1
|
Helander A, Andersson A, Villén T. Alternative routine for reporting chiral amphetamine test results in assessment of attention-deficit/hyperactivity disorder medication: experiences from 2013 to 2023. Drug Test Anal 2025; 17:163-169. [PMID: 38600633 PMCID: PMC11729626 DOI: 10.1002/dta.3690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
This study evaluated an alternative routine for reporting urinary chiral amphetamine results in assessment of attention-deficit/hyperactivity disorder (ADHD) treatment with amphetamine medications and for detecting side-use of illicit racemic amphetamine. Currently in Sweden, only enantiopure d-amphetamine-based ADHD medications (lisdexamphetamine dimesylate and dexamphetamine sulfate) are approved. It is therefore unsuitable to express the chiral result as the l/d-ratio, as before, because l-amphetamine should not be present provided treatment compliance. A new routine for LC-MS/MS chiral amphetamine testing was therefore introduced in 2020, whereby the relative proportion (%) of l-amphetamine and the total amphetamine and creatinine concentrations are reported. Evaluation of the new routine on 24,354 results from 2013 to 2023 revealed that it was useful to distinguish ADHD medication adherence from illicit drug use as the source for a positive test. The l-amphetamine proportion also reflected the enantiomeric content of the medications used. Overall, most results confirmed adherence to ADHD medication, as the l-amphetamine percentage was <1% in 76% of samples (2023) which is the recommended cutoff with enantiopure d-amphetamine medications. However, in all years, illicit drug use was indicated (>40% l-amphetamine) in 8.3%-14.5% of cases. In conclusion, this study demonstrated the clinical value and utility of a new routine for reporting urinary chiral amphetamine results to differentiate adherence to ADHD medication from illicit drug use. Unlike the l/d-amphetamine ratio, it considers differences in total amphetamine concentration and urine dilution, factors that can affect the interpretation.
Collapse
Affiliation(s)
- Anders Helander
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Clinical ChemistryKarolinska University HospitalStockholmSweden
| | - Annika Andersson
- Department of Clinical ChemistryKarolinska University HospitalStockholmSweden
| | - Tomas Villén
- Department of Clinical ChemistryKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Wiebe A, Selaskowski B, Paskin M, Asché L, Pakos J, Aslan B, Lux S, Philipsen A, Braun N. Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of independent training and test samples. Transl Psychiatry 2024; 14:508. [PMID: 39741130 DOI: 10.1038/s41398-024-03217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025] Open
Abstract
Given the heterogeneous nature of attention-deficit/hyperactivity disorder (ADHD) and the absence of established biomarkers, accurate diagnosis and effective treatment remain a challenge in clinical practice. This study investigates the predictive utility of multimodal data, including eye tracking, EEG, actigraphy, and behavioral indices, in differentiating adults with ADHD from healthy individuals. Using a support vector machine model, we analyzed independent training (n = 50) and test (n = 36) samples from two clinically controlled studies. In both studies, participants performed an attention task (continuous performance task) in a virtual reality seminar room while encountering virtual distractions. Task performance, head movements, gaze behavior, EEG, and current self-reported inattention, hyperactivity, and impulsivity were simultaneously recorded and used for model training. Our final model based on the optimal number of features (maximal relevance minimal redundancy criterion) achieved a promising classification accuracy of 81% in the independent test set. Notably, the extracted EEG-based features had no significant contribution to this prediction and therefore were not included in the final model. Our results suggest the potential of applying ecologically valid virtual reality environments and integrating different data modalities for enhancing robustness of ADHD diagnosis.
Collapse
Affiliation(s)
- Annika Wiebe
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Benjamin Selaskowski
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Martha Paskin
- Department of Visual and Data-Centric Computing, Zuse Institut Berlin, Berlin, Germany
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Laura Asché
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Julian Pakos
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Behrem Aslan
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Niclas Braun
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Bardakçı MR, Yazici AB, Bardakçı Ş, Yazici E. The Effect of Modafinil Treatment on Cravings in Methamphetamine Use Disorder. J Psychoactive Drugs 2024:1-8. [PMID: 39722529 DOI: 10.1080/02791072.2024.2446468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024]
Abstract
There is a need for treatments that can reduce cravings in methamphetamine use disorder (MUD), which is trending upwards worldwide. The aim of this study was to evaluate the effect of modafinil treatment on substance craving in patients with MUD. The study included 100 patients with MUD who were being treated in an inpatient detoxification center. Patients were divided into two groups as modafinil group (MG) (n = 51) and non-modafinil group (NMG) (n = 49) and compared with each other in terms of sociodemographic data, severity of addiction, change in craving scores on the 1st, 7th and 14th days. The change in craving scores during the first week was found to be significantly greater in the modafinil group (MG) compared to the non-modafinil group (NMG) (p < .001), indicating that modafinil effectively reduced methamphetamine cravings within the first week of treatment. When the changes in craving levels were compared between the groups in the first and second week, the difference between the groups was not statistically significant (p > .05). The mean substance craving scores at hospitalization were higher in MG than NMG (p < .001). Modafinil may be beneficial in the treatment of MUD, especially when used in the first weeks of treatment, especially in patients with higher cravings at baseline.
Collapse
Affiliation(s)
| | - Ahmet Bulent Yazici
- Department of Psychiatry, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Şeyma Bardakçı
- Department of Physiology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Esra Yazici
- Department of Psychiatry, Sakarya University Faculty of Medicine, Sakarya, Turkey
| |
Collapse
|
4
|
Poulton A, Gauci N, Khalifa H, Hibbert EJ, Poulton AS. The Impact of Dexamphetamine Treatment for Obesity on Executive Function: A Double-Blind Randomised Controlled Pilot Study. Brain Sci 2024; 14:1274. [PMID: 39766473 PMCID: PMC11674214 DOI: 10.3390/brainsci14121274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Amphetamines increase dopamine levels in mid-brain regions which, in turn, impact top-down executive function. Repeated exposure is linked to substance use disorders. Nonetheless, amphetamines are used to manage attention-deficit/hyperactivity disorder (ADHD) and eating-related disorders. In ADHD, amphetamines upregulate a system characterised by low dopaminergic tone, assisting to improve executive function. A similar process might be at play with eating disorders; however, the effect of amphetamine treatment on executive function in this case has not been thoroughly considered. METHODS Participants (N = 52, Mage = 47.06, SD = 12.29) with a body mass index of 25-60 were randomised to treatment (6-week dexamphetamine titration) or control (placebo) groups. They completed an executive function measure-Barkley Deficits in Executive Functioning Scale (BDEFS-SF)-and response inhibition task-Stop-Signal Task (SST)-at Baseline, throughout titration, at Maintenance, and at Follow-up. Mixed effects models examined whether BDEFS-SF score or the SST variable, stop-signal reaction time (SSRT), changed across sessions as a function of treatment. RESULTS There was no effect of group (p = 0.440), but an effect of session (p = 0.024) on BDEFS-SF, with scores at Time 2 (p = 0.011, 95% CI [0.47, 3.49]) and Maintenance (p = 0.022, 95% CI [-4.89, -0.39]), respectively, higher and lower than other timepoints. There was no group by session interaction (p = 0.659). R2 (conditional) = 0.74; ICC = 0.73. There was an effect of group (p = 0.039) and session (p < 0.001) on SSRT, but no interaction (p = 0.707). Baseline SSRT was significantly longer than the mean of all subsequent timepoints (p < 0.001, 95% CI [16.29, 33.84]). R2 (conditional) = 0.47; ICC = 0.39. CONCLUSIONS There was no discernible impact of amphetamine treatment for obesity on executive function. Our results suggest some variation related to sample size and/or practice effects. Thus, while treatment appears unlikely to render individuals susceptible to substance use disorders, parallels with ADHD might be overstated.
Collapse
Affiliation(s)
- Antoinette Poulton
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Natalie Gauci
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2751, Australia; (N.G.); (H.K.); (E.J.H.); (A.S.P.)
| | - Hazer Khalifa
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2751, Australia; (N.G.); (H.K.); (E.J.H.); (A.S.P.)
| | - Emily J. Hibbert
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2751, Australia; (N.G.); (H.K.); (E.J.H.); (A.S.P.)
- Charles Perkins Centre-Nepean, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2003, Australia
- Nepean Hospital, Penrith, NSW 2747, Australia
| | - Alison S. Poulton
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2751, Australia; (N.G.); (H.K.); (E.J.H.); (A.S.P.)
- Charles Perkins Centre-Nepean, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2003, Australia
- Nepean Hospital, Penrith, NSW 2747, Australia
| |
Collapse
|
5
|
Koirala S, Grimsrud G, Mooney MA, Larsen B, Feczko E, Elison JT, Nelson SM, Nigg JT, Tervo-Clemmens B, Fair DA. Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers. Nat Rev Neurosci 2024; 25:759-775. [PMID: 39448818 DOI: 10.1038/s41583-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Extensive investigations spanning multiple levels of inquiry, from genetic to behavioural studies, have sought to unravel the mechanistic foundations of attention-deficit hyperactivity disorder (ADHD), with the aspiration of developing efficacious treatments for this condition. Despite these efforts, the pathogenesis of ADHD remains elusive. In this Review, we reflect on what has been learned about ADHD while also providing a framework that may serve as a roadmap for future investigations. We emphasize that ADHD is a highly heterogeneous disorder with multiple aetiologies that necessitates a multifactorial dimensional phenotype, rather than a fixed dichotomous conceptualization. We highlight new findings that suggest a more brain-wide, 'global' view of the disorder, rather than the traditional localizationist framework, which asserts that a limited set of brain regions or networks underlie ADHD. Last, we underscore how underpowered studies that have aimed to associate neurobiology with ADHD phenotypes have long precluded the field from making progress. However, a new age of ADHD research with refined phenotypes, advanced methods, creative study designs and adequately powered investigations is beginning to put the field on a good footing. Indeed, the field is at a promising juncture to advance the neurobiological understanding of ADHD and fulfil the promise of clinical utility.
Collapse
Affiliation(s)
- Sanju Koirala
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joel T Nigg
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Armanious AJ, Asare A, Mitchison D, James MH. Patient perceptions of lisdexamfetamine as a treatment for binge eating disorder: An exploratory qualitative and quantitative analysis. PSYCHIATRY RESEARCH COMMUNICATIONS 2024; 4:100195. [PMID: 39664649 PMCID: PMC11633666 DOI: 10.1016/j.psycom.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Lisdexamfetamine (LDX) is the only medication to have gained FDA approval for the treatment of binge eating disorder (BED). LDX treatment is generally effective at reducing binge eating symptoms but is associated with several unwanted side effects. How BED patients perceive the therapeutic efficacy vs. associated side effects of LDX has not been explored. We carried out a thematic analysis of 111 online reviews posted to the website Drugs. com by persons prescribed LDX to treat BED. We also explored how qualitative themes were associated with perceptions of treatment efficacy on a quantitative (1-10 scale) scale. Themes associated with higher efficacy ratings included improved binge eating outcomes, enhanced focus/concentration, as well as weight loss (χ2 tests, p's < 0.05). Lower efficacy ratings were associated with themes that included tolerance to therapeutic effects of LDX, insomnia, return of binge eating in the evening, loss of energy in the afternoon/evening ('crashing'), and weight gain (χ2 tests, p's < 0.05). Limitations of the study include representativeness of the data and self-reported BED diagnosis. Together, these data provide novel insights into individual experiences with LDX as a treatment for BED and their association with perceived efficacy. The causal nature of these relationships should be tested in future studies, as well as any implications for medication adherence.
Collapse
Affiliation(s)
- Abanoub J. Armanious
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, 08854, USA
| | - Audrey Asare
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, 08854, USA
| | - Deborah Mitchison
- Discipline of Clinical Psychology, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Morgan H. James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, 08854, USA
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Kämmerer W. Comparative pharmacology and abuse potential of oral dexamphetamine and lisdexamfetamine-A literature review. Hum Psychopharmacol 2024; 39:e2910. [PMID: 39024047 DOI: 10.1002/hup.2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To compare the pharmacology and abuse potential of oral dexamphetamine and lisdexamfetamine (LDX). METHODS A search of Medline and Embase was conducted to identify relevant articles for this literature review. RESULTS Dexamphetamine and LDX, a prodrug of dexamphetamine, are indicated for the treatment of attention-deficit/hyperactivity disorder. It has been suggested that LDX may have a reduced potential for oral abuse compared to immediate-release dexamphetamine. As a prodrug, LDX has the same pharmacodynamic properties as dexamphetamine. A study in healthy adults showed that the pharmacokinetic profile of dexamphetamine following oral administration of LDX is essentially identical to that of an equimolar dose of dexamphetamine administered 1 h later. In addition, dexamphetamine produced subjective drug liking effects comparable to those produced by LDX. LDX showed linear dose proportional pharmacokinetics up to a dose of 250 mg, indicating a lack of overdose protection at supratherapeutic doses. Furthermore, the exposure to dexamphetamine released from LDX may be prolonged by the consumption of alkalizing agents. CONCLUSIONS The available evidence from pharmacodynamic, pharmacokinetic and abuse liability studies suggests a comparable potential for oral abuse of dexamphetamine and LDX.
Collapse
|
8
|
Jia Q, Tan H, Li T, Duan X. Role of adenosine in the pathophysiology and treatment of attention deficit hyperactivity disorder. Purinergic Signal 2024:10.1007/s11302-024-10059-2. [PMID: 39480600 DOI: 10.1007/s11302-024-10059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental condition characterized by persistent inattention, hyperactivity, and impulsivity. Although its precise etiology remains unclear, current evidence suggests that dysregulation within the neurotransmitter system plays a key role in the pathogenesis of ADHD. Adenosine, an endogenous nucleoside widely distributed throughout the body, modulates various physiological processes, including neurotransmitter release, sleep regulation, and cognitive functions through its receptors. This review critically examines the role of the adenosine system in ADHD, focusing on the links between adenosine receptor function and ADHD-related symptoms. Additionally, it explores how adenosine interacts with dopamine and other neurotransmitter pathways, shedding light on its involvement in ADHD pathophysiology. This review aims to provide insights into the potential therapeutic implications of targeting the adenosine system for ADHD management.
Collapse
Affiliation(s)
- Qingxia Jia
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Hongwan Tan
- People's Hospital of Tongliang District, Chongqing, 402560, Tongliang, China
| | - Tingsong Li
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Xiaoling Duan
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China.
| |
Collapse
|
9
|
Ferreira M, Carneiro P, Costa VM, Carvalho F, Meisel A, Capela JP. Amphetamine and methylphenidate potential on the recovery from stroke and traumatic brain injury: a review. Rev Neurosci 2024; 35:709-746. [PMID: 38843463 DOI: 10.1515/revneuro-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/21/2024] [Indexed: 10/10/2024]
Abstract
The prevalence of stroke and traumatic brain injury is increasing worldwide. However, current treatments do not fully cure or stop their progression, acting mostly on symptoms. Amphetamine and methylphenidate are stimulants already approved for attention deficit hyperactivity disorder and narcolepsy treatment, with neuroprotective potential and benefits when used in appropriate doses. This review aimed to summarize pre-clinical and clinical trials testing either amphetamine or methylphenidate for the treatment of stroke and traumatic brain injury. We used PubMed as a database and included the following keywords ((methylphenidate) OR (Ritalin) OR (Concerta) OR (Biphentin) OR (amphetamine) OR (Adderall)) AND ((stroke) OR (brain injury) OR (neuroplasticity)). Overall, studies provided inconsistent results regarding cognitive and motor function. Neurite outgrowth, synaptic proteins, dendritic complexity, and synaptic plasticity increases were reported in pre-clinical studies along with function improvement. Clinical trials have demonstrated that, depending on the brain region, there is an increase in motor activity, attention, and memory due to the stimulation of the functionally depressed catecholamine system and the activation of neuronal remodeling proteins. Nevertheless, more clinical trials and pre-clinical studies are needed to understand the drugs' full potential for their use in these brain diseases namely, to ascertain the treatment time window, ideal dosage, long-term effects, and mechanisms, while avoiding their addictive potential.
Collapse
Affiliation(s)
- Mariana Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Carneiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Center for Stroke Research Berlin, Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - João Paulo Capela
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP3ID, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| |
Collapse
|
10
|
Lenoir H, Oquendo B, Rigaud AS. Chronic dextroamphetamine abuse and dementia with Lewy bodies: Case report. L'ENCEPHALE 2024:S0013-7006(24)00148-9. [PMID: 39368933 DOI: 10.1016/j.encep.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/08/2024] [Indexed: 10/07/2024]
Affiliation(s)
- Hermine Lenoir
- EA4468-Maladie d'Alzheimer et apparentées; Diagnostic, interventons et technologie, Paris Cité University, 75013 Paris, France; Geriatric Department 1&2, Resources and Research Memory Center (centre mémoire de ressources et recherche), Île-de-France Sud - Broca, Assistance publique-Hôpitaux de Paris, Paris, France; Geriatrics, Broca Hospital, 54-56, rue Pascal, 75013 Paris, France.
| | - Bruno Oquendo
- Service de Gériatrie à orientation Cardiologique et Neurologique, APHP, Hôpitaux universitaires Pitié-Salpêtrière-Charles Foix, Ivry-sur-Seine, France; Sorbonne Université, Paris, France.
| | - Anne-Sophie Rigaud
- EA4468-Maladie d'Alzheimer et apparentées; Diagnostic, interventons et technologie, Paris Cité University, 75013 Paris, France; Geriatric Department 1&2, Resources and Research Memory Center (centre mémoire de ressources et recherche), Île-de-France Sud - Broca, Assistance publique-Hôpitaux de Paris, Paris, France; Geriatrics, Broca Hospital, 54-56, rue Pascal, 75013 Paris, France.
| |
Collapse
|
11
|
Zhou T, Gao P, Lalancette R, Szostak R, Szostak M. Gold-catalysed amine synthesis by reductive hydroamination of alkynes with nitroarenes. Nat Chem 2024:10.1038/s41557-024-01624-8. [PMID: 39322783 DOI: 10.1038/s41557-024-01624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/05/2024] [Indexed: 09/27/2024]
Abstract
Amines are the most pivotal class of organic motifs in pharmaceutical compounds. Here we provide a blueprint for a general synthesis of amines by catalyst differentiation enabled by triple Au-H/Au+/Au-H relay catalysis. The parent catalyst is differentiated into a set of catalytically active species to enable triple cascade catalysis, where each catalytic species is specifically tuned for one catalytic cycle. This strategy enables the synthesis of biorelevant amine motifs by reductive hydroamination of alkynes with nitroarenes. Using this triple cascade approach, we have achieved exceptional functional group tolerance, enabling the use of bulk chemical feedstocks as coupling partners for the amination of both simple and complex alkynes (>100 examples), including those derived from pharmaceuticals, peptides and natural products (>30 examples). The isolation and full crystallographic characterization of gold hydride and hydride-bridged gold complexes has garnered insights into the catalyst differentiation process of fundamental organometallic gold hydride complexes.
Collapse
Affiliation(s)
- Tongliang Zhou
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | | | - Roman Szostak
- Department of Chemistry, Wroclaw University, Wroclaw, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
12
|
Ma Y, Gao SS, Li X, Wu J, Bao J, Wang L, Cui C. Engineered Imine Reductase Catalyzed Enantiodivergent Synthesis of Alkylated Amphetamines. Org Lett 2024; 26:7565-7570. [PMID: 39230034 DOI: 10.1021/acs.orglett.4c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Less steric ketones exhibited low stereoselectivity toward M5 due to their difficulty in restricting the free rotation of the imine intermediate. An engineered enantio-complementary imine reductase from M5 was obtained with catalytic activity. We identified four key residues that play essential roles in controlling stereoselectivity. Two mutants, I149Y-W234L (up to 99%S ee) and L200M-F260M (up to 99%R ee), were achieved, showing excellent stereoselectivity toward the tested substrates, offering valuable biocatalysts for synthesizing alkylated amphetamines.
Collapse
Affiliation(s)
- Yaqing Ma
- CAS Key Laboratroy of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Reseources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100040, China
| | - Shu-Shan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xin Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiafeng Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinping Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Luoyi Wang
- CAS Key Laboratroy of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Reseources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengsen Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
13
|
Carboni E, Ibba M, Carboni E, Carta AR. Adolescent stress differentially modifies dopamine and norepinephrine release in the medial prefrontal cortex of adult rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111055. [PMID: 38879069 DOI: 10.1016/j.pnpbp.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Adolescent stress (AS) has been associated with higher vulnerability to psychiatric disorders such as schizophrenia, depression, or drug dependence. Moreover, the alteration of brain catecholamine (CAT) transmission in the medial prefrontal cortex (mPFC) has been found to play a major role in the etiology of psychiatric disturbances. We investigated the effect of adolescent stress on CAT transmission in the mPFC of freely moving adult rats because of the importance of this area in the etiology of psychiatric disorders, and because CAT transmission is the target of a relevant group of drugs used in the therapy of depression and psychosis. We assessed basal dopamine (DA) and norepinephrine (NE) extracellular concentrations (output) by brain microdialysis in in the mPFC of adult rats that were exposed to chronic mild stress in adolescence. To ascertain the role of an altered release or reuptake, we stimulated DA and NE output by administering either different doses of amphetamine (0.5 and 1.0 mg / kg s.c.), which by a complex mechanism determines a dose dependent increase in the CAT output, or reboxetine (10 mg/kg i.p.), a selective NE reuptake inhibitor. The results showed the following: (i) basal DA output in AS rats was lower than in controls, while no difference in basal NE output was observed; (ii) amphetamine, dose dependently, stimulated DA and NE output to a greater extent in AS rats than in controls; (iii) reboxetine stimulated NE output to a greater extent in AS rats than in controls, while no difference in stimulated DA output was observed between the two groups. These results show that AS determines enduring effects on DA and NE transmission in the mPFC and might lead to the occurrence of psychiatric disorders or increase the vulnerability to drug addiction.
Collapse
Affiliation(s)
- Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Italy.
| | - Marcello Ibba
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Elena Carboni
- Unit of Paediatrics, ASST Cremona Maggiore Hospital, Cremona, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy
| |
Collapse
|
14
|
Nowak J, Aronin J, Beg F, O’Malley N, Ferrick M, Quattrin T, Pavlesen S, Hadjiargyrou M, Komatsu DE, Thanos PK. The Effects of Chronic Psychostimulant Administration on Bone Health: A Review. Biomedicines 2024; 12:1914. [PMID: 39200379 PMCID: PMC11351835 DOI: 10.3390/biomedicines12081914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
(1) Background: Methylphenidate (MP) and amphetamine (AMP) are psychostimulants that are widely prescribed to treat Attention Deficit Hyperactivity Disorder (ADHD) and narcolepsy. In recent years, 6.1 million children received an ADHD diagnosis, and nearly 2/3 of these children were prescribed psychostimulants for treatment. The purpose of this review is to summarize the current literature on psychostimulant use and the resulting effects on bone homeostasis, biomechanical properties, and functional integrity. (2) Methods: Literature searches were conducted from Medline/PubMed electronic databases utilizing the search terms "methylphenidate" OR "amphetamine" OR "methylphenidate" AND "bone health" AND "bone remodeling" AND "osteoclast" AND "osteoblast" AND "dopamine" from 01/1985 to 04/2023. (3) Results: Of the 550 publications found, 44 met the inclusion criteria. Data from identified studies demonstrate that the use of MP and AMP results in decreases in specific bone properties and biomechanical integrity via downstream effects on osteoblasts and osteoclast-related genes. (4) Conclusions: The chronic use of psychostimulants negatively affects bone integrity and strength as a result of increased osteoclast activity. These data support the need to take this into consideration when planning the treatment type and duration for bone fractures.
Collapse
Affiliation(s)
- Jessica Nowak
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Jacob Aronin
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Faraaz Beg
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Natasha O’Malley
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael Ferrick
- Department of Orthopaedics, Jacobs School of Medicine, University at Buffalo, Buffalo, NY 14203, USA
| | - Teresa Quattrin
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA
| | - Sonja Pavlesen
- Clinical Research Center, UBMD Orthopaedics & Sports Medicine, 111 N Maplemere Rd., Suite 100, Buffalo, NY 14221, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Westbury, NY 11568, USA;
| | - David E. Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY 11794, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
15
|
Vincent KF, Park GH, Stapley BM, Dillon EJ, Solt K. Methylphenidate Reversal of Dexmedetomidine-Induced Versus Ketamine-Induced Sedation in Rats. Anesth Analg 2024:00000539-990000000-00894. [PMID: 39110627 DOI: 10.1213/ane.0000000000007085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
BACKGROUND Dexmedetomidine and ketamine have long elimination half-lives in humans and have no clinically approved reversal agents. Methylphenidate enhances dopaminergic and noradrenergic neurotransmission by inhibiting reuptake transporters for these arousal-promoting neurotransmitters. Previous studies in rats demonstrated that intravenous methylphenidate induces emergence from isoflurane and propofol general anesthesia. These 2 anesthetics are thought to act primarily through enhancement of inhibitory Gamma-aminobutyric acid type A (GABAA) receptors. In this study, we tested the behavioral and neurophysiological effects of methylphenidate in rats after low and high doses of dexmedetomidine (an alpha-2 adrenergic receptor agonist) and ketamine (an N-methyl-D-aspartate [NMDA] receptor antagonist) that induce sedation and unconsciousness, respectively. METHODS All experiments used adult male and female Sprague-Dawley rats (n = 32 total) and all drugs were administered intravenously in a crossover, blinded experimental design. Locomotion after sedating doses of dexmedetomidine (10 µg/kg) or ketamine (10 mg/kg) with and without methylphenidate (5 mg/kg) was tested using the open field test (n = 16). Recovery of righting reflex after either high-dose dexmedetomidine (50 µg/kg) or high-dose ketamine (50 mg/kg) with and without methylphenidate (1-5 mg/kg) was assessed in a second cohort of rats (n = 8). Finally, in a third cohort of rats (n = 8), frontal electroencephalography (EEG) was recorded for spectral analysis under both low and high doses of dexmedetomidine and ketamine with and without methylphenidate. RESULTS Low-dose dexmedetomidine reduced locomotion by 94% in rats. Methylphenidate restored locomotion after low-dose dexmedetomidine (rank difference = 88.5, 95% confidence interval [CI], 70.8-106) and the effect was blocked by coadministration with a dopamine D1 receptor antagonist (rank difference = 86.2, 95% CI, 68.6-104). Low-dose ketamine transiently attenuated mobility by 58% and was not improved with methylphenidate. Methylphenidate did not affect the return of righting reflex latency in rats after high-dose dexmedetomidine nor ketamine. Frontal EEG analysis revealed that methylphenidate reversed spectral changes induced by low-dose dexmedetomidine (F [8,87] = 3.27, P = .003) but produced only transient changes after high-dose dexmedetomidine. Methylphenidate did not induce spectral changes in the EEG after low- or high-dose ketamine. CONCLUSIONS Methylphenidate reversed behavioral and neurophysiological correlates of sedation, but not unconsciousness, induced by dexmedetomidine. In contrast, methylphenidate did not affect sedation, unconsciousness, nor EEG signatures in rats after ketamine. These findings suggest that methylphenidate may be efficacious to reverse dexmedetomidine sedation in humans.
Collapse
Affiliation(s)
- Kathleen F Vincent
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Gwi H Park
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Brendan M Stapley
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Emmaline J Dillon
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Ken Solt
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Hass RM, Stitt D. Neurological Effects of Stimulants and Hallucinogens. Semin Neurol 2024; 44:459-470. [PMID: 38889896 DOI: 10.1055/s-0044-1787572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In this article, we will discuss the history, pharmacodynamics, and neurotoxicity of psychostimulants and hallucinogens. The drugs discussed are widely used and have characteristic toxidromes and potential for neurological injuries with which the practicing clinician should be familiar. Psychostimulants are a class of drugs that includes cocaine, methamphetamine/amphetamines, and cathinones, among others, which produce a crescendoing euphoric high. Seizures, ischemic and hemorrhagic strokes, rhabdomyolysis, and a variety of movement disorders are commonly encountered in this class. Hallucinogens encompass a broad class of drugs, in which the user experiences hallucinations, altered sensorium, distorted perception, and cognitive dysfunction. The experience can be unpredictable and dysphoric, creating a profound sense of anxiety and panic in some cases. Recognizing the associated neurotoxicities and understanding the appropriate management is critical in caring for these patient populations. Several of these agents are not detectable by standard clinical laboratory analysis, making identification and diagnosis an even greater challenge.
Collapse
Affiliation(s)
- Reece M Hass
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Derek Stitt
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Costa B, Vale N. Advances in Psychotropic Treatment for Pregnant Women: Efficacy, Adverse Outcomes, and Therapeutic Monitoring. J Clin Med 2024; 13:4398. [PMID: 39124665 PMCID: PMC11312735 DOI: 10.3390/jcm13154398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Advancements in psychotropic therapy for pregnant women are pivotal for addressing maternal mental health during the perinatal period. Screening for mood and anxiety symptoms during pregnancy is recommended to enable early intervention. Psychotropic medications, including antidepressants, benzodiazepines, antipsychotics, and mood stabilizers, are commonly used, but challenges remain regarding their safety and efficacy during pregnancy. Pregnancy induces significant changes in pharmacokinetics, necessitating personalized dosing strategies and careful monitoring. Real-time monitoring technologies, such as smartphone-integrated platforms and home-based monitoring, enhance accessibility and accuracy. Prospective studies and collaboration among healthcare providers are essential for evidence-based guidelines and optimal treatment strategies. Reducing stigma around mental health during pregnancy is crucial to ensure women seek help and discuss treatment options, promoting understanding and acceptance within the community.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
18
|
Schwarting RKW, Wöhr M, Engler H, Sungur AÖ, Schedlowski M. Behaviorally conditioned effects of psychoactive drugs in experimental animals: What we have learned from nearly a century of research and what remains to be learned. Neurosci Biobehav Rev 2024; 162:105721. [PMID: 38754716 DOI: 10.1016/j.neubiorev.2024.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Continuous treatment with drugs is a crucial requirement for managing various clinical conditions, including chronic pain and neuropsychiatric disorders such as depression or schizophrenia. Associative learning processes, i.e. Pavlovian conditioning, can play an important role for the effects of drugs and could open new avenues for optimizing patient treatment. In this narrative literature review, we summarize available data in experimental animals regarding the behaviorally conditioned effects of psychostimulants such as d-amphetamine and cocaine, the dopamine receptor agonist apomorphine, the dopamine receptor antagonist haloperidol, morphine and antidepressant drugs. In each section, the drug under discussion is briefly introduced, followed by a detailed examination of conditioning features, including doses and dosing regimens, characteristics of the conditioning process such as test environments or specific conditioned stimuli, testing and conditioned response characteristics, possible extinction or reconditioning or reversal training, neural mechanisms, and finally, the potential clinical relevance of the research area related to the drug. We focus on key outcomes, delve into methodical issues, identify gaps in current knowledge, and suggest future research directions.
Collapse
Affiliation(s)
- Rainer K W Schwarting
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Marburg D-35032, Germany; Center for Mind, Brain and Behavior, Marburg D-35032, Germany
| | - Markus Wöhr
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Marburg D-35032, Germany; Center for Mind, Brain and Behavior, Marburg D-35032, Germany; KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Leuven B-3000, Belgium; KU Leuven, Leuven Brain Institute, Leuven B-3000, Belgium
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro-, and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen D-45147, Germany
| | - A Özge Sungur
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Marburg D-35032, Germany; Center for Mind, Brain and Behavior, Marburg D-35032, Germany; KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Leuven B-3000, Belgium; KU Leuven, Leuven Brain Institute, Leuven B-3000, Belgium
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro-, and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen D-45147, Germany; Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
19
|
Neumann J, Dhein S, Kirchhefer U, Hofmann B, Gergs U. Effects of congeners of amphetamine on the human heart. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4615-4642. [PMID: 38340182 PMCID: PMC11166837 DOI: 10.1007/s00210-024-02983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Central stimulatory and hallucinogenic drugs of abuse like amphetamine and most congeners of amphetamine can have cardiac harmful effects. These cardiac side effects can lead to morbidities and death. In this paper, we review current knowledge on the direct and indirect effects of these amphetamine congeners on the mammalian heart-more specifically, the isolated human heart muscle preparation. In detail, we address the question of whether and how these drugs affect cardiac contractility and their mechanisms of action. Based on this information, further research areas are defined, and further research efforts are proposed.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06112, D-06097, Halle, Germany.
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | | | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06112, D-06097, Halle, Germany
| |
Collapse
|
20
|
Hayley AC, Shiferaw B, Aitken B, Rositano J, Downey LA. Acute methamphetamine and alcohol usage alters gaze behaviour during driving: A randomised, double-blind, placebo-controlled study. J Psychopharmacol 2024; 38:636-646. [PMID: 39068640 PMCID: PMC11290035 DOI: 10.1177/02698811241261024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
BACKGROUND Methamphetamine is frequently co-consumed with alcohol, yet combined effects on visually guided behaviours have not been experimentally assessed. This study examined whether methamphetamine and alcohol-induced changes in gaze behaviour can be accurately detected and indexed during a simulated driving task to establish characteristic patterns relevant to traffic safety. METHODS In a randomised, placebo-controlled, cross-over study design, the effects of acute oral methamphetamine (0.42 mg/kg) were assessed with and without low doses of alcohol (target 0.04% blood alcohol content) on gaze behaviour during driving. Twenty healthy adults (mean age 29.5 years (SD ± 4.9), 40% female) completed four, 1-h simulated drives with simultaneous eye monitoring using the SensoMotoric Instruments cap-mounted eye tracker over a 4-week experimental paradigm. Gaze entropy measures were used to quantify visual scanning efficiency, expressed as gaze transition entropy and stationary gaze entropy. Fixations, recorded as duration (milliseconds, ms) and rate (count) per minute, were examined in 10-min bins over the duration of the drive. Driving performance was assessed by the standard deviation of lateral position, standard deviation of speed and steering variability. RESULTS Methamphetamine increased the rate and duration of fixations and produced a less dispersed but more disorganised pattern of gaze during highway driving while preserving performance. Alcohol alone impaired both oculomotor control and driving performance, even when consumed at levels well below the legal limit stipulated in many international jurisdictions. CONCLUSIONS Methamphetamine-affected drivers display inefficient exploration in a limited visual range during driving. Eye-tracking metrics thus show potential for indexing intoxication due to psychoactive substance usage.
Collapse
Affiliation(s)
- Amie C Hayley
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
- Institute for Breathing and Sleep, Austin Hospital, Melbourne, VIC, Australia
- International Council for Alcohol, Drugs and Traffic Safety
| | - Brook Shiferaw
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Blair Aitken
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | | | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
- Institute for Breathing and Sleep, Austin Hospital, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Bakke E, Nilsen Terland M, Strand DH, Øiestad EL, Høiseth G. Enantiomer-specific analysis of amphetamine in urine, oral fluid and blood. J Anal Toxicol 2024; 48:254-262. [PMID: 38706158 PMCID: PMC11165648 DOI: 10.1093/jat/bkae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024] Open
Abstract
Illegal amphetamine is usually composed of a racemic mixture of the two enantiomers (S)- and (R)-amphetamine. However, when amphetamine is used in medical treatment, the more potent (S)-amphetamine enantiomer is used. Enantiomer-specific analysis of (S)- and (R)-amphetamine is therefore used to separate legal medical use from illegal recreational use. The aim of the present study was to describe our experience with enantiomer-specific analysis of amphetamine in urine and oral fluid, as well as blood, and examine whether the distribution of the two enantiomers seems to be the same in different matrices. We investigated 1,722 urine samples and 1,977 oral fluid samples from prison inmates, and 652 blood samples from suspected drugged drivers, where prescription of amphetamine was reported. Analyses were performed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS-MS). The enantiomer separation was achieved by using a chiral column, and results from the method validation are reported. Samples containing <60% (S)-amphetamine were interpreted as representing illegal use of amphetamine. The distribution of the two enantiomers was compared between different matrices. In urine and oral fluid, the mean amount of (S)-amphetamine was 45.2 and 43.7%, respectively, while in blood, the mean amount of (S)-amphetamine was 45.8%. There was no statistically significant difference in the amount of (S)-amphetamine between urine and oral fluid samples and between urine and blood samples, but the difference was significant in blood compared to oral fluid samples (P < 0.001). Comparison of urine and oral fluid between similar populations indicated that enantiomers of amphetamine can be interpreted in the same way, although marginally higher amounts of (R)-amphetamine may occur in oral fluid. Oral fluid, having several advantages, especially during collection, could be a preferred matrix in testing for illegal amphetamine intake in users of medical amphetamine.
Collapse
Affiliation(s)
- Eirin Bakke
- Department of Forensic Sciences, Oslo University Hospital, PO Box 4950 Nydalen, Oslo 0424, Norway
| | - Mariann Nilsen Terland
- Department of Forensic Sciences, Oslo University Hospital, PO Box 4950 Nydalen, Oslo 0424, Norway
| | - Dag Helge Strand
- Department of Forensic Sciences, Oslo University Hospital, PO Box 4950 Nydalen, Oslo 0424, Norway
| | - Elisabeth Leere Øiestad
- Department of Forensic Sciences, Oslo University Hospital, PO Box 4950 Nydalen, Oslo 0424, Norway
- Department of Pharmacy, University of Oslo, PO Box 1068 Blindern, Oslo 0316, Norway
| | - Gudrun Høiseth
- Department of Forensic Sciences, Oslo University Hospital, PO Box 4950 Nydalen, Oslo 0424, Norway
- Centre for psychopharmacology, Diakonhjemmet Hospital, Forskningsveien 13, Oslo 0373, Norway
- Norwegian Centre for Addiction Research, Institute of Clinical Medicine, University of Oslo, PO Box 1171 Blindern, Oslo 0318, Norway
| |
Collapse
|
22
|
Åhman A, Karlsson A, Berge J, Håkansson A. Mortality, morbidity, and predictors of death among amphetamine-type stimulant users - a longitudinal, nationwide register study. Addict Behav Rep 2024; 19:100553. [PMID: 38800761 PMCID: PMC11127464 DOI: 10.1016/j.abrep.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Use of amphetamine-type stimulants (ATS) contributes substantially to the global burden of disease. Large-scale follow-up studies of morbidity and mortality in ATS users are few. This study analysed morbidity, mortality, and potential predictors of all-cause mortality in a nationwide cohort of patients with ATS use disorder. Methods Data was acquired from national Swedish registers. All Swedish residents 18 years or older, with a registered ATS use diagnosis in 2013-2014 were included (N = 5,018) and followed until December 31, 2017. Comorbid diagnoses and causes of death were assessed and potential predictors of all-cause mortality were examined through Cox regression. Results Median age at inclusion was 36.6 years (interquartile range 27.4---48.1) and 70.5 % were men. The crude mortality rate was 24.6 per 1,000 person-years. The adjusted all-cause standardized mortality ratio was 12.4 (95 % CI [11.34-13.55]). The most common cause of death was overdose (28.9 %). Multiple drug use (hazard ratio 1.39, 95 % CI [1.14-1.70], p = 0.004), anxiety (hazard ratio 1.39, 95 % CI [1.11-1.72], p = 0.014), viral hepatitis (hazard ratio 1.85, 95 % CI [1.50-2.29], p = 0.004), and liver disease (hazard ratio 2.41, 95 % CI [1.55-3.74], p = 0.004) were predictors of all-cause mortality. Conclusions Multiple drug use, anxiety disorders, viral hepatitis and liver diseases were identified as risk factors for death. Our findings call for better screening, prevention, and treatment of somatic and psychiatric comorbidity among ATS users to reduce mortality.
Collapse
Affiliation(s)
- A. Åhman
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Psychiatry, Lund, Sweden
- Faculty of Medicine, Department of Clinical Sciences Lund, BMC F12, Sölvegatan 19, 221 84 Lund, Sweden
| | - A. Karlsson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Psychiatry, Lund, Sweden
- Faculty of Medicine, Department of Clinical Sciences Lund, BMC F12, Sölvegatan 19, 221 84 Lund, Sweden
| | - J. Berge
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Psychiatry, Lund, Sweden
- Faculty of Medicine, Department of Clinical Sciences Lund, BMC F12, Sölvegatan 19, 221 84 Lund, Sweden
| | - A. Håkansson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Psychiatry, Lund, Sweden
- Faculty of Medicine, Department of Clinical Sciences Lund, BMC F12, Sölvegatan 19, 221 84 Lund, Sweden
| |
Collapse
|
23
|
Nagaoka K, Katagiri D, Matsunami M, Chinen M, Seki K, Fukuda J, Ohara M, Suzuki T. Kidney Biopsy Proven Thrombotic Microangiopathy Induced by Methamphetamine. Intern Med 2024; 63:1603-1608. [PMID: 37866922 PMCID: PMC11189718 DOI: 10.2169/internalmedicine.2143-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/31/2023] [Indexed: 10/24/2023] Open
Abstract
A 47-year-old man was admitted to our hospital with acute kidney injury, severe hypertension, heart failure, thrombocytopenia, and elevated lactate dehydrogenase. Renal biopsy revealed fibrin thrombi within the glomerular capillaries and moderate fibrotic intimal thickening in the interlobular arteries. The histological diagnosis was thrombotic microangiopathy (TMA). Regarding cardiac involvement, we found marked stenosis in the left anterior descending artery on coronary angiography and cardiomyopathy on myocardial biopsy. Blood concentrations of amphetamine and methamphetamine were high (14.1 ng/mL and 333 ng/mL, respectively). It is important to consider methamphetamine as a cause of renal TMA and multi-organ dysfunction.
Collapse
Affiliation(s)
| | - Daisuke Katagiri
- Department of Nephrology, National Center for Global Health and Medicine, Japan
| | | | - Miria Chinen
- Department of Nephrology, National Center for Global Health and Medicine, Japan
| | - Kurumi Seki
- Department of Pathology, Kameda Medical Center, Japan
| | - Junko Fukuda
- Department of Nephrology, Kameda Medical Center, Japan
| | - Mamiko Ohara
- Department of Nephrology, Kameda Medical Center, Japan
| | - Tomo Suzuki
- Department of Nephrology, Kameda Medical Center, Japan
| |
Collapse
|
24
|
Mayer FP, Stewart A, Varman DR, Moritz AE, Foster JD, Owens AW, Areal LB, Gowrishankar R, Velez M, Wickham K, Phelps H, Katamish R, Rabil M, Jayanthi LD, Vaughan RA, Daws LC, Blakely RD, Ramamoorthy S. Kappa Opioid Receptor Antagonism Restores Phosphorylation, Trafficking and Behavior induced by a Disease Associated Dopamine Transporter Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539310. [PMID: 37205452 PMCID: PMC10187322 DOI: 10.1101/2023.05.03.539310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aberrant dopamine (DA) signaling is implicated in schizophrenia, bipolar disorder (BPD), autism spectrum disorder (ASD), substance use disorder, and attention-deficit/hyperactivity disorder (ADHD). Treatment of these disorders remains inadequate, as exemplified by the therapeutic use of d-amphetamine and methylphenidate for the treatment of ADHD, agents with high abuse liability. In search for an improved and non-addictive therapeutic approach for the treatment of DA-linked disorders, we utilized a preclinical mouse model expressing the human DA transporter (DAT) coding variant DAT Val559, previously identified in individuals with ADHD, ASD, or BPD. DAT Val559, like several other disease-associated variants of DAT, exhibits anomalous DA efflux (ADE) that can be blocked by d-amphetamine and methylphenidate. Kappa opioid receptors (KORs) are expressed by DA neurons and modulate DA release and clearance, suggesting that targeting KORs might also provide an alternative approach to normalizing DA-signaling disrupted by perturbed DAT function. Here we demonstrate that KOR stimulation leads to enhanced surface trafficking and phosphorylation of Thr53 in wildtype DAT, effects achieved constitutively by the Val559 mutant. Moreover, these effects can be rescued by KOR antagonism of DAT Val559 in ex vivo preparations. Importantly, KOR antagonism also corrected in vivo DA release as well as sex-dependent behavioral abnormalities observed in DAT Val559 mice. Given their low abuse liability, our studies with a construct valid model of human DA associated disorders reinforce considerations of KOR antagonism as a pharmacological strategy to treat DA associated brain disorders.
Collapse
Affiliation(s)
- Felix P. Mayer
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy E. Moritz
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Anthony W. Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Lorena B. Areal
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Raajaram Gowrishankar
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Michelle Velez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Kyria Wickham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Hannah Phelps
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Rania Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian Rabil
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
25
|
Baughman DJ, Watson CM, Beich JW, Herboso MNJ, Cuttie LK, Marlyne ABC. Recommendation for Long-term Management of Adult Attention-Deficit/Hyperactivity Disorder in Military Populations, Veterans, and Dependents: A Narrative Review. Mil Med 2024; 189:e1343-e1352. [PMID: 37878798 DOI: 10.1093/milmed/usad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/11/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION In addition to the higher burden of mental health disease in the military, there is a compounding antecedent association between behavioral health comorbidities and the treatment of attention-deficit/hyperactivity disorder (ADHD) in this population. Despite the low prevalence of new-onset ADHD in adults globally, the rate of stimulant (i.e., amphetamines) prescription is increasing. Stimulants can exacerbate mental health disease (often masquerading as ADHD symptomatology), precluding optimal treatment of the underlying etiology and imposing unnecessary dangerous side effects. This study aimed to evaluate the long-term safety and efficacy of stimulants for managing adult ADHD. METHODS A nine-member multidisciplinary team reviewed a PubMed search with the terms "adult," "ADHD," and "stimulant." Targeted PubMed and Google Scholar searches for "adult ADHD" paired with Food and Drug Administration -approved ADHD medications and Google Scholar literature using forward and reverse snowballing methods were performed for high-quality studies focusing on long-term treatment in ADHD. An evidence table and clinical algorithm were developed from the review. RESULTS Of the 1,039 results, 50 articles were fully reviewed, consisting of 21 descriptive and experimental studies, 18 observational, and 11 systematic reviews and meta-analyses. Illustrative cases within the structured discussion of the results highlighted ADHD and psychiatric comorbidities, risks, harms, and benefits of stimulant use, medication mechanisms of action, and limitations of the current evidence. DISCUSSION The dearth of high-quality studies on long-term ADHD management in adults fails to establish a causal relationship between stimulant use and physiological harm. Despite mixed evidence supporting the benefit of stimulants, there is clear evidence regarding the risk of harm. The serious risks of stimulants include arrhythmias, myocardial infarction, stroke/transient ischemic attack, sudden death, psychosis, and worsening of behavioral health disease. Additionally, there is a possible long-term risk of harm due to chronic sympathetic load (i.e., cardiovascular system remodeling). Stimulants pose a greater risk for addiction and abuse compared to other evidence-based nonstimulant medications that have similar effectiveness. Both stimulants and nonstimulants might promote favorable neuroanatomical changes for long-term improvement of ADHD symptoms, but nonstimulants (atomoxetine) have the pharmacological advantage of also mitigating the effects of sympathetic load (sympatholysis) and anxiety (anxiolysis). Given the physiological uncertainty of extended stimulant use for adults, especially older adults with vulnerable cardiovascular systems, clinicians should proceed cautiously when considering initiating or sustaining stimulant therapy. For long-term treatment of ADHD in adults, clinicians should consider nonstimulant alternatives (including behavioral therapy) due to the comparatively lower side effect risk and the possible additional benefit in patients with behavioral health comorbidities. CONCLUSION Long-term safety of stimulant use for adults with ADHD is uncertain, as existing studies are limited in quality and duration. This is particularly important for military populations with higher rates of mental health conditions. Managing ADHD and related conditions requires prioritizing cardiovascular safety, especially for older adults. Nonstimulant options can be helpful, especially in comorbid psychiatric disease. Before treating ADHD, ruling out and controlling other behavioral health conditions is essential to avoid masking or worsening underlying issues and reducing unnecessary medication side effects.
Collapse
Affiliation(s)
- Derek J Baughman
- Medical Director-Primary Care, Barksdale AFB, 2nd Medical Group, Barksdale AFB, LA 71110, USA
| | - Crista M Watson
- Physician Assistant-Family Health, Barksdale AFB, 2nd Medical Group, Barksdale AFB, LA 71110, USA
| | - Jonathan W Beich
- Psychiatrist/MH Element Chief-Behavioral Health, Barksdale AFB, 2nd Medical Group, Barksdale AFB, LA 71110, USA
| | - May N Joresa Herboso
- Aerospace Medical Technician-Primary Care, Barksdale AFB, 2nd Medical Group, Barksdale AFB, LA 71110, USA
| | - Liana K Cuttie
- Nurse Practitioner, Family Health-Primary Care, Barksdale AFB, 2nd Medical Group, Barksdale AFB, LA 71110, USA
| | - Ari-Beth C Marlyne
- Chief of Medical Staff & Family Medicine Physician, Barksdale AFB, 2nd Medical Group, Barksdale AFB, LA 71110, USA
| |
Collapse
|
26
|
Shah PM, Pillarella NR, Telatin M, Negroni NC, Baals JN, Haemmerle GL, Pillari BT, Rhoads DE. Alcohol withdrawal and amphetamine co-use in an animal model for attention deficit hyperactivity disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:334-344. [PMID: 38833614 DOI: 10.1080/00952990.2024.2349885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 06/06/2024]
Abstract
Background: Non-medical use of amphetamine and other stimulants prescribed for treatment of attention deficit/hyperactivity disorder (ADHD) is of special concern when combined with alcohol consumption. In a previous study, we modeled chronic ethanol-amphetamine co-use in adolescent Long-Evans (LE) rats and provided evidence that amphetamine attenuates alcohol withdrawal symptoms.Objectives: This project modeled co-use of amphetamine with alcohol in adolescents with ADHD-like symptoms by examining ethanol-amphetamine administration in adolescent Spontaneously Hypertensive Rats (SHR), an experimental model for the study of ADHD. Withdrawal symptoms were compared among SHR and two control rat strains, LE and Wistar Kyoto (WKY).Methods: At postnatal day 32, parallel groups of 12-24 male SHR, WKY and LE rats were administered a liquid diet containing ethanol (3.6%) and/or amphetamine (20 mg/L). Following administration periods up to 26 days, rats were withdrawn from their treatment and tested for overall severity of alcohol withdrawal symptoms, general locomotor activity, and anxiety-like behavior.Results: Overall withdrawal severity was lower for SHR than for LE (p < .001) or WKY (p = .027). Co-consumption of amphetamine decreased withdrawal severity for LE (p = .033) and WKY (p = .011) but not SHR (p = .600). Only WKY showed increased anxiety-like behavior during withdrawal (p = .031), but not after amphetamine co-administration (p = .832).Conclusion: Alcohol withdrawal severity may be attenuated when co-used with amphetamine. However, as a model for ADHD, SHR adolescents appeared resistant to developing significant signs of alcohol withdrawal following alcohol consumption. Whether alcohol withdrawal symptoms are attenuated or absent, potential consequences could include a decreased awareness of an emerging problem with alcohol use.
Collapse
Affiliation(s)
- Pooja M Shah
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | | | - Marta Telatin
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Natalie C Negroni
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Jessica N Baals
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Grace L Haemmerle
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | | | - Dennis E Rhoads
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| |
Collapse
|
27
|
Basmadjian OM, Occhieppo VB, Montemerlo AE, Rivas GA, Rubianes MD, Baiardi G, Bregonzio C. Angiotensin II involvement in the development and persistence of amphetamine-induced sensitization: Striatal dopamine reuptake implications. Eur J Neurosci 2024; 59:2450-2464. [PMID: 38480476 DOI: 10.1111/ejn.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.
Collapse
Affiliation(s)
- Osvaldo M Basmadjian
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria B Occhieppo
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Antonella E Montemerlo
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo A Rivas
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María D Rubianes
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
28
|
Jian-Min C, Zhi-Yuan W, Ke L, Cheng Z, Shi-Xuan W, Yi-Wei C, Guan-Yi L, Rui S, Xiao-Mei Z, Jin L, Ning W. Assessment of lisdexamfetamine on executive function in rats: A translational cognitive research. Exp Neurol 2024; 374:114718. [PMID: 38336285 DOI: 10.1016/j.expneurol.2024.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Executive function, including working memory, attention and inhibitory control, is crucial for decision making, thinking and planning. Lisdexamfetamine, the prodrug of d-amphetamine, has been approved for treating attention-deficit hyperactivity disorder and binge eating disorder, but whether it improves executive function under non-disease condition, as well as the underlying pharmacokinetic and neurochemical properties, remains unclear. Here, using trial unique non-matching to location task and five-choice serial reaction time task of rats, we found lisdexamfetamine (p.o) enhanced spatial working memory and sustained attention under various cognitive load conditions, while d-amphetamine (i.p) only improved these cognitive performances under certain high cognitive load condition. Additionally, lisdexamfetamine evoked less impulsivity than d-amphetamine, indicating lower adverse effect on inhibitory control. In vivo pharmacokinetics showed lisdexamfetamine produced a relative stable and lasting release of amphetamine base both in plasma and in brain tissue, whereas d-amphetamine injection elicited rapid increase and dramatical decrease in amphetamine base levels. Microdialysis revealed lisdexamfetamine caused lasting release of dopamine within the medial prefrontal cortex (mPFC), whereas d-amphetamine produced rapid increase followed by decline to dopamine level. Moreover, lisdexamfetamine elicited more obvious efflux of noradrenaline than that of d-amphetamine. The distinct neurochemical profiles may be partly attributed to the different action of two drugs to membranous catecholamine transporters level within mPFC, detecting by Western Blotting. Taken together, due to its certain pharmacokinetic and catecholamine releasing profiles, lisdexamfetamine produced better pharmacological action to improving executive function. Our finding provided valuable evidence on the ideal pharmacokinetic and neurochemical characteristics of amphetamine-type psychostimulants in cognition enhancement.
Collapse
Affiliation(s)
- Chen Jian-Min
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Department of Pharmacy, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, 46th Chongxin Road, Guilin 541000, China
| | - Wang Zhi-Yuan
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Liu Ke
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Zhang Cheng
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Wu Shi-Xuan
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Cao Yi-Wei
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Lu Guan-Yi
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Song Rui
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Zhuang Xiao-Mei
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| | - Li Jin
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Wu Ning
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
29
|
Hunt A, Merola GP, Carpenter T, Jaeggi AV. Evolutionary perspectives on substance and behavioural addictions: Distinct and shared pathways to understanding, prediction and prevention. Neurosci Biobehav Rev 2024; 159:105603. [PMID: 38402919 DOI: 10.1016/j.neubiorev.2024.105603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Addiction poses significant social, health, and criminal issues. Its moderate heritability and early-life impact, affecting reproductive success, poses an evolutionary paradox: why are humans predisposed to addictive behaviours? This paper reviews biological and psychological mechanisms of substance and behavioural addictions, exploring evolutionary explanations for the origin and function of relevant systems. Ancestrally, addiction-related systems promoted fitness through reward-seeking, and possibly self-medication. Today, psychoactive substances disrupt these systems, leading individuals to neglect essential life goals for immediate satisfaction. Behavioural addictions (e.g. video games, social media) often emulate ancestrally beneficial behaviours, making them appealing yet often irrelevant to contemporary success. Evolutionary insights have implications for how addiction is criminalised and stigmatised, propose novel avenues for interventions, anticipate new sources of addiction from emerging technologies such as AI. The emerging potential of glucagon-like peptide 1 (GLP-1) agonists targeting obesity suggest the satiation system may be a natural counter to overactivation of the reward system.
Collapse
Affiliation(s)
- Adam Hunt
- Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland.
| | | | - Tom Carpenter
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Adrian V Jaeggi
- Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Carneiro P, Ferreira M, Marisa Costa V, Carvalho F, Capela JP. Protective effects of amphetamine and methylphenidate against dopaminergic neurotoxicants in SH-SY5Y cells. Curr Res Toxicol 2024; 6:100165. [PMID: 38562456 PMCID: PMC10982568 DOI: 10.1016/j.crtox.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Full treatment of the second most common neurodegenerative disorder, Parkinson's disease (PD), is still considered an unmet need. As the psychostimulants, amphetamine (AMPH) and methylphenidate (MPH), were shown to be neuroprotective against stroke and other neuronal injury diseases, this study aimed to evaluate their neuroprotective potential against two dopaminergic neurotoxicants, 6-hydroxydopamine (6-OHDA) and paraquat (PQ), in differentiated human dopaminergic SH-SY5Y cells. Neither cytotoxicity nor mitochondrial membrane potential changes were seen following a 24-hour exposure to either therapeutic concentration of AMPH or MPH (0.001-10 μM). On the other hand, a 24-hour exposure to 6-OHDA (31.25-500 μM) or PQ (100-5000 μM) induced concentration-dependent mitochondrial dysfunction, assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and lysosomal damage, evaluated by the neutral red uptake assay. The lethal concentrations 25 and 50 retrieved from the concentration-toxicity curves in the MTT assay were 99.9 µM and 133.6 µM for 6-OHDA, or 422 µM and 585.8 µM for PQ. Both toxicants caused mitochondrial membrane potential depolarization, but only 6-OHDA increased reactive oxygen species (ROS). Most importantly, PQ-induced toxicity was partially prevented by 1 μM of AMPH or MPH. Nonetheless, neither AMPH nor MPH could prevent 6-OHDA toxicity in this experimental model. According to these findings, AMPH and MPH may provide some neuroprotection against PQ-induced neurotoxicity, but further investigation is required to determine the exact mechanism underlying this protection.
Collapse
Affiliation(s)
- Patrícia Carneiro
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Mariana Ferreira
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - João Paulo Capela
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
- FP3ID, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| |
Collapse
|
31
|
Klainbart S, Sykes CA, Poppenga RH. Dog and cat exposures to drugs of abuse identified by the California animal health and food safety laboratory system 2013-2023. Front Vet Sci 2024; 11:1372614. [PMID: 38515534 PMCID: PMC10954829 DOI: 10.3389/fvets.2024.1372614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction While known animal exposures to human "drugs of abuse" (DA) were previously considered relatively uncommon in veterinary medicine, the trends are changing. Marijuana and amphetamines are among the 20 toxicants most frequently consulted about with the Pet Poison Helpline. When such exposures occur, they are typically considered emergencies. Methods This retrospective study describes confirmed cases of DA exposure in pets from the California Animal Health and Food Safety Laboratory System (CAHFS), 2013-2023. Results Fifty-seven samples tested positive for DA through liquid chromatography with tandem mass spectrometry analysis (qualitative method). In 75% (43/57) of the DA screen tests, the detected drugs included amphetamine-type stimulants and metabolites (methamphetamine, amphetamine, or both). In 47% (27/57) of cases, a combination of more than one drug group was found. Most cases were diagnosed from a urine specimen. In at least 32% (18/57) of cases, the samples were submitted due to suspicions of animal cruelty, and at least 41% (23/57) of the patients were deceased when the samples were submitted. Discussion More studies on the prevalence of illicit drugs in small animals, using confirmatory testing, are warranted to fully understand the significance of this emerging toxicological hazard in veterinary medicine.
Collapse
Affiliation(s)
- Sigal Klainbart
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, CA, United States
- Department of Small Animal Emergency and Critical Care, The Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Chelsea A. Sykes
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, CA, United States
| | - Robert H. Poppenga
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Song W, Simona A, Zhang P, Bates DW, Urman RD. Stimulant Drugs and Stimulant Use Disorder. Anesthesiol Clin 2024; 42:103-115. [PMID: 38278583 DOI: 10.1016/j.anclin.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The authors aim to summarize several key points of stimulant drugs and stimulant use disorder, including their indications, short-term and long-term adverse effects, current treatment strategies, and association with opioid medications. The global prevalence of stimulant use has seen annual increase in the last decade. Multiple studies have shown that stimulant use and stimulant use disorder are associated with a range of individual and public health issues. Stimulant misuse has led to a significant increase of overdose deaths in the United States.
Collapse
Affiliation(s)
- Wenyu Song
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1620 Tremont Street, Boston, MA 02120, USA.
| | - Aurélien Simona
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1620 Tremont Street, Boston, MA 02120, USA; Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
| | - Ping Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA; Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David W Bates
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1620 Tremont Street, Boston, MA 02120, USA
| | - Richard D Urman
- Department of Anaesthesiology, College of Medicine The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Valvassori SS, Possamai-Della T, Aguiar-Geraldo JM, Sant’Ana RG, Dal-Pont GC, Pescador B, Zugno AI, Quevedo J, Dal-Pizzol F. Sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model. Eur J Neurosci 2024; 59:1153-1168. [PMID: 37350331 PMCID: PMC10746835 DOI: 10.1111/ejn.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
The present study aimed to evaluate if sepsis sensitizes behavioural and biochemical responses induced by m-amphetamine. For this, Wistar rats were submitted to the cecal ligation and puncture. After 30 days of cecal ligation and puncture procedure, the animals were submitted to a single intraperitoneal injection of saline or m-amphetamine (.25, .50, or 1.0 mg/kg). Locomotor behaviour was assessed 2 h after the administration. Interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, dopamine-cAMP-regulated phosphoprotein of 32,000 kDa (DARPP-32) and neuronal calcium sensor (NCS-1) levels were evaluated in the frontal cortex, hippocampus and striatum. Also, brain-derived neurotrophic factor (BDNF), neuronal growth factor and glial-derived neurotrophic factor levels were assessed in the hippocampus. M-amphetamine alone (.25 and 1.0 mg/kg) increased rats' locomotion and exploratory behaviour compared with the Sham + Sal. Animals from the cecal ligation and puncture + m-amphetamine (.5 and/or 1.0 mg/kg) group showed an increase in locomotion, exploratory and risk-like behaviour when compared with the Sham + Saline group and with its respective Sham groups. Cecal ligation and puncture increased interleukin levels compared with the Sham + Sal. However, cecal ligation and puncture animals that received m-amphetamine (1 mg/kg) increased even more, these inflammatory parameters compared with the Sham + Sal and the cecal ligation and puncture + saline group. M-amphetamine at lower doses increased neurotrophic factors, but higher doses decreased these parameters in the brain of cecal ligation and puncture rats. M-amphetamine dose-dependently increased DARPP-32 and NCS-1 levels in cecal ligation and puncture rats in some structures. In conclusion, these results demonstrate that sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model.
Collapse
Affiliation(s)
- Samira S. Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jorge M. Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Rômulo Goronci Sant’Ana
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo C. Dal-Pont
- Translational Health Research Laboratory, Alto Vale do Rio do Peixe University, Caçador, Brazil
| | - Bruna Pescador
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Alexandra I. Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavior Sciences, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
34
|
Johansson J, Ericsson M, Axelsson J, Bjerkén SA, Virel A, Karalija N. Amphetamine-induced dopamine release in rat: Whole-brain spatiotemporal analysis with [ 11C]raclopride and positron emission tomography. J Cereb Blood Flow Metab 2024; 44:434-445. [PMID: 37882727 PMCID: PMC10870964 DOI: 10.1177/0271678x231210128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/27/2023]
Abstract
Whole-brain mapping of drug effects are needed to understand the neural underpinnings of drug-related behaviors. Amphetamine administration is associated with robust increases in striatal dopamine (DA) release. Dopaminergic terminals are, however, present across several associative brain regions, which may contribute to behavioral effects of amphetamine. Yet the assessment of DA release has been restricted to a few brain regions of interest. The present work employed positron emission tomography (PET) with [11C]raclopride to investigate regional and temporal characteristics of amphetamine-induced DA release across twenty sessions in adult female Sprague Dawley rats. Amphetamine was injected intravenously (2 mg/kg) to cause displacement of [11C]raclopride binding from DA D2-like receptors, assessed using temporally sensitive pharmacokinetic PET model (lp-ntPET). We show amphetamine-induced [11C]raclopride displacement in the basal ganglia, and no changes following saline injections. Peak occupancy was highest in nucleus accumbens, followed by caudate-putamen and globus pallidus. Importantly, significant amphetamine-induced displacement was also observed in several extrastriatal regions, and specifically in thalamus, insula, orbitofrontal cortex, and secondary somatosensory area. For these, peak occupancy occurred later and was lower as compared to the striatum. Collectively, these findings demonstrate distinct amphetamine-induced DA responses across the brain, and that [11C]raclopride-PET can be employed to detect such spatiotemporal differences.
Collapse
Affiliation(s)
- Jarkko Johansson
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | | | - Jan Axelsson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Sara af Bjerkén
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Ana Virel
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Stein J, Jorge BC, Nagaoka LT, Reis ACC, Manoel BDM, Godoi AR, Fioravante VC, Martinez FE, Pinheiro PFF, Pupo AS, Arena AC. Can exposure to lisdexamfetamine dimesylate from juvenile period to peripubertal compromise male reproductive parameters in adult rats? Toxicol Appl Pharmacol 2024; 484:116867. [PMID: 38378049 DOI: 10.1016/j.taap.2024.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Lisdexamfetamine (LDX) is a d-amphetamine prodrug used to treat attention deficit and hyperactivity disorder, a common neurodevelopmental disorder in children and adolescents. Due to its action mediated by elevated levels of catecholamines, mainly dopamine and noradrenaline, which influence hormonal regulation and directly affect the gonads, this drug may potentially disrupt reproductive performance. This study evaluated the effects of exposure to LDX from the juvenile to peripubertal period (critical stages of development) on systemic and reproductive toxicity parameters in male rats. Male Wistar rats (23 days old) were treated with 0; 5.2; 8.6 or 12.1 mg/kg/day of LDX from post-natal day (PND) 23 to 53, by gavage. LDX treatment led to reduced daily food and water consumption, as well as a decrease in social behaviors. The day of preputial separation remained unaltered, although the treated animals exhibited reduced weight. At PND 54, the treated animals presented signs of systemic toxicity, evidenced by a reduction in body weight gain, increase in the relative weight of the liver, spleen, and seminal gland, reduction in erythrocyte and leukocyte counts, reduced total protein levels, and disruptions in oxidative parameters. In adulthood, there was an increase in immobile sperm, reduced sperm count, morphometric changes in the testis, and altered oxidative parameters, without compromising male sexual behavior and fertility. These findings showed that LDX-treatment during the juvenile and peripubertal periods induced immediate systemic toxicity and adversely influenced reproductive function in adult life, indicating that caution is necessary when prescribing this drug during the peripubertal phase.
Collapse
Affiliation(s)
- Julia Stein
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bárbara Campos Jorge
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lívia Trippe Nagaoka
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Beatriz de Matos Manoel
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Alana Rezende Godoi
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vanessa Caroline Fioravante
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Francisco Eduardo Martinez
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Patrícia Fernanda Felipe Pinheiro
- Department of Structural and Functional Biology, Anatomy sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - André Sampaio Pupo
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Morphology sector, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Center of Information and Toxicological Assistance (CIATOX), Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
36
|
Koriem KMM, El-Soury NHT. Luteolin amends neural neurotransmitters, antioxidants, and inflammatory markers in the cerebral cortex of Adderall exposed rats. Neurosci Lett 2024; 823:137652. [PMID: 38266975 DOI: 10.1016/j.neulet.2024.137652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Adderall is a central nervous system stimulant while luteolin has neuroprotective activity. This study aimed to determine whether luteolin can amend neural neurotransmitters, antioxidants, and inflammatory markers in the cerebral cortex of Adderall exposed rats. METHODS Thirty-six male albino rats were divided into 6 equal groups, Control, Luteolin (1 g/kg)-treated, and Luteolin (2 g/kg)-treated groups: normal rats were orally administrated once a day with 2 ml distilled water, luteolin (1 g/kg), and luteolin (2 g/kg), respectively for 4 weeks. Adderall rats, Adderall rats + luteolin (1 g/kg)-treated, and Adderall rats + luteolin (2 g/kg)-treated groups: normal rats were orally administrated once a day with 10 mg/kg of Adderall, 3 days/week for 4 weeks, then these rats orally administrated daily once a day with 2 ml of distilled water, luteolin (1 g/kg), and luteolin (2 g/kg), respectively for another 4 weeks. RESULTS AND CONCLUSION Adderall decreased superoxide dismutase, glutathione peroxidase, catalase, NADPH oxidase, interleukin-10, serotonin, dopamine, norepinephrine, γ-aminobutyric acid, and acetylcoline estrase but increased malondialdehyde, conjugated dienes, oxidative index, tumour necrosis factor-α, interleukin-1β, and interleukin-6 levels in the cerebral cortex. Adderall increased the expression of glial fibrillary acidic protein, ionized calcium binding adaptor molecule 1, and anti-calbindin in the cerebral cortex of Adderall-treated rats. In Adderall-treated rats, daily oral administration of luteolin for 4 weeks brought all these parameters back to values that were close to control where higher dose was more effective than lower dose. The importance of this research is to provide natural compound that amends Adderall-related neural disturbances and this natural compound is cheap, avaliable without any side effect and it does not interfer with Adderall efficiency.
Collapse
Affiliation(s)
- Khaled M M Koriem
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Noura H T El-Soury
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
37
|
Lu X, Xue J, Lai Y, Tang X. Heterogeneity of mesencephalic dopaminergic neurons: From molecular classifications, electrophysiological properties to functional connectivity. FASEB J 2024; 38:e23465. [PMID: 38315491 DOI: 10.1096/fj.202302031r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The mesencephalic dopamine (DA) system is composed of neuronal subtypes that are molecularly and functionally distinct, are responsible for specific behaviors, and are closely associated with numerous brain disorders. Existing research has made significant advances in identifying the heterogeneity of mesencephalic DA neurons, which is necessary for understanding their diverse physiological functions and disease susceptibility. Moreover, there is a conflict regarding the electrophysiological properties of the distinct subsets of midbrain DA neurons. This review aimed to elucidate recent developments in the heterogeneity of midbrain DA neurons, including subpopulation categorization, electrophysiological characteristics, and functional connectivity to provide new strategies for accurately identifying distinct subtypes of midbrain DA neurons and investigating the underlying mechanisms of these neurons in various diseases.
Collapse
Affiliation(s)
- Xiaying Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Jinhua Xue
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yudong Lai
- Department of Human Anatomy, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Xiaolu Tang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| |
Collapse
|
38
|
Farhat LC, Flores JM, Avila-Quintero VJ, Polanczyk GV, Cipriani A, Furukawa TA, Bloch MH, Cortese S. Treatment Outcomes With Licensed and Unlicensed Stimulant Doses for Adults With Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2024; 81:157-166. [PMID: 37878348 PMCID: PMC10600727 DOI: 10.1001/jamapsychiatry.2023.3985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/18/2023] [Indexed: 10/26/2023]
Abstract
Importance Stimulants (methylphenidate and amphetamines) are often prescribed at unlicensed doses for adults with attention-deficit/hyperactivity disorder (ADHD). Whether dose escalation beyond US Food and Drug Administration recommendations is associated with positive risk benefits is unclear. Objective To investigate the impact, based on averages, of stimulant doses on treatment outcomes in adults with ADHD and to determine, based on averages, whether unlicensed doses are associated with positive risk benefits compared with licensed doses. Data Sources Twelve databases, including published (PubMed, Cochrane Library, Embase, Web of Sciences) and unpublished (ClinicalTrials.gov) literature, up to February 22, 2023, without language restrictions. Study Selection Two researchers independently screened records to identify double-blinded randomized clinical trials of stimulants against placebo in adults (18 years and older) with ADHD. Data Extraction and Synthesis Aggregate data were extracted and synthesized in random-effects dose-response meta-analyses and network meta-analyses. Main Outcome Measures Change in ADHD symptoms and discontinuations due to adverse events. Results A total of 47 randomized clinical trials (7714 participants; mean age, 35 (SD, 11) years; 4204 male [56%]) were included. For methylphenidate, dose-response curves indicated additional reductions of symptoms with increments in doses, but the gains were progressively smaller and accompanied by continued additional risk of adverse events dropouts. Network meta-analyses showed that unlicensed doses were associated with greater reductions of symptoms compared with licensed doses (standardized mean difference [SMD], -0.23; 95% CI, -0.44 to -0.02; very low certainty of evidence), but the additional gain was small and accompanied by increased risk of adverse event dropouts (odds ratio, 2.02; 95% CI, 1.19-3.43; moderate certainty of evidence). For amphetamines, the dose-response curve approached a plateau and increments in doses did not indicate additional reductions of symptoms, but there were continued increments in the risk of adverse event dropouts. Network meta-analysis did not identify differences between unlicensed and licensed doses for reductions of symptoms (SMD, -0.08; 95% CI, -0.24 to 0.08; very low certainty of evidence). Conclusions and Relevance Based on group averages, unlicensed doses of stimulants may not have positive risk benefits compared with licensed doses for adults with ADHD. In general, practitioners should consider unlicensed doses cautiously. Practitioners may trial unlicensed doses if needed and tolerated but should be aware that there may not be large gains in the response to the medication with those further increments in dose. However, the findings are averages and will not generalize to every patient.
Collapse
Affiliation(s)
- Luis C. Farhat
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - José M. Flores
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, California
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Guilherme V. Polanczyk
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Andrea Cipriani
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, United Kingdom
| | - Toshi A. Furukawa
- Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/ School of Public Health, Kyoto, Japan
| | - Michael H. Bloch
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Solent NHS Trust, Southampton, United Kingdom
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, New York
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
39
|
Mayer FP, Stewart A, Blakely RD. Leaky lessons learned: Efflux prone dopamine transporter variant reveals sex and circuit specific contributions of D2 receptor signalling to neuropsychiatric disease. Basic Clin Pharmacol Toxicol 2024; 134:206-218. [PMID: 37987120 DOI: 10.1111/bcpt.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Aberrant dopamine (DA) signalling has been implicated in various neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), schizophrenia, bipolar disorder (BPD) and addiction. The availability of extracellular DA is sculpted by the exocytotic release of vesicular DA and subsequent transporter-mediated clearance, rendering the presynaptic DA transporter (DAT) a crucial regulator of DA neurotransmission. D2-type DA autoreceptors (D2ARs) regulate multiple aspects of DA homeostasis, including (i) DA synthesis, (ii) vesicular release, (iii) DA neuron firing and (iv) the surface expression of DAT and DAT-mediated DA clearance. The DAT Val559 variant, identified in boys with ADHD or ASD, as well as in a girl with BPD, supports anomalous DA efflux (ADE), which we have shown drives tonic activation of D2ARs. Through ex vivo and in vivo studies of the DAT Val559 variant using transgenic knock-in mice, we have uncovered a circuit and sex-specific capacity of D2ARs to regulate DAT, which consequently disrupts DA signalling and behaviour differently in males and females. Our studies reveal the ability of the construct-valid DAT Val559 model to elucidate endogenous mechanisms that support DA signalling, findings that may be of translational and/or therapeutic importance.
Collapse
Affiliation(s)
- Felix P Mayer
- Department of Biomedical Science, Florida Atlantic University, Jupiter, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Adele Stewart
- Department of Biomedical Science, Florida Atlantic University, Jupiter, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Jupiter, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
40
|
Yu J, Xu Z, Yan W, Shao Z. Elucidating the molecular pharmacology of trace amine-associated receptor 1 to advance antipsychotic drug discovery. Clin Transl Med 2024; 14:e1576. [PMID: 38317588 PMCID: PMC10844839 DOI: 10.1002/ctm2.1576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Affiliation(s)
- Jingjing Yu
- Division of Nephrology and Kidney Research InstituteState Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| | - Zheng Xu
- Division of Nephrology and Kidney Research InstituteState Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| | - Wei Yan
- Division of Nephrology and Kidney Research InstituteState Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research InstituteState Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
- Frontiers Medical Center, Tianfu Jincheng LaboratoryChengduChina
| |
Collapse
|
41
|
Chen J, Chen Y, Liu J, Feng S, Huang W, Ling Y, Dong Y, Huang W. In Situ Optical Detection of Amines at a Parts-per-Quadrillion Level by Severing the Through-Space Conjugated Supramolecular Domino. J Am Chem Soc 2024; 146:2604-2614. [PMID: 38230966 DOI: 10.1021/jacs.3c11480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Conventional fluorophores suffer from low sensitivity and selectivity in amine detection due to the inherent limitations in their "one-to-one" stoichiometric sensing mechanism. Herein, we propose a "one-to-many" chain reaction-like sensing mechanism by creating a domino chain consisting of one fluorescent molecule (e.g., PTF1) and up to 40 nonemissive polymer chains (pPFPA) comprising over thousand repeating units (PFPA). PTF1 (the domino trigger) interacts with adjacent PFPA units (the following blocks) through polar-π interactions and initiates the domino effect, creating effective through-space conjugation along pPFPA chains and generating amplified yellow fluorescent signals through charge transfer between PTF1 and pPFPA. Amine exposure causes rapid dismantling of the fluorophore-pPFPA-based domino chain and significantly reduces the amplified emissions, thus providing an ultrasensitive method for detecting amines. Relying on the above merits, we achieve a limit of detection of 177 ppq (or 1.67 × 10-12 M) for triethylamine, which is nearly 4 orders lower than that of previous methods. Additionally, the distinct reactivity of pPFPA toward different amines allows for the discrimination of primary, secondary, and tertiary amines. This study presents a "domino effect" sensing mechanism that has not yet been reported and provides a general approach for chemical detection that is beyond the reach of conventional methods.
Collapse
Affiliation(s)
- Jiamao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350002, P. R. China
| | - Yuanyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350002, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350002, P. R. China
| | - Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
42
|
Wang H, Xu J, Yuan Y, Wang Z, Zhang W, Li J. The Exploration of Joint Toxicity and Associated Mechanisms of Primary Microplastics and Methamphetamine in Zebrafish Larvae. TOXICS 2024; 12:64. [PMID: 38251019 PMCID: PMC10820113 DOI: 10.3390/toxics12010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The co-existence of microplastics (MPs) and methamphetamine (METH) in aquatic ecosystems has been widely reported; however, the joint toxicity and associated mechanisms remain unclear. Here, zebrafish larvae were exposed individually or jointly to polystyrene (PS) and polyvinyl chloride (PVC) MPs (20 mg/L) and METH (1 and 5 mg/L) for 10 days. The mortality, behavioral functions, and histopathology of fish from different groups were determined. PS MPs posed a stronger lethal risk to fish than PVC MPs, while the addition of METH at 5 mg/L significantly increased mortality. Obvious deposition of MPs was observed in the larvae's intestinal tract in the exposure groups. Meanwhile, treatment with MPs induced intestinal deposits and intestinal hydrops in the fish, and this effect was enhanced with the addition of METH. Furthermore, MPs significantly suppressed the locomotor activation of zebrafish larvae, showing extended immobility duration and lower velocity. METH stimulated the outcome of PS but had no effect on the fish exposed to PVC. However, combined exposure to MPs and METH significantly increased the turn angle, which declined in individual MP exposure groups. RNA sequencing and gene quantitative analysis demonstrated that exposure to PS MPs and METH activated the MAPK signaling pathway and the C-type lectin signaling pathway of fish, while joint exposure to PVC MPs and METH stimulated steroid hormone synthesis pathways and the C-type lectin signaling pathway in zebrafish, contributing to cellular apoptosis and immune responses. This study contributes to the understanding of the joint toxicity of microplastics and pharmaceuticals to zebrafish, highlighting the significance of mitigating microplastic pollution to preserve the health of aquatic organisms and human beings.
Collapse
Affiliation(s)
- Hao Wang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jindong Xu
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Yang Yuan
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Zhenglu Wang
- West China School of Public Health, West China Fourth Hospital Sichuan University, Chengdu 610041, China;
| | - Wenjing Zhang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jiana Li
- Ningbo Academy of Ecological, Environmental Sciences, Ningbo 315000, China
| |
Collapse
|
43
|
Moshirfar M, Moin KA, Jaafar M, Han K, Omidvarnia S, Hoopes PC. Episodic Angle Closure after Visian™ Implantable Collamer Lens Implantation in a Patient Using Adderall ®. Case Rep Ophthalmol 2024; 15:565-571. [PMID: 39144640 PMCID: PMC11324241 DOI: 10.1159/000540080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Amphetamine-based medications such as Adderall®, used for the treatment of attention deficit-hyperactivity disorder (ADHD), may theoretically elicit angle closure through their adrenergic mechanisms. The relationship between the use of implantable collamer lenses (ICLs) and angle closure has been extensively investigated based on appropriate vault and lens sizing and postoperative changes in the anterior chamber angle (ACA) and corneal morphology. This case reflects a synergistic impact from both Adderall® use and ICL implantation for the proposed mechanism of angle closure. Case Presentation A 36-year-old myopic female with ADHD controlled with Adderall® underwent toric ICL implantation in the right eye after undergoing preoperative laser peripheral iridotomy. Shortly after, the patient developed episodic angle closure in the right eye, with episodes mainly occurring after taking an additional dose of Adderall® in a dimly lit environment. The patient later had an ICL exchange with a smaller sized EVO+ toric ICL in the right eye and remained asymptomatic after. Conclusion Additive mechanisms from both the ICL and Adderall® were present in our patient. The ICL caused crowding of the ACA through a pseudophacomorphic mechanism, and the Adderall® caused increased iridotrabecular contact secondary to pharmacologic mydriasis. This resulted in episodic angle closure with subsequent spikes in the intraocular pressure. There are no current reports or studies in the current literature describing the combined mechanisms of ICL implantation and Adderall® use in the potential development of angle closure. Further studies may be done to assess interactions of such medications in patients after ICL implantation.
Collapse
Affiliation(s)
- Majid Moshirfar
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT, USA
- John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
- Utah Lions Eye Bank, Murray, UT, USA
| | - Kayvon A. Moin
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT, USA
| | - Muhammed Jaafar
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Kenneth Han
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | | | | |
Collapse
|
44
|
Gqamana PP, Victoria Zhang Y. Quantitative LC-MS/MS Analysis of Amphetamines and Cocaine in Human Urine. Methods Mol Biol 2024; 2737:15-23. [PMID: 38036806 DOI: 10.1007/978-1-0716-3541-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
We hereby present a fast and high-throughput LC-MS/MS assay for the simultaneous analysis of amphetamines and cocaine in human urine. The assay is used for confirmations following immunoassay urine drug screens as well as a quantitative assay to report actual urine concentrations in the range 30-10,000 ng/mL for each of the seven analytes, namely, amphetamine; methamphetamine; phentermine; methylenedioxyamphetamine; 3,4-methylenedioxymethamphetamine; methylenedioxy-ethyl-amphetamine; and a cocaine metabolite, benzoylecgonine. The assay derives its efficacy from minimal sample preparation via dilute and shoot. The platform is based on reversed-phase liquid chromatography coupled to the TSQ Endura triple-quadrupole (QqQ) MS instrument for detection via electrospray ionization multiple-reaction monitoring MS. The quantitative analysis is based on the linear calibration whereby the instrument response for each analyte at a given concentration is normalized against stable isotope-labeled internal standard. In addition, the assay can be multiplexed across more than one LC channel to obtain high-sample throughput.
Collapse
Affiliation(s)
- Putuma P Gqamana
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Y Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
45
|
Martin C, Harris K, Wylie C, Isoardi K. Rising prescription stimulant poisoning in Australia: a retrospective case series. TOXICOLOGY COMMUNICATIONS 2023. [DOI: 10.1080/24734306.2023.2174689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Affiliation(s)
- Christopher Martin
- Faculty of Medicine, Griffith University, Brisbane, Australia
- Queensland Poisons Information Centre, Queensland Children’s Hospital, Brisbane, Australia
| | - Keith Harris
- Queensland Poisons Information Centre, Queensland Children’s Hospital, Brisbane, Australia
- Clinical Toxicology Unit, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Carol Wylie
- Queensland Poisons Information Centre, Queensland Children’s Hospital, Brisbane, Australia
| | - Katherine Isoardi
- Queensland Poisons Information Centre, Queensland Children’s Hospital, Brisbane, Australia
- Clinical Toxicology Unit, Princess Alexandra Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
46
|
Xu Z, Guo L, Yu J, Shen S, Wu C, Zhang W, Zhao C, Deng Y, Tian X, Feng Y, Hou H, Su L, Wang H, Guo S, Wang H, Wang K, Chen P, Zhao J, Zhang X, Yong X, Cheng L, Liu L, Yang S, Yang F, Wang X, Yu X, Xu Y, Sun JP, Yan W, Shao Z. Ligand recognition and G-protein coupling of trace amine receptor TAAR1. Nature 2023; 624:672-681. [PMID: 37935376 DOI: 10.1038/s41586-023-06804-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.
Collapse
Affiliation(s)
- Zheng Xu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Lulu Guo
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Yu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weifeng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chang Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Deng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lantian Su
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shuo Guo
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Heli Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kexin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Peipei Chen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Xiaoyu Zhang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Cheng
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
| | - Xiao Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Jin-Peng Sun
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
47
|
Golsanamlou M, Nemati M, Afshar Mogaddam MR, Farajzadeh MA. Simultaneous derivatization and extraction of amphetamine and methamphetamine using dispersive liquid-liquid microextraction prior to their analysis using GC-FID in creatine supplements. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6482-6491. [PMID: 37987503 DOI: 10.1039/d3ay00828b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This study was focused on the development of a sensitive, reliable, and efficient extraction procedure for the determination of amphetamine and methamphetamine utilized in the adulteration of creatine sports supplements. The separation and detection of the analytes were conducted using the gas chromatography-flame ionization detection method. In this study, the analytes were extracted from a supplement powder into a proper solvent by sonication. Then, the extract was mixed with butyl chloroformate to obtain their butylated derivatives and then concentrated by a dispersive liquid-liquid microextraction procedure. The method was performed in a short time. Under optimized extraction conditions, a linear range of 2.01-500 ng g-1 was obtained by a coefficient of determination ≥0.996. Low detection (0.22 ng g-1 and 0.61 ng g-1 for amphetamine and methamphetamine, respectively) and quantification (0.73 ng g-1 and 2.01 ng g-1 for amphetamine and methamphetamine, respectively) limits, good precision (relative standard deviations ≤8.2%), and high extraction recoveries (79% and 86% for amphetamine and methamphetamine, respectively) were achieved. The usefulness of the method in the analysis of the target compounds was confirmed by studying the matrix effect and analysis of the analytes in different real samples.
Collapse
Affiliation(s)
- Mahdi Golsanamlou
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Food and Drug Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Mersin 10, 99138 Nicosia, North Cyprus, Turkey
| |
Collapse
|
48
|
Zhang J, Nguyen AH, Jilani D, Trigo Torres RS, Schmiess-Heine L, Le T, Xia X, Cao H. Consecutive treatments of methamphetamine promote the development of cardiac pathological symptoms in zebrafish. PLoS One 2023; 18:e0294322. [PMID: 37976248 PMCID: PMC10655962 DOI: 10.1371/journal.pone.0294322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic methamphetamine use, a widespread drug epidemic, has been associated with cardiac morphological and electrical remodeling, leading to the development of numerous cardiovascular diseases. While methamphetamine has been documented to induce arrhythmia, most results originate from clinical trials from users who experienced different durations of methamphetamine abuse, providing no documentation on the use of methamphetamine in standardized settings. Additionally, the underlying molecular mechanism on how methamphetamine affects the cardiovascular system remains elusive. A relationship was sought between cardiotoxicity and arrhythmia with associated methamphetamine abuse in zebrafish to identify and to understand the adverse cardiac symptoms associated with methamphetamine. Zebrafish were first treated with methamphetamine 3 times a week over a 2-week duration. Immediately after treatment, zebrafish underwent electrocardiogram (ECG) measurement using an in-house developed acquisition system for electrophysiological analysis. Subsequent analyses of cAMP expression and Ca2+ regulation in zebrafish cardiomyocytes were conducted. cAMP is vital to development of myocardial fibrosis and arrhythmia, prominent symptoms in the development of cardiovascular diseases. Ca2+ dysregulation is also a factor in inducing arrhythmias. During the first week of treatment, zebrafish that were administered with methamphetamine displayed a decrease in heart rate, which persisted throughout the second week and remained significantly lower than the heart rate of untreated fish. Results also indicate an increased heart rate variability during the early stage of treatment followed by a decrease in the late stage for methamphetamine-treated fish over the duration of the experiment, suggesting a biphasic response to methamphetamine exposure. Methamphetamine-treated fish also exhibited reduced QTc intervals throughout the experiment. Results from the cAMP and Ca2+ assays demonstrate that cAMP was upregulated and Ca2+ was dysregulated in response to methamphetamine treatment. Collagenic assays indicated significant fibrotic response to methamphetamine treatment. These results provide potential insight into the role of methamphetamine in the development of fibrosis and arrhythmia due to downstream effectors of cAMP.
Collapse
Affiliation(s)
- Jimmy Zhang
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Anh H. Nguyen
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
- Sensoriis, Inc., Edmonds, WA, United States of America
| | - Daniel Jilani
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
| | | | - Lauren Schmiess-Heine
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
| | - Tai Le
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Xing Xia
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
| | - Hung Cao
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
- Sensoriis, Inc., Edmonds, WA, United States of America
| |
Collapse
|
49
|
Balon R. The Need for Examining the Role of Psychostimulants in Treatment of Methamphetamine Use/Dependence. J Clin Psychopharmacol 2023; 43:483-484. [PMID: 37930197 DOI: 10.1097/jcp.0000000000001755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Affiliation(s)
- Richard Balon
- From the Departments of Psychiatry and Behavioral Neurosciences and Anesthesiology, Wayne State University, Detroit, MI
| |
Collapse
|
50
|
Mann LG, Servant M, Hay KR, Song AK, Trujillo P, Yan B, Kang H, Zald D, Donahue MJ, Logan GD, Claassen DO. The Role of a Dopamine-Dependent Limbic-Motor Network in Sensory Motor Processing in Parkinson Disease. J Cogn Neurosci 2023; 35:1806-1822. [PMID: 37677065 PMCID: PMC10594953 DOI: 10.1162/jocn_a_02048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Limbic and motor integration is enabled by a mesial temporal to motor cortex network. Parkinson disease (PD) is characterized by a loss of dorsal striatal dopamine but relative preservation of mesolimbic dopamine early in disease, along with changes to motor action control. Here, we studied 47 patients with PD using the Simon conflict task and [18F]fallypride PET imaging. Additionally, a cohort of 16 patients participated in a single-blinded dextroamphetamine (dAMPH) study. Task performance was evaluated using the diffusion model for conflict tasks, which allows for an assessment of interpretable action control processes. First, a voxel-wise examination disclosed a negative relationship, such that longer non-decision time is associated with reduced D2-like binding potential (BPND) in the bilateral putamen, left globus pallidus, and right insula. Second, an ROI analysis revealed a positive relationship, such that shorter non-decision time is associated with reduced D2-like BPND in the amygdala and ventromedial OFC. The difference in non-decision time between off-dAMPH and on-dAMPH trials was positively associated with D2-like BPND in the globus pallidus. These findings support the idea that dysfunction of the traditional striatal-motor loop underlies action control deficits but also suggest that a compensatory parallel limbic-motor loop regulates motor output.
Collapse
Affiliation(s)
- Leah G. Mann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Servant
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, 25000 Besançon, France
| | - Kaitlyn R. Hay
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexander K. Song
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bailu Yan
- Deparment of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Hakmook Kang
- Deparment of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - David Zald
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Manus J. Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gordon D. Logan
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Daniel O. Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|