7 Voltage-Gated Potassium Channels. Front Physiol 2020; 11:727. [PMID: 32695022 PMCID: PMC7338754 DOI: 10.3389/fphys.2020.00727] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/04/2020] [Indexed: 01/08/2023] Open
Abstract
Voltage-gated Kv7 potassium channels, encoded by KCNQ genes, have major physiological impacts cardiac myocytes, neurons, epithelial cells, and smooth muscle cells. Cyclic adenosine monophosphate (cAMP), a well-known intracellular secondary messenger, can activate numerous downstream effector proteins, generating downstream signaling pathways that regulate many functions in cells. A role for cAMP in ion channel regulation has been established, and recent findings show that cAMP signaling plays a role in Kv7 channel regulation. Although cAMP signaling is recognized to regulate Kv7 channels, the precise molecular mechanism behind the cAMP-dependent regulation of Kv7 channels is complex. This review will summarize recent research findings that support the mechanisms of cAMP-dependent regulation of Kv7 channels.
Collapse
Affiliation(s)
- Jennifer van der Horst
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Hynes D, Harvey BJ. Dexamethasone reduces airway epithelial Cl - secretion by rapid non-genomic inhibition of KCNQ1, KCNN4 and KATP K + channels. Steroids 2019; 151:108459. [PMID: 31330137 DOI: 10.1016/j.steroids.2019.108459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 11/26/2022]
Abstract
Basolateral membrane K+ channels play a key role in basal and agonist stimulated Cl- transport across airway epithelial cells by generating a favourable electrical driving force for Cl- efflux. The K+ channel sub-types and molecular mechanisms of regulation by hormones and secretagoues are still poorly understood. Here we have identified the type of K+ channels involved in cAMP and Ca2+ stimulated Cl- secretion and uncovered a novel anti-secretory effect of dexamethasone mediated by inhibition of basolateral membrane K+ channels in a human airway cell model of 16HBE14o- cells commonly used for ion transport studies. Dexamethasone produced a rapid inhibition of transepithelial chloride ion secretion under steady state conditions and after stimulation with cAMP agonist (forskolin) or a Ca2+ mobilizing agonist (ATP). Our results show three different types of K+ channels are targeted by dexamethasone to reduce airway secretion, namely Ca2+-activated secretion via KCNN4 (KCa3.1) channels and cAMP-activated secretion via KCNQ1 (Kv7.1) and KATP (Kir6.1,6.2) channels. The down-regulation of KCNN4 and KCNQ1 channel activities by dexamethasone involves rapid non-genomic activation of PKCα and PKA signalling pathways, respectively. Dexamethasone signal transduction for PKC and PKA activation was demonstrated to occur through a rapid non-genomic pathway that did not implicate the classical nuclear receptors for glucocorticoids or mineralocorticoids but occurred via a novel signalling cascade involving sequentially a Gi-protein coupled receptor, PKC, adenylyl cyclase Type IV, cAMP, PKA and ERK1/2 activation. The rapid, non-genomic, effects of dexamethasone on airway epithelial ion transport and cell signalling introduces a new paradigm for glucocorticoid actions in lung epithelia which may serve to augment the anti-inflammatory activity of the steroid and enhance its therapeutic potential in treating airway hypersecretion in asthma and COPD.
Collapse
Affiliation(s)
- Darina Hynes
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; Centro di Estudios Cientificos CECs, Valdivia, Chile.
| |
Collapse
|
9
|
Valero MS, Ramón-Gimenez M, Lozano-Gerona J, Delgado-Wicke P, Calmarza P, Oliván-Viguera A, López V, Garcia-Otín ÁL, Valero S, Pueyo E, Hamilton KL, Miura H, Köhler R. KCa3.1 Transgene Induction in Murine Intestinal Epithelium Causes Duodenal Chyme Accumulation and Impairs Duodenal Contractility. Int J Mol Sci 2019; 20:ijms20051193. [PMID: 30857243 PMCID: PMC6429421 DOI: 10.3390/ijms20051193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
The epithelial intermediate-conductance calcium/calmodulin-regulated KCa3.1 channel is considered to be a regulator of intestine function by controlling chloride secretion and water/salt balance. Yet, little is known about the functional importance of KCa3.1 in the intestinal epithelium in vivo. Our objective was to determine the impact of epithelial-specific inducible overexpression of a KCa3.1 transgene (KCa3.1+) and of inducible suppression (KCa3.1−) on intestinal homeostasis and function in mice. KCa3.1 overexpression in the duodenal epithelium of doxycycline (DOX)-treated KCa3.1+ mice was 40-fold above the control levels. Overexpression caused an inflated duodenum and doubling of the chyme content. Histology showed conserved architecture of crypts, villi, and smooth muscle. Unaltered proliferating cell nuclear antigen (PCNA) immune reactivity and reduced amounts of terminal deoxynucleotide transferase mediated X-dUTP nick end labeling (TUNEL)-positive apoptotic cells in villi indicated lower epithelial turnover. Myography showed a reduction in the frequency of spontaneous propulsive muscle contractions with no change in amplitude. The amount of stool in the colon was increased and the frequency of colonic contractions was reduced in KCa3.1+ animals. Senicapoc treatment prevented the phenotype. Suppression of KCa3.1 in DOX-treated KCa3.1− mice caused no overt intestinal phenotype. In conclusion, inducible KCa3.1 overexpression alters intestinal functions by increasing the chyme content and reducing spontaneous contractions and epithelial apoptosis. Induction of epithelial KCa3.1 can play a mechanistic role in the process of adaptation of the intestine.
Collapse
Affiliation(s)
- Marta Sofía Valero
- Department of Pharmacology and Physiology, Universidad Zaragoza, 22002 Huesca, Spain.
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain.
| | | | - Javier Lozano-Gerona
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain.
- BESICoS group, Aragón Institute of Engineering Research, IIS-Aragón, University of Zaragoza, Zaragoza, Spain.
| | - Pablo Delgado-Wicke
- Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain .
| | - Pilar Calmarza
- Clinical Biochemistry Service, Miguel Servet University, 50009 Zaragoza, Spain.
| | - Aida Oliván-Viguera
- BESICoS group, Aragón Institute of Engineering Research, IIS-Aragón, University of Zaragoza, Zaragoza, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain.
| | - Víctor López
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain.
- Universidad San Jorge, 50830, Villanueva de Gállego, Spain.
| | - Ángel-Luis Garcia-Otín
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain.
- BESICoS group, Aragón Institute of Engineering Research, IIS-Aragón, University of Zaragoza, Zaragoza, Spain.
| | | | - Esther Pueyo
- BESICoS group, Aragón Institute of Engineering Research, IIS-Aragón, University of Zaragoza, Zaragoza, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain.
| | - Kirk L Hamilton
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Hiroto Miura
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | - Ralf Köhler
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain.
- BESICoS group, Aragón Institute of Engineering Research, IIS-Aragón, University of Zaragoza, Zaragoza, Spain.
- Aragón Agency for Research and Development (ARAID), 50009 Zaragoza, Spain.
| |
Collapse
|
10
|
Duan T, Cil O, Thiagarajah JR, Verkman AS. Intestinal epithelial potassium channels and CFTR chloride channels activated in ErbB tyrosine kinase inhibitor diarrhea. JCI Insight 2019; 4:126444. [PMID: 30668547 PMCID: PMC6478423 DOI: 10.1172/jci.insight.126444] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Diarrhea is a major side effect of ErbB receptor tyrosine kinase inhibitors (TKIs) in cancer chemotherapy. Here, we show that the primary mechanism of ErbB TKI diarrhea is activation of basolateral membrane potassium (K+) channels and apical membrane chloride (Cl-) channels in intestinal epithelia and demonstrate the efficacy of channel blockers in a rat model of TKI diarrhea. Short-circuit current in colonic epithelial cells showed that the TKIs gefitinib, lapatinib, and afatinib do not affect basal secretion but amplify carbachol-stimulated secretion by 2- to 3-fold. Mechanistic studies with the second-generation TKI afatinib showed that the amplifying effect on Cl- secretion was Ca2+ and cAMP independent, was blocked by CF transmembrane conductance regulator (CFTR) and K+ channel inhibitors, and involved EGFR binding and ERK signaling. Afatinib-amplified activation of basolateral K+ and apical Cl- channels was demonstrated by selective membrane permeabilization, ion substitution, and channel inhibitors. Rats that were administered afatinib orally at 60 mg/kg/day developed diarrhea with increased stool water from approximately 60% to greater than 80%, which was reduced by up to 75% by the K+ channel inhibitors clotrimazole or senicapoc or the CFTR inhibitor (R)-BPO-27. These results indicate a mechanism for TKI diarrhea involving K+ and Cl- channel activation and support the therapeutic efficacy of channel inhibitors.
Collapse
Affiliation(s)
- Tianying Duan
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA.,Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Onur Cil
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA.,Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
| |
Collapse
|
11
|
Machado DE, Perini JA, de Mendonça EM, Branco JR, Rodrigues-Baptista KC, Alessandra-Perini J, Espíndola-Netto JM, Dos Santos TA, Coelho WS, Nasciutti LE, Sola-Penna M, Zancan P. Clotrimazole is effective for the regression of endometriotic implants in a Wistar rat experimental model of endometriosis. Mol Cell Endocrinol 2018; 476:17-26. [PMID: 29689297 DOI: 10.1016/j.mce.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 01/31/2023]
Abstract
The present work aimed to evaluate molecular, angiogenic and inflammatory changes induced by clotrimazole (CTZ) on endometriosis lesions. For this, thirty female Wistar rats with surgically implanted autologous endometrium were treated with CTZ or vehicle (200 mg/kg) via esophageal gavage for 15 consecutive days. CTZ treatment significantly decreased the growth and the size of the implants, and histological examination indicated regression and atrophy, with no toxicity to the animals. The levels of the angiogenic markers VEGF and VEGFR-2 were significantly decreased in CTZ group. The treatment also promotes a reduction on PGE2 and TNF-α levels. All these effects involve the amelioration of ERK1/2, Akt, AMPK and PERK signaling upon CTZ treatment. In conclusion, CTZ promoted an overall amelioration of endometriosis in a rat model due to the anti-angiogenic properties of the drug. Therefore, our results support the proposal of a clinical trial using CTZ for the treatment of endometriosis.
Collapse
Affiliation(s)
- Daniel Escorsim Machado
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jamila Alessandra Perini
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Osvaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Erika Menezes de Mendonça
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Osvaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Jessica Ristow Branco
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karina Cristina Rodrigues-Baptista
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Osvaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Jessica Alessandra-Perini
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jair Machado Espíndola-Netto
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago Alves Dos Santos
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil
| | - Wagner Santos Coelho
- Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Lucas ML. Enterocyte K + ion permeability and fluid secretion: missing the correct channel or missing the point? J Physiol 2018; 596:2463-2464. [PMID: 29604065 DOI: 10.1113/jp276102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Michael L Lucas
- School of Life Sciences, University of Glasgow, Room 311, West Medical Building, Glasgow, G12 9PW, UK
| |
Collapse
|
13
|
Das S, Jayaratne R, Barrett KE. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea. Cell Mol Gastroenterol Hepatol 2018; 6:33-45. [PMID: 29928670 PMCID: PMC6007821 DOI: 10.1016/j.jcmgh.2018.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Every year, enteric infections and associated diarrhea kill millions of people. The situation is compounded by increases in the number of enteric pathogens that are acquiring resistance to antibiotics, as well as (hitherto) a relative paucity of information on host molecular targets that may contribute to diarrhea. Many forms of diarrheal disease depend on the dysregulation of intestinal ion transporters, and an associated imbalance between secretory and absorptive functions of the intestinal epithelium. A number of major transporters have been implicated in the pathogenesis of diarrheal diseases and thus an understanding of their expression, localization, and regulation after infection with various bacteria, viruses, and protozoa likely will prove critical in designing new therapies. This article surveys our understanding of transporters that are modulated by specific pathogens and the mechanism(s) involved, thereby illuminating targets that might be exploited for new therapeutic approaches.
Collapse
Key Words
- ATP, adenosine triphosphate
- ATPase, adenosine triphosphatase
- CDI, Clostridium difficile infection
- CFTR, cystic fibrosis transmembrane conductance regulator
- CLCA1, chloride channel accessory 1
- CT, cholera toxin
- CXCR2, C-X-C motif chemokine receptor 2
- DRA, down-regulated in adenoma
- Diarrhea
- ENaC, epithelial sodium channel
- EPEC, enteropathogenic Escherichia coli
- ETEC, enterotoxigenic Escherichia coli
- Enteric Pathogen
- Epithelium
- EspG, Escherichia coli secreted protein G
- GPR39, G-protein coupled receptor 39
- Ion Transport
- KCC, potassium-chloride cotransporter
- LPA, lysophosphatidic acid
- LT, heat-labile toxin
- NHE, sodium/hydrogen exchanger
- NHERF2, sodium/hydrogen exchanger regulatory factor 2
- NKCC, sodium-potassium-2 chloride cotransporter
- ORT, oral rehydration therapy
- PKC, protein kinase C
- SGLT1, sodium-glucose cotransporter 1
- SLC, solute carrier
- ST, heat-stabile toxin
- TNF, tumor necrosis factor
- Tcd, Clostridium difficile toxin
- ZnR, zinc sensing receptor
- cAMP, adenosine 3′,5′-cyclic monophosphate
Collapse
Affiliation(s)
- Soumita Das
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California
| | - Rashini Jayaratne
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Kim E. Barrett
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California,Correspondence Address correspondence to: Kim E. Barrett, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0063. fax: (858) 246-1788.
| |
Collapse
|
14
|
Vanhove AS, Hang S, Vijayakumar V, Wong ACN, Asara JM, Watnick PI. Vibrio cholerae ensures function of host proteins required for virulence through consumption of luminal methionine sulfoxide. PLoS Pathog 2017; 13:e1006428. [PMID: 28586382 PMCID: PMC5473594 DOI: 10.1371/journal.ppat.1006428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/16/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
Vibrio cholerae is a diarrheal pathogen that induces accumulation of lipid droplets in enterocytes, leading to lethal infection of the model host Drosophila melanogaster. Through untargeted lipidomics, we provide evidence that this process is the product of a host phospholipid degradation cascade that induces lipid droplet coalescence in enterocytes. This infection-induced cascade is inhibited by mutation of the V. cholerae glycine cleavage system due to intestinal accumulation of methionine sulfoxide (MetO), and both dietary supplementation with MetO and enterocyte knock-down of host methionine sulfoxide reductase A (MsrA) yield increased resistance to infection. MsrA converts both free and protein-associated MetO to methionine. These findings support a model in which dietary MetO competitively inhibits repair of host proteins by MsrA. Bacterial virulence strategies depend on functional host proteins. We propose a novel virulence paradigm in which an intestinal pathogen ensures the repair of host proteins essential for pathogenesis through consumption of dietary MetO.
Collapse
Affiliation(s)
- Audrey S. Vanhove
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston MA, United States of America
| | - Saiyu Hang
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston MA, United States of America
| | - Vidhya Vijayakumar
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston MA, United States of America
| | - Adam CN Wong
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston MA, United States of America
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Boston MA, United States of America
- Department of Medicine, Harvard Medical School, Boston MA, United States of America
| | - Paula I. Watnick
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston MA, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA United States of America
- * E-mail:
| |
Collapse
|
15
|
Nguyen HM, Singh V, Pressly B, Jenkins DP, Wulff H, Yarov-Yarovoy V. Structural Insights into the Atomistic Mechanisms of Action of Small Molecule Inhibitors Targeting the KCa3.1 Channel Pore. Mol Pharmacol 2017; 91:392-402. [PMID: 28126850 PMCID: PMC5363711 DOI: 10.1124/mol.116.108068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022] Open
Abstract
The intermediate-conductance Ca2+-activated K+ channel (KCa3.1) constitutes an attractive pharmacological target for immunosuppression, fibroproliferative disorders, atherosclerosis, and stroke. However, there currently is no available crystal structure of this medically relevant channel that could be used for structure-assisted drug design. Using the Rosetta molecular modeling suite we generated a molecular model of the KCa3.1 pore and tested the model by first confirming previously mapped binding sites and visualizing the mechanism of TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole), senicapoc (2,2-bis-(4-fluorophenyl)-2-phenylacetamide), and NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one) inhibition at the atomistic level. All three compounds block ion conduction directly by fully or partially occupying the site that would normally be occupied by K+ before it enters the selectivity filter. We then challenged the model to predict the receptor sites and mechanisms of action of the dihydropyridine nifedipine and an isosteric 4-phenyl-pyran. Rosetta predicted receptor sites for nifedipine in the fenestration region and for the 4-phenyl-pyran in the pore lumen, which could both be confirmed by site-directed mutagenesis and electrophysiology. While nifedipine is thus not a pore blocker and might be stabilizing the channel in a nonconducting conformation or interfere with gating, the 4-phenyl-pyran was found to be a classical pore blocker that directly inhibits ion conduction similar to the triarylmethanes TRAM-34 and senicapoc. The Rosetta KCa3.1 pore model explains the mechanism of action of several KCa3.1 blockers at the molecular level and could be used for structure-assisted drug design.
Collapse
Affiliation(s)
- Hai M Nguyen
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| | - Vikrant Singh
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| | - Brandon Pressly
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| | - David Paul Jenkins
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| | - Heike Wulff
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| | - Vladimir Yarov-Yarovoy
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| |
Collapse
|
16
|
Jiang Y, Yu B, Yang H, Ma T. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea. Front Pharmacol 2016; 7:270. [PMID: 27601995 PMCID: PMC4993765 DOI: 10.3389/fphar.2016.00270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/10/2016] [Indexed: 01/26/2023] Open
Abstract
Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl(-) current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl(-) currents in mouse colonic epithelia but did not affect cytoplasmic Ca(2+) concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K(+) channel activity without affecting Na(+)/K(+)-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K(+) channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.
Collapse
Affiliation(s)
- Yu Jiang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University Dalian, China
| |
Collapse
|
17
|
Pathogen-induced secretory diarrhea and its prevention. Eur J Clin Microbiol Infect Dis 2016; 35:1721-1739. [DOI: 10.1007/s10096-016-2726-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
|
18
|
Zundler S, Caioni M, Müller M, Strauch U, Kunst C, Woelfel G. K+ Channel Inhibition Differentially Regulates Migration of Intestinal Epithelial Cells in Inflamed vs. Non-Inflamed Conditions in a PI3K/Akt-Mediated Manner. PLoS One 2016; 11:e0147736. [PMID: 26824610 PMCID: PMC4732808 DOI: 10.1371/journal.pone.0147736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Potassium channels have been shown to determine wound healing in different tissues, but their role in intestinal epithelial restitution--the rapid closure of superficial wounds by intestinal epithelial cells (IEC)--remains unclear. METHODS In this study, the regulation of IEC migration by potassium channel modulation was explored with and without additional epidermal growth factor (EGF) under baseline and interferon-γ (IFN-γ)-pretreated conditions in scratch assays and Boyden chamber assays using the intestinal epithelial cell lines IEC-18 and HT-29. To identify possibly involved subcellular pathways, Western Blot (WB)-analysis of ERK and Akt phosphorylation was conducted and PI3K and ERK inhibitors were used in scratch assays. Furthermore, mRNA-levels of the potassium channel KCNN4 were determined in IEC from patients suffering from inflammatory bowel diseases (IBD). RESULTS Inhibition of Ca(2+)-dependent potassium channels significantly increased intestinal epithelial restitution, which could not be further promoted by additional EGF. In contrast, inhibition of KCNN4 after pretreatment with IFN-γ led to decreased or unaffected migration. This effect was abolished by EGF. Changes in Akt, but not in ERK phosphorylation strongly correlated with these findings and PI3K but not ERK inhibition abrogated the effect of KCNN4 inhibition. Levels of KCNN4 mRNA were higher in samples from IBD patients compared with controls. CONCLUSIONS Taken together, we demonstrate that inhibition of KCNN4 differentially regulates IEC migration in IFN-γ-pretreated vs. non pretreated conditions. Moreover, our data propose that the PI3K signaling cascade is responsible for this differential regulation. Therefore, we present a cellular model that contributes new aspects to epithelial barrier dysfunction in chronic intestinal inflammation, resulting in propagation of inflammation and symptoms like ulcers or diarrhea.
Collapse
Affiliation(s)
- Sebastian Zundler
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| | - Massimiliano Caioni
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
| | - Ulrike Strauch
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
| | - Claudia Kunst
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
| | - Gisela Woelfel
- Department of Internal Medicine I, Regensburg University Medical Center, Regensburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Electrophysiological Studies into the Safety of the Anti-diarrheal Drug Clotrimazole during Oral Rehydration Therapy. PLoS Negl Trop Dis 2015; 9:e0004098. [PMID: 26405813 PMCID: PMC4583490 DOI: 10.1371/journal.pntd.0004098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/30/2015] [Indexed: 11/19/2022] Open
Abstract
Background and Aims Morbidity and mortality from acute diarrheal disease remains high, particularly in developing countries and in cases of natural or man-made disasters. Previous work has shown that the small molecule clotrimazole inhibits intestinal Cl- secretion by blocking both cyclic nucleotide- and Ca2+-gated K+ channels, implicating its use in the treatment of diarrhea of diverse etiologies. Clotrimazole, however, might also inhibit transporters that mediate the inwardly directed electrochemical potential for Na+-dependent solute absorption, which would undermine its clinical application. Here we test this possibility by examining the effects of clotrimazole on Na+-coupled glucose uptake. Materials and Methods Short-circuit currents (Isc) following administration of glucose and secretagogues were studied in clotrimazole-treated jejunal sections of mouse intestine mounted in Ussing chambers. Results Treatment of small intestinal tissue with clotrimazole inhibited the Cl- secretory currents that resulted from challenge with the cAMP-agonist vasoactive intestinal peptide (VIP) or Ca2+-agonist carbachol in a dose-dependent fashion. A dose of 30 μM was effective in significantly reducing the Isc response to VIP and carbachol by 50% and 72%, respectively. At this dose, uptake of glucose was only marginally affected (decreased by 14%, p = 0.37). There was no measurable effect on SGLT1-mediated sugar transport, as uptake of SGLT1-restricted 3-O-methyl glucose was equivalent between clotrimazole-treated and untreated tissue (98% vs. 100%, p = 0.90). Conclusion Treatment of intestinal tissue with clotrimazole significantly reduced secretory responses caused by both cAMP- and Ca2+-dependent agonists as expected, but did not affect Na+-coupled glucose absorption. Clotrimazole could thus be used in conjunction with oral rehydration solution as a low-cost, auxiliary treatment of acute secretory diarrheas. In acute infectious diarrhea, the active secretion of Cl- ions contributes to the secondary loss of Na+ and water from the intestine. Apical Cl- secretion from intestinal epithelial cells is dependent upon cyclic nucleotide- and Ca2+-dependent intracellular signals and requires the concomitant transport of K+ through basolateral K+ channels for maintenance of an electroneutral state. Hence, when efflux of K+ in enterocytes is blocked, Cl- secretion necessarily shuts down. The FDA-approved antifungal drug clotrimazole has been demonstrated to be a potent blocker of basolateral cAMP- and Ca2+-gated K+ channels in enterocytes, and therefore likely has therapeutic efficacy for secretory diarrheas. One important concern that could compromise its clinical applicability as a novel anti-diarrheal drug, however, is that clotrimazole might affect intestinal Na+-coupled glucose absorption, which constitutes the physiological basis of oral rehydration therapies and is thus critical for the efficacy of the current golden standard treatment for acute infectious diarrheal diseases. In this work, we demonstrate that clotrimazole effectively blocks Cl- secretion in mouse intestine after stimulation with secretory stimuli, without affecting the capacity to take up Na+ and glucose. These results pave the way towards further clinical development of clotrimazole as a new pharmacologic strategy for acute diarrheal disease.
Collapse
|
20
|
Abstract
Diarrhoeal disease remains a major health burden worldwide. Secretory diarrhoeas are caused by certain bacterial and viral infections, inflammatory processes, drugs and genetic disorders. Fluid secretion across the intestinal epithelium in secretory diarrhoeas involves multiple ion and solute transporters, as well as activation of cyclic nucleotide and Ca(2+) signalling pathways. In many secretory diarrhoeas, activation of Cl(-) channels in the apical membrane of enterocytes, including the cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels, increases fluid secretion, while inhibition of Na(+) transport reduces fluid absorption. Current treatment of diarrhoea includes replacement of fluid and electrolyte losses using oral rehydration solutions, and drugs targeting intestinal motility or fluid secretion. Therapeutics in the development pipeline target intestinal ion channels and transporters, regulatory proteins and cell surface receptors. This Review describes pathogenic mechanisms of secretory diarrhoea, current and emerging therapeutics, and the challenges in developing antidiarrhoeal therapeutics.
Collapse
Affiliation(s)
- Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mark Donowitz
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Ross 925, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, 1246 Health Sciences East Tower, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Chen YJ, Wallace BK, Yuen N, Jenkins DP, Wulff H, O'Donnell ME. Blood-brain barrier KCa3.1 channels: evidence for a role in brain Na uptake and edema in ischemic stroke. Stroke 2014; 46:237-44. [PMID: 25477223 DOI: 10.1161/strokeaha.114.007445] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE KCa3.1, a calcium-activated potassium channel, regulates ion and fluid secretion in the lung and gastrointestinal tract. It is also expressed on vascular endothelium where it participates in blood pressure regulation. However, the expression and physiological role of KCa3.1 in blood-brain barrier (BBB) endothelium has not been investigated. BBB endothelial cells transport Na(+) and Cl(-) from the blood into the brain transcellularly through the co-operation of multiple cotransporters, exchangers, pumps, and channels. In the early stages of cerebral ischemia, when the BBB is intact, edema formation occurs by processes involving increased BBB transcellular Na(+) transport. This study evaluated whether KCa3.1 is expressed on and participates in BBB ion transport. METHODS The expression of KCa3.1 on cultured cerebral microvascular endothelial cells, isolated microvessels, and brain sections was evaluated by Western blot and immunohistochemistry. Activity of KCa3.1 on cerebral microvascular endothelial cells was examined by K(+) flux assays and patch-clamp. Magnetic resonance spectroscopy and MRI were used to measure brain Na(+) uptake and edema formation in rats with focal ischemic stroke after TRAM-34 treatment. RESULTS KCa3.1 current and channel protein were identified on bovine cerebral microvascular endothelial cells and freshly isolated rat microvessels. In situ KCa3.1 expression on BBB endothelium was confirmed in rat and human brain sections. TRAM-34 treatment significantly reduced Na(+) uptake, and cytotoxic edema in the ischemic brain. CONCLUSIONS BBB endothelial cells exhibit KCa3.1 protein and activity and pharmacological blockade of KCa3.1 seems to provide an effective therapeutic approach for reducing cerebral edema formation in the first 3 hours of ischemic stroke.
Collapse
Affiliation(s)
- Yi-Je Chen
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis.
| | - Breanna K Wallace
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - Natalie Yuen
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - David P Jenkins
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - Heike Wulff
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - Martha E O'Donnell
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| |
Collapse
|
22
|
Xie R, Dong X, Wong C, Vallon V, Tang B, Sun J, Yang S, Dong H. Molecular mechanisms of calcium-sensing receptor-mediated calcium signaling in the modulation of epithelial ion transport and bicarbonate secretion. J Biol Chem 2014; 289:34642-53. [PMID: 25331955 DOI: 10.1074/jbc.m114.592774] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epithelial ion transport is mainly under the control of intracellular cAMP and Ca(2+) signaling. Although the molecular mechanisms of cAMP-induced epithelial ion secretion are well defined, those induced by Ca(2+) signaling remain poorly understood. Because calcium-sensing receptor (CaSR) activation results in an increase in cytosolic Ca(2+) ([Ca(2+)]cyt) but a decrease in cAMP levels, it is a suitable receptor for elucidating the mechanisms of [Ca(2+)]cyt-mediated epithelial ion transport and duodenal bicarbonate secretion (DBS). CaSR proteins have been detected in mouse duodenal mucosae and human intestinal epithelial cells. Spermine and Gd(3+), two CaSR activators, markedly stimulated DBS without altering duodenal short circuit currents in wild-type mice but did not affect DBS and duodenal short circuit currents in cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice. Clotrimazole, a selective blocker of intermediate conductance Ca(2+)-activated K(+) channels but not chromanol 293B, a selective blocker of cAMP-activated K(+) channels (KCNQ1), significantly inhibited CaSR activator-induced DBS, which was similar in wild-type and KCNQ1 knockout mice. HCO3 (-) fluxes across epithelial cells were activated by a CFTR activator, but blocked by a CFTR inhibitor. CaSR activators induced HCO3 (-) fluxes, which were inhibited by a receptor-operated channel (ROC) blocker. Moreover, CaSR activators dose-dependently raised cellular [Ca(2+)]cyt, which was abolished in Ca(2+)-free solutions and inhibited markedly by selective CaSR antagonist calhex 231, and ROC blocker in both animal and human intestinal epithelial cells. Taken together, CaSR activation triggers Ca(2+)-dependent DBS, likely through the ROC, intermediate conductance Ca(2+)-activated K(+) channels, and CFTR channels. This study not only reveals that [Ca(2+)]cyt signaling is critical to modulate DBS but also provides novel insights into the molecular mechanisms of CaSR-mediated Ca(2+)-induced DBS.
Collapse
Affiliation(s)
- Rui Xie
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China, the Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi 563003, China, and
| | - Xiao Dong
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Chase Wong
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Volker Vallon
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093, the Veterans Affairs San Diego Healthcare System, La Jolla, California 92161
| | - Bo Tang
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jun Sun
- the Departments of Biochemistry, Internal Medicine (GI), and Microbiology/Immunology, Rush University, Chicago, Illinois 60612
| | - Shiming Yang
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China,
| | - Hui Dong
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China, the Department of Medicine, University of California, San Diego, La Jolla, California 92093,
| |
Collapse
|
23
|
Ramamoorthi R, Graef KM, Krattiger A, Dent JC. WIPO Re:Search: Catalyzing Collaborations to Accelerate Product Development for Diseases of Poverty. Chem Rev 2014; 114:11272-9. [DOI: 10.1021/cr5000656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roopa Ramamoorthi
- BIO Ventures for Global Health, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Katy M. Graef
- BIO Ventures for Global Health, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Anatole Krattiger
- World Intellectual Property Organization, 34, Chemin des Colombettes, CH-1211 Geneva 20, Switzerland
| | - Jennifer C. Dent
- BIO Ventures for Global Health, 401 Terry Avenue North, Seattle, Washington 98109, United States
| |
Collapse
|
24
|
Pongkorpsakol P, Pathomthongtaweechai N, Srimanote P, Soodvilai S, Chatsudthipong V, Muanprasat C. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera. PLoS Negl Trop Dis 2014; 8:e3119. [PMID: 25188334 PMCID: PMC4154654 DOI: 10.1371/journal.pntd.0003119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/15/2014] [Indexed: 01/01/2023] Open
Abstract
Cyclic AMP-activated intestinal Cl− secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl− secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl− secretion in human intestinal epithelial (T84) cells with IC50 of ∼20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl− current showed that diclofenac reversibly inhibited CFTR Cl− channel activity (IC50∼10 µM) via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na+-K+ ATPases and Na+-K+-Cl− cotransporters, but inhibited cAMP-activated basolateral K+ channels with IC50 of ∼3 µM. In addition, diclofenac suppressed Ca2+-activated Cl− channels, inwardly rectifying Cl− channels, and Ca2+-activated basolateral K+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment) had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT)-induced Cl− secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg) reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca2+-activated Cl− secretion by inhibiting both apical Cl− channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal hypersecretion of Cl−. Diarrhea in cholera results from stimulation of cAMP-mediated intestinal Cl− secretion by cholera toxin (CT). This study demonstrates that diclofenac, a widely used non-steroidal anti-inflammatory drug (NSAID), inhibited cAMP-activated Cl− secretion in human intestinal epithelial (T84) cells by inhibiting both apical Cl− channels (i.e. CFTR) and cAMP-activated basolateral K+ channels (i.e. KCNQ1/KCNE3). The mechanism by which CFTR was inhibited did not involve changes in intracellular cAMP levels and activation of negative regulators of CFTR activity including AMP-activated protein kinase (AMPK) and protein phosphatase. In addition, diclofenac suppressed two other types of apical Cl− channels, namely, Ca2+-activated Cl− channels and inwardly rectifying Cl− channels, and Ca2+-activated basolateral K+ channels (i.e. KCa3.1) without affecting Na+-K+ ATPase and Na+-K+-Cl− cotransporter activities. Of particular importance, diclofenac at 30 mg/kg, which is the human equivalent dose for treatment of pain and inflammation (∼2 mg/kg in human), exhibited anti-secretory efficacy in mouse closed-loop models of cholera induced by either CT or V. cholerae. This study provides a rational basis for further development of diclofenac and related compounds as anti-diarrheal therapy for cholera and other types of diarrheas resulting from Cl− transport-driven intestinal fluid secretion.
Collapse
Affiliation(s)
- Pawin Pongkorpsakol
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Potjanee Srimanote
- Graduate Study, Faculty of Allied Health Sciences, Thammasat University, Pathumtanee, Thailand
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Varanuj Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chatchai Muanprasat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
25
|
Wang J, Jia L, Kuang Z, Wu T, Hong Y, Chen X, Leung WK, Xia J, Cheng B. The in vitro and in vivo antitumor effects of clotrimazole on oral squamous cell carcinoma. PLoS One 2014; 9:e98885. [PMID: 24892421 PMCID: PMC4043897 DOI: 10.1371/journal.pone.0098885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 05/08/2014] [Indexed: 01/09/2023] Open
Abstract
Background Clotrimazole is an antifungal imidazole derivative showing anti- neoplastic effect in some tumors, but its anticancer potential is still unclear in oral squamous cell carcinoma (OSCC). The aim of this study was to evaluate the antitumor effect of clotrimazole, and to investigate the possible mechanism of clotrimazole-mediated antitumor activity in OSCC. Methodology In vitro experiments, the cell viability and clonogenic ability of three human OSCC cell lines CAL27, SCC25 and UM1 were detected after clotrimazole treatment by CCK8 assay and colony formation assay. Cell cycle progression and apoptosis were assessed by flow cytometry, and the involvement of several mediators of apoptosis was examined by western blot analysis. Then, the in vivo antitumor effect of clotrimazole was investigated in CAL27 xenograft model. Immunohistochemistry and western blot analysis were performed to determine the presence of apoptotic cells and the expression of Bcl-2 and Bax in tumors from mice treated with or without clotrimazole. Results Clotrimazole inhibited proliferation in all three OSCC cell lines in a dose-and time-dependent manner, and significantly reduced the colony formation of OSCC cells in vitro. Clotrimazole caused cell cycle arrest at the G0/G1 phase. In addition, clotrimazole induced apoptosis in OSCC cells, and significantly down-regulated the anti-apoptotic protein Bcl-2 and up-regulated the pro-apoptotic protein Bax. Notably, clotrimazole treatment inhibited OSCC tumor growth and cell proliferation in CAL27 xenograft model. Clotrimazole also markedly reduced Bcl-2 expression and increased the protein level of Bax in tumor tissues of xenograft model. Conclusion Our findings demonstrated a potent anticancer effect of clotrimazole by inducing cell cycle arrest and cellular apoptosis in OSCC.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lihua Jia
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zirong Kuang
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tong Wu
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun Hong
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobing Chen
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - W. Keung Leung
- Oral Diagnosis and Polyclinics, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Juan Xia
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (JX); (BC)
| | - Bin Cheng
- Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (JX); (BC)
| |
Collapse
|
26
|
Jenkins DP, Yu W, Brown BM, Løjkner LD, Wulff H. Development of a QPatch automated electrophysiology assay for identifying KCa3.1 inhibitors and activators. Assay Drug Dev Technol 2013; 11:551-60. [PMID: 24351043 PMCID: PMC3870577 DOI: 10.1089/adt.2013.543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The intermediate-conductance Ca(2+)-activated K(+) channel KCa3.1 (also known as KCNN4, IK1, or the Gárdos channel) plays an important role in the activation of T and B cells, mast cells, macrophages, and microglia by regulating membrane potential, cellular volume, and calcium signaling. KCa3.1 is further involved in the proliferation of dedifferentiated vascular smooth muscle cells and fibroblast and endothelium-derived hyperpolarization responses in the vascular endothelium. Accordingly, KCa3.1 inhibitors are therapeutically interesting as immunosuppressants and for the treatment of a wide range of fibroproliferative disorders, whereas KCa3.1 activators constitute a potential new class of endothelial function preserving antihypertensives. Here, we report the development of QPatch assays for both KCa3.1 inhibitors and activators. During assay optimization, the Ca(2+) sensitivity of KCa3.1 was studied using varying intracellular Ca(2+) concentrations. A free Ca(2+) concentration of 1 μM was chosen to optimally test inhibitors. To identify activators, which generally act as positive gating modulators, a lower Ca(2+) concentration (∼200 nM) was used. The QPatch results were benchmarked against manual patch-clamp electrophysiology by determining the potency of several commonly used KCa3.1 inhibitors (TRAM-34, NS6180, ChTX) and activators (EBIO, riluzole, SKA-31). Collectively, our results demonstrate that the QPatch provides a comparable but much faster approach to study compound interactions with KCa3.1 channels in a robust and reliable assay.
Collapse
Affiliation(s)
| | - Weifeng Yu
- Sophion Bioscience, Inc., North Brunswick, New Jersey
| | - Brandon M. Brown
- Department of Pharmacology, University of California, Davis, California
| | | | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California
| |
Collapse
|
27
|
An alternative explanation for the occurrence of short circuit current increases in the small intestine following challenge by bacterial enterotoxins. Med Hypotheses 2013; 81:601-6. [DOI: 10.1016/j.mehy.2013.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/05/2013] [Indexed: 11/17/2022]
|
28
|
Strøbæk D, Brown DT, Jenkins DP, Chen YJ, Coleman N, Ando Y, Chiu P, Jørgensen S, Demnitz J, Wulff H, Christophersen P. NS6180, a new K(Ca) 3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease. Br J Pharmacol 2013; 168:432-44. [PMID: 22891655 DOI: 10.1111/j.1476-5381.2012.02143.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/21/2012] [Accepted: 08/07/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The K(Ca) 3.1 channel is a potential target for therapy of immune disease. We identified a compound from a new chemical class of K(Ca) 3.1 inhibitors and assessed in vitro and in vivo inhibition of immune responses. EXPERIMENTAL APPROACH We characterized the benzothiazinone NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one) with respect to potency and molecular site of action on K(Ca) 3.1 channels, selectivity towards other targets, effects on T-cell activation as well as pharmacokinetics and inflammation control in colitis induced by 2,4-dinitrobenzene sulfonic acid, a rat model of inflammatory bowel disease (IBD). KEY RESULTS NS6180 inhibited cloned human K(Ca) 3.1 channels (IC(50) = 9 nM) via T250 and V275, the same amino acid residues conferring sensitivity to triarylmethanes such as like TRAM-34. NS6180 inhibited endogenously expressed K(Ca) 3.1 channels in human, mouse and rat erythrocytes, with similar potencies (15-20 nM). NS6180 suppressed rat and mouse splenocyte proliferation at submicrolar concentrations and potently inhibited IL-2 and IFN-γ production, while exerting smaller effects on IL-4 and TNF-α and no effect on IL-17 production. Antibody staining showed K(Ca) 3.1 channels in healthy colon and strong up-regulation in association with infiltrating immune cells after induction of colitis. Despite poor plasma exposure, NS6180 (3 and 10 mg·kg(-1) b.i.d.) dampened colon inflammation and improved body weight gain as effectively as the standard IBD drug sulfasalazine (300 mg·kg(-1) q.d.). CONCLUSIONS AND IMPLICATIONS NS6180 represents a novel class of K(Ca) 3.1 channel inhibitors which inhibited experimental colitis, suggesting K(Ca) 3.1 channels as targets for pharmacological control of intestinal inflammation.
Collapse
|
29
|
Sheikh IA, Koley H, Chakrabarti MK, Hoque KM. The Epac1 signaling pathway regulates Cl- secretion via modulation of apical KCNN4c channels in diarrhea. J Biol Chem 2013; 288:20404-15. [PMID: 23720748 DOI: 10.1074/jbc.m113.467860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apical membrane of intestinal epithelia expresses intermediate conductance K(+) channel (KCNN4), which provides the driving force for Cl(-) secretion. However, its role in diarrhea and regulation by Epac1 is unknown. Previously we have established that Epac1 upon binding of cAMP activates a PKA-independent mechanism of Cl(-) secretion via stimulation of Rap2-phospholipase Cε-[Ca(2+)]i signaling. Here we report that Epac1 regulates surface expression of KCNN4c channel through its downstream Rap1A-RhoA-Rho-associated kinase (ROCK) signaling pathway for sustained Cl(-) secretion. Depletion of Epac1 protein and apical addition of TRAM-34, a specific KCNN4 inhibitor, significantly abolished cAMP-stimulated Cl(-) secretion and apical K(+) conductance (IK(ap)) in T84WT cells. The current-voltage relationship of basolaterally permeabilized monolayers treated with Epac1 agonist 8-(4-chlorophenylthio)-2'-O- methyladenosine 3',5'-cyclic monophosphate showed the presence of an inwardly rectifying and TRAM-34-sensitive K(+) channel in T84WT cells that was absent in Epac1KDT84 cells. Reconstructed confocal images in Epac1KDT84 cells revealed redistribution of KCNN4c proteins into subapical intracellular compartment, and a biotinylation assay showed ∼83% lower surface expression of KCNN4c proteins compared with T84WT cells. Further investigation revealed that an Epac1 agonist activates Rap1 to facilitate IK(ap). Both RhoA inhibitor (GGTI298) and ROCK inhibitor (H1152) significantly reduced cAMP agonist-stimulated IK(ap), whereas the latter additionally reduced colocalization of KCNN4c with the apical membrane marker wheat germ agglutinin in T84WT cells. In vivo mouse ileal loop experiments showed reduced fluid accumulation by TRAM-34, GGTI298, or H1152 when injected together with cholera toxin into the loop. We conclude that Rap1A-dependent signaling of Epac1 involving RhoA-ROCK is an important regulator of intestinal fluid transport via modulation of apical KCNN4c channels, a finding with potential therapeutic value in diarrheal diseases.
Collapse
Affiliation(s)
- Irshad Ali Sheikh
- Division of Molecular Pathophysiology, National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | | | | | | |
Collapse
|
30
|
Medani M, Bzik VA, Rogers A, Collins D, Kennelly R, Winter DC, Brayden DJ, Baird AW. Zinc sulphate attenuates chloride secretion in Human colonic mucosae in vitro. Eur J Pharmacol 2012; 696:166-71. [DOI: 10.1016/j.ejphar.2012.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
|
31
|
Sandle GI, Rajendran VM. Cyclic AMP-induced K+ secretion occurs independently of Cl- secretion in rat distal colon. Am J Physiol Cell Physiol 2012; 303:C328-33. [PMID: 22648950 DOI: 10.1152/ajpcell.00099.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cAMP induces both active Cl(-) and active K(+) secretion in mammalian colon. It is generally assumed that a mechanism for K(+) exit is essential to maintain cells in the hyperpolarized state, thus favoring a sustained Cl(-) secretion. Both Kcnn4c and Kcnma1 channels are located in colon, and this study addressed the questions of whether Kcnn4c and/or Kcnma1 channels mediate cAMP-induced K(+) secretion and whether cAMP-induced K(+) secretion provides the driving force for Cl(-) secretion. Forskolin (FSK)-enhanced short-circuit current (indicator of net electrogenic ion transport) and K(+) fluxes were measured simultaneously in colonic mucosa under voltage-clamp conditions. Mucosal Na(+) orthovanadate (P-type ATPase inhibitor) inhibited active K(+) absorption normally present in rat distal colon. In the presence of mucosal Na(+) orthovanadate, serosal FSK induced both K(+) and Cl(-) secretion. FSK-induced K(+) secretion was 1) not inhibited by either mucosal or serosal 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34; a Kcnn4 channel blocker), 2) inhibited (92%) by mucosal iberiotoxin (Kcnma1 channel blocker), and 3) not affected by mucosal cystic fibrosis transmembrane conductance regulator inhibitor (CFTR(inh)-172). By contrast, FSK-induced Cl(-) secretion was 1) completely inhibited by serosal TRAM-34, 2) not inhibited by either mucosal or serosal iberiotoxin, and 3) completely inhibited by mucosal CFTR(inh)-172. These results indicate that cAMP-induced colonic K(+) secretion is mediated via Kcnma1 channels located in the apical membrane and most likely contributes to stool K(+) losses in secretory diarrhea. On the other hand, cAMP-induced colonic Cl(-) secretion requires the activity of Kcnn4b channels located in the basolateral membrane and is not dependent on the concurrent activation of apical Kcnma1 channels.
Collapse
Affiliation(s)
- Geoffrey I Sandle
- Leeds Institute of Molecular Medicine, Saint James's University Hospital, Leeds, United Kingdom
| | | |
Collapse
|
32
|
Wulff H, Castle NA. Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 2012; 3:385-96. [PMID: 22111618 DOI: 10.1586/ecp.10.11] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Ca(2+)-activated K(+) channel K(Ca)3.1 regulates membrane potential and calcium signaling in erythrocytes, activated T and B cells, macrophages, microglia, vascular endothelium, epithelia, and proliferating vascular smooth muscle cells and fibroblasts. K(Ca)3.1 has therefore been suggested as a potential therapeutic target for diseases such as sickle cell anemia, asthma, coronary restenosis after angioplasty, atherosclerosis, kidney fibrosis and autoimmunity, where activation and excessive proliferation of one or more of these cell types is involved in the pathology. This article will review the physiology and pharmacology of K(Ca)3.1 and critically examine the available preclinical and clinical data validating K(Ca)3.1 as a therapeutic target.
Collapse
|
33
|
Basalingappa KM, Rajendran VM, Wonderlin WF. Characteristics of Kcnn4 channels in the apical membranes of an intestinal epithelial cell line. Am J Physiol Gastrointest Liver Physiol 2011; 301:G905-11. [PMID: 21868633 PMCID: PMC3220323 DOI: 10.1152/ajpgi.00558.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intermediate-conductance K(+) (Kcnn4) channels in the apical and basolateral membranes of epithelial cells play important roles in agonist-induced fluid secretion in intestine and colon. Basolateral Kcnn4 channels have been well characterized in situ using patch-clamp methods, but the investigation of Kcnn4 channels in apical membranes in situ has been hampered by a layer of mucus that prevents seal formation. In the present study, we used patch-clamp methods to characterize Kcnn4 channels in the apical membrane of IEC-18 cells, a cell line derived from rat small intestine. A monolayer of IEC-18 cells grown on a permeable support is devoid of mucus, and tight junctions enable selective access to the apical membrane. In inside-out patches, Ca(2+)-dependent K(+) channels observed with iberiotoxin (a Kcnma1/large-conductance, Ca(2+)-activated K(+) channel blocker) and apamin (a Kcnn1-3/small-conductance, Ca(2+)-activated K(+) channel blocker) present in the pipette solution exhibited a single-channel conductance of 31 pS with inward rectification. The currents were reversibly blocked by TRAM-34 (a Kcnn4 blocker) with an IC(50) of 8.7 ± 2.0 μM. The channels were not observed when charybdotoxin, a peptide inhibitor of Kcnn4 channels, was added to the pipette solution. TRAM-34 was less potent in inhibiting Kcnn4 channels in patches from apical membranes than in patches from basolateral membranes, which was consistent with a preferential expression of Kcnn4c and Kcnn4b isoforms in apical and basolateral membranes, respectively. The expression of both isoforms in IEC-18 cells was confirmed by RT-PCR and Western blot analyses. This is the first characterization of Kcnn4 channels in the apical membrane of intestinal epithelial cells.
Collapse
Affiliation(s)
| | - Vazhaikkurichi M. Rajendran
- Departments of 1Biochemistry and ,2Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | | |
Collapse
|
34
|
Alzamora R, O'Mahony F, Harvey BJ. Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon. Steroids 2011; 76:867-76. [PMID: 21600231 DOI: 10.1016/j.steroids.2011.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/18/2011] [Accepted: 04/26/2011] [Indexed: 11/26/2022]
Abstract
Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17β-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17β-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17β-estradiol on cholera toxin and heat-stable enterotoxin induced Cl(-) secretion in rat colonic mucosal sheets was studied by current-voltage clamping. Selective permeabilization of apical or basolateral membranes with amphotericin B or nystatin was used to isolate basolateral K(+) channel and apical Cl(-) channel activity, respectively. 17β-Estradiol dose-dependently inhibited secretory responses to both toxins with IC(50) values of approximately 1nM. This effect was female-gender specific, with no inhibition observed in male tissues. 17β-Estradiol responses were insensitive to the pure anti-estrogen ICI 182,720. 17β-Estradiol exerted its effects downstream of enterotoxin-induced production of second messengers (cAMP and cGMP) but was dependent on PKCδ activation. In nystatin-permeabilized tissues, apical Cl(-) currents were unaffected by 17β-estradiol treatment while basolateral K(+) current was profoundly inhibited by the hormone. This current was sensitive to the specific KCNQ1 channel inhibitors chromanol 293B and HMR-1556. In conclusion, 17β-estradiol inhibits enterotoxin-induced Cl(-) secretion via a PKCδ-dependent mechanism involving inhibition of basolateral KCNQ1 channels. These data elucidate mechanisms of 17β-estradiol inhibition of Cl(-) secretion induced by enterotoxins in intestinal epithelia, which may be relevant for the treatment of diarrheal diseases.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, P.O. Box 9063, Dublin 9, Ireland
| | | | | |
Collapse
|
35
|
Alzamora R, O'Mahony F, Ko WH, Yip TWN, Carter D, Irnaten M, Harvey BJ. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels. Front Physiol 2011; 2:33. [PMID: 21747769 PMCID: PMC3129074 DOI: 10.3389/fphys.2011.00033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/18/2011] [Indexed: 11/13/2022] Open
Abstract
Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCα-dependent pathway.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Department of Molecular Medicine, Education and Research Centre, Royal College of Surgeons in Ireland, Beaumont Hospital Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
36
|
Lack of Restoration in Vivo by K-Channel Modulators of Jejunal Fluid Absorption after Heat Stable Escherichia coli Enterotoxin (STa) Challenge. J Trop Med 2011; 2011:853686. [PMID: 21760812 PMCID: PMC3134271 DOI: 10.1155/2011/853686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 02/25/2011] [Accepted: 04/07/2011] [Indexed: 11/24/2022] Open
Abstract
Enhanced potassium ion permeability at the enterocyte basolateral membrane is assumed to facilitate sustained chloride ion and fluid secretion into the intestinal lumen during episodes of secretory diarrhoeal disease. To examine this concept in vivo, two potassium ion channel blockers and a channel opener were coperfused with E. coli heat stable STa enterotoxin to determine whether such compounds improved or worsened the inhibited fluid absorption. In the STa (80 ng/mL) challenged jejunal loop, the fluid absorption rate of 28.6 ± 5.8 (14) μL/cm/hr was significantly below (P < .001) the normal rate of 98.8 ± 6.2 (17) μL/cm/hr. Intraluminal (300 uM) glibenclamide added to STa perfused loops failed to improve the inhibited fluid absorption rate, which was 7.4 ± 3.2 (6) μL/cm/hr on coperfusion with STa. Similarly, on coperfusion with 30 uM clotrimazole, the fluid absorption rate with STa present remained inhibited at 11.4 ± 7.0 (4) μL/cm/hr. On coperfusion with intraluminal 1 uM cromakalim, STa reduced fluid absorption significantly (P < .02) to 24.7 ± 8.0 (10) μL/cm/hr, no different from STa challenge in the absence of cromakalim. Infusion i.v. with these agents also failed to restore fluid absorption after STa challenge. These observations do not support the proposed potassium ion permeability event as a necessary corollary of enterotoxin-mediated secretion. This makes it unlikely that modulators of such permeability prevent enterocyte secretion in diarrhoeal disease.
Collapse
|
37
|
Abstract
The Ca²+ activated potassium channel of intermediate conductance KCa3.1 is now emerging as a therapeutic target for a large variety of health disorders. KCa3.1 is a tetrameric membrane protein with each subunit formed of six transmembrane helices (S1-S6). Ca²+ sensitivity is conferred by the Ca²+ binding protein calmodulin (CaM), with the CaM C-lobe constitutively bound to an intracellular domain of the channel C-terminus, located proximal to the membrane and connected to the S6 transmembrane segment. Patch clamp single channel recordings have demonstrated that binding of Ca²+ to CaM allows the channel to transit dose dependently from a nonconducting to an ion-conducting configuration. Here we present a general strategy to generate KCa3.1 mutant channels that remain in an ion-conducting state in the absence of Ca²+. Our strategy is first based on the production of a 3D model of the channel pore region, followed by SCAM experiments to confirm that residues along each of the channel S6 transmembrane helix form the channel pore lumen as predicted. In a simple model, constitutive activity can be obtained by removing the steric hindrances inside the channel pore susceptible to prevent ion flow when the channel is in the closed configuration. Using charged MTS reagents and Ag+ ions as probes acting on Cys residues engineered in the pore lumen, we found that the S6 transmembrane helices of KCa3.1 cannot form a pore constriction tight enough to prevent ion flow for channels in the closed state. These observations ruled out experimental strategies where constitutive activity would be generated by producing a "leaky" closed channel. A more successful approach consisted however in perturbing the channel open/closed state equilibrium free energy. In particular, we found that substituting the hydrophobic residue V282 in S6 by hydrophilic amino acids could lock the channel in an open-like state, resulting in channels that were ion conducting in the absence of Ca²+.
Collapse
|
38
|
Nanda Kumar NS, Singh SK, Rajendran VM. Mucosal potassium efflux mediated via Kcnn4 channels provides the driving force for electrogenic anion secretion in colon. Am J Physiol Gastrointest Liver Physiol 2010; 299:G707-14. [PMID: 20616305 PMCID: PMC2950693 DOI: 10.1152/ajpgi.00101.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intermediate conductance K(+) (Kcnn4) channels are present in both mucosal and serosal membranes of colon. However, only serosal Kcnn4 channels have been shown to be essential for agonist-induced (cAMP and Ca(2+)) anion secretion. The present study sought to determine whether mucosal Kcnn4 channels also play a role in colonic anion secretion. Mucosal-to-serosal and serosal-to-mucosal unidirectional (86)Rb (K(+) surrogate) fluxes as well as short-circuit current (I(sc); a measure of anion secretion) were measured under voltage-clamp conditions in distal colon from rats fed either a standard or K(+)-free diet. 5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazole-2-one (DC-EBIO) was used to activate Kcnn4 channels. Mucosal DC-EBIO both induced K(+) secretion and enhanced anion secretion in normal rat distal colon. The DC-EBIO-induced K(+) secretion was completely blocked by nonspecific (Ba(2+)) and Kcnn4-specific (TRAM-34) inhibitors, but was not blocked by the large-conductance K(+) (iberiotoxin), small-conductance K(+) (apamin), or KCNQ1 (chromanol 293B) specific blockers. Ba(2+) and TRAM-34 also inhibited DC-EBIO-enhanced anion secretion. The DC-EBIO-enhanced anion secretion was completely inhibited by the nonspecific anion channel blocker 5-nitro-2-(3-phenylpropyl-amino)benzoic acid, whereas it was only partially inhibited by CFTR [CFTR(inh)-172, glibenclamide]- and CaCC (niflumic acid)-specific Cl(-) channel blockers. In contrast, mucosal DC-EBIO-enhanced K(+) and anion secretion was not present in distal colon of dietary K-depleted rats, indicating absence of mucosal Kcnn4 channels. These observations indicate that mucosal Kcnn4 channels are capable of driving agonist-induced anion secretion mediated via CFTR and CaCC and likely contribute to stool K(+) losses that accompany diarrheal illnesses.
Collapse
Affiliation(s)
| | - Satish K. Singh
- 2Departments of Medicine, Boston University School of Medicine and Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Vazhaikkurichi M. Rajendran
- 1Department of Biochemistry and Molecular Biology, and ,3Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia; and
| |
Collapse
|
39
|
Abstract
Short-chain fatty acids (SCFA) are the major anion in stool and are synthesized from nonabsorbed carbohydrate by the colonic microbiota. Nonabsorbed carbohydrate are not absorbed in the colon and induce an osmotically mediated diarrhea; in contrast, SCFA are absorbed by colonic epithelial cells and stimulate Na-dependent fluid absorption via a cyclic AMP-independent process involving apical membrane Na-H, SCFA-HCO(3), and Cl-SCFA exchanges. SCFA production represents an adaptive process to conserve calories, fluid, and electrolytes. Inhibition of SCFA synthesis by antibiotics and administration of PEG, a substance that is not metabolized by colonic microbiota, both result in diarrhea. In contrast, increased production of SCFA as a result of providing starch that is relatively resistant to amylase digestion [so-called resistant starch (RS)] to oral rehydration solution (RS-ORS) improves the efficacy of ORS and represents an important approach to improve the effectiveness of ORS in the treatment of acute diarrhea in children under five years of age.
Collapse
Affiliation(s)
- Henry J Binder
- Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
40
|
Eby JC, Ciesla WP, Hamman W, Donato GM, Pickles RJ, Hewlett EL, Lencer WI. Selective translocation of the Bordetella pertussis adenylate cyclase toxin across the basolateral membranes of polarized epithelial cells. J Biol Chem 2010; 285:10662-70. [PMID: 20139088 DOI: 10.1074/jbc.m109.089219] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The catalytic domain of Bordetella pertussis adenylate cyclase toxin (ACT) translocates directly across the plasma membrane of mammalian cells to induce toxicity by the production of cAMP. Here, we use electrophysiology to examine the translocation of toxin into polarized epithelial cells that model the mucosal surfaces of the host. We find that both polarized T84 cell monolayers and human airway epithelial cultures respond to nanomolar concentrations of ACT when applied to basolateral membranes, with little or no response to toxin applied apically. The induction of toxicity is rapid and fully explained by increases in intracellular cAMP, consistent with toxin translocation directly across the basolateral membrane. Intoxication of T84 cells occurs in the absence of CD11b/CD18 or evidence of another specific membrane receptor, and it is not dependent on post-translational acylation of the toxin or on host cell membrane potential, both previously reported to be required for toxin action. Thus, elements of the basolateral membrane render epithelial cells highly sensitive to the entry of ACT in the absence of a specific receptor for toxin binding.
Collapse
Affiliation(s)
- Joshua C Eby
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Preston P, Wartosch L, Günzel D, Fromm M, Kongsuphol P, Ousingsawat J, Kunzelmann K, Barhanin J, Warth R, Jentsch TJ. Disruption of the K+ channel beta-subunit KCNE3 reveals an important role in intestinal and tracheal Cl- transport. J Biol Chem 2010; 285:7165-75. [PMID: 20051516 DOI: 10.1074/jbc.m109.047829] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The KCNE3 beta-subunit constitutively opens outwardly rectifying KCNQ1 (Kv7.1) K(+) channels by abolishing their voltage-dependent gating. The resulting KCNQ1/KCNE3 heteromers display enhanced sensitivity to K(+) channel inhibitors like chromanol 293B. KCNE3 was also suggested to modify biophysical properties of several other K(+) channels, and a mutation in KCNE3 was proposed to underlie forms of human periodic paralysis. To investigate physiological roles of KCNE3, we now disrupted its gene in mice. kcne3(-/-) mice were viable and fertile and displayed neither periodic paralysis nor other obvious skeletal muscle abnormalities. KCNQ1/KCNE3 heteromers are present in basolateral membranes of intestinal and tracheal epithelial cells where they might facilitate transepithelial Cl(-) secretion through basolateral recycling of K(+) ions and by increasing the electrochemical driving force for apical Cl(-) exit. Indeed, cAMP-stimulated electrogenic Cl(-) secretion across tracheal and intestinal epithelia was drastically reduced in kcne3(-/-) mice. Because the abundance and subcellular localization of KCNQ1 was unchanged in kcne3(-/-) mice, the modification of biophysical properties of KCNQ1 by KCNE3 is essential for its role in intestinal and tracheal transport. Further, these results suggest KCNE3 as a potential modifier gene in cystic fibrosis.
Collapse
Affiliation(s)
- Patricia Preston
- Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lam RS, Nahirney D, Duszyk M. Cholesterol-dependent regulation of adenosine A2A receptor-mediated anion secretion in colon epithelial cells. Exp Cell Res 2009; 315:3028-35. [DOI: 10.1016/j.yexcr.2009.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 11/29/2022]
|
43
|
Saslowsky DE, Tanaka N, Reddy KP, Lencer WI. Ceramide activates JNK to inhibit a cAMP-gated K+ conductance and Cl- secretion in intestinal epithelia. FASEB J 2009; 23:259-70. [PMID: 18820034 PMCID: PMC2626619 DOI: 10.1096/fj.08-116467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 08/28/2008] [Indexed: 11/11/2022]
Abstract
Sphingomyelinases (SMases) hydrolyze membrane sphingomyelin to ceramide and are expressed by diverse host and microbial cell types populating mucosal surfaces. Exogenous bacterial SMase acts on the basolateral membrane of polarized human intestinal epithelial cells to repress the cAMP-induced Cl(-) secretory response, but how this occurs is unknown. We show here that SMase acts by down-regulating a cAMP-gated basolateral membrane K(+) conductance. Neither phosphocholine, ceramide-1-phosphate, nor sphingosine-1-phosphate recapitulates this effect, indicating that ceramide production is the decisive factor. Basolaterally applied SMase induced the phosphorylation of c-Jun NH(2)-terminal kinase (JNK), and inhibition of JNK rescued the effect of SMase on cAMP-dependant secretion. SMase secreted by normal human fibroblasts specifically recapitulated the effect on cAMP-induced Cl(-) secretion, indicating that cell types inhabiting the subepithelial space can provide such an activity to the basolateral membrane of intestinal enterocytes in trans. Thus, conversion of sphingomyelin to ceramide in basolateral membranes of intestinal cells rapidly activates JNK to inhibit a cAMP-gated K(+) conductance and thereby attenuates Cl(-) secretion. These results define a novel lipid-mediated pathway for regulation of salt and water homeostasis at mucosal surfaces.
Collapse
Affiliation(s)
- David E Saslowsky
- GI Cell Biology, Children's Hospital, and the Harvard Digestive Diseases Center, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
44
|
Nardi A, Demnitz J, Garcia ML, Polosa R. Potassium channels as drug targets for therapeutic intervention in respiratory diseases. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543770802553798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Kunzelmann K, Bachhuber T, Adam G, Voelcker T, Murle B, Mall M, Schreiber R. Role of CFTR and Other Ion Channels in Cystic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007. [DOI: 10.1007/0-387-23250-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Tian M, Dong MQ, Chiu SW, Lau CP, Li GR. Effects of the antifungal antibiotic clotrimazole on human cardiac repolarization potassium currents. Br J Pharmacol 2006; 147:289-97. [PMID: 16341233 PMCID: PMC1751304 DOI: 10.1038/sj.bjp.0706590] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The antifungal antibiotic clotrimazole (CLT) shows therapeutic effects on cancer, sickle cell disease, malaria, etc. by inhibiting membrane intermediate-conductance Ca2+ -activated K+ channels (IKCa). However, it is unclear whether this drug would affect human cardiac K+ currents. The present study was therefore designed to investigate the effects of CLT on transient outward K+ current (Ito1), and ultra-rapid delayed rectifier K+ current (IKur) in isolated human atrial myocytes, and cloned hERG channel current (IhERG) and recombinant human cardiac KCNQ1/KCNE1 channel current (IKs) expressed in HEK 293 cells. It was found that CLT inhibited Ito1 with an IC50 of 29.5 microM, accelerated Ito1 inactivation, and decreased recovery of Ito1 from inactivation. In addition, CLT inhibited human atrial I(Kur) in a concentration-dependent manner (IC50 = 7.6 microM). CLT substantially suppressed IhERG (IC50 = 3.6 microM), and negatively shifted the activation conductance of IhERG. Moreover, CLT inhibited IKs (IC50 = 15.1 microM), and positively shifted the activation conductance of the current. These results indicate that the antifungal antibiotic CLT substantially inhibits human cardiac repolarization K+ currents including Ito1, IKur, IhERG, and IKs. However, caution is recommended when correlating the observed in vitro effects on cardiac ion currents to the clinical relevance.
Collapse
Affiliation(s)
- Miao Tian
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Ming-Qing Dong
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Shui-Wha Chiu
- Cardiothoracic Unit, Grantham Hospital, Faculty of Medicine, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Chu-Pak Lau
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Gui-Rong Li
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Faculty of Medicine, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
- Author for correspondence:
| |
Collapse
|
47
|
Dong H, Smith A, Hovaida M, Chow JY. Role of Ca2+-activated K+ channels in duodenal mucosal ion transport and bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 2006; 291:G1120-8. [PMID: 16763288 DOI: 10.1152/ajpgi.00566.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Stimulation of muscarinic receptors in the duodenal mucosa raises cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)), thereby regulating duodenal epithelial ion transport. However, little is known about the downstream molecular targets that account for this Ca(2+)-mediated biological action. Ca(2+)-activated K(+) (K(Ca)) channels are candidates, but the expression and function of duodenal K(Ca) channels are poorly understood. Therefore, we determined whether K(Ca) channels are expressed in the duodenal mucosa and investigated their involvement in Ca(2+)-mediated duodenal epithelial ion transport. Two selective blockers of intermediate-conductance Ca(2+)-activated K(+) (IK(Ca)) channels, clotrimazole (30 muM) and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34; 10 muM), significantly inhibited carbachol (CCh)-induced duodenal short-circuit current (I(sc)) and duodenal mucosal bicarbonate secretion (DMBS) in mice but did not affect responses to forskolin and heat-stable enterotoxin of Escherichia coli. Tetraethylammonium, 4-aminopyridine, and BaCl(2) failed to inhibit CCh-induced I(sc) and DMBS. A-23187 (10 muM), a Ca(2+) ionophore, and 1-ethyl-2-benzimidazolinone (1-EBIO; 1 mM), a selective opener of K(Ca) channels, increased both I(sc) and DMBS. The effect of 1-EBIO was more pronounced with serosal than mucosal addition. Again, both clotrimazole and TRAM-34 significantly reduced A23187- or 1-EBIO-induced I(sc) and DMBS. Moreover, clotrimazole (20 mg/kg ip) significantly attenuated acid-stimulated DMBS of mice in vivo. Finally, the molecular identity of IK(Ca) channels was verified as KCNN4 (SK4) in freshly isolated murine duodenal mucosae by RT-PCR and Western blotting. Together, our results suggest that the IK(Ca) channel is one of the downstream molecular targets for [Ca(2+)](cyt) to mediate duodenal epithelial ion transport.
Collapse
Affiliation(s)
- Hui Dong
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, California, USA.
| | | | | | | |
Collapse
|
48
|
Fioretti B, Castigli E, Micheli MR, Bova R, Sciaccaluga M, Harper A, Franciolini F, Catacuzzeno L. Expression and modulation of the intermediate- conductance Ca2+-activated K+ channel in glioblastoma GL-15 cells. Cell Physiol Biochem 2006; 18:47-56. [PMID: 16914889 DOI: 10.1159/000095135] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report here the expression and properties of the intermediate-conductance Ca(2+)-activated K(+) (IK(Ca)) channel in the GL-15 human glioblastoma cell line. Macroscopic IK(Ca) currents on GL-15 cells displayed a mean amplitude of 7.2+/-0.8 pA/pF at 0 mV, at day 1 after plating. The current was inhibited by clotrimazole (CTL, IC(50)=257 nM), TRAM-34 (IC(50)=55 nM), and charybdotoxin (CTX, IC(50)=10.3 nM). RT-PCR analysis demonstrated the expression of mRNA encoding the IK(Ca) channel in GL-15 cells. Unitary currents recorded using the inside-out configuration had a conductance of 25 pS, a K(D) for Ca(2+) of 188 nM at -100 mV, and no voltage dependence. We tested whether the IKCa channel expression in GL-15 cells could be the result of an increased ERK activity. Inhibition of the ERK pathway with the MEK antagonist PD98059 (25 muM, for 5 days) virtually suppressed the IK(Ca) current in GL-15 cells. PD98059 treatment also increased the length of cellular processes and up-regulated the astrocytic differentiative marker GFAP. A significant reduction of the IKCa current amplitude was also observed with time in culture, with mean currents of 7.17+/-0.75 pA/pF at 1-2 days, and 3.11+/-1.35 pA/pF at 5-6 days after plating. This time-dependent downregulation of the IK(Ca) current was not accompanied by changes in the ERK activity, as assessed by immunoblot analysis. Semiquantitative RT-PCR analysis demonstrated a ~35% reduction of the IK(Ca) channel mRNA resulting from ERK inhibition and a approximately 50% reduction with time in culture.
Collapse
Affiliation(s)
- Bernard Fioretti
- Dipartimento di Biologia Cellulare e Ambientale, Universita' di Perugia, CEMIN, Centro di Eccellenza "Materiali Innovativi Nanostrutturati", Universita' di Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Thompson-Vest N, Shimizu Y, Hunne B, Furness JB. The distribution of intermediate-conductance, calcium-activated, potassium (IK) channels in epithelial cells. J Anat 2006; 208:219-29. [PMID: 16441566 PMCID: PMC2100188 DOI: 10.1111/j.1469-7580.2006.00515.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intermediate-conductance, calcium-activated, potassium (IK) channels were first identified by their roles in cell volume regulation, and were later shown to be involved in control of proliferation of lymphocytes and to provide a K+ current for epithelial secretory activity. Until now, there has been no systematic investigation of IK channel localization within different epithelia. IK channel immunoreactivity was present in most epithelia, where it occurred in surface membranes of epithelial cells. It was found in all stratified epithelia, including skin, cornea, oral mucosa, vaginal mucosa, urothelium and the oesophageal lining. It occurred in the ducts of fluid-secreting glands, the salivary glands, lacrimal glands and pancreas, and in the respiratory epithelium. A low level of expression was seen in serous acinar cells. It was also found in other epithelia with fluid-exchange properties, the choroid plexus epithelium, the ependyma, visceral pleura and peritoneum, bile ducts and intestinal lining epithelium. However, there was little or no expression in vascular endothelial cells, kidney tubules or collecting ducts, lung alveoli, or in sebaceous glands. It is concluded that the channel is present in surface epithelia (e.g. skin) where it has a cell-protective role against osmotic challenge, and in epithelia where there is anion secretion that is facilitated by a K+ current-dependent hyperpolarization. It was also in some epithelial cells where its roles are as yet unknown.
Collapse
Affiliation(s)
- Nichola Thompson-Vest
- Department of Anatomy & Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
50
|
Halm ST, Liao T, Halm DR. Distinct K+ conductive pathways are required for Cl- and K+ secretion across distal colonic epithelium. Am J Physiol Cell Physiol 2006; 291:C636-48. [PMID: 16641164 DOI: 10.1152/ajpcell.00557.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Secretion of Cl(-) and K(+) in the colonic epithelium operates through a cellular mechanism requiring K(+) channels in the basolateral and apical membranes. Transepithelial current [short-circuit current (I(sc))] and conductance (G(t)) were measured for isolated distal colonic mucosa during secretory activation by epinephrine (Epi) or PGE(2) and synergistically by PGE(2) and carbachol (PGE(2) + CCh). TRAM-34 at 0.5 microM, an inhibitor of K(Ca)3.1 (IK, Kcnn4) K(+) channels (H. Wulff, M. J. Miller, W. Hänsel, S. Grissmer, M. D. Cahalan, and K. G. Chandy. Proc Natl Acad Sci USA 97: 8151-8156, 2000), did not alter secretory I(sc) or G(t) in guinea pig or rat colon. The presence of K(Ca)3.1 in the mucosa was confirmed by immunoblot and immunofluorescence detection. At 100 microM, TRAM-34 inhibited I(sc) and G(t) activated by Epi ( approximately 4%), PGE(2) ( approximately 30%) and PGE(2) + CCh ( approximately 60%). The IC(50) of 4.0 microM implicated involvement of K(+) channels other than K(Ca)3.1. The secretory responses augmented by the K(+) channel opener 1-EBIO were inhibited only at a high concentration of TRAM-34, suggesting further that K(Ca)3.1 was not involved. Sensitivity of the synergistic response (PGE(2) + CCh) to a high concentration TRAM-34 supported a requirement for multiple K(+) conductive pathways in secretion. Clofilium (100 microM), a quaternary ammonium, inhibited Cl(-) secretory I(sc) and G(t) activated by PGE(2) ( approximately 20%) but not K(+) secretion activated by Epi. Thus Cl(-) secretion activated by physiological secretagogues occurred without apparent activity of K(Ca)3.1 channels but was dependent on other types of K(+) channels sensitive to high concentrations of TRAM-34 and/or clofilium.
Collapse
Affiliation(s)
- Susan Troutman Halm
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435, USA
| | | | | |
Collapse
|