1
|
Bahadori AR, Javadnia P, Dahaghin S, Mobader Sani S, Mashaknejadian Behbahani F, Imeni Kashan A, Davari A, Sheikhvatan M, Tafakhori A, Shafiee S, Ranji S. Effect of deep brain stimulation on postoperative body mass index: A systematic review and meta-analysis. Neurosurg Rev 2024; 47:620. [PMID: 39283405 DOI: 10.1007/s10143-024-02843-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Deep Brain Stimulation (DBS) is FDA-approved for several movement disorders; such as Parkinson's disease, dystonia, and neuropsychiatric disorders. There are various reports of Body mass index (BMI) changes following different DBS targets in various disorders. AIM A comprehensive systematic review and meta-analysis were conducted to investigate the impact of DBS on patients' Body Mass Index (BMI) and provide an in-depth overview of its underlying mechanisms. MATERIALS AND METHODS We conducted research according to PRISMA guidelines. Our study assessed comprehensively electronic databases, including Pubmed, Scopus, Embase, web of science, and the Cochrane Library, up to May 2024. The random-effect model analysis was performed by the Comprehensive Meta-analysis software (CMA) version 3.0. As well, Cochran's Q test was used to determine the statistical heterogeneity of included studies. RESULT This systematic review ultimately included 49 studies, 46 of which entered the meta-analysis. The total number of patients was 1478, consisting of Parkinson's disease (PD), dystonia, and the obsessive compulsive disorder (OCD) patients. The most common DBS target was subthalamic nucleus, followed by globus pallidus internus (GPi). Our meta-analysis depicted the BMI of participants significantly mount after DBS electrode implantation (SMD = -0.542, 95%CI: -0.678 to -0.406, and P-value < 0.001). However, moderate to high heterogeneity was detected among the studies (I2 = 67.566%). Additionally, the Daily energy intake (DEI) of patients significantly decreased after DBS (SMD: 0.457, 95%CI; 0.205 to 0.709, and P-value < 0.001). CONCLUSION STN and GPi DBS can lead to weight gain through distinct central pathways in various movement and neuropsychiatric disorders, posing a potential risk for obesity, insulin resistance, and metabolic syndrome.
Collapse
Affiliation(s)
- Amir Reza Bahadori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Javadnia
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Dahaghin
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Mobader Sani
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Imeni Kashan
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Afshan Davari
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Medical Colleges, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Sheikhvatan
- Medical Biology and Genetics Department, Okan University, Istanbul, Turkey
- Department of Neurology, Heidelberg University, Heidelberg, Germany
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Shafiee
- Stereotactic and Functional Neurosurgeon, Associate Professor of Neurosurgery, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Ranji
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Markman M, Saruco E, Al-Bas S, Wang BA, Rose J, Ohla K, Xue Li Lim S, Schicker D, Freiherr J, Weygandt M, Rramani Q, Weber B, Schultz J, Pleger B. Differences in Discounting Behavior and Brain Responses for Food and Money Reward. eNeuro 2024; 11:ENEURO.0153-23.2024. [PMID: 38569920 PMCID: PMC10993202 DOI: 10.1523/eneuro.0153-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
Most neuroeconomic research seeks to understand how value influences decision-making. The influence of reward type is less well understood. We used functional magnetic resonance imaging (fMRI) to investigate delay discounting of primary (i.e., food) and secondary rewards (i.e., money) in 28 healthy, normal-weighted participants (mean age = 26.77; 18 females). To decipher differences in discounting behavior between reward types, we compared how well-different option-based statistical models (exponential, hyperbolic discounting) and attribute-wise heuristic choice models (intertemporal choice heuristic, dual reasoning and implicit framework theory, trade-off model) captured the reward-specific discounting behavior. Contrary to our hypothesis of different strategies for different rewards, we observed comparable discounting behavior for money and food (i.e., exponential discounting). Higher k values for food discounting suggest that individuals decide more impulsive if confronted with food. The fMRI revealed that money discounting was associated with enhanced activity in the right dorsolateral prefrontal cortex, involved in executive control; the right dorsal striatum, associated with reward processing; and the left hippocampus, involved in memory encoding/retrieval. Food discounting, instead, was associated with higher activity in the left temporoparietal junction suggesting social reinforcement of food decisions. Although our findings do not confirm our hypothesis of different discounting strategies for different reward types, they are in line with the notion that reward types have a significant influence on impulsivity with primary rewards leading to more impulsive choices.
Collapse
Affiliation(s)
- M Markman
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum 44869, Germany
| | - E Saruco
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum 44869, Germany
| | - S Al-Bas
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum 44869, Germany
| | - B A Wang
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum 44869, Germany
| | - J Rose
- Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum 44801, Germany
| | - K Ohla
- Firmenich SA, Satigny 1242, Switzerland
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14558, Germany
| | - S Xue Li Lim
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14558, Germany
- Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich 52428, Germany
| | - D Schicker
- Sensory Analytics & Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising 85354, Germany
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - J Freiherr
- Sensory Analytics & Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising 85354, Germany
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - M Weygandt
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin 10115, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Q Rramani
- Center for Economics and Neuroscience (CENs), University of Bonn, Bonn 53113, Germany
- Institute of Experimental Epileptology and Cognition Research (IEECR), University of Bonn, Bonn 53127, Germany
| | - B Weber
- Center for Economics and Neuroscience (CENs), University of Bonn, Bonn 53113, Germany
- Institute of Experimental Epileptology and Cognition Research (IEECR), University of Bonn, Bonn 53127, Germany
| | - J Schultz
- Center for Economics and Neuroscience (CENs), University of Bonn, Bonn 53113, Germany
- Institute of Experimental Epileptology and Cognition Research (IEECR), University of Bonn, Bonn 53127, Germany
| | - B Pleger
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum 44869, Germany
| |
Collapse
|
3
|
Rissardo JP, Vora NM, Tariq I, Mujtaba A, Caprara ALF. Deep Brain Stimulation for the Management of Refractory Neurological Disorders: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1991. [PMID: 38004040 PMCID: PMC10673515 DOI: 10.3390/medicina59111991] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
In recent decades, deep brain stimulation (DBS) has been extensively studied due to its reversibility and significantly fewer side effects. DBS is mainly a symptomatic therapy, but the stimulation of subcortical areas by DBS is believed to affect the cytoarchitecture of the brain, leading to adaptability and neurogenesis. The neurological disorders most commonly studied with DBS were Parkinson's disease, essential tremor, obsessive-compulsive disorder, and major depressive disorder. The most precise approach to evaluating the location of the leads still relies on the stimulus-induced side effects reported by the patients. Moreover, the adequate voltage and DBS current field could correlate with the patient's symptoms. Implantable pulse generators are the main parts of the DBS, and their main characteristics, such as rechargeable capability, magnetic resonance imaging (MRI) safety, and device size, should always be discussed with patients. The safety of MRI will depend on several parameters: the part of the body where the device is implanted, the part of the body scanned, and the MRI-tesla magnetic field. It is worth mentioning that drug-resistant individuals may have different pathophysiological explanations for their resistance to medications, which could affect the efficacy of DBS therapy. Therefore, this could explain the significant difference in the outcomes of studies with DBS in individuals with drug-resistant neurological conditions.
Collapse
Affiliation(s)
| | - Nilofar Murtaza Vora
- Medicine Department, Terna Speciality Hospital and Research Centre, Navi Mumbai 400706, India;
| | - Irra Tariq
- Medicine Department, United Medical & Dental College, Karachi 75600, Pakistan;
| | - Amna Mujtaba
- Medicine Department, Karachi Medical & Dental College, Karachi 74700, Pakistan;
| | | |
Collapse
|
4
|
Ursumando L, Ponzo V, Monteleone AM, Menghini D, Fucà E, Lazzaro G, Esposito R, Picazio S, Koch G, Zanna V, Vicari S, Costanzo F. The efficacy of non-invasive brain stimulation in the treatment of children and adolescents with Anorexia Nervosa: study protocol of a randomized, double blind, placebo-controlled trial. J Eat Disord 2023; 11:127. [PMID: 37533058 PMCID: PMC10394844 DOI: 10.1186/s40337-023-00852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Current psychological and pharmacological treatments for Anorexia Nervosa (AN) provide only moderate effective support, and there is an urgent need for research to improve therapies, especially in developing age. Non-invasive brain stimulation has suggested to have the potential to reducing AN symptomatology, via targeting brain alterations, such as hyperactivity of right prefrontal cortex (PFC). We suppose that transcranial direct current stimulation (tDCS) to the PFC may be effective in children and adolescents with AN. METHODS We will conduct a randomized, double blind, add-on, placebo-controlled trial to investigate the efficacy of tDCS treatment on clinical improvement. We will also investigate brain mechanisms and biomarkers changes acting in AN after tDCS treatment. Eighty children or adolescent with AN (age range 10-18 years) will undergo treatment-as-usual including psychiatric, nutritional and psychological support, plus tDCS treatment (active or sham) to PFC (F3 anode/F4 cathode), for six weeks, delivered three times a week. Psychological, neurophysiological and physiological measures will be collected at baseline and at the end of treatment. Participants will be followed-up one, three, six months and one year after the end of treatment. Psychological measures will include parent- and self-report questionnaires on AN symptomatology and other psychopathological symptoms. Neurophysiological measures will include transcranial magnetic stimulation (TMS) with electroencephalography and paired pulse TMS and repetitive TMS to investigate changes in PFC connectivity, reactivity and plasticity after treatment. Physiological measures will include changes in the functioning of the endogenous stress response system, body mass index (BMI) and nutritional state. DISCUSSION We expect that tDCS treatment to improve clinical outcome by reducing the symptoms of AN assessed as changes in Eating Disorder Risk composite score of the Eating Disorder Inventory-3. We also expect that at baseline there will be differences between the right and left hemisphere in some electrophysiological measures and that such differences will be reduced after tDCS treatment. Finally, we expect a reduction of endogenous stress response and an improvement in BMI and nutritional status after tDCS treatment. This project would provide scientific foundation for new treatment perspectives in AN in developmental age, as well as insight into brain mechanisms acting in AN and its recovery. Trial registration The study was registered at ClinicalTrials.gov (ID: NCT05674266) and ethical approval for the study was granted by the local research ethics committee (process number 763_OPBG_2014).
Collapse
Affiliation(s)
- Luciana Ursumando
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Viviana Ponzo
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Romina Esposito
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
| | - Silvia Picazio
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
- Department of Psychology, University "Sapienza" of Rome, Rome, Italy
| | - Giacomo Koch
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
- Section of Human Phisiology, University of Ferrara, Ferrara, Italy
| | - Valeria Zanna
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
5
|
Fico BG, Maharaj A, Pena GS, Huang CJ. The Effects of Obesity on the Inflammatory, Cardiovascular, and Neurobiological Responses to Exercise in Older Adults. BIOLOGY 2023; 12:865. [PMID: 37372149 DOI: 10.3390/biology12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Obesity with advancing age leads to increased health complications that are involved in various complex physiological processes. For example, inflammation is a critical cardiovascular disease risk factor that plays a role in the stages of atherosclerosis in both aging and obesity. Obesity can also induce profound changes to the neural circuitry that regulates food intake and energy homeostasis with advancing age. Here we discuss how obesity in older adults impacts inflammatory, cardiovascular, and neurobiological functions with an emphasis on how exercise mediates each topic. Although obesity is a reversible disorder through lifestyle changes, it is important to note that early interventions are crucial to prevent pathological changes seen in the aging obese population. Lifestyle modifications such as physical activity (including aerobic and resistance training) should be considered as a main intervention to minimize the synergistic effect of obesity on age-related conditions, such as cerebrovascular disease.
Collapse
Affiliation(s)
- Brandon G Fico
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arun Maharaj
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD 20742, USA
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
6
|
Li KP, Wu JJ, Zhou ZL, Xu DS, Zheng MX, Hua XY, Xu JG. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sci 2023; 13:brainsci13030451. [PMID: 36979261 PMCID: PMC10046557 DOI: 10.3390/brainsci13030451] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional impairments, through which hemiparesis, aphasia, dysphagia, unilateral neglect, depression, and cognitive dysfunction can be restored to various degrees. Noninvasive brain stimulation (NIBS) is a popular neuromodulatory technology of rehabilitation focusing on the local cerebral cortex, which can improve clinical functions by regulating the excitability of corresponding neurons. Increasing evidence has been obtained from the clinical application of NIBS, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). However, without a standardized protocol, existing studies on NIBS show a wide variation in terms of stimulation site, frequency, intensity, dosage, and other parameters. Its application for neurorehabilitation in post-stroke patients is still limited. With advances in neuronavigation technologies, functional near-infrared spectroscopy, and functional MRI, specific brain regions can be precisely located for stimulation. On the basis of our further understanding on neural circuits, neuromodulation in post-stroke rehabilitation has also evolved from single-target stimulation to co-stimulation of two or more targets, even circuits and the network. The present study aims to review the findings of current research, discuss future directions of NIBS application, and finally promote the use of NIBS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zong-Lei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| |
Collapse
|
7
|
Cófreces P, Ofman SD, Estay JA, Hermida PD. [Parkinson's disease: a bibliographic update of psychosocial aspects]. REVISTA DE LA FACULTAD DE CIENCIAS MÉDICAS 2022; 79:181-187. [PMID: 35700462 PMCID: PMC9426325 DOI: 10.31053/1853.0605.v79.n2.33610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction Parkinson's disease (PD) is the most common neurodegenerative disease, after Alzheimer's. The increase in its prevalence is due to a combination of factors. In 2016, over 6.1 million cases were registered and it is believed that this value will double by 2050, which is why it is considered a public health problem. Objective To carry out a literature review about the psychosocial aspects associated with PD, considering their importance as possible prodromal markers of the disease. Method A bibliographic search was made taking into account the material generated in the last 15 years, and using the databases PubMed, SciELO, Dialnet and Redalyc. Conclusion Research on PD primarily focus interest on the characteristics, symptoms, diagnosis and treatment. It´s observed the need of developing more scientific studies to obtain evidence regarding the sociodemographic, psychosocial and geographical characteristics of patients with PD. In adition, it’s important to increase the knowledge about the impact of depression and anxiety over PD. They can become decisive when diagnosing, but also for facing and sustaining an adequate treatment to achieve the patient’s well-being on physical, emotional and social aspects. Studies on Quality of life related to health and PD are also important in this regard.
Collapse
Affiliation(s)
- Pedro Cófreces
- CPA Profesional Adjunto CONICET en Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET-UBA-CONICET).
| | - Silvia Deborah Ofman
- Investigadora Asistente del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET) UBA-CONICET..
| | - Julieta A Estay
- Ayudante de Primera en la Segunda Cátedra de Psicología del Trabajo, Facultad de Psicología, Universidad de Buenos Aires.
| | - Paula Daniela Hermida
- Investigadora Adjunta CONICET en Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET-UBA-CONICET)..
| |
Collapse
|
8
|
Mahoney JJ, Koch-Gallup N, Scarisbrick DM, Berry JH, Rezai AR. Deep brain stimulation for psychiatric disorders and behavioral/cognitive-related indications: Review of the literature and implications for treatment. J Neurol Sci 2022; 437:120253. [DOI: 10.1016/j.jns.2022.120253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/23/2022] [Accepted: 04/03/2022] [Indexed: 11/15/2022]
|
9
|
Beaumont JD, Smith NC, Starr D, Davis D, Dalton M, Nowicky A, Russell M, Barwood MJ. Modulating eating behavior with transcranial direct current stimulation (tDCS): A systematic literature review on the impact of eating behavior traits. Obes Rev 2022; 23:e13364. [PMID: 34786811 DOI: 10.1111/obr.13364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
Transcranial direct current stimulation (tDCS) is becoming an increasingly popular technique for altering eating behaviors. Recent research suggests a possible eating behavior trait-dependent effect of tDCS. However, studies recruit participant populations with heterogeneous trait characteristics, including "healthy" individuals who do not present with eating behavior traits suggesting susceptibility to overconsumption. The present review considers the effects of tDCS across eating-related measures and explores whether a trait-dependent effect is evident across the literature. A literature search identified 28 articles using sham-controlled tDCS to modify eating-related measures. Random effects meta-analyses were performed, with subgroup analyses to identify differences between "healthy" and trait groups. Trivial overall effects (g = -0.12 to 0.09) of active versus sham tDCS were found. Subgroup analyses showed a more consistent effect for trait groups, with small and moderate effect size (g = -1.03 to 0.60), suggesting tDCS is dependent on participants' eating behavior traits. Larger effect sizes were found for those displaying traits associated with study outcomes (e.g., heightened food cravings). "Healthy" individuals appear to be unresponsive to stimulation. Based on this meta data, future work should recruit those with eating behavior trait susceptibilities to overconsumption, focusing on those who present with traits associated with the outcome of interest.
Collapse
Affiliation(s)
- Jordan D Beaumont
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Natalie C Smith
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - David Starr
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Danielle Davis
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Michelle Dalton
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Alexander Nowicky
- Centre for Cognitive Neuroscience, Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Martin J Barwood
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| |
Collapse
|
10
|
Murray SB, Strober M, Tadayonnejad R, Bari AA, Feusner JD. Neurosurgery and neuromodulation for anorexia nervosa in the 21st century: a systematic review of treatment outcomes. Eat Disord 2022; 30:26-53. [PMID: 32991247 PMCID: PMC8386186 DOI: 10.1080/10640266.2020.1790270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As current psychosocial and pharmacological interventions show limited efficacy in the treatment of anorexia nervosa (AN), interest in the potential value of neurosurgical intervention and neuromodulation in managing severe and enduring illness has grown. We conducted a systematic review of 20 trials of neurosurgical and neuromodulatory treatments for AN, including neurosurgical ablation, deep brain stimulation (DBS), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS). Overall, there is evidence to support the role of stereotactic ablation and DBS in the treatment of AN. In contrast, results for rTMS and tDCS have been modest and generally more mixed. Neurosurgical treatment may offer important new avenues for the treatment of AN. Additional randomized clinical trials with comparable patient populations will be needed, in which change in affective, cognitive, and perceptual symptom phenomena, and interrogation of targeted circuits, pre- and post-intervention, are carefully documented.
Collapse
Affiliation(s)
- Stuart B Murray
- Department of Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael Strober
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Reza Tadayonnejad
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Ausaf A Bari
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
11
|
Gouveia FV, Silk E, Davidson B, Pople CB, Abrahao A, Hamilton J, Ibrahim GM, Müller DJ, Giacobbe P, Lipsman N, Hamani C. A systematic review on neuromodulation therapies for reducing body weight in patients with obesity. Obes Rev 2021; 22:e13309. [PMID: 34337843 DOI: 10.1111/obr.13309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
Abstract
The global prevalence of obesity increases yearly along with a rising demand for efficacious, safe, and accessible treatments. Neuromodulation interventions (i.e., deep brain stimulation [DBS], transcranial magnetic stimulation [TMS], transcranial direct current stimulation [tDCS], percutaneous neurostimulation [PENS], vagus nerve stimulation [VNS], and gastric electrical stimulation [GES]) have been proposed as novel therapies. This systematic review sought to examine the safety and efficacy of neuromodulation therapies in reducing body weight in patients with obesity. Using PRISMA guidelines, we performed a systematic review for studies on neuromodulation for the treatment of obesity, resulting in 60 trials included (7 DBS, 5 TMS, 7 tDCS, 17 PENS and VNS, and 24 GES; a total of 3,042 participants). While promising results have been reported in open label studies, double-blinded randomized clinical trials often did not reach their primary endpoints, with no technique inducing a striking reduction in body weight. Bearing in mind the complexity and multifactorial nature of obesity, it is possible that a single treatment may not be enough for patients to lose or maintain the weight lost at long term.
Collapse
Affiliation(s)
| | - Esther Silk
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Benjamin Davidson
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Christopher B Pople
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jill Hamilton
- Division of Endocrinology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
ÖZTÜRK A, SAĞKAN ÖZTÜRK A. The Effect of Brotizolam Induced Appetite on Serum Ghrelin Levels in Mice. MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2021. [DOI: 10.17944/mkutfd.894485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Repetitive Transcranial Magnetic Stimulation: A Potential Treatment for Obesity in Patients with Schizophrenia. Behav Sci (Basel) 2021; 11:bs11060086. [PMID: 34208079 PMCID: PMC8230713 DOI: 10.3390/bs11060086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Obesity is highly prevalent in patients with schizophrenia and, in association with metabolic syndrome, contributes to premature deaths of patients due to cardiovascular disease complications. Moreover, pharmacologic, and behavioral interventions have not stemmed the tide of obesity in schizophrenia. Therefore, novel effective interventions are urgently needed. Repetitive transcranial magnetic stimulation (rTMS) has shown efficacy for inducing weight loss in obese non-psychiatric samples but this promising intervention has not been evaluated as a weight loss intervention in patients with schizophrenia. In this narrative review, we describe three brain mechanisms (hypothalamic inflammation, dysregulated mesocorticolimbic reward system, and impaired prefrontal cortex function) implicated in the pathogenesis and pathophysiology of obesity and emphasize how the three mechanisms have also been implicated in the neurobiology of schizophrenia. We then argue that, based on the three overlapping brain mechanisms in obesity and schizophrenia, rTMS would be effective as a weight loss intervention in patients with schizophrenia and comorbid obesity. We end this review by describing how deep TMS, relative to conventional TMS, could potentially result in larger effect size for weight loss. While this review is mainly conceptual and based on an extrapolation of findings from non-schizophrenia samples, our aim is to stimulate research in the use of rTMS for weight loss in patients with schizophrenia.
Collapse
|
14
|
Satyal MK, Basso JC, Tegge AN, Metpally AR, Bickel WK. A novel model of obesity prediction: Neurobehaviors as targets for treatment. Behav Neurosci 2021; 135:426-442. [PMID: 34264693 PMCID: PMC9955328 DOI: 10.1037/bne0000385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity is a worldwide epidemic that is on the rise, with approximately 30% of the world population classified as either overweight or obese. The United States has some of the highest rates of obesity, and in most countries in the world, obesity now poses more of a serious health concern than malnutrition. Obesity is a chronic, relapsing disorder that is both preventable and treatable; however, traditional interventions that target eating less and exercising more have low success rates, especially in the long term. Therefore, identifying the neurobehaviors that predict obesity is important to help identify targets to decrease BMI and improve obesity outcomes. Using the Competing Neurobehavioral Decisions System (CNDS) Theory, we hypothesized that individuals with obesity compared to individuals without obesity would display neurobehaviors marked by a hyperactive impulsive system and a hypoactive executive system. To test this hypothesis, we collected data from a battery of self-reported measures and neurocognitive assessments through Amazon Mechanical Turk from n = 178 obese (BMI ≥ 30) and n = 198 nonobese controls who were weight stable for the past 3 months. We found that compared to the nonobese control group, individuals with obesity showed heightened delay discounting (a marker of CNDS imbalance), impaired motivation, poor self-image, decreased affective state, and impaired executive function. Using a Bayesian network approach, we established a neurobehavioral model that predicts obesity with 64.4% accuracy and indicates an imbalance between impulsive and executive neural systems. Results from our study suggest that interventions targeting neurobehaviors may be integral to help improve obesity outcomes. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Medha K. Satyal
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States
| | - Julia C. Basso
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, Virginia, United States,Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States,School of Neuroscience, Virginia Tech, Blacksburg, Virginia, United States
| | - Allison N. Tegge
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, Virginia, United States,Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States
| | - Anvitha R. Metpally
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States
| | - Warren K. Bickel
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, Virginia, United States
| |
Collapse
|
15
|
Potes MI, Joaquin C, Wiecks N, Phan S, Hassan O. The utility of deep brain stimulation surgery for treating eating disorders: A systematic review. Surg Neurol Int 2021; 12:169. [PMID: 34084597 PMCID: PMC8168795 DOI: 10.25259/sni_730_2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Deep brain stimulation (DBS) has demonstrated preliminary success as a treatment for neuropsychological disorders including obsessive-compulsive disorder and substance use disorder. This systematic review aims to assess the use of DBS in treating eating disorders (EDs) to determine its utility and the extent of adverse effects. Methods: A PubMed search following PRISMA guidelines was executed to find studies encompassing DBS as a treatment of ED. Outcomes were extracted from the literature and summarized while a review of quality was also performed. Results: From a search yielding 299 publications, 11 studies published between 2010 and 2020 were found to fit the inclusion criteria. Out of 53 patients who began with an abnormal BMI before treatment, 22 patients (41.5%) achieved normal BMI on follow-up. Significant neuropsychological improvement was seen in most patients as measured by neuropsychiatric testing and questionnaires. Conclusion: DBS as a treatment for ED may result in significant objective and psychological benefits. Further studies should aim to increase the sample size, standardize follow-up protocol, and standardize the neuropsychiatric tests used to determine psychological and physiological benefits.
Collapse
Affiliation(s)
- Mark Immanuel Potes
- Department of Medical Education, School of Medicine, California University of Science and Medicine, Colton, California, United States
| | - Christian Joaquin
- Department of Clinical Education, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, United States
| | - Nicole Wiecks
- Department of Basic Sciences, Touro University Nevada College of Osteopathic Medicine, Henderson, Nevada, United States
| | - Sheshanna Phan
- Department of Basic Sciences, Touro University Nevada College of Osteopathic Medicine, Henderson, Nevada, United States
| | - Omron Hassan
- Department of Basic Sciences, Touro University Nevada College of Osteopathic Medicine, Henderson, Nevada, United States
| |
Collapse
|
16
|
Donati F, Sian V, Biasini GM, de la Torre X, Folchitto F, Botrè F. Serum Levels of Brain-Derived Neurotrophic Factor and Other Neurotrophins in Elite Athletes: Potential Markers of the Use of Transcranial Direct Current Stimulation in Sport. Front Sports Act Living 2021; 3:619573. [PMID: 33912829 PMCID: PMC8071936 DOI: 10.3389/fspor.2021.619573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation that may enhance mental and physical performance in sports, representing a potential new form of doping (“brain doping” or “electromagnetic doping”). This study aims to identify diagnostic biomarkers for detecting the possible abuse of tDCS in sport. Brain-Derived Neurotrophic Factor (BDNF) and other neurotrophins (NT, such as beta nerve growth factor, NGF) were pre-selected as potential candidates since their serum values have been observed to change following tDCS. Neurotrophins were measured using ELISA assays in 92 serum samples collected from elite athletes, classified by sex (males = 74; females = 18), age (range 17–25 n = 27, 26–35 n = 36, and over 35 n = 14; age not known n = 15), type of sports practiced (endurance n = 74; power n = 18), and type of sample collection (“in competition” n = 24; “out of competition” n = 68). Single nucleotide polymorphisms (rs6265, rs11030099, and rs11030100) were genotyped on 88 samples to determine their influence on the analytes' basal levels. Athletes older than 35 presented higher BDNF values than younger individuals (p < 0.05). Samples collected “in competition” showed higher BDNF concentrations than those collected “out of competition” (p < 0.05). The studied polymorphisms appeared to affect only on proBDNF, not altering BDNF serum concentrations. NT-3 and NT-4 were poorly detectable in serum. Our results suggest that BDNF can be considered as a first biomarker to detect the abuse of tDCS in sport doping. Further studies are necessary to assess whether proBDNF and beta NGF can also be considered suitable biomarkers to detect the recourse to electromagnetic brain stimulation in sports, especially in the case their serum levels can be monitored longitudinally. To the best of our knowledge, this is the first study aimed to pre-select serum biomarkers to identify the use of tDCS, and represents the first step toward the development of an indirect strategy, preferably based on the longitudinal monitoring of individual data, for the future detection of “brain doping” in sports.
Collapse
Affiliation(s)
- Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Veronica Sian
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | | | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Fabrizia Folchitto
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.,REDs - Research and Expertise in anti-Doping Sciences, ISSUL - Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Romanella SM, Sprugnoli G, Ruffini G, Seyedmadani K, Rossi S, Santarnecchi E. Noninvasive Brain Stimulation & Space Exploration: Opportunities and Challenges. Neurosci Biobehav Rev 2020; 119:294-319. [PMID: 32937115 PMCID: PMC8361862 DOI: 10.1016/j.neubiorev.2020.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/22/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023]
Abstract
As NASA prepares for longer space missions aiming for the Moon and Mars, astronauts' health and performance are becoming a central concern due to the threats associated with galactic cosmic radiation, unnatural gravity fields, and life in extreme environments. In space, the human brain undergoes functional and structural changes related to fluid shift and changes in intracranial pressure. Behavioral abnormalities, such as cognitive deficits, sleep disruption, and visuomotor difficulties, as well as psychological effects, are also an issue. We discuss opportunities and challenges of noninvasive brain stimulation (NiBS) methods - including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) - to support space exploration in several ways. NiBS includes safe and portable techniques already applied in a wide range of cognitive and motor domains, as well as therapeutically. NiBS could be used to enhance in-flight performance, supporting astronauts during pre-flight Earth-based training, as well as to identify biomarkers of post-flight brain changes for optimization of rehabilitation/compensatory strategies. We review these NiBS techniques and their effects on brain physiology, psychology, and cognition.
Collapse
Affiliation(s)
- S M Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - G Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - G Ruffini
- Neuroelectrics Corporation, Cambridge, MA, USA
| | - K Seyedmadani
- University Space Research Association NASA Johnson Space Center, Houston, TX, USA; Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA
| | - S Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - E Santarnecchi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Fernandes Arroteia I, Husch A, Baniasadi M, Hertel F. Impressive weight gain after deep brain stimulation of nucleus accumbens in treatment-resistant bulimic anorexia nervosa. BMJ Case Rep 2020; 13:e239316. [PMID: 33257397 PMCID: PMC7705521 DOI: 10.1136/bcr-2020-239316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 11/03/2022] Open
Abstract
Anorexia nervosa (AN) severely impacts individual's mental and physical health as well as quality of life. In 21% of cases no durable response to conservative treatment can be obtained. The serious course of the disease in the most severely affected patients justifies invasive treatment options. One of the treatment methods increasingly used in recent years is deep brain stimulation (DBS). A 42-year-old woman suffering from chronic AN of the bulimic subtype shows a 46.9% weight gain and a subjective increase in quality of life, 12 months after bilateral nucleus accumbens (NAcc) DBS implantation. No improvement in comorbid depression could be achieved. DBS of the NAcc is a treatment option to be considered in severe AN when conventional treatment modalities recommended by evidence-based guidelines have not been able to bring lasting relief to the patient's suffering.
Collapse
Affiliation(s)
| | - Andreas Husch
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mehri Baniasadi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Frank Hertel
- Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
19
|
Obesity and Related Type 2 Diabetes: A Failure of the Autonomic Nervous System Controlling Gastrointestinal Function? GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pandemic spread of obesity and type 2 diabetes is a serious health problem that cannot be contained with common therapies. At present, the most effective therapeutic tool is metabolic surgery, which substantially modifies the gastrointestinal anatomical structure. This review reflects the state of the art research in obesity and type 2 diabetes, describing the probable reason for their spread, how the various brain sectors are involved (with particular emphasis on the role of the vagal system controlling different digestive functions), and the possible mechanisms for the effectiveness of bariatric surgery. According to the writer’s interpretation, the identification of drugs that can modulate the activity of some receptor subunits of the vagal neurons and energy-controlling structures of the central nervous system (CNS), and/or specific physical treatment of cortical areas, could reproduce, non-surgically, the positive effects of metabolic surgery.
Collapse
|
20
|
Franzini A, Moosa S, Servello D, Small I, DiMeco F, Xu Z, Elias WJ, Franzini A, Prada F. Ablative brain surgery: an overview. Int J Hyperthermia 2020; 36:64-80. [PMID: 31537157 DOI: 10.1080/02656736.2019.1616833] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Ablative therapies have been used for the treatment of neurological disorders for many years. They have been used both for creating therapeutic lesions within dysfunctional brain circuits and to destroy intracranial tumors and space-occupying masses. Despite the introduction of new effective drugs and neuromodulative techniques, which became more popular and subsequently caused brain ablation techniques to fall out favor, recent technological advances have led to the resurgence of lesioning with an improved safety profile. Currently, the four main ablative techniques that are used for ablative brain surgery are radiofrequency thermoablation, stereotactic radiosurgery, laser interstitial thermal therapy and magnetic resonance-guided focused ultrasound thermal ablation. Object: To review the physical principles underlying brain ablative therapies and to describe their use for neurological disorders. Methods: The literature regarding the neurosurgical applications of brain ablative therapies has been reviewed. Results: Ablative treatments have been used for several neurological disorders, including movement disorders, psychiatric disorders, chronic pain, drug-resistant epilepsy and brain tumors. Conclusions: There are several ongoing efforts to use novel ablative therapies directed towards the brain. The recent development of techniques that allow for precise targeting, accurate delivery of thermal doses and real-time visualization of induced tissue damage during the procedure have resulted in novel techniques for cerebral ablation such as magnetic resonance-guided focused ultrasound or laser interstitial thermal therapy. However, older techniques such as radiofrequency thermal ablation or stereotactic radiosurgery still have a pivotal role in the management of a variety of neurological disorders.
Collapse
Affiliation(s)
- Andrea Franzini
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Shayan Moosa
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA
| | - Domenico Servello
- Department of Neurosurgery, Galeazzi Research and Clinical Hospital , Milan , Italy
| | - Isabella Small
- Focused Ultrasound Foundation , Charlottesville , VA , USA
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy.,Department of Pathophysiology and Transplantation, University of Milan , Milan , Italy.,Department of Neurological Surgery, Johns Hopkins Medical School , Baltimore , MD , USA
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA
| | - William Jeffrey Elias
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA
| | - Angelo Franzini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Francesco Prada
- Department of Neurological Surgery, University of Virginia Health System , Charlottesville , VA , USA.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy.,Focused Ultrasound Foundation , Charlottesville , VA , USA
| |
Collapse
|
21
|
Vicario CM, Salehinejad MA, Mosayebi-Samani M, Maezawa H, Avenanti A, Nitsche MA. Transcranial direct current stimulation over the tongue motor cortex reduces appetite in healthy humans. Brain Stimul 2020; 13:1121-1123. [PMID: 32413555 DOI: 10.1016/j.brs.2020.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- C M Vicario
- Department of Scienze Cognitive, Psycologiche, Pedagogiche e Degli Studi Culturali, University of Messina, 98121, Messina, ME, Italy.
| | - M A Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany
| | - M Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany
| | - H Maezawa
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - A Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca, Chile
| | - M A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany
| |
Collapse
|
22
|
Levchenko A, Nurgaliev T, Kanapin A, Samsonova A, Gainetdinov RR. Current challenges and possible future developments in personalized psychiatry with an emphasis on psychotic disorders. Heliyon 2020; 6:e03990. [PMID: 32462093 PMCID: PMC7240336 DOI: 10.1016/j.heliyon.2020.e03990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/31/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A personalized medicine approach seems to be particularly applicable to psychiatry. Indeed, considering mental illness as deregulation, unique to each patient, of molecular pathways, governing the development and functioning of the brain, seems to be the most justified way to understand and treat disorders of this medical category. In order to extract correct information about the implicated molecular pathways, data can be drawn from sampling phenotypic and genetic biomarkers and then analyzed by a machine learning algorithm. This review describes current difficulties in the field of personalized psychiatry and gives several examples of possibly actionable biomarkers of psychotic and other psychiatric disorders, including several examples of genetic studies relevant to personalized psychiatry. Most of these biomarkers are not yet ready to be introduced in clinical practice. In a next step, a perspective on the path personalized psychiatry may take in the future is given, paying particular attention to machine learning algorithms that can be used with the goal of handling multidimensional datasets.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Alexander Kanapin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Anastasia Samsonova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| |
Collapse
|
23
|
Urstadt KR, Berridge KC. Optogenetic mapping of feeding and self-stimulation within the lateral hypothalamus of the rat. PLoS One 2020; 15:e0224301. [PMID: 31986148 PMCID: PMC6984703 DOI: 10.1371/journal.pone.0224301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/27/2019] [Indexed: 11/18/2022] Open
Abstract
The lateral hypothalamus (LH) includes several anatomical subregions involved in eating and reward motivation. This study explored localization of function across different LH subregions in controlling food intake stimulated by optogenetic channelrhodopsin excitation, and in supporting laser self-stimulation. We particularly compared the tuberal LH subregion, the posterior LH subregion, and the lateral preoptic area. Local diameters of tissue optogenetically stimulated within the LH were assessed by measuring laser-induced Fos plumes and Jun plumes via immunofluorescence surrounding optic fiber tips. Those plume diameters were used to map localization of function for behavioral effects elicited by LH optogenetic stimulation. Optogenetic stimulation of the tuberal subsection of the LH produced the most robust eating behavior and food intake initially, but produced only mild laser self-stimulation in the same rats. However, after repeated exposures to optogenetic stimulation, tuberal LH behavioral profiles shifted toward more self-stimulation and less food intake. By contrast, stimulation of the lateral preoptic area produced relatively little food intake or self-stimulation, either initially or after extended stimulation experience. Stimulation in the posterior LH subregion supported moderate self-stimulation, but not food intake, and at higher laser intensity shifted valence to evoke escape behaviors. We conclude that the tuberal LH subregion may best mediate stimulation-bound increases in food intake stimulated by optogenetic excitation. However, incentive motivational effects of tuberal LH stimulation may shift toward self-stimulation behavior after repeated stimulation. By contrast, the lateral preoptic area and posterior LH do not as readily elicit either eating behavior or laser self-stimulation, and may be more prone to higher-intensity aversive effects.
Collapse
Affiliation(s)
- Kevin R. Urstadt
- Psychology Dept., University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Kent C. Berridge
- Psychology Dept., University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Appetitive behaviors are mediated through homeostatic and reward signaling of brain circuits. There has been increasing interest in the use of neuromodulation techniques aimed at targeting brain regions such as the lateral prefrontal and subcortical regions associated with dysregulation of eating behaviors. RECENT FINDINGS Invasive brain stimulation techniques have demonstrated promising results in treating severe and enduring anorexia nervosa and morbid obesity. In addition, non-invasive techniques have been shown to successfully reduce food craving, hunger ratings, and calorie intake as well as binge/purge symptoms in eating disorders. Brain stimulation offers promising results for treating symptoms associated with eating disorders and modifying appetitive behaviors including craving and caloric consumption. Future research should focus on identifying optimal frequency and duration of stimulation and employ longitudinal studies to assess long-term effectiveness on clinical outcomes such as eating disorder symptomatology, weight loss, and sustained improvements in eating behaviors over time.
Collapse
Affiliation(s)
- Rebecca Dendy
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 North 16th Street, Room 541, Phoenix, AZ, 85016, USA
| | - Emma J Stinson
- Department of Epidemiology & Biostatistics, Drexel University, Philadelphia, PA, USA
| | | | - Marci E Gluck
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 North 16th Street, Room 541, Phoenix, AZ, 85016, USA.
| |
Collapse
|
25
|
Weight Change after Striatal/Capsule Deep Brain Stimulation Relates to Connectivity to the Bed Nucleus of the Stria Terminalis and Hypothalamus. Brain Sci 2019; 9:brainsci9100264. [PMID: 31623328 PMCID: PMC6826646 DOI: 10.3390/brainsci9100264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/30/2019] [Indexed: 01/28/2023] Open
Abstract
Weight changes are insufficiently understood adverse events of deep brain stimulation. In this context, exploring neural networks of weight control may inform novel treatment strategies for weight-related disorders. In this study, we investigated weight changes after deep brain stimulation of the ventral striatum/ventral capsule and to what extent changes are associated with connectivity to feeding-related networks. We retrospectively analyzed 25 patients undergoing deep brain stimulation for obsessive-compulsive disorder or substance dependency. Weight changes were assessed preoperatively and six to twelve months after surgery and then matched with individual stimulation sites and stimulation-dependent functional connectivity to a priori defined regions of interest that are involved in food intake. We observed a significant weight gain after six to twelve months of continuous stimulation. Weight increases were associated with medial/apical localization of stimulation sites and with connectivity to hypothalamic areas and the bed nucleus. Thus, deep brain stimulation of the ventral striatum/ventral capsule influences weight depending on localization and connectivity of stimulation sites. Bearing in mind the significance of weight-related disorders, we advocate further prospective studies investigating the neuroanatomical and neuropsychological underpinnings of food intake and their neuromodulatory therapeutic potential.
Collapse
|
26
|
Lee DJ, Lozano CS, Dallapiazza RF, Lozano AM. Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J Neurosurg 2019; 131:333-342. [PMID: 31370011 DOI: 10.3171/2019.4.jns181761] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation (DBS) has evolved considerably over the past 4 decades. Although it has primarily been used to treat movement disorders such as Parkinson's disease, essential tremor, and dystonia, recently it has been approved to treat obsessive-compulsive disorder and epilepsy. Novel potential indications in both neurological and psychiatric disorders are undergoing active study. There have been significant advances in DBS technology, including preoperative and intraoperative imaging, surgical approaches and techniques, and device improvements. In addition to providing significant clinical benefits and improving quality of life, DBS has also increased the understanding of human electrophysiology and network interactions. Despite the value of DBS, future developments should be aimed at developing less invasive techniques and attaining not just symptom improvement but curative disease modification.
Collapse
Affiliation(s)
- Darrin J Lee
- 1Department of Neurological Surgery, University of Southern California, Los Angeles, California
| | - Christopher S Lozano
- 2Department of Neurological Surgery, University of Toronto, Ontario, Canada; and
| | | | - Andres M Lozano
- 2Department of Neurological Surgery, University of Toronto, Ontario, Canada; and
| |
Collapse
|
27
|
de Oliveira C, de Freitas JS, Macedo IC, Scarabelot VL, Ströher R, Santos DS, Souza A, Fregni F, Caumo W, Torres ILS. Transcranial direct current stimulation (tDCS) modulates biometric and inflammatory parameters and anxiety-like behavior in obese rats. Neuropeptides 2019; 73:1-10. [PMID: 30446297 DOI: 10.1016/j.npep.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/14/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Obesity is a multifactorial disease associated with metabolic dysfunction and the prevention and treatment of obesity are often unsatisfactory. Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation technique that has proven promising in the treatment of eating disorders such as obesity. We investigate the effects of tDCS on locomotor and exploratory activities, anxiety-like and feeding behavior, and levels of brain-derived neurotrophic factor (BDNF), IL (interleukin)-10, IL-1β, and tumor necrosis factor-alpha (TNF-α) in the cerebral cortex of obese rats. A total of 40 adult male Wistar rats were used in our study. Animals were divided into groups of three or four animals per cage and allocated to four treatment groups: standard diet plus sham tDCS treatment (SDS), standard diet plus tDCS treatment (SDT), hypercaloric diet plus sham tDCS treatment (HDS), hypercaloric diet plus tDCS treatment (HDT). After 40 days on a hypercaloric diet and/or standard diet were to assessed the locomotor and exploratory activity and anxiety-like behavior to by the open field (OF) and elevated plus maze (EPM) tests respectively before and after exposure to tDCS treatment. The experimental groups were submitted to active or sham treatment tDCS during eight days. Palatable food consumption test (PFT) was performed 24 h after the last tDCS session under fasting and feeding conditions. Obese animals submitted to tDCS treatment showed a reduction in the Lee index, visceral adipose tissue weight, and food craving. In addition, bicephalic tDCS decreased the cerebral cortex levels of IL-1β and TNF-α in these animals. Exposure to a hypercaloric diet produced an anxiolytic effect, which was reversed by bicephalic tDCS treatment. These results suggest that, in accordance with studies in humans, bicephalic tDCS could modulate biometric and inflammatory parameters, as well as anxiety-like and feeding behavior, of rats subjected to the consumption of a hypercaloric diet.
Collapse
Affiliation(s)
- Carla de Oliveira
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joice Soares de Freitas
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Isabel Cristina Macedo
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Vanessa Leal Scarabelot
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Roberta Ströher
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Daniela Silva Santos
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andressa Souza
- Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil
| | - Felipe Fregni
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wolnei Caumo
- Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Iraci L S Torres
- Post-Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Pre clinical studies, Pharmacology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-003, Brazil; Post-Graduate Program in Medicine: Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
28
|
Editorial: Connecting the Nodes of Altered Brain Network Organization in Eating Disorders. J Am Acad Child Adolesc Psychiatry 2019; 58:156-158. [PMID: 30738541 DOI: 10.1016/j.jaac.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 12/30/2022]
Abstract
Two prevalent eating disorders (ED) in adolescence are anorexia nervosa (AN) and bulimia nervosa (BN). AN is characterized primarily by an extensive restriction of energy intake leading to significantly low body weight. In contrast, the cardinal symptom of BN is uncontrolled eating of an abnormally large amount of food, followed by compensatory behavior to avoid weight gain (eg, self-induced vomiting or laxative abuse). Despite these differences and the fact that individuals with BN are usually of normal weight, patients with both disorders have an abnormal preoccupation with body weight and shape,1 often in the form of distressing ruminations.2,3 Left untreated, body image distortion and associated extreme eating/purging habits often have severe and life-long physical, social and psychological consequences. A better understanding of the neurobiological substrates of clinical symptoms may help to improve therapeutic interventions and outcome.4.
Collapse
|
29
|
Impairment of neuro-renal cells on exposure to cosmopolitan polluted river water followed by differential protection of Launea taraxacifolia in male rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-02898-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
|
31
|
Imperatori C, Mancini M, Della Marca G, Valenti EM, Farina B. Feedback-Based Treatments for Eating Disorders and Related Symptoms: A Systematic Review of the Literature. Nutrients 2018; 10:E1806. [PMID: 30463330 PMCID: PMC6265864 DOI: 10.3390/nu10111806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/27/2023] Open
Abstract
The effectiveness of biofeedback and neurofeedback has been investigated in a range of psychiatric disorders. However, to date, there are few studies on the clinical usefulness of feedback-based techniques for eating disorders (EDs) and EDs-related symptoms (e.g., food craving). A systematic search of PubMed, Scopus and PsychINFO identified 162 articles. Among these, thirteen studies exploring the therapeutic use of biofeedback and neurofeedback in EDs or EDs-related symptoms were included. Biofeedback and neurofeedback were implemented respectively in five and eight of all reviewed articles. No studies incorporated different feedback modalities or both biofeedback and neurofeedback. The considered studies provide preliminary data of the usefulness of feedback-based techniques in the treatment of several dysfunctional eating behaviors (e.g., food craving, rumination). Although no significant effect has been reported for other important EDs-related symptoms (i.e., body image disturbance), feedback-based techniques are also associated with significant modifications of both sympathetic reaction to food-related stimuli and brain activity in several regions of the reward system (e.g., insula). Taken together the results of the present review suggest that feedback-based treatments may be useful in the treatment of several dysfunctional eating behaviors operating both on top-down and bottom-up individual coping strategies. Methodological and clinical issues are also discussed.
Collapse
Affiliation(s)
- Claudio Imperatori
- Department of Human Sciences, European University of Rome, Via degli Aldobrandeschi 190, 00163 Roma, Italy.
| | - Miranda Mancini
- Department of Human Sciences, European University of Rome, Via degli Aldobrandeschi 190, 00163 Roma, Italy.
| | - Giacomo Della Marca
- Sleep Disorders Unit, Institute of Neurology, Catholic University, 00153 Rome, Italy.
| | - Enrico Maria Valenti
- Department of Human Sciences, European University of Rome, Via degli Aldobrandeschi 190, 00163 Roma, Italy.
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, 00185 Rome, Italy.
| | - Benedetto Farina
- Department of Human Sciences, European University of Rome, Via degli Aldobrandeschi 190, 00163 Roma, Italy.
| |
Collapse
|
32
|
Costanzo F, Menghini D, Maritato A, Castiglioni MC, Mereu A, Varuzza C, Zanna V, Vicari S. New Treatment Perspectives in Adolescents With Anorexia Nervosa: The Efficacy of Non-invasive Brain-Directed Treatment. Front Behav Neurosci 2018; 12:133. [PMID: 30083095 PMCID: PMC6064943 DOI: 10.3389/fnbeh.2018.00133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/13/2018] [Indexed: 01/29/2023] Open
Abstract
Poor treatment outcomes are available for anorexia nervosa (AN) and treatment innovations are urgently needed. Recently, non-invasive neuromodulation tools have suggested to have potential for reducing an symptomatology targeting brain alterations. The objective of the study was to verify whether left anodal/right cathodal prefrontal cortex transcranial direct current stimulation (tDCS), may aid in altering/resetting inter-hemispheric balance in patients with AN, re-establishing control over eating behaviors. Twenty-three adolescents with an underwent a treatment as usual (AU), including nutritional, pharmacological, and psychoeducational treatment, plus 18 sessions of tDCS (TDCS+AU = n11; mean age = 13.9, SD = 1.8 years) or a family based therapy (FBT+AU = n12, mean age = 15.1, SD = 1.5 years). Psychopathological scales and the body mass index (BMI) were assessed before and after treatment. After 6 weeks of treatment, the BMI values increased only in the tDCS group, even at 1-month follow-up. Independently of the treatment, all participants improved in several psychopathological measures, included AN psychopathology and mood and anxiety symptoms. Our results demonstrated for the first time a specific effect of the left anodal/right cathodal tDCS treatment protocol on stable weight gain and a superiority compared to an active control treatment for adolescents with AN. Results were interpreted as a possible direct/indirect effect of tDCS in into some pathophysiological mechanisms of AN, involving the mesocortical dopaminergic pathways and the promotion of food intake. This pilot study opens new perspectives in the treatment of an in adolescence, supporting the targeted and beneficial effects of a brain-based treatment.
Collapse
Affiliation(s)
- Floriana Costanzo
- Child Neuropsychiatric Unit, Department of Neuroscience, Bambino Gesù Children Hospital, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Jáuregui-Lobera I, Martínez-Quiñones JV. Neuromodulation in eating disorders and obesity: a promising way of treatment? Neuropsychiatr Dis Treat 2018; 14:2817-2835. [PMID: 30464467 PMCID: PMC6208872 DOI: 10.2147/ndt.s180231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neuromodulation can affect the functioning of the central nervous system (CNS), and emotional/eating behavior is an exciting facet of that functioning. Therefore, it would be possible to offer an alternative (or complement) treatment to psychotropic medications and different psychological and nutritional approaches to both eating disorders (EDs) and obesity. Although there are a number of publications in these areas, a systematic review has not been conducted to date. Abstracts, letters, conference reports, dissertations, and reviews were excluded. Clinical trials and controlled human clinical trials were filtered and included in this study. Articles included were based on the population suffering from anorexia nervosa, bulimia nervosa, binge ED, overweight, and obesity. No restrictions were placed on the sample size. Only trials investigating the effect of neuromodulation by means of deep brain stimulation (DBS), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS) were included. The following databases were used to conduct the search: MEDLINE/ PubMed, PsycINFO, PsycArticles, and Cochrane (Search Trials, CENTRAL). Study selection was performed following the PRISMA process (PRISMA 2009 Checklist). The total number of participants in all the trials was 562 (DBS, 25; tDCS, 138; TMS, 399; range, 3-90; median, 23.5). As a result, 50% of the studies had samples of between 14 and 38 participants. Neuro-modulation in ED seems to have certain clinical potential, and therefore, this is a promising area for further research. Developments in ED neuromodulation will be linked to neuroimaging to identify potential stimulation targets and possible biomarkers of treatment response. To date, TMS and/or direct current stimulation (DCS) is not the first-line treatment yet, but it could become a preferred option of treatment in the future. Further studies should avoid small sample sizes and the use of different methodologies. Currently, neuromodulation techniques are in the experimental phase, and they are not an evidence-based treatment for ED.
Collapse
Affiliation(s)
- Ignacio Jáuregui-Lobera
- Department of Molecular Biology and Biochemical Engineering, University of Pablo de Olavide of Seville, Seville, Spain,
| | - José V Martínez-Quiñones
- Department of Neurosurgery, Mutua de Accidentes de Zaragoza (Servicio de Neurocirugía), Zaragoza, Spain
| |
Collapse
|