1
|
Zhang Y, Tao S, Coid J, Wei W, Wang Q, Yue W, Yan H, Tan L, Chen Q, Yang G, Lu T, Wang L, Zhang F, Yang J, Li K, Lv L, Tan Q, Zhang H, Ma X, Yang F, Li L, Wang C, Zhao L, Deng W, Guo W, Ma X, Zhang D, Li T. The Role of Total White Blood Cell Count in Antipsychotic Treatment for Patients with Schizophrenia. Curr Neuropharmacol 2024; 22:159-167. [PMID: 36600620 PMCID: PMC10716888 DOI: 10.2174/1570159x21666230104090046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Total white blood cell count (TWBCc), an index of chronic and low-grade inflammation, is associated with clinical symptoms and metabolic alterations in patients with schizophrenia. The effect of antipsychotics on TWBCc, predictive values of TWBCc for drug response, and role of metabolic alterations require further study. METHODS Patients with schizophrenia were randomized to monotherapy with risperidone, olanzapine, quetiapine, aripiprazole, ziprasidone, perphenazine or haloperidol in a 6-week pharmacological trial. We repeatedly measured clinical symptoms, TWBCc, and metabolic measures (body mass index, blood pressure, waist circumference, fasting blood lipids and glucose). We used mixed-effect linear regression models to test whether TWBCc can predict drug response. Mediation analysis to investigate metabolic alteration effects on drug response. RESULTS At baseline, TWBCc was higher among patients previously medicated. After treatment with risperidone, olanzapine, quetiapine, perphenazine, and haloperidol, TWBCc decreased significantly (p < 0.05). Lower baseline TWBCc predicted greater reductions in Positive and Negative Syndrome Scale (PANSS) total and negative scores over time (p < 0.05). We found significant mediation of TWBCc for effects of waist circumference, fasting low-density lipoprotein cholesterol, and glucose on reductions in PANSS total scores and PANSS negative subscale scores (p < 0.05). CONCLUSION TWBCc is affected by certain antipsychotics among patients with schizophrenia, with decreases observed following short-term, but increases following long-term treatment. TWBCc is predictive of drug response, with lower TWBCc predicting better responses to antipsychotics. It also mediates the effects of certain metabolic measures on improvement of negative symptoms. This indicates that the metabolic state may affect clinical manifestations through inflammation.
Collapse
Affiliation(s)
- Yamin Zhang
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Shiwan Tao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jeremy Coid
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Wei
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Weihua Yue
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hao Yan
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Liwen Tan
- Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Chen
- Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Guigang Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Tianlan Lu
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lifang Wang
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Fuquan Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangshu, China
| | - Jianli Yang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China
- Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Keqing Li
- Hebei Mental Health Center, Baoding, Hebei, China
| | - Luxian Lv
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qingrong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Hongyan Zhang
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xin Ma
- Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Lingjiang Li
- Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuanyue Wang
- Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Wanjun Guo
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dai Zhang
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, China
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Tao Li
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
DEMİR YENİGURBUZ F, SÖBÜ E, BERK AKBEYAZ B. The comparison of inflammatory hematological parameters in obese and non-obese children. FAMILY PRACTICE AND PALLIATIVE CARE 2023. [DOI: 10.22391/fppc.1197997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: Obesity is an increasing health problem in the whole world, and it has an important inflammatory component related to the insulin resistance (IR), hypertension, atherosclerosis and some cancers. This study aims to evaluate the inflammatory hematological parameters in childhood obesity.Methods: Sixty-four obese and 50 normal weight cases were included in the study. The physical examination features and laboratory data of the patients were evaluated retrospectively from the patient’s files. Laboratory tests, hematological parameters, gender were compared between the groups. Correlations between Homeostasis model evaluation for insulin resistance (HOMA-IR) and other laboratory parameters in the obese group were examined.Results: The leukocyte, neutrophile, monocyte, lymphocyte, thrombocyte and MPV values of the obese group were found to be statistically higher than the control group (p: 0.006, p:0.015, p:0.014, p:0.001, p<0.001). There was no statistically significant difference between the two groups for Neutrophile/Lymphocyte ratio (NLR), Monocyte/Lymphocyte ratio (MLR) and Platelet/Lymphocyte ratio (PLR) (p:0.642, p:0.989, 0.982). Also, there was no statistically significant correlation between Homa IR and age, BMI, Neutrophil, Lymphocyte, Monocyte, Thrombocyte, Neutrophil/Lymphocyte, Monocyte/Lymphocyte and Thrombocyte/Lymphocyte values.Conclusion: The current study showed that there was no significant difference between obese and controls in terms of NLR, PLR, and MLR values. However, the leukocyte, neutrophile, monocyte, lymphocyte, thrombocyte and MPV values were statistically higher in obese group than controls. Nevertheless, these findings can point relation between obesity and inflammation.Keywords: obesity, children, inflammation, hematological parameters
Collapse
Affiliation(s)
- Fatma DEMİR YENİGURBUZ
- Department of Pediatric Hematology/Oncology & Bone Marrow Transplantation Unit, Faculty of Medicine, Acibadem University, Istanbul
| | - Elif SÖBÜ
- Department of Pediatric Endocrinology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul
| | - Berkin BERK AKBEYAZ
- Department of Pediatric Hematology/Oncology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul
| |
Collapse
|
3
|
The beneficial effect of tart cherry on plasma levels of inflammatory mediators (not recovery after exercise): A systematic review and meta-analysis on randomized clinical trials. Complement Ther Med 2022; 68:102842. [PMID: 35653966 DOI: 10.1016/j.ctim.2022.102842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic inflammation has been classified as one of the most important threats to health. Scientists suggested that tart cherry (TC) can reduce plasma levels of inflammatory mediators. Therefore, the aim of this study was to summarize the effect of TC on circulating C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) among adult participants in non-exercise randomized clinical trials (RCTs). METHODS AND MATERIALS The eligible English-language RCTs were found by searching databases including PubMed, Web of Science, Cochrane Library, Scopus, and clinical Trials.gov up to May 2022, with no time limit. We used the mean change from baseline and its standard deviation for both intervention and comparison groups to calculate the effect size. The random-effects model proposed by DerSimonian and Laird was used to estimate the overall summary effect and the heterogeneity. We used PRISMA 2020 guidelines to report this study. RESULTS Ten RCTs were included in this study. The results demonstrated that TC had a significant decreasing effect on plasma CRP level compared with the comparison group (weighted mean differences (WMD) = -0.55 mg/L; 95% confidence interval (CI): - 1.03, - 0.06; p = 0.029), but had no significant effect on plasma IL-6 compared with comparison group (WMD = 0.08 pg/mL; 95% CI: -0.02, 0.17; p = 0.10). The effect of TC consumption on plasma TNF-α level was evaluated in only three studies that showed no significant effects (p>0.05). CONCLUSION Our results confirmed a significant decreasing effect of TC on CRP. Regarding IL-6 and TNF-α, our study did not present any significant effect of TC.
Collapse
|
4
|
Molecular Pathogenesis of Psoriasis and Biomarkers Reflecting Disease Activity. J Clin Med 2021; 10:jcm10153199. [PMID: 34361983 PMCID: PMC8346978 DOI: 10.3390/jcm10153199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease induced by multifactorial causes and is characterized by bothersome, scaly reddish plaques, especially on frequently chafed body parts, such as extensor sites of the extremities. The latest advances in molecular-targeted therapies using biologics or small-molecule inhibitors help to sufficiently treat even the most severe psoriatic symptoms and the extra cutaneous comorbidities of psoriatic arthritis. The excellent clinical effects of these therapies provide a deeper understanding of the impaired quality of life caused by this disease and the detailed molecular mechanism in which the interleukin (IL)-23/IL-17 axis plays an essential role. To establish standardized therapeutic strategies, biomarkers that define deep remission are indispensable. Several molecules, such as cytokines, chemokines, antimicrobial peptides, and proteinase inhibitors, have been recognized as potent biomarker candidates. In particular, blood protein markers that are repeatedly measurable can be extremely useful in daily clinical practice. Herein, we summarize the molecular mechanism of psoriasis, and we describe the functions and induction mechanisms of these biomarker candidates.
Collapse
|
5
|
Gajeton J, Krukovets I, Yendamuri R, Verbovetskiy D, Vasanji A, Sul L, Stenina‐Adognravi O. miR-467 regulates inflammation and blood insulin and glucose. J Cell Mol Med 2021; 25:2549-2562. [PMID: 33566451 PMCID: PMC7933977 DOI: 10.1111/jcmm.16224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/24/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is associated with inflammation and insulin resistance (IR), but the regulation of insulin sensitivity (IS) and connections between IS and inflammation remain unclear. We investigated the role of miR-467a-5p, a miRNA induced by hyperglycaemia, in regulating inflammation and blood glucose handling. We previously demonstrated that miR-467a-5p is induced by hyperglycaemia and inhibits the production of thrombospondin-1 (TSP-1), a protein implicated in regulating inflammation. To investigate the role of miR-467 in blood glucose handling and tissue inflammation, WT C57BL/6 mice were fed chow or Western diet from 5 to 32 weeks of age and injected weekly with miR-467a-5p antagonist. Inhibiting miR-467a-5p resulted in 47% increase in macrophage infiltration and increased Il6 levels in adipose tissue, higher plasma insulin levels (98 ng/mL vs 63 ng/mL), and 17% decrease in glucose clearance without increase in weight or HDL/LDL. The antagonist effect was lost in mice on Western diet. Mice lacking TSP-1 lost some but not all of the miR-467 effects, suggesting Thbs1 (and other unknown transcripts) are targeted by miR-467 to regulate inflammation. miR-467a-5p provides a physiological feedback when blood glucose is elevated to avoid inflammation and increased blood glucose and insulin levels, which may prevent IR.
Collapse
Affiliation(s)
- Jasmine Gajeton
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOHUSA
| | - Irene Krukovets
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
| | - Revanth Yendamuri
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
- Present address:
Northeast Ohio Medical UniversityRootstownOHUSA
| | - Dmitriy Verbovetskiy
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
| | | | - Lidiya Sul
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
- Present address:
Ohio University Heritage College of Osteopathic MedicineAthensOHUSA
| | - Olga Stenina‐Adognravi
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
6
|
Vargas-Sánchez K, Vargas L, Urrutia Y, Beltrán I, Rossi AB, Lozano HY, Guarín J, Losada-Barragán M. PPARα and PPARβ/δ are negatively correlated with proinflammatory markers in leukocytes of an obese pediatric population. J Inflamm (Lond) 2020; 17:35. [PMID: 33292260 PMCID: PMC7602348 DOI: 10.1186/s12950-020-00264-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Obesity configures a pathophysiological profile that predisposes the development of metabolic and cardiovascular diseases, critically impacting public health. The chronic dysregulation of immuno-metabolic components triggered by pediatric obesity is a common but scarcely understood aspect of the disease. Peroxisome proliferator-activated receptors (PPARs) are a group of transcription factors essential for energy and immune homeostasis of different tissues. Besides, the glucagon-like peptide-1 receptor (GLP-1R) activation influences insulin secretion, but also regulates the cytokine profile possibly mediated through a PPAR isotype. However, the role of PPARs and GLP-1R in leukocytes from obese pediatric patients remains unclear. Therefore, we examined the expression of PPARs isotypes and GLP-1R in leukocytes, and its correlation with metabolic, hormonal, inflammatory, and anthropometric markers in an obese pediatric population. RESULTS Obese children and adolescents presented a significant increase in anthropometric and body composition parameters, TG, VLDL, TG/HDL, android fat (%)/gynoid fat (%) (A/G%) index, and HOMA score when compared with the control group. Obese participants exhibited a pro-inflammatory profile with an augment of IL-8 (p = 0,0081), IL-6 (p = 0,0005), TNF-α (p = 0,0004), IFN-γ (p = 0,0110), MCP-1 (p = 0,0452), and adipsin (p = 0,0397), whereas displayed a reduction of adiponectin (p = 0,0452). The expression of PPARα and GLP-1R was lower in the leukocytes from obese participants than in lean subjects. Furthermore, PPARα correlates negatively with TNF-α (p = 0,0383), while GLP-1R did not show correlation with any inflammatory variable. However, both receptors correlate negatively with the abdominal skinfold. Although PPARβ/δ expression was similar between groups, it was negatively associated with IL-8 levels (p = 0,0085). CONCLUSIONS PPARα and PPARβ/δ expression are negatively correlated with the proinflammatory markers TNF-α and IL-8, respectively, suggesting participation in the regulation of inflammation which was observed to be altered in pediatric obesity. Furthermore, PPARα and GLP-1R are downregulated in leukocytes from obese participants. The low expression of both receptors is correlated with an increase in abdominal skinfold, suggesting a role in fat distribution that could indirectly affect cytokine secretion from different immune and adipose cells, likely triggering an inflammatory profile as a consequence of obesity. Altogether, these findings may impact the understanding and implementation of PPARα or GLP-1R agonists in the clinic.
Collapse
Affiliation(s)
- Karina Vargas-Sánchez
- Research group of Translational Neurosciences, School of Medicine, Universidad de los Andes, Bogotá, 111711, Colombia.
| | - Laura Vargas
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | - Yenny Urrutia
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | - Iván Beltrán
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | | | | | - Jorge Guarín
- GRINCIBIO. Universidad Antonio Nariño, Bogotá, Colombia
| | - Monica Losada-Barragán
- Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia.
| |
Collapse
|
7
|
Moghbeli M, Khedmatgozar H, Yadegari M, Avan A, Ferns GA, Ghayour Mobarhan M. Cytokines and the immune response in obesity-related disorders. Adv Clin Chem 2020; 101:135-168. [PMID: 33706888 DOI: 10.1016/bs.acc.2020.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The increasing prevalence of obesity and the associated morbidity and mortality are important public health problems globally. There is an important relationship between an unhealthy lifestyle and increased serum inflammatory cytokines. Adipocytes secrete several pro-inflammatory cytokines involved in the recruitment and activation of macrophages resulting in chronic low-grade inflammation. Increased cytokines in obese individual are related to the progression of several disorders including cardiovascular disease, hypertension, and insulin resistance. In present review we have summarized the crucial roles of cytokines and their inflammatory functions in obesity-related immune disorders.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Khedmatgozar
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Yadegari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee and Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int J Mol Sci 2020; 21:E3776. [PMID: 32471078 PMCID: PMC7312391 DOI: 10.3390/ijms21113776] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is often equated to the physiological response to injury or infection. Inflammatory responses defined by cytokine storms control cellular mechanisms that can either resolve quickly (i.e., acute inflammation) or remain prolonged and unabated (i.e., chronic inflammation). Perhaps less well-appreciated is the importance of inflammatory processes central to healthy pregnancy, including implantation, early stages of placentation, and parturition. Pregnancy juxtaposed with disease can lead to the perpetuation of aberrant inflammation that likely contributes to or potentiates maternal morbidity and poor fetal outcome. Maternal obesity, a prevalent condition within women of reproductive age, associates with increased risk of developing multiple pregnancy disorders. Importantly, chronic low-grade inflammation is thought to underlie the development of obesity-related obstetric and perinatal complications. While diverse subsets of uterine immune cells play central roles in initiating and maintaining healthy pregnancy, uterine leukocyte dysfunction as a result of maternal obesity may underpin the development of pregnancy disorders. In this review we discuss the current knowledge related to the impact of maternal obesity and obesity-associated inflammation on uterine immune cell function, utero-placental establishment, and pregnancy health.
Collapse
Affiliation(s)
- Lauren E. St-Germain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Barbara Castellana
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Jennet Baltayeva
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Alexander G. Beristain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| |
Collapse
|
9
|
Pullen AB, Jadapalli JK, Rhourri-Frih B, Halade GV. Re-evaluating the causes and consequences of non-resolving inflammation in chronic cardiovascular disease. Heart Fail Rev 2020; 25:381-391. [PMID: 31201605 PMCID: PMC6911017 DOI: 10.1007/s10741-019-09817-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac injuries, like heart attacks, drive the secondary pathology with advanced heart failure. In this process, non-resolving inflammation is a prime component of accelerated cardiovascular disease and subsequent fatal events associated with imbalanced diet, physical inactivity, disrupted circadian rhythms, neuro-hormonal stress, and poly- or co-medication. Laboratory rodents have established that splenic leukocyte-directed resolution mechanisms are essential for cardiac repair after injury. Here, we discuss the impact of three lifestyle-related factors that are prime causes of derailed cardiac healing, putative non-resolving inflammation-resolution mechanisms in cardiovascular diseases, and progressive heart failure after cardiac injury. The presented review resurfaces the lifestyle-related risks and future research directions required to understand the molecular and cellular mechanisms between the causes of cardiovascular disease and their related consequences of non-resolving inflammation.
Collapse
Affiliation(s)
- Amanda B Pullen
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeevan Kumar Jadapalli
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Boutayna Rhourri-Frih
- Chimie et Biologie des Membranes et Nanoobjets, University of Bordeaux, CNRS UMR 5248, 146, rue Léo Saignat, 33076, Bordeaux, France
| | - Ganesh V Halade
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Chu SH, Kelsey KT, Koestler DC, Loucks EB, Huang YT. Leveraging cell-specific differentially methylated regions to identify leukocyte infiltration in adipose tissue. Genet Epidemiol 2019; 43:1018-1029. [PMID: 31433079 PMCID: PMC6829028 DOI: 10.1002/gepi.22252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
Abstract
Obesity is understood to be an inflammatory condition characterized in part by changes in resident immune cell populations in adipose tissue. However, much of this knowledge has been obtained through experimental animal models. Epigenetic mechanisms, such as DNA methylation may be useful tools for characterizing the changes in immune cell populations in human subjects. In this study, we introduce a simple and intuitive method for assessing cellular infiltration by blood into other heterogeneous, admixed tissues such as adipose tissue, and apply this approach in a large human cohort study. Associations between higher leukocyte infiltration, measured by evaluating a distance measure between the methylation signatures of leukocytes and adipose tissue, and increasing body mass index (BMI) or android fat mass (AFM) were identified and validated in independent replication samples for CD4 (pBMI = 0.009, pAFM = 0.020), monocytes (pBMI = 0.001, pAFM = 4.3 × 10-4 ), and dendritic cells (pBMI = 0.571, pAFM = 0.012). Patterns of depletion with increasing adiposity were observed for plasma B (pBMI = 0.430, pAFM = 0.004) and immature B (pBMI = 0.022, pAFM = 0.042) cells. CD4, dendritic, monocytes, immature B, and plasma B cells may be important agents in the inflammatory process. Finally, the method used to assess leukocyte infiltration in this study is straightforwardly extended to other cell types and tissues in which infiltration might be of interest.
Collapse
Affiliation(s)
- Su H. Chu
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI USA 02912
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA 02115
- Department of Medicine, Harvard Medical School, Boston, MA USA 02115
| | - Karl T. Kelsey
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI USA 02912
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University
| | - Devin C. Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS USA
| | - Eric B. Loucks
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI USA 02912
| | - Yen-Tsung Huang
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI USA 02912
- Department of Biostatistics, School of Public Health, Brown University, Providence, RI USA 02912
- Institute of Statistical Science, Academia Sinica, Taipei City, Taiwan
| |
Collapse
|
11
|
Chen X, Li H, Wang K, Liang X, Wang W, Hu X, Huang Z, Wang Y. Aerobic Exercise Ameliorates Myocardial Inflammation, Fibrosis and Apoptosis in High-Fat-Diet Rats by Inhibiting P2X7 Purinergic Receptors. Front Physiol 2019; 10:1286. [PMID: 31681001 PMCID: PMC6798156 DOI: 10.3389/fphys.2019.01286] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 09/25/2019] [Indexed: 01/21/2023] Open
Abstract
Background High-fat-diet (HFD) is associated with chronic low-grade inflammation. P2X7 purinergic receptors (P2X7R) are key regulators of inflammasome activation. The benefits of exercise are partly attributed to its anti-inflammatory effect, but whether it regulates P2X7R expression to improve remodeling in cardiac myocytes treated by HFD is not completely clarified. Methods Three groups of Sprague-Dawley (SD) rats were studied: (1) control group (fed a normal chow diet), (2) HFD group, and (3) HFD+ exercise group. H9c2 myocytes were pretreated with or without A438079 (a P2X7R inhibitor) and then exposed to 200 μM palmitic acid (PA) for 24 h. The levels of mRNA and protein were measured by real-time PCR and Western blot, respectively. Masson staining and hematoxylin-eosin (HE) staining were used to identify remodeling of the heart. The concentration of IL-1β in serum or supernatants were measured by ELISA. Results In vivo, collagen deposition and the number of disordered cells significantly increased in the hearts of the HFD group compared to the control group. However, exercise markedly reversed these changes in the myocardium, and the same trends were observed in the expression of MMP9, collagen I and TGF-β. Notably, the expression of P2X7R, NLRP3, caspase-1 in the hearts, and serum IL-1β level were also greatly upregulated in the heart of the HFD diet rats, and all these changes were ameliorated in the HFD + EX group. As expected, exercise also reduced the number of TUNEL-positive cells, which was consistent with the caspase-3, Bax, and Bcl-2 results. Moreover, exercise reduced body weight and blood lipid concentrations in the HFD diet rats. In vitro, we observed that the hallmark of fibrosis, inflammation and apoptosis in H9c2 myocytes enhanced by PA, and the P2X7R inhibitor treatment significantly reduced the expression of the NLRP3, caspase-1, suppressed the secretion of IL-1β of H9c2 cells, inhibited collagen I, TGF-β, MMP9, Bax, caspase-3 levels and increased the expression of Bcl-2, compared with the PA group. In addition, a decrease of the number of TUNEL-positive cells used by A438079 further support that cardiomyocytes apoptosis could be inhibited. Conclusion Aerobic exercise reversed the cardiac remodeling via the reduction of inflammation, fibrosis and apoptosis in HFD rats, at least in part through inhibiting P2X7R expression in cardiomyocytes.
Collapse
Affiliation(s)
- Xudong Chen
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, China
| | - Haiyan Li
- Department of Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kangwei Wang
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, Wenzhou Medical University, Wenzhou, China
| | - Xiaohe Liang
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, Wenzhou Medical University, Wenzhou, China
| | - Weiqi Wang
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, Wenzhou Medical University, Wenzhou, China
| | - Xiaokang Hu
- The Key Lab of Cardiovascular Disease of Wenzhou, Department of Cardiology, Wenzhou Medical University, Wenzhou, China
| | - Zhouqing Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yonghua Wang
- Department of Physical Education, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Physical Exercise Affects Adipose Tissue Profile and Prevents Arterial Thrombosis in BDNF Val66Met Mice. Cells 2019; 8:cells8080875. [PMID: 31405230 PMCID: PMC6721716 DOI: 10.3390/cells8080875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 01/04/2023] Open
Abstract
Adipose tissue accumulation is an independent and modifiable risk factor for cardiovascular disease (CVD). The recent CVD European Guidelines strongly recommend regular physical exercise (PE) as a management strategy for prevention and treatment of CVD associated with metabolic disorders and obesity. Although mutations as well as common genetic variants, including the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, are associated with increased body weight, eating and neuropsychiatric disorders, and myocardial infarction, the effect of this polymorphism on adipose tissue accumulation and regulation as well as its relation to obesity/thrombosis remains to be elucidated. Here, we showed that white adipose tissue (WAT) of humanized knock-in BDNFVal66Met (BDNFMet/Met) mice is characterized by an altered morphology and an enhanced inflammatory profile compared to wild-type BDNFVal/Val. Four weeks of voluntary PE restored the adipocyte size distribution, counteracted the inflammatory profile of adipose tissue, and prevented the prothrombotic phenotype displayed, per se, by BDNFMet/Met mice. C3H10T1/2 cells treated with the Pro-BDNFMet peptide well recapitulated the gene alterations observed in BDNFMet/Met WAT mice. In conclusion, these data indicate the strong impact of lifestyle, in particular of the beneficial effect of PE, on the management of arterial thrombosis and inflammation associated with obesity in relation to the specific BDNF Val66Met mutation.
Collapse
|
13
|
Abbasihormozi SH, Babapour V, Kouhkan A, Niasari Naslji A, Afraz K, Zolfaghary Z, Shahverdi AH. Stress Hormone and Oxidative Stress Biomarkers Link Obesity and Diabetes with Reduced Fertility Potential. CELL JOURNAL 2019; 21:307-313. [PMID: 31210437 PMCID: PMC6582426 DOI: 10.22074/cellj.2019.6339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/11/2018] [Indexed: 11/04/2022]
Abstract
Objective Tilting the balance in favor of antioxidant agents could increase infertility problems in obese and diabetic individuals. The aim of this study was to evaluate oxidative stress status in semen of men with type 2 diabetes and obesity to investigate whether excessive amounts of oxidative stress, as a result of diabetes and obesity, influence infertility potential. Materials and Methods A case-control study was conducted in men (n=150) attending the Infertility Center of Royan Institute between December 2016 and February 2017. Participants were categorized into four groups; normal weight (BMI<25 kg/m2) and non-type-2 diabetic (control=40), obese and non- type-2 diabetic (obese=40), non-obese and type- 2 diabetic (Nob-DM=35), and obese and type-2 diabetic (Ob-DM=35). The semen analysis was performed according to the World Health Organization criteria. Oxidative stress, DNA fragmentation, sperm apoptosis, and total antioxidant capacity (TAC) were evaluated in semen samples of men. Serum glucose, HbA1c, cortisol, and testosterone levels were determined using the enzyme-linked immunosorbent assay (ELISA) method. Results Compared with the control group, sperm motility, progressive motility, and normal morphology were significantly decreased in the obese, Nob-DM, and Ob-DM groups (P<0.01). The obese, Nob-DM, and Ob-DM groups showed significantly lower levels of TAC and higher amounts of oxidative stress, early apoptotic sperm, and the percentage of DNA fragmentation as compared with the control group (P<0.05). Testosterone concentration was decreased in the obese, Nob-DM, and Ob-DM groups when compared with healthy individuals (P<0.05), whereas the cortisol level was significantly increased in the Nob-DM and Ob-DM groups in comparison to the obese and control group (P<0.01). Conclusion Increased amount of reactive oxygen species (ROS) levels and DNA fragmentation in men affected by either diabetes or obesity could be considered prognostic factors in sub-fertile patients, alerting physicians to an early screen of male patients to avoid the development of infertility in prone patients.
Collapse
Affiliation(s)
- S Hima Abbasihormozi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Kouhkan
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Niasari Naslji
- Department of Midwifery and Reproductive Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kaveh Afraz
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Zolfaghary
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdol Hossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
14
|
Tart Cherry Concentrate Does Not Alter the Gut Microbiome, Glycaemic Control or Systemic Inflammation in a Middle-Aged Population. Nutrients 2019; 11:nu11051063. [PMID: 31085979 PMCID: PMC6567170 DOI: 10.3390/nu11051063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
Limited evidence suggests that the consumption of polyphenols may improve glycaemic control and insulin sensitivity. The gut microbiome produces phenolic metabolites and increases their bioavailability. A handful of studies have suggested that polyphenol consumption alters gut microbiome composition. There are no data available investigating such effects in polyphenol-rich Montmorency cherry (MC) supplementation. A total of 28 participants (aged 40-60 years) were randomized to receive daily MC or glucose and energy-matched placebo supplementation for 4 wk. Faecal and blood samples were obtained at baseline and at 4 wk. There was no clear effect of supplementation on glucose handling (Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and Gutt indices), although the Matsuda index decreased significantly in the MC group post-supplementation, reflecting an increase in serum insulin concentration. Contrastingly, placebo, but not MC supplementation induced a 6% increase in the Oral Glucose Insulin Sensitivity (OGIS) estimate of glucose clearance. Serum IL-6 and C reactive protein were unaltered by either supplement. The faecal bacterial microbiome was sequenced; species richness and diversity were unchanged by MC or placebo and no significant correlation existed between changes in Bacteroides and Faecalibacterium abundance and any index of insulin sensitivity. Therefore, 4 weeks of MC supplementation did not alter the gut microbiome, glycaemic control or systemic concentrations of IL-6 and CRP in a middle-aged population.
Collapse
|
15
|
MRP14 enhances the ability of macrophage to recruit T cells and promotes obesity-induced insulin resistance. Int J Obes (Lond) 2019; 43:2434-2447. [PMID: 31040394 PMCID: PMC6821582 DOI: 10.1038/s41366-019-0366-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
Abstract
Objective: Myeloid-related protein-14 (MRP14) and its binding partner MRP8 play an essential role in innate immune function and have been implicated in a variety of inflammatory diseases. However, the role of MRP14 in obesity-induced inflammation and insulin resistance is not well defined. This study investigated the role of MRP14 in macrophage-mediated adipose tissue inflammation and obesity-induced insulin resistance. Subjects and Results: Wild-type (WT) and Mrp14−/− mice were fed a high-fat diet or normal chow for 12 weeks. Tissue-resident macrophages in both adipose tissue and liver from obese WT mice expressed higher levels of MRP14 in the visceral adipose fat and liver compared to the lean mice. Mrp14−/− mice demonstrated a significantly improved post-prandial insulin sensitivity, as measured by intraperitoneal glucose tolerance test and insulin tolerance testing. Macrophages secreted MRP14 in response to inflammatory stimuli such as LPS. Extracellular MRP8/14 induced the production of CCL5 and CXCL9. Deficiency of MRP14 did not affect macrophage proliferation, mitochondrial respiration, and glycolytic function, but Mrp14−/− macrophages showed a reduced ability to attract T cells. Depletion of the extracellular MRP14 reduced the T cell attracting ability of WT macrophages to a level similar to Mrp14−/− macrophages. Conclusion: Our data indicates that MRP14 deficiency decreases obesity-induced insulin resistance and MRP8/14 regulates T cell recruitment through the induction of T cell chemoattractant production from macrophages.
Collapse
|
16
|
KARAKAYA S, ALTAY M, KAPLAN EFE F, KARADAĞ İ, ÜNSAL O, BULUR O, ESER M, TANER ERTUĞRUL D. The neutrophil-lymphocyte ratio and its relationship with insulin resistance in obesity. Turk J Med Sci 2019; 49:245-248. [PMID: 30761879 PMCID: PMC7350826 DOI: 10.3906/sag-1804-68] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background/aim In this study, our aim was to investigate the neutrophil/lymphocyte (N/L) ratio, variations in leukocytes and leukocyte subtypes, and the relationship between N/L ratio and insulin resistance (IR) in obesity. Materials and methods Ninety-six patients and 40 healthy controls were included in this study. Patients’ blood glucose levels, insulin levels, and hemogram parameters upon 8 h of fasting were determined. Body mass index (BMI) and Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) values were calculated. Results Neutrophil numbers were found to be higher among obese patients with IR than among non-IR obese patients. The N/L ratio was, moreover, found to be higher among obese patients with IR when compared to non-IR obese patients. A positive correlation was found between insulin resistance and both neutrophil and WBC counts. Positive correlations were also found between insulin levels and the N/L ratio, WBC counts, and neutrophil counts. Conclusion In our study, leukocyte numbers and subtypes were determined to be higher among obese individuals than among healthy individuals. The N/L ratio was increased significantly only among obese patients with IR. Further studies are needed in order to better demonstrate the relationship between the N/L ratio and IR/inflammation.
Collapse
Affiliation(s)
- Serdar KARAKAYA
- Department of Medical Oncology, University of Health Sciences,Dr. A. Yurtaslan Health Administration and Research Center, AnkaraTurkey
- * To whom correspondence should be addressed. E-mail:
| | - Mustafa ALTAY
- Department of Endocrinology and Metabolism, University of Health Sciences,Keçiören Health Administration and Research Center, AnkaraTurkey
| | - Fatma KAPLAN EFE
- Department of Internal Medicine, University of Health Sciences,Keçiören Health Administration and Research Center, AnkaraTurkey
| | - İbrahim KARADAĞ
- Department of Internal Medicine, University of Health Sciences,Keçiören Health Administration and Research Center, AnkaraTurkey
| | - Oktay ÜNSAL
- Department of Internal Medicine, University of Health Sciences,Keçiören Health Administration and Research Center, AnkaraTurkey
| | - Oktay BULUR
- Department of Internal Medicine, University of Health Sciences,Keçiören Health Administration and Research Center, AnkaraTurkey
| | - Murat ESER
- Department of Internal Medicine, University of Health Sciences,Keçiören Health Administration and Research Center, AnkaraTurkey
| | - Derun TANER ERTUĞRUL
- Department of Endocrinology and Metabolism, University of Health Sciences,Keçiören Health Administration and Research Center, AnkaraTurkey
| |
Collapse
|
17
|
Rivera ED, Coffey JC, Walsh D, Ehrenpreis ED. The Mesentery, Systemic Inflammation, and Crohn's Disease. Inflamm Bowel Dis 2019; 25:226-234. [PMID: 29920595 DOI: 10.1093/ibd/izy201] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 12/11/2022]
Abstract
Initially thought to be a structure that only provided support to the abdominal contents, the mesentery has now gained special attention in the scientific community. The new approach of studying the mesentery as an individual organ has highlighted its importance in the development of local and systemic inflammatory diseases and its potential role in Crohn's disease. Its topographical relationship with the intestine in the setting of active inflammation and "creeping fat" is possibly one of the most important arguments for including the mesentery as an important factor in the pathogenesis of Crohn's disease. In this review, we discuss the importance of the mesentery from the anatomical and embryological standpoints. We also will summarize data on mesenteric inflammation in patients with Crohn's disease. The significance of the mesentery in systemic inflammatory syndromes will be discussed, and we provide an overview of primary inflammatory disorders of the mesentery. Finally, we discuss surgical approaches for patients requiring resection for Crohn's disease that incorporate mesenteric factors, pointing out recent data suggesting that these have the potential for improving outcomes and reducing disease recurrence. 10.1093/ibd/izy201_video1izy201.video15794169491001.
Collapse
Affiliation(s)
- Edgardo D Rivera
- Division of Gastroenterology, Hepatology and Nutrition, University of Miami Miller School of Medicine, Mailman Center for Child Development, Miami, Florida
| | - John Calvin Coffey
- FRCSI Surgery, Graduate Entry Medical School, University of Limerick, Limerick, Ireland.,Department of Surgery, University Hospital Limerick Group, Limerick, Ireland
| | - Dara Walsh
- Department of Surgery, University Hospital Limerick Group, Limerick, Ireland
| | - Eli D Ehrenpreis
- Rosalind Franklin University Medical School, North Chicago, Illinois.,Division of Gastroenterology, Hepatology and Nutrition, University of Miami Miller School of Medicine, Miami, Florida.,Advocate Lutheran General Hospital, Park Ridge, Illinois
| |
Collapse
|
18
|
Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies. J Immunol Res 2018; 2018:4054815. [PMID: 30306093 PMCID: PMC6166361 DOI: 10.1155/2018/4054815] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are powerful immune effectors whose antitumor activity is regulated through a sophisticated network of activating and inhibitory receptors. As effectors of cancer immunotherapy, NK cells are attractive as they do not attack healthy self-tissues nor do they induce T cell-driven inflammatory cytokine storm, enabling their use as allogeneic adoptive cellular therapies. Clinical responses to adoptive NK-based immunotherapy have been thwarted, however, by the profound immunosuppression induced by the tumor microenvironment, particularly severe in the context of solid tumors. In addition, the short postinfusion persistence of NK cells in vivo has limited their clinical efficacy. Enhancing the antitumor immunity of NK cells through genetic engineering has been fueled by the promise that impaired cytotoxic functionality can be restored or augmented with the use of synthetic genetic approaches. Alongside expressing chimeric antigen receptors to overcome immune escape by cancer cells, enhance their recognition, and mediate their killing, NK cells have been genetically modified to enhance their persistence in vivo by the expression of cytokines such as IL-15, avoid functional and metabolic tumor microenvironment suppression, or improve their homing ability, enabling enhanced targeting of solid tumors. However, NK cells are notoriously adverse to endogenous gene uptake, resulting in low gene uptake and transgene expression with many vector systems. Though viral vectors have achieved the highest gene transfer efficiencies with NK cells, nonviral vectors and gene transfer approaches—electroporation, lipofection, nanoparticles, and trogocytosis—are emerging. And while the use of NK cell lines has achieved improved gene transfer efficiencies particularly with viral vectors, challenges with primary NK cells remain. Here, we discuss the genetic engineering of NK cells as they relate to NK immunobiology within the context of cancer immunotherapy, highlighting the most recent breakthroughs in viral vectors and nonviral approaches aimed at genetic reprogramming of NK cells for improved adoptive immunotherapy of cancer, and, finally, address their clinical status.
Collapse
|
19
|
Kühn G, Pallauf K, Schulz C, Rimbach G. Flavonoids as putative modulators of Δ4-, Δ5-, and Δ6-desaturases: Studies in cultured hepatocytes, myocytes, and adipocytes. Biofactors 2018; 44:485-495. [PMID: 30365230 DOI: 10.1002/biof.1443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/07/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
This study was conducted to screen flavonoids for affecting expression of desaturases involved in omega-3 fatty acid synthesis and ceramide (CER) metabolism. To this end, cultured HepG2 hepatocytes, C2C12 myocytes, and 3T3-L1 adipocytes were treated with nontoxic concentrations of 12 selected flavonoids and expression of Δ4-, Δ5-, and Δ6-desaturases (DEGS1, FADS1, and FADS2, respectively) was determined. The flavonoids tested were more cytotoxic to HepG2 and 3T3-L1 than to C2C12 cells. In HepG2 cells, FADS1 was induced by quercetin and FADS2 expression was increased by daidzein, genistein, and pratensein treatment. DEGS1 was increased by apigenin, luteolin, orobol, and quercetin administration. In differentiated C2C12 cells, substances had no inducing effect or even lowered target gene expression. Pratensein induced both FADS1 and FADS2 in differentiated 3T3-L1 cells and DEGS1 was increased by treatment with apigenin, genistein, luteolin, orobol, and quercetin. In conclusion, pratensein may be an interesting test compound for further studies in vitro and in vivo on omega-3 synthesis since it induces its rate-limiting enzyme FADS2. Apigenin, luteolin, orobol, and quercetin induced DEGS1 and thereby possibly synthesis of proapoptotic CER in malignant HepG2 cells and 3T3-L1. In contrast, in benign C2C12 cells, they did not elevate mRNA steady state levels of DEGS1. That may partly explain the higher resistance of C2C12 cells against flavonoids compared to the other cell lines. By affecting tumor cells and nontumor cells differently, these flavonoids may be promising substances for further research regarding anticancer properties. © 2018 BioFactors, 44(5):485-495, 2018.
Collapse
Affiliation(s)
- Gianna Kühn
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Kathrin Pallauf
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Carsten Schulz
- Institute of Animal Breeding and Husbandry, University of Kiel, Kiel, Germany
- GMA-Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
20
|
Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes - An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3805-3823. [PMID: 30251697 DOI: 10.1016/j.bbadis.2018.08.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes has traditionally been viewed as a metabolic disorder characterised by chronic high glucose levels, insulin resistance, and declining insulin secretion from the pancreas. Modern lifestyle, with abundant nutrient supply and reduced physical activity, has resulted in dramatic increases in the rates of obesity-associated disease conditions, including diabetes. The associated excess of nutrients induces a state of systemic low-grade chronic inflammation that results from production and secretion of inflammatory mediators from the expanded pool of activated adipocytes. Here, we review the mechanisms by which obesity induces adipose tissue dysregulation, detailing the roles of adipose tissue secreted factors and their action upon other cells and tissues central to glucose homeostasis and type 2 diabetes. Furthermore, given the emerging importance of adipokines, cytokines and chemokines in disease progression, we suggest that type 2 diabetes should now be viewed as an autoinflammatory disease, albeit one that is driven by metabolic dysregulation.
Collapse
Affiliation(s)
- Laura L Gonzalez
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karin Garrie
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Mark D Turner
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
21
|
Griffin C, Eter L, Lanzetta N, Abrishami S, Varghese M, McKernan K, Muir L, Lane J, Lumeng CN, Singer K. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c + adipose tissue macrophage production in obese mice. J Biol Chem 2018; 293:8775-8786. [PMID: 29636416 DOI: 10.1074/jbc.ra117.001526] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity-induced chronic inflammation is associated with metabolic disease. Results from mouse models utilizing a high-fat diet (HFD) have indicated that an increase in activated macrophages, including CD11c+ adipose tissue macrophages (ATMs), contributes to insulin resistance. Obesity primes myeloid cell production from hematopoietic stem cells (HSCs) and Toll-like receptor 4 (TLR4), and the downstream TIR domain-containing adapter protein-inducing interferon-β (TRIF)- and MyD88-mediated pathways regulate production of similar myeloid cells after lipopolysaccharide stimulation. However, the role of these pathways in HFD-induced myelopoiesis is unknown. We hypothesized that saturated fatty acids and HFD alter myelopoiesis by activating TLR4 pathways in HSCs, differentially producing pro-inflammatory CD11c+ myeloid cells that contribute to obesity-induced metabolic disease. Results from reciprocal bone marrow transplants (BMTs) with Tlr4-/- and WT mice indicated that TLR4 is required for HFD-induced myelopoiesis and production of CD11c+ ATMs. Experiments with homozygous knockouts of Irakm (encoding a suppressor of MyD88 inactivation) and Trif in competitive BMTs revealed that MyD88 is required for HFD expansion of granulocyte macrophage progenitors and that Trif is required for pregranulocyte macrophage progenitor expansion. A comparison of WT, Tlr4-/-, Myd88-/-, and Trif-/- mice on HFD demonstrated that TLR4 plays a role in the production of CD11c+ ATMs, and both Myd88-/- and Trif-/- mice produced fewer ATMs than WT mice. Moreover, HFD-induced TLR4 activation inhibited macrophage proliferation, leading to greater accumulation of recruited CD11c+ ATMs. Our results indicate that HFD potentiates TLR4 and both its MyD88- and TRIF-mediated downstream pathways within progenitors and adipose tissue and leads to macrophage polarization.
Collapse
Affiliation(s)
- Cameron Griffin
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Leila Eter
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Nico Lanzetta
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Simin Abrishami
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Mita Varghese
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kaitlin McKernan
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Lindsey Muir
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jamie Lane
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Carey N Lumeng
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kanakadurga Singer
- From the Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
22
|
Kuda O, Rossmeisl M, Kopecky J. Omega-3 fatty acids and adipose tissue biology. Mol Aspects Med 2018; 64:147-160. [PMID: 29329795 DOI: 10.1016/j.mam.2018.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
This review provides evidence for the importance of white and brown adipose tissue (i.e. WAT and BAT) function for the maintenance of healthy metabolic phenotype and its preservation in response to omega-3 polyunsaturated fatty acids (omega-3 PUFA), namely in the context of diseased states linked to aberrant accumulation of body fat, systemic low-grade inflammation, dyslipidemia and insulin resistance. More specifically, the review deals with (i) the concept of immunometabolism, i.e. how adipose-resident immune cells and adipocytes affect each other and define the immune-metabolic interface; and (ii) the characteristic features of "healthy adipocytes" in WAT, which are relatively small fat cells endowed with a high capacity for mitochondrial oxidative phosphorylation, triacylglycerol/fatty acid (TAG/FA) cycling and de novo lipogenesis (DNL). The intrinsic metabolic features of WAT and their flexible regulations, reflecting the presence of "healthy adipocytes", provide beneficial local and systemic effects, including (i) protection against in situ endoplasmic reticulum stress and related inflammatory response during activation of adipocyte lipolysis; (ii) prevention of ectopic fat accumulation and dyslipidemia caused by increased hepatic VLDL synthesis, as well as prevention of lipotoxic damage of insulin signaling in extra-adipose tissues; and also (iii) increased synthesis of anti-inflammatory and insulin-sensitizing lipid mediators with pro-resolving properties, including the branched fatty acid esters of hydroxy fatty acids (FAHFAs), also depending on the activity of DNL in WAT. The "healthy adipocytes" phenotype can be induced in WAT of obese mice in response to various stimuli including dietary omega-3 PUFA, especially when combined with moderate calorie restriction, and possibly also with other life style (e.g. physical activity) or pharmacological (e.g. thiazolidinediones) interventions. While omega-3 PUFA could exert beneficial systemic effects by improving immunometabolism of WAT without a concomitant induction of BAT, it is currently not clear whether the metabolic effects of the combined intervention using omega-3 PUFA and calorie restriction or thiazolidinediones depend also on the activation of BAT function and/or the induction of brite/beige adipocytes in WAT. It remains to be established why omega-3 PUFA intervention in type 2 diabetic subjects does not improve insulin sensitivity and glucose homeostasis despite inducing various anti-inflammatory mediators in WAT, including the recently discovered docosahexaenoyl esters of hydroxy linoleic acid, the lipokines from the FAHFA family, as well as several endocannabinoid-related anti-inflammatory lipids. To answer the question whether and to which extent omega-3 PUFA supplementation could promote the formation of "healthy adipocytes" in WAT of human subjects, namely in the obese insulin-resistant patients, represents a challenging task that is of great importance for the treatment of some serious non-communicable diseases.
Collapse
Affiliation(s)
- Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska, 1083 Prague 4, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska, 1083 Prague 4, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska, 1083 Prague 4, Czech Republic.
| |
Collapse
|
23
|
Abstract
What is inflammation's big idea? In this brief overview of the role of myeloid cells in inflammation, we will critically discuss what drives the initiation, amplification, and resolution of inflammation in different anatomical sites in response to different pathological stimuli. It can be argued that we have a good understanding of the basic principles that underlie myeloid cell activation and the mobilization of innate immune cells to sites of injury and infection in acute inflammation. The challenge now for inflammation biologists is to understand how resolution of this normal physiological response goes wrong in hyperacute and chronic inflammation. A better understanding of how inflammation is regulated will allow us to develop new anti-inflammatory drugs that will reduce the burden of inflammatory disease without compromising the patient's immune defenses against infectious disease. Ideally such drugs should encourage a return to homeostasis and enhance tissue repair processes.
Collapse
|
24
|
Parental Perceptions of Obesity and Obesity Risk Associated With Childhood Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2017; 39:370-375. [PMID: 28538500 DOI: 10.1097/mph.0000000000000852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prevalence of obesity and related comorbidities in survivors of childhood acute lymphoblastic leukemia (ALL) is well established and ranges anywhere from 29% to 69% depending on the study. We sought to explore the awareness of parents of survivors of childhood ALL regarding the increased risk of obesity and their perceptions regarding the overall health of their child. One hundred twenty-one parents of 99 survivors of pediatric ALL completed surveys regarding perceptions of obesity risk in survivors. Eighty percent of parents of overweight and obese survivors correctly identified their child as "a little overweight" or "overweight." Few parents recalled discussing weight gain (21%) or obesity risk (36%) with their practitioner. Parents that did recall having these discussions and/or reported a decreased level of posttherapy activity in their child were more likely to be concerned about their child's weight status. Improved awareness and education regarding the risk of obesity and associated comorbid conditions may provide an avenue for future prevention of obesity in survivors of pediatric ALL. Discussion and education regarding a healthy lifestyle, including proper diet and exercise, should be incorporated early in routine patient visits.
Collapse
|
25
|
Circulating classical monocytes are associated with CD11c + macrophages in human visceral adipose tissue. Sci Rep 2017; 7:42665. [PMID: 28198418 PMCID: PMC5309742 DOI: 10.1038/srep42665] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/13/2017] [Indexed: 12/23/2022] Open
Abstract
Immune cell accumulation in adipose tissue (AT) is associated with the development of AT inflammation, resulting in metabolic dysfunction. Circulating immune cell patterns may reflect immune cell accumulation in expanding AT. However, data linking human leukocytes in blood and AT is lacking. We investigated whether blood immune cell populations are associated with their counterparts in subcutaneous (scAT) or visceral AT (vAT). Flow cytometry was performed on blood, scAT and vAT from 16 lean and 29 obese men. Circulating natural killer (NK)-cells, classical monocytes and nonclassical monocytes were higher in obese individuals. vAT, but not scAT, of obese individuals contained more inflammatory CD11c+ “M1” macrophages and NK cells compared to lean individuals. Blood classical monocytes were associated with CD11c+ macrophages in vAT but not scAT. This association was unrelated to expression of the adhesion molecules CD11b and CD11c or of the chemokine receptor CX3CR1 on these monocytes. Other AT immune cells were not associated with their respective counterparts in blood. Finally, CD11c+ macrophages and CD4+ T-cells in vAT were associated with their counterparts in scAT. In conclusion, blood classical monocytes reflect CD11c+ macrophages in vAT.
Collapse
|
26
|
He H, Ghosh S, Yang H. Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 2017; 247:106-126. [PMID: 28057522 PMCID: PMC5360184 DOI: 10.1016/j.jconrel.2016.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Abstract
Macrophages play vital functions in host inflammatory reaction, tissue repair, homeostasis and immunity. Dysfunctional macrophages have significant pathophysiological impacts on diseases such as cancer, inflammatory diseases (rheumatoid arthritis and inflammatory bowel disease), metabolic diseases (atherosclerosis, diabetes and obesity) and major infections like human immunodeficiency virus infection. In view of this common etiology in these diseases, targeting the recruitment, activation and regulation of dysfunctional macrophages represents a promising therapeutic strategy. With the advancement of nanotechnology, development of nanomedicines to efficiently target dysfunctional macrophages can strengthen the effectiveness of therapeutics and improve clinical outcomes. This review discusses the specific roles of dysfunctional macrophages in various diseases and summarizes the latest advances in nanomedicine-based therapeutics and theranostics for treating diseases associated with dysfunctional macrophages.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
27
|
Wei X, Song H, Yin L, Rizzo MG, Sidhu R, Covey DF, Ory DS, Semenkovich CF. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 2016; 539:294-298. [PMID: 27806377 PMCID: PMC5671339 DOI: 10.1038/nature20117] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
Dietary fat promotes pathological insulin resistance through chronic inflammation. The inactivation of inflammatory proteins produced by macrophages improves diet-induced diabetes, but how nutrient-dense diets induce diabetes is unknown. Membrane lipids affect the innate immune response, which requires domains that influence high-fat-diet-induced chronic inflammation and alter cell function based on phospholipid composition. Endogenous fatty acid synthesis, mediated by fatty acid synthase (FAS), affects membrane composition. Here we show that macrophage FAS is indispensable for diet-induced inflammation. Deleting Fasn in macrophages prevents diet-induced insulin resistance, recruitment of macrophages to adipose tissue and chronic inflammation in mice. We found that FAS deficiency alters membrane order and composition, impairing the retention of plasma membrane cholesterol and disrupting Rho GTPase trafficking-a process required for cell adhesion, migration and activation. Expression of a constitutively active Rho GTPase, however, restored inflammatory signalling. Exogenous palmitate was partitioned to different pools from endogenous lipids and did not rescue inflammatory signalling. However, exogenous cholesterol, as well as other planar sterols, did rescue signalling, with cholesterol restoring FAS-induced perturbations in membrane order. Our results show that the production of endogenous fat in macrophages is necessary for the development of exogenous-fat-induced insulin resistance through the creation of a receptive environment at the plasma membrane for the assembly of cholesterol-dependent signalling networks.
Collapse
Affiliation(s)
- Xiaochao Wei
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Haowei Song
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Li Yin
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Michael G Rizzo
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
28
|
Liu Q, Xu Y, Liu K, He S, Shi R, Chen X. Does white blood cell count predict diabetes incidence in the general Chinese population over time? Int J Diabetes Dev Ctries 2016. [DOI: 10.1007/s13410-016-0521-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
29
|
Effects of Lentinula edodes consumption on biochemical, hematologic and oxidative stress parameters in rats receiving high-fat diet. Eur J Nutr 2016; 56:2255-2264. [PMID: 27388463 DOI: 10.1007/s00394-016-1266-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Functional foods can prevent/reduce the risks related to obesity. Lentinula edodes is a highly nutritious mushroom rich in protein, vitamins and minerals. Some studies have demonstrated the hypocholesterolemic effects from L. edodes in high doses, which does not represent the consumption in humans. We evaluated ingestion of a realistic dose of L. edodes associated with a high-fat diet (HFD) on hematologic, biochemical and oxidative stress parameters. METHODS Eighteen male Wistar rats were divided into three groups: control (normal diet); HFD; and HFD + L. edodes (100 mg/kg/day). After 30 days, blood was collected. Biochemical and hematologic parameters were analyzed, as well as oxidative stress biomarkers. RESULTS The HFD increased levels of total cholesterol and triglycerides. Lentinula edodes reduced these parameters significantly to concentrations found in the control group. The HFD increased levels of alanine transaminase and aspartate transaminase (markers of liver damage). Lentinula edodes returned the levels of these enzymes to normal levels and normalized serum levels of urea (which were also increased owing to consumption of the HFD). Lentinula edodes reduced levels of urea and glucose. Lipid peroxidation was increased in rats receiving the HFD, and L. edodes reduced malondialdehyde levels, thereby preventing oxidation of fatty acids. CONCLUSIONS Lentinula edodes was shown to have hypolipidemic, hypoglycemic, hepatoprotective and renoprotective features in doses that are suitable for humans.
Collapse
|
30
|
Palavra F, Almeida L, Ambrósio AF, Reis F. Obesity and brain inflammation: a focus on multiple sclerosis. Obes Rev 2016; 17:211-24. [PMID: 26783119 DOI: 10.1111/obr.12363] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/25/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
The increase in prevalence of obesity in industrialized societies is an indisputable fact. However, the apparent passive role played by adipocytes, in pathophysiological terms, has been gradually substituted by a metabolically active performance, relevant to many biochemical mechanisms that may contribute to a chronic low-grade inflammatory status, which increasingly imposes itself as a key feature of obesity. This chronic inflammatory status will have to be integrated into the complex equation of many diseases in which inflammation plays a crucial role. Multiple sclerosis (MS) is a chronic inflammatory condition typically confined to the central nervous system, and many work has been produced to find possible points of contact between the biology of this immune-mediated disease and obesity. So far, clinical data are not conclusive, but many biochemical features have been recently disclosed. Brain inflammation has been implicated in some of the mechanisms that lead to obesity, which has also been recognized as an important player in inducing some degree of immune dysfunction. In this review, we collected evidence that allows establishing bridges between obesity and MS. After considering epidemiological controversies, we will focus on possible shared mechanisms, as well as on the potential contributions that disease-modifying drugs may have on this apparent relationship of mutual interference.
Collapse
Affiliation(s)
- F Palavra
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| | - L Almeida
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - A F Ambrósio
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - F Reis
- Laboratory of Pharmacology & Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
31
|
Vargas R, Ryder E, Diez-Ewald M, Mosquera J, Durán A, Valero N, Pedreañez A, Peña C, Fernández E. Increased C-reactive protein and decreased Interleukin-2 content in serum from obese individuals with or without insulin resistance: Associations with leukocyte count and insulin and adiponectin content. Diabetes Metab Syndr 2016; 10:S34-S41. [PMID: 26482966 DOI: 10.1016/j.dsx.2015.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/27/2015] [Indexed: 02/06/2023]
Abstract
AIMS Chronic inflammation in obesity is associated with co-morbidities such as, hyperglycemia, hypertension and hyperlipidemia. Leukocytes play an important role in this inflammation and C-reactive protein (CRP) and Interleukin-2 (IL-2) can be important effectors during the immune response in obesity; however, the initial inflammatory events in obesity remain unclear. The aim of this study was to determine the circulating levels of CRP, IL-2, insulin and adiponectin, their association and the association with leukocyte count in obese individuals without co-morbidities and with or without insulin resistance (IR). MATERIALS AND METHODS Nineteen obese non-diabetic and 9 lean subjects were studied for serum levels of CRP, IL-2, insulin, adiponectin, lipids, glycated hemoglobin, glycemia, for homeostasis model assessment of insulin resistance (HOMA-IR), arterial pressure and anthropometric parameters, and for leukocyte counts. Neutrophil/lymphocyte ratio (N/L) was calculated using the loge of leukocyte counts. Associations were determined by Pearson's correlation. RESULTS None of the studied groups presented co-morbidities and two groups of obese individuals with normal or high levels of insulin (IR) were found. Increased CRP concentration and decreased IL-2 and adiponectin concentrations in obese were observed. Positive correlation between leukocyte type counts with CRP in obese with IR was found; however, no correlations with IL-2 in obese were observed. Insulin in obese were positively correlated with CRP and negatively correlated with IL-2 in IR obese individuals. Adiponectin in obese was negatively correlated with CRP. CONCLUSION CRP and IL-2 may represent two important effectors in the early inflammatory events in obese individuals without co-morbidities. Adiponectin and insulin may be involved in anti-inflammatory events.
Collapse
Affiliation(s)
- Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Elena Ryder
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - María Diez-Ewald
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Jesús Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| | - Anyelo Durán
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Nereida Valero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Adriana Pedreañez
- Cátedra de Inmunología. Escuela de Bionanalisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Caterina Peña
- Cátedra de Genética, Escuela de Bionanalisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Erika Fernández
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
32
|
Burgner DP, Sabin MA, Magnussen CG, Cheung M, Kähönen M, Lehtimäki T, Hutri-Kähönen N, Jokinen E, Laitinen T, Taittonen L, Tossavainen P, Dwyer T, Viikari JSA, Raitakari OT, Juonala M. Infection-Related Hospitalization in Childhood and Adult Metabolic Outcomes. Pediatrics 2015; 136:e554-62. [PMID: 26283782 DOI: 10.1542/peds.2015-0825] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Identifying childhood determinants of adult cardiometabolic disease would facilitate early-life interventions. There are few longitudinal data on the contribution of childhood infections. Therefore, we investigated whether hospitalization with childhood infection is associated with adult anthropometric and metabolic outcomes in a large, well-phenotyped longitudinal cohort. METHODS A total of 1376 subjects from the Cardiovascular Risk in Young Finns Study, aged 3 to 9 years at baseline (1980), who had lifetime data from birth onward on infection-related hospitalization (IRH) had repeated assessments through childhood and adolescence and at least once in adulthood (age 30-45 years in 2001-2011). Early childhood (<5 years), childhood/adolescence (5-18 years), adult (>18 years), and total lifetime IRHs were related to adiposity, BMI, and metabolic syndrome in adulthood. Analyses were adjusted for childhood and adulthood risk factors and potential confounders. RESULTS Early-childhood IRH correlated with adverse adult but not childhood metabolic variables: increased BMI (P = .02) and metabolic syndrome (risk ratio: 1.56; 95% confidence interval: 1.03-2.35; P = .03), adjusted for age, gender, birth weight, childhood BMI and other risk factors, and family income. The age at which differences in adult BMI became persistent was related to age of IRH in childhood. The greatest increase in adult BMI occurred in those with >1 childhood IRH. CONCLUSIONS Childhood IRH was independently associated with adverse adult metabolic variables. This finding suggests that infections and/or their treatment in childhood may contribute to causal pathways leading to adult cardiometabolic diseases.
Collapse
Affiliation(s)
- David P Burgner
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia; Department of Pediatrics, Monash University, Department of Pediatric Infectious Diseases, Monash Children's Hospital, Clayton, Victoria, Australia;
| | - Matthew A Sabin
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia; Royal Children's Hospital, Parkville, Victoria, Australia
| | - Costan G Magnussen
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Michael Cheung
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia; Royal Children's Hospital, Parkville, Victoria, Australia
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Finlab Laboratories, Tampere University Hospital and University of Tampere School of Medicine, Tampere, Finland
| | - Nina Hutri-Kähönen
- Pediatrics, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eero Jokinen
- Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | - Tomi Laitinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Leena Taittonen
- Department of Pediatrics, University of Oulu, Oulu, and Department of Pediatrics, Vaasa Central Hospital, Vaasa, Finland
| | - Päivi Tossavainen
- Department of Children and Adolescents, Oulu University Hospital, PEDEGO Research Group, and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Terence Dwyer
- Oxford Martin School and Nuffield Department of Population Health, Oxford University; Oxford, United Kingdom
| | - Jorma S A Viikari
- Department of Medicine, University of Turku, and Division of Medicine, Turku University Hospital, Turku, Finland; and
| | - Olli T Raitakari
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Markus Juonala
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Medicine, University of Turku, and Division of Medicine, Turku University Hospital, Turku, Finland; and
| |
Collapse
|
33
|
Ramel A, Geirsdottir OG, Jonsson PV, Thorsdottiri I. C-Reactive Protein and Resistance Exercise in Community Dwelling Old Adults. J Nutr Health Aging 2015; 19:792-6. [PMID: 26193865 DOI: 10.1007/s12603-015-0548-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES C-reactive protein (CRP), an acute phase reactant, has been associated with atherosclerosis and has also been discussed as a target for intervention. The effects of resistance exercise on CRP are currently not clear. The present analysis investigated the response of CRP to resistance exercise in old adults. DESIGN Intervention study. SETTING Community. PARTICIPANTS Old Icelandic adults (N = 235, 73.7 ± 5.7 years, 58.2% female). INTERVENTION Twelve-week resistance exercise program (3 times/week; 3 sets, 6-8 repetitions at 75-80% of the 1-repetition maximum) designed to increase strength and muscle mass of major muscle groups. MEASUREMENTS C-reactive protein (CRP). RESULTS Mean CRP levels were 7.1 ± 4.6 mg/dL at baseline, thirty-six (15.6%) subjects had abnormally high CRP (>10 mg/L) values at baseline. After the resistance exercise program the overall changes in CRP were minor and not significant. However, CRP decreased considerably in participants with high CRP at baseline (-4.28 ± 9.41 mg/L; P = 0.015) but increased slightly in participants with normal CRP (0.81 ± 4.58 mg/L, P = 0.021). CONCLUSIONS Our study shows that the concentrations of circulating CRP decreased considerably after a 12-week resistance exercise program in participants with abnormally high CRP at baseline, possibly reducing thus risk for future disease. CRP changed little in participants with normal CRP at the start of the study.
Collapse
Affiliation(s)
- A Ramel
- Alfons Ramel, Unit for Nutrition Research, Eiriksgata 29, 101 Reykjavik, Iceland, Telephone: +354 543 8410, Fax: +354 543 4824,
| | | | | | | |
Collapse
|
34
|
Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou YH, Hedman ÅK, Sandling JK, Li LA, Irvin MR, Zhi D, Deloukas P, Liang L, Liu C, Bressler J, Spector TD, North K, Li Y, Absher DM, Levy D, Arnett DK, Fornage M, Pankow JS, Boerwinkle E. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum Mol Genet 2015; 24:4464-79. [PMID: 25935004 DOI: 10.1093/hmg/ddv161] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/13/2015] [Indexed: 02/06/2023] Open
Abstract
Obesity is an important component of the pathophysiology of chronic diseases. Identifying epigenetic modifications associated with elevated adiposity, including DNA methylation variation, may point to genomic pathways that are dysregulated in numerous conditions. The Illumina 450K Bead Chip array was used to assay DNA methylation in leukocyte DNA obtained from 2097 African American adults in the Atherosclerosis Risk in Communities (ARIC) study. Mixed-effects regression models were used to test the association of methylation beta value with concurrent body mass index (BMI) and waist circumference (WC), and BMI change, adjusting for batch effects and potential confounders. Replication using whole-blood DNA from 2377 White adults in the Framingham Heart Study and CD4+ T cell DNA from 991 Whites in the Genetics of Lipid Lowering Drugs and Diet Network Study was followed by testing using adipose tissue DNA from 648 women in the Multiple Tissue Human Expression Resource cohort. Seventy-six BMI-related probes, 164 WC-related probes and 8 BMI change-related probes passed the threshold for significance in ARIC (P < 1 × 10(-7); Bonferroni), including probes in the recently reported HIF3A, CPT1A and ABCG1 regions. Replication using blood DNA was achieved for 37 BMI probes and 1 additional WC probe. Sixteen of these also replicated in adipose tissue, including 15 novel methylation findings near genes involved in lipid metabolism, immune response/cytokine signaling and other diverse pathways, including LGALS3BP, KDM2B, PBX1 and BBS2, among others. Adiposity traits are associated with DNA methylation at numerous CpG sites that replicate across studies despite variation in tissue type, ethnicity and analytic approaches.
Collapse
Affiliation(s)
- Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA,
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | | | - Michael Mendelson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20824, USA, Framingham Heart Study, Framingham, MA 01702, USA, Department of Cardiology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Yi-Hui Zhou
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - Åsa K Hedman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK, Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johanna K Sandling
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Li-An Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Degui Zhi
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK, Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Liming Liang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20824, USA, Framingham Heart Study, Framingham, MA 01702, USA, Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Chunyu Liu
- Framingham Heart Study, Framingham, MA 01702, USA, Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Kari North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yun Li
- Department of Genetics, Department of Biostatistics and Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Devin M Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL 34806, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20824, USA, Framingham Heart Study, Framingham, MA 01702, USA
| | | | - Myriam Fornage
- Human Genetics Center, School of Public Health, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
35
|
Konno Y, Ueki S, Takeda M, Kobayashi Y, Tamaki M, Moritoki Y, Oyamada H, Itoga M, Kayaba H, Omokawa A, Hirokawa M. Functional analysis of free fatty acid receptor GPR120 in human eosinophils: implications in metabolic homeostasis. PLoS One 2015; 10:e0120386. [PMID: 25790291 PMCID: PMC4366258 DOI: 10.1371/journal.pone.0120386] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/21/2015] [Indexed: 01/21/2023] Open
Abstract
Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4) is a G protein-coupled receptor (GPCR) for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR120 at both the mRNA and protein levels. Stimulation with a synthetic GPR120 agonist, GW9508, induced rapid down-regulation of cell surface expression of GPR120, suggesting ligand-dependent receptor internalization. Although GPR120 activation did not induce eosinophil chemotactic response and degranulation, we found that GW9508 inhibited eosinophil spontaneous apoptosis and Fas receptor expression. The anti-apoptotic effect was attenuated by phosphoinositide 3-kinase (PI3K) inhibitors and was associated with inhibition of caspase-3 activity. Eosinophil response investigated using ELISpot assay indicated that stimulation with a GPR120 agonist induced IL-4 secretion. These findings demonstrate the novel functional properties of fatty acid sensor GPR120 on human eosinophils and indicate the previously unrecognized link between nutrient metabolism and the immune system.
Collapse
Affiliation(s)
- Yasunori Konno
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
- * E-mail:
| | - Masahide Takeda
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoshiki Kobayashi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
- Department of Otolaryngology, Kansai Medical University, Shin-machi, Hirakata City, Osaka, Japan
| | - Mami Tamaki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Hajime Oyamada
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Masamichi Itoga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroyuki Kayaba
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ayumi Omokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
36
|
Gómez-Úriz AM, Milagro FI, Mansego ML, Cordero P, Abete I, De Arce A, Goyenechea E, Blázquez V, Martínez-Zabaleta M, Martínez JA, López De Munain A, Campión J. Obesity and ischemic stroke modulate the methylation levels of KCNQ1 in white blood cells. Hum Mol Genet 2014; 24:1432-40. [DOI: 10.1093/hmg/ddu559] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
37
|
Lui KO, Zangi L, Chien KR. Cardiovascular regenerative therapeutics via synthetic paracrine factor modified mRNA. Stem Cell Res 2014; 13:693-704. [DOI: 10.1016/j.scr.2014.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 01/14/2023] Open
|
38
|
Pimentel GD, Ganeshan K, Carvalheira JBC. Hypothalamic inflammation and the central nervous system control of energy homeostasis. Mol Cell Endocrinol 2014; 397:15-22. [PMID: 24952114 DOI: 10.1016/j.mce.2014.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/07/2014] [Accepted: 06/08/2014] [Indexed: 02/07/2023]
Abstract
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Collapse
Affiliation(s)
- Gustavo D Pimentel
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Kirthana Ganeshan
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001, United States
| | - José B C Carvalheira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This review summarizes current knowledge on the contribution of mesenteric adipose tissue in intestinal inflammation. We will describe the cellular and humoral characteristics of creeping fat, their potential impact for Crohn's disease and propose a working model for the critical interplay between the creeping fat and the inflamed intestine. RECENT FINDINGS Creeping fat can be distinguished from healthy adipose tissue by its distinctively small adipocytes, by a specific microenvironment defined by high levels of adipokines and by a dominant immune cell infiltration. In Crohn's disease transmural inflammation facilitates increased bacterial translocation into the creeping fat. Translocalizing antigens can directly activate (pre)adipocytes via innate receptors. Adipocyte-derived mediators modulate phenotype and function of innate and adaptive immune cells. Activated (pre)adipocytes and adipokine-modulated immune cells might support a degree of inflammatory activation within the creeping fat that allows competent immune defense against exogenous factors while preventing systemic inflammation. SUMMARY Fat tissue as an active organ in health and disease has been ignored for too long. The last few years of research provided evidence for the complex metabolic and immunological functions of adipose tissue. On the basis of the available data, creeping fat in Crohn's disease exerts a protective function by a localized anti-inflammatory effect, thus preventing a systemic inflammatory response.
Collapse
|
40
|
Ryder E, Diez-Ewald M, Mosquera J, Fernández E, Pedreañez A, Vargas R, Peña C, Fernández N. Association of obesity with leukocyte count in obese individuals without metabolic syndrome. Diabetes Metab Syndr 2014; 8:197-204. [PMID: 25301008 DOI: 10.1016/j.dsx.2014.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Inflammation in obesity is associated to insulin resistance (IR), hyperglycemia, hypertension and hyperlipidemia. Leukocytes play an important role in obesity associated inflammation. The initial factors that generate the inflammatory events in the obesity remain unclear. Therefore, the aim of this study was to determine the association of circulating leukocytes with clinical and biochemical parameters in obese individuals with clinical and biochemical parameters in normal range and with or without IR. METHODS Nineteen obese non-diabetic and 9 lean subjects were studied for serum levels of insulin, lipids, glycated hemoglobin, glycemia, for clinical parameters as HOMA-IR, arterial pressure and anthropometric parameters, and for leukocyte counts. Neutrophil/lymphocyte ratio (N/L) was calculated using the loge of leukocyte counts. Association between leukocytes and studied parameters was determined by Pearson's correlation. RESULTS Two groups of obese individuals were observed: with high levels of insulin (with IR) and with normal levels (without IR). Positive correlations were observed between leukocyte and lymphocyte counts with body mass index and HOMA-IR and negative correlation with decreased HDL levels. Lymphocytes correlated with increased levels of insulin. Leukocytes and neutrophils correlated positively with increased visceral fat and liver steatosis. These associations were absent in the obese group without IR. N/L ratio did not show correlations with studied parameters. The leukocyte associations were mainly observed in obese individuals with IR. CONCLUSIONS These data may represent initial leukocyte associations with morbidity features and define two different obese individuals that may evolve to the chronic inflammation observed in the obesity.
Collapse
Affiliation(s)
- Elena Ryder
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| | - María Diez-Ewald
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Jesús Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Erika Fernández
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bionanalisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Caterina Peña
- Cátedra de Genética, Escuela de Bionanalisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Nelson Fernández
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
41
|
Kredel LI, Siegmund B. Adipose-tissue and intestinal inflammation - visceral obesity and creeping fat. Front Immunol 2014; 5:462. [PMID: 25309544 PMCID: PMC4174117 DOI: 10.3389/fimmu.2014.00462] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/10/2014] [Indexed: 12/18/2022] Open
Abstract
Obesity has become one of the main threats to health worldwide and therefore gained increasing clinical and economic significance as well as scientific attention. General adipose-tissue accumulation in obesity is associated with systemically increased pro-inflammatory mediators and humoral and cellular changes within this compartment. These adipose-tissue changes and their systemic consequences led to the concept of obesity as a chronic inflammatory state. A pathognomonic feature of Crohn’s disease (CD) is creeping fat (CF), a locally restricted hyperplasia of the mesenteric fat adjacent to the inflamed segments of the intestine. The precise role of this adipose-tissue and its mediators remains controversial, and ongoing work will have to define whether this compartment is protecting from or contributing to disease activity. This review aims to outline specific cellular changes within the adipose-tissue, occurring in either obesity or CF. Hence the potential impact of adipocytes and resident immune cells from the innate and adaptive immune system will be discussed for both diseases. The second part focuses on the impact of generalized adipose-tissue accumulation in obesity, respectively on the locally restricted form in CD, on intestinal inflammation and on the closely related integrity of the mucosal barrier.
Collapse
Affiliation(s)
- Lea I Kredel
- Gastroenterology, Rheumatology, Infectious Diseases, Medical Department I, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Britta Siegmund
- Gastroenterology, Rheumatology, Infectious Diseases, Medical Department I, Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
42
|
Can the use of blood-based biomarkers in addition to anthropometric indices substantially improve the prediction of visceral fat volume as measured by magnetic resonance imaging? Eur J Nutr 2014; 54:701-8. [DOI: 10.1007/s00394-014-0748-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022]
|
43
|
Wicks K, Torbica T, Mace KA. Myeloid cell dysfunction and the pathogenesis of the diabetic chronic wound. Semin Immunol 2014; 26:341-53. [PMID: 24954378 DOI: 10.1016/j.smim.2014.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022]
Abstract
Diabetes can promote a state of chronic inflammation associated with serious complications that are difficult to treat, including ulceration of the lower extremities and chronic wounds. Chronic wounds are often incurable and contribute to both a reduced quality of life for patients and an enormous burden for healthcare services. In diabetes, the inflammatory response early in wound healing is inappropriately amplified and prolonged, leading to the persistent presence in the wound of vastly elevated numbers of dysfunctional, hyperpolarised macrophages that fail to transition to a pro-healing phenotype. Recent evidence suggests that systemic chronic inflammation induces intrinsic defects in monocytes via chromatin modifications that may pre-programme monocytes to a pro-inflammatory phenotype, while the local wound environment inhibits differentiation to a pro-healing phenotype. Current understanding remains incomplete, and careful dissection of how local and systemic inflammation combine to negatively influence myeloid cell development will be key to developing effective therapies aimed at healing the diabetic wound.
Collapse
Affiliation(s)
- Kate Wicks
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Tanja Torbica
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Kimberly A Mace
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|