1
|
Ahmadzadeh E, Dudink I, Walker DW, Sutherland AE, Pham Y, Stojanovska V, Polglase GR, Miller SL, Allison BJ. The medullary serotonergic centres involved in cardiorespiratory control are disrupted by fetal growth restriction. J Physiol 2024; 602:5923-5941. [PMID: 37641535 DOI: 10.1113/jp284971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Fetal growth restriction (FGR) is associated with cardiovascular and respiratory complications after birth and beyond. Despite research showing a range of neurological changes following FGR, little is known about how FGR affects the brainstem cardiorespiratory control centres. The primary neurons that release serotonin reside in the brainstem cardiorespiratory control centres and may be affected by FGR. At two time points in the last trimester of sheep brain development, 110 and 127 days of gestation (0.74 and 0.86 of gestation), we assessed histopathological alterations in the brainstem cardiorespiratory control centres of the pons and medulla in early-onset FGR versus control fetal sheep. The FGR cohort were hypoxaemic and asymmetrically growth restricted. Compared to the controls, the brainstem of FGR fetuses exhibited signs of neuropathology, including elevated cell death and reduced cell proliferation, grey and white matter deficits, and evidence of oxidative stress and neuroinflammation. FGR brainstem pathology was predominantly observed in the medullary raphé nuclei, hypoglossal nucleus, nucleus ambiguous, solitary tract and nucleus of the solitary tract. The FGR groups showed imbalanced brainstem serotonin and serotonin 1A receptor abundance in the medullary raphé nuclei, despite evidence of increased serotonin staining within vascular regions of placentomes collected from FGR fetuses. Our findings demonstrate both early and adaptive brainstem neuropathology in response to placental insufficiency. KEY POINTS: Early-onset fetal growth restriction (FGR) was induced in fetal sheep, resulting in chronic fetal hypoxaemia. Growth-restricted fetuses exhibit persistent neuropathology in brainstem nuclei, characterised by disrupted cell proliferation and reduced neuronal cell number within critical centres responsible for the regulation of cardiovascular and respiratory functions. Elevated brainstem inflammation and oxidative stress suggest potential mechanisms contributing to the observed neuropathological changes. Both placental and brainstem levels of 5-HT were found to be impaired following FGR.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Ingrid Dudink
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Hristova MD, Krishnan T, Rossi CA, Nouza J, White A, Peebles DM, Sebire NJ, Zachary IC, David AL, Vaughan OR. Maternal Uterine Artery Adenoviral Vascular Endothelial Growth Factor (Ad.VEGF-A 165) Gene Therapy Normalises Fetal Brain Growth and Microglial Activation in Nutrient Restricted Pregnant Guinea Pigs. Reprod Sci 2024; 31:2199-2208. [PMID: 38907125 PMCID: PMC11289362 DOI: 10.1007/s43032-024-01604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2024] [Indexed: 06/23/2024]
Abstract
Fetal growth restriction (FGR) is associated with uteroplacental insufficiency, and neurodevelopmental and structural brain deficits in the infant. It is currently untreatable. We hypothesised that treating the maternal uterine artery with vascular endothelial growth factor adenoviral gene therapy (Ad.VEGF-A165) normalises offspring brain weight and prevents brain injury in a guinea pig model of FGR. Pregnant guinea pigs were fed a restricted diet before and after conception and received Ad.VEGF-A165 (1 × 1010 viral particles, n = 18) or vehicle (n = 18), delivered to the external surface of the uterine arteries, in mid-pregnancy. Pregnant, ad libitum-fed controls received vehicle only (n = 10). Offspring brain weight and histological indices of brain injury were assessed at term and 5-months postnatally. At term, maternal nutrient restriction reduced fetal brain weight and increased microglial ramification in all brain regions but did not alter indices of cell death, astrogliosis or myelination. Ad.VEGF-A165 increased brain weight and reduced microglial ramification in fetuses of nutrient restricted dams. In adult offspring, maternal nutrient restriction did not alter brain weight or markers of brain injury, whilst Ad.VEGF-A165 increased microglial ramification and astrogliosis in the hippocampus and thalamus, respectively. Ad.VEGF-A165 did not affect cell death or myelination in the fetal or offspring brain. Ad.VEGF-A165 normalises brain growth and markers of brain injury in guinea pig fetuses exposed to maternal nutrient restriction and may be a potential intervention to improve childhood neurodevelopmental outcomes in pregnancies complicated by FGR.
Collapse
Affiliation(s)
- M D Hristova
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - T Krishnan
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - C A Rossi
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - J Nouza
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - A White
- Biological Services Unit, Royal Veterinary College, London, UK
| | - D M Peebles
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - N J Sebire
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - I C Zachary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London, UK
| | - A L David
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - O R Vaughan
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK.
| |
Collapse
|
3
|
Mamidi RR, McEvoy CT. Oxygen in the neonatal ICU: a complicated history and where are we now? Front Pediatr 2024; 12:1371710. [PMID: 38751747 PMCID: PMC11094359 DOI: 10.3389/fped.2024.1371710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Despite major advances in neonatal care, oxygen remains the most commonly used medication in the neonatal intensive care unit (NICU). Supplemental oxygen can be life-saving for term and preterm neonates in the resuscitation period and beyond, however use of oxygen in the neonatal period must be judicious as there can be toxic effects. Newborns experience substantial hemodynamic changes at birth, rapid energy consumption, and decreased antioxidant capacity, which requires a delicate balance of sufficient oxygen while mitigating reactive oxygen species causing oxidative stress. In this review, we will discuss the physiology of neonates in relation to hypoxia and hyperoxic injury, the history of supplemental oxygen in the delivery room and beyond, supporting clinical research guiding trends for oxygen therapy in neonatal care, current practices, and future directions.
Collapse
Affiliation(s)
- Rachna R. Mamidi
- Division of Neonatology, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
4
|
Wu BA, Chand KK, Bell A, Miller SL, Colditz PB, Malhotra A, Wixey JA. Effects of fetal growth restriction on the perinatal neurovascular unit and possible treatment targets. Pediatr Res 2024; 95:59-69. [PMID: 37674023 PMCID: PMC10798895 DOI: 10.1038/s41390-023-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
The neurovascular unit (NVU) within the brain is a multicellular unit that synergistically acts to maintain blood-brain barrier function and meet cerebral metabolic demand. Recent studies have indicated disruption to the NVU is associated with neuropathology in the perinatal brain. Infants with fetal growth restriction (FGR) are known to be at increased risk of neurodevelopmental conditions including motor, learning, and behavioural deficits. There are currently no neuroprotective treatments for these conditions. In this review, we analyse large animal studies examining the effects of FGR on the perinatal NVU. These studies show altered vascularity in the FGR brain as well as blood-brain barrier dysfunction due to underlying cellular changes, mediated by neuroinflammation. Neuroinflammation is a key mechanism associated with pathological effects in the FGR brain. Hence, targeting inflammation may be key to preserving the multicellular NVU and providing neuroprotection in FGR. A number of maternal and postnatal therapies with anti-inflammatory components have been investigated in FGR animal models examining targets for amelioration of NVU disruption. Each therapy showed promise by uniquely ameliorating the adverse effects of FGR on multiple aspects of the NVU. The successful implementation of a clinically viable neuroprotective treatment has the potential to improve outcomes for neonates affected by FGR. IMPACT: Disruption to the neurovascular unit is associated with neuropathology in fetal growth restriction. Inflammation is a key mechanism associated with neurovascular unit disruption in the growth-restricted brain. Anti-inflammatory treatments ameliorate adverse effects on the neurovascular unit and may provide neuroprotection.
Collapse
Affiliation(s)
- Bing Anthony Wu
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander Bell
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Nugent M, St Pierre M, Brown A, Nassar S, Parmar P, Kitase Y, Duck SA, Pinto C, Jantzie L, Fung C, Chavez-Valdez R. Sexual Dimorphism in the Closure of the Hippocampal Postnatal Critical Period of Synaptic Plasticity after Intrauterine Growth Restriction: Link to Oligodendrocyte and Glial Dysregulation. Dev Neurosci 2023; 45:234-254. [PMID: 37019088 DOI: 10.1159/000530451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Intrauterine growth restriction (IUGR) resulting from hypertensive disease of pregnancy (HDP) leads to sexually dimorphic hippocampal-dependent cognitive and memory impairment in humans. In our translationally relevant mouse model of IUGR incited by HDP, we have previously shown that the synaptic development in the dorsal hippocampus including GABAergic development, NPTX2+ excitatory synaptic formation, axonal myelination, and perineural net (PNN) formation were perturbed by IUGR at adolescent equivalence in humans (P40). The persistence of these disturbances through early adulthood and the potential upstream mechanisms are currently unknown. Thus, we hypothesized that NPTX2+ expression, PNN formation, axonal myelination, all events closing synaptic development in the hippocampus, will be persistently perturbed, particularly affecting IUGR female mice through P60 given the fact that they had worse short-term recognition memory in this model. We additionally hypothesized that such sexual dimorphism is linked to persistent glial dysregulation. We induced IUGR by a micro-osmotic pump infusion of a potent vasoconstrictor U-46619, a thromboxane A2-analog, in the last week of the C57BL/6 mouse gestation to precipitate HDP. Sham-operated mice were used as controls. At P60, we assessed hippocampal and hemispheric volumes, NPTX2 expression, PNN formation, as well as myelin basic protein (MBP), Olig2, APC/CC1, and M-NF expression. We also evaluated P60 astrocytic (GFAP) reactivity and microglial (Iba1 and TMEM119) activation using immunofluorescent-immunohistochemistry and Imaris morphological analysis plus cytokine profiling using Meso Scale Discovery platform. IUGR offspring continued to have smaller hippocampal volumes at P60 not related to changes in hemisphere volume. NPTX2+ puncta counts and volumes were decreased in IUGR hippocampal CA subregions of female mice compared to sex-matched shams. Intriguingly, NPTX2+ counts and volumes were concurrently increased in the dentate gyrus (DG) subregion. PNN volumes were smaller in CA1 and CA3 of IUGR female mice along with PNN intensity in CA3 but they had larger volumes in the CA3 of IUGR male mice. The myelinated axon (MBP+) areas, volumes, and lengths were all decreased in the CA1 of IUGR female mice compared to sex-matched shams, which correlated with a decrease in Olig2 nuclear expression. No decrease in the number of APC/CC1+ mature oligodendrocytes was identified. We noted an increase in M-NF expression in the mossy fibers connecting DG to CA3 only in IUGR female mice. Reactive astrocytes denoted by GFAP areas, volumes, lengths, and numbers of branching were increased in IUGR female CA1 but not in IUGR male CA3 compared to sex-matched shams. Lastly, activated microglia were only detected in IUGR female CA1 and CA3 subregions. We detected no difference in the cytokine profile between sham and IUGR adult mice of either sex. Collectively, our data support a sexually dimorphic impaired closure of postnatal critical period of synaptic plasticity in the hippocampus of young adult IUGR mice with greater effects on females. A potential mechanism supporting such dimorphism may include oligodendrocyte dysfunction in IUGR females limiting myelination, allowing axonal overgrowth followed by a reactive glial-mediated synaptic pruning.
Collapse
Affiliation(s)
- Michael Nugent
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Mark St Pierre
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ashley Brown
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Salma Nassar
- Department of Neurosciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, Maryland, USA
| | - Pritika Parmar
- Department of Neurosciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, Maryland, USA
| | - Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sarah Ann Duck
- Department of Molecular and Cellular Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, Maryland, USA
| | - Charles Pinto
- Department of Human Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Camille Fung
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Kremsky I, Ma Q, Li B, Dasgupta C, Chen X, Ali S, Angeloni S, Wang C, Zhang L. Fetal hypoxia results in sex- and cell type-specific alterations in neonatal transcription in rat oligodendrocyte precursor cells, microglia, neurons, and oligodendrocytes. Cell Biosci 2023; 13:58. [PMID: 36932456 PMCID: PMC10022003 DOI: 10.1186/s13578-023-01012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Fetal hypoxia causes vital, systemic, developmental malformations in the fetus, particularly in the brain, and increases the risk of diseases in later life. We previously demonstrated that fetal hypoxia exposure increases the susceptibility of the neonatal brain to hypoxic-ischemic insult. Herein, we investigate the effect of fetal hypoxia on programming of cell-specific transcriptomes in the brain of neonatal rats. RESULTS We obtained RNA sequencing (RNA-seq) data from neurons, microglia, oligodendrocytes, A2B5+ oligodendrocyte precursor cells, and astrocytes from male and female neonatal rats subjected either to fetal hypoxia or control conditions. Substantial transcriptomic responses to fetal hypoxia occurred in neurons, microglia, oligodendrocytes, and A2B5+ cells. Not only were the transcriptomic responses unique to each cell type, but they also occurred with a great deal of sexual dimorphism. We validated differential expression of several genes related to inflammation and cell death by Real-time Quantitative Polymerase Chain Reaction (qRT-PCR). Pathway and transcription factor motif analyses suggested that the NF-kappa B (NFκB) signaling pathway was enriched in the neonatal male brain due to fetal hypoxia, and we verified this result by transcription factor assay of NFκB-p65 in whole brain. CONCLUSIONS Our study reveals a significant impact of fetal hypoxia on the transcriptomes of neonatal brains in a cell-specific and sex-dependent manner, and provides mechanistic insights that may help explain the development of hypoxic-ischemic sensitive phenotypes in the neonatal brain.
Collapse
Affiliation(s)
- Isaac Kremsky
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Qingyi Ma
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Bo Li
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Xin Chen
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Samir Ali
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Shawnee Angeloni
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Charles Wang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA. .,Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
7
|
Li Y, Zhao L, Yu Y, Zhang K, Jiang Y, Wang Z, Xie K, Yu Y. Conservative oxygen therapy in critically ill and perioperative period of patients with sepsis-associated encephalopathy. Front Immunol 2022; 13:1035298. [PMID: 36341421 PMCID: PMC9626799 DOI: 10.3389/fimmu.2022.1035298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 10/21/2023] Open
Abstract
Objectives Sepsis-associated encephalopathy (SAE) patients in the intensive care unit (ICU) and perioperative period are administrated supplemental oxygen. However, the correlation between oxygenation status with SAE and the target for oxygen therapy remains unclear. This study aimed to examine the relationship between oxygen therapy and SAE patients. Methods Patients diagnosed with sepsis 3.0 in the intensive care unit (ICU) were enrolled. The data were collected from the Medical Information Mart for Intensive Care IV (MIMIC IV) database and the eICU Collaborative Research Database (eICU-CRD) database. The generalized additive models were adopted to estimate the oxygen therapy targets in SAE patients. The results were confirmed by multivariate Logistic, propensity score analysis, inversion probability-weighting, doubly robust model, and multivariate COX analyses. Survival was analyzed by the Kaplan-Meier method. Results A total of 10055 patients from eICU-CRD and 1685 from MIMIC IV were included. The incidence of SAE patients was 58.43%. The range of PaO2 (97-339) mmHg, PaO2/FiO2 (189-619), and SPO2≥93% may reduce the incidence of SAE, which were verified by multivariable Logistic regression, propensity score analysis, inversion probability-weighting, and doubly robust model estimation in MIMIC IV database and eICU database. The range of PaO2/FiO2 (189-619) and SPO2≥93% may reduce the hospital mortality of SAE were verified by multivariable COX regression. Conclusions SAE patients in ICU, including perioperative period, require conservative oxygen therapy. We should maintain SPO2≥93%, PaO2 (97-339) mmHg and PaO2/FiO2 (189-619) in SAE patients.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Kai Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Zhiwei Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| |
Collapse
|
8
|
De Asis-Cruz J, Andescavage N, Limperopoulos C. Adverse Prenatal Exposures and Fetal Brain Development: Insights From Advanced Fetal Magnetic Resonance Imaging. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:480-490. [PMID: 34848383 DOI: 10.1016/j.bpsc.2021.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Converging evidence from clinical and preclinical studies suggests that fetal vulnerability to adverse prenatal exposures increases the risk for neuropsychiatric diseases such as autism spectrum disorder, schizophrenia, and depression. Recent advances in fetal magnetic resonance imaging have allowed us to characterize typical fetal brain growth trajectories in vivo and to interrogate structural and functional alterations associated with intrauterine exposures, such as maternal stress, environmental toxins, drugs, and obesity. Here, we review proposed mechanisms for how prenatal influences disrupt neurodevelopment, including the role played by maternal and fetal inflammatory responses. We summarize insights from magnetic resonance imaging research in fetuses, highlight recent discoveries in normative fetal development using quantitative magnetic resonance imaging techniques (i.e., three-dimensional volumetry, proton magnetic resonance spectroscopy, placental diffusion imaging, and functional imaging), and discuss how baseline trajectories are shaped by prenatal exposures.
Collapse
Affiliation(s)
- Josepheen De Asis-Cruz
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC
| | - Nickie Andescavage
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC; Department of Neonatology, Children's National Hospital, Washington, DC
| | - Catherine Limperopoulos
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC.
| |
Collapse
|
9
|
Hicks ZM, Yates DT. Going Up Inflame: Reviewing the Underexplored Role of Inflammatory Programming in Stress-Induced Intrauterine Growth Restricted Livestock. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 34825243 PMCID: PMC8612632 DOI: 10.3389/fanim.2021.761421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The impact of intrauterine growth restriction (IUGR) on health in humans is well-recognized. It is the second leading cause of perinatal mortality worldwide, and it is associated with deficits in metabolism and muscle growth that increase lifelong risk for hypertension, obesity, hyperlipidemia, and type 2 diabetes. Comparatively, the barrier that IUGR imposes on livestock production is less recognized by the industry. Meat animals born with low birthweight due to IUGR are beset with greater early death loss, inefficient growth, and reduced carcass merit. These animals exhibit poor feed-to-gain ratios, less lean mass, and greater fat deposition, which increase production costs and decrease value. Ultimately, this reduces the amount of meat produced by each animal and threatens the economic sustainability of livestock industries. Intrauterine growth restriction is most commonly the result of fetal programming responses to placental insufficiency, but the exact mechanisms by which this occurs are not well-understood. In uncompromised pregnancies, inflammatory cytokines are produced at modest rates by placental and fetal tissues and play an important role in fetal development. However, unfavorable intrauterine conditions can cause cytokine activity to be excessive during critical windows of fetal development. Our recent evidence indicates that this impacts developmental programming of muscle growth and metabolism and contributes to the IUGR phenotype. In this review, we outline the role of inflammatory cytokine activity in the development of normal and IUGR phenotypes. We also highlight the contributions of sheep and other animal models in identifying mechanisms for IUGR pathologies.
Collapse
Affiliation(s)
- Zena M Hicks
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Dustin T Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
10
|
Combination of human endothelial colony-forming cells and mesenchymal stromal cells exert neuroprotective effects in the growth-restricted newborn. NPJ Regen Med 2021; 6:75. [PMID: 34795316 PMCID: PMC8602245 DOI: 10.1038/s41536-021-00185-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
The foetal brain is particularly vulnerable to the detrimental effects of foetal growth restriction (FGR) with subsequent abnormal neurodevelopment being common. There are no current treatments to protect the FGR newborn from lifelong neurological disorders. This study examines whether pure foetal mesenchymal stromal cells (MSC) and endothelial colony-forming cells (ECFC) from the human term placenta are neuroprotective through modulating neuroinflammation and supporting the brain vasculature. We determined that one dose of combined MSC-ECFCs (cECFC; 106 ECFC 106 MSC) on the first day of life to the newborn FGR piglet improved damaged vasculature, restored the neurovascular unit, reduced brain inflammation and improved adverse neuronal and white matter changes present in the FGR newborn piglet brain. These findings could not be reproduced using MSCs alone. These results demonstrate cECFC treatment exerts beneficial effects on multiple cellular components in the FGR brain and may act as a neuroprotectant.
Collapse
|
11
|
Zarate MA, De Dios RK, Balasubramaniyan D, Zheng L, Sherlock LG, Rozance PJ, Wright CJ. The Acute Hepatic NF-κB-Mediated Proinflammatory Response to Endotoxemia Is Attenuated in Intrauterine Growth-Restricted Newborn Mice. Front Immunol 2021; 12:706774. [PMID: 34539638 PMCID: PMC8440955 DOI: 10.3389/fimmu.2021.706774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a relevant predictor for higher rates of neonatal sepsis worldwide and is associated with an impaired neonatal immunity and lower immune cell counts. During the perinatal period, the liver is a key immunological organ responsible for the nuclear factor kappa B (NF-κB)-mediated innate immune response to inflammatory stimuli, but whether this role is affected by IUGR is unknown. Herein, we hypothesized that the newborn liver adapts to calorie-restriction IUGR by inducing changes in the NF-κB signaling transcriptome, leading to an attenuated acute proinflammatory response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic gene expression of key NF-κB factors in the IUGR and normally grown (NG) newborn mice. Real-time quantitative PCR (RT-qPCR) analysis revealed an upregulation of both IκB proteins genes (Nfkbia and Nfkbib) and the NF-κB subunit Nfkb1 in IUGR vs. NG. We next measured the LPS-induced hepatic expression of acute proinflammatory genes (Ccl3, Cxcl1, Il1b, Il6, and Tnf) and observed that the IUGR liver produced an attenuated acute proinflammatory cytokine gene response (Il1b and Tnf) to LPS in IUGR vs. unexposed (CTR). Consistent with these results, LPS-exposed hepatic tumor necrosis factor alpha (TNF-α) protein concentrations were lower in IUGR vs. LPS-exposed NG and did not differ from IUGR CTR. Sex differences at the transcriptome level were observed in the IUGR male vs. female. Our results demonstrate that IUGR induces key modifications in the NF-κB transcriptomic machinery in the newborn that compromised the acute proinflammatory cytokine gene and protein response to LPS. Our results bring novel insights in understanding how the IUGR newborn is immunocompromised due to fundamental changes in NF-κB key factors.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Durganili Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul J Rozance
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
12
|
Abstract
Intrauterine growth restriction is a condition that prevents normal fetal development, and previous studies have reported that intrauterine growth restriction is caused by adverse intrauterine factors. This condition affects both short- and long-term neurodevelopmental disorders. Studies have revealed that neurodevelopmental disorders can contribute to gray and white matter damage and decrease the brain volume of affected individuals. Further, these disorders are associated with increased risks of mental retardation, cognitive impairment, and cerebral palsy, which seriously affect the quality of life. Although the mechanisms underlying the neurologic injury associated with intrauterine growth restriction are not completely clear, studies have revealed that neuronal apoptosis, neuroinflammation, oxidative stress, excitatory toxicity, disruption of blood-brain barrier, and epigenetics may be involved in this process. This article reviews the manifestations and possible mechanisms underlying neurologic injury in intrauterine growth restriction and provides a theoretical basis for the effective prevention and treatment of this condition.
Collapse
Affiliation(s)
- Lijia Wan
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Kaiju Luo
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Pingyang Chen
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Moon KC, Park CW, Park JS, Jun JK. Fetal Growth Restriction and Subsequent Low Grade Fetal Inflammatory Response Are Associated with Early-Onset Neonatal Sepsis in the Context of Early Preterm Sterile Intrauterine Environment. J Clin Med 2021; 10:jcm10092018. [PMID: 34066888 PMCID: PMC8125902 DOI: 10.3390/jcm10092018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 01/22/2023] Open
Abstract
There is no information about whether fetal growth restriction (FGR) is an independent risk factor for low-grade fetal inflammatory response (FIR), and which is more valuable for the prediction of early-onset neonatal sepsis (EONS) between low-grade FIR or fetal inflammatory response syndrome (FIRS) in the context of human early preterm sterile intrauterine environment. We examined FIR (umbilical cord plasma (UCP) CRP concentration at birth) according to the presence or absence of FGR (birth weight < 5th percentile for gestational age (GA)) and EONS in 81 singleton preterm births (GA at delivery: 24.5~33.5 weeks) within 72 h after amniocentesis and with sterile intrauterine environment. A sterile intrauterine environment was defined by the presence of both a sterile amniotic fluid (AF) (AF with both negative culture and MMP-8 < 23 ng/mL) and inflammation-free placenta. Median UCP CRP (ng/mL) was higher in cases with FGR than in those without FGR (63.2 vs. 34.5; p = 0.018), and FGR was an independent risk factor for low-grade FIR (UCP CRP ≥ 52.8 ng/mL) (OR 3.003, 95% CI 1.024-8.812, p = 0.045) after correction for confounders. Notably, low-grade FIR (positive likelihood-ratio (LR) and 95% CI, 2.3969 (1.4141-4.0625); negative-LR and 95% CI, 0.4802 (0.2591-0.8902)), but not FIRS (positive-LR and 95% CI, 2.1071 (0.7526-5.8993); negative-LR and 95% CI, 0.8510 (0.6497-1.1145)), was useful for the identification of EONS. In conclusion, FGR is an independent risk factor for low-grade FIR, and low-grade FIR, but not FIRS, has a value for the identification of EONS in the context of the early preterm sterile intrauterine environment.
Collapse
Affiliation(s)
- Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.S.P.); (J.K.J.)
- Institute of Reproductive Medicine and Population, Seoul National University Medical Research Center, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-0635
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.S.P.); (J.K.J.)
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (J.S.P.); (J.K.J.)
- Institute of Reproductive Medicine and Population, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
14
|
Xu H, Zhang L, Xuan XY, Zhu M, Tang J, Zhao XK. Intrauterine cytomegalovirus infection: a possible risk for cerebral palsy and related to its clinical features, neuroimaging findings: a retrospective study. BMC Pediatr 2020; 20:555. [PMID: 33292171 PMCID: PMC7722436 DOI: 10.1186/s12887-020-02449-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/01/2020] [Indexed: 11/10/2022] Open
Abstract
Background Abundant clinical evidences indicate that the increased risk of cerebral palsy (CP) may be associated with the intrauterine exposure to maternal infection. Cytomegalovirus (CMV) is a common cause of CP. However, little is known about the relationship between the intrauterine exposure of the fetus to CMV infection and CP. This study aims to explore the relationships between intrauterine CMV infection and clinical symptoms, classification, intelligence development and brain neuroimaging findings in children with CP. Methods In this study, 147 children with CP in recent 6 years were retrospectively analyzed (average age: 14.76 ± 3.07months; sex (M/F): 103/44). 148 children had CMV IgG and IgM positive sera identified by TORCH examination were selected as the control group (average age: 15.10 ± 3.21months; sex (M/F): 102/46), which also undergo the examination of CMV-DNA in urine. The age and sex of children in the control group were matched with those in the CP group. CMV-DNA in urine was detected by CMV fluorescence quantitative PCR, and t-test was performed to analyze the number of copies. For the CP group, standardized rehabilitation treatment was performed and the function of gross motor was evaluated by GMFM scale before and after treatment. The Gesell developmental scale (GDS) was used to assess the level of intellectual development. The classification of CP was conducted and the results of magnetic resonance imaging were analyzed. Finally, the correlations between the copy number of CMV-DNA and the clinical characteristics of children with CP were evaluated by the method of Pearson and Spearman correlation analysis. Results The level of CMV infection was negatively correlated with the developmental quotient (DQ) of children with CP. Negative association was found between the level of CMV infection and the level of the gross motor development. The level of CMV infection was positively related with the occurrence probability of spastic quadriplegia. However, no associations were found between the abnormalities of brain tissue and the number of CMV copies. Moreover, CMV infection might add the difficulty of the rehabilitation treatment. Conclusions CMV infection is a risk factor for the occurrence of CP in children. Pregnancy examination should be strengthened. Early detection and control of CMV infection may contribute to the rehabilitation of children with CP and reduce the disability and social burden.
Collapse
Affiliation(s)
- H Xu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - L Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - X Y Xuan
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - M Zhu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - J Tang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - X K Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Oh JW, Park CW, Moon KC, Park JS, Jun JK. Fetal inflammatory response is positively correlated with the progress of inflammation in chorionic plate. Placenta 2020; 97:6-17. [PMID: 32792065 DOI: 10.1016/j.placenta.2020.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/11/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION No information exists about the relationship among the progress of inflammation in chorionic-plate, fetal inflammatory response (FIR), funisitis, amnionitis and early-onset neonatal sepsis (EONS) in patients with either preterm labor or preterm premature rupture of membranes (preterm-PROM). The objective of current study is to examine this issue. METHODS Study population included 247 singleton preterm gestations (21.6 weeks ≤ gestational age at delivery≤36 weeks) who had either preterm-labor or preterm-PROM with acute placental inflammation. We examined the intensity of FIR, and the frequency of fetal inflammatory response syndrome (FIRS), funisitis, amnionitis and proven or suspected EONS according to the progress of inflammation in chorionic-plate. The intensity of FIR was measured with umbilical cord plasma (UCP)-CRP concentration (ng/ml) at birth, and FIRS was defined as an elevated UCP-CRP concentration (≥200 ng/ml). The progress of inflammation in chorionic-plate was divided with a slight modification from previously reported-criteria as follows: stage-0, inflammation-free chorionic-plate; stage-1, inflammation restricted to subchorionic fibrin (SCF); stage-2, inflammation in the connective tissue (CT) of chorionic-plate without chorionic vasculitis; stage-3, chorionic vasculitis. RESULTS 1) Stage-0, stage-1, stage-2 and stage-3 of inflammation in chorionic-plate were present in 36.8% (91/247), 29.6% (73/247), 25.5% (63/247), and 8.1% (20/247) of cases; 2) UCP-CRP concentration at birth was significantly and positively correlated with the progress of inflammation in chorionic-plate (Spearman's rank correlation test, P < .000001, γ = 0.391 and Kruskal-Wallis test, P < .001); 3) Moreover, FIRS, funisitis, amnionitis, and EONS were significantly more frequent as a function of the progress of inflammation in chorionic-plate. DISCUSSION The intensity of FIR and the frequency of FIRS were positively correlated with the progress of inflammation in chorionic-plate in patients with either PTL or preterm-PROM. This suggests chorionic-plate may be an independent compartment for the analysis of inflammation.
Collapse
Affiliation(s)
- Jeong-Won Oh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Reproductive Medicine and Population, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Reproductive Medicine and Population, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
16
|
Maki Y, Nygard K, Hammond RR, Regnault TRH, Richardson BS. Maternal Undernourishment in Guinea Pigs Leads to Fetal Growth Restriction with Increased Hypoxic Cells and Oxidative Stress in the Brain. Dev Neurosci 2020; 41:290-299. [PMID: 32316015 DOI: 10.1159/000506939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts markers for brain hypoxia and oxidative stress. METHODS Guinea pigs were fed ad libitum (control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Near term, hypoxyprobe-1 (HP-1) was injected into pregnant sows. Fetuses were then necropsied and brain tissues were processed for HP-1 (hypoxia marker) and 4HNE, 8-OHdG, and 3-nitrotyrosine (oxidative stress markers) immunoreactivity (IR). RESULTS FGR-MNR fetal and brain weights were decreased 38 and 12%, respectively, with brain/fetal weights thereby increased 45% as a measure of brain sparing, and more so in males than females. FGR-MNR HP-1 IR was increased in most of the brain regions studied, and more so in males than females, while 4HNE and 8-OHdG IR were increased in select brain regions, but with no sex differences. CONCLUSIONS Chronic hypoxia is likely to be an important signaling mechanism in the FGR brain, but with males showing more hypoxia than females. This may involve sex differences in adaptive decreases in growth and normalizing of oxygen, with implications for sex-specific alterations in brain development and risk for later neuropsychiatric disorder.
Collapse
Affiliation(s)
- Yohei Maki
- Department of Obstetrics and Gynecology, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, Ontario, Canada
| | - Robert R Hammond
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada.,Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,The Children's Health Research Institute, London, Ontario, Canada
| | - Bryan S Richardson
- Department of Obstetrics and Gynecology, University of Western Ontario, London, Ontario, Canada, .,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, .,The Children's Health Research Institute, London, Ontario, Canada,
| |
Collapse
|
17
|
Abstract
Perinatal hypoxia is still one of the greatest threats to the newborn child, even in developed countries. However, there is a lack of works which summarize up-to-date information about that huge topic. Our review covers a broader spectrum of recent results from studies on mechanisms leading to hypoxia-induced injury. It also resumes possible primary causes and observed behavioral outcomes of perinatal hypoxia. In this review, we recognize two types of hypoxia, according to the localization of its primary cause: environmental and placental. Later we analyze possible pathways of prenatal hypoxia-induced injury including gene expression changes, glutaminergic excitatory damage (and a role of NMDA receptors in it), oxidative stress with ROS and RNS production, inflammation and apoptosis. Moreover, we focus on the impact of these pathophysiological changes on the structure and development of the brain, especially on its regions: corpus striatum and hippocampus. These brain changes of the offspring lead to impairments in their postnatal growth and sensorimotor development, and in their motor functions, activity, emotionality and learning ability in adulthood. Later we compare various animal models used to investigate the impact of prenatal and postnatal injury (hypoxic, ischemic or combinatory) on living organisms, and show their advantages and limitations.
Collapse
Affiliation(s)
- M Piešová
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | |
Collapse
|
18
|
Oh JW, Park CW, Moon KC, Park JS, Jun JK. The relationship among the progression of inflammation in umbilical cord, fetal inflammatory response, early-onset neonatal sepsis, and chorioamnionitis. PLoS One 2019; 14:e0225328. [PMID: 31743377 PMCID: PMC6863554 DOI: 10.1371/journal.pone.0225328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES No information exists about whether fetal inflammatory-response(FIR), early-onset neonatal sepsis(EONS) and chorioamnionitis(an advanced-stage of maternal inflammatory-response in extraplacental membranes) continuously increase according to the progression of inflammation in umbilical-cord(UC). The objective of current-study is to examine this-issue. METHODS Study-population included 239singleton pregnant-women(gestational-age[GA] at delivery: 21.6~36weeks) who had inflammation in extraplacental membranes or chorionic plate (CP) and either preterm-labor or preterm-PROM. We examined FIR, and the frequency of fetal inflammatory-responses syndrome(FIRS), proven-EONS, suspected-EONS and chorioamnionitis according to the progression of inflammation in UC. The progression of inflammation in UC was divided with a slight-modification from previously reported-criteria as follows: stage0, inflammation-free UC; stage-1: umbilical phlebitis only; stage-2: involvement of at least one UA and either the other UA or UV without extension into WJ; stage-3: the extension of inflammation into WJ. FIR was gauged by umbilical-cord-plasma(UCP) CRP concentration(ng/ml) at birth, and FIRS was defined as an elevated UCP CRP concentration at birth(≥200ng/ml). RESULTS Stage-0, stage-1, stage-2 and stage-3 of inflammation in UC were present in 48.1%, 15.5%, 6.7%, and 29.7% of cases. FIR continuously increased according to the progression of inflammation in UC(Kruskal-Wallis test,P<0.001; Spearman-rank-correlation test,P<0.000001,r = 0.546). Moreover, there was a significant and stepwise increase in the frequency of FIRS, proven-EONS, suspected-EONS and chorioamnionitis according to the progression of inflammation in UC(each for P<0.000005 in both chi-square test and linear-by-linear-association). Multiple logistic-regression analysis demonstrated that the more advanced-stage in the progression of inflammation in UC(i.e., stage-1 vs. stage-2 vs. stage-3), the better predictor of suspected-EONS (Odds-ratio[OR]3.358, 95%confidence-interval[CI]:1.020-11.057 vs. OR5.147, 95%CI:1.189-22.275 vs. OR11.040, 95%CI:4.118-29.592) and chorioamnionitis(OR6.593, 95%CI:2.717-15.999 vs. OR16.508, 95%CI:3.916-69.596 vs. OR20.167, 95%CI:8.629-47.137). CONCLUSION FIR, EONS and chorioamnionitis continuously increase according to the progression of inflammation in UC among preterm-gestations with inflammation in extraplacental membranes or CP. This finding may suggest that funisitis(inflammation in UC) is both qualitatively and quantitatively histologic-counterpart of FIRS, and a surrogate-marker for chorioamnionitis.
Collapse
Affiliation(s)
- Jeong-Won Oh
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Satriano A, Franchini S, Lapergola G, Pluchinotta F, Anastasia L, Baryshnikova E, Livolti G, Gazzolo D. Glutathione Blood Concentrations: A Biomarker of Oxidative Damage Protection during Cardiopulmonary Bypass in Children. Diagnostics (Basel) 2019; 9:diagnostics9030118. [PMID: 31540197 PMCID: PMC6787732 DOI: 10.3390/diagnostics9030118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 01/18/2023] Open
Abstract
Background. Pediatric open-heart surgery with cardiopulmonary bypass (CPB) still remains a risky interventional procedure at high mortality/morbidity. To date, there are no clinical, laboratory, and/or monitoring parameters providing useful information on perioperative stress. We therefore investigated whether blood concentrations of glutathione (GSH), a powerful endogenous antioxidant, changed in the perioperative period. Methods. We conducted an observational study in 35 congenital heart disease (CHD) children in whom perioperative standard laboratory and monitoring parameters and GSH blood levels were assessed at five monitoring time points. Results. GSH showed a pattern characterized by a progressive increase from pre-surgery up to 24 h after surgery, reaching its highest peak at the end of CPB. GSH measured at the end of CPB correlated with CPB duration, cross-clamping, arterial oxygen partial pressure, and with body core temperature. Conclusions. The increase in GSH levels in the perioperative period suggests a compensatory mechanism to oxidative damage during surgical procedure. Caution is needed in controlling different CPB phases, especially systemic reoxygenation in a population that is per se more prone to oxidative stress/damage. The findings may point the way to detecting the optimal temperature and oxygenation target by biomarker monitoring.
Collapse
Affiliation(s)
- Angela Satriano
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, 20097 Milan, Italy
| | - Simone Franchini
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, 65100 Chieti, Italy
| | - Giuseppe Lapergola
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, 65100 Chieti, Italy
| | - Francesca Pluchinotta
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, 20097 Milan, Italy
| | - Luigi Anastasia
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, 20097 Milan, Italy
| | - Ekaterina Baryshnikova
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, San Donato Milanese, 20097 Milan, Italy
| | - Giovanni Livolti
- Department of Biomedical and Biotechnological Sciences Section of Biochemistry University of Catania, 95100 Catania, Italy
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University of Chieti, 65100 Chieti, Italy.
- AO SS Antonio, Biagio and C. Arrigo Hospital Alessandria, 15121 Alessandria, Italy.
| |
Collapse
|
20
|
Dowell J, Elser BA, Schroeder RE, Stevens HE. Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci Lett 2019; 709:134368. [PMID: 31299286 DOI: 10.1016/j.neulet.2019.134368] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022]
Abstract
Development of the brain prenatally is affected by maternal experience and exposure. Prenatal maternal psychological stress changes brain development and results in increased risk for neuropsychiatric disorders. In this review, multiple levels of prenatal stress mechanisms (offspring brain, placenta, and maternal physiology) are discussed and their intersection with cellular stress mechanisms explicated. Heat shock factors and oxidative stress are closely related to each other and converge with the inflammation, hormones, and cellular development that have been more deeply explored as the basis of prenatal stress risk. Increasing evidence implicates cellular stress mechanisms in neuropsychiatric disorders associated with prenatal stress including affective disorders, schizophrenia, and child-onset psychiatric disorders. Heat shock factors and oxidative stress also have links with the mechanisms involved in other kinds of prenatal stress including external exposures such as environmental toxicants and internal disruptions such as preeclampsia. Integrative understanding of developmental neurobiology with these cellular and physiological mechanisms is necessary to reduce risks and promote healthy brain development.
Collapse
Affiliation(s)
- Jonathan Dowell
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Benjamin A Elser
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA.
| | - Rachel E Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, Iowa City, IA, USA.
| |
Collapse
|
21
|
Wixey JA, Sukumar KR, Pretorius R, Lee KM, Colditz PB, Bjorkman ST, Chand KK. Ibuprofen Treatment Reduces the Neuroinflammatory Response and Associated Neuronal and White Matter Impairment in the Growth Restricted Newborn. Front Physiol 2019; 10:541. [PMID: 31133875 PMCID: PMC6523042 DOI: 10.3389/fphys.2019.00541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a condition where the fetus does not achieve optimal growth, commonly caused by placental insufficiency. The chronic decrease in blood flow restricts oxygen and nutrient supply to the fetus, which can damage numerous organ systems, with the fetal brain being particularly vulnerable. Although white matter and neuronal injury are evident in IUGR infants, the specific mechanisms underlying these changes are poorly understood. Inflammation is considered to be a main driver in exacerbating brain injury. Using a spontaneous piglet model of IUGR, we aim to determine whether administration of the anti-inflammatory drug ibuprofen will decrease inflammation at postnatal day 4 (P4). The treatment group received ibuprofen (20 mg/kg/day on day 1 and 10 mg/kg/day on days 2 and 3) in piglet formula during the morning feed each day and brains examined on P4. Markers of inflammation, apoptosis, cell proliferation, neuronal injury, and white matter injury were examined. Ibuprofen treatment ameliorated the increase in numbers of microglia and astrocytes in the parietal cortex and white matter tracts of the IUGR piglet brain on P4 as well as decreasing proinflammatory cytokines. Ibuprofen treatment prevented the reduction in apoptosis, neuronal cell counts, and myelin index in the IUGR piglets. Our findings demonstrate ibuprofen reduces the inflammatory response in the IUGR neonatal brain and concurrently reduces neuronal and white matter impairment.
Collapse
Affiliation(s)
- Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kishen R Sukumar
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Rinaldi Pretorius
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kah Meng Lee
- Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Perinatal Research Centre, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - S Tracey Bjorkman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Wixey JA, Lee KM, Miller SM, Goasdoue K, Colditz PB, Tracey Bjorkman S, Chand KK. Neuropathology in intrauterine growth restricted newborn piglets is associated with glial activation and proinflammatory status in the brain. J Neuroinflammation 2019; 16:5. [PMID: 30621715 PMCID: PMC6323795 DOI: 10.1186/s12974-018-1392-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The fetal brain is particularly vulnerable to intrauterine growth restriction (IUGR) conditions evidenced by neuronal and white matter abnormalities and altered neurodevelopment in the IUGR infant. To further our understanding of neurodevelopment in the newborn IUGR brain, clinically relevant models of IUGR are required. This information is critical for the design and implementation of successful therapeutic interventions to reduce aberrant brain development in the IUGR newborn. We utilise the piglet as a model of IUGR as growth restriction occurs spontaneously in the pig as a result of placental insufficiency, making it a highly relevant model of human IUGR. The purpose of this study was to characterise neuropathology and neuroinflammation in the neonatal IUGR piglet brain. METHODS Newborn IUGR (< 5th centile) and normally grown (NG) piglets were euthanased on postnatal day 1 (P1; < 18 h) or P4. Immunohistochemistry was utilised to examine neuronal, white matter and inflammatory responses, and PCR for cytokine analysis in parietal cortex of IUGR and NG piglets. RESULTS The IUGR piglet brain displayed less NeuN-positive cells and reduced myelination at both P1 and P4 in the parietal cortex, indicating neuronal and white matter disruption. A concurrent decrease in Ki67-positive proliferative cells and increase in cell death (caspase-3) in the IUGR piglet brain was also apparent on P4. We observed significant increases in the number of both Iba-1-positive microglia and GFAP-positive astrocytes in the white matter in IUGR piglet brain on both P1 and P4 compared with NG piglets. These increases were associated with a change in activation state, as noted by altered glial morphology. This inflammatory state was further evident with increased expression levels of proinflammatory cytokines (interleukin-1β, tumour necrosis factor-α) and decreased levels of anti-inflammatory cytokines (interleukin-4 and -10) observed in the IUGR piglet brains. CONCLUSIONS These findings suggest that the piglet model of IUGR displays the characteristic neuropathological outcomes of neuronal and white matter impairment similar to those reported in the IUGR human brain. The activated glial morphology and elevated proinflammatory cytokines is indicative of an inflammatory response that may be associated with neuronal damage and white matter disruption. These findings support the use of the piglet as a pre-clinical model for studying mechanisms of altered neurodevelopment in the IUGR newborn.
Collapse
Affiliation(s)
- Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.
| | - Kah Meng Lee
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Stephanie M Miller
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Kate Goasdoue
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.,Perinatal Research Centre, Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| | - S Tracey Bjorkman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| |
Collapse
|
23
|
Maternal nutrient restriction in guinea pigs leads to fetal growth restriction with increased brain apoptosis. Pediatr Res 2019; 85:105-112. [PMID: 30420709 DOI: 10.1038/s41390-018-0230-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND We determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts cell death in the brain with implications for neurodevelopmental adversity. METHODS Guinea pigs were fed ad libitum (Control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Fetuses were necropsied near term and brain tissues processed for necrosis (H&E), apoptosis (TUNEL), and pro- (Bax) and anti- (Bcl-2 and Grp78) apoptotic protein immunoreactivity. RESULTS FGR-MNR fetal and brain weights were decreased 38% and 12%, respectively, indicating brain sparing but with brains still smaller. While necrosis remained unchanged, apoptosis was increased in the white matter and hippocampus in the FGR brains, and control and FGR-related apoptosis were increased in males for most brain areas. Bax was increased in the CA4 and Bcl-2 was decreased in the dentate gyrus in the FGR brains supporting a role in the increased apoptosis, while Grp78 was increased in the FGR females, possibly contributing to the sex-related differences. CONCLUSIONS MNR-induced FGR results in increased brain apoptosis with regional and sex-related differences that may contribute to the reduction in brain area size reported clinically and increased risk in FGR males for later neurodevelopmental adversity.
Collapse
|
24
|
Morrison JL, Botting KJ, Darby JRT, David AL, Dyson RM, Gatford KL, Gray C, Herrera EA, Hirst JJ, Kim B, Kind KL, Krause BJ, Matthews SG, Palliser HK, Regnault TRH, Richardson BS, Sasaki A, Thompson LP, Berry MJ. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J Physiol 2018; 596:5535-5569. [PMID: 29633280 PMCID: PMC6265540 DOI: 10.1113/jp274948] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual's risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig's potential to enhance clinical therapeutic innovation to improve human health.
Collapse
Affiliation(s)
- Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anna L. David
- Research Department of Maternal Fetal Medicine, Institute for Women's HealthUniversity College LondonLondonUK
| | - Rebecca M. Dyson
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Kathryn L. Gatford
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Clint Gray
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Emilio A. Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jonathan J. Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Bona Kim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Karen L. Kind
- School of Animal and Veterinary SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Bernardo J. Krause
- Division of Paediatrics, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | | | - Hannah K. Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Timothy R. H. Regnault
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Bryan S. Richardson
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Aya Sasaki
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Loren P. Thompson
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Mary J. Berry
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
25
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
26
|
Wixey JA, Chand KK, Pham L, Colditz PB, Bjorkman ST. Therapeutic potential to reduce brain injury in growth restricted newborns. J Physiol 2018; 596:5675-5686. [PMID: 29700828 DOI: 10.1113/jp275428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Brain injury in intrauterine growth restricted (IUGR) infants is a major contributing factor to morbidity and mortality worldwide. Adverse outcomes range from mild learning difficulties, to attention difficulties, neurobehavioral issues, cerebral palsy, epilepsy, and other cognitive and psychiatric disorders. While the use of medication to ameliorate neurological deficits in IUGR neonates has been identified as warranting urgent research for several years, few trials have been reported. This review summarises clinical trials focusing on brain protection in the IUGR newborn as well as therapeutic interventions trialled in animal models of IUGR. Therapeutically targeting mechanisms of brain injury in the IUGR neonate is fundamental to improving long-term neurodevelopmental outcomes. Inflammation is a key mechanism in neonatal brain injury; and therefore an appealing target. Ibuprofen, an anti-inflammatory drug currently used in the preterm neonate, may be a potential therapeutic candidate to treat brain injury in the IUGR neonate. To better understand the potential of ibuprofen and other therapeutic agents to be neuroprotective in the IUGR neonate, long-term follow-up information of neurodevelopmental outcomes must be studied. Where agents such as ibuprofen are shown to be effective, have a good safety profile and are relatively inexpensive, they can be widely adopted and lead to improved outcomes.
Collapse
Affiliation(s)
- Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - Lily Pham
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| | - S Tracey Bjorkman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, 4029, Australia
| |
Collapse
|
27
|
Frey HA, Liu X, Lynch CD, Musindi W, Samuels P, Rood KM, Thung SF, Bakk JM, Cheng W, Landon MB. An evaluation of fetal heart rate characteristics associated with neonatal encephalopathy: a case-control study. BJOG 2018; 125:1480-1487. [DOI: 10.1111/1471-0528.15222] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 11/30/2022]
Affiliation(s)
- HA Frey
- Department of Obstetrics and Gynecology; The Ohio State University College of Medicine; Columbus OH USA
| | - X Liu
- Department of Obstetrics; International Peace Maternity & Child Health Hospital; Shanghai Jiao Tong University; Shanghai China
| | - CD Lynch
- Department of Obstetrics and Gynecology; The Ohio State University College of Medicine; Columbus OH USA
| | - W Musindi
- Department of Obstetrics and Gynecology; The Ohio State University College of Medicine; Columbus OH USA
| | - P Samuels
- Department of Obstetrics and Gynecology; The Ohio State University College of Medicine; Columbus OH USA
| | - KM Rood
- Department of Obstetrics and Gynecology; The Ohio State University College of Medicine; Columbus OH USA
| | - SF Thung
- Department of Obstetrics and Gynecology; The Ohio State University College of Medicine; Columbus OH USA
| | - JM Bakk
- Department of Obstetrics and Gynecology; The Ohio State University College of Medicine; Columbus OH USA
| | - W Cheng
- Department of Obstetrics; International Peace Maternity & Child Health Hospital; Shanghai Jiao Tong University; Shanghai China
| | - MB Landon
- Department of Obstetrics and Gynecology; The Ohio State University College of Medicine; Columbus OH USA
| |
Collapse
|
28
|
Colella M, Frérot A, Novais ARB, Baud O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Curr Pediatr Rev 2018; 14:212-218. [PMID: 29998808 PMCID: PMC6416241 DOI: 10.2174/1573396314666180712114531] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Fetal Growth Restriction (FGR) is one of the most common noxious antenatal conditions in humans, inducing a substantial proportion of preterm delivery and leading to a significant increase in perinatal mortality, neurological handicaps and chronic diseases in adulthood. This review summarizes the current knowledge about the postnatal consequences of FGR, with a particular emphasis on the long-term consequences on respiratory, cardiovascular and neurological structures and functions. RESULT AND CONCLUSION FGR represents a global health challenge, and efforts are urgently needed to improve our understanding of the critical factors leading to FGR and subsequent insults to the developing organs.
Collapse
Affiliation(s)
- Marina Colella
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| | - Alice Frérot
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| | - Aline Rideau Batista Novais
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| | - Olivier Baud
- University Paris Diderot, Sorbone Paris-Cité, Inserm U1141, Neonatal intensive care unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children’s hospital, Paris, France
| |
Collapse
|
29
|
Wixey JA, Colditz PB, Björkman ST. Targeting inflammation to reduce brain injury in growth restricted newborns: A potential treatment? Neural Regen Res 2017; 12:1804-1806. [PMID: 29239322 PMCID: PMC5745830 DOI: 10.4103/1673-5374.219038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Julie A Wixey
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Paul B Colditz
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Stella Tracey Björkman
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
30
|
Inflammatory molecules and neurotrophic factors as biomarkers of neuropsychomotor development in preterm neonates: A Systematic Review. Int J Dev Neurosci 2017; 65:29-37. [PMID: 29051031 DOI: 10.1016/j.ijdevneu.2017.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To provide a systematic review investigating the role of inflammatory molecules and neurotrophic factors as biomarkers of neuropsychomotor development in preterm neonates. DATA SOURCE Databases including PubMed, BIREME, and Scopus were systematically searched. Observational studies, as well as transversal, and cohort studies using human subjects published from 1990 to September 2017 were eligible for inclusion. Two authors independently identified eligible studies and analyzed their characteristics, quality, and accuracy in depth. DATA SYNTHESIS 11 eligible studies clearly investigated the association between peripheral inflammation and motor and/or cognitive development in preterm infants. However, the selected populations differed in relation to the events associated with prematurity and the risk factors to abnormal motor and/or cognitive development. These studies measured circulating levels of cytokines, chemokines, adhesion molecules, acute phase proteins, and growth factors. The most commonly analyzed proteins were IL-1β, IL-6, TNF, CCL5/RANTES, CXCL8/IL-8, IGFBP-1, and VEGF. In seven of the eligible studies, plasma levels of IL-6 correlated with development delay. Two studies reported correlation between CXCL8/IL-8 plasma levels with cognitive and motor delay. In one study, higher levels of MCP-1/CCL2 were associated with better cognitive and motor outcome. CONCLUSION There is preliminary evidence indicating that circulating inflammatory molecules are associated with motor and cognitive development in preterm neonates, even considering different populations.
Collapse
|
31
|
Post-hypoxia Invasion of the fetal brain by multidrug resistant Staphylococcus. Sci Rep 2017; 7:6458. [PMID: 28743956 PMCID: PMC5527097 DOI: 10.1038/s41598-017-06789-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/19/2017] [Indexed: 01/12/2023] Open
Abstract
Herein we describe an association between activation of inflammatory pathways following transient hypoxia and the appearance of the multidrug resistant bacteria Staphylococcus simulans in the fetal brain. Reduction of maternal arterial oxygen tension by 50% over 30 min resulted in a subseiuent significant over-expression of genes associated with immune responses 24 h later in the fetal brain. The activated genes were consistent with stimulation by bacterial lipopolysaccharide; an influx of macrophages and appearance of live bacteria were found in these fetal brains. S. simulans was the predominant bacterial species in fetal brain after hypoxia, but was found in placenta of all animals. Strains of S. simulans from the placenta and fetal brain were equally highly resistant to multiple antibiotics including methicillin and had identical genome sequences. These results suggest that bacteria from the placenta invade the fetal brain after maternal hypoxia.
Collapse
|
32
|
Urinary Levels of IL-1 β and GDNF in Preterm Neonates as Potential Biomarkers of Motor Development: A Prospective Study. Mediators Inflamm 2017; 2017:8201423. [PMID: 28553016 PMCID: PMC5434239 DOI: 10.1155/2017/8201423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/22/2017] [Indexed: 01/07/2023] Open
Abstract
Objectives. To evaluate the association between inflammatory biomarkers, neurotrophic factors, birth conditions, and the presence of motor development abnormalities in preterm neonates. Methods. Plasma and urinary levels of cytokines (IL-1β, IL-6, IL-10, TNF, and IL-12p70), chemokines (CXCL8/IL-8, CCL2/MCP-1, CCL5/RANTES, CXCL10/IP-10, and CXCL9/MIG), and neurotrophic factors (BDNF and GDNF) were evaluated in 40 preterm neonates born between 28 and 32 incomplete weeks of gestation, at four distinct time points: at birth (umbilical cord blood) (T0), at 48 (T1), at 72 hours (T2), and at 3 weeks after birth (T3). Biomarkers levels were compared between different time points and then associated with Test of Infant Motor Performance (TIMP) percentiles. Results. Maternal age, plasma, and urinary concentrations of inflammatory molecules and neurotrophic factors were significantly different between groups with normal versus lower than expected motor development. Higher levels of GDNF were found in the group with lower than expected motor development, while IL-1β and CXCL8/IL-8 values were higher in the group with typical motor development. Conclusion. Measurements of cytokines and neurotrophic factors in spot urine may be useful in the follow-up of motor development in preterm neonates.
Collapse
|
33
|
Wixey JA, Chand KK, Colditz PB, Bjorkman ST. Review: Neuroinflammation in intrauterine growth restriction. Placenta 2016; 54:117-124. [PMID: 27916232 DOI: 10.1016/j.placenta.2016.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
Disruption to the maternal environment during pregnancy from events such as hypoxia, stress, toxins, inflammation, and reduced placental blood flow can affect fetal development. Intrauterine growth restriction (IUGR) is commonly caused by chronic placental insufficiency, interrupting supply of oxygen and nutrients to the fetus resulting in abnormal fetal growth. IUGR is a major cause of perinatal morbidity and mortality, occurring in approximately 5-10% of pregnancies. The fetal brain is particularly vulnerable in IUGR and there is an increased risk of long-term neurological disorders including cerebral palsy, epilepsy, learning difficulties, behavioural difficulties and psychiatric diagnoses. Few studies have focused on how growth restriction interferes with normal brain development in the IUGR neonate but recent studies in growth restricted animal models demonstrate increased neuroinflammation. This review describes the role of neuroinflammation in the progression of brain injury in growth restricted neonates. Identifying the mediators responsible for alterations in brain development in the IUGR infant is key to prevention and treatment of brain injury in these infants.
Collapse
Affiliation(s)
- Julie A Wixey
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia.
| | - Kirat K Chand
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| | - Paul B Colditz
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| | - S Tracey Bjorkman
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| |
Collapse
|
34
|
Mastrolia SA, Erez O, Loverro G, Di Naro E, Weintraub AY, Tirosh D, Baron J, Hershkovitz R. Ultrasonographic approach to diagnosis of fetal inflammatory response syndrome: a tool for at-risk fetuses? Am J Obstet Gynecol 2016; 215:9-20. [PMID: 26821337 DOI: 10.1016/j.ajog.2016.01.164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 12/11/2022]
Abstract
Preterm parturition is a syndrome that may result from many underlying mechanisms. Infection and inflammation are the prominent ones. Intrauterine infection and inflammation have an effect akin to sepsis, and that is similar to systemic inflammatory response in adults. Indeed, there is evidence to support the association of a fetal inflammatory response syndrome (FIRS) to systemic infection and inflammation. The utilization of invasive procedures for the prenatal diagnosis of FIRS is associated with a risk for complications resulting from the invasive method. The progress in the imaging quality of obstetrical ultrasound and the development of novel methods for functional anatomical assessment of the fetal organs may help to identify, noninvasively, fetuses at risk for FIRS in patients presenting with preterm labor. We review the studies describing advanced sonographic modalities and the imaging findings in the heart, thymus, kidney, adrenal glands, and spleen of these fetuses.
Collapse
Affiliation(s)
- Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria Policlinico di Bari, School of Medicine, University of Bari "Aldo Moro," Bari, Italy; US Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Offer Erez
- Maternity Department D and Obstetrical Day Care Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, School of Medicine, Beer Sheva, Israel
| | - Giuseppe Loverro
- Department of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria Policlinico di Bari, School of Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Edoardo Di Naro
- US Unit, Department of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria Policlinico di Bari, School of Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Adi Yehuda Weintraub
- US Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Tirosh
- US Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Joel Baron
- US Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Reli Hershkovitz
- US Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
35
|
Figueroa H, Cifuentes J, Lozano M, Alvarado C, Cabezas C, Eixarch E, Fernández E, Contreras L, Illanes SE, Hernández-Andrade E, Gratacós E, Irarrazabal CE. Nitric oxide synthase and changes in oxidative stress levels in embryonic kidney observed in a rabbit model of intrauterine growth restriction. Prenat Diagn 2016; 36:628-35. [PMID: 27109011 DOI: 10.1002/pd.4829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/17/2016] [Accepted: 04/11/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This work aimed to study the effect of uteroplacental circulation restriction on endothelial kidney damage in a fetal rabbit model. METHODS New Zealand rabbits were subjected to 40% to 50% of uteroplacental artery ligation at day 25 of pregnancy. After 5 days, surviving fetuses were harvested by cesarean section. The gene and protein expressions of selected enzymes associated with nitric oxide production and oxidative stress were analyzed in fetal kidney homogenates. RESULTS The placenta weight (6.06 ± 0.27, p < 0.0319) and fetal body (19.90 ± 1.03, p < 0.0001) were significantly reduced in the uteroplacental circulation restriction group. The kidneys from restricted fetuses presented a mild vascular congestion and glomerular capillary congestion, without inflammation or hypertrophy. We found endothelial nitric oxide synthase phosphorylation inhibition (0.23 ± 0.13, p < 0.012) and arginase-2 (0.29 ± 0.14, p < 0.023) protein induction in fetal kidneys of the circulation restriction group. Finally, the kidneys from circulation-restricted fetuses showed increased inducible nitric oxide synthase messenger RNA (mRNA) (2.68 ± 0.24, p < 0.01) and reduced heme oxygenase-1 mRNA (23 ± 1.3, p < 0.003), with increased reactive oxygen species (1.69 ± 0.09, p < 0.001) and nitrotyrosine protein (1.74 ± 0.28, p < 0.003) levels, without changes in Nox mRNA. CONCLUSION We describe significant deregulation of vascular activity and oxidative damage in kidneys of fetal rabbits that have been exposed to restriction of the uterine circulation. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Horacio Figueroa
- Department of Obstetrics and Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Jorge Cifuentes
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Mauricio Lozano
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Cristobal Alvarado
- Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Department of Biological and Chemical Sciences, Universidad San Sebastián, Concepción, Chile
| | - Claudia Cabezas
- Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Elisenda Eixarch
- Department of Maternal-Fetal Medicine, Institut Clínic de Ginecologia, Obstetricia i Neonatologia, and Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Ellio Fernández
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Luis Contreras
- Department of Pathological Anatomy, Clínica Universidad de los Andes, Santiago, Chile
| | - Sebastian E Illanes
- Department of Obstetrics and Gynecology and Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Edgar Hernández-Andrade
- Department of Biological and Chemical Sciences, Universidad San Sebastián, Concepción, Chile
| | - Eduard Gratacós
- Department of Maternal-Fetal Medicine, Institut Clínic de Ginecologia, Obstetricia i Neonatologia, and Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Carlos E Irarrazabal
- Laboratory of Molecular and Integrative Physiology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
36
|
Chang EI, Zárate MA, Rabaglino MB, Richards EM, Arndt TJ, Keller-Wood M, Wood CE. Ketamine decreases inflammatory and immune pathways after transient hypoxia in late gestation fetal cerebral cortex. Physiol Rep 2016; 4:4/6/e12741. [PMID: 27033443 PMCID: PMC4814891 DOI: 10.14814/phy2.12741] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/27/2022] Open
Abstract
Transient hypoxia in pregnancy stimulates a physiological reflex response that redistributes blood flow and defends oxygen delivery to the fetal brain. We designed the present experiment to test the hypotheses that transient hypoxia produces damage of the cerebral cortex and that ketamine, an antagonist of NMDA receptors and a known anti‐inflammatory agent, reduces the damage. Late gestation, chronically catheterized fetal sheep were subjected to a 30‐min period of ventilatory hypoxia that decreased fetal PaO2 from 17 ± 1 to 10 ± 1 mmHg, or normoxia (PaO2 17 ± 1 mmHg), with or without pretreatment (10 min before hypoxia/normoxia) with ketamine (3 mg/kg, i.v.). One day (24 h) after hypoxia/normoxia, fetal cerebral cortex was removed and mRNA extracted for transcriptomics and systems biology analysis (n = 3–5 per group). Hypoxia stimulated a transcriptomic response consistent with a reduction in cellular metabolism and an increase in inflammation. Ketamine pretreatment reduced both of these responses. The inflammation response modeled with transcriptomic systems biology was validated by immunohistochemistry and showed increased abundance of microglia/macrophages after hypoxia in the cerebral cortical tissue that ketamine significantly reduced. We conclude that transient hypoxia produces inflammation of the fetal cerebral cortex and that ketamine, in a standard clinical dose, reduces the inflammation response.
Collapse
Affiliation(s)
- Eileen I Chang
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Miguel A Zárate
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Maria B Rabaglino
- CEPROCOR, National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
| | - Elaine M Richards
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Thomas J Arndt
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
37
|
Hsueh YY, Chang YJ, Huang CW, Handayani F, Chiang YL, Fan SC, Ho CJ, Kuo YM, Yang SH, Chen YL, Lin SC, Huang CC, Wu CC. Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury. Sci Rep 2015; 5:14985. [PMID: 26447335 PMCID: PMC4597209 DOI: 10.1038/srep14985] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/15/2015] [Indexed: 01/28/2023] Open
Abstract
Perinatal cerebral hypoxic-ischemic (HI) injury damages the architecture of neurovascular units (NVUs) and results in neurological disorders. Here, we differentiated adipose-derived stem cells (ASCs) toward the progenitor of endothelial progenitor cells (EPCs) and neural precursor cells (NPCs) via microenvironmental induction and investigated the protective effect by transplanting ASCs, EPCs, NPCs, or a combination of EPCs and NPCs (E+N) into neonatal HI injured rat pups. The E+N combination produced significant reduction in brain damage and cell apoptosis and the most comprehensive restoration in NVUs regarding neuron number, normal astrocytes, and vessel density. Improvements in cognitive and motor functions were also achieved in injured rats with E+N therapy. Synergistic interactions to facilitate transmigration under in vitro hypoxic microenvironment were discovered with involvement of the neuropilin-1 (NRP1) signal in EPCs and the C-X-C chemokine receptor 4 (CXCR4) and fibroblast growth factor receptor 1 (FGFR1) signals in NPCs. Therefore, ASCs exhibit great potential for cell sources in endothelial and neural lineages to prevent brain from HI damage.
Collapse
Affiliation(s)
- Yuan-Yu Hsueh
- Division of Plastic Surgery, National Cheng Kung University Hospital, North District, Tainan City, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Ya-Ju Chang
- Department of Cell Biology and Anatomy, National Cheng Kung University, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Chia-Wei Huang
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Fitri Handayani
- Department of Cell Biology and Anatomy, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Yi-Lun Chiang
- Department of Cell Biology and Anatomy, National Cheng Kung University, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Shih-Chen Fan
- Department of Occupational Therapy, I-Shou University, Kaohsiung City, Taiwan
| | - Chien-Jung Ho
- Institute of Clinical Medicine, National Cheng Kung University, North District, Tainan City, Taiwan
- Department of Pediatrics, Taipei Medical University, Xinyi District, Taipei City, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, National Cheng Kung University, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
- Department of Physiology, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, National Cheng Kung University, North District, Tainan City, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, National Cheng Kung University Hospital, North District, Tainan City, Taiwan
| | - Chao-Ching Huang
- Institute of Clinical Medicine, National Cheng Kung University, North District, Tainan City, Taiwan
- Department of Pediatrics, Taipei Medical University, Xinyi District, Taipei City, Taiwan
- Department of Pediatrics, Wan-fan Hospital, College of Medicine, Taipei Medical University, Xinyi District, Taipei City, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, National Cheng Kung University, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, North District, Tainan City, Taiwan
- Department of Biomedical Engineering, National Cheng Kung University, North District, Tainan City, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, North District, Tainan City, Taiwan
| |
Collapse
|
38
|
Xu A, Matushewski B, Cao M, Hammond R, Frasch MG, Richardson BS. The Ovine Fetal and Placental Inflammatory Response to Umbilical Cord Occlusions With Worsening Acidosis. Reprod Sci 2015; 22:1409-20. [PMID: 25878209 DOI: 10.1177/1933719115580994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We hypothesized that repetitive umbilical cord occlusions (UCOs) leading to severe acidemia will stimulate a placental and thereby fetal inflammatory response which will be exacerbated by chronic hypoxemia and low-grade bacterial infection. Chronically instrumented fetal sheep served as controls or underwent repetitive UCOs for up to 4 hours or until fetal arterial pH was <7.00. Normoxic-UCO and hypoxic-UCO fetuses had arterial O2 saturation pre-UCOs of >55% and <55%, respectively, while lipopolysaccharide (LPS)-UCO fetuses received LPS intra-amniotic (2 mg/h) starting 1 hour pre-UCOs. Fetal plasma and amniotic fluid were sampled for interleukin (IL) 6 and IL-1β. Animals were euthanized at 48 hours of recovery with placental cotyledons processed for measurement of macrophage, neutrophil, and mast cell counts. Repetitive UCOs resulted in severe fetal acidemia with pH approaching 7.00 for all 3 UCO groups. Neutrophils, while unchanged within the cotyledon fetal and intermediate zones, were ∼2-fold higher within the zona intima for all 3 UCO groups. However, no differences were observed in macrophage counts among the treatment groups and no cotyledon mast cells were seen. Fetal plasma and amniotic fluid cytokines remained little changed post-UCOs and/or at 1 and 48 hours of recovery in the normoxic-UCO and hypoxic-UCO groups but increased several fold in the LPS-UCO group with IL-6 plasma values at 1 hour recovery highly correlated with the nadir pH attained (r = -.97). As such, repetitive UCOs with severe acidemia can induce a placental inflammatory response and more so with simulated low-grade infection and likely contributing to cytokine release in the umbilical circulation.
Collapse
Affiliation(s)
- Alex Xu
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Brad Matushewski
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Mingju Cao
- Department of Obstetrics and Gynaecology and Neurosciences, CHU Ste-Justine Research Centre, University of Montreal, Montreal, Canada
| | - Robert Hammond
- Department of Pathology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Martin G Frasch
- Department of Obstetrics and Gynaecology and Neurosciences, CHU Ste-Justine Research Centre, University of Montreal, Montreal, Canada
| | - Bryan S Richardson
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| |
Collapse
|
39
|
Debnath M, Venkatasubramanian G, Berk M. Fetal programming of schizophrenia: select mechanisms. Neurosci Biobehav Rev 2015; 49:90-104. [PMID: 25496904 PMCID: PMC7112550 DOI: 10.1016/j.neubiorev.2014.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/16/2022]
Abstract
Mounting evidence indicates that schizophrenia is associated with adverse intrauterine experiences. An adverse or suboptimal fetal environment can cause irreversible changes in brain that can subsequently exert long-lasting effects through resetting a diverse array of biological systems including endocrine, immune and nervous. It is evident from animal and imaging studies that subtle variations in the intrauterine environment can cause recognizable differences in brain structure and cognitive functions in the offspring. A wide variety of environmental factors may play a role in precipitating the emergent developmental dysregulation and the consequent evolution of psychiatric traits in early adulthood by inducing inflammatory, oxidative and nitrosative stress (IO&NS) pathways, mitochondrial dysfunction, apoptosis, and epigenetic dysregulation. However, the precise mechanisms behind such relationships and the specificity of the risk factors for schizophrenia remain exploratory. Considering the paucity of knowledge on fetal programming of schizophrenia, it is timely to consolidate the recent advances in the field and put forward an integrated overview of the mechanisms associated with fetal origin of schizophrenia.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health & Neurosciences, Bangalore 560029, India.
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre and Department of Psychiatry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, India
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Victoria, Australia; Department of Psychiatry, The Florey Institute of Neuroscience and Mental Health, and Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
40
|
Kim J, Choi IY, Dong Y, Wang WT, Brooks WM, Weiner CP, Lee P. Chronic fetal hypoxia affects axonal maturation in guinea pigs during development: A longitudinal diffusion tensor imaging and T2 mapping study. J Magn Reson Imaging 2014; 42:658-65. [PMID: 25504885 DOI: 10.1002/jmri.24825] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the impact of chronic hypoxia on neonatal brains, and follow developmental alterations and adaptations noninvasively in a guinea pig model. Chronic hypoxemia is the prime cause of fetal brain injury and long-term sequelae such as neurodevelopmental compromise, seizures, and cerebral palsy. MATERIALS AND METHODS Thirty guinea pigs underwent either normoxic and hypoxemic conditions during the critical stage of brain development (0.7 gestation) and studied prenatally (n = 16) or perinatally (n = 14). Fourteen newborns (7 hypoxia and 7 normoxia group) were scanned longitudinally to characterize physiological and morphological alterations, and axonal myelination and injury using in vivo diffusion tensor imaging (DTI), T2 mapping, and T2 -weighted magnetic resonance imaging (MRI). Sixteen fetuses (8 hypoxia and 8 normoxia) were studied ex vivo to assess hypoxia-induced neuronal injury/loss using Nissl staining and quantitative reverse transcriptase polymerase chain reaction methods. RESULTS Developmental brains in the hypoxia group showed lower fractional anisotropy in the corpus callosum (-12%, P = 0.02) and lower T2 values in the hippocampus (-16%, P = 0.003) compared with the normoxia group with no differences in the cortex (P > 0.07), indicating vulnerability of the hippocampus and cerebral white matter during early development. Fetal guinea pig brains with chronic hypoxia demonstrated an over 10-fold increase in expression levels of hypoxia index genes such as erythropoietin and HIF-1α, and an over 40% reduction in neuronal density, confirming prenatal brain damage. CONCLUSION In vivo MRI measurement, such as DTI and T2 mapping, provides quantitative parameters to characterize neurodevelopmental abnormalities and to monitor the impact of prenatal insult on the postnatal brain maturation of guinea pigs.
Collapse
Affiliation(s)
- Jieun Kim
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - In-Young Choi
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.,The Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yafeng Dong
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Center for the Developmental Origins of Adult Health and Disease, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wen-Tung Wang
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - William M Brooks
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Carl P Weiner
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Center for the Developmental Origins of Adult Health and Disease, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Phil Lee
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
41
|
Minowa H, Mima A, Ikeda Y, Yasuhara H, Ebisu R, Ohgitani A. Asymmetric intrauterine growth restriction is a risk factor for respiratory inhibition after crying in infants. J Matern Fetal Neonatal Med 2014; 28:2121-5. [DOI: 10.3109/14767058.2014.979784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hideki Minowa
- Department of Neonatal Intensive Care Unit, Nara Prefectural NARA Hospital, Nara, Japan
| | - Aya Mima
- Department of Neonatal Intensive Care Unit, Nara Prefectural NARA Hospital, Nara, Japan
| | - Yuka Ikeda
- Department of Neonatal Intensive Care Unit, Nara Prefectural NARA Hospital, Nara, Japan
| | - Hajime Yasuhara
- Department of Neonatal Intensive Care Unit, Nara Prefectural NARA Hospital, Nara, Japan
| | - Reiko Ebisu
- Department of Neonatal Intensive Care Unit, Nara Prefectural NARA Hospital, Nara, Japan
| | - Ayako Ohgitani
- Department of Neonatal Intensive Care Unit, Nara Prefectural NARA Hospital, Nara, Japan
| |
Collapse
|
42
|
Mason CW, Lee GT, Dong Y, Zhou H, He L, Weiner CP. Effect of prostaglandin E2 on multidrug resistance transporters in human placental cells. Drug Metab Dispos 2014; 42:2077-86. [PMID: 25261564 DOI: 10.1124/dmd.114.059477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prostaglandin (PG) E2, a major product of cyclooxygenase (COX)-2, acts as an immunomodulator at the maternal-fetal interface during pregnancy. It exerts biologic function through interaction with E-prostanoid (EP) receptors localized to the placenta. The activation of the COX-2/PGE2/EP signal pathway can alter the expression of the ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 [P-glycoprotein (Pgp); gene: ABCB1], and breast cancer resistance protein (BCRP; gene: ABCG2), which function to extrude drugs and xenobiotics from cells. In the placenta, PGE2-mediated changes in ABC transporter expression could impact fetal drug exposure. Furthermore, understanding the signaling cascades involved could lead to strategies for the control of Pgp and BCRP expression levels. We sought to determine the impact of PGE2 signaling mechanisms on Pgp and BCRP in human placental cells. The treatment of placental cells with PGE2 up-regulated BCRP expression and resulted in decreased cellular accumulation of the fluorescent substrate Hoechst 33342. Inhibiting the EP1 and EP3 receptors with specific antagonists attenuated the increase in BCRP. EP receptor signaling results in activation of transcription factors, which can affect BCRP expression. Although PGE2 decreased nuclear factor κ-light chain-enhancer of activated B activation and increased activator protein 1, chemical inhibition of these inflammatory transcription factors did not blunt BCRP up-regulation by PGE2. Though PGE2 decreased Pgp mRNA, Pgp expression and function were not significantly altered. Overall, these findings suggest a possible role for PGE2 in the up-regulation of placental BCRP expression via EP1 and EP3 receptor signaling cascades.
Collapse
Affiliation(s)
- Clifford W Mason
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Gene T Lee
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Yafeng Dong
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Helen Zhou
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Lily He
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Carl P Weiner
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
43
|
Ma Q, Xiong F, Zhang L. Gestational hypoxia and epigenetic programming of brain development disorders. Drug Discov Today 2014; 19:1883-96. [PMID: 25256780 DOI: 10.1016/j.drudis.2014.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/23/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023]
Abstract
Adverse environmental conditions faced by an individual early during its life, such as gestational hypoxia, can have a profound influence on the risk of diseases, such as neurological disorders, in later life. Clinical and preclinical studies suggest that epigenetic programming of gene expression patterns in response to maternal stress have a crucial role in the fetal origins of neurological diseases. Herein, we summarize recent studies regarding the role of epigenetic mechanisms in the developmental programming of neurological diseases in offspring, primarily focusing on DNA methylation/demethylation and miRNAs. Such information could increase our understanding of the fetal origins of adult diseases and help develop effective prevention and intervention against neurological diseases.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Fuxia Xiong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
44
|
Cui H, Han W, Yang L, Chang Y. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation. Neural Regen Res 2014; 8:328-37. [PMID: 25206673 PMCID: PMC4107529 DOI: 10.3969/j.issn.1673-5374.2013.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/09/2013] [Indexed: 02/03/2023] Open
Abstract
Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor 1α or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor 1α and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor 1α, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor 1α levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor 1α can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment.
Collapse
Affiliation(s)
- Hong Cui
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei Province, China ; Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Weijuan Han
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yanzhong Chang
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei Province, China
| |
Collapse
|
45
|
Abstract
The developmental origins of the metabolic syndrome have been established through the consistent observation that small-for-gestational age and large-for-gestational age fetuses have an increased risk for hypertension and related metabolic disorders later in life. These phenotypes have been reproduced in various species subjected to a range of intrauterine insults and ongoing research is directed towards understanding the underlying molecular mechanisms. Current evidence suggests that the creation of a pro-inflammatory and pro-oxidant intrauterine milieu is a common thread among prenatal factors that have an impact upon fetal size. Furthermore, studies demonstrate that a shift in fetal redox status consequent to environmental cues persists after birth and drives the progression of vascular dysfunction and hypertension in postnatal life. TLR (Toll-like receptor) signalling has emerged as a key link between inflammation and oxidative stress and a pathogenic contributor to hypertension, insulin resistance and obesity, in both human patients and animal models of disease. Thus TLR activation and dysregulation of its signalling components represent potential molecular underpinnings of programmed hypertension and related disorders in those subjected to suboptimal intrauterine conditions, yet their contributions to developmental programming remain unexplored. We propose that danger signals mobilized by the placenta or fetal tissues during complicated pregnancy activate the fetal innate immune system through TLRs and thereby potentiate the generation of ROS (reactive oxygen species) and orchestrate fetal adaptive responses, including changes in gene expression, which later translate to vascular dysfunction. Furthermore, we suggest that, after birth, continual activation of TLR signalling propagates vascular oxidative stress and thereby accelerates the advancement of hypertension and heart failure.
Collapse
|
46
|
Abstract
Adverse environments during the fetal and neonatal development period may permanently program physiology and metabolism, and lead to increased risk of diseases in later life. Programming of the hypothalamic-pituitary-adrenal (HPA) axis is one of the key mechanisms that contribute to altered metabolism and response to stress. Programming of the HPA axis often involves epigenetic modification of the glucocorticoid receptor (GR) gene promoter, which influences tissue-specific GR expression patterns and response to stimuli. This review summarizes the current state of research on the HPA axis and programming of health and disease in the adult, focusing on the epigenetic regulation of GR gene expression patterns in response to fetal and neonatal stress. Aberrant GR gene expression patterns in the developing brain may have a significant negative impact on protection of the immature brain against hypoxic-ischemic encephalopathy in the critical period of development during and immediately after birth.
Collapse
|
47
|
Mullins E, Prior T, Roberts I, Kumar S. Changes in the Fetal and Neonatal Cytokine Profile in Pregnancies Complicated by Fetal Growth Restriction. Am J Reprod Immunol 2012; 69:441-8. [DOI: 10.1111/aji.12052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 11/02/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Edward Mullins
- Queen Charlotte's and Chelsea Hospital; Imperial College; London; UK
| | - Tomas Prior
- Queen Charlotte's and Chelsea Hospital; Imperial College; London; UK
| | - Irene Roberts
- Hammersmith Hospital and Imperial College; London; UK
| | - Sailesh Kumar
- Queen Charlotte's and Chelsea Hospital; Imperial College; London; UK
| |
Collapse
|
48
|
Stoknes M, Andersen GL, Dahlseng MO, Skranes J, Salvesen KÅ, Irgens LM, Kurinczuk JJ, Vik T. Cerebral palsy and neonatal death in term singletons born small for gestational age. Pediatrics 2012; 130:e1629-35. [PMID: 23166338 DOI: 10.1542/peds.2012-0152] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To investigate the probable timing of events leading to cerebral palsy (CP) in singletons born small for gestational age (SGA) at term, taking neonatal death into consideration. METHODS In this registry-based cohort study, data on 400 488 singletons born during 1996-2003 were abstracted from the Medical Birth and the CP registries of Norway. Among 36 604 SGA children (birth weight <10th percentile), 104 died in the neonatal period and 69 developed CP. Apgar scores at 5 minutes, risk factors, MRI findings, and CP subtypes were used to assess the timing of events leading to CP or neonatal death. RESULTS Intrapartum origin of CP was considered in 5 SGA children (7%; 95% confidence interval: 3-16) in comparison with 31 of 263 (12%; 95% confidence interval: 8-16) non-SGA children (P = .28). The proportions of children who died in the neonatal period after a probable intrapartum event did not differ between the groups when children with congenital malformations were excluded. Probable antenatal events leading to CP and neonatal death were more common among SGA than non-SGA children (P < .001). CONCLUSIONS In ~90% of children born SGA the event leading to CP is of probable antenatal origin. The low proportion of SGA children with CP after a probable intrapartum event was not outweighed by a higher neonatal mortality rate when congenital malformations were excluded. The higher risk of CP among SGA than among non-SGA children is probably due to a higher prevalence of antenatal risk factors.
Collapse
Affiliation(s)
- Magne Stoknes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Buss C, Entringer S, Wadhwa PD. Fetal programming of brain development: intrauterine stress and susceptibility to psychopathology. Sci Signal 2012; 5:pt7. [PMID: 23047922 DOI: 10.1126/scisignal.2003406] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fetal brain is highly plastic and is not only receptive to but requires cues from its environment to develop properly. Based on an understanding of evolutionary biology, developmental plasticity, and life history theory, one can predict that stressors are an important environmental condition that may influence brain development. In fact, the available empirical evidence appears to support the notion that exposure to excess stress in intrauterine life has the potential to adversely affect short- and long-term neurodevelopmental outcomes with implications for altered susceptibility for mental health disorders in childhood and adult life. In this presentation, we provide a rationale for proposing that endocrine and inflammatory stress mediators are key candidate pathways for programming brain development. These mediators are responsive to a diverse set of intrauterine perturbations and alter key signaling pathways critical for brain development, including but not limited to mammalian target of rapamycin, Wnt (wingless), Sonic hedgehog, and reelin signaling. We suggest that recent advances in neuroimaging and other methods now afford us an unprecedented opportunity to advance our understanding of this important topic. Additionally, we provide empirical evidence from two recently published papers for fetal programming of human brain development. We conclude by suggesting some future directions for expanding this field of research.
Collapse
Affiliation(s)
- Claudia Buss
- Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
50
|
Morales Roselló J, Hervás Marín D, Fillol Crespo M, Perales Marín A. Doppler changes in the vertebral, middle cerebral, and umbilical arteries in fetuses delivered after 34 weeks: relationship to severity of growth restriction. Prenat Diagn 2012; 32:960-7. [DOI: 10.1002/pd.3941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 01/07/2023]
Affiliation(s)
- José Morales Roselló
- Servicio de Obstetricia y Ginecología; Hospital Universitario y Politécnico La Fe; Valencia Spain
- Servicio de Obstetricia y Ginecología; Hospital de La Plana; Villarreal Spain
| | - David Hervás Marín
- Unidad de Bioestadística; Instituto de Investigación Sanitaria La Fe; Valencia Spain
| | | | - Alfredo Perales Marín
- Servicio de Obstetricia y Ginecología; Hospital Universitario y Politécnico La Fe; Valencia Spain
| |
Collapse
|