1
|
Sun J, Zeng Q, Wu Z, Huang L, Sun T, Ling C, Zhang B, Chen C, Wang H. Elevated triglyceride-glucose index predicts poor outcome in patients with intracranial atherosclerotic stenosis after extracranial and intracranial bypass. Ann Med 2024; 56:2410409. [PMID: 39382531 PMCID: PMC11465366 DOI: 10.1080/07853890.2024.2410409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND AND PURPOSE The triglyceride-glucose (TyG) index, a novel reliable biomarker for IR that incorporates blood glucose and triglyceride, is linked to intracranial atherosclerotic stenosis (ICAS). In this study, we aimed to further investigate the association between the TyG index and the outcomes of ICAS patients following extracranial-to-intracranial (EC-IC) bypass grafting. METHODS 489 ICAS patients who underwent EC-IC bypass between Jan 2009 and Jan 2022 at our hospital were retrospectively collected. The major adverse cardiac and cerebrovascular events (MACCEs), and anastomotic restenosis, both of which are critical factors leading to poor prognosis of ICAS patients after EC-IC bypass, were mainly recorded and analyzed. Kaplan-Meier survival curve and Log-rank tests were sequentially conducted. Cox regression model was used to investigate the association between the TyG index and MACCEs & anastomotic stenosis. C-statistics, continuous net reclassification improvement (NRI), and integrated discrimination improvement (IDI) evaluated the incremental predictive value of the TyG index. RESULTS A higher incidence of MACCEs and anastomotic stenosis was found in higher-tertile TyG index group. The TyG index was significantly associated with an increased risk of MACCEs and anastomotic stenosis, independent of confounding factors, with a value of HR (1.30, 95%CI 1.10-1.51, p < 0.001) and (1.27, 95%CI 1.16-1.40, p < 0.001) respectively. The area under the curve (AUC) in the model with the TyG index for predicting the occurrence of MACCEs and anastomotic stenosis were 0.708 (95%CI 0.665-0.748) and 0.731 (95%CI 0.689-0.770) respectively. The addition of the TyG index significantly improved the global performance of the baseline model according to the C-statistics, NRI, and IDI (All p < 0.05). CONCLUSIONS Higher TyG levels were associated with poorer outcomes in ICAS patients after EC-IC bypass. TyG could be a key factor in managing ICAS risk and standardizing the indications for EC-IC bypass.
Collapse
Affiliation(s)
- Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuhua Zeng
- Department of Radiology, Guangdong Provincial Hospital of Tranditional Chinese Medicine, Guangzhou, China
| | - Zhimin Wu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixin Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baoyu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Muer JD, Didier KD, Wannebo BM, Sanchez S, Khademi Motlagh H, Haley TL, Carter KJ, Banks NF, Eldridge MW, Serlin RC, Wieben O, Schrage WG. Sex differences in gray matter, white matter, and regional brain perfusion in young, healthy adults. Am J Physiol Heart Circ Physiol 2024; 327:H847-H858. [PMID: 39120466 PMCID: PMC11482274 DOI: 10.1152/ajpheart.00341.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cerebrovascular and neurological diseases exhibit sex-specific patterns in prevalence, severity, and regional specificity, some of which are associated with altered cerebral blood flow (CBF). Females often exhibit higher resting CBF, but understanding the impact of sex per se on CBF is hampered by study variability in age, comorbidities, medications, and control for menstrual cycle or hormone therapies. A majority of studies report whole brain CBF without differentiating between gray and white matter or without assessing regional CBF. Thus fundamental sex differences in regional or whole brain CBF remain unclarified. While controlling for the above confounders, we tested the hypothesis that females will exhibit higher total gray and white matter perfusion as well as regional gray matter perfusion. Adults 18-30 yr old (females = 22 and males = 26) were studied using arterial spin labeling (ASL) magnetic resonance imaging (MRI) scans followed by computational anatomy toolbox (CAT12) analysis in statistical parametric mapping (SPM12) to quantify CBF relative to brain volume. Females displayed 40% higher perfusion globally (females = 62 ± 9 and males = 45 ± 10 mL/100 g/min, P < 0.001), gray matter (females = 75 ± 11 and males = 54 ± 12 mL/100 g/min, P < 0.001), and white matter (females = 44 ± 6 and males = 32 ± 7 mL/100 g/min, P < 0.001). Females exhibited greater perfusion than males in 67 of the 68 regions tested, ranging from 14% to 66% higher. A second MRI approach (4-dimensional flow) focused on large arteries confirmed the sex difference in global CBF. These data indicate strikingly higher basal CBF in females at global, gray, and white matter levels and across dozens of brain regions and offer new clarity into fundamental sex differences in global and regional CBF regulation before aging or pathology.NEW & NOTEWORTHY MRI used to measure cerebral blood flow (CBF) in gray matter, white matter, and 68 regions in healthy men and women. This study demonstrated that CBF is 40% higher in women, the highest sex difference reported, when controlling for numerous important clinical confounders like age, smoking, menstrual cycle, comorbidities, and medications.
Collapse
Affiliation(s)
- Jessica D Muer
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Kaylin D Didier
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Brett M Wannebo
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Sophie Sanchez
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Hedyeh Khademi Motlagh
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Travis L Haley
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Katrina J Carter
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Nile F Banks
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ronald C Serlin
- Department of Educational Physcology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Oliver Wieben
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
3
|
Wątroba M, Grabowska AD, Szukiewicz D. Chemokine CX3CL1 (Fractalkine) Signaling and Diabetic Encephalopathy. Int J Mol Sci 2024; 25:7527. [PMID: 39062768 PMCID: PMC11277241 DOI: 10.3390/ijms25147527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus (DM) is the most common metabolic disease in humans, and its prevalence is increasing worldwide in parallel with the obesity pandemic. A lack of insulin or insulin resistance, and consequently hyperglycemia, leads to many systemic disorders, among which diabetic encephalopathy (DE) is a long-term complication of the central nervous system (CNS), characterized by cognitive impairment and motor dysfunctions. The role of oxidative stress and neuroinflammation in the pathomechanism of DE has been proven. Fractalkine (CX3CL1) has unique properties as an adhesion molecule and chemoattractant, and by acting on its only receptor, CX3CR1, it regulates the activity of microglia in physiological states and neuroinflammation. Depending on the clinical context, CX3CL1-CX3CR1 signaling may have neuroprotective effects by inhibiting the inflammatory process in microglia or, conversely, maintaining/intensifying inflammation and neurotoxicity. This review discusses the evidence supporting that the CX3CL1-CX3CR1 pair is neuroprotective and other evidence that it is neurotoxic. Therefore, interrupting the vicious cycle within neuron-microglia interactions by promoting neuroprotective effects or inhibiting the neurotoxic effects of the CX3CL1-CX3CR1 signaling axis may be a therapeutic goal in DE by limiting the inflammatory response. However, the optimal approach to prevent DE is simply tight glycemic control, because the elimination of dysglycemic states in the CNS abolishes the fundamental mechanisms that induce this vicious cycle.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubińskiego 5, 02-400 Warsaw, Poland; (M.W.); (A.D.G.)
| |
Collapse
|
4
|
Li M, Li Y, Zhao K, Qin C, Chen Y, Liu Y, Qiu S, Tan X, Liang Y. Abnormal cerebral blood flow and brain function in type 2 diabetes mellitus. Endocrine 2024; 85:433-442. [PMID: 37340286 DOI: 10.1007/s12020-023-03342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/25/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) lead to impaired cerebral blood perfusion, which leads to changes in brain function and affects the cognitive function of patients. In this study, cerebral blood flow (CBF) was used to evaluate the effect of T2DM on cerebral perfusion, and functional connectivity (FC) analysis was further used to explore whether the FC between the abnormal CBF region and the whole brain was changed. In addition, amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) were used to investigate the changes in spontaneous activity and connectivity strength of the brain network. METHODS We recruited 40 T2DM patients and 55 healthy controls (HCs). They underwent 3D-T1WI, rs-fMRI, arterial spin labeling (ASL) sequence scans and a series of cognitive tests. Cognitive test scores and brain imaging indicators were compared between the two groups, and the relationships among laboratory indicators, cognitive test scores, and brain imaging indicators were explored in the T2DM group. RESULTS Compared to HCs, The CBF values of Calcarine_L and Precuneus_R in the T2DM group were lower. The DC value of Paracentral_Lobule_L and Precuneus_L, and the ALFF value of Hippocampus_L in the T2DM group were higher. In addition, the CBF values of Calcarine_L was negatively correlated with fasting insulin and HOMA_IR. CONCLUSION This study found that there were regions of cerebral hypoperfusion in T2DM patients, which are associated with insulin resistance. In addition, we found abnormally elevated brain activity and enhanced functional connectivity in T2DM patients, which we speculated was the compensatory mechanism of brain neural activity.
Collapse
Affiliation(s)
- Mingrui Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Magnatic Resonance Imaging, Zhanjiang First Hospital of Traditional Chinese Medicine, Zhanjiang, China
| | - Yifan Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kui Zhao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhong Qin
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Liu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xin Tan
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yi Liang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Radiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Deery HA, Liang E, Di Paolo R, Voigt K, Murray G, Siddiqui MN, Egan GF, Moran C, Jamadar SD. The association of regional cerebral blood flow and glucose metabolism in normative ageing and insulin resistance. Sci Rep 2024; 14:14574. [PMID: 38914735 PMCID: PMC11196590 DOI: 10.1038/s41598-024-65396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Rising rates of insulin resistance and an ageing population are set to exact an increasing toll on individuals and society. Here we examine the contribution of age and insulin resistance to the association of cerebral blood flow and glucose metabolism; both critical process in the supply of energy for the brain. Thirty-four younger (20-42 years) and 41 older (66-86 years) healthy adults underwent a simultaneous resting state MR/PET scan, including arterial spin labelling. Rates of cerebral blood flow and glucose metabolism were derived using a functional atlas of 100 brain regions. Older adults had lower cerebral blood flow than younger adults in 95 regions, reducing to 36 regions after controlling for cortical atrophy and blood pressure. Lower cerebral blood flow was also associated with worse working memory and slower reaction time in tasks requiring cognitive flexibility and response inhibition. Younger and older insulin sensitive adults showed small, negative correlations between relatively high rates of regional cerebral blood flow and glucose metabolism. This pattern was inverted in insulin resistant older adults, who showed hypoperfusion and hypometabolism across the cortex, and a positive correlation. In insulin resistant younger adults, the association showed inversion to positive correlations, although not to the extent seen in older adults. Our findings suggest that the normal course of ageing and insulin resistance alter the rates of and associations between cerebral blood flow and glucose metabolism. They underscore the criticality of insulin sensitivity to brain health across the adult lifespan.
Collapse
Affiliation(s)
- Hamish A Deery
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| | - Emma Liang
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Robert Di Paolo
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Katharina Voigt
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gerard Murray
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - M Navyaan Siddiqui
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Chris Moran
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne, VIC, 3004, Australia
| | - Sharna D Jamadar
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| |
Collapse
|
6
|
Kountouras J, Boziki M, Kazakos E, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Vardaka E, Mouratidou MC, Kyrailidi F, Tzitiridou-Chatzopoulou M, Orovou E, Giartza-Taxidou E, Deretzi G, Grigoriadis N, Doulberis M. Impact of Helicobacter pylori and metabolic syndrome on mast cell activation-related pathophysiology and neurodegeneration. Neurochem Int 2024; 175:105724. [PMID: 38508416 DOI: 10.1016/j.neuint.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Eirini Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Evaggelia Giartza-Taxidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, 8810, Horgen, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
7
|
Albar NY, Hassaballa H, Shikh H, Albar Y, Ibrahim AS, Mousa AH, Alshanberi AM, Elgebaly A, Bahbah EI. The interaction between insulin resistance and Alzheimer's disease: a review article. Postgrad Med 2024; 136:377-395. [PMID: 38804907 DOI: 10.1080/00325481.2024.2360887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Insulin serves multiple functions as a growth-promoting hormone in peripheral tissues. It manages glucose metabolism by promoting glucose uptake into cells and curbing the production of glucose in the liver. Beyond this, insulin fosters cell growth, drives differentiation, aids protein synthesis, and deters degradative processes like glycolysis, lipolysis, and proteolysis. Receptors for insulin and insulin-like growth factor-1 are widely expressed in the central nervous system. Their widespread presence in the brain underscores the varied and critical functions of insulin signaling there. Insulin aids in bolstering cognition, promoting neuron extension, adjusting the release and absorption of catecholamines, and controlling the expression and positioning of gamma-aminobutyric acid (GABA). Importantly, insulin can effortlessly traverse the blood-brain barrier. Furthermore, insulin resistance (IR)-induced alterations in insulin signaling might hasten brain aging, impacting its plasticity and potentially leading to neurodegeneration. Two primary pathways are responsible for insulin signal transmission: the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, which oversees metabolic responses, and the mitogen-activated protein kinase (MAPK) pathway, which guides cell growth, survival, and gene transcription. This review aimed to explore the potential shared metabolic traits between Alzheimer's disease (AD) and IR disorders. It delves into the relationship between AD and IR disorders, their overlapping genetic markers, and shared metabolic indicators. Additionally, it addresses existing therapeutic interventions targeting these intersecting pathways.
Collapse
Affiliation(s)
- Nezar Y Albar
- Internal Medicine Department, Dr. Samir Abbas Hospital, Jeddah, Saudi Arabia
| | | | - Hamza Shikh
- Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Yassin Albar
- Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia
| | | | - Ahmed Hafez Mousa
- Department of Neurosurgery, Postgraduate Medical Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Neurosurgery, Rashid Hospital, Dubai Academic Health Cooperation, Dubai, United Arab Emirates
| | - Asim Muhammed Alshanberi
- Department of Community Medicine and Pilgrims Health Care, Umm Alqura University, Makkah, Saudi Arabia
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed Elgebaly
- Smart Health Academic Unit, University of East London, London, UK
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
8
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Wang H, Ling Q, Wu Y, Zhang M. Association between the triglyceride glucose index and cognitive impairment and dementia: a meta-analysis. Front Aging Neurosci 2023; 15:1278730. [PMID: 38161596 PMCID: PMC10757637 DOI: 10.3389/fnagi.2023.1278730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
Background The triglyceride and glucose (TyG) index is an alternative index of insulin resistance (IR). We aimed to clarify the relationship between the TyG index and cognitive impairment and dementia. Methods We conducted a comprehensive search of the PubMed, Cochrane Library, and Embase databases until February 2023 to identify relevant studies. Random-effects models were used to pool effect sizes, and the Grading of Recommendations Assessment, Development, and Evaluation system (GRADE) was used to assess the quality of the evidence. Results Ten studies were included, with seven of which investigated the relationship between the TyG index and cognitive impairment and three exploring the association between the TyG index and dementia. When the TyG index was described as a categorical variable, it was positively associated with the risk of cognitive impairment (OR = 2.32; 95% CI 1.39-3.87) and dementia (OR = 1.14, 95% CI 1.12-1.16). The association of the TyG index with the risk of cognitive impairment (OR = 3.39, 95% CI 1.67-6.84) and dementia (OR = 1.37, 95% CI 1.03-1.83) remained significant for per 1 unit increment in the TyG index. The GRADE assessment indicated a very low certainty for cognitive impairment. Low certainty and moderate certainty were observed for dementia when the TyG index was analyzed as a categorical variable and as a continuous variable, respectively. Conclusion The TyG index is associated with an increased risk of cognitive impairment and dementia. Further prospective research is warranted to confirm these findings.Systematic review registration: https://www.crd.york.ac.uk/, Protocol registration number: CRD42023388028.
Collapse
Affiliation(s)
- Huan Wang
- Department of Geriatrics, Liaoning Jinqiu Hospital, Shenyang, China
| | - Qin Ling
- Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yifan Wu
- Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Mingjie Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Konopka AR, Lamming DW. Blazing a trail for the clinical use of rapamycin as a geroprotecTOR. GeroScience 2023; 45:2769-2783. [PMID: 37801202 PMCID: PMC10643772 DOI: 10.1007/s11357-023-00935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Treatment with rapamycin, an inhibitor of the mechanistic Target Of Rapamycin Complex One (mTORC1) protein kinase, has been repeatedly demonstrated to extend lifespan and prevent or delay age-related diseases in diverse model systems. Concerns over the risk of potentially serious side effects in humans, including immunosuppression and metabolic disruptions, have cautiously limited the translation of rapamycin and its analogs as a treatment for aging associated conditions. During the last decade, we and others have developed a working model that suggests that while inhibition of mTORC1 promotes healthy aging, many of the negative side effects of rapamycin are associated with "off-target" inhibition of a second mTOR complex, mTORC2. Differences in the kinetics and molecular mechanisms by which rapamycin inhibits mTORC1 and mTORC2 suggest that a therapeutic window for rapamycin could be exploited using intermittent dosing schedules or alternative rapalogs that may enable more selective inhibition of mTORC1. However, the optimal dosing schedules and the long-term efficacy of such interventions in humans are unknown. Here, we highlight ongoing or upcoming clinical trials that will address outstanding questions regarding the safety, pharmacokinetics, pharmacodynamics, and efficacy of rapamycin and rapalogs on several clinically oriented outcomes. Results from these early phase studies will help guide the design of phase 3 clinical trials to determine whether rapamycin can be used safely to inhibit mTORC1 for the treatment and prevention of age-related diseases in humans.
Collapse
Affiliation(s)
- Adam R Konopka
- Division of Geriatrics, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Division of Geriatrics and Gerontology, Department of Medicine, Geriatric Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, University of Wisconsin-Madison, 2500 Overlook Terrace, Madison, WI, 53705, USA.
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
11
|
DiLucia SG, Kendrick BJ, Sims-Robinson C. Hyperinsulinemia Impairs Clathrin-Mediated Endocytosis of the Insulin Receptor and Activation of Endothelial Nitric Oxide Synthase in Brain Endothelial Cells. Int J Mol Sci 2023; 24:14670. [PMID: 37834116 PMCID: PMC10572607 DOI: 10.3390/ijms241914670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Adequate perfusion of cerebral tissues, which is necessary for the preservation of optimal brain health, depends on insulin signaling within brain endothelial cells. Proper insulin signaling relies on the regulated internalization of insulin bound to the insulin receptor, a process which is disrupted by hyperinsulinemia via an unknown mechanism. Thus, the goal of this study was to characterize the impact of hyperinsulinemia on the regulation of molecular targets involved in cerebral blood flow and insulin receptor internalization into brain endothelial cells. The phosphorylation of molecular targets associated with cerebral blood flow and insulin receptor internalization was assessed in hyperinsulinemic brain endothelial cells. Insulin receptor uptake into cells was also examined in the setting of endocytosis blockade. Our data demonstrate that hyperinsulinemia impairs the activation of endothelial nitric oxide synthase. These data correspond with an impairment in clathrin-mediated endocytosis of the insulin receptor and dysregulated phosphorylation of key internalization effectors. We conclude that hyperinsulinemia alters the phosphorylation of molecular targets involved in clathrin-mediated endocytosis, disrupts signaling through the insulin receptor, and hinders the capacity for blood flow regulation by brain endothelial cells.
Collapse
Affiliation(s)
- Stephanie G. DiLucia
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - B. Jacob Kendrick
- Flow Cytometry and Cell Sorting Shared Resource, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Catrina Sims-Robinson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
12
|
Lee JH, Kwon YJ, Kim SJ, Joung B. Metabolic syndrome as an independent risk factor for glaucoma: a nationally representative study. Diabetol Metab Syndr 2023; 15:177. [PMID: 37620923 PMCID: PMC10464157 DOI: 10.1186/s13098-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Central insulin resistance contributes to glaucoma development. Given the close association between metabolic syndrome MetS and insulin resistance, this study aimed to determine whether MetS is associated with glaucoma risk. METHODS We analyzed data from 11,499 adults aged ≥ 19 years in the 2019-2021 Korean National Health and Nutrition Examination Survey and applied sampling weights to represent the general Korean population. Participants were classified into groups with or without MetS. Ocular hypertension (HTN) was defined as intraocular pressure > 21 mmHg. Primary open-angle glaucoma (POAG) was diagnosed based on the results of a visual field test and optical coherence tomography using the criteria published by the International Society for Geographic and Epidemiological Ophthalmology. We further divided POAG into normal tension (NTG) and POAG with ocular HTN. A spline curve was drawn to determine the dose-response relationship between the number of MetS components and risk of POAG. Odds ratios (ORs) with 95% confidence interval (CI) for POAG according to MetS status were estimated using weighted logistic regression analyses. RESULTS The prevalence of POAG was 5.7% and 3.5%, respectively, in groups with and without MetS. We identified a dose-response relationship between the number of MetS components and risk of POAG. Unadjusted ORs (95% CI) for POAG in the group with MetS was 1.85 (1.52-2.25), compared with those without MetS. The trends persisted in adjusted models. The fully-adjusted OR (95% CI) for POAG was 1.47 (1.04-2.09) in the group with MetS. Subgroup analysis revealed that a significant relationship remained only in the NTG group (fully adjusted OR, 1.50; 95% CI 1.05-2.15). CONCLUSIONS A comprehensive ophthalmological assessment should be considered for persons with MetS who are at increased risk of POAG, particularly NTG.
Collapse
Affiliation(s)
- Jun-Hyuk Lee
- Department of Family Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, 01830 Republic of Korea
- Department of Medicine, Graduate School of Hanyang University, Seoul, 04763 Republic of Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, 16995 Republic of Korea
| | - Sung Jin Kim
- Department of Ophthalmology, Nowon Eulji Medical Center, Eulji University School of Medicine, 68 Hangeulbiseok-ro, Nowon-gu, Seoul, 01830 Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
13
|
Rajabli F, Benchek P, Tosto G, Kushch N, Sha J, Bazemore K, Zhu C, Lee WP, Haut J, Hamilton-Nelson KL, Wheeler NR, Zhao Y, Farrell JJ, Grunin MA, Leung YY, Kuksa PP, Li D, Lucio da Fonseca E, Mez JB, Palmer EL, Pillai J, Sherva RM, Song YE, Zhang X, Iqbal T, Pathak O, Valladares O, Kuzma AB, Abner E, Adams PM, Aguirre A, Albert MS, Albin RL, Allen M, Alvarez L, Apostolova LG, Arnold SE, Asthana S, Atwood CS, Ayres G, Baldwin CT, Barber RC, Barnes LL, Barral S, Beach TG, Becker JT, Beecham GW, Beekly D, Benitez BA, Bennett D, Bertelson J, Bird TD, Blacker D, Boeve BF, Bowen JD, Boxer A, Brewer J, Burke JR, Burns JM, Buxbaum JD, Cairns NJ, Cantwell LB, Cao C, Carlson CS, Carlsson CM, Carney RM, Carrasquillo MM, Chasse S, Chesselet MF, Chin NA, Chui HC, Chung J, Craft S, Crane PK, Cribbs DH, Crocco EA, Cruchaga C, Cuccaro ML, Cullum M, Darby E, Davis B, De Jager PL, DeCarli C, DeToledo J, Dick M, Dickson DW, Dombroski BA, Doody RS, Duara R, Ertekin-Taner NI, Evans DA, Faber KM, Fairchild TJ, Fallon KB, Fardo DW, Farlow MR, Fernandez-Hernandez V, Ferris S, Foroud TM, Frosch MP, Fulton-Howard B, Galasko DR, Gamboa A, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Goate AM, Grabowski TJ, Graff-Radford NR, Green RC, Growdon JH, Hakonarson H, Hall J, Hamilton RL, Harari O, Hardy J, Harrell LE, Head E, Henderson VW, Hernandez M, Hohman T, Honig LS, Huebinger RM, Huentelman MJ, Hulette CM, Hyman BT, Hynan LS, Ibanez L, Jarvik GP, Jayadev S, Jin LW, Johnson K, Johnson L, Kamboh MI, Karydas AM, Katz MJ, Kauwe JS, Kaye JA, Keene CD, Khaleeq A, Kim R, Knebl J, Kowall NW, Kramer JH, Kukull WA, LaFerla FM, Lah JJ, Larson EB, Lerner A, Leverenz JB, Levey AI, Lieberman AP, Lipton RB, Logue M, Lopez OL, Lunetta KL, Lyketsos CG, Mains D, Margaret FE, Marson DC, Martin ERR, Martiniuk F, Mash DC, Masliah E, Massman P, Masurkar A, McCormick WC, McCurry SM, McDavid AN, McDonough S, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Montine TJ, Monuki ES, Morris JC, Mukherjee S, Myers AJ, Nguyen T, O'Bryant S, Olichney JM, Ory M, Palmer R, Parisi JE, Paulson HL, Pavlik V, Paydarfar D, Perez V, Peskind E, Petersen RC, Pierce A, Polk M, Poon WW, Potter H, Qu L, Quiceno M, Quinn JF, Raj A, Raskind M, Reiman EM, Reisberg B, Reisch JS, Ringman JM, Roberson ED, Rodriguear M, Rogaeva E, Rosen HJ, Rosenberg RN, Royall DR, Sager MA, Sano M, Saykin AJ, Schneider JA, Schneider LS, Seeley WW, Slifer SH, Small S, Smith AG, Smith JP, Sonnen JA, Spina S, St George-Hyslop P, Stern RA, Stevens AB, Strittmatter SM, Sultzer D, Swerdlow RH, Tanzi RE, Tilson JL, Trojanowski JQ, Troncoso JC, Tsuang DW, Van Deerlin VM, van Eldik LJ, Vance JM, Vardarajan BN, Vassar R, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Whitehead PL, Wijsman EM, Wilhelmsen KC, Williams B, Williamson J, Wilms H, Wingo TS, Wisniewski T, Woltjer RL, Woon M, Wright CB, Wu CK, Younkin SG, Yu CE, Yu L, Zhu X, Kunkle BW, Bush WS, Wang LS, Farrer LA, Haines JL, Mayeux R, Pericak-Vance MA, Schellenberg GD, Jun GR, Reitz C, Naj AC. Multi-ancestry genome-wide meta-analysis of 56,241 individuals identifies LRRC4C, LHX5-AS1 and nominates ancestry-specific loci PTPRK , GRB14 , and KIAA0825 as novel risk loci for Alzheimer's disease: the Alzheimer's Disease Genetics Consortium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.06.23292311. [PMID: 37461624 PMCID: PMC10350126 DOI: 10.1101/2023.07.06.23292311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Limited ancestral diversity has impaired our ability to detect risk variants more prevalent in non-European ancestry groups in genome-wide association studies (GWAS). We constructed and analyzed a multi-ancestry GWAS dataset in the Alzheimer's Disease (AD) Genetics Consortium (ADGC) to test for novel shared and ancestry-specific AD susceptibility loci and evaluate underlying genetic architecture in 37,382 non-Hispanic White (NHW), 6,728 African American, 8,899 Hispanic (HIS), and 3,232 East Asian individuals, performing within-ancestry fixed-effects meta-analysis followed by a cross-ancestry random-effects meta-analysis. We identified 13 loci with cross-ancestry associations including known loci at/near CR1 , BIN1 , TREM2 , CD2AP , PTK2B , CLU , SHARPIN , MS4A6A , PICALM , ABCA7 , APOE and two novel loci not previously reported at 11p12 ( LRRC4C ) and 12q24.13 ( LHX5-AS1 ). Reflecting the power of diverse ancestry in GWAS, we observed the SHARPIN locus using 7.1% the sample size of the original discovering single-ancestry GWAS (n=788,989). We additionally identified three GWS ancestry-specific loci at/near ( PTPRK ( P =2.4×10 -8 ) and GRB14 ( P =1.7×10 -8 ) in HIS), and KIAA0825 ( P =2.9×10 -8 in NHW). Pathway analysis implicated multiple amyloid regulation pathways (strongest with P adjusted =1.6×10 -4 ) and the classical complement pathway ( P adjusted =1.3×10 -3 ). Genes at/near our novel loci have known roles in neuronal development ( LRRC4C, LHX5-AS1 , and PTPRK ) and insulin receptor activity regulation ( GRB14 ). These findings provide compelling support for using traditionally-underrepresented populations for gene discovery, even with smaller sample sizes.
Collapse
|
14
|
Carter KJ, Ward AT, Kellawan JM, Harrell JW, Peltonen GL, Roberts GS, Al-Subu A, Hagen SA, Serlin RC, Eldridge MW, Wieben O, Schrage WG. Reduced basal macrovascular and microvascular cerebral blood flow in young adults with metabolic syndrome: potential mechanisms. J Appl Physiol (1985) 2023; 135:94-108. [PMID: 37199780 PMCID: PMC10292973 DOI: 10.1152/japplphysiol.00688.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/26/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023] Open
Abstract
Ninety-million Americans suffer metabolic syndrome (MetSyn), increasing the risk of diabetes and poor brain outcomes, including neuropathology linked to lower cerebral blood flow (CBF), predominantly in anterior regions. We tested the hypothesis that total and regional CBF is lower in MetSyn more so in the anterior brain and explored three potential mechanisms. Thirty-four controls (25 ± 5 yr) and 19 MetSyn (30 ± 9 yr), with no history of cardiovascular disease/medications, underwent four-dimensional flow magnetic resonance imaging (MRI) to quantify macrovascular CBF, whereas arterial spin labeling quantified brain perfusion in a subset (n = 38/53). Contributions of cyclooxygenase (COX; n = 14), nitric oxide synthase (NOS, n = 17), or endothelin receptor A signaling (n = 13) were tested with indomethacin, NG-monomethyl-L-arginine (L-NMMA), and Ambrisentan, respectively. Total CBF was 20 ± 16% lower in MetSyn (725 ± 116 vs. 582 ± 119 mL/min, P < 0.001). Anterior and posterior brain regions were 17 ± 18% and 30 ± 24% lower in MetSyn; reductions were not different between regions (P = 0.112). Global perfusion was 16 ± 14% lower in MetSyn (44 ± 7 vs. 36 ± 5 mL/100 g/min, P = 0.002) and regionally in frontal, occipital, parietal, and temporal lobes (range 15-22%). The decrease in CBF with L-NMMA (P = 0.004) was not different between groups (P = 0.244, n = 14, 3), and Ambrisentan had no effect on either group (P = 0.165, n = 9, 4). Interestingly, indomethacin reduced CBF more in Controls in the anterior brain (P = 0.041), but CBF decrease in posterior was not different between groups (P = 0.151, n = 8, 6). These data indicate that adults with MetSyn exhibit substantially reduced brain perfusion without regional differences. Moreover, this reduction is not due to loss of NOS or gain of ET-1 signaling but rather a loss of COX vasodilation.NEW & NOTEWORTHY We tested the impact of insulin resistance (IR) on resting cerebral blood flow (CBF) in adults with metabolic syndrome (MetSyn). Using MRI and research pharmaceuticals to study the role of NOS, ET-1, or COX signaling, we found that adults with MetSyn exhibit substantially lower CBF that is not explained by changes in NOS or ET-1 signaling. Interestingly, adults with MetSyn show a loss of COX-mediated vasodilation in the anterior but not posterior circulation.
Collapse
Affiliation(s)
- Katrina J Carter
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, United States
| | - Aaron T Ward
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, United States
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - John W Harrell
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, United States
| | - Garrett L Peltonen
- School of Nursing and Kinesiology, Western New Mexico University, Silver City, New Mexico, United States
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, United States
| | - Awni Al-Subu
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Scott A Hagen
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Ronald C Serlin
- Department of Educational Psychology, University of Wisconsin, Madison, Wisconsin, United States
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, United States
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, United States
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, United States
| |
Collapse
|
15
|
Wątroba M, Grabowska AD, Szukiewicz D. Effects of Diabetes Mellitus-Related Dysglycemia on the Functions of Blood-Brain Barrier and the Risk of Dementia. Int J Mol Sci 2023; 24:10069. [PMID: 37373216 DOI: 10.3390/ijms241210069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases worldwide, and its long-term complications include neuropathy, referring both to the peripheral and to the central nervous system. Detrimental effects of dysglycemia, especially hyperglycemia, on the structure and function of the blood-brain barrier (BBB), seem to be a significant backgrounds of diabetic neuropathy pertaining to the central nervous system (CNS). Effects of hyperglycemia, including excessive glucose influx to insulin-independent cells, may induce oxidative stress and secondary innate immunity dependent inflammatory response, which can damage cells within the CNS, thus promoting neurodegeneration and dementia. Advanced glycation end products (AGE) may exert similar, pro-inflammatory effects through activating receptors for advanced glycation end products (RAGE), as well as some pattern-recognition receptors (PRR). Moreover, long-term hyperglycemia can promote brain insulin resistance, which may in turn promote Aβ aggregate accumulation and tau hyperphosphorylation. This review is focused on a detailed analysis of the effects mentioned above towards the CNS, with special regard to mechanisms taking part in the pathogenesis of central long-term complications of diabetes mellitus initiated by the loss of BBB integrity.
Collapse
Affiliation(s)
- Mateusz Wątroba
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Anna D Grabowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
16
|
Cui Y, Tang TY, Lu CQ, Ju S. Insulin Resistance and Cognitive Impairment: Evidence From Neuroimaging. J Magn Reson Imaging 2022; 56:1621-1649. [PMID: 35852470 DOI: 10.1002/jmri.28358] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/04/2023] Open
Abstract
Insulin is a peptide well known for its role in regulating glucose metabolism in peripheral tissues. Emerging evidence from human and animal studies indicate the multifactorial role of insulin in the brain, such as neuronal and glial metabolism, glucose regulation, and cognitive processes. Insulin resistance (IR), defined as reduced sensitivity to the action of insulin, has been consistently proposed as an important risk factor for developing neurodegeneration and cognitive impairment. Although the exact mechanism of IR-related cognitive impairment still awaits further elucidation, neuroimaging offers a versatile set of novel contrasts to reveal the subtle cerebral abnormalities in IR. These imaging contrasts, including but not limited to brain volume, white matter (WM) microstructure, neural function and brain metabolism, are expected to unravel the nature of the link between IR, cognitive decline, and brain abnormalities, and their changes over time. This review summarizes the current neuroimaging studies with multiparametric techniques, focusing on the cerebral abnormalities related to IR and therapeutic effects of IR-targeting treatments. According to the results, brain regions associated with IR pathophysiology include the medial temporal lobe, hippocampus, prefrontal lobe, cingulate cortex, precuneus, occipital lobe, and the WM tracts across the globe. Of these, alterations in the temporal lobe are highly reproducible across different imaging modalities. These structures have been known to be vulnerable to Alzheimer's disease (AD) pathology and are critical in cognitive processes such as memory and executive functioning. Comparing to asymptomatic subjects, results are more mixed in patients with metabolic disorders such as type 2 diabetes and obesity, which might be attributed to a multifactorial mechanism. Taken together, neuroimaging, especially MRI, is beneficial to reveal early abnormalities in cerebral structure and function in insulin-resistant brain, providing important evidence to unravel the underlying neuronal substrate that reflects the cognitive decline in IR. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Cui
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chun-Qiang Lu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Li S, Deng X, Zhang Y. The Triglyceride-Glucose Index Is Associated with Longitudinal Cognitive Decline in a Middle-Aged to Elderly Population: A Cohort Study. J Clin Med 2022; 11:jcm11237153. [PMID: 36498726 PMCID: PMC9737091 DOI: 10.3390/jcm11237153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND To examine the effect of the triglyceride-glucose (TyG) index on longitudinal cognitive decline in a healthy middle-aged-to-elderly population. METHODS We conducted a population-based longitudinal study. A total of 1774 participants without cognitive impairment were enrolled in the 4-year follow-up. They were divided into four groups according to the quartile of the TyG index. Multivariable-adjusted Cox proportional hazard models were performed to examine the association between the TyG index and cognitive decline. Discrimination tests were used to evaluate the incremental predictive value of the TyG index beyond conventional risk factors. RESULTS During the follow-up, compared with those in the bottom quartile group, participants in the top TyG quartile group presented a 51% increase in the risk of cognitive decline (OR 1.51 (95% CI: 1.06-2.14)). As shown by discrimination tests, adding the TyG index into the conventional model resulted in a slight improvement in predicting the risk of cognitive decline (NRI 16.00% (p = 0.004)). CONCLUSION This study demonstrated that increasing values of the TyG index were positively associated with the risk of cognitive decline. Monitoring the TyG index may help in the early identification of individuals at high risk of cognitive deterioration.
Collapse
Affiliation(s)
- Siqi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xuan Deng
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yumei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Correspondence: ; Tel.: +86-10-59975531
| |
Collapse
|
18
|
The triglyceride glucose index is associated with the cerebral small vessel disease in a memory clinic population. J Clin Neurosci 2022; 104:126-133. [PMID: 36037583 DOI: 10.1016/j.jocn.2022.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Insulin resistance (IR) has been associated with the cerebral small vessel disease (cSVD). However, as the surrogate marker of IR, there is little known about the relationship between the triglyceride glucose (TyG) index and cSVD. In this cross-sectional study, we aimed to evaluate the relationship between the TyG index and cSVD in a memory clinic population and explore the value of TyG index to improve the risk stratification of cSVD. METHODS We included participants who attended our memory clinic from January 2016 to December 2020. TyG index was determined as ln [fasting triglyceride (mg/dL) × fasting plasma glucose (mg/dL)/2]. We assessed lacunes, microbleeds, white matter hyperintensity (WMH) and enlarged perivascular spaces (EPVS) on MRI and calculated the total cSVD burden. RESULTS A total of 297 subjects were included (median age: 65 years, male sex: 64.98%). In the adjusted model, when dividing TyG index into quartiles, subjects with TyG index in the top quartile, compared with those in the bottom quartile, were more likely to have lacunes (P = 0.035), moderate-severe WMH (P = 0.001), a higher grade of deep WMH (P = 0.004), a higher grade of PVWMH (P = 0.032), a higher grade of EPVS (P = 0.002), and a higher cSVD score (P < 0.001). When introducing TyG index into traditional risk factors to predict moderate to severe cSVD, both area under the curve (0.745 vs 0.802, P = 0.003) and integrated discrimination index (0.080, 95% CI 0.050-0.110, P < 0.001) displayed an improvement from TyG index. CONCLUSIONS The TyG index is correlated with cSVD and may have the potential to be a surrogate marker of insulin resistance and optimize the risk stratification.
Collapse
|
19
|
Jeong JH, Lee DH, Song J. HMGB1 signaling pathway in diabetes-related dementia: Blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation. Biomed Pharmacother 2022; 150:112933. [PMID: 35413600 DOI: 10.1016/j.biopha.2022.112933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetes contributes to the onset of various diseases, including cancer and cardiovascular and neurodegenerative diseases. Recent studies have highlighted the similarities and relationship between diabetes and dementia as an important issue for treating diabetes-related cognitive deficits. Diabetes-related dementia exhibits several features, including blood-brain barrier disruption, brain insulin resistance, and Aβ over-accumulation. High-mobility group box1 (HMGB1) is a protein known to regulate gene transcription and cellular mechanisms by binding to DNA or chromatin via receptor for advanced glycation end-products (RAGE) and toll-like receptor 4 (TLR4). Recent studies have demonstrated that the interplay between HMGB1, RAGE, and TLR4 can impact both neuropathology and diabetic alterations. Herein, we review the recent research regarding the roles of HMGB1-RAGE-TLR4 axis in diabetes-related dementia from several perspectives and emphasize the importance of the influence of HMGB1 in diabetes-related dementia.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, and Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
20
|
De Felice FG, Gonçalves RA, Ferreira ST. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat Rev Neurosci 2022; 23:215-230. [PMID: 35228741 DOI: 10.1038/s41583-022-00558-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
|
21
|
Oghagbon EK, Prieto-Pino J, Dogoh F, Ogiator M, Giménez-Llort L. Diabetes/Dementia in Sub-saharian Africa and Nigerian Women in the Eye of Storm. Curr Alzheimer Res 2021; 19:161-170. [PMID: 34784865 DOI: 10.2174/1567205018666211116093747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
In the next few years, the prevalence of diabetes mellitus (DM) is projected to dramatically increase globally, but most of the cases will occur in low-to-middle-income countries. Some of the major risk factors for diabetes accelerate the development of dementia in African-Americans, thus leading to a higher prevalence of dementia than Caucasians. Sub-Saharan Africa women have a disproportionately two-to-eight fold increased prevalence of dementia. In the eye of this storm, Nigeria holds the highest number of diabetics on the African continent, and its prevalence is rising in parallel to obesity, hypertension, and the population's aging. The socio-economic impact of the rising prevalence of DM and dementia will be huge and unsustainable for the healthcare system in Nigeria, as has been recognized in developed economies. Here, we analyze the current situation of women's health in Nigeria and explore future perspectives and directions. The complex interplay of factors involved in diabetes and dementia in Nigerian women include key biological agents (metabolic syndrome, vascular damage, inflammation, oxidative stress, insulin resistance), nutritional habits, lifestyle, and anemia, that worsen with comorbidities. In addition, restricted resources, lack of visibility, and poor management result in a painful chain that increases the risk and burden of disease in Nigerian women from youth to elderly ages. Heath policies to increase the ra- tio of mental health professionals per number of patients, mostly in rural areas, foment of proactive primary care centers, and interventions targeting adolescents and adult women and other specific mothers-children pairs are strongly required for a sustainable development goal.
Collapse
Affiliation(s)
- Efosa K Oghagbon
- Department of Chemical Pathology, Faculty of Basic & Allied Medical Sciences, College of Health Sciences, Benue State University, Makurdi. Nigeria
| | - José Prieto-Pino
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona. Spain
| | - Faeren Dogoh
- Department of Chemical Pathology, Benue State University Teaching Hospital, Makurdi. Nigeria
| | - Monday Ogiator
- Department of Internal Medicine, Benue State University Teaching Hospital, Makurdi. Nigeria
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona. Spain
| |
Collapse
|
22
|
Carter KJ, Ward AT, Kellawan JM, Eldridge MW, Al-Subu A, Walker BJ, Lee JW, Wieben O, Schrage WG. Nitric oxide synthase inhibition in healthy adults reduces regional and total cerebral macrovascular blood flow and microvascular perfusion. J Physiol 2021; 599:4973-4989. [PMID: 34587648 PMCID: PMC9009720 DOI: 10.1113/jp281975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
The importance of nitric oxide (NO) in regulating cerebral blood flow (CBF) remains unresolved, due in part to methodological approaches, which lack a comprehensive assessment of both global and regional effects. Importantly, NO synthase (NOS) expression and activity appear greater in some anterior brain regions, suggesting region-specific NOS influence on CBF. We hypothesized that NO contributes to basal CBF in healthy adults, in a regionally distinct pattern that predominates in the anterior circulation. Fourteen healthy adults (7 females; 24 ± 5 years) underwent two magnetic resonance imaging (MRI) study visits with saline (placebo) or the NOS inhibitor, L-NMMA, administered in a randomized, single-blind approach. 4D flow MRI quantified total and regional macrovascular CBF, whereas arterial spin labelling (ASL) MRI quantified total and regional microvascular perfusion. L-NMMA (or volume-matched saline) was infused intravenously for 5 min prior to imaging. L-NMMA reduced CBF (L-NMMA: 722 ± 100 vs. placebo: 771 ± 121 ml/min, P = 0.01) with similar relative reductions (5-7%) in anterior and posterior cerebral circulations, due in part to the reduced cross-sectional area of 9 of 11 large cerebral arteries. Global microvascular perfusion (ASL) was reduced by L-NMMA (L-NMMA: 42 ± 7 vs. placebo: 47 ± 8 ml/100g/min, P = 0.02), with 7-11% reductions in both hemispheres of the frontal, parietal and temporal lobes, and in the left occipital lobe. We conclude that NO contributes to macrovascular and microvascular regulation including larger artery resting diameter. Contrary to our hypothesis, the influence of NO on cerebral perfusion appears regionally uniform in healthy young adults. KEY POINTS: Cerebral blood flow (CBF) is vital for brain health, but the signals that are key to regulating CBF remain unclear. Nitric oxide (NO) is produced in the brain, but its importance in regulating CBF remains controversial since prior studies have not studied all regions of the brain simultaneously. Using modern MRI approaches, a drug that inhibits the enzymes that make NO (L-NMMA) reduced CBF by up to 11% in different brain regions. NO helps maintain proper CBF in healthy adults. These data will help us understand whether the reductions in CBF that occur during ageing or cardiovascular disease are related to shifts in NO signalling.
Collapse
Affiliation(s)
- Katrina J Carter
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - Aaron T Ward
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | | | - Awni Al-Subu
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Walker
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Jeffrey W Lee
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
23
|
Insulin and Insulin Resistance in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189987. [PMID: 34576151 PMCID: PMC8472298 DOI: 10.3390/ijms22189987] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Insulin plays a range of roles as an anabolic hormone in peripheral tissues. It regulates glucose metabolism, stimulates glucose transport into cells and suppresses hepatic glucose production. Insulin influences cell growth, differentiation and protein synthesis, and inhibits catabolic processes such as glycolysis, lipolysis and proteolysis. Insulin and insulin-like growth factor-1 receptors are expressed on all cell types in the central nervous system. Widespread distribution in the brain confirms that insulin signaling plays important and diverse roles in this organ. Insulin is known to regulate glucose metabolism, support cognition, enhance the outgrowth of neurons, modulate the release and uptake of catecholamine, and regulate the expression and localization of gamma-aminobutyric acid (GABA). Insulin is also able to freely cross the blood–brain barrier from the circulation. In addition, changes in insulin signaling, caused inter alia insulin resistance, may accelerate brain aging, and affect plasticity and possibly neurodegeneration. There are two significant insulin signal transduction pathways: the PBK/AKT pathway which is responsible for metabolic effects, and the MAPK pathway which influences cell growth, survival and gene expression. The aim of this study is to describe the role played by insulin in the CNS, in both healthy people and those with pathologies such as insulin resistance and Alzheimer’s disease.
Collapse
|
24
|
Ennis GE, Koscik RL, Ma Y, Jonaitis EM, Van Hulle CA, Betthauser TJ, Randall AM, Chin N, Engelman CD, Anderson R, Suridjan I, Kollmorgen G, Christian BT, Carlsson CM, Asthana S, Johnson SC, Zetterberg H, Blennow K, Bendlin BB. Insulin resistance is related to cognitive decline but not change in CSF biomarkers of Alzheimer's disease in non-demented adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12220. [PMID: 34337133 PMCID: PMC8319658 DOI: 10.1002/dad2.12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION We investigated whether insulin resistance (IR) was associated with longitudinal age-related change in cognition and biomarkers of Alzheimer's disease (AD) pathology and neurodegeneration in middle-aged and older adults who were non-demented at baseline. METHODS IR was measured with homeostatic model assessment of insulin resistance (HOMA2-IR). Core AD-related cerebrospinal fluid (CSF) biomarkers and cognition were assessed, respectively, on n = 212 (1 to 5 visits) and n = 1299 (1 to 6 visits). Linear mixed models tested whether HOMA2-IR moderated age-related change in CSF biomarkers and cognition. Linear regressions tested whether HOMA2-IR x apolipoprotein E ε4 allele (APOE ε4) carrier status predicted amyloid beta [Aβ] chronicity (estimated duration of amyloid positron emission tomography [PET] positivity) (n = 253). RESULTS Higher HOMA2-IR was associated with greater cognitive decline but not with changes in CSF biomarkers. HOMA2-IR x APOE4 was not related to Aβ chronicity but was significantly associated with CSF phosphorylated tau (P-tau)181/Aβ42 level. DISCUSSION In non-demented adults IR may not be directly associated with age-related change in AD biomarkers. Additional research is needed to determine mechanisms linking IR to cognitive decline.
Collapse
Affiliation(s)
- Gilda E Ennis
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | - Rebecca L Koscik
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | - Yue Ma
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | - Carol A Van Hulle
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Division of Geriatrics and Gerontology Department of Medicine University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | - Allison M Randall
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | - Nathaniel Chin
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Division of Geriatrics and Gerontology Department of Medicine University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | - Corinne D Engelman
- Department of Population Health Sciences University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | - Rozalyn Anderson
- Division of Geriatrics and Gerontology Department of Medicine University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Geriatric Research Education and Clinical Center William S. Middleton Hospital Department of Veterans Affairs Madison Wisconsin USA
| | | | | | - Bradley T Christian
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Waisman Laboratory for Brain Imaging and Behavior University of Wisconsin-Madison Madison Wisconsin USA
- Department of Medical Physics University of Wisconsin-Madison Madison Wisconsin USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Division of Geriatrics and Gerontology Department of Medicine University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Geriatric Research Education and Clinical Center William S. Middleton Hospital Department of Veterans Affairs Madison Wisconsin USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Division of Geriatrics and Gerontology Department of Medicine University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Geriatric Research Education and Clinical Center William S. Middleton Hospital Department of Veterans Affairs Madison Wisconsin USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Division of Geriatrics and Gerontology Department of Medicine University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Geriatric Research Education and Clinical Center William S. Middleton Hospital Department of Veterans Affairs Madison Wisconsin USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- UK Dementia Research Institute at UCL London UK
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Division of Geriatrics and Gerontology Department of Medicine University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Geriatric Research Education and Clinical Center William S. Middleton Hospital Department of Veterans Affairs Madison Wisconsin USA
| |
Collapse
|
25
|
Owusu J, Barrett E. Early Microvascular Dysfunction: Is the Vasa Vasorum a "Missing Link" in Insulin Resistance and Atherosclerosis. Int J Mol Sci 2021; 22:ijms22147574. [PMID: 34299190 PMCID: PMC8303323 DOI: 10.3390/ijms22147574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022] Open
Abstract
The arterial vasa vasorum is a specialized microvasculature that provides critical perfusion required for the health of the arterial wall, and is increasingly recognized to play a central role in atherogenesis. Cardio-metabolic disease (CMD) (including hypertension, metabolic syndrome, obesity, diabetes, and pre-diabetes) is associated with insulin resistance, and characteristically injures the microvasculature in multiple tissues, (e.g., the eye, kidney, muscle, and heart). CMD also increases the risk for atherosclerotic vascular disease. Despite this, the impact of CMD on vasa vasorum structure and function has been little studied. Here we review emerging information on the early impact of CMD on the microvasculature in multiple tissues and consider the potential impact on atherosclerosis development and progression, if vasa vasorum is similarly affected.
Collapse
Affiliation(s)
- Jeanette Owusu
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Eugene Barrett
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: ; Tel.: +1-434-924-1263
| |
Collapse
|
26
|
Clark LR, Zuelsdorff M, Norton D, Johnson SC, Wyman MF, Hancock LM, Carlsson CM, Asthana S, Flowers-Benton S, Gleason CE, Johnson HM. Association of Cardiovascular Risk Factors with Cerebral Perfusion in Whites and African Americans. J Alzheimers Dis 2021; 75:649-660. [PMID: 32310160 DOI: 10.3233/jad-190360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Midlife cardiovascular risk factors increase risk for Alzheimer's disease (AD). Despite disproportionately high cardiovascular disease and dementia rates, African Americans are under-represented in studies of AD risk and research-based guidance on targeting vascular risk factors is lacking. OBJECTIVE This study investigated relationships between specific cardiovascular risk factors and cerebral perfusion in White and African American adults enriched for AD risk. METHODS Participants included 397 cognitively unimpaired White (n = 330) and African American (n = 67) adults enrolled in the Wisconsin Alzheimer's Disease Research Center who underwent pseudo-continuous arterial spin labeling MRI. Multiple linear regression models examined independent relationships between cardiovascular risk factors and mean cerebral perfusion. Subsequent interaction and stratified models assessed the role for APOE genotype and race. RESULTS When risk factor p-values were FDR-adjusted, diastolic blood pressure was significantly associated with mean perfusion. Tobacco use, triglycerides, waist-to-hip ratio, and a composite risk score were not associated with perfusion. Without FDR adjustment, a relationship was also observed between perfusion and obesity, cholesterol, and fasting glucose. Neither APOE genotype nor race moderated relationships between risk factors and perfusion. CONCLUSION Higher diastolic blood pressure predicted lower perfusion more strongly than other cardiovascular risk factors. This relationship did not vary by racial group or genetic risk for AD, although the African American sample had greater vascular risk burden and lower perfusion rates. Our findings highlight the need to prioritize inclusion of underrepresented groups in neuroimaging studies and to continue exploring the link between modifiable risk factors, cerebrovascular health, and AD risk in underrepresented populations.
Collapse
Affiliation(s)
- Lindsay R Clark
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Megan Zuelsdorff
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin School of Nursing, Madison, WI, USA
| | - Derek Norton
- Department of Biostatistics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mary F Wyman
- Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA.,Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura M Hancock
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Susan Flowers-Benton
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carey E Gleason
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heather M Johnson
- Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
27
|
Guo X, Zhu Y, Li X, Lu Z, Cao Z, Yi X, Zhu X. Increased insulin resistance is associated with vascular cognitive impairment in Chinese patients with cerebral small vessel disease. Psychogeriatrics 2021; 21:342-349. [PMID: 33641231 DOI: 10.1111/psyg.12675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this study was to investigate the association between insulin resistance (IR) and vascular cognitive impairment (VCI) in patients with cerebral small vessel disease (CSVD). METHODS A total of 275 CSVD patients were enrolled in this retrospective case-control study. The homeostatic model assessment of insulin resistance (HOMA-IR) was used to measure the index of insulin resistance. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Spearman's correlation coefficient was used to evaluate the correlation between HOMA-IR and MoCA score. The variance inflation factor (VIF) was used to detect collinearity between variables. Multivariate logistic regression analysis was employed to confirm whether HOMA-IR is an independent risk factor for VCI in CVSD. Finally, receiver operating characteristic (ROC) curve analysis was conducted to assess the diagnostic value of HOMA-IR in VCI. RESULTS Of the 275 patients, 164 displayed VCI. VCI patients showed a significantly higher level of HOMA-IR compared to non-VCI patients (P < 0.001). HOMA-IR was negatively correlated with the MoCA score (r = -0.593, P < 0.001). After adjusting for potential confounding variables, using HOMA-IR quartile 1 (<1.11) as the reference, HOMA-IR quartile 3 (1.71-2.50) and quartile 4 (≥2.50) were independently associated with the occurrence of VCI; for each one unit increase in the HOMA-IR, the risk of VCI increased by 177.3% (odds ratio 2.773, 95% confidence interval: 1.050-7.324, P = 0.040) and 444.3% (odds ratio 5.443, 95% confidence interval: 2.109-14.050, P < 0.001), respectively. According to the ROC curve, the optimal cut-off point of HOMA-IR in predicting VCI was 1.55, and the area under the curve was 0.744, with a sensitivity of 71.3% and a specificity of 69.4%. CONCLUSION This study demonstrated that increased IR is significantly associated with VCI in CSVD patients.
Collapse
Affiliation(s)
- Xiaoming Guo
- Department of Neurology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yuting Zhu
- Department of Neurology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xinling Li
- Department of Neurology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenhui Lu
- Department of Neurology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhiyong Cao
- Department of Neurology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoyi Yi
- Department of Neurology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xiangyang Zhu
- Department of Neurology, Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
28
|
Abstract
This review takes an inclusive approach to microvascular dysfunction in diabetes mellitus and cardiometabolic disease. In virtually every organ, dynamic interactions between the microvasculature and resident tissue elements normally modulate vascular and tissue function in a homeostatic fashion. This regulation is disordered by diabetes mellitus, by hypertension, by obesity, and by dyslipidemia individually (or combined in cardiometabolic disease), with dysfunction serving as an early marker of change. In particular, we suggest that the familiar retinal, renal, and neural complications of diabetes mellitus are late-stage manifestations of microvascular injury that begins years earlier and is often abetted by other cardiometabolic disease elements (eg, hypertension, obesity, dyslipidemia). We focus on evidence that microvascular dysfunction precedes anatomic microvascular disease in these organs as well as in heart, muscle, and brain. We suggest that early on, diabetes mellitus and/or cardiometabolic disease can each cause reversible microvascular injury with accompanying dysfunction, which in time may or may not become irreversible and anatomically identifiable disease (eg, vascular basement membrane thickening, capillary rarefaction, pericyte loss, etc.). Consequences can include the familiar vision loss, renal insufficiency, and neuropathy, but also heart failure, sarcopenia, cognitive impairment, and escalating metabolic dysfunction. Our understanding of normal microvascular function and early dysfunction is rapidly evolving, aided by innovative genetic and imaging tools. This is leading, in tissues like the retina, to testing novel preventive interventions at early, reversible stages of microvascular injury. Great hope lies in the possibility that some of these interventions may develop into effective therapies.
Collapse
Affiliation(s)
- William B Horton
- Division of Endocrinology and Metabolism, Department of Medicine
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
29
|
Soleimanzad H, Montaner M, Ternier G, Lemitre M, Silvestre JS, Kassis N, Giacobini P, Magnan C, Pain F, Gurden H. Obesity in Midlife Hampers Resting and Sensory-Evoked Cerebral Blood Flow in Mice. Obesity (Silver Spring) 2021; 29:150-158. [PMID: 33174382 DOI: 10.1002/oby.23051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study aimed to investigate the effects of a high-fat diet (HFD) and aging on resting and activity-dependent cerebral blood flow (CBF). METHODS To run a comparison between obese and age-matched control animals, 6-week-old mice were fed either with regular chow or an HFD for 3 months or 8 months. Glucose tolerance and insulin sensitivity were assessed for metabolic phenotyping. Resting and odor-evoked CBF at the microvascular scale in the olfactory bulb (OB) was investigated by multiexposure speckle imaging. Immunolabeling-enabled imaging of solvent-cleared organs was used to analyze vascular density. The ejection fraction was studied by using cardioechography. Olfactory sensitivity was tested by using a buried-food test. RESULTS Glucose intolerance and compromised odor-evoked CBF were observed in obese mice in the younger group. Prolonged HFD feeding triggered insulin resistance and stronger impairment in activity-dependent CBF. Aging had a specific negative impact on resting CBF. There was no decrease in vascular density in the OB of obese mice, although cardiac function was impaired at both ages. In addition, decreased olfactory sensitivity was observed only in the older, middle-aged obese mice. CONCLUSIONS OB microvasculature in obese mice showed a specific functional feature characterized by impaired sensory-evoked CBF and a specific deleterious effect of aging on resting CBF.
Collapse
Affiliation(s)
- Haleh Soleimanzad
- Université de Paris, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Mireia Montaner
- Université de Paris, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Gaëtan Ternier
- Université de Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Mathilde Lemitre
- Université de Paris, Paris Cardiovascular Research Center (PARCC), INSERM, Paris, France
| | | | - Nadim Kassis
- Université de Paris, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Paolo Giacobini
- Université de Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Christophe Magnan
- Université de Paris, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Frédéric Pain
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| | - Hirac Gurden
- Université de Paris, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| |
Collapse
|
30
|
Sun J, Xu B, Zhang X, He Z, Liu Z, Liu R, Nan G. The Mechanisms of Type 2 Diabetes-Related White Matter Intensities: A Review. Front Public Health 2020; 8:498056. [PMID: 33282807 PMCID: PMC7705244 DOI: 10.3389/fpubh.2020.498056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
The continually increasing number of patients with type 2 diabetes is a worldwide health problem, and the incidence of microvascular complications is closely related to type 2 diabetes. Structural brain abnormalities are considered an important pathway through which type 2 diabetes causes brain diseases. In fact, there is considerable evidence that type 2 diabetes is associated with an increased risk of structural brain abnormalities such as lacunar infarcts (LIs), white matter hyperintensities (WMHs), and brain atrophy. WMHs are a common cerebral small-vessel disease in elderly adults, and it is characterized histologically by demyelination, loss of oligodendrocytes, and vacuolization as a result of small-vessel ischemia in the white matter. An increasing number of studies have found that diabetes is closely related to WMHs. However, the exact mechanism by which type 2 diabetes causes WMHs is not fully understood. This article reviews the mechanisms of type 2 diabetes-related WMHs to better understand the disease and provide help for better clinical treatment.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baofeng Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhidong He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ziwei Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Liu
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Clark LR, Norton D, Berman SE, Johnson SC, Bendlin BB, Wieben O, Turski P, Carlsson C, Asthana S, Gleason CE, Johnson HM. Association of Cardiovascular and Alzheimer's Disease Risk Factors with Intracranial Arterial Blood Flow in Whites and African Americans. J Alzheimers Dis 2020; 72:919-929. [PMID: 31658057 DOI: 10.3233/jad-190645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) has a higher prevalence among African Americans. Targeting cardiovascular and metabolic risk factors may be potential mechanisms to modify AD risk and address racial/ethnic disparities in AD dementia. OBJECTIVE This study investigated relationships among cardiovascular and metabolic risk factors, APOE genotype, AD biomarkers, and intracranial arterial blood flow in Whites and African Americans enriched for AD risk. METHODS 399 cognitively unimpaired adults from the Wisconsin Alzheimer's Disease Research Center completed physical and neuroimaging examinations. A 4D Flow MRI sequence (phase-contrast vastly under sampled isotropic projection imaging) measured intracranial arterial flow in the Circle of Willis. Linear mixed-effects regression models estimated relationships between risk factors and intracranial arterial flow and tested interactions with racial group, APOE genotype, and AD biomarkers, with separate models per risk factor. RESULTS Higher fasting glucose was associated with lower intracranial arterial flow; no additional relationships between flow and risk factors were observed. Main effects of racial group were observed, without an interaction, indicating lower flow in African Americans compared to Whites. In race-stratified analyses, higher glucose and triglycerides were associated with lower flow for African Americans, but not for Whites. No main effects or interactions among risk factors, APOE, or AD biomarkers, and flow were observed. CONCLUSION Elevated fasting glucose and triglycerides were associated with lower intracranial arterial flow; these relationships were more prominent in African Americans. Targeting metabolic risk factors may impact intracranial arterial health. Additional research is needed to determine if this will impact disparities in dementia prevalence.
Collapse
Affiliation(s)
- Lindsay R Clark
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Derek Norton
- Department of Biostatistics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sara E Berman
- Medical Scientist and Neuroscience Training Programs, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Patrick Turski
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Carey E Gleason
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heather M Johnson
- Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
32
|
Beeri MS, Bendlin BB. The link between type 2 diabetes and dementia: from biomarkers to treatment. Lancet Diabetes Endocrinol 2020; 8:736-738. [PMID: 32738930 DOI: 10.1016/s2213-8587(20)30267-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Michal Schnaider Beeri
- Department of Psychiatry, Ichan School of Medicine at Mount Sinai, New York, NY 10029, USA; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel.
| | - Barbara B Bendlin
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
33
|
López-Gambero AJ, Sanjuan C, Serrano-Castro PJ, Suárez J, Rodríguez de Fonseca F. The Biomedical Uses of Inositols: A Nutraceutical Approach to Metabolic Dysfunction in Aging and Neurodegenerative Diseases. Biomedicines 2020; 8:biomedicines8090295. [PMID: 32825356 PMCID: PMC7554709 DOI: 10.3390/biomedicines8090295] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/05/2023] Open
Abstract
Inositols are sugar-like compounds that are widely distributed in nature and are a part of membrane molecules, participating as second messengers in several cell-signaling processes. Isolation and characterization of inositol phosphoglycans containing myo- or d-chiro-inositol have been milestones for understanding the physiological regulation of insulin signaling. Other functions of inositols have been derived from the existence of multiple stereoisomers, which may confer antioxidant properties. In the brain, fluctuation of inositols in extracellular and intracellular compartments regulates neuronal and glial activity. Myo-inositol imbalance is observed in psychiatric diseases and its use shows efficacy for treatment of depression, anxiety, and compulsive disorders. Epi- and scyllo-inositol isomers are capable of stabilizing non-toxic forms of β-amyloid proteins, which are characteristic of Alzheimer’s disease and cognitive dementia in Down’s syndrome, both associated with brain insulin resistance. However, uncertainties of the intrinsic mechanisms of inositols regarding their biology are still unsolved. This work presents a critical review of inositol actions on insulin signaling, oxidative stress, and endothelial dysfunction, and its potential for either preventing or delaying cognitive impairment in aging and neurodegenerative diseases. The biomedical uses of inositols may represent a paradigm in the industrial approach perspective, which has generated growing interest for two decades, accompanied by clinical trials for Alzheimer’s disease.
Collapse
Affiliation(s)
- Antonio J. López-Gambero
- Departamento de Biología Celular, Genética y Fisiología, Campus de Teatinos s/n, Universidad de Málaga, Andalucia Tech, 29071 Málaga, Spain;
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
| | | | - Pedro Jesús Serrano-Castro
- UGC Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (F.R.d.F.); Tel.: +34-952614012 (J.S.)
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (F.R.d.F.); Tel.: +34-952614012 (J.S.)
| |
Collapse
|
34
|
Wu D, Yang X, Zhong P, Ye X, Li C, Liu X. Insulin Resistance Is Independently Associated With Enlarged Perivascular Space in the Basal Ganglia in Nondiabetic Healthy Elderly Population. Am J Alzheimers Dis Other Demen 2020; 35:1533317520912126. [PMID: 32180437 PMCID: PMC10624068 DOI: 10.1177/1533317520912126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To investigate the association between insulin resistance (IR) and enlarged perivascular space (EPVS) in the basal gangliain nondiabetic healthy elderly population. METHODS A total of 235 nondiabetic healthy elderly population were recruited. A 3-level scale was used to evaluate the burden of EPVSs. The homeostasis model assessment-estimated insulin resistance index (HOMA-IR) was used for IR estimation. Correlation between IR and severity of EPVS was assessed using the regression model after adjusting demographics and cardiovascular risk factors. RESULTS The top quartile of HOMA-IR was 2.52, and 25.11% of patients showed IR. The proportion of patients with IR was higher in the moderate to severe EPVS group than in the mild group (36.51% vs 20.93%, P = .015). In multivariate logistic analysis, IR was positively correlated with the moderate to severe EPVS (adjusted odds ratio: 3.532, 95% confidence interval: 1.633-7.636, P = .001) after adjusting classical risk factors. CONCLUSIONS Insulin resistance was independently correlated with EPVS in the basal ganglia in nondiabetic healthy elderly population.
Collapse
Affiliation(s)
- Danhong Wu
- Department of Neurology, Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, People’s Republic of China
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiaoli Yang
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ping Zhong
- Shanghai Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiaofei Ye
- Department of Health Statistics, The Chinese People’s Liberation Navy Medical College, Shanghai, People’s Republic of China
| | - Chen Li
- Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
35
|
Salminen LE, Wilcox RR, Zhu AH, Riedel BC, Ching CRK, Rashid F, Thomopoulos SI, Saremi A, Harrison MB, Ragothaman A, Knight V, Boyle CP, Medland SE, Thompson PM, Jahanshad N. Altered Cortical Brain Structure and Increased Risk for Disease Seen Decades After Perinatal Exposure to Maternal Smoking: A Study of 9000 Adults in the UK Biobank. Cereb Cortex 2019; 29:5217-5233. [PMID: 31271414 PMCID: PMC6918926 DOI: 10.1093/cercor/bhz060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
Secondhand smoke exposure is a major public health risk that is especially harmful to the developing brain, but it is unclear if early exposure affects brain structure during middle age and older adulthood. Here we analyzed brain MRI data from the UK Biobank in a population-based sample of individuals (ages 44-80) who were exposed (n = 2510) or unexposed (n = 6079) to smoking around birth. We used robust statistical models, including quantile regressions, to test the effect of perinatal smoke exposure (PSE) on cortical surface area (SA), thickness, and subcortical volumes. We hypothesized that PSE would be associated with cortical disruption in primary sensory areas compared to unexposed (PSE-) adults. After adjusting for multiple comparisons, SA was significantly lower in the pericalcarine (PCAL), inferior parietal (IPL), and regions of the temporal and frontal cortex of PSE+ adults; these abnormalities were associated with increased risk for several diseases, including circulatory and endocrine conditions. Sensitivity analyses conducted in a hold-out group of healthy participants (exposed, n = 109, unexposed, n = 315) replicated the effect of PSE on SA in the PCAL and IPL. Collectively our results show a negative, long term effect of PSE on sensory cortices that may increase risk for disease later in life.
Collapse
Affiliation(s)
- Lauren E Salminen
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Rand R Wilcox
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Alyssa H Zhu
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Brandalyn C Riedel
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Faisal Rashid
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Arvin Saremi
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Marc B Harrison
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Anjanibhargavi Ragothaman
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Victoria Knight
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Christina P Boyle
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| |
Collapse
|
36
|
Williams VJ, Trombetta BA, Jafri RZ, Koenig AM, Wennick CD, Carlyle BC, Ekhlaspour L, Ahima RS, Russell SJ, Salat DH, Arnold SE. Task-related fMRI BOLD response to hyperinsulinemia in healthy older adults. JCI Insight 2019; 5:129700. [PMID: 31211691 DOI: 10.1172/jci.insight.129700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There is growing evidence to suggest that the brain is an important target for insulin action, and that states of insulin resistance may extend to the CNS with detrimental effects on cognitive functioning. Although the effect of systemic insulin resistance on peripheral organs is well-studied, the degree to which insulin impacts brain function in vivo remains unclear. METHODS This randomized, single-blinded, 2-way-crossover, sham-controlled, pilot study determined the effects of hyperinsulinemia on fMRI brain activation during a 2-back working memory task in 9 healthy older adults (aged 57-79 years). Each participant underwent two clamp procedures (an insulin infusion and a saline placebo infusion, with normoglycemia maintained during both conditions), to examine the effects of hyperinsulinemia on task performance and associated blood-oxygen-level dependent (BOLD) signal using fMRI. RESULTS Hyperinsulinemia (compared to saline control) was associated with an increase in both the spatial extent and relative strength of task-related BOLD signal during the 2-back task. Further, the degree of increased task-related activation in select brain regions correlated with greater systemic insulin sensitivity, as well as decreased reaction times and performance accuracy between experimental conditions. CONCLUSION Together, these findings provide evidence of insulin action in the CNS among older adults during periods of sustained cognitive demand, with the greatest effects noted for individuals with highest systemic insulin sensitivity. FUNDING This work was funded by the National Institutes of Health (5R21AG051958, 2016).
Collapse
Affiliation(s)
- Victoria J Williams
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Bianca A Trombetta
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rabab Z Jafri
- Diabetes Research Center and Pediatric Endocrine Unit and.,Diabetes Unit and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron M Koenig
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Chase D Wennick
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Becky C Carlyle
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Laya Ekhlaspour
- Diabetes Research Center and Pediatric Endocrine Unit and.,Diabetes Unit and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Steven J Russell
- Diabetes Research Center and Pediatric Endocrine Unit and.,Diabetes Unit and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David H Salat
- Brain Aging and Dementia Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Steven E Arnold
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Yang X, Zhang S, Dong Z, Zi Y, Luo Y, Jin Z, Shi L, Li C, Ren C, Wu D. Insulin Resistance Is a Risk Factor for Overall Cerebral Small Vessel Disease Burden in Old Nondiabetic Healthy Adult Population. Front Aging Neurosci 2019; 11:127. [PMID: 31249520 PMCID: PMC6582254 DOI: 10.3389/fnagi.2019.00127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
Background and Purpose: This study aimed to investigate the association between insulin resistance (IR) and the overall cerebral small vessel disease (CSVD) burden. Methods: We recruited elderly, nondiabetic, healthy subjects prospectively. The overall effect of CSVD on the brain was described by a validated CSVD score. The homeostasis model assessment–estimated insulin resistance index (HOMA-IR) was used for IR estimation, and HOMA-IR ≥2.80 was defined as IR. We evaluated the association between IR and the increasing severity of CSVD score by ordinal regression models adjusting for demographics and cardiovascular risk factors. Results: A total of 156 healthy participants were recruited. The mean age was older in the IR group than in the non-IR group (70.03 vs. 67.45, p = 0.04), and the prevalence of hypertension was significantly higher in the IR group than in the non-IR group (82.35% vs. 53.28%, p < 0.01). In ordinal regression analysis, IR was positively associated with increasing severity of the total CSVD score (adjusted odds ratio, 3.74; 95% confidence interval, 1.63–5.08; p < 0.01) after adjusting traditional risk factors. Furthermore, HOMA-IR levels showed a positive dose-dependent correlation with the total CSVD score (p < 0.01, p for trend <0.01). Conclusions: IR is independently associated with increasing severity of the overall CSVD burden, independent of other clinical risk factors in an elderly, nondiabetic, healthy population. Furthermore, HOMA-IR level is correlated with the CSVD burden in a dose-dependent manner.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Shufan Zhang
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zhiyuan Dong
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yincui Zi
- Department of Emergency, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yufan Luo
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zhi Jin
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lei Shi
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Chen Li
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Chuanchen Ren
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Danhong Wu
- Department of Neurology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Abstract
Given current lack of therapies for dementia, there is substantial interest in identifying potentially modifiable risk factors. Clarifying the potential of these factors to mitigate risk as well as determining the mechanisms that link these factors to dementia is expected to lead to new approaches for both preventing and treating neurodegenerative diseases such as Alzheimer disease. Modifiable factors include cardiovascular risks as well as related lifestyle-centric factors such as diet and physical activity (reviewed in this issue). Given reports that type 2 diabetes and associated features increase the risk for developing dementia, there has been tremendous interest in exploring whether use of antidiabetic medications may impact the risk of dementia, as well as whether antidiabetic medications could be used to prevent or treat dementia, particularly Alzheimer disease. This review will briefly cover the known links between diabetes and risk for dementia, the state of evidence linking antidiabetic treatments with either protection against dementia or possibly increased risk for cognitive dysfunction, and provide a brief overview of what has been learned from clinical trials testing antidiabetic treatments in Alzheimer disease.
Collapse
|
39
|
Ogama N, Sakurai T, Kawashima S, Tanikawa T, Tokuda H, Satake S, Miura H, Shimizu A, Kokubo M, Niida S, Toba K, Umegaki H, Kuzuya M. Postprandial Hyperglycemia Is Associated With White Matter Hyperintensity and Brain Atrophy in Older Patients With Type 2 Diabetes Mellitus. Front Aging Neurosci 2018; 10:273. [PMID: 30258360 PMCID: PMC6143668 DOI: 10.3389/fnagi.2018.00273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus is associated with neurodegeneration and cerebrovascular disease. However, the precise mechanism underlying the effects of glucose management on brain abnormalities is not fully understood. The differential impacts of glucose alteration on brain changes in patients with and without cognitive impairment are also unclear. This cross-sectional study included 57 older type 2 diabetes patients with a diagnosis of Alzheimer's disease (AD) or normal cognition (NC). We examined the effects of hypoglycemia, postprandial hyperglycemia and glucose fluctuations on regional white matter hyperintensity (WMH) and brain atrophy among these patients. In a multiple regression analysis, postprandial hyperglycemia was independently associated with frontal WMH in the AD patients. In addition, postprandial hyperglycemia was significantly associated with brain atrophy, regardless of the presence of cognitive decline. Altogether, our findings indicate that postprandial hyperglycemia is associated with WMH in AD patients but not NC patients, which suggests that AD patients are more susceptible to postprandial hyperglycemia associated with WMH.
Collapse
Affiliation(s)
- Noriko Ogama
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Cognition and Behavior Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Kawashima
- Department of Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Diabetes and Endocrinology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takahisa Tanikawa
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Haruhiko Tokuda
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Japan.,Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shosuke Satake
- Department of Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hisayuki Miura
- Department of Home Care Coordinators, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Atsuya Shimizu
- Department of Cardiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Manabu Kokubo
- Department of Cardiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kenji Toba
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiroyuki Umegaki
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| |
Collapse
|
40
|
Li Y, Lapina N, Weinzierl N, Bonde L, Boedtkjer E, Schubert R, Moshage H, Wohlfart P, Schilling L. A novel method to isolate retinal and brain microvessels from individual rats: Microscopic and molecular biological characterization and application in hyperglycemic animals. Vascul Pharmacol 2018; 110:24-30. [PMID: 30003960 DOI: 10.1016/j.vph.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/29/2018] [Accepted: 07/07/2018] [Indexed: 11/17/2022]
Abstract
Alterations in the retinal microvessel (RMV) compartment occurring in systemic disease states such as diabetes may eventually contribute to blindness. To specifically address the pathophysiological role of the microvasculature we developed a new method for RMV bulk isolation from individual rats. The extraction procedure performed in the cold throughout takes less than one hour. Slight modifications enable isolation of brain microvessels (BMVs) for comparison. Microscopically, RMVs and BMVs consisted mainly of capillaries of good structural integrity. The endothelial cell/pericyte ratio was approximately 1.8 in RMVs and 2.7 in BMVs, well in agreement with data from intact vascular beds. Total RNA extracted from individual rats amounted to approximately 7 ng in RMVs, 50 ng in BMVs, and 155 ng in pial arteries (which were also isolated) with highly preserved integrity throughout. Measurements using microfluidic card methodology revealed segregation of RMVs, BMVs, and pial arteries in distinct clusters based on principal component analysis. In all three vascular compartments endothelial cell-specific markers were significantly enriched. Similarly, pericyte-specific markers displayed accumulation in RMVs, BMVs, and pial arteries, the latter probably reflecting the common ontogenetic origin of pericytes and smooth muscle cells. Isolation of RMVs, BMVs, and pial arteries from rats suffering from 8-weeks hyperglycemia yielded expression patterns of endothelial cell- and pericyte-specific marker genes largely comparable to those obtained in control rats. Our newly developed protocols allow for selective studies of RMVs from individual rats to characterize reactive pathways, in comparison with the ontogenetically closely related BMVs. Moreover, our protocols with inclusion of pial arteries enable comparative studies of the macro- and microvasculature from the same organ.
Collapse
Affiliation(s)
- Youhai Li
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Natalia Lapina
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nina Weinzierl
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lisbeth Bonde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rudolf Schubert
- Cardiovascular Physiology, Center for Biomedicine and Medical Technology (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Han Moshage
- Department of Gastroenterology and Hepatology, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paulus Wohlfart
- Sanofi Aventis Deutschland GmbH, TA, Diabetes R&D, Industriepark Hoechst, Frankfurt, Germany
| | - Lothar Schilling
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
41
|
Berman SE, Clark LR, Rivera-Rivera LA, Norton D, Racine AM, Rowley HA, Bendlin BB, Blennow K, Zetterberg H, Carlsson CM, Asthana S, Turski P, Wieben O, Johnson SC. Intracranial Arterial 4D Flow in Individuals with Mild Cognitive Impairment is Associated with Cognitive Performance and Amyloid Positivity. J Alzheimers Dis 2018; 60:243-252. [PMID: 28826187 DOI: 10.3233/jad-170402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is becoming increasingly recognized that cerebrovascular disease is a contributing factor in the pathogenesis of Alzheimer's disease (AD). A unique 4D-Flow magnetic resonance imaging (MRI) technique, phase contrast vastly undersampled isotropic projection imaging (PC VIPR), enables examination of angiographic and quantitative metrics of blood flow in the arteries of the Circle of Willis within a single MRI acquisition. Thirty-eight participants with mild cognitive impairment (MCI) underwent a comprehensive neuroimaging protocol (including 4D-Flow imaging) and a standard neuropsychological battery. A subset of participants (n = 22) also underwent lumbar puncture and had cerebrospinal fluid (CSF) assayed for AD biomarkers. Cut-offs for biomarker positivity in CSF resulting from a receiver operating characteristic curve analysis of AD cases and controls from the larger Wisconsin Alzheimer's Disease Research Center cohort were used to classify MCI participants as biomarker positive or negative on amyloid-β (Aβ42), total-tau and total-tau/Aβ42 ratio. Internal carotid artery (ICA) and middle cerebral artery (MCA) mean flow were associated with executive functioning performance, with lower mean flow corresponding to worse performance. MCI participants who were biomarker positive for Aβ42 had lower ICA mean flow than did those who were Aβ42 negative. In sum, mean ICA and MCA arterial flow was associated with cognitive performance in participants with MCI and lower flow in the ICA was associated with amyloid positivity. This provides further evidence for vascular health as a contributing factor in the etiopathogenesis of AD, and could represent a point to intervene in the disease process.
Collapse
Affiliation(s)
- Sara E Berman
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R Clark
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | - Derek Norton
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison WI, USA
| | - Annie M Racine
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Howard A Rowley
- Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Barbara B Bendlin
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, University College London, Institute of Neurology, London, UK.,UK Dementia Research Institute, London, UK
| | - Cynthia M Carlsson
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Patrick Turski
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
42
|
Redel JM, DiFrancesco M, Vannest J, Altaye M, Beebe D, Khoury J, Dolan LM, Lee G, Brunner H, Holland S, Brady C, Shah AS. Brain gray matter volume differences in obese youth with type 2 diabetes: a pilot study. J Pediatr Endocrinol Metab 2018; 31:261-268. [PMID: 29373319 DOI: 10.1515/jpem-2017-0349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/22/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Adults with type 2 diabetes (T2D) have significantly lower gray matter volume (GMV) compared to healthy peers. Whether GMV differences exist in youth with T2D remains unclear. Thus, we compared global and regional GMV between obese youth with T2D with age, race and sex similar healthy controls. METHODS In a cross-sectional study, 20 obese youth with T2D underwent T1-weighted brain magnetic resonance imaging (MRI). Comparisons were made to 20 age, race and sex similar controls. Differences in global and regional GMV between groups were identified using voxel-based morphometry (VBM). RESULTS Youth with T2D had a significantly lower global GMV-to-intracranial volume ratio (0.51±0.02 in T2D vs. 0.53±0.02 in controls, p=0.02, Cohen's d=0.85). There were 14 regions where GMV was significantly lower in the T2D group, and nine of these were found in either the temporal or occipital lobes. There were six regions with increased GMV in T2D. All regional differences were significant at p<0.05 after adjusting for multiple comparisons. CONCLUSIONS Results from this pilot study show obese youth with T2D have significantly lower global GMV and regional GMV differences, when compared to their age, race and sex similar peers. Future work is needed to determine whether these brain findings are a direct result of adolescent-onset T2D.
Collapse
Affiliation(s)
- Jacob M Redel
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA, Phone: 513-636-4479, Fax: 513-803-1174
| | - Mark DiFrancesco
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Vannest
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mekibib Altaye
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dean Beebe
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jane Khoury
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lawrence M Dolan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory Lee
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hermine Brunner
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Scott Holland
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cassandra Brady
- Division of Endocrinology and Diabetes, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Amy S Shah
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
43
|
Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 2018; 14:168-181. [PMID: 29377010 DOI: 10.1038/nrneurol.2017.185] [Citation(s) in RCA: 922] [Impact Index Per Article: 131.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable overlap has been identified in the risk factors, comorbidities and putative pathophysiological mechanisms of Alzheimer disease and related dementias (ADRDs) and type 2 diabetes mellitus (T2DM), two of the most pressing epidemics of our time. Much is known about the biology of each condition, but whether T2DM and ADRDs are parallel phenomena arising from coincidental roots in ageing or synergistic diseases linked by vicious pathophysiological cycles remains unclear. Insulin resistance is a core feature of T2DM and is emerging as a potentially important feature of ADRDs. Here, we review key observations and experimental data on insulin signalling in the brain, highlighting its actions in neurons and glia. In addition, we define the concept of 'brain insulin resistance' and review the growing, although still inconsistent, literature concerning cognitive impairment and neuropathological abnormalities in T2DM, obesity and insulin resistance. Lastly, we review evidence of intrinsic brain insulin resistance in ADRDs. By expanding our understanding of the overlapping mechanisms of these conditions, we hope to accelerate the rational development of preventive, disease-modifying and symptomatic treatments for cognitive dysfunction in T2DM and ADRDs alike.
Collapse
|
44
|
Schwarz NF, Nordstrom LK, Pagen LHG, Palombo DJ, Salat DH, Milberg WP, McGlinchey RE, Leritz EC. Differential associations of metabolic risk factors on cortical thickness in metabolic syndrome. NEUROIMAGE-CLINICAL 2017; 17:98-108. [PMID: 29062686 PMCID: PMC5641920 DOI: 10.1016/j.nicl.2017.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022]
Abstract
Objective Metabolic syndrome (MetS) refers to a cluster of risk factors for cardiovascular disease, including obesity, hypertension, dyslipidemia, and hyperglycemia. While sizable prior literature has examined associations between individual risk factors and quantitative measures of cortical thickness (CT), only very limited research has investigated such measures in MetS. Furthermore, the relative contributions of these risk factors to MetS-related effects on brain morphology have not yet been studied. The primary goal of this investigation was to examine how MetS may affect CT. A secondary goal was to explore the relative contributions of individual risk factors to regional alterations in CT, with the potential to identify risk factor combinations that may underlie structural changes. Methods Eighteen participants with MetS (mean age = 59.78 years) were age-matched with 18 healthy control participants (mean age = 60.50 years). CT measures were generated from T1-weighted images and groups were contrasted using whole-brain general linear modeling. A follow-up multivariate partial least squares correlation (PLS) analysis, including the full study sample with complete risk factor measurements (N = 53), was employed to examine which risk factors account for variance in group structural differences. Results Participants with MetS demonstrated significantly reduced CT in left hemisphere inferior parietal, rostral middle frontal, and lateral occipital clusters and in a right hemisphere precentral cluster. The PLS analysis revealed that waist circumference, high-density lipoprotein cholesterol (HDL-C), triglycerides, and glucose were significant contributors to reduced CT in these clusters. In contrast, diastolic blood pressure showed a significantly positive association with CT while systolic blood pressure did not emerge as a significant contributor. Age was not associated with CT. Conclusion These results indicate that MetS can be associated with regionally specific reductions in CT. Importantly, a novel link between a risk factor profile comprising indices of obesity, hyperglycemia, dyslipidemia and diastolic BP and localized alterations in CT emerged. While the pathophysiological mechanisms underlying these associations remain incompletely understood, these findings may be relevant for future investigations of MetS and might have implications for treatment approaches that focus on specific risk factor profiles with the aim to reduce negative consequences on the structural integrity of the brain. Cortical thickness is reduced bilaterally in metabolic syndrome. Five out of six risk factor components contribute to altered cortical thickness. Particular risk factor combination may be an important target for intervention.
Collapse
Affiliation(s)
- Nicolette F Schwarz
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Leslie K Nordstrom
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Linda H G Pagen
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Daniela J Palombo
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Boston Healthcare System, Boston, MA, USA; Boston University School of Medicine, Boston, MA, USA
| | - David H Salat
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; The Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA
| | - William P Milberg
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Regina E McGlinchey
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Elizabeth C Leritz
- Neuroimaging Research for Veterans Center (NeRVe), Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Insulin resistance is associated with reductions in specific cognitive domains and increases in CSF tau in cognitively normal adults. Sci Rep 2017; 7:9766. [PMID: 28852028 PMCID: PMC5575049 DOI: 10.1038/s41598-017-09577-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/21/2017] [Indexed: 01/06/2023] Open
Abstract
Growing evidence supports the hypothesis that type 2 diabetes (T2D) increases the risk of developing dementia. Experimental evidence from mouse models demonstrates that the induction of T2D/insulin resistance (IR) can promote the accumulation of Alzheimer's disease (AD) pathological features. However, the association of T2D with pathological and clinical phenotypes in humans is unclear. Here we investigate the relationship of indices of IR (HOMA-IR) and pancreatic β-cell function (HOMA-B) with cognitive performance across several domains (Verbal/Visual Episodic Memory, Executive Function, Language and a measure of Global cognition) and AD biomarkers (CSF Aβ42, T-tau/P-tau, hippocampal volume and neocortical Aβ-amyloid burden). We reveal that HOMA-IR (p < 0.001) incrementally increases across diagnostic groups, becoming significantly elevated in the AD group compared with cognitively normal (CN) adults. In CN adults, higher HOMA-IR was associated with poorer performance on measures of verbal episodic memory (p = 0.010), executive function (p = 0.046) and global cognition (p = 0.007), as well as with higher CSF T-tau (p = 0.008) and P-tau (p = 0.014) levels. No association was observed with CSF Aβ or imaging modalities. Together our data suggest that IR may contribute to reduced cognitive performance and the accumulation of CSF tau biomarkers in cognitively normal adults.
Collapse
|
46
|
Blair GW, Hernandez MV, Thrippleton MJ, Doubal FN, Wardlaw JM. Advanced Neuroimaging of Cerebral Small Vessel Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017. [PMID: 28620783 PMCID: PMC5486578 DOI: 10.1007/s11936-017-0555-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cerebral small vessel disease (SVD) is characterised by damage to deep grey and white matter structures of the brain and is responsible for a diverse range of clinical problems that include stroke and dementia. In this review, we describe advances in neuroimaging published since January 2015, mainly with magnetic resonance imaging (MRI), that, in general, are improving quantification, observation and investigation of SVD focussing on three areas: quantifying the total SVD burden, imaging brain microstructural integrity and imaging vascular malfunction. Methods to capture ‘whole brain SVD burden’ across the spectrum of SVD imaging changes will be useful for patient stratification in clinical trials, an approach that we are already testing. More sophisticated imaging measures of SVD microstructural damage are allowing the disease to be studied at earlier stages, will help identify specific factors that are important in development of overt SVD imaging features and in understanding why specific clinical consequences may occur. Imaging vascular function will help establish the precise blood vessel and blood flow alterations at early disease stages and, together with microstructural integrity measures, may provide important surrogate endpoints in clinical trials testing new interventions. Better knowledge of SVD pathophysiology will help identify new treatment targets, improve patient stratification and may in future increase efficiency of clinical trials through smaller sample sizes or shorter follow-up periods. However, most of these methods are not yet sufficiently mature to use with confidence in clinical trials, although rapid advances in the field suggest that reliable quantification of SVD lesion burden, tissue microstructural integrity and vascular dysfunction are imminent.
Collapse
Affiliation(s)
- Gordon W Blair
- Brain Research Imaging Centres, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Maria Valdez Hernandez
- Brain Research Imaging Centres, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Michael J Thrippleton
- Brain Research Imaging Centres, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Fergus N Doubal
- Brain Research Imaging Centres, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK
| | - Joanna M Wardlaw
- Brain Research Imaging Centres, Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
47
|
Fu Z, Wu J, Nesil T, Li MD, Aylor KW, Liu Z. Long-term high-fat diet induces hippocampal microvascular insulin resistance and cognitive dysfunction. Am J Physiol Endocrinol Metab 2017; 312:E89-E97. [PMID: 27899343 PMCID: PMC5336564 DOI: 10.1152/ajpendo.00297.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Insulin action on hippocampus improves cognitive function, and obesity and type 2 diabetes are associated with decreased cognitive function. Cerebral microvasculature plays a critical role in maintaining cerebral vitality and function by supplying nutrients, oxygen, and hormones such as insulin to cerebral parenchyma, including hippocampus. In skeletal muscle, insulin actively regulates microvascular opening and closure, and this action is impaired in the insulin-resistant states. To examine insulin's action on hippocampal microvasculature and parenchyma and the impact of diet-induced obesity, we determined cognitive function and microvascular insulin responses, parenchyma insulin responses, and capillary density in the hippocampus in 2- and 8-mo-old rats on chow diet and 8-mo-old rats on a long-term high-fat diet (6 mo). Insulin infusion increased hippocampal microvascular perfusion in rats on chow diet by ~80-90%. High-fat diet feeding completely abolished insulin-mediated microvascular responses and protein kinase B phosphorylation but did not alter the capillary density in the hippocampus. This was associated with a significantly decreased cognitive function assessed using both the two-trial spontaneous alternation behavior test and the novel object recognition test. As the microvasculature provides the needed endothelial surface area for delivery of nutrients, oxygen, and insulin to hippocampal parenchyma, we conclude that hippocampal microvascular insulin resistance may play a critical role in the development of cognitive impairment seen in obesity and diabetes. Our results suggest that improvement in hippocampal microvascular insulin sensitivity might help improve or reverse cognitive function in the insulin-resistant states.
Collapse
Affiliation(s)
- Zhuo Fu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Jing Wu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
- Department of Endocrinology, Central South University Xiangya Hospital, Changsha, Hunan, China; and
| | - Tanseli Nesil
- Department of Psychiatry, University of Virginia Health System, Charlottesville, Virginia
| | - Ming D Li
- Department of Psychiatry, University of Virginia Health System, Charlottesville, Virginia
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia;
| |
Collapse
|
48
|
Macrovascular and microvascular cerebral blood flow in adults at risk for Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 7:48-55. [PMID: 28239641 PMCID: PMC5318539 DOI: 10.1016/j.dadm.2017.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction Capillary hypoperfusion is reported in asymptomatic adults at-risk for Alzheimer's disease (AD), but the extent that can be explained by reduced flow in intracranial arteries is unknown. Methods One hundred fifty-five asymptomatic adults enriched for AD risk (mean age 61 years) completed arterial spin labeling (pcASL) and 4D-flow MRI sequences. Voxel-wise regression models investigated the relationship between mean flow in bilateral cerebral arteries and capillary perfusion, and tested potential moderators of this relationship. Results Mean arterial blood flow through middle cerebral arteries (MCAs) and internal carotid arteries was positively associated with perfusion in large cortical clusters (P < .05, false discovery rate corrected). Trends were observed for the interactions MCA flow × age and MCA flow × cardiovascular risk on cerebral perfusion (P < .001, uncorrected). Discussion These findings provide evidence that capillary perfusion measured via pseudocontinuous arterial spin labeling is strongly dependent on inflow from larger cerebral arteries. Further studies are warranted to investigate possible alterations between macrovascular and microvascular flow in advanced age and elevated cardiovascular risk in asymptomatic adults at risk for AD.
Collapse
|