1
|
Hashimoto N, Okada N, Fukunaga M, Nemoto K, Miura K, Matsumoto J, Ishikawa S, Narita H, Morita K, Yasuda Y, Kamishikiryo T, Harada K, Yamamoto M, Ohi K, Matsubara T, Hirano Y, Okada G, Tha KK, Abe O, Onitsuka T, Kawasaki Y, Ozaki N, Kasai K, Hashimoto R. Lithium and valproate affect subcortical brain volumes in individuals with bipolar disorder: Mega-analysis of 235 individuals. J Affect Disord 2025; 381:115-120. [PMID: 40189070 DOI: 10.1016/j.jad.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/01/2024] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION The mega-analysis conducted by the ENIGMA Bipolar Disorder Working Group revealed significant volume increment effects of lithium on the hippocampus in individual with bipolar disorder. However, the study did not assess other medications and other subcortical regions. METHODS Data of 235 individuals with bipolar disorder were taken from a mega-analysis conducted by the COCORO consortium in Japan. The effects of psychotropic prescriptions (lithium, valproate, antipsychotics, antidepressants, benzodiazepines) were assessed using a linear mixed-effects model with volumes of subcortical structures as dependent variables, and age, sex, intracranial volume, duration of illness, and psychotropic prescriptions as independent variables; the type of protocol was incorporated as a random effect. RESULTS Prescriptions of lithium was associated with larger left amygdala volume (Effect size (ES, Cohen's d) = 0.36, p = 0.001). Prescriptions of valproate was associated with smaller left amygdala volume (ES = -0.45, p = 0.001), and larger bilateral ventricle volumes (ES = 0.68, p < 0.001 (left), ES = 0.70, p < 0.001 (right)). Prescriptions of antipsychotics were associated with larger left globus pallidus volume (ES = 0.33, p = 0.014) and smaller left hippocampus volume (ES = -0.33, p = 0.024). Prescriptions of benzodiazepines were associated with smaller left lateral ventricle (ES = -0.40, p = 0.029). Prescriptions of antidepressants were associated with smaller right accumbens volume (ES = -0.22, p = 0.043), bilateral caudate volumes (ES = -0.38, p = 0.013 (left), ES = -0.25, p = 0.050 (right)) and right putamen volume (ES = -0.23, p = 0.024). CONCLUSION We confirmed the association between prescription of valproate and smaller amygdala and larger lateral ventricle volumes in a large sample for the first time. Large sample size, uniform data collection methodology, and robust statistical analysis are strengths of the current study.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan.
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kenichiro Miura
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan; Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shuhei Ishikawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Hisashi Narita
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Kentaro Morita
- Department of Rehabilitation, University of Tokyo Hospital, Tokyo, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Life Grow Brilliant Mental Clinic, Medical Corporation Foster, Osaka, Japan
| | | | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan; Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Go Okada
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Khin K Tha
- Department of Diagnostic Imaging, Hokkaido University Faculty of Medicine, Hokkaido, Japan; Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Yasuhiro Kawasaki
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Aichi, Japan; Pathophysiology of Mental Disorders, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan; University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Strom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Bäckman J, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O'Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, et alStrom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Bäckman J, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O'Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, Riddle MA, Ripke S, Rosário MC, Sampaio AS, Schiele MA, Skogholt AH, Sloofman LG, Smit J, Artigas MS, Thomas LF, Tifft E, Vallada H, van Kirk N, Veenstra-VanderWeele J, Vulink NN, Walker CP, Wang Y, Wendland JR, Winsvold BS, Yao Y, Zhou H, Agrawal A, Alonso P, Berberich G, Bucholz KK, Bulik CM, Cath D, Denys D, Eapen V, Edenberg H, Falkai P, Fernandez TV, Fyer AJ, Gaziano JM, Geller DA, Grabe HJ, Greenberg BD, Hanna GL, Hickie IB, Hougaard DM, Kathmann N, Kennedy J, Lai D, Landén M, Hellard SL, Leboyer M, Lochner C, McCracken JT, Medland SE, Mortensen PB, Neale BM, Nicolini H, Nordentoft M, Pato M, Pato C, Pauls DL, Piacentini J, Pittenger C, Posthuma D, Ramos-Quiroga JA, Rasmussen SA, Richter MA, Rosenberg DR, Ruhrmann S, Samuels JF, Sandin S, Sandor P, Spalletta G, Stein DJ, Stewart SE, Storch EA, Stranger BE, Turiel M, Werge T, Andreassen OA, Børglum AD, Walitza S, Hveem K, Hansen BK, Rück C, Martin NG, Milani L, Mors O, Reichborn-Kjennerud T, Ribasés M, Kvale G, Mataix-Cols D, Domschke K, Grünblatt E, Wagner M, Zwart JA, Breen G, Nestadt G, Kaprio J, Arnold PD, Grice DE, Knowles JA, Ask H, Verweij KJ, Davis LK, Smit DJ, Crowley JJ, Scharf JM, Stein MB, Gelernter J, Mathews CA, Derks EM, Mattheisen M. Genome-wide analyses identify 30 loci associated with obsessive-compulsive disorder. Nat Genet 2025:10.1038/s41588-025-02189-z. [PMID: 40360802 DOI: 10.1038/s41588-025-02189-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
Obsessive-compulsive disorder (OCD) affects ~1% of children and adults and is partly caused by genetic factors. We conducted a genome-wide association study (GWAS) meta-analysis combining 53,660 OCD cases and 2,044,417 controls and identified 30 independent genome-wide significant loci. Gene-based approaches identified 249 potential effector genes for OCD, with 25 of these classified as the most likely causal candidates, including WDR6, DALRD3 and CTNND1 and multiple genes in the major histocompatibility complex (MHC) region. We estimated that ~11,500 genetic variants explained 90% of OCD genetic heritability. OCD genetic risk was associated with excitatory neurons in the hippocampus and the cortex, along with D1 and D2 type dopamine receptor-containing medium spiny neurons. OCD genetic risk was shared with 65 of 112 additional phenotypes, including all the psychiatric disorders we examined. In particular, OCD shared genetic risk with anxiety, depression, anorexia nervosa and Tourette syndrome and was negatively associated with inflammatory bowel diseases, educational attainment and body mass index.
Collapse
Affiliation(s)
- Nora I Strom
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany.
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Zachary F Gerring
- Department of Mental Health and Neuroscience, Translational Neurogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Population Health and Immunity, Healthy Development and Ageing, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Marco Galimberti
- Department of Psychiatry, Human Genetics, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dongmei Yu
- Department of Center for Genomic Medicine, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew W Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Cristina Rodriguez-Fontenla
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Genomics and Bioinformatics, University of Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Genetics, Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Julia M Sealock
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tim Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Jonathan R Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Behrang Mahjani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jackson G Thorp
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christie L Burton
- Department of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jurjen J Luykx
- Department of Psychiatry, Brain University Medical Center Utrecht, Utrecht, the Netherlands
- Second Opinion Outpatient Clinic, GGNet, Warnsveld, the Netherlands
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Christine Andre
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Kathleen D Askland
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Hamilton, Ontario, Canada
| | - Julia Bäckman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Judith Becker Nissen
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
- Institute of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - O Joseph Bienvenu
- Department of Psychiatry and Behavioral Sciences, General Hospital Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Black
- Departments of Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael H Bloch
- Department of Child Study Center and Psychiatry, Yale University, New Haven, CT, USA
| | - Sigrid Børte
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Rosa Bosch
- Department of Child and Adolescent Mental Health, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Instituto de Salut Carlos III, Centro de Investigación Biomédica en Red de Salut Mental (CIBERSAM), Madrid, Spain
| | - Michael Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian P Brennan
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Helena Brentani
- Department of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Enda M Byrne
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Judit Cabana-Dominguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Beatriz Camarena
- Pharmacogenetics Department, Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Mexico City, México
| | | | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Angel Carracedo
- CiMUS, Genomics and Bioinformatics Group, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Medicina Genómica, Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Miguel Casas
- Programa MIND Escoles, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Departamento de Psiquiatría y Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Edwin H Cook
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Jesse Crosby
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bernadette A Cullen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elles J De Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Richard Delorme
- Child and Adolesccent Psychiatry Department, APHP, Paris, France
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jason A Elias
- Psychiatry, McLean Hospital OCDI, Harvard Medical School, Belmont, MA, USA
- Adult Psychological Services, CBTeam LLC, Lexington, MA, USA
| | - Xavier Estivill
- qGenomics (Quantitative Genomics Laboratories), Esplugues de Llobregat, Spain
| | - Martha J Falkenstein
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bengt T Fundin
- Department of Medical Epidemiology and Biostatistics, Center for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| | - Lauryn Garner
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Christina Gironda
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Fernando S Goes
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Marco A Grados
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus, Denmark
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kristen Hagen
- Department of Psychiatry, Møre og Romsdal Hospital Trust, Molde, Norway
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
| | - Kelly Harrington
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Kira D Höffler
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Dr. Einar Martens Research Group for Biological Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ana G Hounie
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Donald Hucks
- Department of Medicine, Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Janecka
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Eric Jenike
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Elinor K Karlsson
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Kelley
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Janice E Krasnow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christoph Lange
- Department of Biostatistics, T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Daniel Levey
- Department of Psychiatry, Yale University, West Haven, CT, USA
- Office of Research and Development, United States Department of Veterans Affairs, West Haven, CT, USA
| | - Kerstin Lindblad-Toh
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Fabio Macciardi
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brittany Mathes
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nicole C McLaughlin
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Butler Hospital, Providence, RI, USA
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Euripedes C Miguel
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maureen Mulhern
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Paul S Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | - Erika L Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin S O'Connell
- Department of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Lisa Osiecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Harvard Medical School, Boston, MA, USA
| | - Olga Therese Ousdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Haukeland University Hospital, Bergen, Norway
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Department of Clinical Neuroscience and Neurorehabilitation, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sriramya Potluri
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics, IBUB, Universitat de Barcelona, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red, Madrid, Spain
- Department of Human Molecular Genetics, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, Bonn, Germany
- DZNE Bonn, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Cologne Excellence Cluster for Stress Responses in Ageing-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Scott Rauch
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Abraham Reichenberg
- Department of Mental Disorders, Norwegian Institute of Public Health, New York, NY, USA
| | - Mark A Riddle
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Site Berlin-Potsdam, German Center for Mental Health (DZPG), Berlin, Germany
| | - Maria C Rosário
- Department of Psychiatry, Child and Adolescent Psychiatry Unit (UPIA), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Aline S Sampaio
- Department of Neurosciences and Mental Health, Medical School, Federal University of Bahia, Salvador, Brazil
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
| | - Anne Heidi Skogholt
- Department of Public Health and Nursing, HUNT Center for Molecular and Clinical Epidemiology, Trondheim, Norway
| | - Laura G Sloofman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Smit
- Department of Psychiatry, Faculty of Medicine, Locaion VUmc, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Laurent F Thomas
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Trondheim, Norway
- BioCore, Bioinformatics Core Facility, NTNU, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eric Tifft
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Homero Vallada
- Department of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
- Department of Molecular Medicine and Surgery, CMM, Karolinska Institutet, Stockholm, Sweden
| | - Nathanial van Kirk
- OCD Institute, Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Nienke N Vulink
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ying Wang
- Department of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jens R Wendland
- Laboratory of Clinical Science, NIMH Intramural Research Program, Bethesda, MD, USA
| | - Bendik S Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Yin Yao
- Department of Computional Biology, Institute of Life Science, Fudan University, Fudan, China
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Pino Alonso
- Department of Psychiatry, OCD Clinical and Research Unit, Bellvitge Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Department of Psychiatry and Mental Health, Bellvitge Biomedical Research Institute IDIBELLL, Barcelona, Spain
- CIBERSAM, Mental Health Network Biomedical Research Center, Madrid, Spain
| | - Götz Berberich
- Psychosomatic Department, Windach Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| | - Kathleen K Bucholz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danielle Cath
- Departments of Rijksuniversiteit Groningen and Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
- Department of Specialized Training, Drenthe Mental Health Care Institute, Groningen, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Institute of the Royal Netherlands Academy of Arts and Sciences (NIN-KNAW), Amsterdam, the Netherlands
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia
- Academic Unit of Child Psychiatry South-West Sydney, South-West Sydney Clinical School, SWSLHD and Ingham Institute, Sydney, New South Wales, Australia
| | - Howard Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Department of Psychiatry, Max Planck Institute, Munich, Germany
| | - Thomas V Fernandez
- Child Study Center and Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Abby J Fyer
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - J M Gaziano
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Mass General Brigham, Boston, MA, USA
| | - Dan A Geller
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Child Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Benjamin D Greenberg
- COBRE Center on Neuromodulation, Butler Hospital, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Gregory L Hanna
- Department of Psychiatry, Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ian B Hickie
- Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - David M Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - James Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Stéphanie Le Hellard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Marion Leboyer
- Department of Addictology and Psychiatry, Université Paris-Est Créteil, AP-HP, Inserm, Paris, France
| | - Christine Lochner
- Department of Psychiatry, SA MRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Stellenbosch, South Africa
| | - James T McCracken
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah E Medland
- Department of Mental Health, Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Preben B Mortensen
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Benjamin M Neale
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Humberto Nicolini
- Department of Psychiatry, Psychiatry, Carracci Medical Group, Mexico City, México
- Psiquiatría, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Copenhagen Research Center for Mental Health, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michele Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - Carlos Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - David L Pauls
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences, Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Danielle Posthuma
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Child and Adolescent Psychiatric, Section Complex Trait Genetics, VU Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Barcelona, Spain
- CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Margaret A Richter
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Child and Adolescent Psychiatry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jack F Samuels
- Department of Psychiatry and Behavioral Sciences, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sven Sandin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul Sandor
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - S Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Barbara E Stranger
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital, Mental Health Services (RHP), Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole A Andreassen
- Institute of Clinical Medicine, NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Center for Precision Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Research, Innovation and Education, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjarne K Hansen
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Centre for Crisis Psychology, Psychology, University of Bergen, Bergen, Norway
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Nicholas G Martin
- Department of Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ole Mors
- Psychosis Research Unit, Psychiatry, Aarhus University Hospital, Aarhus, Denmark
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Gerd Kvale
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
- Department of Clinical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
- Partner Site Berlin, DZPG, Berlin, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- DZNE, Bonn, Germany
| | - John-Anker Zwart
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Research and Innovation, Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatric Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Paul D Arnold
- Department of Psychiatry, the Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James A Knowles
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Helga Ask
- PsychGen Center for Genetic Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Karin J Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dirk J Smit
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - James J Crowley
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremiah M Scharf
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Human Genetics (Psychiatry), Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Carol A Mathews
- Psychiatry and Genetics Institute, Evelyn F. and William L. Mc Knight Brain Institute, Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA
| | - Eske M Derks
- Department of Mental Health and Neuroscience, QIMR Berghofer, Brisbane, Queensland, Australia
| | - Manuel Mattheisen
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Community Health and Epidemiology and Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
3
|
Dong C, Zheng H, Shen H, Wan Y, Xu Y, Li Y, Ping L, Yu H, Liu C, Cui J, Li K, Zhou C. Cortical thickness alternation in obsessive-compulsive disorder patients compared with healthy controls. Brain Imaging Behav 2025:10.1007/s11682-025-01010-z. [PMID: 40332668 DOI: 10.1007/s11682-025-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
Neuropathological changes, such as those found in obsessive-compulsive disorder (OCD), often include cortical morphological abnormalities. Neuroimaging research has indicated that individuals with OCD typically exhibit altered cortical thickness (CTh) through surface-based morphometry (SBM) analyses. Yet, the findings have been hit or miss, with inconsistent results across various studies. We are employing meta-analytic techniques on comprehensive brain imaging data to examine variations in CTh in patients with OCD. This approach could refine spatial precision in detection, thereby sharpening our diagnostic capabilities for OCD and paving the way for more targeted therapeutic interventions. The seed-based d mapping (SDM) method was utilized to perform a vertex-wise, coordinate-based meta-analysis (CBMA) examining CTh differences across whole-brain studies in OCD patients relative to healthy controls (HCs). This analytical approach systematically compared structural neuroimaging findings between clinical and control groups. A comprehensive review of existing research uncovered 9 relevant studies (containing 9 distinct datasets) examining CTh in OCD. The analysis incorporated data from 518 OCD patients and 449 HCs. The findings revealed significant cortical thinning in the left anterior cingulate and paracingulate gyri, along with the right insula among OCD patients. Conversely, increased CTh was observed in several left-hemisphere regions, including the lingual gyrus, orbital portion of the inferior frontal gyrus, and dorsolateral aspect of the superior frontal gyrus. Moreover, the meta-regression results indicated an inverse relationship between age and the thickness of the right insula cortex in those suffering from OCD. However, the analysis was constrained by the small pool of studies and samples, as well as incomplete data from certain participants, which hindered a thorough subgroup examination. Additionally, the results of the meta-regression should be viewed with caution, as they are based on a relatively limited number of studies. The analysis did show changes in CTh in certain brain areas for OCD patients, which adds to our knowledge of the intricate workings of OCD-related brain abnormalities. These insights could potentially serve as valuable landmarks for diagnosing and treating OCD. Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Chunyu Dong
- School of Mental Health, Jining Medical University, Jining, China
| | - Hao Zheng
- School of Mental Health, Jining Medical University, Jining, China
| | - Hailong Shen
- School of Mental Health, Jining Medical University, Jining, China
| | - Yu Wan
- School of Mental Health, Jining Medical University, Jining, China
| | - Yinghong Xu
- School of Mental Health, Jining Medical University, Jining, China
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Ying Li
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, Jining, China
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jian Cui
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Kun Li
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China.
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
4
|
Kumar K, Liao Z, Kopal J, Moreau C, Ching CRK, Modenato C, Snyder W, Kazem S, Martin CO, Bélanger AM, Fontaine VK, Jizi K, Boen R, Huguet G, Saci Z, Kushan L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Dumas G, Draganski B, Almasy L, Thomopoulos SI, Jahanshad N, Sønderby IE, Andreassen OA, Glahn DC, Raznahan A, Bearden CE, Paus T, Thompson PM, Jacquemont S. Cortical differences across psychiatric disorders and associated common and rare genetic variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.16.25325971. [PMID: 40321288 PMCID: PMC12047953 DOI: 10.1101/2025.04.16.25325971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Genetic studies have identified common and rare variants increasing the risk for neurodevelopmental and psychiatric disorders (NPDs). These risk variants have also been shown to influence the structure of the cerebral cortex. However, it is unknown whether cortical differences associated with genetic variants are linked to the risk they confer for NPDs. To answer this question, we analyzed cortical thickness (CT) and surface area (SA) for common and rare variants associated with NPDs, in ~33000 individuals from the general population and clinical cohorts, as well as ENIGMA summary statistics for 8 NPDs. Rare and common genetic variants increasing risk for NPDs were preferentially associated with total SA, while NPDs were preferentially associated with mean CT. Larger effects on mean CT, but not total SA, were observed in NPD medicated subgroups. At the regional level, genetic variants were preferentially associated with effects in sensorimotor areas, while NPDs showed higher effects in association areas. We show that schizophrenia- and bipolar-disorder-associated SNPs show positive and negative effect sizes on SA suggesting that their aggregated effects cancel out in additive polygenic models. Overall, CT and SA differences associated with NPDs do not relate to those observed across individual genetic variants and may be linked with critical non-genetic factors, such as medication and the lived experience of the disorder.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Zhijie Liao
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Jakub Kopal
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Clara Moreau
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Claudia Modenato
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | - Will Snyder
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH, NIH, Bethesda, MD, USA
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sayeh Kazem
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | | | | | - Valérie K Fontaine
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Khadije Jizi
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Rune Boen
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Guillaume Huguet
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Zohra Saci
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Ana I Silva
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, MN, USA
| | - Marianne B M van den Bree
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - David E J Linden
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- Mental Health and Neuroscience Research Institute, Maastricht University, Netherlands
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sarah Lippé
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Guillaume Dumas
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
| | - Bogdan Draganski
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Inselspital, University of Bern, Bern, Switzerland
- University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, PA, USA
- Department of Genetics, University of Pennsylvania, PA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Ida E Sønderby
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - David C Glahn
- Harvard Medical School, Department of Psychiatry, 25 Shattuck St, Boston, MA, USA
- Boston Children's Hospital, Tommy Fuss Center for Neuropsychiatric Disease Research, 300 Longwood Avenue, Boston, MA, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH, NIH, Bethesda, MD, USA
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Tomas Paus
- Centre de recherche CHU Sainte-Justine and University of Montreal, Canada
- Departments of Psychiatry and Neuroscience, University of Montreal, Montreal, Quebec, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | | |
Collapse
|
5
|
Deng G, Cao Y, Qiu C. Obsessive-compulsive disorder and temporal lobe porencephaly: a case report. BMC Psychiatry 2025; 25:341. [PMID: 40197244 PMCID: PMC11978146 DOI: 10.1186/s12888-025-06774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The functional and structural abnormalities of cortico-striato-thalamo-cortex have been reported to be associated with the neurobiological basis of obsessive-compulsive disorder (OCD). OCD can also occur in the striatum damaging after brain infarction, which is called OCD caused by physical diseases. The relationship and mechanism between temporal lobe abnormalities and OCD are still unclear. CASE PRESENTATION A young male with temporal lobe porencephaly presented with obsessive-compulsive symptoms. The cognition of this OCD participant was not significantly impaired, and his social function was well maintained. After treatment with sertraline, aripiprazole, and fluvoxamine, he was improved but relapsed several times after drug withdrawal. However, the therapeutic effect was sustained upon reinitiation of the medication. CONCLUSION This is the first reported case of OCD in an individual with left temporal lobe porencephaly. The possible relationship between obsessive-compulsive symptoms and temporal lobe structural abnormalities needs to be further studied. The maintenance treatment and prognosis of organic obsessive-compulsive disorder also deserve further study.
Collapse
Affiliation(s)
- Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, No. 37 Guo Xue Alley, Chengdu, Sichuan, China
- People's Hospital of Fengjie, Chongqing, China
| | - Yuan Cao
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, No. 37 Guo Xue Alley, Chengdu, Sichuan, China
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, 07743, Germany
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, No. 37 Guo Xue Alley, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Li L, Liu Y, Luo T, Tao Y, Zhao S, Liu P, Yang Z, Jiang Y, Zhang M, Duan X, Situ M, Huang Y. Grey matter volume differences in pediatric obsessive-compulsive disorder: a meta-analysis of voxel-based morphometry studies. BMC Psychiatry 2025; 25:267. [PMID: 40119402 PMCID: PMC11927120 DOI: 10.1186/s12888-025-06711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is one of the most commonly seen mental disorders onset from childhood. The neural mechanisms underlying OCD development and maintenance remain poorly understood. Various empirical evidence from structural magnetic resonance imaging (MRI) studies has reported structural differences in grey matter (GM) among pediatric OCD patients. However, some of the findings diverge from others, and the association between GM and individual differences in pediatric OCD remains inconclusive. To address this gap, we conducted a meta-analysis to synthesize findings quantitatively. METHODS The current research conducted a quantitative meta-analysis of voxel-based GM studies to elucidate existence of neural correlates in pediatric OCD. A whole brain-based d-mapping approach was utilized to explore GM changes and further analyze the relationship between GM and individual differences in pediatric OCD patients. RESULTS Thirteen studies were included with 288 patients and 273 controls. Compared with controls, pediatric OCD demonstrated significantly greater GM volume in the left insula (SDM value = 1.72, p < 0.005) and left superior frontal gyrus (SFG) (orbital part) (SDM value = 1.47, p < 0.005), whereas we showed lower GM volume in the right superior temporal gyrus (STG) (SDM value = -1.87, p < 0.005), left inferior parietal gyri (IPG) (SDM value = -1.60, p < 0.005), left middle occipital gyrus (MOG) (SDM value = -1.66, p < 0.005), and left inferior frontal gyrus (IFG) (SDM value = -1.69, p < 0.005). The increase in SFG (orbital part) and decrease IPG was commonly found in those without psychiatric comorbidities and treatment-naive subgroup. Meta-regression analysis revealed that longer OCD duration was associated with less GM volume in IPG (SDM value = -3.057, p < 0.005). Finally, the onset age and the OCD symptoms severity were positively associated with GM volume in the SFG (SDM z = 2.387, p < 0.005). CONCLUSIONS Our findings confirmed the most consistent GM differences in pediatric OCD, particularly in the MOG, IPG and SFG (orbital part), suggesting they are potential markers in pediatric OCD. Larger SFG (orbital part) and smaller IPG volumes are specific to those without comorbidities and untreated patients. The duration of OCD, symptom severity and onset age also influence GM structure. This research provides evidence of the underlying neuroanatomical characteristics of pediatric OCD. TRIAL REGISTRATION PROSPERO CRD42024601906.
Collapse
Affiliation(s)
- Lei Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yihao Liu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Social Psychiaty, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tingting Luo
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yujie Tao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shengnan Zhao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pei Liu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhaozhi Yang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuchu Jiang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Manxue Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoxia Duan
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mingjing Situ
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Huang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Laboratory of Child and Adolescent Psychiatry, Mental Health Center, Westchina Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Han S, Tian Y, Zheng R, Tao Q, Song X, Guo HR, Wen B, Liu L, Liu H, Xiao J, Wei Y, Pang Y, Chen H, Xue K, Chen Y, Cheng J, Zhang Y. Common neuroanatomical differential factors underlying heterogeneous gray matter volume variations in five common psychiatric disorders. Commun Biol 2025; 8:238. [PMID: 39953132 PMCID: PMC11828988 DOI: 10.1038/s42003-025-07703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Multifaceted evidence has shown that psychiatric disorders share common neurobiological mechanisms. However, the tremendous inter-individual heterogeneity among patients with psychiatric disorders limits trans-diagnostic studies with case-control designs, aimed at identifying clinically promising neuroimaging biomarkers. This study aims to identify neuroanatomical differential factors (ND factors) underlying gray matter volume variations in five psychiatric disorders. We leverage 4 independent datasets of 878 patients diagnosed with psychiatric disorders and 585 healthy controls (HCs) to identify shared ND factors underlying individualized gray matter volume variations. Individualized gray matter volume variations are represented with the linear weighted sum of ND factors, and each case is assigned a unique factor composition, thus preserving interindividual variation. We identify four robust ND factors that can be generalized to unseen disorders. ND factors show significant association with group-level morphological abnormalities, reconciling individual- and group-level morphological abnormalities, and are characterized by dissociable cognitive processes, molecular signatures, and connectome-informed epicenters. Moreover, using factor compositions as features, we discover two robust transdiagnostic subtypes with opposite gray matter volume variations relative to HCs. In conclusion, we identify four reproducible and shared neuroanatomical factors that underlie the highly heterogeneous morphological abnormalities in psychiatric disorders.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China.
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China.
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China.
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China.
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Ya Tian
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui-Rong Guo
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Liang Liu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Hao Liu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jinmin Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yajing Pang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Zhengzhou, China
| | - Huafu Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China.
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China.
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China.
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China.
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China.
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China.
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China.
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China.
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China.
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China.
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China.
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China.
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Engineering Technology Research Center for detection and application of brain function of Henan Province, Zhengzhou, China.
- Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, Zhengzhou, China.
- Key Laboratory of brain function and cognitive magnetic resonance imaging of Zhengzhou, Zhengzhou, China.
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China.
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| |
Collapse
|
8
|
Moreau AL, Hansen I, Bogdan R. A systematic review of structural neuroimaging markers of psychotherapeutic and pharmacological treatment for obsessive-compulsive disorder. Front Psychiatry 2025; 15:1432253. [PMID: 40018086 PMCID: PMC11865061 DOI: 10.3389/fpsyt.2024.1432253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/19/2024] [Indexed: 03/01/2025] Open
Abstract
Identifying individual difference factors associated with treatment response and putative mechanisms of therapeutic change may improve treatment for Obsessive Compulsive Disorder (OCD). Our systematic review of structural neuroimaging markers (i.e., morphometry, structural connectivity) of psychotherapy and medication treatment response for OCD identified 26 eligible publications from 20 studies (average study total n=54 ± 41.6 [range: 11-175]; OCD group n=29 ± 19) in child, adolescent, and adult samples evaluating baseline brain structure correlates of treatment response as well as treatment-related changes in brain structure. Findings were inconsistent across studies; significant associations within the anterior cingulate cortex (3/5 regional, 2/8 whole brain studies) and orbitofrontal cortex (5/10 regional, 2/7 whole brain studies) were most common, but laterality and directionality were not always consistent. Structural neuroimaging markers of treatment response do not currently hold clinical utility. Given increasing evidence that associations between complex behavior and brain structure are characterized by small, but potentially meaningful, effects, much larger samples are likely needed. Multivariate approaches (e.g., machine learning) may also improve the clinical predictive utility of neuroimaging data.
Collapse
Affiliation(s)
- Allison L. Moreau
- Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint Louis, MO, United States
| | | | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
9
|
Koch K, Manrique DR, Gigl S, Ruan H, Gürsel DA, Rus-Oswald G, Reess T, Berberich G. Decoding Obsessive-Compulsive Disorder: The Regional Vulnerability Index and Its Association With Clinical Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00036-9. [PMID: 39914728 DOI: 10.1016/j.bpsc.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Patients with obsessive-compulsive disorder (OCD) exhibit notable alterations in brain structure, which are likely to be of clinical relevance. Recently, in schizophrenia, the regional vulnerability index (RVI) was introduced to translate findings from ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) studies to the individual level. Building on this framework, in the current study, we sought to investigate whether the RVI might also serve as a vulnerability index for OCD. METHODS Toward this aim, we assessed subcortical volume and cortical thickness in a sample of 250 participants (140 patients with OCD, 110 healthy volunteers) and calculated the RVI by leveraging ENIGMA-derived deficits as the "ground truth" for expected regional brain alterations. RESULTS Subcortical volume and cortical thickness RVI values were significantly different in patients compared with healthy control participants. In addition, RVI values based on subcortical volume were significantly correlated with the severity of clinical symptoms. Moreover, RVI values for both subcortical volume and cortical thickness were significantly different in medicated subgroups while there was no significant difference in unmedicated patients. CONCLUSIONS The current results suggest that the RVI may represent an individual characteristic that reflects the degree of correspondence between individual patterns of structural alterations and disease-characteristic patterns of structural alterations. However, our findings also indicate that relatively large effect sizes in the meta-analytic ground truth are a prerequisite for obtaining a meaningful RVI parameter that can also be related to clinical severity. Therefore, the current findings require further validation through additional research to confirm the RVI's robustness and determine its predictive value.
Collapse
Affiliation(s)
- Kathrin Koch
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany.
| | - Daniela Rodriguez Manrique
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University, Munich, Germany
| | - Sandra Gigl
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| | - Hanyang Ruan
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Deniz A Gürsel
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Georgiana Rus-Oswald
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany; Department of Clinical Psychology, Leiden University, Leiden, the Netherlands
| | - Tim Reess
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Götz Berberich
- Windach Institute and Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| |
Collapse
|
10
|
Yang H, Wu G, Li Y, Xu X, Cong J, Xu H, Ma Y, Li Y, Chen R, Pines A, Xu T, Sydnor VJ, Satterthwaite TD, Cui Z. Connectional axis of individual functional variability: Patterns, structural correlates, and relevance for development and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.03.08.531800. [PMID: 36945479 PMCID: PMC10028904 DOI: 10.1101/2023.03.08.531800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The human cerebral cortex exhibits intricate interareal functional synchronization at the macroscale, with substantial individual variability in these functional connections. However, the spatial organization of functional connectivity (FC) variability across the human connectome edges and its significance in cognitive development remain unclear. Here, we identified a connectional axis in the edge-level FC variability. The variability declined continuously along this axis from within-network to between-network connections, and from the edges linking association networks to those linking the sensorimotor and association networks. This connectional axis of functional variability is associated with spatial pattern of structural connectivity variability. Moreover, the connectional variability axis evolves in youth with an increasing flatter axis slope. We also observed that the slope of connectional variability axis was positively related to the performance in the higher-order cognition. Together, our results reveal a connectional axis in functional variability that is linked with structural connectome variability, refines during development, and is relevant to cognition.
Collapse
Affiliation(s)
- Hang Yang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Guowei Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, 102206, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaoxin Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, 102206, China
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoyu Xu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, 102206, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Jing Cong
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, 102206, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Haoshu Xu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yiyao Ma
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yang Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Runsen Chen
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Adam Pines
- Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Valerie J. Sydnor
- Department of Psychiatry, University of Pittsburgh Medical Center; Pittsburgh, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zaixu Cui
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| |
Collapse
|
11
|
Wen B, Fang K, Tao Q, Tian Y, Niu L, Shi W, Liu Z, Sun J, Liu L, Zhang X, Zheng R, Guo HR, Wei Y, Zhang Y, Cheng J, Han S. Individualized gray matter morphological abnormalities unveil two neuroanatomical obsessive-compulsive disorder subtypes. Transl Psychiatry 2025; 15:23. [PMID: 39856051 PMCID: PMC11760359 DOI: 10.1038/s41398-025-03226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Obsessive-compulsive disorder (OCD) is a highly heterogeneous disorder, with notable variations among cases in structural brain abnormalities. To address this heterogeneity, our study aimed to delineate OCD subtypes based on individualized gray matter morphological differences. We recruited 100 untreated, first-episode OCD patients and 106 healthy controls for structural imaging scans. Utilizing normative models of gray matter volume, we identified subtypes based on individual morphological abnormalities. Sensitivity analyses were conducted to validate the reproducibility of clustering outcomes. To gain deeper insights into the connectomic and molecular underpinnings of structural brain abnormalities in the identified subtypes, we investigated their associations with normal brain network architecture and the distribution of neurotransmitter receptors/transporters. Our findings revealed two distinct OCD subtypes exhibiting divergent patterns of structural brain abnormalities. Sensitivity analysis results confirmed the robustness of the identified subtypes. Subtype 1 displayed significantly increased gray matter volume in regions including the frontal gyrus, precuneus, insula, hippocampus, parahippocampal gyrus, amygdala, and temporal gyrus, while subtype 2 exhibited decreased gray matter volume in the frontal gyrus, precuneus, insula, superior parietal gyrus, temporal gyrus, and fusiform gyrus. When considering all patients collectively, structural brain abnormalities nullified. The identified subtypes were characterized by divergent disease epicenters. Specifically, subtype 1 showed disease epicenters in the middle frontal gyrus, while subtype 2 displayed disease epicenters in the striatum, thalamus and hippocampus. Furthermore, structural brain abnormalities in these subtypes displayed distinct associations with neurotransmitter receptors/transporters. The identified subtypes offer novel insights into nosology and the heterogeneous nature of OCD.
Collapse
Affiliation(s)
- Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keke Fang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya Tian
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lianjie Niu
- Department of Breast Disease, Henan Breast Cancer Center, The affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenqing Shi
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zijun Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Sun
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaopan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui-Rong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Chu CS, Lin YY, Huang CCY, Chung YA, Park SY, Chang WC, Chang CC, Chang HA. Comparing Different Montages of Transcranial Direct Current Stimulation in Treating Treatment-Resistant Obsessive Compulsive Disorder: A Randomized, Single-Blind Clinical Trial. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:169. [PMID: 40005287 PMCID: PMC11857099 DOI: 10.3390/medicina61020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
Background: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation for treatment-resistant obsessive compulsive disorder (OCD). We aim to compare the treatment outcomes of a newly developed dual-site cathodal tDCS method over the orbitofrontal cortex (OFC) and pre-supplementary motor area (pre-SMA) and two previously reported montages (cerebellum-OFC and pre-SMA) in patients with treatment-resistant OCD. Methods: Eighteen OCD patients were randomly assigned to receive twice-daily 2 mA/20 min sessions for 10 consecutive weekdays, with the active cathode placed on the cerebellum-OFC, bilateral pre-SMA, or OFC-pre-SMA tDCS. The primary outcome was the change in the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). The resting electroencephalogram (EEG) was recorded to obtain the default mode network (DMN) via low-resolution electromagnetic tomography. Each patient received one-week and one-month follow-ups after two weeks of stimulation. Results: At the end of the stimulation, the Y-BOCS scores in the cerebellum-OFC, pre-SMA, and OFC-pre-SMA tDCS groups (n = 6 in each group) were decreased by 14.15 ± 13.31, 7.4 ± 9.59, and 20.75 ± 8.70%, respectively, but no significant differences were found among the groups. In the OFC-pre-SMA tDCS group, OC symptoms significantly decreased by a mean of -20.75% immediately after the 20th tDCS session, and the improvement remained at 1 week and 1 month after tDCS. EEG source functional connectivity analyses revealed increased functional connectivity within the frontal network after OFC-pre-SMA tDCS, whereas decreased functional connectivity within the DMN was observed after cerebellum-OFC tDCS. Conclusions: Dual-site cathodal tDCS over the OFC and pre-SMA might be considered a potential montage to treat patients with treatment-resistant OCD. Future studies using randomized sham-controlled designs are needed.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Non-Invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei 114, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Yue Lin
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 320, Taiwan;
| | - Cathy Chia-Yu Huang
- Department of Life Sciences, National Central University, Taoyuan 320, Taiwan;
| | - Yong-An Chung
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul 296-12, Republic of Korea; (Y.-A.C.); (S.Y.P.)
| | - Sonya Youngju Park
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul 296-12, Republic of Korea; (Y.-A.C.); (S.Y.P.)
| | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chuan-Chia Chang
- Non-Invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei 114, Taiwan
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsin-An Chang
- Non-Invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei 114, Taiwan
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
13
|
Cao L, Wang Z, Yuan Z, Luo Q. mFusion: a multiscale fusion method bridging neuroimages to genes through neurotransmissions in mental health disorders. Commun Biol 2024; 7:1699. [PMID: 39719509 DOI: 10.1038/s42003-024-07404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Mental health disorders emerge from complex interactions among neurobiological processes across multiple scales, which poses challenges in uncovering pathological pathways from molecular dysfunction to neuroimaging changes. Here, we proposed a multiscale fusion (mFusion) method to evaluate the relevance of each gene to the neuroimaging traits of mental health disorders. We combined gene-neuroimaging associations with gene-positron emission tomography (PET) and PET-neuroimaging associations using protein-protein interaction networks, where various genes traced by PET maps are involved in neurotransmission. Compared with previous methods, the proposed algorithm identified more disease genes on both simulated and empirical data sets. Applying mFusion to eight mental health disorders, we found that these disorders formed three clusters with distinct associated genes. In summary, mFusion is a promising tool of prioritizing genes for mental health disorders by establishing gene-PET-neuroimaging pathways.
Collapse
Affiliation(s)
- Luolong Cao
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Zhenyi Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing, China
| | - Zhiyuan Yuan
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
- Shanghai Research Center of Acupuncture & Meridian, Shanghai, China.
- MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Dzinalija N, Vriend C, Waller L, Simpson HB, Ivanov I, Agarwal SM, Alonso P, Backhausen LL, Balachander S, Broekhuizen A, Castelo-Branco M, Costa AD, Cui H, Denys D, Duarte IC, Eng GK, Erk S, Fitzsimmons SMDD, Ipser J, Jaspers-Fayer F, de Joode NT, Kim M, Koch K, Kwon JS, van Leeuwen W, Lochner C, van Marle HJF, Martinez-Zalacain I, Menchon JM, Morgado P, Narayanaswamy JC, Olivier IS, Picó-Pérez M, Postma TS, Rodriguez-Manrique D, Roessner V, Rus-Oswald OG, Shivakumar V, Soriano-Mas C, Stern ER, Stewart SE, van der Straten AL, Sun B, Thomopoulos SI, Veltman DJ, Vetter NC, Visser H, Voon V, Walter H, van der Werf YD, van Wingen G, Stein DJ, Thompson PM, Veer IM, van den Heuvel OA. Negative valence in Obsessive-Compulsive Disorder: A worldwide mega-analysis of task-based functional neuroimaging data of the ENIGMA-OCD consortium. Biol Psychiatry 2024:S0006-3223(24)01819-5. [PMID: 39725297 DOI: 10.1016/j.biopsych.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) is associated with altered brain function related to processing of negative emotions. To investigate neural correlates of negative valence in OCD, we pooled fMRI data of 633 individuals with OCD and 453 healthy controls from 16 studies using different negatively-valenced tasks across the ENIGMA-OCD Working-Group. METHODS Participant data were processed uniformly using HALFpipe, to extract voxelwise participant-level statistical images of one common first-level contrast: negative vs. neutral stimuli. In pre-registered analyses, parameter estimates were entered into Bayesian multilevel models to examine whole-brain and regional effects of OCD and its clinically relevant features - symptom severity, age of onset, and medication status. RESULTS We provided a proof-of-concept that participant-level data can be combined across several task paradigms and observed one common task activation pattern across individuals with OCD and controls that encompasses fronto-limbic and visual areas implicated in negative valence. Compared to controls, individuals with OCD showed very strong evidence of weaker activation of the bilateral occipital cortex (P+<0.001) and adjacent visual processing regions during negative valence processing that was related to greater OCD severity, late-onset of disease and an unmedicated status. Individuals with OCD also showed stronger activation in the orbitofrontal, subgenual anterior cingulate and ventromedial prefrontal cortex (all P+<0.1) that was related to greater OCD severity and late onset. CONCLUSION In the first mega-analysis of this kind, we replicate previous findings of stronger ventral prefrontal activation in OCD during negative valence processing and highlight the lateral occipital cortex as an important region implicated in altered negative valence processing.
Collapse
Affiliation(s)
- Nadza Dzinalija
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Compulsivity, Impulsivity and Attention, Amsterdam, The Netherlands.
| | - Chris Vriend
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Compulsivity, Impulsivity and Attention, Amsterdam, The Netherlands
| | - Lea Waller
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences CCM, Berlin, Germany
| | - H Blair Simpson
- Columbia University Irving Medical College, Columbia University, New York, NY, U.S.A; Center for OCD and Related Disorders, New York State Psychiatric Institute
| | - Iliyan Ivanov
- Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Sri Mahavir Agarwal
- OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India; Schizophrenia Division, CAMH and Department of Psychiatry, University of Toronto
| | - Pino Alonso
- Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Lea L Backhausen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany
| | - Srinivas Balachander
- OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Aniek Broekhuizen
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Compulsivity, Impulsivity and Attention, Amsterdam, The Netherlands; Mental Healthcare Institue Geestelijke Gezondheidszorg (GGZ) Centraal, Amersfoort, the Netherlands
| | - Miguel Castelo-Branco
- CIBIT/ICNAS-Univeristy of Coimbra, Portugal; Faculty of Medicine, Univ of Coimbra, Portugal
| | - Ana Daniela Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Hailun Cui
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Damiaan Denys
- Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Goi Khia Eng
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
| | - Susanne Erk
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences CCM, Berlin, Germany
| | - Sophie M D D Fitzsimmons
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Compulsivity, Impulsivity and Attention, Amsterdam, The Netherlands
| | - Jonathan Ipser
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| | - Fern Jaspers-Fayer
- Department of Psychiatry, Faculty of Medicine, University of British Columbia; BC Children's Hosptial Research Institute
| | - Niels T de Joode
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Compulsivity, Impulsivity and Attention, Amsterdam, The Netherlands
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Wieke van Leeuwen
- Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Arkin Mental Health Care, Amsterdam, The Netherlands
| | - Christine Lochner
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Hein J F van Marle
- Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; GGZ inGeest Mental Health Care, Amsterdam, The Netherlands
| | - Ignacio Martinez-Zalacain
- Schizophrenia Division, CAMH and Department of Psychiatry, University of Toronto; Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
| | - Jose M Menchon
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - Janardhanan C Narayanaswamy
- Faculty of Health, School of Medicine, Deakin University, Australia; OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India; Goulburn Valley Health, Shepparton, VIC, Australia
| | - Ian S Olivier
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Tjardo S Postma
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Compulsivity, Impulsivity and Attention, Amsterdam, The Netherlands; GGZ inGeest Mental Health Care, Amsterdam, The Netherlands
| | - Daniela Rodriguez-Manrique
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany
| | | | - Venkataram Shivakumar
- OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Carles Soriano-Mas
- Department of Social Psychology and Quantitative Psychology, Institut de Neurociències, University of Barcelona, Spain; Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Emily R Stern
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY; Neuroscience Institute, New York University Grossman School of MedicineDepartment of Psychiatry, Faculty of Medicine, University of British Columbia
| | - S Evelyn Stewart
- Department of Psychiatry, Faculty of Medicine, University of British Columbia; BC Children's Hosptial Research Institute
| | - Anouk L van der Straten
- Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Levvel, Academic Center for Child and Adolescent Psychiatry and Specialized Youth Care, Amsterdam, The Netherlands
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai; Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Dick J Veltman
- Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Compulsivity, Impulsivity and Attention, Amsterdam, The Netherlands
| | - Nora C Vetter
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany; Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - Henny Visser
- Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Fudan University
| | - Henrik Walter
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences CCM, Berlin, Germany
| | - Ysbrand D van der Werf
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Compulsivity, Impulsivity and Attention, Amsterdam, The Netherlands
| | - Guido van Wingen
- Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South AfricaDepartment of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands; SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ilya M Veer
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam UMC, Compulsivity, Impulsivity and Attention, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Amsterdam UMC, Compulsivity, Impulsivity and Attention, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Liu L, Jia D, He Z, Wen B, Zhang X, Han S. Individualized functional connectome abnormalities obtained using two normative model unveil neurophysiological subtypes of obsessive compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111122. [PMID: 39154932 DOI: 10.1016/j.pnpbp.2024.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The high heterogeneity observed among patients with obsessive-compulsive disorder (OCD) underscores the need to identify neurophysiological OCD subtypes to facilitate personalized diagnosis and treatment. In this study, our aim was to identify potential OCD subtypes based on individualized functional connectome abnormalities. We recruited a total of 99 patients with OCD and 104 healthy controls (HCs) matched for demographic characteristics. Individualized functional connectome abnormalities were obtained using normative models of functional connectivity strength (FCS) and used as features to unveil OCD subtypes. Sensitivity analyses were conducted to assess the reproducibility and robustness of the clustering outcomes. Patients exhibited significant intersubject heterogeneity in individualized functional connectome abnormalities. Two subtypes with distinct patterns of FCS abnormalities relative to HCs were identified. Subtype 1 patients primarily exhibited significantly decreased FCS in regions including the frontal gyrus, insula, hippocampus, and precentral/postcentral gyrus, whereas subtype 2 patients demonstrated increased FCS in widespread brain regions. When all patients were combined, no significant differences were observed. Additionally, the identified subtypes showed significant differences in age of onset. Furthermore, sensitivity analyses confirmed the reproducibility of our subtyping results. In conclusion, the identified OCD subtypes shed new light on the taxonomy and neurophysiological heterogeneity of OCD.
Collapse
Affiliation(s)
- Liang Liu
- School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China
| | - Dongyao Jia
- School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China.
| | - Zihao He
- School of Automation and Intelligence, Beijing Jiaotong University, Beijing 100044, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaopan Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
16
|
Conelea C, Breitenfeldt C, Wilens A, Carpenter L, Greenberg B, Herren J, Jacob S, Lewis C, McLaughlin N, Mueller BA, Nelson S, O'Connor E, Righi G, Widge AS, Fiecas M, Benito K. The NExT trial: Protocol for a two-phase randomized controlled trial testing transcranial magnetic stimulation to augment exposure therapy for youth with OCD. Trials 2024; 25:835. [PMID: 39696590 PMCID: PMC11653825 DOI: 10.1186/s13063-024-08629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Exposure with Response Prevention (ERP) is a first-line treatment for OCD, but even when combined with first-line medications it is insufficiently effective for approximately half of patients. Compulsivity in OCD is thought to arise from an imbalance of two distinct neural circuits associated with specific subregions of striatum. Targeted modulation of these circuits via key cortical nodes (dorsolateral prefrontal cortex [dlPFC] or presupplementary motor area [pSMA]) has the potential to improve ERP efficacy by decreasing compulsions during therapy. METHODS The NExT (Neuromodulation + Exposure Therapy) trial is a two-phase, multisite early-stage randomized controlled trial designed to examine whether TMS augmentation of ERP alters activity in dlPFC and/or pSMA-associated circuitry and reduces compulsions during therapy in youth with OCD age 12-21 years. Phase 1 (N = 60) will compare two different active TMS regimens with sham: A. continuous theta burst stimulation (cTBS) to pSMA vs. B. intermittent theta burst stimulation (iTBS) to dlPFC. A priori "Go/No-Go" criteria will inform a decision to proceed to Phase 2 and the choice of TMS regimen. Phase 2 (N = 60) will compare the selected TMS regimen vs. sham in a new sample. DISCUSSION This trial is the first to test TMS augmentation of ERP in youth with OCD. Results will inform the potential of TMS to enhance ERP efficacy and enhance knowledge about mechanisms of change. TRIAL REGISTRATION ClinicalTrials.gov NCT05931913. Registered prospectively on July 5, 2023.
Collapse
Affiliation(s)
- Christine Conelea
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Claire Breitenfeldt
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Alixandra Wilens
- Pediatric Anxiety Research Center at Bradley Hospital, East Providence, RI, USA
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Linda Carpenter
- COBRE Center for Neuromodulation, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Benjamin Greenberg
- COBRE Center for Neuromodulation, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
| | - Jennifer Herren
- Pediatric Anxiety Research Center at Bradley Hospital, East Providence, RI, USA
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suma Jacob
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behaviors, UCLA, Los Angeles, CA, USA
| | - Charles Lewis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Nicole McLaughlin
- COBRE Center for Neuromodulation, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Steve Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Erin O'Connor
- Pediatric Anxiety Research Center at Bradley Hospital, East Providence, RI, USA
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Giulia Righi
- Pediatric Anxiety Research Center at Bradley Hospital, East Providence, RI, USA
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Mark Fiecas
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, USA
| | - Kristen Benito
- Pediatric Anxiety Research Center at Bradley Hospital, East Providence, RI, USA.
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
17
|
Saccenti D, Lauro LJR, Crespi SA, Moro AS, Vergallito A, Grgič RG, Pretti N, Lamanna J, Ferro M. Boosting Psychotherapy With Noninvasive Brain Stimulation: The Whys and Wherefores of Modulating Neural Plasticity to Promote Therapeutic Change. Neural Plast 2024; 2024:7853199. [PMID: 39723244 PMCID: PMC11669434 DOI: 10.1155/np/7853199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
The phenomenon of neural plasticity pertains to the intrinsic capacity of neurons to undergo structural and functional reconfiguration through learning and experiential interaction with the environment. These changes could manifest themselves not only as a consequence of various life experiences but also following therapeutic interventions, including the application of noninvasive brain stimulation (NIBS) and psychotherapy. As standalone therapies, both NIBS and psychotherapy have demonstrated their efficacy in the amelioration of psychiatric disorders' symptoms, with a certain variability in terms of effect sizes and duration. Consequently, scholars suggested the convenience of integrating the two interventions into a multimodal treatment to boost and prolong the therapeutic outcomes. Such an approach is still in its infancy, and the physiological underpinnings substantiating the effectiveness and utility of combined interventions are still to be clarified. Therefore, this opinion paper aims to provide a theoretical framework consisting of compelling arguments as to why adding NIBS to psychotherapy can promote therapeutic change. Namely, we will discuss the physiological effects of the two interventions, thus providing a rationale to explain the potential advantages of a combined approach.
Collapse
Affiliation(s)
- Daniele Saccenti
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Leonor J. Romero Lauro
- Department of Psychology and NeuroMi, University of Milano-Bicocca, Milan, Italy
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
| | - Sofia A. Crespi
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea S. Moro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Novella Pretti
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Clinical Psychology Center, Division of Neurology, Galliera Hospital, Genoa, Italy
| | - Jacopo Lamanna
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
18
|
Yun JY, Choi SH, Park S, Yoo SY, Jang JH. Neural correlates of anhedonia in young adults with subthreshold depression: A graph theory approach for cortical-subcortical structural covariance. J Affect Disord 2024; 366:234-243. [PMID: 39216643 DOI: 10.1016/j.jad.2024.08.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Anhedonia is an enduring symptom of subthreshold depression (StD) and predict later onset of major depressive disorder (MDD). Brain structural covariance describes the inter-regional distribution of morphological changes compared to healthy controls (HC) and reflects brain maturation and disease progression. We investigated neural correlates of anhedonia from the structural covariance. METHODS T1-weighted brain magnetic resonance images were acquired from 79 young adults (26 StD, 30 MDD, and 23 HC). Intra-individual structural covariance networks of 68 cortical surface area (CSAs), 68 cortical thicknesses (CTs), and 14 subcortical volumes were constructed. Group-level hubs and principal edges were defined using the global and regional graph metrics, compared between groups, and examined for the association with anhedonia severity. RESULTS Global network metrics were comparable among the StD, MDD, and HC. StD exhibited lower centralities of left pallidal volume than HC. StD showed higher centralities than HC in the CSAs of right rostral anterior cingulate cortex (ACC) and pars triangularis, and in the CT of left pars orbitalis. Less anhedonia was associated with higher centralities of left pallidum and right amygdala, higher edge betweenness centralities in the structural covariance (EBSC) of left postcentral gyrus-parahippocampal gyrus and LIPL-right amygdala. More anhedonia was associated with higher centralities of left inferior parietal lobule (LIPL), left postcentral gyrus, left caudal ACC, and higher EBSC of LIPL-left postcentral gyrus, LIPL-right lateral occipital gyrus, and left caudal ACC-parahippocampal gyrus. LIMITATIONS This study has a cross-sectional design. CONCLUSIONS Structural covariance of brain morphologies within the salience and limbic networks, and among the salience-limbic-default mode-somatomotor-visual networks, are possible neural correlates of anhedonia in depression.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea; Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Soo-Hee Choi
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Susan Park
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - So Young Yoo
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea.
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University Health Service Center, Seoul, Republic of Korea; Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Del Casale A, Ferracuti S, Mancino S, Arena JF, Bilotta I, Alcibiade A, Romano A, Bozzao A, Pompili M. A coordinate-based meta-analysis of grey matter volume differences between adults with obsessive-compulsive disorder (OCD) and healthy controls. Psychiatry Res Neuroimaging 2024; 345:111908. [PMID: 39396483 DOI: 10.1016/j.pscychresns.2024.111908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
According to the cortico-striato-thalamo-cortical (CSTC) model of obsessive-compulsive disorder (OCD), the striatum plays a primary role in its neuropathophysiology. Hypothesising that volumetric alterations are more pronounced in subcortical areas of patients within the CSTC circuit compared to healthy controls (HCs), we conducted a coordinate-based meta-analysis of magnetic resonance imaging (MRI) studies. We included 26 whole-brain MRI studies, comprising 3,010 subjects: 1,508 patients (788 men, 720 women; mean age: 30.26 years, SD = 8.16) and 1,502 HCs (801 men, 701 women; mean age: 29.47 years, SD = 7.88). This meta-analysis demonstrated significant grey matter volume increases in the bilateral putamen, lateral globus pallidus, left parietal cortex, right pulvinar, and left cerebellum in adults with OCD, alongside decreases in the right hippocampus/caudate, bilateral medial frontal gyri, and other cortical regions. Volume increases were predominantly observed in subcortical areas, with the exception of the left parietal cortex and cerebellar dentate, while volume decreases were primarily cortical, aside from the right hippocampus/caudate. Further exploration of these neuropathophysiological correlates could inform specific prevention and treatment strategies, advancing precision mental health in clinical applications.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy; Unit of Psychiatry, Sant'Andrea University Hospital, 00189 Rome, Italy.
| | - Stefano Ferracuti
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; Unit of Risk Management, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Serena Mancino
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Jan Francesco Arena
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bilotta
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Alessandro Alcibiade
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy; Marina Militare Italiana (Italian Navy), Ministry of Defence, Piazza della Marina, 4, 00196 Rome, Italy
| | - Andrea Romano
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy; Unit of Neuroradiology, 'Sant'Andrea' University Hospital, 00189 Rome, Italy
| | - Alessandro Bozzao
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy; Unit of Neuroradiology, 'Sant'Andrea' University Hospital, 00189 Rome, Italy
| | - Maurizio Pompili
- Unit of Psychiatry, Sant'Andrea University Hospital, 00189 Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
20
|
Moreau CA, Ayrolles A, Ching CRK, Bonicel R, Mathieu A, Stordeur C, Bergeret P, Traut N, Tran L, Germanaud D, Alison M, Elmaleh-Bergès M, Ehrlich S, Thompson PM, Bourgeron T, Delorme R. Neuroimaging Insights into Brain Mechanisms of Early-onset Restrictive Eating Disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.12.24317128. [PMID: 39606373 PMCID: PMC11601758 DOI: 10.1101/2024.11.12.24317128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Early-onset restrictive eating disorders (rEO-ED) encompass a heterogeneous group of conditions, including early-onset anorexia nervosa (EO-AN) and avoidant restrictive food intake disorders (ARFID). Almost nothing is known about the consequences of rEO-ED on brain development. Methods We performed the largest comparison of MRI-derived brain features in children and early adolescents (<13 years) with EO-AN (n=124), ARFID (n=50), and typically developing individuals (TD, n=112). Results Despite similar body mass index (BMI) distributions, EO-AN and ARFID showed divergent structural patterns, suggesting independent brain mechanisms. Half the regional brain measures were correlated with BMI in EO-AN and none in ARFID, indicating a partial mediation of EO-AN signal by BMI. EO-AN was associated with a widespread pattern of thinner cortex, while underweight ARFID patients exhibited smaller surface area and subcortical volumes than TD. Conclusion Future studies will be required to partition the contribution of low BMI vs. ED mechanisms in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Clara A Moreau
- Sainte Justine Hospital Azrieli Research Center, Department of Psychiatry and Addictology, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Anael Ayrolles
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, APHP, Paris, France
| | - Christopher R K Ching
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Robin Bonicel
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, APHP, Paris, France
| | - Alexandre Mathieu
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
| | - Coline Stordeur
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, APHP, Paris, France
| | - Pierre Bergeret
- Sainte Justine Hospital Azrieli Research Center, Department of Psychiatry and Addictology, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Nicolas Traut
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
| | - Lydie Tran
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
| | - David Germanaud
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d'études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
- Department of Genetics, Robert-Debré Hospital, AP-HP, Centre de Référence Déficiences Intellectuelles de Causes Rares, Centre of Excellence InovAND, Paris, France
| | - Marianne Alison
- Department of Pediatric Radiology, Robert-Debré Hospital, AP-HP, Centre of Excellence InovAND, Paris, France
| | - Monique Elmaleh-Bergès
- Department of Pediatric Radiology, Robert-Debré Hospital, AP-HP, Centre of Excellence InovAND, Paris, France
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Thomas Bourgeron
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
| | - Richard Delorme
- Institut Pasteur, Université de Paris, CNRS UMR 3571, Human Genetics and Cognitive Functions, 25 rue du Dr. Roux, Paris, France
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, APHP, Paris, France
| |
Collapse
|
21
|
Durham EL, Kaczkurkin AN. Structural Brain Correlates of Anxiety During Development. Curr Top Behav Neurosci 2024. [PMID: 39509051 DOI: 10.1007/7854_2024_541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Anxiety and related disorders are prevalent across the lifespan, often have their onset during youth, and are associated with notable levels of impairment and burden across multiple domains. Elucidating the associations between differential patterns of neurodevelopment and anxiety in youth is a promising approach for developing deeper insights regarding the neurobiological etiologies and maintenance factors associated with anxiety and related disorders. A growing body of literature has yielded evidence of associations between patterns of brain structure (i.e., volume, cortical thickness, and cortical surface area) and anxiety. Here, we present a review and synthesis of the existing body of literature surrounding neurostructural correlates of anxiety in youth spanning multiple anxiety presentations and three neurostructural modalities. We reveal substantially more research focusing on brain volume than cortical thickness or surface area and a greater number of studies examining anxiety broadly defined, obsessive-compulsive disorder, or posttraumatic stress disorder. There is also evidence of considerable variability in the brain regions implicated and the direction of associations across studies. Finally, we discuss the gaps and limitations in this body of work, which suggest avenues for future directions.
Collapse
Affiliation(s)
- E Leighton Durham
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonia N Kaczkurkin
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
22
|
Pawlak M, Kemp J, Bray S, Chenji S, Noel M, Birnie KA, MacMaster FP, Miller JV, Kopala-Sibley DC. Macrostructural Brain Morphology as Moderator of the Relationship Between Pandemic-Related Stress and Internalizing Symptomology During COVID-19 in High-Risk Adolescents. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1141-1177. [PMID: 39019399 DOI: 10.1016/j.bpsc.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND According to person-by-environment models, individual differences in traits may moderate the association between stressors and the development of psychopathology; however, findings in the literature have been inconsistent and little literature has examined adolescent brain structure as a moderator of the effects of stress on adolescent internalizing symptoms. The COVID-19 pandemic presented a unique opportunity to examine the associations between stress, brain structure, and psychopathology. Given links of cortical morphology with adolescent depression and anxiety, the current study investigated whether cortical morphology moderated the relationship between stress from the COVID-19 pandemic and the development of internalizing symptoms in familial high-risk adolescents. METHODS Prior to the COVID-19 pandemic, 72 adolescents (27 male) completed a measure of depressive and anxiety symptoms and underwent magnetic resonance imaging. T1-weighted images were acquired to assess cortical thickness and surface area. Approximately 6 to 8 months after COVID-19 was declared a global pandemic, adolescents reported their depressive and anxiety symptoms and pandemic-related stress. RESULTS Adjusting for pre-pandemic depressive and anxiety symptoms and stress, increased pandemic-related stress was associated with increased depressive but not anxiety symptoms. This relationship was moderated by cortical thickness and surface area in the anterior cingulate and cortical thickness in the medial orbitofrontal cortex such that increased stress was only associated with increased depressive and anxiety symptoms among adolescents with lower cortical surface area and higher cortical thickness in these regions. CONCLUSIONS Results further our understanding of neural vulnerabilities to the associations between stress and internalizing symptoms in general and during the COVID-19 pandemic in particular.
Collapse
Affiliation(s)
- McKinley Pawlak
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.
| | - Jennifer Kemp
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Sneha Chenji
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Noel
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn A Birnie
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada; Department of Anesthesiology, Perioperative, and Pain Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Frank P MacMaster
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; IWK Health, Halifax, Nova Scotia, Canada
| | - Jillian Vinall Miller
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Anesthesiology, Perioperative, and Pain Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel C Kopala-Sibley
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Zhang D, Teng C, Xu Y, Tian L, Cao P, Wang X, Li Z, Guan C, Hu X. Genetic and molecular correlates of cortical thickness alterations in adults with obsessive-compulsive disorder: a transcription-neuroimaging association analysis. Psychol Med 2024; 54:1-10. [PMID: 39363543 PMCID: PMC11496223 DOI: 10.1017/s0033291724001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 06/11/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Although numerous neuroimaging studies have depicted neural alterations in individuals with obsessive-compulsive disorder (OCD), a psychiatric disorder characterized by intrusive cognitions and repetitive behaviors, the molecular mechanisms connecting brain structural changes and gene expression remain poorly understood. METHODS This study combined the Allen Human Brain Atlas dataset with neuroimaging data from the Meta-Analysis (ENIGMA) consortium and independent cohorts. Later, partial least squares regression and enrichment analysis were performed to probe the correlation between transcription and cortical thickness variation among adults with OCD. RESULTS The cortical map of case-control differences in cortical thickness was spatially correlated with cortical expression of a weighted combination of genes enriched for neurobiologically relevant ontology terms preferentially expressed across different cell types and cortical layers. These genes were specifically expressed in brain tissue, spanning all cortical developmental stages. Protein-protein interaction analysis revealed that these genes coded a network of proteins encompassing various highly interactive hubs. CONCLUSIONS The study findings bridge the gap between neural structure and transcriptome data in OCD, fostering an integrative understanding of the potential biological mechanisms.
Collapse
Affiliation(s)
- Da Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changjun Teng
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinhao Xu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Tian
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Cao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Wang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zonghong Li
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengbin Guan
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Hu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Arold D, Bornstein SR, Perakakis N, Ehrlich S, Bernardoni F. Regional gray matter changes in steatotic liver disease provide a neurobiological link to depression: A cross-sectional UK Biobank cohort study. Metabolism 2024; 159:155983. [PMID: 39089490 DOI: 10.1016/j.metabol.2024.155983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Steatotic liver disease (SLD) is characterized by excessive accumulation of lipids in the liver. It is associated with elevated risk of hepatic and cardiometabolic diseases, as well as mental disorders such as depression. Previous studies revealed global gray matter reduction in SLD. To investigate a possible shared neurobiology with depression, we examined liver fat-related regional gray matter alterations in SLD and its most significant clinical subgroup metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS We analyzed regional cortical thickness and area obtained from brain MRI in 29,051 participants in UK Biobank. Liver fat amount was computed as proton density fat fraction (PDFF) from liver MRI scans. We examined the relationship between brain structure and PDFF, adjusting for sociodemographic, physical, lifestyle, and environmental factors, as well as alcohol intake and a spectrum of cardiometabolic covariates. Finally, we compared patterns of brain alterations in SLD/MASLD and major depressive disorder (MDD) using previously published results. RESULTS PDFF-related gray matter alterations were region-specific, involving both increases and decreases in cortical thickness, and increased cortical area. In several regions, PDFF effects on gray matter could also be attributed to cardiometabolic covariates. However, PDFF was consistently associated with lower cortical thickness in middle and superior temporal regions and higher cortical thickness in pericalcarine and right frontal pole regions. PDFF-related alterations for the SLD and the MASLD group correlated with those observed in MDD (Pearson r = 0.45-0.54, p < 0.01). CONCLUSION These findings suggest the presence of shared biological mechanisms linking MDD to SLD and MASLD. They might explain the well-known elevated risk of depression in these groups and support early lifestyle interventions and treatment of metabolic risk factors for the successful management of the interconnected diseases depression and SLD/MASLD.
Collapse
Affiliation(s)
- Dominic Arold
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
25
|
Chen H, Zhang H, Li W, Zhang X, Xu Z, Wang Z, Jiang W, Liu N, Zhang N. Resting-state functional connectivity of goal-directed and habitual-learning systems: The efficacy of cognitive-behavioral therapy for obsessive-compulsive disorder. J Affect Disord 2024; 362:287-296. [PMID: 38944296 DOI: 10.1016/j.jad.2024.06.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND There is an imbalance between goal-directed and habitual-learning system in patients with obsessive-compulsive disorder (OCD). At present, the relationship between cognitive behavior therapy (CBT) as a first-line therapy and goal-directed and habitual-learning disorder is still unclear. We attempted to discuss the effect of CBT treatment in patients with OCD, using abnormalities in goal-directed and habitual-learning-related brain regions at baseline as predictive factors. METHODS A total of 71 subjects, including 35 OCD patients and 36 healthy controls, were recruited. The OCD patients underwent 8 weeks of CBT. These patients were divided into two groups based on treatment response (Nresponders = 18, Nnonresponders = 17). Further subgroup analysis was conducted based on disease duration (Nshort = 17, Nlong = 18) and age of onset (Nearly = 14, Nlate = 21). We collected resting-state ROI-ROI functional connectivity data and apply repeated-measures linear mixed-effects models to investigate the differences of different subgroups. RESULTS CBT led to symptom improvement in OCD patients, with varying degrees of effectiveness across subgroups. The orbitofrontal cortex (OFC) and insula, key regions for goal-directed behavior and habitual-learning, respectively, showed significant impacts on CBT efficacy in subgroups with different disease durations and ages of onset. CONCLUSION The findings suggest that the goal-directed system may influence the efficacy of CBT through goal selection, maintenance, and emotion regulation. Furthermore, we found that disease duration and age of onset may affect treatment outcomes by modulating functional connectivity between goal-directed and habitual-learning brain regions.
Collapse
Affiliation(s)
- Haocheng Chen
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huan Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wangyue Li
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuedi Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhihan Xu
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhongqi Wang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjing Jiang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Brouillard A, Davignon LM, Vachon-Presseau É, Roy M, Marin MF. Starting the pill during adolescence: Age of onset and duration of use influence morphology of the hippocampus and ventromedial prefrontal cortex. Eur J Neurosci 2024; 60:5876-5899. [PMID: 39245916 DOI: 10.1111/ejn.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
From adolescence, women become more likely to experience fear dysregulation. Oral contraceptives (OCs) can modulate the brain regions involved in fear processes. OCs are generally used for years and often initiated during adolescence, a sensitive period where certain brain regions involved in the fear circuitry are still undergoing important reorganization. It remains unknown whether OC use during adolescence may induce long-lasting changes in the fear circuitry. This study aimed to examine whether age of onset moderated the relationship between duration of use and fear-related brain structures. We collected structural MRI data in 98 healthy adult women (61 current users, 37 past users) and extracted grey matter volumes (GMV) and cortical thickness (CT) of key regions of the fear circuitry. Non-linear multiple regressions revealed interaction effects between age of onset and quadratic duration of use on GMV of the right hippocampus and right ventromedial prefrontal cortex (vmPFC). Among women who initiated OCs earlier in adolescence, a short duration of use was associated with smaller hippocampal GMV and thicker vmPFC compared to a longer duration of use. For both GMV and CT of the right vmPFC, women with an early OC onset had more grey matter at a short duration of use than those with a later onset. Our results suggest that OC use earlier in adolescence may induce lasting effects on structural correlates of fear learning and its regulation. These findings support further investigation into the timing of OC use to better comprehend how OCs could disrupt normal brain development processes.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Étienne Vachon-Presseau
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Mathieu Roy
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| |
Collapse
|
27
|
Zhang C, Zhang Z, Gao R, Chen Y, Cao X, Yi X, Fan Q. Obsessive-Compulsive Disorder Comorbid With or Without Obsessive-Compulsive Personality Disorder: Conceptual Implications, Clinical Correlates, and Brain Morphometries. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00278-7. [PMID: 39349177 DOI: 10.1016/j.bpsc.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is often comorbid with obsessive-compulsive personality disorder (OCPD). The relationship between OCD and OCPD is complex, and the impact of comorbid OCPD on OCD remains underexplored, necessitating further research. In this study, we aimed to investigate the clinical correlates and brain morphometries associated with comorbid OCPD in a large sample of unmedicated patients with OCD. METHODS A total of 248 unmedicated patients diagnosed with OCD (45 comorbid with OCPD) were included in this study. All participants were assessed for OCD symptoms, OCPD traits, obsessive beliefs, depression, and anxiety. Among them, 145 patients (23 comorbid with OCPD) volunteered to receive magnetic resonance imaging brain scans. RESULTS Approximately 18% (45/248) of patients with OCD were comorbid for OCPD (OCD+OCPD). Patients with OCD+OCPD exhibited more severe OCD symptoms, obsessive beliefs, depression, and anxiety than OCD patients without OCPD. Additionally, the severity of OCPD was positively correlated with OCD symptoms and obsessive beliefs. Furthermore, patients with OCD+OCPD exhibited increased cortical complexity in the left superior parietal lobule and left precuneus, which mediated the relationship between OCPD and OCD symptoms only in OCD patients without OCPD. CONCLUSIONS The co-occurrence of OCPD may contribute to the heightened severity of psychopathological symptoms and associated brain morphological alterations in patients with OCD, indicating distinct but interrelated constructs between these 2 disorders.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongfeng Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Rui Gao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xuan Cao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Clinical Psychology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianghan Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Center of Yuanshen Rehabilitation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Farhad S, Metin SZ, Uyulan Ç, Makouei STZ, Metin B, Ergüzel TT, Tarhan N. Application of Hybrid DeepLearning Architectures for Identification of Individuals with Obsessive Compulsive Disorder Based on EEG Data. Clin EEG Neurosci 2024; 55:543-552. [PMID: 38192213 DOI: 10.1177/15500594231222980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Objective: Obsessive-compulsive disorder (OCD) is a highly common psychiatric disorder. The symptoms of this condition overlap and co-occur with those of other psychiatric illnesses, making diagnosis difficult. The availability of biomarkers could be useful for aiding in diagnosis, although prior neuroimaging studies were unable to provide such biomarkers. Method: In this study, patients with OCD were classified from healthy controls using 2 different hybrid deep learning models: one-dimensional convolutional neural networks (1DCNN) together with long-short term memory (LSTM) and gradient recurrent units (GRU), respectively. Results: Both models exhibited exceptional classification accuracies in cross-validation and external validation phases. The mean classification accuracies in the cross-validation stage were 90.88% and 85.91% for the 1DCNN-LSTM and 1DCNN-GRU models, respectively. The inferior frontal, temporal, and occipital electrodes were predominant in providing discriminative features. Conclusion: Our findings underscore the potential of hybrid deep learning architectures utilizing EEG data to effectively differentiate patients with OCD from healthy controls. This promising approach holds implications for advancing clinical decision-making by offering valuable insights into diagnostic markers for OCD.
Collapse
Affiliation(s)
- Shams Farhad
- Department of Neuroscience, Uskudar University, Istanbul, Turkey
| | | | - Çağlar Uyulan
- Department of Mechanical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | | | - Barış Metin
- Medical Faculty, Neurology Department, Uskudar University, Istanbul, Turkey
| | - Türker Tekin Ergüzel
- Faculty of Engineering and Natural Sciences, Department of Software Engineering, Uskudar University, Istanbul, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
| |
Collapse
|
29
|
Luppi AI, Singleton SP, Hansen JY, Jamison KW, Bzdok D, Kuceyeski A, Betzel RF, Misic B. Contributions of network structure, chemoarchitecture and diagnostic categories to transitions between cognitive topographies. Nat Biomed Eng 2024; 8:1142-1161. [PMID: 39103509 PMCID: PMC11410673 DOI: 10.1038/s41551-024-01242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
The mechanisms linking the brain's network structure to cognitively relevant activation patterns remain largely unknown. Here, by leveraging principles of network control, we show how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic database. Specifically, we systematically integrated large-scale multimodal neuroimaging data from functional magnetic resonance imaging, diffusion tractography, cortical morphometry and positron emission tomography to simulate how anatomically guided transitions between cognitive states can be reshaped by neurotransmitter engagement or by changes in cortical thickness. Our model incorporates neurotransmitter-receptor density maps (18 receptors and transporters) and maps of cortical thickness pertaining to a wide range of mental health, neurodegenerative, psychiatric and neurodevelopmental diagnostic categories (17,000 patients and 22,000 controls). The results provide a comprehensive look-up table charting how brain network organization and chemoarchitecture interact to manifest different cognitive topographies, and establish a principled foundation for the systematic identification of ways to promote selective transitions between cognitive topographies.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - S Parker Singleton
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Keith W Jamison
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Danilo Bzdok
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- MILA, Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard F Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Kurth F, Schijven D, van den Heuvel OA, Hoogman M, van Rooij D, Stein DJ, Buitelaar JK, Bölte S, Auzias G, Kushki A, Venkatasubramanian G, Rubia K, Bollmann S, Isaksson J, Jaspers‐Fayer F, Marsh R, Batistuzzo MC, Arnold PD, Bressan RA, Stewart SE, Gruner P, Sorensen L, Pan PM, Silk TJ, Gur RC, Cubillo AI, Haavik J, O'Gorman Tuura RL, Hartman CA, Calvo R, McGrath J, Calderoni S, Jackowski A, Chantiluke KC, Satterthwaite TD, Busatto GF, Nigg JT, Gur RE, Retico A, Tosetti M, Gallagher L, Szeszko PR, Neufeld J, Ortiz AE, Ghisleni C, Lazaro L, Hoekstra PJ, Anagnostou E, Hoekstra L, Simpson B, Plessen JK, Deruelle C, Soreni N, James A, Narayanaswamy J, Reddy JY, Fitzgerald J, Bellgrove MA, Salum GA, Janssen J, Muratori F, Vila M, Giral MG, Ameis SH, Bosco P, Remnélius KL, Huyser C, Pariente JC, Jalbrzikowski M, Rosa PG, O'Hearn KM, Ehrlich S, Mollon J, Zugman A, Christakou A, Arango C, Fisher SE, Kong X, Franke B, Medland SE, Thomopoulos SI, Jahanshad N, Glahn DC, Thompson PM, Francks C, Luders E. Large-scale analysis of structural brain asymmetries during neurodevelopment: Associations with age and sex in 4265 children and adolescents. Hum Brain Mapp 2024; 45:e26754. [PMID: 39046031 PMCID: PMC11267452 DOI: 10.1002/hbm.26754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 07/25/2024] Open
Abstract
Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1-18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females.
Collapse
Affiliation(s)
- F. Kurth
- School of PsychologyUniversity of AucklandAucklandNew Zealand
- Institute of Diagnostic and Interventional Radiology, Jena University HospitalJenaGermany
| | - D. Schijven
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - O. A. van den Heuvel
- Department of PsychiatryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - M. Hoogman
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - D. van Rooij
- Donders Institute for Brain, Cognition and Behavior, Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| | - D. J. Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - J. K. Buitelaar
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboudumcNijmegenThe Netherlands
| | - S. Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Curtin Autism Research Group, Curtin School of Allied HealthCurtin UniversityPerthAustralia
| | - G. Auzias
- Institut de neurosciences de la Timone UMR 7289, Aix‐Marseille Université & CNRSMarseilleFrance
| | - A. Kushki
- Holland Bloorview Kids Rehabilitation Hospital, Institute for Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - G. Venkatasubramanian
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
- Department of Psychiatry, Temerty Faculty of MedicineUniversity of TorontoTorontoCanada
| | - K. Rubia
- Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - S. Bollmann
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| | - J. Isaksson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Child and Adolescent Psychiatry Unit, Department of Medical SciencesUppsala UniversityUppsalaSweden
| | - F. Jaspers‐Fayer
- BC Children's Research Institute and the University of British ColumbiaVancouverCanada
| | - R. Marsh
- Department of PsychiatryColumbia University Irving Medical Center and the New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - M. C. Batistuzzo
- Department & Institute of PsychiatryUniversity of Sao Paulo, Medical SchoolSao PauloBrazil
- Department of Methods and Techniques in PsychologyPontifical Catholic UniversitySao PauloBrazil
| | - P. D. Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
| | - R. A. Bressan
- Federal University of São PauloSão PauloBrazil
- Instituto Ame Sua MenteSão PauloBrazil
| | - S. E. Stewart
- British Columbia Children's Hospital, British Columbia Mental Health and Substance Use ServicesUniversity of British ColumbiaVancouverCanada
| | - P. Gruner
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - L. Sorensen
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - P. M. Pan
- Laboratório de Neurociências Integrativas (LINC), Departamento de PsiquiatriaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
- Instituto Nacional de siquiatria do Desenvolvimento (INPD)São PauloBrazil
| | - T. J. Silk
- Centre for Social and Early Emotional Development and School of PsychologyDeakin UniversityGeelongAustralia
- Murdoch Children's Research InstituteMelbourneAustralia
| | - R. C. Gur
- Department of Psychiatry, Section on Neurodevelopment and Psychosis and the Lifespan Brain Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - A. I. Cubillo
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - J. Haavik
- Department of BiomedicineUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
| | - R. L. O'Gorman Tuura
- Center for MR Research, University Children's Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - C. A. Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation, Department of Psychiatry, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - R. Calvo
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM)BarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - J. McGrath
- Department of PsychiatryTrinity College DublinDublinIreland
| | - S. Calderoni
- IRCCS Stella Maris FoundationPisaItaly
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - A. Jackowski
- Department of PsychiatryUNIFESPSão PauloBrazil
- Department of EducationICT and Learning, Østfold University CollegeHaldenNorway
| | - K. C. Chantiluke
- Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - T. D. Satterthwaite
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain InstituteUniversity of Pennsylvania & Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing and Analytics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - G. F. Busatto
- Department of Psychiatry, Faculty of MedicineUniversity of São PauloSão PauloBrazil
| | - J. T. Nigg
- Department of Psychiatry and Center for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
| | - R. E. Gur
- Department of Psychiatry, The Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - A. Retico
- Pisa DivisionNational Institute for Nuclear Physics (INFN)PisaItaly
| | | | - L. Gallagher
- Department of PsychiatryTrinity College DublinDublinIreland
- The Hospital for Sick childrenTorontoCanada
- The Centre for Addiction and Mental Health TorontoTorontoCanada
- Department of PsychiatryUniversity of TorontoTorontoCanada
| | - P. R. Szeszko
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC)James J. Peters VA Medical CenterNew YorkNew YorkUSA
| | - J. Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Swedish Collegium for Advanced Study (SCAS)UppsalaSweden
| | - A. E. Ortiz
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - C. Ghisleni
- Center for MR Research, University Children's Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - L. Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM)BarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - P. J. Hoekstra
- Department of Child and Adolescent Psychiatry & Accare Child Study CenterUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - E. Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Department of Pediatrics, Temetry School of MedicineUniversity of TorontoTorontoCanada
| | - L. Hoekstra
- Karakter University Center for Child and Adolescent PsychiatryNijmegenThe Netherlands
- Donders Center for Cognitive NeuroimagingNijmegenThe Netherlands
- Radboud University Medical CenterNijmegenThe Netherlands
| | - B. Simpson
- New York State Psychiatric Institute/CUIMCNew YorkNew YorkUSA
| | - J. K. Plessen
- Division of Child and Adolescent Psychiatry, Department of PsychiatryUniversity Hospital LausanneLausanneSwitzerland
| | - C. Deruelle
- Institut de neurosciences de la Timone UMR 7289, Aix‐Marseille Université & CNRSMarseilleFrance
| | - N. Soreni
- Pediatric OCD Consultation ClinicSJHHamiltonCanada
- Department of Psychiatry and Behavioral Neurosciences and Offord Child StudiesMcMaster UniversityHamiltonCanada
| | - A. James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - J. Narayanaswamy
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - J. Y. Reddy
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | | | - M. A. Bellgrove
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia
| | - G. A. Salum
- Graduate Program of Psychiatry and Behavioral SciencesUniversidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Child Mind InstituteNew YorkNew YorkUSA
| | - J. Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental HealthHospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
| | | | - M. Vila
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
| | - M. Garcia Giral
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
| | - S. H. Ameis
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental HealthTorontoCanada
- Temerty Faculty of Medicine, Department of PsychiatryUniversity of TorontoTorontoCanada
| | - P. Bosco
- IRCCS Stella Maris FoundationPisaItaly
| | - K. Lundin Remnélius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - C. Huyser
- Academic Center Child and Youth PsychiatryLevvelAmsterdamThe Netherlands
- Department of Child and Adolescent PsychiatryAmsterdamUMCAmsterdamThe Netherlands
| | - J. C. Pariente
- Magnetic Resonance Image Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - M. Jalbrzikowski
- Department of Psychiatry and Behavioral SciencesBoston Children's HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - P. G. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de Sao PauloSao PauloBrazil
| | - K. M. O'Hearn
- Atrium Health Wake Forest Baptist Medical CenterWinston‐SalemNorth CarolinaUSA
| | - S. Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences & Department of Child and Adolescent PsychiatryFaculty of Medicine, TU DresdenDresdenGermany
| | - J. Mollon
- Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - A. Zugman
- National Institutes of Health/National Institute of Mental HealthBethesdaMarylandUSA
| | - A. Christakou
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language SciencesUniversity of ReadingReadingUK
| | - C. Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of MedicineUniversidad Complutense, CIBERSAMMadridSpain
| | - S. E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - X. Kong
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
- Department of Psychiatry of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - B. Franke
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - S. E. Medland
- QIMR Berghofer Medical Research InstituteHerstonAustralia
| | - S. I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - N. Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - D. C. Glahn
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's HospitalBostonMassachusettsUSA
| | - P. M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - C. Francks
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - E. Luders
- School of PsychologyUniversity of AucklandAucklandNew Zealand
- Swedish Collegium for Advanced Study (SCAS)UppsalaSweden
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
- Laboratory of Neuro Imaging, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
31
|
Hilbert K, Boeken OJ, Langhammer T, Groenewold NA, Bas-Hoogendam JM, Aghajani M, Zugman A, Åhs F, Arolt V, Beesdo-Baum K, Björkstrand J, Blackford JU, Blanco-Hinojo L, Böhnlein J, Bülow R, Cano M, Cardoner N, Caseras X, Dannlowski U, Domschke K, Fehm L, Feola B, Fredrikson M, Goossens L, Grabe HJ, Grotegerd D, Gur RE, Hamm AO, Harrewijn A, Heinig I, Herrmann MJ, Hofmann D, Jackowski AP, Jansen A, Kaczkurkin AN, Kindt M, Kingsley EN, Kircher T, Klahn AL, Koelkebeck K, Krug A, Kugel H, Larsen B, Leehr EJ, Leonhardt L, Lotze M, Margraf J, Michałowski J, Muehlhan M, Nenadić I, Pan PM, Pauli P, Peñate W, Pittig A, Plag J, Pujol J, Richter J, Rivero FL, Salum GA, Satterthwaite TD, Schäfer A, Schäfer J, Schienle A, Schneider S, Schrammen E, Schruers K, Schulz SM, Seidl E, Stark RM, Stein F, Straube B, Straube T, Ströhle A, Suchan B, Thomopoulos SI, Ventura-Bort C, Visser R, Völzke H, Wabnegger A, Wannemüller A, Wendt J, Wiemer J, Wittchen HU, Wittfeld K, Wright B, Yang Y, Zilverstand A, Zwanzger P, Veltman DJ, Winkler AM, Pine DS, Jahanshad N, Thompson PM, Stein DJ, Van der Wee NJ, Lueken U. Cortical and Subcortical Brain Alterations in Specific Phobia and Its Animal and Blood-Injection-Injury Subtypes: A Mega-Analysis From the ENIGMA Anxiety Working Group. Am J Psychiatry 2024; 181:728-740. [PMID: 38859702 PMCID: PMC11979901 DOI: 10.1176/appi.ajp.20230032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Specific phobia is a common anxiety disorder, but the literature on associated brain structure alterations exhibits substantial gaps. The ENIGMA Anxiety Working Group examined brain structure differences between individuals with specific phobias and healthy control subjects as well as between the animal and blood-injection-injury (BII) subtypes of specific phobia. Additionally, the authors investigated associations of brain structure with symptom severity and age (youths vs. adults). METHODS Data sets from 31 original studies were combined to create a final sample with 1,452 participants with phobia and 2,991 healthy participants (62.7% female; ages 5-90). Imaging processing and quality control were performed using established ENIGMA protocols. Subcortical volumes as well as cortical surface area and thickness were examined in a preregistered analysis. RESULTS Compared with the healthy control group, the phobia group showed mostly smaller subcortical volumes, mixed surface differences, and larger cortical thickness across a substantial number of regions. The phobia subgroups also showed differences, including, as hypothesized, larger medial orbitofrontal cortex thickness in BII phobia (N=182) compared with animal phobia (N=739). All findings were driven by adult participants; no significant results were observed in children and adolescents. CONCLUSIONS Brain alterations associated with specific phobia exceeded those of other anxiety disorders in comparable analyses in extent and effect size and were not limited to reductions in brain structure. Moreover, phenomenological differences between phobia subgroups were reflected in diverging neural underpinnings, including brain areas related to fear processing and higher cognitive processes. The findings implicate brain structure alterations in specific phobia, although subcortical alterations in particular may also relate to broader internalizing psychopathology.
Collapse
Affiliation(s)
- Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ole Jonas Boeken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Till Langhammer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nynke A. Groenewold
- Neuroscience Institute, Department of Psychiatry and Mental Health, University of Cape Town
- South African Medical Research Council (SA-MRC) Unit on Child and Adolescent Health, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
| | - Janna Marie Bas-Hoogendam
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Moji Aghajani
- Leiden University, Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden, The Netherlands
- Department of Psychiatry, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
| | - André Zugman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Fredrik Åhs
- Department of Psychology and Social Work, Mid Sweden University, Östersund, Sweden
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katja Beesdo-Baum
- Institute for Clinical Psychology und Psychotherapy, Behavioral Epidemiology, Technische Universität Dresden, Dresden, Germany
| | | | | | - Laura Blanco-Hinojo
- MRI Reseach Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- IMIM-CIBER de Salud Mental, Instituto de Salud Carlos III., Barcelona, Spain
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Marta Cano
- Mental Health Department, Unitat de Neurociència Traslacional, Parc Tauli University Hospital, Institut d’Investigació i Innovació Sanitària Parc Taulí (I3PT), Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain
| | - Narcis Cardoner
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Caseras
- Department of Psychological Medicine and Clinical Neurosciences, Cardiff University Cardiff United Kingdom
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lydia Fehm
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mats Fredrikson
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Liesbet Goossens
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Alfons O. Hamm
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
| | - Anita Harrewijn
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam Bethesda, MD, USA
| | - Ingmar Heinig
- Institute of Clinical Psychology & Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Martin J. Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Andrea P. Jackowski
- LiNC, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
- Department of Education, Information and Communications Technology (ICT) and Learning, Østfold University College, Halden, Norway
| | - Andreas Jansen
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | | | - Merel Kindt
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Ellen N. Kingsley
- COMIC Research, Leeds and York Partnership NHS Foundation Trust, Leeds, United Kingdom
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Anna L. Klahn
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katja Koelkebeck
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Institute and Hospital of the University of Duisburg-Essen, Essen, Germany
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg, Germany
- Department of Psychiatry, University Hospital of Bonn, Bonn, Germany
| | - Harald Kugel
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisabeth J. Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lieselotte Leonhardt
- Institute of Clinical Psychology & Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Martin Lotze
- Functional Imaging Unit. Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Jürgen Margraf
- Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Jarosław Michałowski
- Laboratory of Affective Neuroscience in Poznan, SWPS University of Social Sciences and Humanities, Warszawa, Poland
| | - Markus Muehlhan
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
| | - Igor Nenadić
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Pedro M. Pan
- LiNC, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Paul Pauli
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Wenceslao Peñate
- Department of Clinical Psychology, Psychobiology and Methodology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Andre Pittig
- Translational Psychotherapy, Institute of Psychology, University of Goettingen, Goettingen, Germany
| | - Jens Plag
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Alexianer Krankenhaus Hedwigshoehe, St. Hedwig Kliniken, Berlin, Germany
| | - Jesus Pujol
- IMIM-CIBER de Salud Mental, Instituto de Salud Carlos III., Barcelona, Spain
- MRI Reseach Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Jan Richter
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
- Department of Experimental Psychopathology, University of Hildesheim, Hildesheim, Germany
| | - Francisco L. Rivero
- Department of Clinical Psychology, Psychobiology and Methodology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departament os Psychology, Faculty of Health Science, Universidad Europea de Canarias, La Orotava, Spain
| | - Giovanni A. Salum
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Axel Schäfer
- Bender Institute of Neuroimaging (BION), Justus-Liebig University Gießen, Center of Mind, Brain and Behavior, Universities of Marburg and Gießen, Gießen, Germany
| | - Judith Schäfer
- Institute of Clinical Psychology & Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Anne Schienle
- Department of Psychology, University of Graz, Graz, Austria
| | - Silvia Schneider
- Faculty of Psychology, Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Elisabeth Schrammen
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Koen Schruers
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Stefan M. Schulz
- Department of Psychology, University of Würzburg, Würzburg, Germany
- Department of Behavioural Medicine and Principles of Human Biology for the Health Sciences, Universität Trier, Trier, Germany
| | - Esther Seidl
- Research Group Security and Privacy, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Rudolf M. Stark
- Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging (BION), Justus-Liebig University Gießen, Center of Mind, Brain and Behavior, Universities of Marburg and Gießen, Gießen, Germany
| | - Frederike Stein
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Neuroscience, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Boris Suchan
- Department of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Marina del Rey, CA, USA
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Renee Visser
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Julia Wendt
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Julian Wiemer
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | | | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Barry Wright
- Health Sciences, University of York, York, United Kingdom
| | - Yunbo Yang
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter Zwanzger
- KBO-Inn-Salzach-Klinikum, Wasserburg am Inn, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam UMC location VUMC, Amsterdam, The Netherlands
| | - Anderson M. Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S. Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Marina del Rey, CA, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Marina del Rey, CA, USA
| | - Dan J. Stein
- South African Medical Research Council Unit on Risk & Resilience in Mental Disorders, Neuroscience Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Nic J.A. Van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
32
|
Doolub D, Vibert N, Botta F, Razmkon A, Bouquet C, Wassouf I, Millet B, Harika-Germaneau G, Jaafari N. Neurological soft signs as trait markers of a subset of patients with obsessive-compulsive disorder with low insight and altered cognitive abilities. J Psychiatr Res 2024; 175:42-49. [PMID: 38704980 DOI: 10.1016/j.jpsychires.2024.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/04/2023] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Neurological soft signs (NSS) are subtle motor control impairments that include involuntary movements and abnormalities of motor coordination, sensory integration and lateralization. They engage different brain networks, including the prefrontal networks that support the higher cognitive functions that are dysfunctional in obsessive-compulsive disorder (OCD). This study investigated the relationships between the presence of NSS and patients' severity of OCD symptoms, insight, and treatment resistance in a sample of 63 patients. Treatment-resistance was assessed considering all the treatments the patients received during the course of their disease. The four dimensions of OCD defined in the dimensional obsessive-compulsive scale were considered. Links between the patients' cognitive abilities and NSS were assessed using tests targeting specifically the core components of executive functions. As expected, OCD patients displayed more NSS than individually matched control participants. In OCD patients, high NSS scores were associated with poor insight and lower cognitive abilities. Multiple regression analysis identified worse visuospatial working memory, attentional control, and verbal fluency as predictive factors of high NSS scores among cognitive functions. Unexpectedly, the patients displaying symptoms in the contamination/washing dimension displayed less NSS than the other patients. In contrast, neither the severity of OCD symptoms nor long-range treatment resistance was significantly related to patients' NSS scores. Altogether, our findings suggest that high NSS scores may be a trait marker of a subset of OCD patients with low insight and particularly altered cognitive abilities who would not express the contamination/washing dimension of the pathology.
Collapse
Affiliation(s)
- Damien Doolub
- CNRS, Université de Poitiers, Université de Tours, CeRCA, Poitiers, France; Unité de Recherche Clinique Pierre Deniker du Centre Hospitalier Henri Laborit, Poitiers, France.
| | - Nicolas Vibert
- CNRS, Université de Poitiers, Université de Tours, CeRCA, Poitiers, France
| | - Fabiano Botta
- Unité de Recherche Clinique Pierre Deniker du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Ali Razmkon
- Unité de Recherche Clinique Pierre Deniker du Centre Hospitalier Henri Laborit, Poitiers, France; Research Center for Neuromodulation and Pain, Shiraz, Iran
| | - Cédric Bouquet
- CNRS, Université de Poitiers, Université de Tours, CeRCA, Poitiers, France
| | - Issa Wassouf
- CNRS, Université de Poitiers, Université de Tours, CeRCA, Poitiers, France; Unité de Recherche Clinique Pierre Deniker du Centre Hospitalier Henri Laborit, Poitiers, France; Centre Hospitalier du Nord Deux-Sèvres, Service de Psychiatrie Adulte, Thouars, France
| | - Bruno Millet
- Institut du Cerveau et de la Moelle, UMR 7225, CNRS, INSERM, Sorbonne Université et Département de Psychiatrie Adulte, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Ghina Harika-Germaneau
- CNRS, Université de Poitiers, Université de Tours, CeRCA, Poitiers, France; Unité de Recherche Clinique Pierre Deniker du Centre Hospitalier Henri Laborit, Poitiers, France
| | - Nematollah Jaafari
- CNRS, Université de Poitiers, Université de Tours, CeRCA, Poitiers, France; Unité de Recherche Clinique Pierre Deniker du Centre Hospitalier Henri Laborit, Poitiers, France
| |
Collapse
|
33
|
Jiang Y, Palaniyappan L, Luo C, Chang X, Zhang J, Tang Y, Zhang T, Li C, Zhou E, Yu X, Li W, An D, Zhou D, Huang CC, Tsai SJ, Lin CP, Cheng J, Wang J, Yao D, Cheng W, Feng J, the ZIB Consortium. Neuroimaging epicenters as potential sites of onset of the neuroanatomical pathology in schizophrenia. SCIENCE ADVANCES 2024; 10:eadk6063. [PMID: 38865456 PMCID: PMC11168466 DOI: 10.1126/sciadv.adk6063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Schizophrenia lacks a clear definition at the neuroanatomical level, capturing the sites of origin and progress of this disorder. Using a network-theory approach called epicenter mapping on cross-sectional magnetic resonance imaging from 1124 individuals with schizophrenia, we identified the most likely "source of origin" of the structural pathology. Our results suggest that the Broca's area and adjacent frontoinsular cortex may be the epicenters of neuroanatomical pathophysiology in schizophrenia. These epicenters can predict an individual's response to treatment for psychosis. In addition, cross-diagnostic similarities based on epicenter mapping over of 4000 individuals diagnosed with neurological, neurodevelopmental, or psychiatric disorders appear to be limited. When present, these similarities are restricted to bipolar disorder, major depressive disorder, and obsessive-compulsive disorder. We provide a comprehensive framework linking schizophrenia-specific epicenters to multiple levels of neurobiology, including cognitive processes, neurotransmitter receptors and transporters, and human brain gene expression. Epicenter mapping may be a reliable tool for identifying the potential onset sites of neural pathophysiology in schizophrenia.
Collapse
Affiliation(s)
- Yuchao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Enpeng Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, PR China
- Shanghai Changning Mental Health Center, Shanghai, PR China
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, PR China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, PR China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China
- Zhangjiang Fudan International Innovation Center, Shanghai, PR China
- School of Data Science, Fudan University, Shanghai, PR China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
34
|
Weeland CJ, Vriend C, Tiemeier H, van den Heuvel OA, White T. The Longitudinal Relationship Between Brain Morphology and Obsessive-Compulsive Symptoms in Children From the General Population. JAACAP OPEN 2024; 2:126-134. [PMID: 39554206 PMCID: PMC11562553 DOI: 10.1016/j.jaacop.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 11/19/2024]
Abstract
Objective Cross-sectional studies in children with obsessive-compulsive disorder (OCD) have found larger thalamic volume, which is not found at later ages. We previously found that 9- to 12-year-old children from the general population with clinical-level obsessive-compulsive symptoms (OCS) also have a larger thalamus. Thus, using a longitudinal design, we studied the relationship among thalamic volume, cortical maturation, and the course of OCS. Method Children from the population-based Generation R Study underwent 1 or 2 (N = 2,552) magnetic resonance imaging (MRI) scans between the age of 9 and 16 years (baseline 9-12 years, follow-up 13-16 years). OCS were assessed with the Short Obsessive-Compulsive Disorder Screener (SOCS) questionnaire using both continuous and clinical cut-off measures to identify children with "probable OCD." We applied linear regression models to investigate the cross-sectional relationship between brain morphology and OCS at age 13 to 16 years. Linear mixed-effect models were fitted to model the bidirectional longitudinal relationship between thalamus and OCS and the thalamus and cortical morphology. Results Thalamic volume was not different between probable OCD cases and controls at age 13 to 16 years. Higher baseline thalamic volume predicted a relative persistence of OCS and a flatter slope of thinning in 12 cortical regions. Conclusion Larger thalamic volume may be a subtle biomarker for persistent OCS symptoms. The persistence of OCS and cortical thickness in relation to earlier larger thalamic volume may reflect being at an earlier stage in neurodevelopment. Longitudinal designs with repeated multimodal brain imaging are warranted to improve our understanding of the neurodevelopmental processes underlying OCS and OCD. Study preregistration information Relationship between obsessive-compulsive symptoms and brain morphology in school-aged children in the general population; https://osf.io/; y6vs2.
Collapse
Affiliation(s)
- Cees J. Weeland
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, the Netherlands
- Erasmus University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Chris Vriend
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, the Netherlands
| | | | - Odile A. van den Heuvel
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, the Netherlands
| | - Tonya White
- Erasmus University Medical Center, Rotterdam, the Netherlands
- Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
35
|
Zhang C, Zhang X, Li W, Zhang T, Zhang Z, Lu L, Didonna F, Fan Q. Pallidum volume as a predictor for the effectiveness of mindfulness-based cognitive therapy and psycho-education in unmedicated patients with obsessive-compulsive disorder. Compr Psychiatry 2024; 131:152462. [PMID: 38354586 DOI: 10.1016/j.comppsych.2024.152462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Mindfulness-based cognitive therapy (MBCT) has been documented to be effective in treating obsessive-compulsive disorder (OCD). However, the neurobiological basis of MBCT remains largely elusive, which makes it clinically challenging to predict which patients are more likely to respond poorly. Hence, identifying biomarkers for predicting treatment outcomes holds both scientific and clinical values. This prognostic study aims to investigate whether pre-treatment brain morphological metrics can predict the effectiveness of MBCT, compared with psycho-education (PE) as an active placebo, among patients with OCD. METHODS A total of 32 patients with OCD were included in this prognostic study. They received magnetic resonance imaging (MRI) brain scans before treatment. Subsequently, 16 patients received 10 weeks of MBCT, while the other 16 patients underwent a 10-week PE program. The effectiveness of the treatments was primarily assessed by the reduction rate of the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) total score before and after the treatment. We investigated whether several predefined OCD-associated brain morphological metrics, selected based on prior published studies by the ENIGMA Consortium, could predict the treatment effectiveness. RESULTS Both the MBCT and PE groups exhibited substantial reductions in Y-BOCS scores over 10 weeks of treatment, with the MBCT group showing a larger reduction. Notably, the pallidum total volume was associated with treatment effectiveness, irrespective of the intervention group. Specifically, a linear regression model utilizing the pre-treatment pallidum volume to predict the treatment effectiveness suggested that a one-cubic-centimeter increase in pallidum volume corresponded to a 22.3% decrease in the Y-BOCS total score reduction rate. CONCLUSIONS Pallidum volume may serve as a promising predictor for the effectiveness of MBCT and PE, and perhaps, other treatments with the shared mechanisms by MBCT and PE, among patients with OCD.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqing Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Tianran Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Child Development and Education, University of Amsterdam, Amsterdam, the Netherlands
| | - Zongfeng Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo University, Ningbo, Zhejiang, China
| | - Lu Lu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Clinical Psychology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
36
|
Shobeiri P, Hosseini Shabanan S, Haghshomar M, Khanmohammadi S, Fazeli S, Sotoudeh H, Kamali A. Cerebellar Microstructural Abnormalities in Obsessive-Compulsive Disorder (OCD): a Systematic Review of Diffusion Tensor Imaging Studies. CEREBELLUM (LONDON, ENGLAND) 2024; 23:778-801. [PMID: 37291229 DOI: 10.1007/s12311-023-01573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Previous neuroimaging studies have suggested that obsessive-compulsive disorder (OCD) is associated with altered resting-state functional connectivity of the cerebellum. In this study, we aimed to describe the most significant and reproducible microstructural abnormalities and cerebellar changes associated with obsessive-compulsive disorder (OCD) using diffusion tensor imaging (DTI) investigations. PubMed and EMBASE were searched for relevant studies using the PRISMA 2020 protocol. A total of 17 publications were chosen for data synthesis after screening titles and abstracts, full-text examination, and executing the inclusion criteria. The patterns of cerebellar white matter (WM) integrity loss, determined by fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) metrics, varied across studies and symptoms. Changes in fractional anisotropy (FA) values were described in six publications, which were decreased in four and increased in two studies. An increase in diffusivity parameters of the cerebellum (i.e., MD, RD, and AD) in OCD patients was reported in four studies. Alterations of the cerebellar connectivity with other brain areas were also detected in three studies. Heterogenous results were found in studies that investigated cerebellar microstructural abnormalities in correlation with symptom dimension or severity. OCD's complex phenomenology may be characterized by changes in cerebellar WM connectivity across wide networks, as shown by DTI studies on OCD patients in both children and adults. Classification features in machine learning and clinical tools for diagnosing OCD and determining the prognosis of the disorder might both benefit from using cerebellar DTI data.
Collapse
Affiliation(s)
- Parnian Shobeiri
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Maryam Haghshomar
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Shaghayegh Khanmohammadi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fazeli
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Houman Sotoudeh
- Department of Radiology and Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Arash Kamali
- Department of Diagnostic and Interventional Radiology, University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
37
|
Strom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Boberg J, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, German C, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O’Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, et alStrom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Boberg J, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, German C, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O’Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, Riddle MA, Ripke S, Rosário MC, Sampaio AS, Schiele MA, Skogholt AH, Sloofman LGSG, Smit J, Soler AM, Thomas LF, Tifft E, Vallada H, van Kirk N, Veenstra-VanderWeele J, Vulink NN, Walker CP, Wang Y, Wendland JR, Winsvold BS, Yao Y, Zhou H, 23andMe Research Team, VA Million Veteran Program, Estonian Biobank, CoGa research team, iPSYCH, HUNT research team, NORDiC research team, Agrawal A, Alonso P, Berberich G, Bucholz KK, Bulik CM, Cath D, Denys D, Eapen V, Edenberg H, Falkai P, Fernandez TV, Fyer AJ, Gaziano JM, Geller DA, Grabe HJ, Greenberg BD, Hanna GL, Hickie IB, Hougaard DM, Kathmann N, Kennedy J, Lai D, Landén M, Le Hellard S, Leboyer M, Lochner C, McCracken JT, Medland SE, Mortensen PB, Neale BM, Nicolini H, Nordentoft M, Pato M, Pato C, Pauls DL, Piacentini J, Pittenger C, Posthuma D, Ramos-Quiroga JA, Rasmussen SA, Richter MA, Rosenberg DR, Ruhrmann S, Samuels JF, Sandin S, Sandor P, Spalletta G, Stein DJ, Stewart SE, Storch EA, Stranger BE, Turiel M, Werge T, Andreassen OA, Børglum AD, Walitza S, Hveem K, Hansen BK, Rück CP, Martin NG, Milani L, Mors O, Reichborn-Kjennerud T, Ribasés M, Kvale G, Mataix-Cols D, Domschke K, Grünblatt E, Wagner M, Zwart JA, Breen G, Nestadt G, Kaprio J, Arnold PD, Grice DE, Knowles JA, Ask H, Verweij KJ, Davis LK, Smit DJ, Crowley JJ, Scharf JM, Stein MB, Gelernter J, Mathews CA, Derks EM, Mattheisen M. Genome-wide association study identifies 30 obsessive-compulsive disorder associated loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.13.24304161. [PMID: 38712091 PMCID: PMC11071577 DOI: 10.1101/2024.03.13.24304161] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Obsessive-compulsive disorder (OCD) affects ~1% of the population and exhibits a high SNP-heritability, yet previous genome-wide association studies (GWAS) have provided limited information on the genetic etiology and underlying biological mechanisms of the disorder. We conducted a GWAS meta-analysis combining 53,660 OCD cases and 2,044,417 controls from 28 European-ancestry cohorts revealing 30 independent genome-wide significant SNPs and a SNP-based heritability of 6.7%. Separate GWAS for clinical, biobank, comorbid, and self-report sub-groups found no evidence of sample ascertainment impacting our results. Functional and positional QTL gene-based approaches identified 249 significant candidate risk genes for OCD, of which 25 were identified as putatively causal, highlighting WDR6, DALRD3, CTNND1 and genes in the MHC region. Tissue and single-cell enrichment analyses highlighted hippocampal and cortical excitatory neurons, along with D1- and D2-type dopamine receptor-containing medium spiny neurons, as playing a role in OCD risk. OCD displayed significant genetic correlations with 65 out of 112 examined phenotypes. Notably, it showed positive genetic correlations with all included psychiatric phenotypes, in particular anxiety, depression, anorexia nervosa, and Tourette syndrome, and negative correlations with a subset of the included autoimmune disorders, educational attainment, and body mass index.. This study marks a significant step toward unraveling its genetic landscape and advances understanding of OCD genetics, providing a foundation for future interventions to address this debilitating disorder.
Collapse
Affiliation(s)
- Nora I. Strom
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zachary F. Gerring
- Department of Mental Health and Neuroscience, Translational Neurogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Department of Population Health and Immunity, Healthy Development and Ageing, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Marco Galimberti
- Department of Psychiatry, Human Genetics, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dongmei Yu
- Department of Center for Genomic Medicine, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Matthew W. Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Cristina Rodriguez-Fontenla
- CIMUS (Center for Research in Molecular Medicine and Chronic Diseases), Genomics and Bioinformatics, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
- Grupo de Medicina Xenómica, Genetics, FIDIS (Instituto de Investigación Sanitaria de Santiago de Compostela), Santiago de Compostela, A Coruña, Spain
| | - Julia M. Sealock
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tim Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Jonathan R. Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, United Kingdom
| | - Behrang Mahjani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jackson G. Thorp
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christie L. Burton
- Department of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Jurjen J. Luykx
- Department of Psychiatry, Brain, University Medical Center Utrecht, Utrecht, The Netherlands
- Second opinion outpatient clinic, GGNet, Warnsveld, The Netherlands
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health,, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Christine Andre
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Kathleen D. Askland
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Judith Becker Nissen
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
- Institute of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - O. Joseph Bienvenu
- Department of Psychiatry and Behavioral Sciences, General Hospital Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Black
- Departments of Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael H. Bloch
- Department of Child Study Center and Psychiatry, Yale University, New Haven, CT, USA
| | - Julia Boberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Sigrid Børte
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Rosa Bosch
- Department of Child and Adolescent Mental Health, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Instituto de Salut Carlos III, Centro de Investigación Biomédica en Red de Salut Mental (CIBERSAM), Madrid, Spain
| | - Michael Breen
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine At Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Brian P. Brennan
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Helena Brentani
- Department of Psychiatry, Universidade De São Paulo, São Paulo, Brazil
| | - Joseph D. Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Enda M. Byrne
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Judit Cabana-Dominguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Beatriz Camarena
- Pharmacogenetics Department, Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Mexico City, México
| | | | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Angel Carracedo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Genomics and Bioinformatics Group, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galiician Foundation of Genomic Medicine, Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago -IDIS-, Santiago de Compostela, Spain
- Medicina Genómica, Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Miguel Casas
- Programa MIND Escoles, Hospital Sant Joan de Déu , Esplugues de Llobregat, Barcelona, Spain
- Departamento de Psiquiatría y Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Edwin H. Cook
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Jesse Crosby
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bernadette A. Cullen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore , MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elles J. De Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Richard Delorme
- Child and Adolesccent Psycchiatry Department, APHP, Paris, France
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jason A. Elias
- Psychiatry, McLean Hospital OCDI, Harvard Medical School, Belmont, MA, USA
- Adult Psychological Services, CBTeam LLC, Lexington, MA, USA
| | - Xavier Estivill
- qGenomics (Quantitative Genomics Laboratories), Esplugues de Llobregat, Barcelona, Spain
| | - Martha J. Falkenstein
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bengt T. Fundin
- Department of Medical Epidemiology and Biostatistics, Center for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| | - Lauryn Garner
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | | | - Christina Gironda
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Fernando S. Goes
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Marco A. Grados
- Department of Psychiatry and Behavioral Sciences, Child & Adolescent Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus, Denmark
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kristen Hagen
- Department of Psychiatry, Møre og Romsdal Hospital Trust, Molde, Norway
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
| | - Kelly Harrington
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Kira D. Höffler
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Dr. Einar Martens Research Group for Biological Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ana G. Hounie
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Donald Hucks
- Department of Medicine, Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Janecka
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric Jenike
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Elinor K. Karlsson
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Kelley
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Janice E. Krasnow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christoph Lange
- Department of Biostatistics, T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Daniel Levey
- Department of Psychiatry, Yale University, West Haven, CT, USA
- Office of Research & Development, United States Department of Veterans Affairs, West Haven, CT, USA
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Vertebrate Genomics, Broad Institute, Cambridge, MA, USA
| | - Fabio Macciardi
- Department of Psychiatry, University of California, Irvine (UCI), Irvine, CA, USA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brittany Mathes
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nicole C. McLaughlin
- Department of Psychiatry & Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Butler Hospital, Providence, RI, USA
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Euripedes C. Miguel
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maureen Mulhern
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Paul S. Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin S. O’Connell
- Department of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Lisa Osiecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Harvard Medical School, Boston, MA, USA
| | - Olga Therese Ousdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Haukeland University Hospital, Bergen, Norway
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Department of Clinical Neuroscience and Neurorehabilitation, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sriramya Potluri
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Raquel Rabionet
- Department of Genetics, microbiology and statistics, IBUB, Universitat de Barcelona, Barcelona, Spain
- CIBERER, Centro de investigación biomédica en red, Madrid, Spain
- Department of Human Molecular Genetics, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- DZNE Bonn, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), University of Cologne, Cologne, Germany
| | - Scott Rauch
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Abraham Reichenberg
- Department of Mental disorders, Norwegian Institute of Public Health, New York, NY, USA
| | - Mark A. Riddle
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- site Berlin-Potsdam, German Center for Mental Health (DZPG), Berlin, Germany
| | - Maria C. Rosário
- Department of Psychiatry, Child and Adolescent Psychiatry Unit (UPIA), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Aline S. Sampaio
- Department of Neurosciences and Mental Health, Medical School, Federal University of Bahia, Salvador, Brazil
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
| | - Anne Heidi Skogholt
- Department of Public Health and Nursing, HUNT Center for Molecular and Clinical Epidemiology, Trondheim, Norway
| | | | - Jan Smit
- Department of Psychiatry, Faculty of Medicine, Locaion Vumc, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Artigas María Soler
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laurent F. Thomas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, K. G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eric Tifft
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Homero Vallada
- Department of Psychiatry, Universidade de Sao Paulo, São Paulo, Brazil
- Department of Molecular Medicine and Surgery, CMM, Karolinska Institutet, Stockholm, Sweden
| | - Nathanial van Kirk
- OCD Institute, Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Nienke N. Vulink
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ying Wang
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jens R. Wendland
- Laboratory of Clinical Science, NIMH Intramural Research Program, Bethesda, MD, USA
| | - Bendik S. Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yin Yao
- Department of Computional Biology, Institute of Life Science, Fudan University, Fudan, China
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Pino Alonso
- Department of Psychiatry, OCD Clinical and Research Unit, Bellvitge Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Department of Psychiatry and Mental Health, Bellvitge Biomedical Research Institute IDIBELLL, Barcelona, Spain
- CIBERSAM, Mental Health Network Biomedical Research Center, Madrid, Spain
| | - Götz Berberich
- Psychosomatic Department, Windach Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| | - Kathleen K. Bucholz
- Department of Psychiatry, Washington U. School of Medicine, St Louis, MO, USA
| | - Cynthia M. Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danielle Cath
- Departments of Rijksuniversiteit Groningen and Psychiatry, University Medical Center Groninge, Groningen, The Netherlands
- Department of Specialized Training, Drenthe Mental Health Care Institute, Groningen, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Institute of The Royal Netherlands Academy of Arts and Sciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW, Sydney, NSW, Australia
- Academic Unit of Child Psychiatry South-West Sydney (AUCS), South-West Sydney Clinical School, SWSLHD & Ingham Institute, Sydney, NSW, Australia
| | - Howard Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Department of Psychiatry, Max Planck Institute, Munich, Germany
| | - Thomas V. Fernandez
- Child Study Center and Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Abby J. Fyer
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, , Columbia University Medical Center, New York, NY, USA
| | - J M. Gaziano
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Mass General Brigham, Boston, MA, USA
| | - Dan A. Geller
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Child Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Hans J. Grabe
- Department of Psychiatry & Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Benjamin D. Greenberg
- COBRE Center on Neuromodulation, Butler Hospital, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Gregory L. Hanna
- Department of Psychiatry, Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ian B. Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - David M. Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - James Kennedy
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Stéphanie Le Hellard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for brain plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Marion Leboyer
- Department of Addictology and Psychiatry, Univ Paris Est Créteil, AP-HP, Inserm, Paris, France
| | - Christine Lochner
- Department of Psychiatry, SA MRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Stellenbosch, South Africa
| | - James T. McCracken
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah E. Medland
- Department of Mental Health, Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Preben B. Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Benjamin M. Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, , Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Humberto Nicolini
- Department of Psychiatry, Psychiatry, Carracci Medical Group, Mexico City, México
- Psiquiatría, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Copenhagen Research Center for Mental Health, Mental Health services in the Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michele Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - Carlos Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - David L. Pauls
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences, Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Danielle Posthuma
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatric, Section Complex Trait Genetics, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Steven A. Rasmussen
- Department of Psychiatry & Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Margaret A. Richter
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - David R. Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Child and Adolescent Psychiatry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jack F. Samuels
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sven Sandin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul Sandor
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Dan J. Stein
- Dept of Psychiatry & Neuroscience Institute, SAMRC Unit on Risk & Reslience in Mental Disorders, University of Cape Town, Cape Town, Western Cape, South Africa
| | - S. Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute (BCMHSUS), Vancouver, BC, Canada
| | - Eric A. Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Barbara E. Stranger
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital, Mental Health Services (RHP), Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole A. Andreassen
- Institute of Clinical Medicine, NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Center for Precision Psychiatry, Oslo University Hospital, Oslo, , Norway
| | - Anders D. Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zuric, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research, Innovation and Education, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjarne K. Hansen
- Bergen Center for Brain Plasticity (BCBP), Psychiatry, Haukeland University Hospital, Bergen, Norway
- Centre for Crisis Psychology, Psychology, University of Bergen, Bergen, Norway
| | - Christian P. Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Nicholas G. Martin
- Department of Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ole Mors
- Psychosis Reasearch Unit, Aarhus University Hospital - Psychiatry, 8200 Aarhus N, Denmark
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron , Barcelona, Spain
| | - Gerd Kvale
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Psychology, Faculty of Psychology, University of Bergen, Bergen, Vestland
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Katharina Domschke
- Department of Psychiatry, University of Freiburg - Medical Faculty, Freiburg, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
| | - Edna Grünblatt
- Neuroscience Center Zurich, University of Zurich and the ETH Zuric, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Schweiz
| | - Michael Wagner
- Departments of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - John-Anker Zwart
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Innovation, Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gerome Breen
- Social, Genetic, and Developmental Psychiatric Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Paul D. Arnold
- Department of Psychiatry, The Mathison Centre for Mental Health Research & Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Dorothy E. Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James A. Knowles
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Helga Ask
- PsychGen Center for Genetic Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Karin J. Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lea K. Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dirk J. Smit
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - James J. Crowley
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremiah M. Scharf
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Murray B. Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Human Genetics (Psychiatry), Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Carol A. Mathews
- Psychiatry and Genetics Institute, Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA
| | - Eske M. Derks
- Department of Mental Health and Neuroscience, QIMR Berghofer, Brisbane, Australia
| | - Manuel Mattheisen
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Community Health and Epidemiology and Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
38
|
Xu C, Hou G, He T, Ruan Z, Guo X, Chen J, Wei Z, Seger CA, Chen Q, Peng Z. Local structural and functional MRI markers of compulsive behaviors and obsessive-compulsive disorder diagnosis within striatum-based circuits. Psychol Med 2024; 54:710-720. [PMID: 37642202 DOI: 10.1017/s0033291723002386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a classic disorder on the compulsivity spectrum, with diverse comorbidities. In the current study, we sought to understand OCD from a dimensional perspective by identifying multimodal neuroimaging patterns correlated with multiple phenotypic characteristics within the striatum-based circuits known to be affected by OCD. METHODS Neuroimaging measurements of local functional and structural features and clinical information were collected from 110 subjects, including 51 patients with OCD and 59 healthy control subjects. Linked independent component analysis (LICA) and correlation analysis were applied to identify associations between local neuroimaging patterns across modalities (including gray matter volume, white matter integrity, and spontaneous functional activity) and clinical factors. RESULTS LICA identified eight multimodal neuroimaging patterns related to phenotypic variations, including three related to symptoms and diagnosis. One imaging pattern (IC9) that included both the amplitude of low-frequency fluctuation measure of spontaneous functional activity and white matter integrity measures correlated negatively with OCD diagnosis and diagnostic scales. Two imaging patterns (IC10 and IC27) correlated with compulsion symptoms: IC10 included primarily anatomical measures and IC27 included primarily functional measures. In addition, we identified imaging patterns associated with age, gender, and emotional expression across subjects. CONCLUSIONS We established that data fusion techniques can identify local multimodal neuroimaging patterns associated with OCD phenotypes. The results inform our understanding of the neurobiological underpinnings of compulsive behaviors and OCD diagnosis.
Collapse
Affiliation(s)
- Chuanyong Xu
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen, China
| | - Tingxin He
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Zhongqiang Ruan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xinrong Guo
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Carol A Seger
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
| | - Qi Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
39
|
Toffanin T, Cattarinussi G, Ghiotto N, Lussignoli M, Pavan C, Pieri L, Schiff S, Finatti F, Romagnolo F, Folesani F, Nanni MG, Caruso R, Zerbinati L, Belvederi Murri M, Ferrara M, Pigato G, Grassi L, Sambataro F. Effects of electroconvulsive therapy on cortical thickness in depression: a systematic review. Acta Neuropsychiatr 2024; 37:e44. [PMID: 38343196 DOI: 10.1017/neu.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is one of the most studied and validated available treatments for severe or treatment-resistant depression. However, little is known about the neural mechanisms underlying ECT. This systematic review aims to critically review all structural magnetic resonance imaging studies investigating longitudinal cortical thickness (CT) changes after ECT in patients with unipolar or bipolar depression. METHODS We performed a search on PubMed, Medline, and Embase to identify all available studies published before April 20, 2023. A total of 10 studies were included. RESULTS The investigations showed widespread increases in CT after ECT in depressed patients, involving mainly the temporal, insular, and frontal regions. In five studies, CT increases in a non-overlapping set of brain areas correlated with the clinical efficacy of ECT. The small sample size, heterogeneity in terms of populations, comorbidities, and ECT protocols, and the lack of a control group in some investigations limit the generalisability of the results. CONCLUSIONS Our findings support the idea that ECT can increase CT in patients with unipolar and bipolar depression. It remains unclear whether these changes are related to the clinical response. Future larger studies with longer follow-up are warranted to thoroughly address the potential role of CT as a biomarker of clinical response after ECT.
Collapse
Affiliation(s)
- Tommaso Toffanin
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Niccolò Ghiotto
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | | | - Chiara Pavan
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Luca Pieri
- Department of Medicine, University of Padova, Padua, Italy
| | - Sami Schiff
- Department of Medicine, University of Padova, Padua, Italy
| | - Francesco Finatti
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Francesca Romagnolo
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Federica Folesani
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Maria Giulia Nanni
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Rosangela Caruso
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Luigi Zerbinati
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Martino Belvederi Murri
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Maria Ferrara
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Giorgio Pigato
- Department of Psychiatry, Padova University Hospital, Padua, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
40
|
Niu L, Fang K, Han S, Xu C, Sun X. Resolving heterogeneity in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder through individualized structural covariance network analysis. Cereb Cortex 2024; 34:bhad391. [PMID: 38142281 DOI: 10.1093/cercor/bhad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 12/25/2023] Open
Abstract
Disruptions in large-scale brain connectivity are hypothesized to contribute to psychiatric disorders, including schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. However, high inter-individual variation among patients with psychiatric disorders hinders achievement of unified findings. To this end, we adopted a newly proposed method to resolve heterogeneity of differential structural covariance network in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. This method could infer individualized structural covariance aberrance by assessing the deviation from healthy controls. T1-weighted anatomical images of 114 patients with psychiatric disorders (schizophrenia: n = 37; bipolar I disorder: n = 37; attention-deficit/hyperactivity disorder: n = 37) and 110 healthy controls were analyzed to obtain individualized differential structural covariance network. Patients exhibited tremendous heterogeneity in profiles of individualized differential structural covariance network. Despite notable heterogeneity, patients with the same disorder shared altered edges at network level. Moreover, individualized differential structural covariance network uncovered two distinct psychiatric subtypes with opposite differences in structural covariance edges, that were otherwise obscured when patients were merged, compared with healthy controls. These results provide new insights into heterogeneity and have implications for the nosology in psychiatric disorders.
Collapse
Affiliation(s)
- Lianjie Niu
- Department of Breast Disease, Henan Breast Cancer Center. The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Keke Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Chunmiao Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xianfu Sun
- Department of Breast Disease, Henan Breast Cancer Center. The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
41
|
Zhang X, Xie M, Li W, Xu Z, Wang Z, Jiang W, Wu Y, Liu N. Abnormalities of structural covariance of insular subregions in drug-naïve OCD patients. Cereb Cortex 2024; 34:bhad469. [PMID: 38102948 DOI: 10.1093/cercor/bhad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
The insula plays a significant role in the neural mechanisms of obsessive-compulsive disorder. Previous studies have identified functional and structural abnormalities in insula in obsessive-compulsive disorder patients. The predictive coding model in the context of interoception can explain the psychological and neuropathological manifestations observed in obsessive-compulsive disorder. The model is based on the degree of laminar differentiation of cerebral cortex. The interindividual differences in a local measure of brain structure often covary with interindividual differences in other brain regions. We investigated the anatomical network involving the insula in a drug-naïve obsessive-compulsive disorder sample. We recruited 58 obsessive-compulsive disorder patients and 84 matched health controls. The cortical thickness covariance maps between groups were compared at each vertex. We also evaluated the modulation of Yale-Brown Obsessive-Compulsive Scale scores and obsessive-compulsive disorder duration on thickness covariance. Our findings indicated that the thickness covariance seeded from granular and dysgranular insula are different compared with controls. The duration and severity of obsessive-compulsive disorder can modulate the thickness covariance of granular and dysgranular insula with posterior cingulate cortex and rostral anterior cingulate cortex. Our results revealed aberrant insular structural characteristics and cortical thickness covariance in obsessive-compulsive disorder patients, contributing to a better understanding of the involvement of insula in the pathological mechanisms underlying obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Xuedi Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Minyao Xie
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wangyue Li
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhihan Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhongqi Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenjing Jiang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Wu
- School of Psychology, Nanjing Normal University, Nanjing 210023, China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
42
|
Lima Santos JP, Hayes R, Franzen PL, Goldstein TR, Hasler BP, Buysse DJ, Siegle GJ, Dahl RE, Forbes EE, Ladouceur CD, McMakin DL, Ryan ND, Silk JS, Jalbrzikowski M, Soehner AM. The association between cortical gyrification and sleep in adolescents and young adults. Sleep 2024; 47:zsad282. [PMID: 37935899 PMCID: PMC10782503 DOI: 10.1093/sleep/zsad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
STUDY OBJECTIVES Healthy sleep is important for adolescent neurodevelopment, and relationships between brain structure and sleep can vary in strength over this maturational window. Although cortical gyrification is increasingly considered a useful index for understanding cognitive and emotional outcomes in adolescence, and sleep is also a strong predictor of such outcomes, we know relatively little about associations between cortical gyrification and sleep. We aimed to identify developmentally invariant (stable across age) or developmentally specific (observed only during discrete age intervals) gyrification-sleep relationships in young people. METHODS A total of 252 Neuroimaging and Pediatric Sleep Databank participants (9-26 years; 58.3% female) completed wrist actigraphy and a structural MRI scan. Local gyrification index (lGI) was estimated for 34 bilateral brain regions. Naturalistic sleep characteristics (duration, timing, continuity, and regularity) were estimated from wrist actigraphy. Regularized regression for feature selection was used to examine gyrification-sleep relationships. RESULTS For most brain regions, greater lGI was associated with longer sleep duration, earlier sleep timing, lower variability in sleep regularity, and shorter time awake after sleep onset. lGI in frontoparietal network regions showed associations with sleep patterns that were stable across age. However, in default mode network regions, lGI was only associated with sleep patterns from late childhood through early-to-mid adolescence, a period of vulnerability for mental health disorders. CONCLUSIONS We detected both developmentally invariant and developmentally specific ties between local gyrification and naturalistic sleep patterns. Default mode network regions may be particularly susceptible to interventions promoting more optimal sleep during childhood and adolescence.
Collapse
Affiliation(s)
| | - Rebecca Hayes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter L Franzen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tina R Goldstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald E Dahl
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Dana L McMakin
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Neal D Ryan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer S Silk
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Adriane M Soehner
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Ching CRK, Kang MJY, Thompson PM. Large-Scale Neuroimaging of Mental Illness. Curr Top Behav Neurosci 2024; 68:371-397. [PMID: 38554248 DOI: 10.1007/7854_2024_462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Neuroimaging has provided important insights into the brain variations related to mental illness. Inconsistencies in prior studies, however, call for methods that lead to more replicable and generalizable brain markers that can reliably predict illness severity, treatment course, and prognosis. A paradigm shift is underway with large-scale international research teams actively pooling data and resources to drive consensus findings and test emerging methods aimed at achieving the goals of precision psychiatry. In parallel with large-scale psychiatric genomics studies, international consortia combining neuroimaging data are mapping the transdiagnostic brain signatures of mental illness on an unprecedented scale. This chapter discusses the major challenges, recent findings, and a roadmap for developing better neuroimaging-based tools and markers for mental illness.
Collapse
Affiliation(s)
- Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Melody J Y Kang
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| |
Collapse
|
44
|
Cao Z, McCabe M, Callas P, Cupertino RB, Ottino-González J, Murphy A, Pancholi D, Schwab N, Catherine O, Hutchison K, Cousijn J, Dagher A, Foxe JJ, Goudriaan AE, Hester R, Li CSR, Thompson WK, Morales AM, London ED, Lorenzetti V, Luijten M, Martin-Santos R, Momenan R, Paulus MP, Schmaal L, Sinha R, Solowij N, Stein DJ, Stein EA, Uhlmann A, van Holst RJ, Veltman DJ, Wiers RW, Yücel M, Zhang S, Conrod P, Mackey S, Garavan H, The ENIGMA Addiction Working Group. Recalibrating single-study effect sizes using hierarchical Bayesian models. FRONTIERS IN NEUROIMAGING 2023; 2:1138193. [PMID: 38179200 PMCID: PMC10764546 DOI: 10.3389/fnimg.2023.1138193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Introduction There are growing concerns about commonly inflated effect sizes in small neuroimaging studies, yet no study has addressed recalibrating effect size estimates for small samples. To tackle this issue, we propose a hierarchical Bayesian model to adjust the magnitude of single-study effect sizes while incorporating a tailored estimation of sampling variance. Methods We estimated the effect sizes of case-control differences on brain structural features between individuals who were dependent on alcohol, nicotine, cocaine, methamphetamine, or cannabis and non-dependent participants for 21 individual studies (Total cases: 903; Total controls: 996). Then, the study-specific effect sizes were modeled using a hierarchical Bayesian approach in which the parameters of the study-specific effect size distributions were sampled from a higher-order overarching distribution. The posterior distribution of the overarching and study-specific parameters was approximated using the Gibbs sampling method. Results The results showed shrinkage of the posterior distribution of the study-specific estimates toward the overarching estimates given the original effect sizes observed in individual studies. Differences between the original effect sizes (i.e., Cohen's d) and the point estimate of the posterior distribution ranged from 0 to 0.97. The magnitude of adjustment was negatively correlated with the sample size (r = -0.27, p < 0.001) and positively correlated with empirically estimated sampling variance (r = 0.40, p < 0.001), suggesting studies with smaller samples and larger sampling variance tended to have greater adjustments. Discussion Our findings demonstrate the utility of the hierarchical Bayesian model in recalibrating single-study effect sizes using information from similar studies. This suggests that Bayesian utilization of existing knowledge can be an effective alternative approach to improve the effect size estimation in individual studies, particularly for those with smaller samples.
Collapse
Affiliation(s)
- Zhipeng Cao
- Shanghai Xuhui Mental Health Center, Shanghai, China
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States
| | - Matthew McCabe
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States
| | - Peter Callas
- Department of Mathematics and Statistics, University of Vermont College of Engineering and Mathematical Sciences, Burlington, VT, United States
| | - Renata B. Cupertino
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States
| | - Jonatan Ottino-González
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States
| | - Alistair Murphy
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States
| | - Devarshi Pancholi
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States
| | - Nathan Schwab
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States
| | - Orr Catherine
- Department of Psychological Sciences, School of Health Sciences, Swinburne University, Melbourne, VIC, Australia
| | - Kent Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Janna Cousijn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Alain Dagher
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - John J. Foxe
- Department of Neuroscience, The Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Anna E. Goudriaan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Hester
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | | | - Angelica M. Morales
- Department of Psychiatry at Oregon Health and Science University, Portland, OR, United States
| | - Edythe D. London
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural & Health Sciences, Faculty of Health Sciences, Australian Catholic University, Australia
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Rocio Martin-Santos
- Department of Psychiatry and Psychology, University of Barcelona, Barcelona, Spain
| | - Reza Momenan
- Clinical NeuroImaging Research Core, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Martin P. Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States
- VA San Diego Healthcare System and Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Lianne Schmaal
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Dan J. Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elliot A. Stein
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Ruth J. van Holst
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Reinout W. Wiers
- Addiction Development and Psychopathology (ADAPT)-Lab, Department of Psychology and Center for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Melbourne, VIC, Australia
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, QC, Canada
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States
| | | |
Collapse
|
45
|
Lefebvre A, Traut N, Pedoux A, Maruani A, Beggiato A, Elmaleh M, Germanaud D, Amestoy A, Ly-Le Moal M, Chatham C, Murtagh L, Bouvard M, Alisson M, Leboyer M, Bourgeron T, Toro R, Dumas G, Moreau C, Delorme R. Exploring the multidimensional nature of repetitive and restricted behaviors and interests (RRBI) in autism: neuroanatomical correlates and clinical implications. Mol Autism 2023; 14:45. [PMID: 38012709 PMCID: PMC10680239 DOI: 10.1186/s13229-023-00576-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Repetitive and restricted behaviors and interests (RRBI) are core symptoms of autism with a complex entity and are commonly categorized into 'motor-driven' and 'cognitively driven'. RRBI symptomatology depends on the individual's clinical environment limiting the understanding of RRBI physiology, particularly their associated neuroanatomical structures. The complex RRBI heterogeneity needs to explore the whole RRBI spectrum by integrating the clinical context [autistic individuals, their relatives and typical developing (TD) individuals]. We hypothesized that different RRBI dimensions would emerge by exploring the whole spectrum of RRBI and that these dimensions are associated with neuroanatomical signatures-involving cortical and subcortical areas. METHOD A sample of 792 individuals composed of 267 autistic subjects, their 370 first-degree relatives and 155 TD individuals was enrolled in the study. We assessed the whole patterns of RRBI in each individual by using the Repetitive Behavior Scale-Revised and the Yale-Brown Obsessive Compulsive Scale. We estimated brain volumes using MRI scanner for a subsample of the subjects (n = 152, 42 ASD, 89 relatives and 13 TD). We first investigated the dimensionality of RRBI by performing a principal component analysis on all items of these scales and included all the sampling population. We then explored the relationship between RRBI-derived factors with brain volumes using linear regression models. RESULTS We identified 3 main factors (with 30.3% of the RRBI cumulative variance): Factor 1 (FA1, 12.7%) reflected mainly the 'motor-driven' RRBI symptoms; Factor 2 and 3 (respectively, 8.8% and 7.9%) gathered mainly Y-BOCS related items and represented the 'cognitively driven' RRBI symptoms. These three factors were significantly associated with the right/left putamen volumes but with opposite effects: FA1 was negatively associated with an increased volume of the right/left putamen conversely to FA2 and FA3 (all uncorrected p < 0.05). FA1 was negatively associated with the left amygdala (uncorrected p < 0.05), and FA2 was positively associated with the left parietal structure (uncorrected p = 0.001). CONCLUSION Our results suggested 3 coherent RRBI dimensions involving the putamen commonly and other structures according to the RRBI dimension. The exploration of the putamen's integrative role in RSBI needs to be strengthened in further studies.
Collapse
Affiliation(s)
- Aline Lefebvre
- Fondation Vallée, GHT Paris Sud, Hospital of Child and Adolescent Psychiatry, Gentilly, France.
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France.
- UNIACT Neurospin - INSERM UMR 1129, CEA, Saclay, France.
- Department of Adult Psychiatry, Henri Mondor and Albert Chenevier Hospital, Créteil, France.
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| | - Nicolas Traut
- Unité de Neuroanatomie Appliquée et Théorique, Institut Pasteur, Paris, France
| | - Amandine Pedoux
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Anna Maruani
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Anita Beggiato
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Monique Elmaleh
- Department of Pediatric Radiology, Robert-Debré Hospital, APHP, Paris, France
| | - David Germanaud
- UNIACT Neurospin - INSERM UMR 1129, CEA, Saclay, France
- Department of Clinical Genetics, Robert Debré Hospital, APHP, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Cité, Paris, France
| | - Anouck Amestoy
- Autism Expert Center, Charles Perrens Hospital, Bordeaux, France
- Fondation FondaMental, French National Science Foundation, Créteil, France
| | | | - Christopher Chatham
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Lorraine Murtagh
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Manuel Bouvard
- Autism Expert Center, Charles Perrens Hospital, Bordeaux, France
- Fondation FondaMental, French National Science Foundation, Créteil, France
| | - Marianne Alisson
- Department of Pediatric Radiology, Robert-Debré Hospital, APHP, Paris, France
| | - Marion Leboyer
- Fondation FondaMental, French National Science Foundation, Créteil, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France
| | - Thomas Bourgeron
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Université Paris Cité, Paris, France
| | - Roberto Toro
- Unité de Neuroanatomie Appliquée et Théorique, Institut Pasteur, Paris, France
| | - Guillaume Dumas
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, QC, Canada
| | - Clara Moreau
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Richard Delorme
- Fondation Vallée, GHT Paris Sud, Hospital of Child and Adolescent Psychiatry, Gentilly, France
- UMR 3571 CNRS, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Fondation FondaMental, French National Science Foundation, Créteil, France
- Université Paris Cité, Paris, France
| |
Collapse
|
46
|
Zhang X, Zhou J, Chen Y, Guo L, Yang Z, Robbins TW, Fan Q. Pathological Networking of Gray Matter Dendritic Density With Classic Brain Morphometries in OCD. JAMA Netw Open 2023; 6:e2343208. [PMID: 37955895 PMCID: PMC10644219 DOI: 10.1001/jamanetworkopen.2023.43208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
Importance The pathogenesis of obsessive-compulsive disorder (OCD) may involve altered dendritic morphology, but in vivo imaging of neurite morphology in OCD remains limited. Such changes must be interpreted functionally within the context of the multimodal neuroimaging approach to OCD. Objective To examine whether dendritic morphology is altered in patients with OCD compared with healthy controls (HCs) and whether such alterations are associated with other brain structural metrics in pathological networks. Design, Setting, and Participants This case-control study used cross-sectional data, including multimodal brain images and clinical symptom assessments, from 108 patients with OCD and 108 HCs from 2014 to 2017. Patients with OCD were recruited from Shanghai Mental Health Center, Shanghai, China, and HCs were recruited via advertisements. The OCD group comprised unmedicated adults with a Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV) diagnosis of OCD, while the HCs were adults without any DSM-IV diagnosis, matched for age, sex, and education level. Data were analyzed from September 2019 to April 2023. Exposure DSM-IV diagnosis of OCD. Main Outcomes and Measures Multimodal brain imaging was used to compare neurite microstructure and classic morphometries between patients with OCD and HCs. The whole brain was searched to identify regions exhibiting altered morphology in patients with OCD and explore the interplay between the brain metrics representing these alterations. Brain-symptom correlations were analyzed, and the performance of different brain metric configurations were evaluated in distinguishing patients with OCD from HCs. Results Among 108 HCs (median [IQR] age, 26 [23-31] years; 50 [46%] female) and 108 patients with OCD (median [IQR] age, 26 [24-31] years; 46 [43%] female), patients with OCD exhibited deficient neurite density in the right lateral occipitoparietal regions (peak t = 3.821; P ≤ .04). Classic morphometries also revealed widely-distributed alterations in the brain (peak t = 4.852; maximum P = .04), including the prefrontal, medial parietal, cingulate, and fusiform cortices. These brain metrics were interconnected into a pathological brain network associated with OCD symptoms (global strength: HCs, 0.253; patients with OCD, 0.941; P = .046; structural difference, 0.572; P < .001). Additionally, the neurite density index exhibited high discriminatory power in distinguishing patients with OCD from HCs (accuracy, ≤76.85%), and the entire pathological brain network also exhibited excellent discriminative classification properties (accuracy, ≤82.87%). Conclusions and Relevance The findings of this case-control study underscore the utility of in vivo imaging of gray matter dendritic density in future OCD research and the development of neuroimaging-based biomarkers. They also endorse the concept of connectopathy, providing a potential framework for interpreting the associations among various OCD symptom-related morphological anomalies.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Now with Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lei Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Now with Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Banaj N, Vecchio D, Piras F, De Rossi P, Bustillo J, Ciufolini S, Dazzan P, Di Forti M, Dickie EW, Ford JM, Fuentes-Claramonte P, Gruber O, Guerrero-Pedraza A, Hamilton HK, Howells FM, Kraemer B, Lawrie SM, Mathalon DH, Murray R, Pomarol-Clotet E, Potkin SG, Preda A, Radua J, Richter A, Salvador R, Sawa A, Scheffler F, Sim K, Spaniel F, Stein DJ, Temmingh HS, Thomopoulos SI, Tomecek D, Uhlmann A, Voineskos A, Yang K, Jahanshad N, Thompson PM, Van Erp TGM, Turner JA, Spalletta G, Piras F. Cortical morphology in patients with the deficit and non-deficit syndrome of schizophrenia: a worldwide meta- and mega-analyses. Mol Psychiatry 2023; 28:4363-4373. [PMID: 37644174 PMCID: PMC10827665 DOI: 10.1038/s41380-023-02221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Converging evidence suggests that schizophrenia (SZ) with primary, enduring negative symptoms (i.e., Deficit SZ (DSZ)) represents a distinct entity within the SZ spectrum while the neurobiological underpinnings remain undetermined. In the largest dataset of DSZ and Non-Deficit (NDSZ), we conducted a meta-analysis of data from 1560 individuals (168 DSZ, 373 NDSZ, 1019 Healthy Controls (HC)) and a mega-analysis of a subsampled data from 944 individuals (115 DSZ, 254 NDSZ, 575 HC) collected across 9 worldwide research centers of the ENIGMA SZ Working Group (8 in the mega-analysis), to clarify whether they differ in terms of cortical morphology. In the meta-analysis, sites computed effect sizes for differences in cortical thickness and surface area between SZ and control groups using a harmonized pipeline. In the mega-analysis, cortical values of individuals with schizophrenia and control participants were analyzed across sites using mixed-model ANCOVAs. The meta-analysis of cortical thickness showed a converging pattern of widespread thinner cortex in fronto-parietal regions of the left hemisphere in both DSZ and NDSZ, when compared to HC. However, DSZ have more pronounced thickness abnormalities than NDSZ, mostly involving the right fronto-parietal cortices. As for surface area, NDSZ showed differences in fronto-parietal-temporo-occipital cortices as compared to HC, and in temporo-occipital cortices as compared to DSZ. Although DSZ and NDSZ show widespread overlapping regions of thinner cortex as compared to HC, cortical thinning seems to better typify DSZ, being more extensive and bilateral, while surface area alterations are more evident in NDSZ. Our findings demonstrate for the first time that DSZ and NDSZ are characterized by different neuroimaging phenotypes, supporting a nosological distinction between DSZ and NDSZ and point toward the separate disease hypothesis.
Collapse
Affiliation(s)
- Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Daniela Vecchio
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Pietro De Rossi
- Child and Adolescence Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Juan Bustillo
- Psichiatry and Neuroscience, University of New Mexico, Albuquerque, NM, USA
| | - Simone Ciufolini
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Marta Di Forti
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Erin W Dickie
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Kimel Family Lab, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Judith M Ford
- San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Paola Fuentes-Claramonte
- FIMDAG Sisters Hospitallers Research Foundation, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Baden-Wuerttemberg, Germany
| | | | - Holly K Hamilton
- San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Fleur M Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Bernd Kraemer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Baden-Wuerttemberg, Germany
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburg, EH10 5HF, UK
| | - Daniel H Mathalon
- San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Robin Murray
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Edith Pomarol-Clotet
- FIMDAG Sisters Hospitallers Research Foundation, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Steven G Potkin
- Department of Psychiatry, University of California Irvine, Newfoundland, NJ, NJ 07435, USA
| | - Adrian Preda
- Psychiatry and Human Behavior, University of California Irvine, Orange, CA, 92868, USA
| | - Joaquim Radua
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Imaging of mood- and anxiety-related disorders (IMARD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Medicina, University of Barcelona, Barcelona, 08036, Spain
| | - Anja Richter
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Baden-Wuerttemberg, Germany
| | - Raymond Salvador
- FIMDAG Sisters Hospitallers Research Foundation, Barcelona, Spain
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Freda Scheffler
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Brain Behavior Unit, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kang Sim
- West Region, Institute of Mental Health, National Healthcare Group, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Filip Spaniel
- CARE, National Institute of Mental Health, Klecany, Czech Republic
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Henk S Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, Western Cape, South Africa
- Department of Psychiatry and Mental Health, Valkenberg Psychiatric Hospital, Cape Town, Western Cape, South Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - David Tomecek
- CARE, National Institute of Mental Health, Klecany, Czech Republic
| | - Anne Uhlmann
- Department of child and adolescent psychiatry, TU Dresden, Dresden, Saxony, Germany
| | - Aristotle Voineskos
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Toronto, ON, Canada
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Theo G M Van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
48
|
Bruin WB, Abe Y, Alonso P, Anticevic A, Backhausen LL, Balachander S, Bargallo N, Batistuzzo MC, Benedetti F, Bertolin Triquell S, Brem S, Calesella F, Couto B, Denys DAJP, Echevarria MAN, Eng GK, Ferreira S, Feusner JD, Grazioplene RG, Gruner P, Guo JY, Hagen K, Hansen B, Hirano Y, Hoexter MQ, Jahanshad N, Jaspers-Fayer F, Kasprzak S, Kim M, Koch K, Bin Kwak Y, Kwon JS, Lazaro L, Li CSR, Lochner C, Marsh R, Martínez-Zalacaín I, Menchon JM, Moreira PS, Morgado P, Nakagawa A, Nakao T, Narayanaswamy JC, Nurmi EL, Zorrilla JCP, Piacentini J, Picó-Pérez M, Piras F, Piras F, Pittenger C, Reddy JYC, Rodriguez-Manrique D, Sakai Y, Shimizu E, Shivakumar V, Simpson BH, Soriano-Mas C, Sousa N, Spalletta G, Stern ER, Evelyn Stewart S, Szeszko PR, Tang J, Thomopoulos SI, Thorsen AL, Yoshida T, Tomiyama H, Vai B, Veer IM, Venkatasubramanian G, Vetter NC, Vriend C, Walitza S, Waller L, Wang Z, Watanabe A, Wolff N, Yun JY, Zhao Q, van Leeuwen WA, van Marle HJF, van de Mortel LA, van der Straten A, van der Werf YD, Thompson PM, Stein DJ, van den Heuvel OA, van Wingen GA. The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium. Mol Psychiatry 2023; 28:4307-4319. [PMID: 37131072 PMCID: PMC10827654 DOI: 10.1038/s41380-023-02077-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Current knowledge about functional connectivity in obsessive-compulsive disorder (OCD) is based on small-scale studies, limiting the generalizability of results. Moreover, the majority of studies have focused only on predefined regions or functional networks rather than connectivity throughout the entire brain. Here, we investigated differences in resting-state functional connectivity between OCD patients and healthy controls (HC) using mega-analysis of data from 1024 OCD patients and 1028 HC from 28 independent samples of the ENIGMA-OCD consortium. We assessed group differences in whole-brain functional connectivity at both the regional and network level, and investigated whether functional connectivity could serve as biomarker to identify patient status at the individual level using machine learning analysis. The mega-analyses revealed widespread abnormalities in functional connectivity in OCD, with global hypo-connectivity (Cohen's d: -0.27 to -0.13) and few hyper-connections, mainly with the thalamus (Cohen's d: 0.19 to 0.22). Most hypo-connections were located within the sensorimotor network and no fronto-striatal abnormalities were found. Overall, classification performances were poor, with area-under-the-receiver-operating-characteristic curve (AUC) scores ranging between 0.567 and 0.673, with better classification for medicated (AUC = 0.702) than unmedicated (AUC = 0.608) patients versus healthy controls. These findings provide partial support for existing pathophysiological models of OCD and highlight the important role of the sensorimotor network in OCD. However, resting-state connectivity does not so far provide an accurate biomarker for identifying patients at the individual level.
Collapse
Grants
- R01 AG058854 NIA NIH HHS
- R01 MH126213 NIMH NIH HHS
- R21 MH101441 NIMH NIH HHS
- R01 MH121520 NIMH NIH HHS
- R21 MH093889 NIMH NIH HHS
- R01 MH116147 NIMH NIH HHS
- R01 MH111794 NIMH NIH HHS
- R01 MH085900 NIMH NIH HHS
- P41 EB015922 NIBIB NIH HHS
- IA/CPHE/18/1/503956 DBT-Wellcome Trust India Alliance
- UL1 TR001863 NCATS NIH HHS
- R01 MH081864 NIMH NIH HHS
- R01 MH104648 NIMH NIH HHS
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- R01 MH116038 NIMH NIH HHS
- R01 MH126981 NIMH NIH HHS
- R01 NS107513 NINDS NIH HHS
- RF1 MH123163 NIMH NIH HHS
- R33 MH107589 NIMH NIH HHS
- K24 MH121571 NIMH NIH HHS
- R01 MH121246 NIMH NIH HHS
- Wellcome Trust
- K23 MH115206 NIMH NIH HHS
- R01 AG059874 NIA NIH HHS
- Funding from Japan Society for the Promotion of Science (KAKENHI Grant No. 18K15523)
- Carlos III Health Institute PI18/00856
- NIMH: 5R01MH116038
- Sara Bertolin was supported by Instituto de Salud Carlos III through the grant CM21/00278 (Co-funded by European Social Fund. ESF investing in your future).
- Hartmann Müller Foundation (no. 1460, principal investigator: S.Brem)
- NIHM: R01MH085900, R01MH121520
- NIH: K23 MH115206 & IOCDF Annual Research Award
- AMED Brain/MINDS Beyond program Grant No. JP22dm0307002, JSPS KAKENHI Grants No. 22H01090, 21K03084, 19K03309, 16K04344
- NIH: R01MH117601, R01AG059874, P41EB015922, R01MH126213, R01MH121246
- Michael Smith Health Research BC
- the Deutsche Forschungsgemeinschaf (KO 3744/11-1)
- This work was supported by the Medical Research Council of South Africa (SAMRC), and the National Research Foundation of South Africa (Christine Lochner), and we acknowledge the contribution of our research assistants.
- NIMH: R21MH093889, R21MH101441 and R01MH104648
- IM-Z was supported by a PFIS grant (FI17/00294) from the Carlos III Health Institute
- This work was supported by National funds, through the Foundation for Science and Technology (project UIDB/50026/2020 and UIDP/50026/2020); by the Norte Portugal Regional Operational Programme (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023), and by the FLAD Science Award Mental Health 2021.
- JSPS KAKENHI (C)21K07547, 22K07598 and 22K15766
- Government of India grants from Department of Science and Technology (DST INSPIRE faculty grant -IFA12-LSBM-26) & Department of Biotechnology (BT/06/IYBA/2012)
- NIMH: R01MH081864
- MPP was supported by the Spanish Ministry of Universities, with funds from the European Union - NextGenerationEU (MAZ/2021/11).
- Italian Ministry of Health, Ricerca Corrente 2022, 2023
- NIMH: K24MH121571
- Government of India grants to: Prof. Reddy [(SR/S0/HS/0016/2011) & (BT/PR13334/Med/30/259/2009)], Dr. Janardhanan Narayanaswamy (DST INSPIRE faculty grant -IFA12-LSBM-26) & (BT/06/IYBA/2012) and the Wellcome-DBT India Alliance grant to Dr. Ganesan Venkatasubramanian (500236/Z/11/Z)
- the Japan Agency for Medical Research and Development: JP22dm0307008
- DBT-Wellcome Trust India Alliance Early Career Fellowship grant (IA/CPHE/18/1/503956)
- NIMH: R21MH093889 and R01MH104648
- Grant #PI19/01171 from the Carlos III Health Institute, and 2017SGR 1247 from AGAUR-Generalitat de Catalunya.
- Italian Ministry of Health grant RC19-20-21-22/A
- Grants R01MH126981, R01MH111794, and R33MH107589 from the National Institute of Mental Health/National Institute of Health awarded to ERS.
- National Natural Science Foundation of China (Nos. 81871057, 82171495), and Key Technologies Research and Development Program of China (Nos.2022YFE0103700)
- Helse Vest Health Authority (Grant ID 911754 and 911880)
- JSPS KAKENHI (C) JP21K07547, 22K07598 and 22K15766.
- Ganesan Venkatasubramanian acknowledges the support of Department of Biotechnology (DBT) - Wellcome Trust India Alliance CRC grant (IA/CRC/19/1/610005) & senior fellowship grant (500236/Z/11/Z)
- Supported by an grant from Amsterdam Neuroscience CIA-2019-03-A
- Swiss National Science Foundation (no. 320030_130237, principal investigator: S.Walitza)
- The National Natural Science Foundation of China (82071518)
- Else Kröner Fresenius Stiftung (2017_A101)
- ENIGMA World Aging Center, NIA Award No. R01AG058854; ENIGMA Parkinson's Initiative: A Global Initiative for Parkinson's Disease, NINDS award RO1NS107513
- the Obsessive-Compulsive Foundation to Dan J. Stein
- Dutch Organization for Scientific Research (NWO/ZonMW) VENI grant (916-86-038) and Brain & Behavior Research Foundation (NARSAD grant), Netherlands Brain Foundation (2010(1)-50)
- Netherlands Organization for Scientific Research (NWO/ZonMW Vidi Grant No. 165.610.002, 016.156.318, and 917.15.318 G.A. van Wingen)
Collapse
Affiliation(s)
- Willem B Bruin
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Yoshinari Abe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Pino Alonso
- Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain
- Department of Clinical Science, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Lea L Backhausen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Srinivas Balachander
- Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Nuria Bargallo
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
- Radiology Service, Diagnosis Image Center, Hospital Clinic de Barcelona, Barcelona, Spain
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcelo C Batistuzzo
- Department of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
- Department of Methods and Techniques in Psychology, Pontifical Catholic University, Sao Paulo, Brazil
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Sara Bertolin Triquell
- Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Federico Calesella
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Beatriz Couto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Damiaan A J P Denys
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marco A N Echevarria
- Department of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Goi Khia Eng
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Jamie D Feusner
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- General Adult Psychiatry & Health Systems, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Patricia Gruner
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Joyce Y Guo
- University of California, San Diego, CA, USA
| | - Kristen Hagen
- Molde Hospital, Møre og Romsdal Hospital Trust, Molde, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjarne Hansen
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Center for Crisis Psychology, University of Bergen, Bergen, Norway
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Marcelo Q Hoexter
- Department of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fern Jaspers-Fayer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Selina Kasprzak
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Luisa Lazaro
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic of Barcelona, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Rachel Marsh
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Ignacio Martínez-Zalacaín
- Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Jose M Menchon
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Pedro S Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Psychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Akiko Nakagawa
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Tomohiro Nakao
- Graduate School of Medical Sciences, Kyushu University, Fukuoka-shi, Japan
| | - Janardhanan C Narayanaswamy
- National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
- GVAMHS, Goulburn Valley Health, Shepparton, VIC, Australia
| | - Erika L Nurmi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jose C Pariente Zorrilla
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - John Piacentini
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Janardhan Y C Reddy
- Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Daniela Rodriguez-Manrique
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-Universität, Munich, Germany
| | - Yuki Sakai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan
- Department of Cognitive Behavioral Physiology Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Blair H Simpson
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Carles Soriano-Mas
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona-UB, Barcelona, Spain
| | - Nuno Sousa
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Emily R Stern
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - S Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Philip R Szeszko
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anders L Thorsen
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Center for Crisis Psychology, University of Bergen, Bergen, Norway
| | - Tokiko Yoshida
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Hirofumi Tomiyama
- Graduate School of Medical Sciences, Kyushu University, Fukuoka-shi, Japan
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Ilya M Veer
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Nora C Vetter
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Psychology, Faculty of Natural Sciences, MSB Medical School Berlin, Berlin, Germany
| | - Chris Vriend
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging program, Amsterdam, The Netherlands
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Lea Waller
- Department of Psychiatry and Neurosciences CCM, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao, China
| | - Anri Watanabe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nicole Wolff
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Je-Yeon Yun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Qing Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao, China
| | - Wieke A van Leeuwen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hein J F van Marle
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Amsterdam, The Netherlands
| | - Laurens A van de Mortel
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Anouk van der Straten
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging program, Amsterdam, The Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dan J Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Odile A van den Heuvel
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, The Netherlands
| | - Guido A van Wingen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Han S, Xue K, Chen Y, Xu Y, Li S, Song X, Guo HR, Fang K, Zheng R, Zhou B, Chen J, Wei Y, Zhang Y, Cheng J. Identification of shared and distinct patterns of brain network abnormality across mental disorders through individualized structural covariance network analysis. Psychol Med 2023; 53:6780-6791. [PMID: 36876493 DOI: 10.1017/s0033291723000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Mental disorders, including depression, obsessive compulsive disorder (OCD), and schizophrenia, share a common neuropathy of disturbed large-scale coordinated brain maturation. However, high-interindividual heterogeneity hinders the identification of shared and distinct patterns of brain network abnormalities across mental disorders. This study aimed to identify shared and distinct patterns of altered structural covariance across mental disorders. METHODS Subject-level structural covariance aberrance in patients with mental disorders was investigated using individualized differential structural covariance network. This method inferred structural covariance aberrance at the individual level by measuring the degree of structural covariance in patients deviating from matched healthy controls (HCs). T1-weighted anatomical images of 513 participants (105, 98, 190 participants with depression, OCD and schizophrenia, respectively, and 130 age- and sex-matched HCs) were acquired and analyzed. RESULTS Patients with mental disorders exhibited notable heterogeneity in terms of altered edges, which were otherwise obscured by group-level analysis. The three disorders shared high difference variability in edges attached to the frontal network and the subcortical-cerebellum network, and they also exhibited disease-specific variability distributions. Despite notable variability, patients with the same disorder shared disease-specific groups of altered edges. Specifically, depression was characterized by altered edges attached to the subcortical-cerebellum network; OCD, by altered edges linking the subcortical-cerebellum and motor networks; and schizophrenia, by altered edges related to the frontal network. CONCLUSIONS These results have potential implications for understanding heterogeneity and facilitating personalized diagnosis and interventions for mental disorders.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yinhuan Xu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui-Rong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keke Fang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| |
Collapse
|
50
|
Kirschner M, Paquola C, Khundrakpam BS, Vainik U, Bhutani N, Hodzic-Santor B, Georgiadis F, Al-Sharif NB, Misic B, Bernhardt BC, Evans AC, Dagher A. Schizophrenia Polygenic Risk During Typical Development Reflects Multiscale Cortical Organization. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1083-1093. [PMID: 37881579 PMCID: PMC10593879 DOI: 10.1016/j.bpsgos.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022] Open
Abstract
Background Schizophrenia is widely recognized as a neurodevelopmental disorder. Abnormal cortical development in otherwise typically developing children and adolescents may be revealed using polygenic risk scores for schizophrenia (PRS-SCZ). Methods We assessed PRS-SCZ and cortical morphometry in typically developing children and adolescents (3-21 years, 46.8% female) using whole-genome genotyping and T1-weighted magnetic resonance imaging (n = 390) from the PING (Pediatric Imaging, Neurocognition, and Genetics) cohort. We contextualized the findings using 1) age-matched transcriptomics, 2) histologically defined cytoarchitectural types and functionally defined networks, and 3) case-control differences of schizophrenia and other major psychiatric disorders derived from meta-analytic data of 6 ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) working groups, including a total of 12,876 patients and 15,670 control participants. Results Higher PRS-SCZ was associated with greater cortical thickness, which was most prominent in areas with heightened gene expression of dendrites and synapses. PRS-SCZ-related increases in vertexwise cortical thickness were mainly distributed in association cortical areas, particularly the ventral attention network, while relatively sparing koniocortical type cortex (i.e., primary sensory areas). The large-scale pattern of cortical thickness increases related to PRS-SCZ mirrored the pattern of cortical thinning in schizophrenia and mood-related psychiatric disorders derived from the ENIGMA consortium. Age group models illustrate a possible trajectory from PRS-SCZ-associated cortical thickness increases in early childhood toward thinning in late adolescence, with the latter resembling the adult brain phenotype of schizophrenia. Conclusions Collectively, combining imaging genetics with multiscale mapping, our work provides novel insight into how genetic risk for schizophrenia affects the cortex early in life.
Collapse
Affiliation(s)
- Matthias Kirschner
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Casey Paquola
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
| | | | - Uku Vainik
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Institute of Psychology, Faculty of Social Sciences, Tartu, Estonia
| | - Neha Bhutani
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | | | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Noor B. Al-Sharif
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Boris C. Bernhardt
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Alan C. Evans
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|