1
|
Dhawan M, Thakur N, Sharma M, Rabaan AA. The comprehensive insights into the B-cells-mediated immune response against COVID-19 infection amid the ongoing evolution of SARS-CoV-2. Biomed Pharmacother 2025; 185:117936. [PMID: 40056829 DOI: 10.1016/j.biopha.2025.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/10/2025] Open
Abstract
The antibody-mediated immune response is crucial for the development of protective immunity against SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Understanding the interaction between SARS-CoV-2 and the immune system is critical because new variants emerge as a result of the virus's ongoing evolution. Understanding the function of B cells in the SARS-CoV-2 infection process is critical for developing effective and long-lasting vaccines against this virus. Triggered by the innate immune response, B cells transform into memory B cells (MBCs). It is fascinating to observe how MBCs provide enduring immune defence, not only eradicating the infection but also safeguarding against future reinfection. If there is a lack of B cell activation or if the B cells are not functioning properly, it can lead to a serious manifestation of the disease and make immunisation less effective. Individuals with disruptions in the B cells have shown increased production of cytokines and chemokines, resulting in a poor prognosis for the disease. Therefore, we have developed an updated review article to gain insight into the involvement of B cells in SARS-CoV-2 infection. The discussion has covered the generation, functioning, and dynamics of neutralising antibodies (nAbs). Furthermore, we have emphasised immunotherapeutics that rely on nAbs.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India; Trafford College, Altrincham, Altrincham, Manchester WA14 5PQ, UK.
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Ali A Rabaan
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| |
Collapse
|
2
|
Vaikath NN, Al-Nesf MA, Majbour N, Abdesselem HB, Gupta V, Bensmail I, Abdi IY, Elmagarmid KA, Shabani S, Sudhakaran IP, Ghanem SS, Al-Maadheed M, Mohamed-Ali V, Blackburn JM, Decock J, El-Agnaf OMA. In-house assays for detecting anti-SARS-CoV-2 antibodies in serum and urine: Correlation with COVID-19 severity from a cohort study in Qatar. J Infect Public Health 2025; 18:102744. [PMID: 40117875 DOI: 10.1016/j.jiph.2025.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Serological assays targeting antibodies against key viral proteins, including the Spike (S1), Receptor Binding Domain (RBD), and Nucleocapsid, play a critical role in understanding immunity and supporting diagnostic efforts during COVID-19 pandemic, and afterward. This study aimed to develop and validate in-house assays for detecting anti-SARS-CoV-2 antibodies in serum and urine. METHODS ELISA-based assay was developed to detect IgG and IgM antibodies against SARS-CoV-2. The assay was examined in serum and urine samples of two different cohort of patients affected by COVID-19 disease with different severity and compared to age and sex matched control group. Neutralizing antibody activity was evaluated using an RBD-ACE2 binding inhibition assay. Additionally, a Sengenics protein microarray platform was employed to assess epitope-specific antibody responses. RESULTS The in-house ELISA assay reliably detected antibodies in both 163 serum and 64 urine samples compared to 50 serum samples from healthy control, with strong correlations observed between antibody levels in the two biofluids. Neutralizing antibody levels correlated positively with disease severity, highlighting their clinical relevance. The performance of the in-house assays was comparable to commercial kits, and the Sengenics microarray provided detailed insights into antibody profiles, identifying dominant epitopes within the Nucleocapsid core domain and RBD. CONCLUSIONS The developed in-house assay demonstrated robust performance and versatility, offering a cost-effective and scalable alternative to commercial kits. Their ability to detect antibodies in both serum and urine highlighted their potential as non-invasive diagnostic tools. These findings contribute to advancing sero-diagnostic capabilities, improving understanding of immune responses to SARS-CoV-2, and supporting global efforts to monitor and manage COVID-19 effectively.
Collapse
Affiliation(s)
- Nishant N Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Maryam Ali Al-Nesf
- Allergy and Immunology Division, Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar; Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK
| | - Nour Majbour
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Translational Medicine, Neuroscience, Pharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Houari B Abdesselem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Proteomics Core Facility, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Bensmail
- Proteomics Core Facility, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Y Abdi
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Khalifa Ahmed Elmagarmid
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Shadah Shabani
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Indulekha P Sudhakaran
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Simona S Ghanem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohammed Al-Maadheed
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Vidya Mohamed-Ali
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa; Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur 50490, Malaysia; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Cancer Research Center (CRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M A El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
3
|
Sulaiman A, Sengsouk I, White JL, Marshall C, Fernandez RE, Redd AD, Eby Y, Casadevall A, Sullivan D, Gebo K, Shoham S, Laeyendecker O, Rai H, Bloch EM, Crowe EP, Tobian AAR. SARS-CoV-2 IgG antibodies in COVID-19 convalescent plasma and conventional plasma units. Transfusion 2025; 65:446-452. [PMID: 39844430 PMCID: PMC11925680 DOI: 10.1111/trf.18139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND The Association for the Advancement of Blood and Biotherapies guidelines recommend the use of high-titer COVID-19 convalescent plasma (CCP) for patients with SARS-CoV-2 at high risk of disease progression, including those who are immunocompromised. We hypothesized that conventional plasma units have comparable neutralizing antibody levels to CCP. STUDY DESIGN AND METHODS Conventional plasma and CCP units were obtained from blood suppliers. Quantitatively measured antibodies to SARS-CoV-2 were assessed using the MesoScale Discovery multiplex electrochemiluminescence immunoassay. Binding antibody distributions were compared with Wilcoxon rank-sum tests. SARS-CoV-2 neutralizing antibodies were analyzed using the GeneScript ELISA-based neutralization assay. The proportion of conventional and CCP units with a percent signal inhibition of ≥80% (as defined by the United States Food and Drug Administration for CCP in 2021) and exact binomial confidence intervals (CIs) were calculated. RESULTS Among 218 conventional plasma units and 74 CCP units collected between September 2023 and July 2024, the distribution of total antibody binding levels largely overlapped between conventional plasma and CCP, though statistically significant differences in median nucleocapsid and spike Omicron variant concentrations were observed. Median percent signal neutralization was 97.5% (range 3.4%-98.6%) among conventional plasma units and 97.7% (range 95.4%-98.6%) among CCP units. For conventional plasma, 95.0% (95% CI = 91.2%-97.5%) met the neutralization antibody threshold for high-titer CCP. For CCP, 100% (95% CI = 95.1%-100.0%) met the neutralization threshold for high-titer CCP. CONCLUSION Conventional plasma units demonstrate similar median antibody concentration to CCP units. In countries or regions where licensed CCP is unavailable and titers are unknown, transfusion of multiple conventional plasma units may be of clinical utility.
Collapse
Affiliation(s)
- Andrew Sulaiman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Isabella Sengsouk
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jodie L White
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christi Marshall
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Reinaldo E Fernandez
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Andrew D Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yolanda Eby
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kelly Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Herleen Rai
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth P Crowe
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Kumar S, Mehra S, Sircar M, Jha O, Gupta R, Sinha S, Kaur R. Evaluation of the efficacy of convalescent plasma in moderate to severe COVID-19 during 2020-2021: a retrospective observational study. Monaldi Arch Chest Dis 2024. [PMID: 39704231 DOI: 10.4081/monaldi.2024.3050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024] Open
Abstract
Convalescent plasma therapy (CPT) is one of the treatment modalities used for COVID-19. Initial smaller studies showed the usefulness of CPT in COVID-19, but larger studies showed that it is not effective. This is a retrospective observational study conducted between 1st June 2020 and 31st July 2021 at a tertiary hospital in Noida, India. Our analysis was done on 213 COVID-19 patients, comprising 170 cases who were given convalescent plasma and 43 controls who did not get CPT. Outcomes analyzed were improvement in PaO2:FiO2 ratio (PFR) by day 5 of CPT, 28-day mortality, and level of inflammatory markers. Mean PFR before plasma transfusion was comparable between CPT and control groups (142.11±73.99 vs. 151.11±88.87, p=0.56). There was no significant difference in mean PFR after 5 days of CPT between cases and the control group (187.02±102.34 vs. 160.29±83.39, p=0.206). 28-day mortality was 47.05% in the CPT group and 37.20% in the control group (p=0.246). Mortality amongst the subgroup of patients on invasive mechanical ventilation was 89.74% in cases and 80% in controls (p=0.518). No significant difference was found in levels of serum ferritin, interleukin-6, and C-reactive protein between the two groups. Convalescent plasma does not have a significant effect on day 5 PFR and 28-day mortality. Our study could not find any subgroup of patients who would benefit from CPT. This study reinforces that CPT does not benefit moderate to severe patients with COVID-19.
Collapse
Affiliation(s)
- Sunny Kumar
- Department of Pulmonology and Critical Care, Fortis Hospital, Noida, Uttar Pradesh
| | - Saurabh Mehra
- Department of Pulmonology and Critical Care, Fortis Hospital, Noida, Uttar Pradesh
| | - Mrinal Sircar
- Department of Pulmonology and Critical Care, Fortis Hospital, Noida, Uttar Pradesh
| | - Onkar Jha
- Department of Pulmonary Medicine, Paras HEC Hospital, Ranchi
| | - Rajesh Gupta
- Department of Pulmonology and Critical Care, Fortis Hospital, Greater Noida, Uttar Pradesh
| | - Seema Sinha
- Department of Transfusion Medicine, Fortis Hospital, Noida, Uttar Pradesh
| | - Ravneet Kaur
- Lab Operations and Microbiology, Agilus Diagnostics, Fortis Hospital, Noida, Uttar Pradesh
| |
Collapse
|
5
|
Wang S, Yan J, Song M, Xue Z, Wang Z, Diao R, Liu Q, Ruan Q, Yao C. Development of a nomogram for high antibody titre of COVID-19 convalescent plasma. Epidemiol Infect 2024; 152:e167. [PMID: 39659202 PMCID: PMC11696598 DOI: 10.1017/s0950268824001638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
This study aimed to develop a predictive tool for identifying individuals with high antibody titers crucial for recruiting COVID-19 convalescent plasma (CCP) donors and to assess the quality and storage changes of CCP. A convenience sample of 110 plasma donors was recruited, of which 75 met the study criteria. Using univariate logistic regression and random forest, 6 significant factors were identified, leading to the development of a nomogram. Receiver operating characteristic curves, calibration plots, and decision curve analysis (DCA) evaluated the nomogram's discrimination, calibration, and clinical utility. The nomogram indicated that females aged 18 to 26, blood type O, receiving 1 to 2 COVID-19 vaccine doses, experiencing 2 symptoms during infection, and donating plasma 41 to 150 days after symptom onset had higher likelihoods of high antibody titres. Nomogram's AUC was 0.853 with good calibration. DCA showed clinical benefit within 9% ~ 90% thresholds. CCP quality was qualified, with stable antibody titres over 6 months (P > 0.05). These findings highlight developing predictive tools to identify suitable CCP donors and emphasize the stability of CCP quality over time, suggesting its potential for long-term storage.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Jie Yan
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Min Song
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Zhenrui Xue
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Zerong Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Ronghua Diao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Qi Liu
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Qianying Ruan
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, P.R China
| |
Collapse
|
6
|
Hasan S, Awasthi P, Malik S, Dwivedi M. Immunotherapeutic strategies to induce inflection in the immune response: therapy for cancer and COVID-19. Biotechnol Genet Eng Rev 2024; 40:3571-3610. [PMID: 36411974 DOI: 10.1080/02648725.2022.2147661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
Cancer has agonized the human race for millions of years. The present decade witnesses biological therapeutics to combat cancer effectively. Cancer Immunotherapy involves the use of therapeutics for manipulation of the immune system by immune agents like cytokines, vaccines, and transfection agents. Recently, this therapeutic approach has got vast attention due to the current pandemic COVID-19 and has been very effective. Concerning cancer, immunotherapy is based on the activation of the host's antitumor response by enhancing effector cell number and the production of soluble mediators, thereby reducing the host's suppressor mechanisms by induction of a tumour killing environment and by modulating immune checkpoints. In the present era, immunotherapies have gained traction and momentum as a pedestal of cancer treatment, improving the prognosis of many patients with a wide variety of haematological and solid malignancies. Food supplements, natural immunomodulatory drugs, and phytochemicals, with recent developments, have shown positive trends in cancer treatment by improving the immune system. The current review presents the systematic studies on major immunotherapeutics and their development for the effective treatment of cancers as well as in COVID-19. The focus of the review is to highlight comparative analytics of existing and novel immunotherapies in cancers, concerning immunomodulatory drugs and natural immunosuppressants, including immunotherapy in COVID-19 patients.
Collapse
Affiliation(s)
- Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Ranchi, Jharkhand, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
7
|
Raza ML, Imam MH, Zehra W, Jamil S. Neuro-inflammatory pathways in COVID-19-induced central nervous system injury: Implications for prevention and treatment strategies. Exp Neurol 2024; 382:114984. [PMID: 39368535 DOI: 10.1016/j.expneurol.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
This review explores the neuroinflammatory pathways underlying COVID-19-induced central nervous system (CNS) injury, with a focus on mechanisms of brain damage and strategies for prevention. A comprehensive literature review was conducted to summarize current knowledge on the pathways by which SARS-CoV-2 reaches the brain, the neuroinflammatory responses triggered by viral infection, neurological symptoms and long COVID. Results: We discuss the mechanisms of neuroinflammation in COVID-19, including blood-brain barrier disruption, cytokine storm, microglial activation, and peripheral immune cell infiltration. Additionally, we highlight potential strategies for preventing CNS injury, including pharmacological interventions, immunomodulatory therapies, and lifestyle modifications. Conclusively, Understanding the neuroinflammatory pathways in COVID-19-induced CNS injury is crucial for developing effective prevention and treatment strategies to protect brain health during and after viral infection.
Collapse
Affiliation(s)
- Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | | | | | - Subia Jamil
- Faculty of Pharmacy, Jinnah University for Women, University, Karachi, Pakistan
| |
Collapse
|
8
|
Franchini M, Cruciani M, Mengoli C, Casadevall A, Glingani C, Joyner MJ, Pirofski LA, Senefeld JW, Shoham S, Sullivan DJ, Zani M, Focosi D. Convalescent plasma and predictors of mortality among hospitalized patients with COVID-19: a systematic review and meta-analysis. Clin Microbiol Infect 2024; 30:1514-1522. [PMID: 39067517 DOI: 10.1016/j.cmi.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Plasma collected from recovered patients with COVID-19 (COVID-19 convalescent plasma [CCP]) was the first antibody-based therapy employed to fight the COVID-19 pandemic. While the therapeutic effect of early administration of CCP in COVID-19 outpatients has been recognized, conflicting data exist regarding the efficacy of CCP administration in hospitalized patients. OBJECTIVES To examine the effect of CCP compared to placebo or standard treatment, and to evaluate whether time from onset of symptoms to treatment initiation influenced the effect. DATA SOURCES Electronic databases were searched for studies published from January 2020 to January 2024. STUDY ELIGIBILITY CRITERIA Randomized clinical trials (RCTs) investigating the effect of CCP on COVID-19 mortality in hospitalized patients with COVID-19. PARTICIPANTS Hospitalized patients with COVID-19. INTERVENTIONS CCP versus no CCP. ASSESSMENT OF RISK OF BIAS Cochrane risk of bias tool for RCTs. METHODS OF DATA SYNTHESIS The random-effects model was used to calculate the pooled risk ratio (RR) with 95% CI for the pooled effect estimates of CCP treatment. The Grading of Recommendations Assessment, Development and Evaluation was used to evaluate the certainty of evidence. RESULTS Twenty-seven RCTs were included, representing 18,877 hospitalized patients with COVID-19. When transfused within 7 days from symptom onset, CCP significantly reduced the risk of death compared to standard therapy or placebo (RR, 0.76; 95% CI, 0.61-0.95), while later CCP administration was not associated with a mortality benefit (RR, 0.98; 95% CI, 0.90-1.06). The certainty of the evidence was graded as moderate. Meta-regression analysis demonstrated increasing mortality effects for longer interval to transfusion or worse initial clinical severity. CONCLUSIONS In-hospital transfusion of CCP within 7 days from symptom onset conferred a mortality benefit.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy.
| | - Mario Cruciani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Carlo Mengoli
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Claudia Glingani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Jonathon W Senefeld
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, IL, USA
| | - Shmuel Shoham
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Sullivan
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Matteo Zani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
9
|
Mafulu Y, Khumalo S, Williams V, Ndabezitha S, Nyandoro E, Ndlovu N, Kay A, Maseko K, Simelane H, Gwebu S, Musarapasi N, Mafukidze A, Bongomin P, Dube N, Buzaalirwa L, Dube N, Haumba S. Causes of death in people living with HIV: Lessons from five health facilities in Eswatini. South Afr J HIV Med 2024; 25:1614. [PMID: 39507464 PMCID: PMC11538099 DOI: 10.4102/sajhivmed.v25i1.1614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 11/08/2024] Open
Abstract
Background Eswatini has a high HIV prevalence in adults and, despite being one of the first countries to achieve the UNAIDS 95-95-95 targets, AIDS-related deaths are still high. Objectives This study describes the causes of death among people living with HIV (PLHIV) receiving care at five clinics in Eswatini. Method A cross-sectional review of sociodemographic, clinical and mortality data of deceased clients who received care from 01 January 2021 to 30 June 2022, was conducted. Data were extracted from the deceased clients' clinical records, and descriptive and comparative analysis was performed. Results Of 257 clients, 52.5% (n = 135) were male, and the median age was 47 years (interquartile range [IQR]: 38, 59). The leading causes of death were non-communicable diseases (NCDs) (n = 59, 23.0%), malignancies (n = 37, 14.4%), COVID-19 (n = 36, 14.0%), and advanced HIV disease (AHD) (n = 24, 9.3%). Clients who had been on antiretroviral therapy (ART) for 12-60 months (OR: 0.01; 95% confidence interval [CI]: 0.0006, 0.06) and > 60 months (OR: 0.006; 95% CI: 0.0003, 0.029) had lower odds of death from AHD compared to those on ART for < 12 months. Clients aged ≥ 40 years had higher odds of dying from COVID-19, while female clients (OR: 2.64; 95% CI: 1.29, 5.70) had higher odds of death from malignancy. Conclusion Most clients who died were aged 40 years and above and died from NCD-related causes, indicating a need to integrate prevention, screening, and treatment of NCDs into HIV services. Specific interventions targeting younger PLHIV will limit their risk for AHD.
Collapse
Affiliation(s)
- Yves Mafulu
- Department of Care and Treatment, AIDS Healthcare Foundation, Manzini, Eswatini
| | - Sukoluhle Khumalo
- Department of Care and Treatment, AIDS Healthcare Foundation, Manzini, Eswatini
| | - Victor Williams
- Center for Global Health Practice and Impact, Georgetown University, Mbabane, Eswatini
- Department of Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | | | - Elisha Nyandoro
- Center for Global Health Practice and Impact, Georgetown University, Mbabane, Eswatini
| | - Nkosana Ndlovu
- Department of Care and Treatment, AIDS Healthcare Foundation, Manzini, Eswatini
| | - Alexander Kay
- Baylor College of Medicine Children’s Foundation, Mbabane, Eswatini
| | - Khetsiwe Maseko
- Department of Care and Treatment, AIDS Healthcare Foundation, Manzini, Eswatini
| | - Hlobsile Simelane
- Department of Care and Treatment, AIDS Healthcare Foundation, Manzini, Eswatini
| | - Siphesihle Gwebu
- Department of Care and Treatment, AIDS Healthcare Foundation, Manzini, Eswatini
| | - Normusa Musarapasi
- Center for Global Health Practice and Impact, Georgetown University, Mbabane, Eswatini
| | - Arnold Mafukidze
- Center for Global Health Practice and Impact, Georgetown University, Mbabane, Eswatini
| | - Pido Bongomin
- Center for Global Health Practice and Impact, Georgetown University, Mbabane, Eswatini
| | - Nduduzo Dube
- Department of Care and Treatment, AIDS Healthcare Foundation, Manzini, Eswatini
| | | | - Nkululeko Dube
- AIDS Healthcare Foundation Africa Bureau, Kampala, Uganda
| | - Samson Haumba
- Center for Global Health Practice and Impact, Georgetown University, Mbabane, Eswatini
- Center for Global Health Practice and Impact, Georgetown University Medical Center, Washington DC, Washington, United States of America
| |
Collapse
|
10
|
Nierich A, Bihariesingh R, Bansie R. HemoClear: A Practical and Cost-Effective Alternative to Conventional Convalescent Plasma Retrieval Methods. Curr Top Microbiol Immunol 2024. [PMID: 39126485 DOI: 10.1007/82_2024_276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Convalescent plasma has increasingly been used to treat various viral infections and confer post-exposure prophylactic protection during the last decade and has demonstrated favorable clinical outcomes in patients infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during the recent COVID-19 pandemic. The pandemic has highlighted the need for cost-effective, accessible, and easy-to-use alternatives to conventional blood plasmapheresis techniques, allowing hospitals to become more self-sufficient in harvesting and transfusing donor plasma into recipients in a single setting. To this end, the use of a membrane-based bedside plasmapheresis device (HemoClear) was evaluated in an open-label, non-randomized prospective trial in Suriname in 2021, demonstrating its practicality and efficacy in a low-to middle-income country. This paper will review the use of this method and its potential to expedite the process of obtaining convalescent plasma, especially during pandemics and in resource-constrained settings.
Collapse
Affiliation(s)
- Arno Nierich
- Department of Anesthesiology, Academic Hospital Paramaribo, Paramaribo, Suriname.
- Chief Medical Officer Hemoclear, Zwolle, The Netherlands.
| | - Rosita Bihariesingh
- Department of Anesthesiology & Intensive Care, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Rakesh Bansie
- Department of Anesthesiology & Internal Medicine, Academic Hospital Paramaribo, Paramaribo, Suriname
| |
Collapse
|
11
|
Sullivan DJ. Convalescent Plasma and Other Antibody Therapies for Infectious Diseases-Lessons Learned from COVID-19 and Future Prospects. Curr Top Microbiol Immunol 2024. [PMID: 39117846 DOI: 10.1007/82_2024_273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Antiviral passive antibody therapy includes convalescent plasma, hyperimmune globulin, and monoclonal antibodies. Passive antibodies have proven effective in reducing morbidity and mortality for SARS-CoV-2 and other infectious diseases when given early in the disease course with sufficiently high specific total and neutralizing antibody levels. Convalescent plasma can be delivered to patients before vaccination implementation or novel drug production. Carefully designed and executed randomized controlled trials near the pandemic outset are important for regulatory bodies, healthcare workers, guideline committees, the public, and the government. Unfortunately, many otherwise well-designed antibody-based clinical trials in COVID-19 were futile, either because they intervened too late in the disease or provided plasma with insufficient antibodies. The need for early treatment mandates outpatient clinical trials in parallel with inpatient trials. Early outpatient COVID-19 convalescent plasma transfusion with high antibody content within 9 days of symptom onset has proven effective in blunting disease progression and reducing hospitalization, thus reducing hospital overcrowding in a pandemic. Convalescent plasma offers the opportunity for hope by enabling community participation in outpatient curative therapy while monoclonal therapies, vaccines, and drugs are being developed. Maintaining the appropriate infrastructure for antibody infusion in both outpatient and inpatient facilities is critical for future pandemic readiness.
Collapse
Affiliation(s)
- David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St Rm W4606, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Karim B, Barary M, Fereydouni Z, Sanjari E, Hosseinzadeh R, Salehi-Vaziri M, Maleki A. The nuts and bolts of recombination in the generation of SARS-CoV-2 variants; from XA to XBB. Lett Appl Microbiol 2024; 77:ovae074. [PMID: 39081071 DOI: 10.1093/lambio/ovae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 01/28/2025]
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), new variants with enhanced transmissibility and pathogenicity have surfaced. The World Health Organization has designated five such variants-Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529)-as variants of concern. Each variant exhibits distinct characteristics, with many displaying a combination of point mutations and insertions/deletions (indels). These genetic alterations, including mutations, recombinations, and rearrangements, contribute to the emergence of new strains that may exhibit modified phenotypes. However, identifying recombinant forms can be challenging due to their resemblance to other lineages. It is critical to monitor the evolution of new recombinant variants, particularly in light of the potential for vaccine-resistant strains and their accelerated propagation. Recombination has played a pivotal role in the development of certain SARS-CoV-2 variants, such as XA, XD, XF, XE, and XBB, among others. This report delves into the significance of recombination in the evolution of SARS-CoV-2 variants, especially Omicron sublineages, underscoring the necessity for continuous surveillance of the SARS-CoV-2 genome to identify newly emerged recombinant variants.
Collapse
Affiliation(s)
- Bardia Karim
- Student Research Committee, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Mohammad Barary
- Student Research Committee, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Zahra Fereydouni
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
| | - Elaheh Sanjari
- Student Research Committee, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol 678, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Pasteur Ave., Tehran 01316943551, Iran
| | - Ali Maleki
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
| |
Collapse
|
13
|
Tobias J, Steinberger P, Wilkinson J, Klais G, Kundi M, Wiedermann U. SARS-CoV-2 Vaccines: The Advantage of Mucosal Vaccine Delivery and Local Immunity. Vaccines (Basel) 2024; 12:795. [PMID: 39066432 PMCID: PMC11281395 DOI: 10.3390/vaccines12070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Immunity against respiratory pathogens is often short-term, and, consequently, there is an unmet need for the effective prevention of such infections. One such infectious disease is coronavirus disease 19 (COVID-19), which is caused by the novel Beta coronavirus SARS-CoV-2 that emerged around the end of 2019. The World Health Organization declared the illness a pandemic on 11 March 2020, and since then it has killed or sickened millions of people globally. The development of COVID-19 systemic vaccines, which impressively led to a significant reduction in disease severity, hospitalization, and mortality, contained the pandemic's expansion. However, these vaccines have not been able to stop the virus from spreading because of the restricted development of mucosal immunity. As a result, breakthrough infections have frequently occurred, and new strains of the virus have been emerging. Furthermore, SARS-CoV-2 will likely continue to circulate and, like the influenza virus, co-exist with humans. The upper respiratory tract and nasal cavity are the primary sites of SARS-CoV-2 infection and, thus, a mucosal/nasal vaccination to induce a mucosal response and stop the virus' transmission is warranted. In this review, we present the status of the systemic vaccines, both the approved mucosal vaccines and those under evaluation in clinical trials. Furthermore, we present our approach of a B-cell peptide-based vaccination applied by a prime-boost schedule to elicit both systemic and mucosal immunity.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Joy Wilkinson
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gloria Klais
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Kundi
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Keating SM, Higgins BW. New technologies in therapeutic antibody development: The next frontier for treating infectious diseases. Antiviral Res 2024; 227:105902. [PMID: 38734210 DOI: 10.1016/j.antiviral.2024.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Adaptive immunity to viral infections requires time to neutralize and clear viruses to resolve infection. Fast growing and pathogenic viruses are quickly established, are highly transmissible and cause significant disease burden making it difficult to mount effective responses, thereby prolonging infection. Antibody-based passive immunotherapies can provide initial protection during acute infection, assist in mounting an adaptive immune response, or provide protection for those who are immune suppressed or immune deficient. Historically, plasma-derived antibodies have demonstrated some success in treating diseases caused by viral pathogens; nonetheless, limitations in access to product and antibody titer reduce success of this treatment modality. Monoclonal antibodies (mAbs) have proven an effective alternative, as it is possible to manufacture highly potent and specific mAbs against viral targets on an industrial scale. As a result, innovative technologies to discover, engineer and manufacture specific and potent antibodies have become an essential part of the first line of treatment in pathogenic viral infections. However, a mAb targeting a specific epitope will allow escape variants to outgrow, causing new variant strains to become dominant and resistant to treatment with that mAb. Methods to mitigate escape have included combining mAbs into cocktails, creating bi-specific or antibody drug conjugates but these strategies have also been challenged by the potential development of escape mutations. New technologies in developing antibodies made as recombinant polyclonal drugs can integrate the strength of poly-specific antibody responses to prevent mutational escape, while also incorporating antibody engineering to prevent antibody dependent enhancement and direct adaptive immune responses.
Collapse
Affiliation(s)
- Sheila M Keating
- GigaGen, Inc. (A Grifols Company), 75 Shoreway Road, San Carlos, CA, 94070, USA.
| | | |
Collapse
|
15
|
Akabane M, Imaoka Y, Esquivel CO, Kim WR, Sasaki K. The Spread Pattern of New Practice in Liver Transplantation in the United States. Clin Transplant 2024; 38:e15379. [PMID: 38952196 DOI: 10.1111/ctr.15379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Introducing new liver transplantation (LT) practices, like unconventional donor use, incurs higher costs, making evaluation of their prognostic justification crucial. This study reexamines the spread pattern of new LT practices and its prognosis across the United States. METHODS The study investigated the spread pattern of new practices using the UNOS database (2014-2023). Practices included LT for hepatitis B/C (HBV/HCV) nonviremic recipients with viremic donors, LT for COVID-19-positive recipients, and LT using onsite machine perfusion (OMP). One year post-LT patient and graft survival were also evaluated. RESULTS LTs using HBV/HCV donors were common in the East, while LTs for COVID-19 recipients and those using OMP started predominantly in California, Arizona, Texas, and the Northeast. K-means cluster analysis identified three adoption groups: facilities with rapid, slow, and minimal adoption rates. Rapid adoption occurred mainly in high-volume centers, followed by a gradual increase in middle-volume centers, with little increase in low-volume centers. The current spread patterns did not significantly affect patient survival. Specifically, for LTs with HCV donors or COVID-19 recipients, patient and graft survivals in the rapid-increasing group was comparable to others. In LTs involving OMP, the rapid- or slow-increasing groups tended to have better patient survival (p = 0.05) and significantly improved graft survival rates (p = 0.02). Facilities adopting new practices often overlap across different practices. DISCUSSION Our analysis revealed three distinct adoption groups across all practices, correlating the adoption aggressiveness with LT volume in centers. Aggressive adoption of new practices did not compromise patient and graft survivals, supporting the current strategy. Understanding historical trends could predict the rise in future LT cases with new practices, aiding in resource distribution.
Collapse
Affiliation(s)
- Miho Akabane
- Division of Abdominal Transplant, Department of Surgery, Stanford University Medical Center, Stanford, California, USA
| | - Yuki Imaoka
- Division of Abdominal Transplant, Department of Surgery, Stanford University Medical Center, Stanford, California, USA
| | - Carlos O Esquivel
- Division of Abdominal Transplant, Department of Surgery, Stanford University Medical Center, Stanford, California, USA
| | - W Ray Kim
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, USA
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, Stanford University Medical Center, Stanford, California, USA
| |
Collapse
|
16
|
Franchini M, Mengoli C, Casadevall A, Focosi D. Exploring Study Design Foibles in Randomized Controlled Trials on Convalescent Plasma in Hospitalized COVID-19 Patients. Life (Basel) 2024; 14:792. [PMID: 39063547 PMCID: PMC11278192 DOI: 10.3390/life14070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Sample size estimation is an essential step in the design of randomized controlled trials (RCTs) evaluating a treatment effect. Sample size is a critical variable in determining statistical significance and, thus, it significantly influences RCTs' success or failure. During the COVID-19 pandemic, many RCTs tested the efficacy of COVID-19 convalescent plasma (CCP) in hospitalized patients but reported different efficacies, which could be attributed to, in addition to timing and dose, inadequate sample size estimates. Methods: To assess the sample size estimation in RCTs evaluating the effect of treatment with CCP in hospitalized COVID-19 patients, we searched the medical literature between January 2020 and March 2024 through PubMed and other electronic databases, extracting information on expected size effect, statistical power, significance level, and measured efficacy. Results: A total of 32 RCTs were identified. While power and significance level were highly consistent, heterogeneity in the expected size effect was relevant. Approximately one third of the RCTs did not reach the planned sample size for various reasons, with the most important one being slow patient recruitment during the pandemic's peaks. RCTs with a primary outcome in favor of CCP treatment had a significant lower median absolute difference in the expected size effect than unfavorable RCTs (20.0% versus 33.9%, P = 0.04). Conclusions: The analyses of sample sizes in RCTs of CCP treatment in hospitalized COVID-19 patients reveal that many underestimated the number of participants needed because of excessively high expectations on efficacy, and thus, these studies had low statistical power. This, in combination with a lower-than-planned recruitment of cases and controls, could have further negatively influenced the primary outcomes of the RCTs.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Carlo Mengoli
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD 21205, USA;
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
17
|
Richards KA, Changrob S, Thomas PG, Wilson PC, Sant AJ. Lack of memory recall in human CD4 T cells elicited by the first encounter with SARS-CoV-2. iScience 2024; 27:109992. [PMID: 38868209 PMCID: PMC11166706 DOI: 10.1016/j.isci.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
The studies reported here focus on the impact of pre-existing CD4 T cell immunity on the first encounter with SARS-CoV-2. They leverage PBMC samples from plasma donors collected after a first SARS-CoV-2 infection, prior to vaccine availability and compared to samples collected prior to the emergence of SARS-CoV-2. Analysis of CD4 T cell specificity across the entire SARS-CoV-2 proteome revealed that the recognition of SARS-CoV-2-derived epitopes by CD4 memory cells prior to the pandemic are enriched for reactivity toward non-structural proteins conserved across endemic CoV strains. However, CD4 T cells after primary infection with SARS-CoV-2 focus on epitopes from structural proteins. We observed little evidence for preferential recall to epitopes conserved between SARS-CoV-2 and seasonal CoV, a finding confirmed through use of selectively curated conserved and SARS-unique peptides. Our data suggest that SARS-CoV-2 CD4 T cells elicited by the first infection are primarily established from the naive CD4 T cell pool.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Siriruk Changrob
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Patrick C. Wilson
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
18
|
Focosi D, Franchini M, Maggi F, Shoham S. COVID-19 therapeutics. Clin Microbiol Rev 2024; 37:e0011923. [PMID: 38771027 PMCID: PMC11237566 DOI: 10.1128/cmr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
SUMMARYSince the emergence of COVID-19 in 2020, an unprecedented range of therapeutic options has been studied and deployed. Healthcare providers have multiple treatment approaches to choose from, but efficacy of those approaches often remains controversial or compromised by viral evolution. Uncertainties still persist regarding the best therapies for high-risk patients, and the drug pipeline is suffering fatigue and shortage of funding. In this article, we review the antiviral activity, mechanism of action, pharmacokinetics, and safety of COVID-19 antiviral therapies. Additionally, we summarize the evidence from randomized controlled trials on efficacy and safety of the various COVID-19 antivirals and discuss unmet needs which should be addressed.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Shmuel Shoham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Franchini M, Focosi D. Towards the identification of the correct place for convalescent plasma among COVID-19 therapies. Infect Dis (Lond) 2024; 56:421-422. [PMID: 38549506 DOI: 10.1080/23744235.2024.2333977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/24/2024] Open
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
20
|
Bloch EM. Blood Banking Capacity in Low-and Middle-Income Countries: Covid-19 Convalescent Plasma in Context. Curr Top Microbiol Immunol 2024. [PMID: 38772969 DOI: 10.1007/82_2024_266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Blood transfusion capacity in low- and middle-income countries (LMICs), encompassing both the safety and adequacy of the blood supply, is limited. The challenges facing blood banks in LMICs include regulatory oversight, blood donor selection, collection procedures, laboratory testing, and post-transfusion surveillance. A high proportion of LMICs are unable to fully meet clinical demands for blood products, and many do not meet even the minimum threshold of collection (10 units per 1000 population). Suboptimal clinical transfusion practices, in large part due to a lack of training in transfusion medicine, contribute to blood wastage. During the COVID-19 pandemic, high- and LMICs alike experienced blood shortages, in large part due to quarantine and containment measures that impeded donor mobility. COVID-19 convalescent plasma (CCP) was particularly appealing for the treatment of patients with COVID-19 in LMICs, as it is a relatively inexpensive intervention and makes use of the existing blood collection infrastructure. Nonetheless, the challenges of using CCP in LMICs need to be contextualized among broad concerns surrounding blood safety and availability. Specifically, reliance on first time, family replacement and paid donors, coupled with deficient infectious disease testing and quality oversight, increase the risk of transfusion transmitted infections from CCP in LMICs. Furthermore, many LMICs are unable to meet general transfusion needs; therefore, CCP collection also risked exacerbation of pervasive blood shortages.
Collapse
Affiliation(s)
- Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins Bloomberg School of Public Health (Joint Appt. International Health), 600 N. Wolfe Street/Carnegie 446 D1, Baltimore, MD, 21287, USA.
| |
Collapse
|
21
|
Billi B, Cholley P, Grobost V, Clément M, Rieu V, Le Guenno G, Lobbes H. Intravenous immunoglobulins for the treatment of prolonged COVID-19 in immunocompromised patients: a brief report. Front Immunol 2024; 15:1399180. [PMID: 38707896 PMCID: PMC11069322 DOI: 10.3389/fimmu.2024.1399180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Primary humoral deficiency and secondary B-cell depletion may lead to prolonged Sars-Cov-2 infection due to a decreased viral clearance. Prolonged infection is mainly driven by the lack of anti-Sars-Cov-2 immunoglobulin (IVIg) especially in patients with no vaccine response. Anti-spike immunoglobulin can be provided by infusion of convalescent patients' plasma: recent studies highlighted that commercial immunoglobulin show high titers of neutralizing IgG. We conducted a single center retrospective cohort. We included 9 patients (6 males, median age 74 years old): one patient with X-linked agammaglobulinemia and 8 patients treated with rituximab (2 granulomatosis with polyangiitis, 1 neuromyelitis optica, 4 low grade B-cell lymphoma and 1 EBV post-transplant lymphoproliferative disorder). Mean serum globulin was 4 ± 1.6 g/L. 7/8 had received at least 3 doses of mRNA anti-Sars-Cov-2 vaccine (median 4) with no response (anti-Spike IgG 0 for 6 patients). In this specific population requiring oxygen therapy but no intensive care support, the administration of IVIg was well tolerated and provided a swift improvement of clinical status, a significant decrease of inflammation associated to the an improvement of radiological patterns. Our results suggest that immunoglobulin could be used as a salvage therapy as an alternative to convalescent plasma but highly stringent patient selection is required due to the worldwide shortage of IVIg.
Collapse
Affiliation(s)
- Bénédicte Billi
- Service de Médecine Interne, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Paul Cholley
- Service de Radiologie, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Grobost
- Service de Médecine Interne, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Mélissa Clément
- Service de Médecine Interne, Hôpital Henri Mondor, Aurillac, France
| | - Virginie Rieu
- Service de Médecine Interne, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Guillaume Le Guenno
- Service de Médecine Interne, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Hervé Lobbes
- Service de Médecine Interne, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
- Institut Pascal, Unité Mixte de Recherche (UMR) 6602, Centre National de la Recherche Scientifique, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
22
|
Franchini M, Focosi D. Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review. Life (Basel) 2024; 14:214. [PMID: 38398723 PMCID: PMC10890293 DOI: 10.3390/life14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Since late 2019, the new SARS-CoV-2 virus belonging to the Coronaviridae family has been responsible for COVID-19 pandemic, a severe acute respiratory syndrome. Several antiviral therapies, mostly derived from previous epidemics, were initially repurposed to fight this not rarely life-threatening respiratory illness. Among them, however, the only specific antibody-based therapy available against SARS-CoV-2 infection during the first year of the pandemic was represented by COVID-19 convalescent plasma (CCP). CCP, collected from recovered individuals, contains high levels of polyclonal antibodies of different subclasses able to neutralize SARS-CoV-2 infection. Tens of randomized controlled trials have been conducted during the last three years of the pandemic to evaluate the safety and the clinical efficacy of CCP in both hospitalized and ambulatory COVID-19 patients, whose main results will be summarized in this narrative review. In addition, we will present the current knowledge on the development of anti-SARS-CoV-2 hyperimmune polyclonal immunoglobulins.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| |
Collapse
|
23
|
Castillo JG, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry approach to track the evolution of T cell responses during infection and immunotherapy by paired T cell receptor repertoire and T cell differentiation state analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575237. [PMID: 38260336 PMCID: PMC10802618 DOI: 10.1101/2024.01.11.575237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
T cell receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we developed a mass cytometric (CyTOF) approach combining antibodies specific for different TCR Vα- and Vβ-chains with antibodies against T cell activation and differentiation proteins to identify antigen-specific expansions of T cell subsets and assess aspects of cellular function. This strategy allowed for the identification of expansions of specific Vβ and Vα chain expressing CD8+ and CD4+ T cells with varying differentiation states in response to Listeria monocytogenes, tumors, and respiratory influenza infection. Expanded Vβ chain expressing T cells could be directly linked to the recognition of specific antigens from Listeria, tumor cells, or influenza. In the setting of influenza infection, we showed that the common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the clonal diversity and differentiation state of responding T cells. Thus, we present a new method to monitor broad changes in TCR specificity paired with T cell differentiation during adaptive immune responses.
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| |
Collapse
|
24
|
Habtehyimer F, Zhu X, Redd AD, Gebo KA, Abraham AG, Patel EU, Laeyendecker O, Gniadek TJ, Fernandez RE, Baker OR, Ram M, Cachay ER, Currier JS, Fukuta Y, Gerber JM, Heath SL, Meisenberg B, Huaman MA, Levine AC, Shenoy A, Anjan S, Blair JE, Cruser D, Forthal DN, Hammitt LL, Kassaye S, Mosnaim GS, Patel B, Paxton JH, Raval JS, Sutcliffe CG, Abinante M, Oei KS, Cluzet V, Cordisco ME, Greenblatt B, Rausch W, Shade D, Gawad AL, Klein SL, Pekosz A, Shoham S, Casadevall A, Bloch EM, Hanley D, Tobian AAR, Sullivan DJ. COVID-19 convalescent plasma therapy decreases inflammatory cytokines: a randomized controlled trial. Microbiol Spectr 2024; 12:e0328623. [PMID: 38009954 PMCID: PMC10783116 DOI: 10.1128/spectrum.03286-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE This study examined the role that cytokines may have played in the beneficial outcomes found when outpatient individuals infected with SARS-CoV-2 were transfused with COVID-19 convalescent plasma (CCP) early in their infection. We found that the pro-inflammatory cytokine IL-6 decreased significantly faster in patients treated early with CCP. Participants with COVID-19 treated with CCP later in the infection did not have the same effect. This decrease in IL-6 levels after early CCP treatment suggests a possible role of inflammation in COVID-19 progression. The evidence of IL-6 involvement brings insight into the possible mechanisms involved in CCP treatment mitigating SARS-CoV-2 severity.
Collapse
Affiliation(s)
- Feben Habtehyimer
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew D. Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - Kelly A. Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alison G. Abraham
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eshan U. Patel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
| | - Thomas J. Gniadek
- Department of Pathology and Laboratory Medicine, Northshore University Health System, Evanston, Illinois, USA
| | - Reinaldo E. Fernandez
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Owen R. Baker
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Malathi Ram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Edward R. Cachay
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, San Diego, California, USA
| | - Judith S. Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, California, USA
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Jonathan M. Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sonya L. Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Barry Meisenberg
- Department of Medicine and Research Institute of Luminis Health, Annapolis, Maryland, USA
| | - Moises A. Huaman
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, Ohio, USA
| | - Adam C. Levine
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Aarthi Shenoy
- Department of Medicine, Division of Hematology and Oncology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Diseases, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Janis E. Blair
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, Arizona, USA
| | - Daniel Cruser
- Department of Pathology, Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, New York, USA
| | - Donald N. Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, Irvine, California, USA
| | - Laura L. Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seble Kassaye
- Division of Infectious Diseases, Georgetown University Medical Center, Washington, DC, USA
| | - Giselle S. Mosnaim
- Department of Medicine, Division of Allergy and Immunology, Northshore University Health System, Evanston, Illinois, USA
| | - Bela Patel
- Department of Medicine, Divisions of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - James H. Paxton
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jay S. Raval
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Catherine G. Sutcliffe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Valerie Cluzet
- Department of Infectious Disease, Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, New York, USA
| | | | | | - William Rausch
- Nuvance Health Danbury Hospital, Danbury, Connecticut, USA
| | - David Shade
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amy L. Gawad
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L. Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel Hanley
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Khalifa HO, Al Ramahi YM. After the Hurricane: Anti-COVID-19 Drugs Development, Molecular Mechanisms of Action and Future Perspectives. Int J Mol Sci 2024; 25:739. [PMID: 38255813 PMCID: PMC10815681 DOI: 10.3390/ijms25020739] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a new coronavirus in the Coronaviridae family. The COVID-19 pandemic, caused by SARS-CoV-2, has undoubtedly been the largest crisis of the twenty-first century, resulting in over 6.8 million deaths and 686 million confirmed cases, creating a global public health issue. Hundreds of notable articles have been published since the onset of this pandemic to justify the cause of viral spread, viable preventive measures, and future therapeutic approaches. As a result, this review was developed to provide a summary of the current anti-COVID-19 drugs, as well as their timeline, molecular mode of action, and efficacy. It also sheds light on potential future treatment options. Several medications, notably hydroxychloroquine and lopinavir/ritonavir, were initially claimed to be effective in the treatment of SARS-CoV-2 but eventually demonstrated inadequate activity, and the Food and Drug Administration (FDA) withdrew hydroxychloroquine. Clinical trials and investigations, on the other hand, have demonstrated the efficacy of remdesivir, convalescent plasma, and monoclonal antibodies, 6-Thioguanine, hepatitis C protease inhibitors, and molnupiravir. Other therapeutics, including inhaled medicines, flavonoids, and aptamers, could pave the way for the creation of novel anti-COVID-19 therapies. As future pandemics are unavoidable, this article urges immediate action and extensive research efforts to develop potent specialized anti-COVID-19 medications.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yousef M. Al Ramahi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
| |
Collapse
|
26
|
Wu J, Yang H, Yu D, Yang X. Blood-derived product therapies for SARS-CoV-2 infection and long COVID. MedComm (Beijing) 2023; 4:e426. [PMID: 38020714 PMCID: PMC10651828 DOI: 10.1002/mco2.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is capable of large-scale transmission and has caused the coronavirus disease 2019 (COVID-19) pandemic. Patients with COVID-19 may experience persistent long-term health issues, known as long COVID. Both acute SARS-CoV-2 infection and long COVID have resulted in persistent negative impacts on global public health. The effective application and development of blood-derived products are important strategies to combat the serious damage caused by COVID-19. Since the emergence of COVID-19, various blood-derived products that target or do not target SARS-CoV-2 have been investigated for therapeutic applications. SARS-CoV-2-targeting blood-derived products, including COVID-19 convalescent plasma, COVID-19 hyperimmune globulin, and recombinant anti-SARS-CoV-2 neutralizing immunoglobulin G, are virus-targeting and can provide immediate control of viral infection in the short term. Non-SARS-CoV-2-targeting blood-derived products, including intravenous immunoglobulin and human serum albumin exhibit anti-inflammatory, immunomodulatory, antioxidant, and anticoagulatory properties. Rational use of these products can be beneficial to patients with SARS-CoV-2 infection or long COVID. With evidence accumulated since the pandemic began, we here summarize the progress of blood-derived product therapies for COVID-19, discuss the effective methods and scenarios regarding these therapies, and provide guidance and suggestions for clinical treatment.
Collapse
Affiliation(s)
- Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
| | | | - Ding Yu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
- Beijing Tiantan Biological Products Co., Ltd.BeijingChina
| | | |
Collapse
|
27
|
Herrera S, Aguado JM, Candel FJ, Cordero E, Domínguez-Gil B, Fernández-Ruiz M, Los Arcos I, Len Ò, Marcos MÁ, Muñez E, Muñoz P, Rodríguez-Goncer I, Sánchez-Céspedes J, Valerio M, Bodro M. Executive summary of the consensus statement of the group for the study of infection in transplantation and other immunocompromised host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the treatment of SARS-CoV-2 infection in solid organ transplant recipients. Transplant Rev (Orlando) 2023; 37:100788. [PMID: 37591117 DOI: 10.1016/j.trre.2023.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Sabina Herrera
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS (Institut D'Investigacions Biomèdiques Agust Pi I Sunyer), Universitat de Barcelona, Barcelona, Spain
| | - Jose M Aguado
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Francisco Javier Candel
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, Hospital Clínico Universitario San Carlos, Madrid 28040, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital Clínico San Carlos, Madrid, Spain
| | - Elisa Cordero
- Infectious Diseases Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina Sevilla, Sevilla, Spain
| | | | - Mario Fernández-Ruiz
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ibai Los Arcos
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | - Òscar Len
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | | | - Elena Muñez
- Infectious Diseases Unit, Internal Medicine Department, University Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Patricia Muñoz
- Department of Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 9 Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Javier Sánchez-Céspedes
- Infectious Diseases Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina Sevilla, Sevilla, Spain
| | - Maricela Valerio
- Department of Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 9 Madrid, Spain
| | - Marta Bodro
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS (Institut D'Investigacions Biomèdiques Agust Pi I Sunyer), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Shamabadi NS, Bagasra AB, Pawar S, Bagasra O. Potential use of endemic human coronaviruses to stimulate immunity against pathogenic SARS-CoV-2 and its variants. Libyan J Med 2023; 18:2209949. [PMID: 37186902 DOI: 10.1080/19932820.2023.2209949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes significant morbidity and mortality in humans, there is a wide range of disease outcomes following virus exposures. Some individuals are asymptomatic while others develop complications within a few days after infection that can lead to fatalities in a smaller portion of the population. In the present study, we have analyzed the factors that may influence the outcome of post-SARS-CoV-2 infection. One factor that may influence virus control is pre-existing immunity conferred by an individual's past exposures to endemic coronaviruses (eCOVIDs) which cause the common cold in humans and generally, most children are exposed to one of the four eCOVIDs before 2 years of age. Here, we have carried out protein sequence analyses to show the amino acid homologies between the four eCOVIDs (i.e. OC43, HKU1, 229E, and NL63) as well as examining the cross-reactive immune responses between SARS-CoV-2 and eCOVIDs by epidemiologic analyses. Our results show that the nations where continuous exposures to eCOVIDs are very high due to religious and traditional causes showed significantly lower cases and low mortality rates per 100,000. We hypothesize that in the areas of the globe where Muslims are in majority and due to religious practices are regularly exposed to eCOVIDs they show a significantly lower infection, as well as mortality rate, and that is due to pre-existing cross-immunity against SARS-CoV-2. This is due to cross-reactive antibodies and T-cells that recognize SARS-CoV-2 antigens. We also have reviewed the current literature that has also proposed that human infections with eCOVIDs impart protection against disease caused by subsequent exposure to SARS-CoV-2. We propose that a nasal spray vaccine consisting of selected genes of eCOVIDs would be beneficial against SARS-CoV-2 and other pathogenic coronaviruses.
Collapse
Affiliation(s)
| | - Anisah B Bagasra
- Department of Psychology, Kennesaw State University, Kennesaw, GA, USA
| | - Shrikant Pawar
- Department of Computer Science and Biology, Claflin University, SC, USA
| | - Omar Bagasra
- South Carolina Center for Biotechnology, Claflin University, Orangeburg, SC, USA
| |
Collapse
|
29
|
Gebo KA, Heath SL, Fukuta Y, Zhu X, Baksh S, Abraham AG, Habtehyimer F, Shade D, Ruff J, Ram M, Laeyendecker O, Fernandez RE, Patel EU, Baker OR, Shoham S, Cachay ER, Currier JS, Gerber JM, Meisenberg B, Forthal DN, Hammitt LL, Huaman MA, Levine A, Mosnaim GS, Patel B, Paxton JH, Raval JS, Sutcliffe CG, Anjan S, Gniadek T, Kassaye S, Blair JE, Lane K, McBee NA, Gawad AL, Das P, Klein SL, Pekosz A, Bloch EM, Hanley D, Casadevall A, Tobian AAR, Sullivan DJ. Early antibody treatment, inflammation, and risk of post-COVID conditions. mBio 2023; 14:e0061823. [PMID: 37724870 PMCID: PMC10653913 DOI: 10.1128/mbio.00618-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/02/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE Approximately 20% of individuals infected with SARS-CoV-2 experienced long-term health effects, as defined PCC. However, it is unknown if there are any early biomarkers associated with PCC or whether early intervention treatments may decrease the risk of PCC. In a secondary analysis of a randomized clinical trial, this study demonstrates that among outpatients with SARS-CoV-2, increased IL-6 at time of infection is associated with increased odds of PCC. In addition, among individuals treated early, within 5 days of symptom onset, with COVID-19 convalescent plasma, there was a trend for decreased odds of PCC after adjusting for other demographic and clinical characteristics. Future treatment studies should be considered to evaluate the effect of early treatment and anti-IL-6 therapies on PCC development.
Collapse
Affiliation(s)
- Kelly A. Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sonya L. Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheriza Baksh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Allison G. Abraham
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Feben Habtehyimer
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Shade
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jessica Ruff
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Malathi Ram
- Departement of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, Maryland, USA
| | - Reinaldo E. Fernandez
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eshan U. Patel
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Owen R. Baker
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward R. Cachay
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, California, USA
| | - Judith S. Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, California, USA
| | - Jonathan M. Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worchester, Massachusetts, USA
| | | | - Donald N. Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, California, USA
| | - Laura L. Hammitt
- Departement of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Moises A. Huaman
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, Ohio, USA
| | - Adam Levine
- Department of Emergency Medicine, Rhode Island Hospital Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Giselle S. Mosnaim
- Department of Medicine, Division of Allergy and Immunology, Northshore University Health System, Evanston, Illinois, USA
| | - Bela Patel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - James H. Paxton
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jay S. Raval
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Catherine G. Sutcliffe
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Departement of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Diseases, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Thomas Gniadek
- Department of Pathology, Northshore University Health System, Evanston, Illinois, USA
| | - Seble Kassaye
- Division of Infectious Diseases, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Janis E. Blair
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, Arizona, USA
| | - Karen Lane
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nichol A. McBee
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy L. Gawad
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piyali Das
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabra L. Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Hanley
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - on behalf of the CSSC-004 Consortium
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Departement of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, Maryland, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, California, USA
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, California, USA
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worchester, Massachusetts, USA
- Luminis Health, Annapolis, Maryland, USA
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, California, USA
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Emergency Medicine, Rhode Island Hospital Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Department of Medicine, Division of Allergy and Immunology, Northshore University Health System, Evanston, Illinois, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, Texas, USA
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Medicine, Division of Infectious Diseases, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Pathology, Northshore University Health System, Evanston, Illinois, USA
- Division of Infectious Diseases, Medstar Georgetown University Hospital, Washington, DC, USA
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, Arizona, USA
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Escobedo-Sánchez PE, de la Cruz-Hernández I, Ramos-García M, Sánchez-Yedra I, García-Vázquez C, Guzmán-Priego CG, García-Vidrios MV, Olvera-Hernández V, Mendoza-García Y, Ble-Castillo JL. [Efficacy and safety of convalescent plasma administration in patients with COVID-19 infection]. Med Clin (Barc) 2023; 161:323-329. [PMID: 37423879 PMCID: PMC10277849 DOI: 10.1016/j.medcli.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION During the COVID-19 pandemic, several strategies were suggested for the management of the disease, including pharmacological and non-pharmacological treatments such as convalescent plasma (CP). The use of CP was suggested due to the beneficial results shown in treating other viral diseases. OBJECTIVE To determine the efficacy and safety of CP obtained from whole blood in patients with COVID-19. METHODS Pilot clinical trial in patients with COVID-19 from a general hospital. The subjects were separated into three groups that received the transfusion of 400ml of CP (n=23) or 400ml of standard plasma (SP) (n=19) and a non-transfused group (NT) (n=37). Patients also received the standard available medical treatment for COVID-19. Subjects were followed up daily from admission to day 21. RESULTS The CP did not improve the survival curve in moderate and severe variants of COVID-19, nor did it reduce the degree of severity of the disease evaluated with the COVID-19 WHO and SOFA clinical progression scale. No patient had a severe post-transfusion reaction to CP. CONCLUSIONS Treatment with CP does not reduce the mortality of patients even when its administration has a high degree of safety.
Collapse
Affiliation(s)
- Priscila Edith Escobedo-Sánchez
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Ibis de la Cruz-Hernández
- Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa, Tabasco, México
| | - Meztli Ramos-García
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Iván Sánchez-Yedra
- Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa, Tabasco, México
| | - Carlos García-Vázquez
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | | | | | - Viridiana Olvera-Hernández
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Yolanda Mendoza-García
- Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa, Tabasco, México
| | - Jorge Luis Ble-Castillo
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México.
| |
Collapse
|
31
|
Chala B, Tilaye T, Waktole G. Re-Emerging COVID-19: Controversy of Its Zoonotic Origin, Risks of Severity of Reinfection and Management. Int J Gen Med 2023; 16:4307-4319. [PMID: 37753439 PMCID: PMC10518360 DOI: 10.2147/ijgm.s419789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
The re-emergence of COVID-19 has sparked controversy around its zoonotic origin, management strategies, risks posed by the virus, and the severity of reinfection. While it is widely accepted that the virus originated from animals, the exact source and transmission pathway remain unclear. This has led to debates regarding the regulation of wildlife markets and trade, as well as the need for more robust surveillance and monitoring systems. Hence, the objective of this review is to provide a brief overview of the disease's biology, preventative strategies, risk factors, degree of reinfection, and epidemiological profile. It offers a thorough examination of the disease's root cause, potential zoonotic transmission, and the most recent preventive measures, like vaccines. In terms of management, there is ongoing debate about the most effective strategies to mitigate the spread of the virus. While public health measures such as social distancing and mask-wearing have been widely implemented, there are differing opinions on the effectiveness of lockdowns and restrictions on public movement. The risks posed by COVID-19 are also a topic of debate, with some arguing that the virus is relatively low-risk for the majority of the population while others highlight the potential for severe illness, particularly among vulnerable populations such as the elderly or those with underlying health conditions. Finally, the possibility of reinfection has raised concerns about the longevity of immunity following infection or vaccination. While some studies have suggested that reinfection may be possible and potentially more severe, the overall risk remains uncertain and further research is needed to fully understand the implications of reinfection.
Collapse
Affiliation(s)
- Bayissa Chala
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Tigist Tilaye
- Olanchiti Hospital, Oromia Health Bureau, Oromia Regional State, Ethiopia
| | - Gemechis Waktole
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Department of Biotechnology, College of Natural and Computational Science, Dambi Dollo University, Dambi Dollo, Ethiopia
| |
Collapse
|
32
|
Huaman MA, Raval JS, Paxton JH, Mosnaim GS, Patel B, Anjan S, Meisenberg BR, Levine AC, Marshall CE, Yarava A, Shenoy AG, Heath SL, Currier JS, Fukuta Y, Blair JE, Spivak ES, Petrini JR, Broderick PB, Rausch W, Cordisco M, Hammel J, Greenblatt B, Cluzet VC, Cruser D, Oei K, Abinante M, Hammitt LL, Sutcliffe CG, Forthal DN, Zand MS, Cachay ER, Kassaye SG, Ram M, Wang Y, Das P, Lane K, McBee NA, Gawad AL, Karlen N, Ford DE, Laeyendecker O, Pekosz A, Klein SL, Ehrhardt S, Lau B, Baksh SN, Shade DM, Casadevall A, Hanley DF, Ou J, Gniadek TJ, Ziman A, Shoham S, Gebo KA, Bloch EM, Tobian AAR, Sullivan DJ, Gerber JM. Transfusion reactions associated with COVID-19 convalescent plasma in outpatient clinical trials. Transfusion 2023; 63:1639-1648. [PMID: 37534607 PMCID: PMC10720768 DOI: 10.1111/trf.17485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND COVID-19 convalescent plasma (CCP) is an important therapeutic option for outpatients at high risk of hospitalization from SARS-CoV-2 infection. We assessed the safety of outpatient CCP transfusions administered during clinical trials. STUDY DESIGN AND METHODS We analyzed data pertaining to transfusion-related reactions from two randomized controlled trials in the U.S. that evaluated the efficacy of CCP versus control plasma in various ambulatory settings. Multivariable logistic regression was used to assess whether CCP was associated with transfusion reactions, after adjusting for potential confounders. RESULTS The combined study reported 79/1351 (5.9%) adverse events during the transfusion visit, with the majority 62/1351 (4.6%) characterized by mild, allergic-type findings of urticaria, and/or pruritus consistent with minor allergic transfusion reactions; the other reported events were attributed to the patients' underlying disease, COVID-19, or vasovagal in nature. We found no difference in the likelihood of allergic transfusion reactions between those receiving CCP versus control plasma (adjusted odds ratio [AOR], 0.75; 95% CI, 0.43-1.31). Risk of urticaria and/or pruritus increased with a pre-existing diagnosis of asthma (AOR, 2.33; 95% CI, 1.16-4.67). We did not observe any CCP-attributed antibody disease enhancement in participants with COVID-19 or increased risk of infection. There were no life-threatening severe transfusion reactions and no patients required hospitalization related to transfusion-associated complications. DISCUSSION Outpatient plasma administration was safely performed for nearly 1400 participants. CCP is a safe therapeutic option for outpatients at risk of hospitalization from COVID-19.
Collapse
Affiliation(s)
- Moises A Huaman
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - James H Paxton
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan, USA
| | - Giselle S Mosnaim
- Department of Medicine, Division of Allergy and Immunology, NorthShore University Health System, Evanston, Illinois, USA
| | - Bela Patel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Adam C Levine
- Department of Emergency Medicine, Rhode Island Hospital & Brown University, Providence, Rhode Island, USA
| | - Christi E Marshall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anusha Yarava
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aarthi G Shenoy
- Department of Medicine, Division of Hematology and Oncology, MedStar Washington Hospital Center, DC, USA
| | - Sonya L Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Judith S Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, USA
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Janis E Blair
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, Arizona, USA
| | - Emily S Spivak
- Department of Medicine, Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | | - Jean Hammel
- Nuvance Health Norwalk Hospital, Norwalk, Connecticut, USA
| | | | - Valerie C Cluzet
- Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, New York, USA
| | - Daniel Cruser
- Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, New York, USA
| | - Kevin Oei
- Ascada Research, Fullerton, California, USA
| | | | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Catherine G Sutcliffe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Donald N Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, California, USA
| | - Martin S Zand
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Edward R Cachay
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, California, USA
| | - Seble G Kassaye
- Department of Medicine, Division of Infectious Diseases, Georgetown University Medical Center, DC, USA
| | - Malathi Ram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ying Wang
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piyali Das
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen Lane
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nichol A McBee
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy L Gawad
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicky Karlen
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel E Ford
- Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- The Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stephan Ehrhardt
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bryan Lau
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sheriza N Baksh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - David M Shade
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel F Hanley
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiangda Ou
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas J Gniadek
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, Evanston, Illinois, USA
| | - Alyssa Ziman
- Department of Pathology and Laboratory Medicine, Wing-Kwai and Alice Lee-Tsing Chung Transfusion Service, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan M Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
33
|
Ashiq MAR, Gupta PS, Jubayer Biswas MAA, Ahmed N, Sultana MS, Ghosh B, Hasan MT. Depression, anxiety, stress, and fear of COVID-19 among Bangladeshi medical students during the first wave of the pandemic: a mixed-methods study. Front Psychiatry 2023; 14:1142724. [PMID: 37663600 PMCID: PMC10469694 DOI: 10.3389/fpsyt.2023.1142724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Aim This study aims to investigate depression, anxiety, stress, and fear of the COVID-19 pandemic and the associated risk factors among Bangladeshi medical students. It also explored qualitative insights on mental health from medical students during the first wave of the pandemic. Methods This mixed-methods study was conducted online in Bangladesh from June 2020 to September 2020. Participants were Bangladeshi medical students from the first year to the final year. The quantitative part included a structured online survey. One focus group discussion (FGD) was organized using the Zoom platform to collect qualitative insights from the students. To determine levels of stress, anxiety, and depression, the Bangla-validated version of the Depression, Anxiety, and Stress Scale 21 (DASS-21) was used. A 7-item and Bangla-validated Fear of COVID-19 Scale, also known as FCV-19S, was used to explore the COVID-19-specific fear of the students. A semi-structured topic guide was used for exploring the qualitative insights of medical students' perceptions of fear of COVID-19, mental health impacts during COVID-19, overall recommendations to support students, and the impact of the pandemic on the future of the medical curriculum. Results The study reported that 51.20%, 59.40%, and 64% of the 406 respondents had moderate to severe stress, anxiety, and depressive symptoms, respectively, according to the DASS-21. The mean fear score for the COVID-19 scale was 19.4 (SD 6.4). Respondents with family members aged 50 years or older (B = 2.1; CI: 0.3-3.9) and those who had infected family members (B = 1.9; 95% CI: 0.1-3.7) exhibited a higher level of fear of COVID-19. Moreover, depression was associated with a history of having cancer among family members (AOR = 2.9, CI: 1.1-7.5), anxiety was strongly associated with having symptoms of COVID-19 (AOR = 2, CI: 1.3-3.2), and stress was associated with having symptoms of COVID-19 infection among family members (AOR = 1.9, CI: 1.3-3). Altered sleep was a potential risk factor for developing stress, anxiety, and depression symptoms. Manual thematic analysis of qualitative data generated four major themes, including the perception of fear of COVID-19, the perception of mental health impacts during COVID-19, the change in the medical curriculum along with the pandemic, and recommendations from the medical students to support the mental health concerns of medical students during public health crises like this pandemic. Qualitative findings showed that the participants experienced fear of their parents becoming infected by COVID-19, and this fear was more prominent in those who had their loved ones hospitalized. They were also stressed and anxious, with thoughts of death. Their fear also extended to their thoughts on academic progress and the effectiveness of online classes. Conclusion A substantial proportion of medical students experienced mental health difficulties in Bangladesh. Appropriate interventions should be designed, and adequate support should be provided to the medical students to protect their mental health and wellbeing, considering their potential impact on the future health system in a low-resource setting like Bangladesh.
Collapse
Affiliation(s)
- Md Ashiqur Rahman Ashiq
- Department of Public Health, American International University-Bangladesh, Dhaka, Bangladesh
| | - Pradip Sen Gupta
- Department of Public Health, American International University-Bangladesh, Dhaka, Bangladesh
- Department of Epidemiology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | | | - Nowreen Ahmed
- Department of Pharmacology, MH Samorita Medical College and Hospital, Dhaka, Bangladesh
| | - Mst. Sadia Sultana
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | - M. Tasdik Hasan
- Action Lab, Department of Human-Centered Computing, Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
- Department of Public Health, State University of Bangladesh, Dhaka, Bangladesh
- Public Health Foundation, Bangladesh (PHFBD), Dhaka, Bangladesh
| |
Collapse
|
34
|
Steenhuis M, Wouters E, Schrezenmeier H, Rispens T, Tiberghien P, Harvala H, Feys HB, van der Schoot CE. Quality assessment and harmonization of laboratories across Europe for multiple SARS-CoV-2 serology assays. Vox Sang 2023; 118:666-673. [PMID: 37401414 DOI: 10.1111/vox.13480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND AND OBJECTIVES There is a need for conversion of SARS-CoV-2 serology data from different laboratories to a harmonized international unit. We aimed to compare the performance of multiple SARS-CoV-2 antibody serology assays among 25 laboratories across 12 European countries. MATERIALS AND METHODS To investigate this we have distributed to all participating laboratories a panel of 15 SARS-CoV-2 plasma samples and a single batch of pooled plasma calibrated to the WHO IS 20/136 standard. RESULTS All assays showed excellent discrimination between SARS-CoV-2 seronegative plasma samples and pre-vaccinated seropositive plasma samples but differed substantially in raw antibody titres. Titres could be harmonized to binding antibody units per millilitre by calibration in relation to a reference reagent. CONCLUSION The standardization of antibody quantification is of paramount importance to allow interpretation and comparison of serology data reported in clinical trials in order to identify donor cohorts from whom the most effective convalescent plasma can be collected.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| | - Elise Wouters
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Wurttemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| | | | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, London, UK
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - C Ellen van der Schoot
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
35
|
Merling MR, Williams A, Mahfooz NS, Ruane-Foster M, Smith J, Jahnes J, Ayers LW, Bazan JA, Norris A, Norris Turner A, Oglesbee M, Faith SA, Quam MB, Robinson RT. The emergence of SARS-CoV-2 lineages and associated saliva antibody responses among asymptomatic individuals in a large university community. PLoS Pathog 2023; 19:e1011596. [PMID: 37603565 PMCID: PMC10470930 DOI: 10.1371/journal.ppat.1011596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/31/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
SARS-CoV-2 (CoV2) infected, asymptomatic individuals are an important contributor to COVID transmission. CoV2-specific immunoglobulin (Ig)-as generated by the immune system following infection or vaccination-has helped limit CoV2 transmission from asymptomatic individuals to susceptible populations (e.g. elderly). Here, we describe the relationships between COVID incidence and CoV2 lineage, viral load, saliva Ig levels (CoV2-specific IgM, IgA and IgG), and ACE2 binding inhibition capacity in asymptomatic individuals between January 2021 and May 2022. These data were generated as part of a large university COVID monitoring program in Ohio, United States of America, and demonstrate that COVID incidence among asymptomatic individuals occurred in waves which mirrored those in surrounding regions, with saliva CoV2 viral loads becoming progressively higher in our community until vaccine mandates were established. Among the unvaccinated, infection with each CoV2 lineage (pre-Omicron) resulted in saliva Spike-specific IgM, IgA, and IgG responses, the latter increasing significantly post-infection and being more pronounced than N-specific IgG responses. Vaccination resulted in significantly higher Spike-specific IgG levels compared to unvaccinated infected individuals, and uninfected vaccinees' saliva was more capable of inhibiting Spike function. Vaccinees with breakthrough Delta infections had Spike-specific IgG levels comparable to those of uninfected vaccinees; however, their ability to inhibit Spike binding was diminished. These data are consistent with COVID vaccines having achieved hoped-for effects in our community, including the generation of mucosal antibodies that inhibit Spike and lower community viral loads, and suggest breakthrough Delta infections were not due to an absence of vaccine-elicited Ig, but instead limited Spike binding activity in the face of high community viral loads.
Collapse
Affiliation(s)
- Marlena R. Merling
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Amanda Williams
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Najmus S. Mahfooz
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Marisa Ruane-Foster
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Jacob Smith
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Jeff Jahnes
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Leona W. Ayers
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jose A. Bazan
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Alison Norris
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Epidemiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Abigail Norris Turner
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael Oglesbee
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Seth A. Faith
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Mikkel B. Quam
- Department of Epidemiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard T. Robinson
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
36
|
Beneti SC, Marques LLM, Mattos G, Cardoso FAR. Use of convalescent plasma to treat COVID-19: case studies. BRAZ J BIOL 2023; 83:e262897. [PMID: 37493679 DOI: 10.1590/1519-6984.262897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/11/2022] [Indexed: 07/27/2023] Open
Abstract
There have been several efforts to minimize the effects caused by the COVID-19 virus around the world. Vaccines were developed in record time and alternative therapies were studied and applied in several countries, such as the use of plasma from recovered patients. Identifying, systematically evaluating and summarizing the best available scientific evidence on the efficacy and safety of using plasma from recovered COVID-19 patients remains the objective of this study. The studies carried out showed that the application of convalescent plasma contributes to the reduction of mortality, viral load and length of hospital stay. However, the effectiveness of the therapy still raises doubts due to the number of patients evaluated in clinical studies, in addition to its high cost and limitations in terms of availability and implementation, with the drug being authorized only for hospital use.
Collapse
Affiliation(s)
- Stéphani Caroline Beneti
- Universidade Tecnológica Federal do Paraná - UTFPR, Departamento Acadêmico de Alimentos e Engenharia Química, Campo Mourão, PR, Brasil
| | - Leila Larisa Medeiros Marques
- Universidade Tecnológica Federal do Paraná - UTFPR, Departamento Acadêmico de Alimentos e Engenharia Química, Campo Mourão, PR, Brasil
| | - Gisely Mattos
- Universidade Tecnológica Federal do Paraná - UTFPR, Programa de Pós-graduação em Inovações Tecnológicas - PPGIT, Campo Mourão, PR, Brasil
| | - Flávia Aparecida Reitz Cardoso
- Universidade Tecnológica Federal do Paraná - UTFPR, Programa de Pós-graduação em Inovações Tecnológicas - PPGIT, Campo Mourão, PR, Brasil
- Universidade Tecnológica Federal do Paraná - UTFPR, Programa de Pós-graduação em Tecnologia de Alimentos - PPGTA, Campo Mourão, PR, Brasil
| |
Collapse
|
37
|
McConnell SA, Sachithanandham J, Mudrak NJ, Zhu X, Farhang PA, Cordero RJB, Wear MP, Shapiro JR, Park HS, Klein SL, Tobian AAR, Bloch EM, Sullivan DJ, Pekosz A, Casadevall A. Spike-protein proteolytic antibodies in COVID-19 convalescent plasma contribute to SARS-CoV-2 neutralization. Cell Chem Biol 2023; 30:726-738.e4. [PMID: 37354908 PMCID: PMC10288624 DOI: 10.1016/j.chembiol.2023.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/23/2023] [Accepted: 05/26/2023] [Indexed: 06/26/2023]
Abstract
Understanding the mechanisms of antibody-mediated neutralization of SARS-CoV-2 is critical in combating the COVID-19 pandemic. Based on previous reports of antibody catalysis, we investigated the proteolysis of spike (S) by antibodies in COVID-19 convalescent plasma (CCP) and its contribution to viral neutralization. Quenched fluorescent peptides were designed based on S epitopes to sensitively detect antibody-mediated proteolysis. We observed epitope cleavage by CCP from different donors which persisted when plasma was heat-treated or when IgG was isolated from plasma. Further, purified CCP antibodies proteolyzed recombinant S domains, as well as authentic viral S. Cleavage of S variants suggests CCP antibody-mediated proteolysis is a durable phenomenon despite antigenic drift. We differentiated viral neutralization occurring via direct interference with receptor binding from that occurring by antibody-mediated proteolysis, demonstrating that antibody catalysis enhanced neutralization. These results suggest that antibody-catalyzed damage of S is an immunologically relevant function of neutralizing antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Scott A McConnell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nathan J Mudrak
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Parsa Alba Farhang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Radames J B Cordero
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Maggie P Wear
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Janna R Shapiro
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Van Denakker TA, Al-Riyami AZ, Feghali R, Gammon R, So-Osman C, Crowe EP, Goel R, Rai H, Tobian AAR, Bloch EM. Managing blood supplies during natural disasters, humanitarian emergencies, and pandemics: lessons learned from COVID-19. Expert Rev Hematol 2023; 16:501-514. [PMID: 37129864 PMCID: PMC10330287 DOI: 10.1080/17474086.2023.2209716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION The COVID-19 pandemic has resulted in a historic public health crisis with widespread social and economic ramifications. The pandemic has also affected the blood supply, resulting in unprecedented and sustained blood shortages. AREAS COVERED This review describes the challenges of maintaining a safe and sufficient blood supply in the wake of natural disasters, humanitarian emergencies, and pandemics. The challenges, which are accentuated in low- and high-income countries, span the impact on human capacity (affecting blood donors and blood collections personnel alike), disruption to supply chains, and economic sustainability. COVID-19 imparted lessons on how to offset these challenges, which may be applied to future pandemics and public health crises. EXPERT OPINION Pandemic emergency preparedness plans should be implemented or revised by blood centers and hospitals to lessen the impact to the blood supply. Comprehensive planning should address the timely assessment of risk to the blood supply, rapid donor recruitment, and communication of need, measures to preserve safety for donors and operational staff, careful blood management, and resource sharing.
Collapse
Affiliation(s)
- Tayler A Van Denakker
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arwa Z Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital Sultan Qaboos University, Muscat, Oman
| | | | - Richard Gammon
- OneBlood, Scientific, Medical, Technical Direction, Orlando, FL, USA
| | - Cynthia So-Osman
- Sanquin Blood Supply Foundation, Department of Transfusion medicine, Amsterdam, The Netherlands
| | - Elizabeth P Crowe
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruchika Goel
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Simmons Cancer Institute, Department of Internal Medicine, Springfield, IL, USA
| | - Herleen Rai
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron A R Tobian
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan M Bloch
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Joyner MJ, Wiggins CC, Baker SE, Klassen SA, Senefeld JW. Exercise and Experiments of Nature. Compr Physiol 2023; 13:4879-4907. [PMID: 37358508 PMCID: PMC10853940 DOI: 10.1002/cphy.c220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In this article, we highlight the contributions of passive experiments that address important exercise-related questions in integrative physiology and medicine. Passive experiments differ from active experiments in that passive experiments involve limited or no active intervention to generate observations and test hypotheses. Experiments of nature and natural experiments are two types of passive experiments. Experiments of nature include research participants with rare genetic or acquired conditions that facilitate exploration of specific physiological mechanisms. In this way, experiments of nature are parallel to classical "knockout" animal models among human research participants. Natural experiments are gleaned from data sets that allow population-based questions to be addressed. An advantage of both types of passive experiments is that more extreme and/or prolonged exposures to physiological and behavioral stimuli are possible in humans. In this article, we discuss a number of key passive experiments that have generated foundational medical knowledge or mechanistic physiological insights related to exercise. Both natural experiments and experiments of nature will be essential to generate and test hypotheses about the limits of human adaptability to stressors like exercise. © 2023 American Physiological Society. Compr Physiol 13:4879-4907, 2023.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C Wiggins
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah E Baker
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jonathon W Senefeld
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
40
|
Lista F, Peragallo MS, Biselli R, De Santis R, Mariotti S, Nisini R, D'Amelio R. Have Diagnostics, Therapies, and Vaccines Made the Difference in the Pandemic Evolution of COVID-19 in Comparison with "Spanish Flu"? Pathogens 2023; 12:868. [PMID: 37513715 PMCID: PMC10384375 DOI: 10.3390/pathogens12070868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
In 1918 many countries, but not Spain, were fighting World War I. Spanish press could report about the diffusion and severity of a new infection without censorship for the first-time, so that this pandemic is commonly defined as "Spanish flu", even though Spain was not its place of origin. "Spanish flu" was one of the deadliest pandemics in history and has been frequently compared with the coronavirus disease (COVID)-19 pandemic. These pandemics share similarities, being both caused by highly variable and transmissible respiratory RNA viruses, and diversity, represented by diagnostics, therapies, and especially vaccines, which were made rapidly available for COVID-19, but not for "Spanish flu". Most comparison studies have been carried out in the first period of COVID-19, when these resources were either not yet available or their use had not long started. Conversely, we wanted to analyze the role that the advanced diagnostics, anti-viral agents, including monoclonal antibodies, and innovative COVID-19 vaccines, may have had in the pandemic containment. Early diagnosis, therapies, and anti-COVID-19 vaccines have markedly reduced the pandemic severity and mortality, thus preventing the collapse of the public health services. However, their influence on the reduction of infections and re-infections, thus on the transition from pandemic to endemic condition, appears to be of minor relevance. The high viral variability of influenza and coronavirus may probably be contained by the development of universal vaccines, which are not easy to be obtained. The only effective weapon still remains the disease prevention, to be achieved with the reduction of promiscuity between the animal reservoirs of these zoonotic diseases and humans.
Collapse
Affiliation(s)
- Florigio Lista
- Istituto di Scienze Biomediche della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
| | - Mario Stefano Peragallo
- Centro Studi e Ricerche di Sanità e Veterinaria, Comando Logistico dell'Esercito, 00184 Roma, Italy
| | - Roberto Biselli
- Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
| | - Riccardo De Santis
- Istituto di Scienze Biomediche della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza, Università di Roma, 00161 Roma, Italy
| | - Sabrina Mariotti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Raffaele D'Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza, Università di Roma, 00198 Roma, Italy
| |
Collapse
|
41
|
Uzun G, Müller R, Althaus K, Becker M, Marsall P, Junker D, Nowak-Harnau S, Schneiderhan-Marra N, Klüter H, Schrezenmeier H, Bugert P, Bakchoul T. Correlation between Clinical Characteristics and Antibody Levels in COVID-19 Convalescent Plasma Donor Candidates. Viruses 2023; 15:1357. [PMID: 37376656 DOI: 10.3390/v15061357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) with high neutralizing antibodies has been suggested in preventing disease progression in COVID-19. In this study, we investigated the relationship between clinical donor characteristics and neutralizing anti-SARS-CoV-2 antibodies in CCP donors. COVID-19 convalescent plasma donors were included into the study. Clinical parameters were recorded and anti-SARS-CoV-2 antibody levels (Spike Trimer, Receptor Binding Domain (RBD), S1, S2 and nucleocapsid protein) as well as ACE2 binding inhibition were measured. An ACE2 binding inhibition < 20% was defined as an inadequate neutralization capacity. Univariate and multivariable logistic regression analysis was used to detect the predictors of inadequate neutralization capacity. Ninety-one CCP donors (56 female; 61%) were analyzed. A robust correlation between all SARS-CoV-2 IgG antibodies and ACE2 binding inhibition, as well as a positive correlation between donor age, body mass index, and a negative correlation between time since symptom onset and antibody levels were found. We identified time since symptom onset, normal body mass index (BMI), and the absence of high fever as independent predictors of inadequate neutralization capacity. Gender, duration of symptoms, and number of symptoms were not associated with SARS-CoV-2 IgG antibody levels or neutralization. Neutralizing capacity was correlated with SARS-CoV-2 IgG antibodies and associated with time since symptom onset, BMI, and fever. These clinical parameters can be easily incorporated into the preselection of CCP donors.
Collapse
Affiliation(s)
- Günalp Uzun
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Rebecca Müller
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Karina Althaus
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Matthias Becker
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Patrick Marsall
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Stefanie Nowak-Harnau
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
- Institute for Transfusion Medicine and University Hospital Ulm, University of Ulm, 89081 Ulm, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| |
Collapse
|
42
|
Bloch EM, Focosi D, Shoham S, Senefeld J, Tobian AAR, Baden LR, Tiberghien P, Sullivan DJ, Cohn C, Dioverti V, Henderson JP, So-Osman C, Juskewitch JE, Razonable RR, Franchini M, Goel R, Grossman BJ, Casadevall A, Joyner MJ, Avery RK, Pirofski LA, Gebo KA. Guidance on the Use of Convalescent Plasma to Treat Immunocompromised Patients With Coronavirus Disease 2019. Clin Infect Dis 2023; 76:2018-2024. [PMID: 36740590 PMCID: PMC10249987 DOI: 10.1093/cid/ciad066] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) is a safe and effective treatment for COVID-19 in immunocompromised (IC) patients. IC patients have a higher risk of persistent infection, severe disease, and death from COVID-19. Despite the continued clinical use of CCP to treat IC patients, the optimal dose, frequency/schedule, and duration of CCP treatment has yet to be determined, and related best practices guidelines are lacking. A group of individuals with expertise spanning infectious diseases, virology and transfusion medicine was assembled to render an expert opinion statement pertaining to the use of CCP for IC patients. For optimal effect, CCP should be recently and locally collected to match circulating variant. CCP should be considered for the treatment of IC patients with acute and protracted COVID-19; dosage depends on clinical setting (acute vs protracted COVID-19). CCP containing high-titer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, retains activity against circulating SARS-CoV-2 variants, which have otherwise rendered monoclonal antibodies ineffective.
Collapse
Affiliation(s)
- Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathon Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lindsey R Baden
- Department of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine-St-Denis and Université de Franche-Comté, Besançon, France
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Claudia Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Veronica Dioverti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey P Henderson
- Departments of Internal Medicine (Division of Infectious Diseases) and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia So-Osman
- Department Transfusion Medicine, Division Blood Bank, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
- Department Haematology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Justin E Juskewitch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester campus, Minnesota, USA
| | - Raymund R Razonable
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ruchika Goel
- Division of Hematology/Oncology, Simmons Cancer Institute at SIU School of Medicine and Mississippi Valley Regional Blood Center, Springfield, Illinois, USA
| | - Brenda J Grossman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin K Avery
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liise-anne Pirofski
- Department of Medicine, Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Al-Hatamleh MA, Abusalah MA, Hatmal MM, Alshaer W, Ahmad S, Mohd-Zahid MH, Rahman ENSE, Yean CY, Alias IZ, Uskoković V, Mohamud R. Understanding the challenges to COVID-19 vaccines and treatment options, herd immunity and probability of reinfection. J Taibah Univ Med Sci 2023; 18:600-638. [PMID: 36570799 PMCID: PMC9758618 DOI: 10.1016/j.jtumed.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Unlike pandemics in the past, the outbreak of coronavirus disease 2019 (COVID-19), which rapidly spread worldwide, was met with a different approach to control and measures implemented across affected countries. The lack of understanding of the fundamental nature of the outbreak continues to make COVID-19 challenging to manage for both healthcare practitioners and the scientific community. Challenges to vaccine development and evaluation, current therapeutic options, convalescent plasma therapy, herd immunity, and the emergence of reinfection and new variants remain the major obstacles to combating COVID-19. This review discusses these challenges in the management of COVID-19 at length and highlights the mechanisms needed to provide better understanding of this pandemic.
Collapse
Affiliation(s)
- Mohammad A.I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mai A. Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Ma'mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Manali H. Mohd-Zahid
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Engku Nur Syafirah E.A. Rahman
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Chan Y. Yean
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Iskandar Z. Alias
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
44
|
Iannizzi C, Chai KL, Piechotta V, Valk SJ, Kimber C, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Jindal A, Cryns N, Estcourt LJ, Kreuzberger N, Skoetz N. Convalescent plasma for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2023; 5:CD013600. [PMID: 37162745 PMCID: PMC10171886 DOI: 10.1002/14651858.cd013600.pub6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.
Collapse
Affiliation(s)
- Claire Iannizzi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Aikaj Jindal
- Department of Transfusion Medicine, SPS Hospitals, Ludhiana (Punjab), India
| | - Nora Cryns
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
45
|
Garraud O, Watier H. Is there any revival of the use of plasma therapy or neutralizing convalescent antibody therapy to treat SARS-CoV-2 variants and are we rethinking preparedness plans? Transfus Apher Sci 2023:103726. [PMID: 37169698 PMCID: PMC10164650 DOI: 10.1016/j.transci.2023.103726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Olivier Garraud
- SAINBIOSE INSERM U1049, Université de Saint-Etienne, Saint-Etienne, France.
| | - Hervé Watier
- CPER INSERM U1100 and Université de Tours, and CHRU de Tours, Tours, France
| |
Collapse
|
46
|
Jacquot C, Gordon O, Noland D, Donowitz JR, Levy E, Jain S, Willis Z, Rimland C, Loi M, Arrieta A, Annen K, Drapeau N, Osborne S, Ardura MI, Arora S, Zivick E, Delaney M. Multi-institutional experience with COVID-19 convalescent plasma in children. Transfusion 2023; 63:918-924. [PMID: 36965173 PMCID: PMC10175190 DOI: 10.1111/trf.17318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Convalescent COVID-19 plasma (CCP) was developed and used worldwide as a treatment option by supplying passive immunity. Adult studies suggest administering high-titer CCP early in the disease course of patients who are expected to be antibody-negative; however, pediatric experience is limited. We created a multi-institutional registry to characterize pediatric patients (<18 years) who received CCP and to assess the safety of this intervention. METHODS A REDCap survey was distributed. The registry collected de-identified data including demographic information (age, gender, and underlying conditions), COVID-19 disease features and concurrent treatments, CCP transfusion and safety events, and therapy response. RESULTS Ninety-five children received CCP: 90 inpatients and 5 outpatients, with a median age of 10.2 years (range 0-17.9). They were predominantly Latino/Hispanic and White. The most frequent underlying medical conditions were chronic respiratory disease, immunosuppression, obesity, and genetic syndromes. CCP was primarily given as a treatment (95%) rather than prophylaxis (5%). Median total plasma dose administered and transfusion rates were 5.0 ml/kg and 2.6 ml/kg/h, respectively. The transfusions were well-tolerated, with 3 in 115 transfusions reporting mild reactions. No serious adverse events were reported. Severity scores decreased significantly 7 days after CCP transfusion or at discharge. Eighty-five patients (94.4%) survived to hospital discharge. All five outpatients survived to 60 days. CONCLUSIONS CCP was found to be safe and well-tolerated in children. CCP was frequently given concurrently with other COVID-19-directed treatments with improvement in clinical severity scores ≥7 days after CCP, but efficacy could not be evaluated in this study.
Collapse
Affiliation(s)
- Cyril Jacquot
- Department of Laboratory Medicine, Children's National Hospital, District of Columbia, Washington, USA
- Departments of Pathology and Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Oren Gordon
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jeffrey R Donowitz
- Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Sanjay Jain
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Michele Loi
- Children's Hospital Colorado, Aurora, Colorado, USA
- University of Colorado-Anschutz School of Medicine Dept. of Pathology, Aurora, Colorado, USA
| | - Antonio Arrieta
- Division of Infectious Diseases, Children's Hospital of Orange County, Orange, California, USA
- Department of Pediatrics, University of California at Irvine, Irvine, California, USA
| | - Kyle Annen
- Children's Hospital Colorado, Aurora, Colorado, USA
- University of Colorado-Anschutz School of Medicine Dept. of Pathology, Aurora, Colorado, USA
| | | | - Stephanie Osborne
- Division of Infectious Diseases, Children's Hospital of Orange County, Orange, California, USA
| | - Monica I Ardura
- Pediatric Infectious Diseases & Host Defense Program, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Satyam Arora
- Postgraduate Institute of Child Health, Delhi, India
| | - Elise Zivick
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Meghan Delaney
- Department of Laboratory Medicine, Children's National Hospital, District of Columbia, Washington, USA
- Departments of Pathology and Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
47
|
Ceja-Gálvez HR, Renteria-Flores FI, Nicoletti F, Hernández-Bello J, Macedo-Ojeda G, Muñoz-Valle JF. Severe COVID-19: Drugs and Clinical Trials. J Clin Med 2023; 12:2893. [PMID: 37109231 PMCID: PMC10142549 DOI: 10.3390/jcm12082893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including "Convalescent plasma therapy in COVID-19" or "Viral polymerase inhibitors" and "COVID-19" in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables-such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate-in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Collapse
Affiliation(s)
- Hazael Ramiro Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gabriela Macedo-Ojeda
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
48
|
AlNafea HM, Korish AA. The interplay between hypovitaminosis D and the immune dysfunction in the arteriovenous thrombotic complications of the sever coronavirus disease 2019 (COVID-19) infection. Blood Coagul Fibrinolysis 2023; 34:129-137. [PMID: 36966750 PMCID: PMC10089932 DOI: 10.1097/mbc.0000000000001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/11/2023] [Indexed: 03/28/2023]
Abstract
Thromboembolic complications including cerebrovascular accidents, pulmonary embolism, myocardial infarction, deep vein thrombosis and disseminating intravascular coagulopathy are serious encounters in sever coronavirus disease 2019 (COVID-19) infected patients. This worsens the prognosis and may lead to death or life long morbidities. The laboratory finding of the disturbed haemostasias and the hyperinflammatory response are almost invariably present in COVID-19 patients. Multiple treatment modalities are utilized by the healthcare professionals to overcome the cytokine storm, oxidative stress, endothelial dysfunction, and coagulopathy in these patients. The combined actions of vitamin D (VitD) as a steroid hormone with anti-inflammatory, immunomodulatory, and antithrombotic properties increase the potential of the possible involvement of hypovitaminosis D in the thromboembolic complications of COVID-19 infection, and stimulated researchers and physicians to administer VitD therapy to prevent the infection and/or overcome the disease complications. The current review highlighted the immunomodulatory, anti-inflammatory, antioxidative and hemostatic functions of VitD and its interrelation with the renin-angiotensin-aldosterone system (RAAS) pathway and the complement system. Additionally, the association of VitD deficiency with the incidence and progression of COVID-19 infection and the associated cytokine storm, oxidative stress, hypercoagulability, and endothelial dysfunction were emphasized. Normalizing VitD levels by daily low dose therapy in patients with hypovitaminosis D below (25 nmol/l) is essential for a balanced immune response and maintaining the health of the pulmonary epithelium. It protects against upper respiratory tract infections and decreases the complications of COVID-19 infections. Understanding the role of VitD and its associated molecules in the protection against the coagulopathy, vasculopathy, inflammation, oxidative stress and endothelial dysfunction in COVID-19 infection could lead to new therapeutic strategies to prevent, treat, and limit the complications of this deadly virus infection.
Collapse
Affiliation(s)
- Haifa M. AlNafea
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University
| | - Aida A. Korish
- Physiology Department (29), College of Medicine, King Saud University Medical City (KSUMC), King Saud university, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Convalescent Plasma Treatment of Patients Previously Treated with B-Cell-Depleting Monoclonal Antibodies Suffering COVID-19 Is Associated with Reduced Re-Admission Rates. Viruses 2023; 15:v15030756. [PMID: 36992465 PMCID: PMC10059055 DOI: 10.3390/v15030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Patients receiving treatment with B-cell-depleting monoclonal antibodies, such as anti-CD20 monoclonal antibodies, such as rituximab and obinutuzumab, either for hematological disease or another diagnosis, such as a rheumatological disease, are at an increased risk for medical complications and mortality from COVID-19. Since inconsistencies persist regarding the use of convalescent plasma (CP), especially in the vulnerable patient population that has received previous treatment with B-cell-depleting monoclonal antibodies, further studies should be performed in thisdirection. The aim of the present study was to describe the characteristics of patients with previous use of B-cell-depleting monoclonal antibodies and describe the potential beneficial effects of CP use in terms of mortality, ICU admission and disease relapse. In this retrospective cohort study, 39 patients with previous use of B-cell-depleting monoclonal antibodies hospitalized in the COVID-19 department of a tertiary hospital in Greece were recorded and evaluated. The mean age was 66.3 years and 51.3% were male. Regarding treatment for COVID-19, remdesivir was used in 89.7%, corticosteroids in 94.9% and CP in 53.8%. In-hospital mortality was 15.4%. Patients who died were more likely to need ICU admission and also had a trend towards a longer hospital stay, even though the last did not reach statistical significance. Patients treated with CP had a lower re-admission rate for COVID-19 after discharge. Further studies should be performed to identify the role of CP in patients with treatment with B-cell-depleting monoclonal antibodies suffering from COVID-19.
Collapse
|
50
|
Oner E, Demirhan I, Miraloglu M, Yalin S, Kurutas EB. Investigation of antiviral substances in Covid 19 by Molecular Docking: In Silico Study. Afr Health Sci 2023; 23:23-36. [PMID: 37545919 PMCID: PMC10398506 DOI: 10.4314/ahs.v23i1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Aims This paper aimed to investigate the antiviral drugs against Sars-Cov-2 main protease (MPro) using in silico methods. Material and Method A search was made for antiviral drugs in the PubChem database and antiviral drugs such as Bictegravir, Emtricitabine, Entecavir, Lamivudine, Tenofovir, Favipiravir, Hydroxychloroquine, Lopinavir, Oseltamavir, Remdevisir, Ribavirin, Ritonavir were included in our study. The protein structure of Sars-Cov-2 Mpro (PDB ID: 6LU7) was taken from the Protein Data Bank (www.rcsb. Org) system and included in our study. Molecular docking was performed using AutoDock/Vina, a computational docking program. Protein-ligand interactions were performed with the AutoDock Vina program. 3D visualizations were made with the Discovery Studio 2020 program. N3 inhibitor method was used for our validation. Results In the present study, bictegravir, remdevisir and lopinavir compounds in the Sars-Cov-2 Mpro structure showed higher binding affinity compared to the antiviral compounds N3 inhibitor, according to our molecular insertion results. However, the favipiravir, emtricitabine and lamuvidune compounds were detected very low binding affinity. Other antiviral compounds were found close binding affinity with the N3 inhibitor. Conclusion Bictegravir, remdevisir and lopinavir drugs showed very good results compared to the N3 inhibitor. Therefore, they could be inhibitory in the Sars Cov-2 Mpro target.
Collapse
Affiliation(s)
- Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, 33090, Türkey
| | - Ilter Demirhan
- Vocational School of Health Services, Department of Electronics-Automation Biomedical Device Tecnology Program, Harran University, Sanlıurfa, 63090, Türkey
| | - Meral Miraloglu
- Department of Medical Microbiology, Cukurova University, Medical Faculty, Adana, Türkey
| | - Serap Yalin
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, 33090, Türkey
| | - Ergul Belge Kurutas
- Department of Medical Biochemistry, Faculty of Medicine, Sutcu Imam Univestiy, Kahramanmaras, 46090, Türkey
| |
Collapse
|