1
|
Mann J, Runge S, Schell C, Gräwe K, Thoulass G, Lao J, Ammann S, Grün S, König C, Berger SA, Hild B, Aichele P, Rosshart SP, Ehl S. The Microbiome Modifies Manifestations of Hemophagocytic Lymphohistiocytosis in Perforin-Deficient Mice. Eur J Immunol 2025; 55:e202451061. [PMID: 39548906 PMCID: PMC11739664 DOI: 10.1002/eji.202451061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory syndrome caused by inborn errors of cytotoxicity. Patients with biallelic PRF1 null mutations (encoding perforin) usually develop excessive immune cell activation, hypercytokinemia, and life-threatening immunopathology in the first 6 months of life, often without an apparent infectious trigger. In contrast, perforin-deficient (PKO) mice only develop HLH after systemic infection with lymphocytic choriomeningitis virus (LCMV). We hypothesized that restricted microbe-immune cell interactions due to specific pathogen-free (SPF) housing might explain the need for this specific viral trigger in PKO mice. To investigate the influence of a "wild" microbiome in PKO mice, we fostered PKO newborns with Wildling microbiota ('PKO-Wildlings') and monitored them for signs of HLH. PKO-Wildlings survived long-term without spontaneous disease. Also, systemic infection with vaccinia virus did not reach the threshold of immune activation required to trigger HLH in PKO-Wildlings. Interestingly, after infection with LCMV, PKO-Wildlings developed an altered HLH pattern. This included lower IFN-γ serum levels along with improved IFN-γ-driven anemia, but more elevated levels of IL-17 and increased liver inflammation compared with PKO-SPF mice. Thus, wild microbiota alone is not sufficient to trigger HLH in PKO mice, but host-microbe interactions shape inflammatory cytokine patterns, thereby influencing manifestations of HLH immunopathology.
Collapse
Affiliation(s)
- Jasmin Mann
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Solveig Runge
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Department of Medicine II, Medical Center‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Department of Microbiome Research, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Christoph Schell
- Institute for Surgical Pathology, Medical Center‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Katja Gräwe
- Institute for Surgical Pathology, Medical Center‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Gudrun Thoulass
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Jessica Lao
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Sandra Ammann
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Sarah Grün
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Christoph König
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Sarah A. Berger
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Benedikt Hild
- Department of Gastroenterology, Hepatology and Transplantation MedicineMedical Faculty University of Duisburg‐EssenEssenGermany
| | - Peter Aichele
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Stephan P. Rosshart
- Department of Medicine II, Medical Center‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Department of Microbiome Research, University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Stephan Ehl
- Institute for ImmunodeficiencyCenter for Chronic Immunodeficiency (CCI), Medical Center‐ University of FreiburgFaculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
2
|
Ben Saad E, Oroya A, Anto NP, Bachais M, Rudd CE. PD-1 endocytosis unleashes the cytolytic potential of checkpoint blockade in tumor immunity. Cell Rep 2024; 43:114907. [PMID: 39471174 DOI: 10.1016/j.celrep.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024] Open
Abstract
PD-1 immune checkpoint blockade (ICB) is a key cancer treatment. While blocking PD-1 binding to ligand is known, the role of internalization in enhancing ICB efficacy is less explored. Our study reveals that PD-1 internalization helps unlock ICB's full potential in cancer immunotherapy. Anti-PD-1 induces 50%-60% surface PD-1 internalization from human and mouse cells, leaving low to intermediate levels of resistant receptors. Complexes then appear in early and late endosomes. Both CD4 and CD8 T cells, especially CD8+ effectors, are affected. Nivolumab outperforms pembrolizumab in human T cells, while PD-1 internalization requires crosslinking by bivalent antibody. While mono- and bivalent anti-PD-1 inhibit tumor growth with CD8 tumor-infiltrating cells expressing increased granzyme B, bivalent antibody is more effective where the combination of steric blockade and endocytosis induces greater CD8+ T cell tumor infiltration and the expression of the cytolytic pore protein, perforin. Our findings highlight an ICB mechanism that combines steric blockade and PD-1 endocytosis for optimal checkpoint immunotherapy.
Collapse
Affiliation(s)
- Elham Ben Saad
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada
| | - Andres Oroya
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Nikhil Ponnoor Anto
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Meriem Bachais
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada
| | - Christopher E Rudd
- Department of Medicine, Universite de Montréal, Montréal, QC H3C 3J7, Canada; Centre de Recherche Hopital Maisonneuve-Rosemont, Montréal, Quebec, QC H1T 2M4, Canada; Department of Biochemistry and Molecular Medicine, Universite de Montréal, Montréal, QC H3T 1J4, Canada; Department of Microbiology, Infection and Immunology, Universite de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Duong VT, Lee D, Kim YH, Oh SO. Functional role of UNC13D in immune diseases and its therapeutic applications. Front Immunol 2024; 15:1460882. [PMID: 39469717 PMCID: PMC11513310 DOI: 10.3389/fimmu.2024.1460882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
UNC13 family (also known as Munc13) proteins are evolutionarily conserved proteins involved in the rapid and regulated secretion of vesicles, including synaptic vesicles and cytotoxic granules. Fast and regulated secretion at the neuronal and immunological synapses requires multiple steps, from the biogenesis of vesicles to membrane fusion, and a complex array of proteins for each step. Defects at these steps can lead to various genetic disorders. Recent studies have shown multiple roles of UNC13D in the secretion of cytotoxic granules by immune cells. Here, the molecular structure and detailed roles of UNC13D in the biogenesis, tethering, and priming of cytotoxic vesicles and in endoplasmic reticulum are summarized. Moreover, its association with immune diseases, including familial hemophagocytic lymphohistiocytosis type 3, macrophage activation syndrome, juvenile idiopathic arthritis, and autoimmune lymphoproliferative syndrome, is reviewed. Finally, the therapeutic application of CRISPR/Cas9-based gene therapy for genetic diseases is introduced.
Collapse
Affiliation(s)
- Van-Thanh Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
4
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
5
|
Wang P, Jiang W, Lai T, Liu Q, Shen Y, Ye B, Wu D. Germline variants in acquired aplastic anemia: current knowledge and future perspectives. Haematologica 2024; 109:2778-2789. [PMID: 38988263 PMCID: PMC11367197 DOI: 10.3324/haematol.2023.284312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/09/2024] [Indexed: 07/12/2024] Open
Abstract
Aplastic anemia (AA) is a disease characterized by failure of hematopoiesis, bone marrow aplasia, and pancytopenia. It can be inherited or acquired. Although acquired AA is believed to be immune-mediated and random, new evidence suggests an underlying genetic predisposition. Besides confirmed genomic mutations that contribute to inherited AA (such as pathogenic mutations of TERT and TERC), germline variants, often in heterozygous states, also play a not negligible role in the onset and progression of acquired AA. These variants, associated with inherited bone marrow failure syndromes and inborn errors of immunity, contribute to the disease, possibly through mechanisms including gene homeostasis, DNA repair, and immune injury. This article explores the nuanced association between acquired AA and germline variants, detailing the clinical significance of germline variants in diagnosing and managing this condition. More work is encouraged to better understand the role of immunogenic pathogenic variants and whether somatic mutations participate as secondary "hits" in the development of bone marrow failure.
Collapse
Affiliation(s)
- Peicheng Wang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Wanzhi Jiang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Tianyi Lai
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Yingying Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang.
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, China; Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang.
| |
Collapse
|
6
|
Kögl T, Chang HF, Staniek J, Chiang SC, Thoulass G, Lao J, Weißert K, Dettmer-Monaco V, Geiger K, Manna PT, Beziat V, Momenilandi M, Tu SM, Keppler SJ, Pattu V, Wolf P, Kupferschmid L, Tholen S, Covill LE, Ebert K, Straub T, Groß M, Gather R, Engel H, Salzer U, Schell C, Maier S, Lehmberg K, Cornu TI, Pircher H, Shahrooei M, Parvaneh N, Elling R, Rizzi M, Bryceson YT, Ehl S, Aichele P, Ammann S. Patients and mice with deficiency in the SNARE protein SYNTAXIN-11 have a secondary B cell defect. J Exp Med 2024; 221:e20221122. [PMID: 38722309 PMCID: PMC11082451 DOI: 10.1084/jem.20221122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.
Collapse
Affiliation(s)
- Tamara Kögl
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Julian Staniek
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
| | - Samuel C.C. Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, and Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gudrun Thoulass
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Jessica Lao
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kristoffer Weißert
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Viviane Dettmer-Monaco
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Kerstin Geiger
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Paul T. Manna
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Vivien Beziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Szu-Min Tu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Selina J. Keppler
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Varsha Pattu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Philipp Wolf
- Department of Urology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Laurence Kupferschmid
- Institute of Medical Microbiology and Hygiene, University Medical Center, Freiburg, Germany
| | - Stefan Tholen
- Department of Pathology, Institute of Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Laura E. Covill
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karolina Ebert
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Tobias Straub
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Miriam Groß
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ruth Gather
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Department of Pathology, Institute of Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Sarah Maier
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana I. Cornu
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Mohammad Shahrooei
- Department of Microbiology, Immunology, and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
- Dr. Shahrooei Laboratory, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Roland Elling
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty for Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Clinical Immunology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Yenan T. Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Stephan Ehl
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Peter Aichele
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Nguyen TTT, Kim YT, Jeong G, Jin M. Immunopathology of and potential therapeutics for secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome: a translational perspective. Exp Mol Med 2024; 56:559-569. [PMID: 38448692 PMCID: PMC10984945 DOI: 10.1038/s12276-024-01182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 03/08/2024] Open
Abstract
Secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (sHLH/MAS) is a life-threatening immune disorder triggered by rheumatic disease, infections, malignancies, or medications. Characterized by the presence of hemophagocytic macrophages and a fulminant cytokine storm, sHLH/MAS leads to hyperferritinemia and multiorgan failure and rapidly progresses to death. The high mortality rate and the lack of specific treatments necessitate the development of a new drug. However, the complex and largely unknown immunopathologic mechanisms of sHLH/MAS, which involve dysfunction of various immune cells, diverse etiologies, and different clinical contexts make this effort challenging. This review introduces the terminology, diagnosis, and clinical features of sHLH/MAS. From a translational perspective, this review focuses on the immunopathological mechanisms linked to various etiologies, emphasizing potential drug targets, including key molecules and signaling pathways. We also discuss immunomodulatory biologics, existing drugs under clinical evaluation, and novel therapies in clinical trials. This systematic review aims to provide insights and highlight opportunities for the development of novel sHLH/MAS therapeutics.
Collapse
Affiliation(s)
- Tram T T Nguyen
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Yoon Tae Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Geunyeol Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mirim Jin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
8
|
Jordan MB. Hemophagocytic lymphohistiocytosis: A disorder of T cell activation, immune regulation, and distinctive immunopathology. Immunol Rev 2024; 322:339-350. [PMID: 38100247 DOI: 10.1111/imr.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a disorder that has been recognized since the middle of the last century. In recent decades, increasing understanding of the genetic roots and pathophysiology of HLH has led to improved diagnosis and treatment of this once universally fatal disorder. HLH is best conceptualized as a maladaptive state of excessive T cell activation driving life-threatening myeloid cell activation, largely via interferon-gamma (IFN-γ). In familial forms of HLH (F-HLH), inherited defects of lymphocyte cytotoxic biology underlie excessive T cell activation, demonstrating the importance of the perforin/granzyme pathway as a negative feedback loop limiting acute T cell activation in response to environmental factors. HLH occurring in other contexts and without apparent inherited genetic predisposition remains poorly understood, though it may share some downstream aspects of pathophysiology including excessive IFN-γ action and activation of innate immune effectors. Iatrogenic forms of HLH occurring after immune-activating therapies for cancer are providing new insights into the potential toxicities of inadequately controlled T cell activation. Diagnosing HLH increasingly relies on context-specific measures of T cell activation, IFN-γ activity, and inflammation. Treatment of HLH largely relies on cytotoxic chemotherapy, though targeted therapies against T cells, IFN-γ, and other cytokines are increasingly utilized.
Collapse
Affiliation(s)
- Michael B Jordan
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Li X, Wirtz T, Weber T, Lebedin M, Lowenstein ED, Sommermann T, Zach A, Yasuda T, de la Rosa K, Chu VT, Schulte JH, Müller I, Kocks C, Rajewsky K. Precise CRISPR-Cas9 gene repair in autologous memory T cells to treat familial hemophagocytic lymphohistiocytosis. Sci Immunol 2024; 9:eadi0042. [PMID: 38306418 DOI: 10.1126/sciimmunol.adi0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024]
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) is an inherited, often fatal immune deficiency characterized by severe systemic hyperinflammation. Although allogeneic bone marrow transplantation can be curative, more effective therapies are urgently needed. FHL is caused by inactivating mutations in proteins that regulate cellular immunity. Here, we used an adeno-associated virus-based CRISPR-Cas9 system with an inhibitor of nonhomologous end joining to repair such mutations in potentially long-lived T cells ex vivo. Repaired CD8 memory T cells efficiently cured lethal hyperinflammation in a mouse model of Epstein-Barr virus-triggered FHL2, a subtype caused by perforin-1 (Prf1) deficiency. Furthermore, repair of PRF1 and Munc13-4 (UNC13D)-whose deficiency causes the FHL subtype FHL3-in mutant memory T cells from two critically ill patients with FHL restored T cell cytotoxicity. These results provide a starting point for the treatment of genetic T cell immune dysregulation syndromes with repaired autologous T cells.
Collapse
Affiliation(s)
- Xun Li
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Tristan Wirtz
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Timm Weber
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Mikhail Lebedin
- Immune Mechanisms and Human Antibodies, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
| | - Elijah D Lowenstein
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Thomas Sommermann
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Andreas Zach
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
| | - Tomoharu Yasuda
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Kathrin de la Rosa
- Immune Mechanisms and Human Antibodies, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Center of Biological Design, Berlin Institute of Health (BIH) at Charité, 13125 Berlin, Germany
| | - Van Trung Chu
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Genome Engineering & Disease Models, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christine Kocks
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| |
Collapse
|
10
|
Marsh RA. Salvage Therapy and Allogeneic Hematopoietic Cell Transplantation for the Severe Cytokine Storm Syndrome of Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:611-622. [PMID: 39117843 DOI: 10.1007/978-3-031-59815-9_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) can be considered as a severe cytokine storm syndrome disorder. HLH typically manifests as a life-threatening inflammatory syndrome characterized by fevers, cytopenias, hepatosplenomegaly, and various other accompanying manifestations such as coagulopathy, hepatitis or liver failure, seizures or altered mental status, and even multi-organ failure. Standard up-front treatments do not always bring HLH into remission or maintain adequate response, and salvage or alternative therapies are often needed. For patients with genetic diseases that cause HLH, curative allogeneic hematopoietic cell transplantation is usually offered to prevent future episodes of life-threatening HLH. Here, we will discuss the options and approaches for salvage therapy and hematopoietic cell transplantation for patients with HLH.
Collapse
Affiliation(s)
- Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
12
|
Silverman ED. The History of Macrophage Activation Syndrome in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:21-31. [PMID: 39117805 DOI: 10.1007/978-3-031-59815-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
In 1979, it became recognized in the literature that what we call hemophagocytic lymphohistiocytosis (HLH) was a nonmalignant disease of histiocytes. Subsequently a familial form and a secondary form of HLH were differentiated. When HLH is secondary to an autoimmune disease, rheumatologists refer to this entity as macrophage activation syndrome (MAS) to differentiate it from HLH itself. Although the first cases of MAS likely appeared in the literature in the 1970s, it was not until 1985 that the term activated macrophages was used to describe patients with systemic juvenile idiopathic arthritis (sJIA) complicated by MAS and the term macrophage activation syndrome first appeared in the title of a paper in 1993.MAS is one of the many types of secondary HLH and should not be confused with primary HLH. Experience has taught that MAS secondary to different autoimmune diseases is not equal. In the 30 years since initial description in patients with sJIA, the clinical spectrum, diseases associated with MAS, therapy, and understanding the pathogenesis have all made significant gains. The diagnostic/classification criteria for MAS secondary to sJIA, SLE, RA, and KD differ based on the different laboratory abnormalities associated with each (Ahn et al., J Rheumatol 44:996-1003, 2017; Han et al., Ann Rheum Dis 75:e44, 2016; Ravelli et al., Ann Rheum Dis 75:481-489, 2016; Borgia et al., Arthritis Rheumatol 70:616-624, 2018). These examples include the thrombocytosis associated with sJIA, a chronic generalized activation of the immune system, leading to elevations of fibrinogen and sIL-2R, low platelet count associated with SLE, and more acute inflammation associated with KD. Therefore, individual diagnostic criteria are required, and they all differ from the diagnostic criteria for HLH, which are based on a previously non-activated immune system (Ahn et al., J Rheumatol 44:996-1003, 2017; Han et al., Ann Rheum Dis 75:e44, 2016; Ravelli et al., Ann Rheum Dis 75:481-489, 2016; Borgia et al., Arthritis Rheumatol 70:616-624, 2018; Henter et al., Pediatr Blood Cancer 48:124-131, 2007). This helps to explain why the HLH diagnostic criteria do not perform well in MAS.The initial treatment remains high-dose steroids and IVIG followed by the use of a calcineurin inhibitor for resistant cases. IVIG can be used if there is a concern about malignancy to wait for appropriate investigations or with steroids. Interluekin-1 inhibition is now the next therapy if there is a failure to respond to steroids and calcineurin inhibitors. Advances in understanding the mechanisms leading to MAS, which has been greatly aided by the use of mouse models of MAS and advances in genome sequencing, offer a bright future for more specific therapies. More recent therapies are directed to specific cytokines involved in the pathogenesis of MAS and can lead to decreases in the morbidity and mortality associated with MAS. These include therapies directed to inhibiting the JAK/STAT pathway and/or specific cytokines, interleukin-18 and gamma interferon, which are currently being studied in MAS. These more specific therapies may obviate the need for nonspecific immunosuppressive therapies including high-dose prolonged steroids, calcineurin inhibitors, and etoposide.
Collapse
Affiliation(s)
- Earl D Silverman
- Hospital for Sick Children (SickKids), University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Brisse E, Verweyen EL, De Visscher A, Kessel C, Wouters CH, Matthys P. Murine Models of Secondary Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:497-522. [PMID: 39117836 DOI: 10.1007/978-3-031-59815-9_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) comprises a broad spectrum of life-threatening cytokine storm syndromes, classified into primary (genetic) or secondary (acquired) HLH. The latter occurs in a variety of medical conditions, including infections, malignancies, autoimmune and autoinflammatory diseases, acquired immunodeficiency, and metabolic disorders. Despite recent advances in the field, the pathogenesis of secondary HLH remains incompletely understood. Considering the heterogeneity of triggering factors and underlying diseases in secondary HLH, a large diversity of animal models has been developed to explore pivotal disease mechanisms. To date, over 20 animal models have been described that each recapitulates certain aspects of secondary HLH. This review provides a comprehensive overview of the existing models, highlighting relevant findings, discussing the involvement of different cell types and cytokines in disease development and progression, and considering points of interest toward future therapeutic strategies.
Collapse
Affiliation(s)
- Ellen Brisse
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Emely L Verweyen
- Translational Inflammation Research, Department of Pediatric Rheumatology & Immunology, WWU Medical Center (UKM), Muenster, Germany
| | - Amber De Visscher
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Christoph Kessel
- Translational Inflammation Research, Department of Pediatric Rheumatology & Immunology, WWU Medical Center (UKM), Muenster, Germany
| | - Carine H Wouters
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
- Pediatric Rheumatology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Canna SW. Autoinflammatory Contributors to Cytokine Storm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:385-397. [PMID: 39117828 DOI: 10.1007/978-3-031-59815-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cytokine Storm is a complex and heterogeneous state of life-threatening systemic inflammation and immunopathology. Autoinflammation is a mechanistic category of immune dysregulation wherein immunopathology originates due to poor regulation of innate immunity. The growing family of monogenic Systemic Autoinflammatory Diseases (SAIDs) has been a wellspring for pathogenic insights and proof-of-principle targeted therapeutic interventions. There is surprisingly little overlap between SAID and Cytokine Storm Syndromes, and there is a great deal to be inferred from those SAID that do, and do not, consistently lead to Cytokine Storm. This chapter will summarize how illustrations of the autoinflammatory paradigm have advanced the understanding of human inflammation, including the role of autoinflammation in familial HLH. Next, it will draw from monogenic SAID, both those with strong associations with cytokine storm and those without, to illustrate how the cytokine IL-18 links innate immune dysregulation and cytokine storm.
Collapse
Affiliation(s)
- Scott W Canna
- Perelman School of Medicine, University of Pennsylvania, Pediatric Rheumatology and Immune Dysregulation, The Childrens Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Volkmer B, Marchetti T, Aichele P, Schmid JP. Murine Models of Familial Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:481-496. [PMID: 39117835 DOI: 10.1007/978-3-031-59815-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disease caused by mutations in effectors and regulators of cytotoxicity in cytotoxic T cells (CTL) and natural killer (NK) cells. The complexity of the immune system means that in vivo models are needed to efficiently study diseases like HLH. Mice with defects in the genes known to cause primary HLH (pHLH) are available. However, these mice only develop the characteristic features of HLH after the induction of an immune response (typically through infection with lymphocytic choriomeningitis virus). Nevertheless, murine models have been invaluable for understanding the mechanisms that lead to HLH. For example, the cytotoxic machinery (e.g., the transport of cytotoxic vesicles and the release of granzymes and perforin after membrane fusion) was first characterized in the mouse. Experiments in murine models of pHLH have emphasized the importance of cytotoxic cells, antigen-presenting cells (APC), and cytokines in hyperinflammatory positive feedback loops (e.g., cytokine storms). This knowledge has facilitated the development of treatments for human HLH, some of which are now being tested in the clinic.
Collapse
Affiliation(s)
- Benjamin Volkmer
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Tommaso Marchetti
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Peter Aichele
- Department of Immunology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Landy E, Carol H, Ring A, Canna S. Biological and clinical roles of IL-18 in inflammatory diseases. Nat Rev Rheumatol 2024; 20:33-47. [PMID: 38081945 DOI: 10.1038/s41584-023-01053-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Several new discoveries have revived interest in the pathogenic potential and possible clinical roles of IL-18. IL-18 is an IL-1 family cytokine with potent ability to induce IFNγ production. However, basic investigations and now clinical observations suggest a more complex picture. Unique aspects of IL-18 biology at the levels of transcription, activation, secretion, neutralization, receptor distribution and signalling help to explain its pleiotropic roles in mucosal and systemic inflammation. Blood biomarker studies reveal a cytokine for which profound elevation, associated with detectable 'free IL-18', defines a group of autoinflammatory diseases in which IL-18 dysregulation can be a primary driving feature, the so-called 'IL-18opathies'. This impressive specificity might accelerate diagnoses and identify patients amenable to therapeutic IL-18 blockade. Pathogenically, human and animal studies identify a preferential activation of CD8+ T cells over other IL-18-responsive lymphocytes. IL-18 agonist treatments that leverage the site of production or subversion of endogenous IL-18 inhibition show promise in augmenting immune responses to cancer. Thus, the unique aspects of IL-18 biology are finally beginning to have clinical impact in precision diagnostics, disease monitoring and targeted treatment of inflammatory and malignant diseases.
Collapse
Affiliation(s)
- Emily Landy
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hallie Carol
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron Ring
- Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Scott Canna
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Lee PY. Monocytic Phagocytes in the Immunopathogenesis of Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:161-171. [PMID: 39117814 DOI: 10.1007/978-3-031-59815-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cytokine storm syndromes (CSSs) are caused by a dysregulated host immune response to an inciting systemic inflammatory trigger. This maladaptive and harmful immune response culminates in collateral damage to host tissues resulting in life-threatening multisystem organ failure. Knowledge of the various immune cells that contribute to CSS pathogenesis has improved dramatically in the past decade. Monocytes, dendritic cells, and macrophages, collective known as monocytic phagocytes, are well-positioned within the immune system hierarchy to make key contributions to the initiation, propagation, and amplification of the hyperinflammatory response in CSS. The plasticity of monocytic phagocytes also makes them prime candidates for mediating immunoregulatory and tissue-healing functions in patients who recover from cytokine storm-mediated immunopathology. Therefore, approaches to manipulate the myriad functions of monocytic phagocytes may improve the clinical outcome of CSS.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Landy E, Varghese J, Dang V, Szymczak-Workman A, Kane LP, Canna SW. Complementary HLH susceptibility factors converge on CD8 T-cell hyperactivation. Blood Adv 2023; 7:6949-6963. [PMID: 37738167 PMCID: PMC10690564 DOI: 10.1182/bloodadvances.2023010502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes. Familial HLH is caused by genetic impairment of granule-mediated cytotoxicity (eg, perforin deficiency). MAS is linked to excess activity of the inflammasome-activated cytokine interleukin-18 (IL-18). Though individually tolerated, mice with dual susceptibility (Prf1⁻/⁻Il18tg; DS) succumb to spontaneous, lethal hyperinflammation. We hypothesized that understanding how these susceptibility factors synergize would uncover key pathomechanisms in the activation, function, and persistence of hyperactivated CD8 T cells. In IL-18 transgenic (Il18tg) mice, IL-18 effects on CD8 T cells drove MAS after a viral (lymphocytic choriomeningitis virus), but not innate (toll like receptor 9), trigger. In vitro, CD8 T cells also required T-cell receptor (TCR) stimulation to fully respond to IL-18. IL-18 induced but perforin deficiency impaired immunoregulatory restimulation-induced cell death (RICD). Paralleling hyperinflammation, DS mice displayed massive postthymic oligoclonal CD8 T-cell hyperactivation in their spleens, livers, and bone marrow as early as 3 weeks. These cells increased proliferation and interferon gamma production, which contrasted with increased expression of receptors and transcription factors associated with exhaustion. Broad-spectrum antibiotics and antiretrovirals failed to ameliorate the disease. Attempting to genetically "fix" TCR antigen-specificity instead demonstrated the persistence of spontaneous HLH and hyperactivation, chiefly on T cells that had evaded TCR fixation. Thus, drivers of HLH may preferentially act on CD8 T cells: IL-18 amplifies activation and demand for RICD, whereas perforin supplies critical immunoregulation. Together, these factors promote a terminal CD8 T-cell activation state, combining features of exhaustion and effector function. Therefore, susceptibility to hyperinflammation may converge on a unique, unrelenting, and antigen-dependent state of CD8 T-cell hyperactivation.
Collapse
Affiliation(s)
- Emily Landy
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Jemy Varghese
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Vinh Dang
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Scott W. Canna
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
19
|
Rao D, Meade-White K, Leventhal S, Mihalakakos E, Carmody A, Feldmann H, Hawman DW. CD8 + T-cells target the Crimean-Congo haemorrhagic fever virus Gc protein to control the infection in wild-type mice. EBioMedicine 2023; 97:104839. [PMID: 37866114 PMCID: PMC10623175 DOI: 10.1016/j.ebiom.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Crimean-Congo haemorrhagic fever (CCHF) is a serious viral hemorrhagic fever caused by the CCHF virus (CCHFV). Spread by the bites of infected ticks or handling of viremic livestock, human disease is characterized by a non-specific febrile illness that can rapidly progress to fatal hemorrhagic disease. No vaccines or antivirals are available. Case fatality rates can vary but can be higher than 30%, although sub-clinical infections are often unrecognized and unreported. Yet, while most humans infected with CCHFV will survive the infection, often with little-to-no symptoms, the host responses that control the infection are unknown. METHODS Here we investigated the role of cellular immunity in control of CCHFV infection in an immunocompetent mouse model. FINDINGS We found that CD8+ T-cells are crucial for efficient control of the acute infection and rapidly acquired CCHFV-specific antiviral effector functions such as production of antiviral cytokines and degranulating in response to CCHFV peptides. We further identified the minimal CD8+ T-cell epitopes in the viral Gc proteins and that infection of mice lacking IFNγ resulted in worsened disease and higher viral loads. INTERPRETATION Together our data suggest that CD8+ T-cells are important for control of acute CCHFV infection likely through production of antiviral cytokines. FUNDING This work was supported by the Intramural Research Program of the NIH.
Collapse
Affiliation(s)
- Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Shanna Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Evan Mihalakakos
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Aaron Carmody
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| |
Collapse
|
20
|
Diorio C, Teachey DT, Canna SW. Cytokine Storm Syndromes in Pediatric Patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1636-1644. [PMID: 36990432 DOI: 10.1016/j.jaip.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Cytokine storm syndromes (CSS) represent a diverse group of disorders characterized by severe overactivation of the immune system. In the majority of patients, CSS arise from a combination of host factors, including genetic risk and predisposing conditions, and acute triggers such as infections. CSS present differently in adults than in children, who are more likely to present with monogenic forms of these disorders. Individual CSS are rare, but in aggregate represent an important cause of severe illness in both children and adults. We present 3 rare, illustrative cases of CSS in pediatric patients that describe the spectrum of CSS.
Collapse
Affiliation(s)
- Caroline Diorio
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa.
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Scott W Canna
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| |
Collapse
|
21
|
Lee PY, Cron RQ. The Multifaceted Immunology of Cytokine Storm Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1015-1024. [PMID: 37011407 PMCID: PMC10071410 DOI: 10.4049/jimmunol.2200808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 04/05/2023]
Abstract
Cytokine storm syndromes (CSSs) are potentially fatal hyperinflammatory states that share the underpinnings of persistent immune cell activation and uninhibited cytokine production. CSSs can be genetically determined by inborn errors of immunity (i.e., familial hemophagocytic lymphohistiocytosis) or develop as a complication of infections, chronic inflammatory diseases (e.g., Still disease), or malignancies (e.g., T cell lymphoma). Therapeutic interventions that activate the immune system such as chimeric Ag receptor T cell therapy and immune checkpoint inhibition can also trigger CSSs in the setting of cancer treatment. In this review, the biology of different types of CSSs is explored, and the current knowledge on the involvement of immune pathways and the contribution of host genetics is discussed. The use of animal models to study CSSs is reviewed, and their relevance for human diseases is discussed. Lastly, treatment approaches for CSSs are discussed with a focus on interventions that target immune cells and cytokines.
Collapse
Affiliation(s)
- Pui Y. Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Randy Q. Cron
- Division of Pediatric Rheumatology, Children’s of Alabama, University of Alabama Heersink School of Medicine, Birmingham, AL
- Department of Pediatrics, University of Alabama Heersink School of Medicine, Birmingham, AL
| |
Collapse
|
22
|
Lee JC, Logan AC. Diagnosis and Management of Adult Malignancy-Associated Hemophagocytic Lymphohistiocytosis. Cancers (Basel) 2023; 15:1839. [PMID: 36980725 PMCID: PMC10046521 DOI: 10.3390/cancers15061839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of severe, dysregulated inflammation driven by the inability of T cells to clear an antigenic target. When associated with malignancy (mHLH), the HLH syndrome is typically associated with extremely poor survival. Here, we review the diagnosis of secondary HLH (sHLH) syndromes in adults, with emphasis on the appropriate workup and treatment of mHLH. At present, the management of HLH in adults, including most forms of mHLH, is based on the use of corticosteroids and etoposide following the HLH-94 regimen. In some cases, this therapeutic approach may be cohesively incorporated into malignancy-directed therapy, while in other cases, the decision about whether to treat HLH prior to initiating other therapies may be more complicated. Recent studies exploring the efficacy of other agents in HLH, in particular ruxolitinib, offer hope for better outcomes in the management of mHLH. Considerations for the management of lymphoma-associated mHLH, as well as other forms of mHLH and immunotherapy treatment-related HLH, are discussed.
Collapse
Affiliation(s)
- Jerry C. Lee
- Hematology, Blood and Marrow Transplantation, and Cellular Therapy Program, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA;
| | | |
Collapse
|
23
|
Steen EA, Nichols KE, Meyer LK. Insights into the cellular pathophysiology of familial hemophagocytic lymphohistiocytosis. Front Immunol 2023; 14:1147603. [PMID: 36969228 PMCID: PMC10033680 DOI: 10.3389/fimmu.2023.1147603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Familial hemophagocytic lymphohistiocytosis (fHLH) encompasses a group of rare inherited immune dysregulation disorders characterized by loss-of-function mutations in one of several genes involved in the assembly, exocytosis, and function of cytotoxic granules within CD8+ T cells and natural killer (NK) cells. The resulting defect in cytotoxicity allows these cells to be appropriately stimulated in response to an antigenic trigger, and also impairs their ability to effectively mediate and terminate the immune response. Consequently, there is sustained lymphocyte activation, resulting in the secretion of excessive amounts of pro-inflammatory cytokines that further activate other cells of the innate and adaptive immune systems. Together, these activated cells and pro-inflammatory cytokines mediate tissue damage that leads to multi-organ failure in the absence of treatment aimed at controlling hyperinflammation. In this article, we review these mechanisms of hyperinflammation in fHLH at the cellular level, focusing primarily on studies performed in murine models of fHLH that have provided insight into how defects in the lymphocyte cytotoxicity pathway mediate rampant and sustained immune dysregulation.
Collapse
Affiliation(s)
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Lauren K. Meyer
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- *Correspondence: Lauren K. Meyer,
| |
Collapse
|
24
|
Joly JA, Vallée A, Bourdin B, Bourbonnais S, Patey N, Gaboury L, Théorêt Y, Decaluwe H. Combined IFN-γ and JAK inhibition to treat hemophagocytic lymphohistiocytosis in mice. J Allergy Clin Immunol 2023; 151:247-259.e7. [PMID: 35973477 DOI: 10.1016/j.jaci.2022.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Familial hemophagocytic lymphohistiocytosis is a life-threatening hyperinflammatory disease caused by genetic defects in the granule-mediated cytotoxic pathway. Success of hematopoietic cell transplantation, the only cure, is correlated with the extent of disease control before transplantation. Unfortunately, disease refractoriness and toxicities to standard chemotherapy-based regimens are fatal in a fraction of patients. Novel targeted immunotherapies, such as IFN-γ blocking antibodies or ruxolitinib, a Janus kinase (JAK) 1/2 inhibitor, are promising but only partially effective at controlling disease. OBJECTIVE We asked whether combinations of cytokine-targeted therapies, using antibodies or JAK inhibitor, work synergistically to counteract HLH. METHODS Genetically predisposed mice were infected and treated with distinct combinations of immunotherapies. Disease outcome was monitored and compared to monotherapies. RESULTS We showed that inhibiting IL-6 or IL-18 signaling in combination with IFN-γ blockade or ruxolitinib did not increase disease control compared to anti-IFN-γ antibodies or ruxolitinib monotherapies. In contrast, clinically relevant doses of ruxolitinib combined with low doses of anti-IFN-γ blocking antibodies corrected cytopenias, prevented overt neutrophilia, limited cytokinemia, and resolved HLH immunopathology and symptomatology. CONCLUSIONS Our findings demonstrate that IFN-γ blockade and ruxolitinib act synergistically to suppress HLH progression. This supports the use of combined cytokine-targeted therapies as a bridge to hematopoietic cell transplantation in severe familial hemophagocytic lymphohistiocytosis.
Collapse
Affiliation(s)
- Josée-Anne Joly
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Alexis Vallée
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Université de Montréal, Montréal, Québec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Québec, Canada
| | - Benoîte Bourdin
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Sara Bourbonnais
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Natalie Patey
- Department of Pathology and Cellular Biology, Université de Montréal, Montréal, Québec, Canada
| | - Louis Gaboury
- Department of Pathology and Cellular Biology, Université de Montréal, Montréal, Québec, Canada; Histology and Molecular Pathology Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Yves Théorêt
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Université de Montréal, Montréal, Québec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Québec, Canada; Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
25
|
Planas R, Felber M, Vavassori S, Pachlopnik Schmid J. The hyperinflammatory spectrum: from defects in cytotoxicity to cytokine control. Front Immunol 2023; 14:1163316. [PMID: 37187762 PMCID: PMC10175623 DOI: 10.3389/fimmu.2023.1163316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Cytotoxic lymphocytes kill target cells through polarized release of the content of cytotoxic granules towards the target cell. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytosis (HLH) that occurs in mice and humans with inborn errors of lymphocyte cytotoxic function. The clinical and preclinical data indicate that the damage seen in severe, virally triggered HLH is due to an overwhelming immune system reaction and not the direct effects of the virus per se. The main HLH-disease mechanism, which links impaired cytotoxicity to excessive release of pro-inflammatory cytokines is a prolongation of the synapse time between the cytotoxic effector cell and the target cell, which prompts the former to secrete larger amounts of cytokines (including interferon gamma) that activate macrophages. We and others have identified novel genetic HLH spectrum disorders. In the present update, we position these newly reported molecular causes, including CD48-haploinsufficiency and ZNFX1-deficiency, within the pathogenic pathways that lead to HLH. These genetic defects have consequences on the cellular level on a gradient model ranging from impaired lymphocyte cytotoxicity to intrinsic activation of macrophages and virally infected cells. Altogether, it is clear that target cells and macrophages may play an independent role and are not passive bystanders in the pathogenesis of HLH. Understanding these processes which lead to immune dysregulation may pave the way to novel ideas for medical intervention in HLH and virally triggered hypercytokinemia.
Collapse
Affiliation(s)
- Raquel Planas
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Matthias Felber
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Pediatric Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Jana Pachlopnik Schmid,
| |
Collapse
|
26
|
Weißert K, Ammann S, Kögl T, Dettmer‐Monaco V, Schell C, Cathomen T, Ehl S, Aichele P. Adoptive T cell therapy cures mice from active hemophagocytic lymphohistiocytosis (HLH). EMBO Mol Med 2022; 14:e16085. [PMID: 36278424 PMCID: PMC9728053 DOI: 10.15252/emmm.202216085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022] Open
Abstract
Primary hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome caused by impaired lymphocyte cytotoxicity. First-line therapeutic regimens directed against activated immune cells or secreted cytokines show limited efficacy since they do not target the underlying immunological problem: defective lymphocyte cytotoxicity causing prolonged immune stimulation. A potential rescue strategy would be the adoptive transfer of ex vivo gene-corrected autologous T cells. However, transfusion of cytotoxicity-competent T cells under conditions of hyperinflammation may cause more harm than benefit. As a proof-of-concept for adoptive T cell therapy (ATCT) under hyperinflammatory conditions, we transferred syngeneic, cytotoxicity-competent T cells into mice with virally triggered active primary HLH. ATCT with functional syngeneic trigger-specific T cells cured Jinx mice from active HLH without life-threatening side effects and protected Perforin-deficient mice from lethal HLH progression by reconstituting cytotoxicity. Cured mice were protected long-term from HLH relapses. A threshold frequency of transferred T cells with functional differentiation was identified as a predictive biomarker for long-term survival. This study is the first proof-of-concept for ATCT in active HLH.
Collapse
Affiliation(s)
- Kristoffer Weißert
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Faculty of BiologyAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | - Sandra Ammann
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Tamara Kögl
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Immunology, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Viviane Dettmer‐Monaco
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Transfusion Medicine and Gene Therapy, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Toni Cathomen
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Transfusion Medicine and Gene Therapy, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Stephan Ehl
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Integrative Biological Signalling StudiesAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | - Peter Aichele
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
27
|
HLH: birds of a feather flock together. Blood 2022; 140:167-168. [PMID: 35862094 PMCID: PMC9305086 DOI: 10.1182/blood.2022016712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
|
28
|
Nedunchezhiyan U, Varughese I, Sun AR, Wu X, Crawford R, Prasadam I. Obesity, Inflammation, and Immune System in Osteoarthritis. Front Immunol 2022; 13:907750. [PMID: 35860250 PMCID: PMC9289681 DOI: 10.3389/fimmu.2022.907750] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity remains the most important risk factor for the incidence and progression of osteoarthritis (OA). The leading cause of OA was believed to be overloading the joints due to excess weight which in turn leads to the destruction of articular cartilage. However, recent studies have proved otherwise, various other factors like adipose deposition, insulin resistance, and especially the improper coordination of innate and adaptive immune responses may lead to the initiation and progression of obesity-associated OA. It is becoming increasingly evident that multiple inflammatory cells are recruited into the synovial joint that serves an important role in pathological changes in the synovial joint. Polarization of macrophages and macrophage-produced mediators are extensively studied and linked to the inflammatory and destructive responses in the OA synovium and cartilage. However, the role of other major innate immune cells such as neutrophils, eosinophils, and dendritic cells in the pathogenesis of OA has not been fully evaluated. Although cells of the adaptive immune system contribute to the pathogenesis of obesity-induced OA is still under exploration, a quantity of literature indicates OA synovium has an enriched population of T cells and B cells compared with healthy control. The interplay between a variety of immune cells and other cells that reside in the articular joints may constitute a vicious cycle, leading to pathological changes of the articular joint in obese individuals. This review addresses obesity and the role of all the immune cells that are involved in OA and summarised animal studies and human trials and knowledge gaps between the studies have been highlighted. The review also touches base on the interventions currently in clinical trials, different stages of the testing, and their shortcomings are also discussed to understand the future direction which could help in understanding the multifactorial aspects of OA where inflammation has a significant function.
Collapse
Affiliation(s)
- Udhaya Nedunchezhiyan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ibin Varughese
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia RuJia Sun
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ross Crawford
- Orthopedic Department, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Indira Prasadam,
| |
Collapse
|
29
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) includes a range of hepatic manifestations, starting with liver steatosis and potentially evolving towards non-alcoholic steatohepatitis (NASH), cirrhosis or even hepatocellular carcinoma. NAFLD is a major health burden, and its incidence is increasing worldwide. Although it is primarily a disease of disturbed metabolism, NAFLD involves several immune cell-mediated inflammatory processes, particularly when reaching the stage of NASH, at which point inflammation becomes integral to the progression of the disease. The hepatic immune cell landscape is diverse at steady state and it further evolves during NASH with direct consequences for disease severity. In this Review, we discuss current concepts related to the role of immune cells in the onset and progression of NASH. A better understanding of the mechanisms by which immune cells contribute to NASH pathogenesis should aid the design of innovative drugs to target NASH, for which current therapeutic options are limited.
Collapse
Affiliation(s)
- Thierry Huby
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR-S 1166), Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR-S 1166), Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
30
|
Harel M, Fauteux-Daniel S, Girard-Guyonvarc'h C, Gabay C. Balance between Interleukin-18 and Interleukin-18 binding protein in auto-inflammatory diseases. Cytokine 2022; 150:155781. [DOI: 10.1016/j.cyto.2021.155781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
|
31
|
Aichele P, Neumann-Haefelin C, Ehl S, Thimme R, Cathomen T, Boerries M, Hofmann M. Immunopathology caused by impaired CD8+ T cell responses. Eur J Immunol 2022; 52:1390-1395. [PMID: 35099807 DOI: 10.1002/eji.202149528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Recent findings indicate that many immunopathologies are at their roots a consequence of impaired immune responses ("too little" immunity) and not the result of primarily exaggerated immune responses ("too much" immunity). We have summarized this conceptional view as "IMPATH paradox". In this review, we will focus on impaired immune reactions in the context of CD8+ T cell-mediated immunopathologies. In particular, we will exemplify this concept in two disease models: Virus-triggered primary hemophagocytic lymphohistiocytosis, an inflammatory syndrome caused by genetically impaired cytolytic functions of T cells, and viral hepatitis, where T cell exhaustion is a major underlying mechanism for impaired effector functions. In both situations, T cells fail to eliminate the source of immune stimulation, which usually serves as an important negative feedback loop curtailing immune reactions. Persistent antigen presentation by antigen-presenting and/or infected cells results in continuous stimulation causing chronic inflammation and immunopathology mediated by residual T cell functions. Hence, immune stimulation or reconstitution rather than immune suppression may be strategies for therapeutic interventions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Peter Aichele
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Li X, Shao M, Zeng X, Qian P, Huang H. Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy. Signal Transduct Target Ther 2021; 6:367. [PMID: 34667157 PMCID: PMC8526712 DOI: 10.1038/s41392-021-00764-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/09/2021] [Accepted: 09/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokine release syndrome (CRS) embodies a mixture of clinical manifestations, including elevated circulating cytokine levels, acute systemic inflammatory symptoms and secondary organ dysfunction, which was first described in the context of acute graft-versus-host disease after allogeneic hematopoietic stem-cell transplantation and was later observed in pandemics of influenza, SARS-CoV and COVID-19, immunotherapy of tumor, after chimeric antigen receptor T (CAR-T) therapy, and in monogenic disorders and autoimmune diseases. Particularly, severe CRS is a very significant and life-threatening complication, which is clinically characterized by persistent high fever, hyperinflammation, and severe organ dysfunction. However, CRS is a double-edged sword, which may be both helpful in controlling tumors/viruses/infections and harmful to the host. Although a high incidence and high levels of cytokines are features of CRS, the detailed kinetics and specific mechanisms of CRS in human diseases and intervention therapy remain unclear. In the present review, we have summarized the most recent advances related to the clinical features and management of CRS as well as cutting-edge technologies to elucidate the mechanisms of CRS. Considering that CRS is the major adverse event in human diseases and intervention therapy, our review delineates the characteristics, kinetics, signaling pathways, and potential mechanisms of CRS, which shows its clinical relevance for achieving both favorable efficacy and low toxicity.
Collapse
Affiliation(s)
- Xia Li
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Mi Shao
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Xiangjun Zeng
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Pengxu Qian
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - He Huang
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
33
|
Ross SH, Rollings CM, Cantrell DA. Quantitative Analyses Reveal How Hypoxia Reconfigures the Proteome of Primary Cytotoxic T Lymphocytes. Front Immunol 2021; 12:712402. [PMID: 34603285 PMCID: PMC8484760 DOI: 10.3389/fimmu.2021.712402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic and nutrient-sensing pathways play an important role in controlling the efficacy of effector T cells. Oxygen is a critical regulator of cellular metabolism. However, during immune responses T cells must function in oxygen-deficient, or hypoxic, environments. Here, we used high resolution mass spectrometry to investigate how the proteome of primary murine CD8+ cytotoxic T lymphocytes (CTLs) is reconfigured in response to hypoxia in vitro. We identified and quantified over 7,600 proteins and discovered that hypoxia increased the abundance of a selected number of proteins in CTLs. This included glucose transporters, metabolic enzymes, transcription factors, cytolytic effector molecules, checkpoint receptors and adhesion molecules. While some of these proteins may augment the effector functions of CTLs, others may limit their cytotoxicity. Moreover, we determined that hypoxia could inhibit IL-2-induced proliferation cues and antigen-induced pro-inflammatory cytokine production in CTLs. These data provide a comprehensive resource for understanding the magnitude of the CTL response to hypoxia and emphasise the importance of oxygen-sensing pathways for controlling CD8+ T cells. Additionally, this study provides new understanding about how hypoxia may promote the effector function of CTLs, while contributing to their dysfunction in some contexts.
Collapse
Affiliation(s)
- Sarah H Ross
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom.,Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Christina M Rollings
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
34
|
Desai A, Saul EE, Chapman JR, Lekakis L, Pimentel A. Adult Lymphoma-Associated Hemophagocytic Lymphohistiocytosis: A Clinical Case Series in a Predominantly Hispanic Cohort. J Med Cases 2021; 11:256-261. [PMID: 34434407 PMCID: PMC8383686 DOI: 10.14740/jmc3521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 12/03/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a systemic inflammation disorder secondary to immune dysregulation. Patients may present with fevers, splenomegaly, bone marrow failure and hemophagocytosis, among other clinical and laboratory findings. Lymphoma-associated HLH (LA-HLH) is a puzzling diagnosis given both conditions overlapping presentation. There are currently no established treatment guidelines for LA-HLH. We conducted a retrospective search of the tumor registry and pathology database at the University of Miami/Jackson Memorial Hospital using Pathology Laboratory Information System (LIS) and natural language search. We identified adult patients with a combined diagnosis of lymphoma and HLH between January 2008 and July 2018. Data from nine LA-HLH patients were identified and reviewed. The median age was 53 years (range 19 - 73), with 78% of cases of Hispanic origin. Lymphoma subtypes consisted of six T-cell/NK-cell neoplasms: two peripheral T-cell lymphoma (PTCL), not otherwise specified (NOS); two Epstein-Barr virus (EBV)+ extranodal NK-/T-cell lymphomas; one EBV+, CD8+, PTCL, NOS; one EBV+, post-transplant lymphoproliferative disorder-anaplastic large cell lymphoma, anaplastic lymphoma kinase negative (PTLD ALCL ALK-); and three B-cell neoplasms: one EBV+ diffuse large B-cell lymphoma (DLBCL); two DLBCL, NOS. HLH and lymphoma were diagnosed simultaneously in six out of nine cases. Hemophagocytosis phenomena were demonstrated in seven out of nine cases. Treatment consisted of combined HLH and lymphoma therapies in four cases, while lymphoma-directed therapy was applied to four patients; another case was treated with a modified version of the HLH-1994 protocol. Overall, a total of five cases were exposed to HLH-directed regimens (HLH-1994/2004). Three patients had refractory LA-HLH and entered hospice care, whereas another three cases succumbed to treatment-related complications. Of the seven cases that were evaluable for lymphoma response, four cases (57%) achieved complete response (CR), and three of them (43%) were alive with no evidence of recurrence at 10, 16 and 52 months as of the last contact. Herein, we describe our unique experience of an LA-HLH case series in a predominantly Hispanic population in South Florida. The diagnosis is challenging, often delayed, and the prognosis is dismal in refractory cases despite currently available rescue therapies. Furthermore, we describe for the first time the association between HLH and PTLD ALCL.
Collapse
Affiliation(s)
- Amrita Desai
- Department of Hematology-Oncology, OHSU Knight Cancer Institute, Oregon Health Sciences University, OR, USA.,These authors contributed equally to this work
| | - Eduardo E Saul
- Department of Medicine, University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.,These authors contributed equally to this work
| | - Jennifer R Chapman
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lazaros Lekakis
- Division of Hematology-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Agustin Pimentel
- Division of Hematology-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
35
|
Elias S, Kol I, Kahlon S, Amore R, Zeibak M, Mevorach D, Elchalal U, Zelig O, Mandelboim O. Anti-RhD antibody therapy modulates human natural killer cell function. Haematologica 2021; 106:1846-1856. [PMID: 32467141 PMCID: PMC8252960 DOI: 10.3324/haematol.2019.238097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
Anti-RhD antibodies are widely used in clinical practice to prevent immunization against RhD, principally in hemolytic disease of the fetus and newborn. Intriguingly, this disease is induced by production of the very same antibodies when an RhD negative woman is pregnant with an RhD positive fetus. Despite over five decades of use, the mechanism of this treatment is, surprisingly, still unclear. Here we show that anti-RhD antibodies induce human natural killer (NK) cell degranulation. Mechanistically, we demonstrate that NK cell degranulation is mediated by binding of the Fc segment of anti-RhD antibodies to CD16, the main Fcγ receptor expressed on NK cells. We found that this CD16 activation is dependent upon glycosylation of the anti-RhD antibodies. Furthermore, we show that anti-RhD antibodies induce NK cell degranulation in vivo in patients who receive this treatment prophylactically. Finally, we demonstrate that the anti-RhD drug KamRho enhances the killing of dendritic cells. We suggest that this killing leads to reduced activation of adaptive immunity and may therefore affect the production of anti-RhD antibodies
Collapse
Affiliation(s)
- Shlomo Elias
- The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Inbal Kol
- The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Shira Kahlon
- The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Rajaa Amore
- Department of Hematology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Mariam Zeibak
- Department of Hematology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Department of Hematology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Uriel Elchalal
- Dept. of Obstetrics and Gynecology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Orly Zelig
- Department of Hematology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
36
|
Groß M, Speckmann C, May A, Gajardo-Carrasco T, Wustrau K, Maier SL, Panning M, Huzly D, Agaimy A, Bryceson YT, Choo S, Chow CW, Dückers G, Fasth A, Fraitag S, Gräwe K, Haxelmans S, Holzinger D, Hudowenz O, Hübschen JM, Khurana C, Kienle K, Klifa R, Korn K, Kutzner H, Lämmermann T, Ledig S, Lipsker D, Meeths M, Naumann-Bartsch N, Rascon J, Schänzer A, Seidl M, Tesi B, Vauloup-Fellous C, Vollmer-Kary B, Warnatz K, Wehr C, Neven B, Vargas P, Sepulveda FE, Lehmberg K, Schmitt-Graeff A, Ehl S. Rubella vaccine-induced granulomas are a novel phenotype with incomplete penetrance of genetic defects in cytotoxicity. J Allergy Clin Immunol 2021; 149:388-399.e4. [PMID: 34033843 DOI: 10.1016/j.jaci.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rubella virus-induced granulomas have been described in patients with various inborn errors of immunity. Most defects impair T-cell immunity, suggesting a critical role of T cells in rubella elimination. However, the molecular mechanism of virus control remains elusive. OBJECTIVE This study sought to understand the defective effector mechanism allowing rubella vaccine virus persistence in granulomas. METHODS Starting from an index case with Griscelli syndrome type 2 and rubella skin granulomas, this study combined an international survey with a literature search to identify patients with cytotoxicity defects and granuloma. The investigators performed rubella virus immunohistochemistry and PCR and T-cell migration assays. RESULTS This study identified 21 patients with various genetically confirmed cytotoxicity defects, who presented with skin and visceral granulomas. Rubella virus was demonstrated in all 12 accessible biopsies. Granuloma onset was typically before 2 years of age and lesions persisted from months to years. Granulomas were particularly frequent in MUNC13-4 and RAB27A deficiency, where 50% of patients at risk were affected. Although these proteins have also been implicated in lymphocyte migration, 3-dimensional migration assays revealed no evidence of impaired migration of patient T cells. Notably, patients showed no evidence of reduced control of concomitantly given measles, mumps, or varicella live-attenuated vaccine or severe infections with other viruses. CONCLUSIONS This study identified lymphocyte cytotoxicity as a key effector mechanism for control of rubella vaccine virus, without evidence for its need in control of live measles, mumps, or varicella vaccines. Rubella vaccine-induced granulomas are a novel phenotype with incomplete penetrance of genetic disorders of cytotoxicity.
Collapse
Affiliation(s)
- Miriam Groß
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Annette May
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Tania Gajardo-Carrasco
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM), Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris, Paris, France
| | - Katharina Wustrau
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Lena Maier
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Panning
- Institute of Virology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yenan T Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Sharon Choo
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, Australia
| | - C W Chow
- Department of Anatomical Pathology, The Royal Children's Hospital, Melbourne, Australia
| | - Gregor Dückers
- Helios Klinikum Krefeld, Zentrum für Kinder- und Jugendmedizin, Krefeld, Germany
| | - Anders Fasth
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital, Paris, France
| | - Katja Gräwe
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | | | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Ole Hudowenz
- Department of Rheumatology, Immunology, Osteology, and Physical Medicine, Campus Kerckhoff of Justus-Liebig-University Gießen, Bad Nauheim, Germany
| | - Judith M Hübschen
- World Health Organization European Regional Reference Laboratory for Measles and Rubella, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Claudia Khurana
- Department of Pediatric Hematology and Oncology, Children's Center Bethel, University Hospital Ostwestfalen-Lippe (OWL)/University Bielefeld, Bielefeld, Germany
| | - Korbinian Kienle
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Roman Klifa
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris (AH-PH), Paris, France
| | - Klaus Korn
- Institute of Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Svea Ledig
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dan Lipsker
- Faculté de Médecine, Université de Strasbourg and Clinique Dermatologique, Hôpitaux Universitaires, Strasbourg, France
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Theme of Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Nora Naumann-Bartsch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania; Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Gießen, Gießen, Germany
| | - Maximilian Seidl
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany; Institute of Pathology, Heinrich Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Bianca Tesi
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Christelle Vauloup-Fellous
- AP-HP, Hôpital Paul-Brousse, Department of Virology, World Health Organization Rubella National Reference Laboratory, Groupe de Recherche sur les Infections pendant la Grossesse, University Paris Saclay, INSERM U1193, Villejuif, France
| | - Beate Vollmer-Kary
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Claudia Wehr
- Center for Chronic Immunodeficiency, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany; Department of Medicine I, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Bénédicte Neven
- Imagine Institute, Université de Paris, Paris, France; Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmunity, INSERM UMR 1163, Imagine Institute, Université de Paris, Paris, France
| | - Pablo Vargas
- Institut Curie, Centre National de la Recherche Scientifique (CNRS) UMR 144 and Institut Pierre-Gilles de Gennes, and INSERM U932 Immunité et Cancer, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Fernando E Sepulveda
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM), Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Schmitt-Graeff
- Center for Chronic Immunodeficiency, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.
| |
Collapse
|
37
|
Chaturvedi V, Marsh RA, Zoref-Lorenz A, Owsley E, Chaturvedi V, Nguyen TC, Goldman JR, Henry MM, Greenberg JN, Ladisch S, Hermiston ML, Jeng M, Naqvi A, Allen CE, Wong HR, Jordan MB. T-cell activation profiles distinguish hemophagocytic lymphohistiocytosis and early sepsis. Blood 2021; 137:2337-2346. [PMID: 33512385 PMCID: PMC8085480 DOI: 10.1182/blood.2020009499] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a fatal disorder of immune hyperactivation that has been described as a cytokine storm. Sepsis due to known or suspected infection has also been viewed as a cytokine storm. Although clinical similarities between these syndromes suggest similar immunopathology and may create diagnostic uncertainty, distinguishing them is critical as treatments are widely divergent. We examined T-cell profiles from children with either HLH or sepsis and found that HLH is characterized by acute T-cell activation, in clear contrast to sepsis. Activated T cells in patients with HLH were characterized as CD38high/HLA-DR+ effector cells, with activation of CD8+ T cells being most pronounced. Activated T cells were type 1 polarized, proliferative, and displayed evidence of recent and persistent activation. Circulating activated T cells appeared to be broadly characteristic of HLH, as they were seen in children with and without genetic lesions or identifiable infections and resolved with conventional treatment of HLH. Furthermore, we observed even greater activation and type 1 polarization in tissue-infiltrating T cells, described here for the first time in a series of patients with HLH. Finally, we observed that a threshold of >7% CD38high/HLA-DR+ cells among CD8+ T cells had strong positive and negative predictive value for distinguishing HLH from early sepsis or healthy controls. We conclude that the cytokine storm of HLH is marked by distinctive T-cell activation whereas early sepsis is not, and that these 2 syndromes can be readily distinguished by T-cell phenotypes.
Collapse
Affiliation(s)
- Vandana Chaturvedi
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Adi Zoref-Lorenz
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erika Owsley
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Vijaya Chaturvedi
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Trung C Nguyen
- Section of Critical Care, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jordana R Goldman
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX
| | - Michael M Henry
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Jay N Greenberg
- Division of Hematology, Department of Pediatrics, Children's National Hospital, Washington, DC
| | - Stephan Ladisch
- Division of Hematology, Department of Pediatrics, Children's National Hospital, Washington, DC
| | - Michelle L Hermiston
- Division of Hematology Oncology, Department of Pediatrics, UCSF School of Medicine, San Francisco, CA
| | - Michael Jeng
- Hematology and Oncology, Department of Pediatrics, Stanford Medical School, Stanford, CA
| | - Ahmed Naqvi
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carl E Allen
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| | - Hector R Wong
- Division of Critical Care, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Michael B Jordan
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
38
|
HLH or sepsis: the truth is in the T cells. Blood 2021; 137:2279-2280. [PMID: 33914076 DOI: 10.1182/blood.2020010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Yildiz H, Bailly S, Van Den Neste E, Yombi JC. Clinical Management of Relapsed/Refractory Hemophagocytic Lymphohistiocytosis in Adult Patients: A Review of Current Strategies and Emerging Therapies. Ther Clin Risk Manag 2021; 17:293-304. [PMID: 33888986 PMCID: PMC8056168 DOI: 10.2147/tcrm.s195538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 01/12/2023] Open
Abstract
Introduction Haemophagocytic lymphohistiocytosis (HLH) is a severe disorder with high mortality. The aim of this review is to update clinical management of relapsed/refractory HLH in adults, with a focus on current and new therapies. Methods We searched relevant articles in Embase and PUBMED with the MESH term “hemophagocytic lymphohistiocytosis; refractory; relapsing; adult.” Results One hundred eight papers were found; of these, 22 were retained for this review. The treatment of HLH in adult is based on the HLH-94 regimen. The response rate is lower than in pediatric patients, and 20–30% are refractory to this therapy. DEP regimen and allogenic hematopoietic stem cell transplantation (HSCT) are associated with complete response and partial response in 27% and 49.2%, respectively. However, many patients fail to achieve a stable condition before HSCT, and mortality is higher in them. New drugs have been developed, such as emapalumab, ruxolitinib, and alemtuzumab, and they may be used as bridges to the curative HSCT. They are relatively well tolerated and have few or mild side effects. With these agents, the rate of partial response ranges from 14.2% to 100%, while the rate of complete response is highly variable according to study and medication used. The number of patients who achieved HSCT ranged from 44.8% to 77%, with a survival rate of 55.9% to 100%. However, the populations in these studies are mainly composed of mixed-age patients (pediatric and adult patients), and studies including only adult patients are scarce. Conclusion Relapsed or refractory HLH in adult patients is associated with poor outcome, and consolidation with HSCT may be required in some cases. Mortality related to HSCT is mainly due to active HLH disease before HSCT and post HSCT complications. New drugs, such as empalumab, ruxolitinib, and alemtuzumab are interesting since these agents may be used as bridges to HSCT with increases in the numbers of patients proceeding to HSCT and survival rate.
Collapse
Affiliation(s)
- Halil Yildiz
- Departement of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint Luc, Bruxelles, Belgique
| | - Sarah Bailly
- Departement of Hematology, Cliniques Universitaires Saint Luc, Bruxelles, Belgique
| | - Eric Van Den Neste
- Departement of Hematology, Cliniques Universitaires Saint Luc, Bruxelles, Belgique
| | - Jean Cyr Yombi
- Departement of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint Luc, Bruxelles, Belgique
| |
Collapse
|
40
|
Sidore C, Orrù V, Cocco E, Steri M, Inshaw JR, Pitzalis M, Mulas A, McGurnaghan S, Frau J, Porcu E, Busonero F, Dei M, Lai S, Sole G, Virdis F, Serra V, Poddie F, Delitala A, Marongiu M, Deidda F, Pala M, Floris M, Masala M, Onengut-Gumuscu S, Robertson CC, Leoni L, Frongia A, Ricciardi MR, Chessa M, Olla N, Lovicu M, Loizedda A, Maschio A, Mereu L, Ferrigno P, Curreli N, Balaci L, Loi F, Ferreli LA, Pilia MG, Pani A, Marrosu MG, Abecasis GR, Rich SS, Colhoun H, Todd JA, Schlessinger D, Fiorillo E, Cucca F, Zoledziewska M. PRF1 mutation alters immune system activation, inflammation, and risk of autoimmunity. Mult Scler 2021; 27:1332-1340. [PMID: 33566725 DOI: 10.1177/1352458520963937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Defective alleles within the PRF1 gene, encoding the pore-forming protein perforin, in combination with environmental factors, cause familial type 2 hemophagocytic lymphohistiocytosis (FHL2), a rare, severe autosomal recessive childhood disorder characterized by massive release of cytokines-cytokine storm. OBJECTIVE The aim of this study was to determine the function of hypomorph PRF1:p.A91V g.72360387 G > A on multiple sclerosis (MS) and type 1 diabetes (T1D). METHODS We cross-compare the association data for PRF1:p.A91V mutation derived from GWAS on adult MS and pediatric T1D in Sardinians. The novel association with T1D was replicated in metanalysis in 12,584 cases and 17,692 controls from Sardinia, the United Kingdom, and Scotland. To dissect this mutation function, we searched through the coincident association immunophenotypes in additional set of general population Sardinians. RESULTS We report that PRF1:p.A91V, is associated with increase of lymphocyte levels, especially within the cytotoxic memory T-cells, at general population level with reduced interleukin 7 receptor expression on these cells. The minor allele increased risk of MS, in 2903 cases and 2880 controls from Sardinia p = 2.06 × 10-4, odds ratio OR = 1.29, replicating a previous finding, whereas it protects from T1D p = 1.04 × 10-5, OR = 0.82. CONCLUSION Our results indicate opposing contributions of the cytotoxic T-cell compartment to MS and T1D pathogenesis.
Collapse
Affiliation(s)
- Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Eleonora Cocco
- Department of Medical Sciences and Public health, Multiple Sclerosis Centre, University of Cagliari, Cagliari, Italy
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Jamie Rj Inshaw
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Oxford, UK/Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maristella Pitzalis
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Stuart McGurnaghan
- Diabetes Medical Informatics and Epidemiology, The University of Edinburgh, Edinburgh, Scotland
| | - Jessica Frau
- Department of Medical Sciences and Public health, Multiple Sclerosis Centre, University of Cagliari, Cagliari, Italy
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland/Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Mariano Dei
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Sandra Lai
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Gabriella Sole
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Francesca Virdis
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Valentina Serra
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Fausto Poddie
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandro Delitala
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy/Department of Surgical, Medical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Michele Marongiu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Francesca Deidda
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Mauro Pala
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marco Masala
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | | | - Lidia Leoni
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Parco Scientifico e Tecnologico della Sardegna, Pula, Italy
| | | | | | - Margherita Chessa
- Struttura Complessa di Pediatria, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Nazario Olla
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Mario Lovicu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Annalisa Loizedda
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Luisa Mereu
- Unità Operativa di Pediatria, Ospedale San Martino di Oristano, Oristano, Italy
| | - Paola Ferrigno
- Reparto di Neurologia, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Nicolo Curreli
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Lenuta Balaci
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Francesco Loi
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Liana Ap Ferreli
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Maria Grazia Pilia
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Antonello Pani
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy/Struttura Complessa di Nefrologia e Dialisi, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Maria Giovanna Marrosu
- Department of Medical Sciences and Public health, Multiple Sclerosis Centre, University of Cagliari, Cagliari, Italy
| | - Goncalo R Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Helen Colhoun
- Diabetes Medical Informatics and Epidemiology, The University of Edinburgh, Edinburgh, Scotland
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Oxford, UK/Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy/Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| |
Collapse
|
41
|
Affiliation(s)
- David C Fajgenbaum
- From the Department of Medicine, Division of Translational Medicine and Human Genetics, Center for Cytokine Storm Treatment and Laboratory (D.C.F.), and the Center for Cellular Immunotherapies and the Parker Institute for Cancer Immunotherapy (C.H.J.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Carl H June
- From the Department of Medicine, Division of Translational Medicine and Human Genetics, Center for Cytokine Storm Treatment and Laboratory (D.C.F.), and the Center for Cellular Immunotherapies and the Parker Institute for Cancer Immunotherapy (C.H.J.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
42
|
Affiliation(s)
- David C Fajgenbaum
- From the Department of Medicine, Division of Translational Medicine and Human Genetics, Center for Cytokine Storm Treatment and Laboratory (D.C.F.), and the Center for Cellular Immunotherapies and the Parker Institute for Cancer Immunotherapy (C.H.J.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Carl H June
- From the Department of Medicine, Division of Translational Medicine and Human Genetics, Center for Cytokine Storm Treatment and Laboratory (D.C.F.), and the Center for Cellular Immunotherapies and the Parker Institute for Cancer Immunotherapy (C.H.J.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
43
|
Merli P, Algeri M, Gaspari S, Locatelli F. Novel Therapeutic Approaches to Familial HLH (Emapalumab in FHL). Front Immunol 2020; 11:608492. [PMID: 33424859 PMCID: PMC7793976 DOI: 10.3389/fimmu.2020.608492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Primary Hemophagocytic lymphohistiocytosis (pHLH) is a rare, life-threatening, hyperinflammatory disorder, characterized by uncontrolled activation of the immune system. Mutations affecting several genes coding for proteins involved in the cytotoxicity machinery of both natural killer (NK) and T cells have been found to be responsible for the development of pHLH. So far, front-line treatment, established on the results of large international trials, is based on the use of glucocorticoids, etoposide ± cyclosporine, followed by allogeneic hematopoietic stem cell transplantation (HSCT), the sole curative treatment for the genetic forms of the disease. However, despite major efforts to improve the outcome of pHLH, many patients still experience unfavorable outcomes, as well as severe toxicities; moreover, treatment-refractory or relapsing disease is a major challenge for pediatricians/hematologists. In this article, we review the epidemiology, etiology and pathophysiology of pHLH, with a particular focus on different cytokines at the origin of the disease. The central role of interferon-γ (IFNγ) in the development and maintenance of hyperinflammation is analyzed. The value of emapalumab, a novel IFNγ-neutralizing monoclonal antibody is discussed. Available data support the use of emapalumab for treatment of pHLH patients with refractory, recurrent or progressive disease, or intolerance to conventional therapy, recently, leading to FDA approval of the drug for these indications. Additional data are needed to define the role of emapalumab in front-line treatment or in combination with other drugs.
Collapse
Affiliation(s)
- Pietro Merli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefania Gaspari
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Maternal, Infantile, and Urological Sciences, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
44
|
Ishii K, Pouzolles M, Chien CD, Erwin-Cohen RA, Kohler ME, Qin H, Lei H, Kuhn S, Ombrello AK, Dulau-Florea A, Eckhaus MA, Shalabi H, Yates B, Lichtenstein DA, Zimmermann VS, Kondo T, Shern JF, Young HA, Taylor N, Shah NN, Fry TJ. Perforin-deficient CAR T cells recapitulate late-onset inflammatory toxicities observed in patients. J Clin Invest 2020; 130:5425-5443. [PMID: 32925169 PMCID: PMC7524496 DOI: 10.1172/jci130059] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Late-onset inflammatory toxicities resembling hemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS) occur after chimeric antigen receptor T cell (CAR T cell) infusion and represent a therapeutic challenge. Given the established link between perforin deficiency and primary HLH, we investigated the role of perforin in anti-CD19 CAR T cell efficacy and HLH-like toxicities in a syngeneic murine model. Perforin contributed to both CD8+ and CD4+ CAR T cell cytotoxicity but was not required for in vitro or in vivo leukemia clearance. Upon CAR-mediated in vitro activation, perforin-deficient CAR T cells produced higher amounts of proinflammatory cytokines compared with WT CAR T cells. Following in vivo clearance of leukemia, perforin-deficient CAR T cells reexpanded, resulting in splenomegaly with disruption of normal splenic architecture and the presence of hemophagocytes, which are findings reminiscent of HLH. Notably, a substantial fraction of patients who received anti-CD22 CAR T cells also experienced biphasic inflammation, with the second phase occurring after the resolution of cytokine release syndrome, resembling clinical manifestations of HLH. Elevated inflammatory cytokines such as IL-1β and IL-18 and concurrent late CAR T cell expansion characterized the HLH-like syndromes occurring in the murine model and in humans. Thus, a murine model of perforin-deficient CAR T cells recapitulated late-onset inflammatory toxicities occurring in human CAR T cell recipients, providing therapeutically relevant mechanistic insights.
Collapse
Affiliation(s)
- Kazusa Ishii
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, and
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Marie Pouzolles
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Christopher D. Chien
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Rebecca A. Erwin-Cohen
- Cancer and Inflammation Program, Center for Cancer Research, NCI, NIH, Frederick, Maryland, USA
| | - M. Eric Kohler
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Haiying Qin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Skyler Kuhn
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Amanda K. Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, NIH
| | | | - Michael A. Eckhaus
- Diagnostic and Research Services Branch, Division of Veterinary Resources, NIH, Bethesda, Maryland, USA
| | - Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Daniel A. Lichtenstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Valérie S. Zimmermann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
- Université de Montpellier, IGMM, CNRS, Montpellier, France
| | - Taisuke Kondo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Howard A. Young
- Cancer and Inflammation Program, Center for Cancer Research, NCI, NIH, Frederick, Maryland, USA
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, NCI, NIH, Frederick, Maryland, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
- Université de Montpellier, IGMM, CNRS, Montpellier, France
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
| | - Terry J. Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
45
|
Ota T, Fukui T, Nakahara Y, Takeda T, Uchino J, Mouri T, Kudo K, Nakajima S, Suzumura T, Fukuoka M. Serum immune modulators during the first cycle of anti-PD-1 antibody therapy in non-small cell lung cancer: Perforin as a biomarker. Thorac Cancer 2020; 11:3223-3233. [PMID: 32915511 PMCID: PMC7606020 DOI: 10.1111/1759-7714.13650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Background Currently used biomarkers for immunotherapy are inadequate because they are only based on tumor properties. In view of microenvironment changes by tumors, host immunity should be considered, which may result in identifying more accurate and easily detectable biomarkers for daily clinical practice. Here, we assessed serum immune‐modulating factor levels for the response to anti‐PD‐1 antibodies during the first cycle in non‐small cell lung cancer (NSCLC) patients. Methods Serum was collected from patients with advanced NSCLC treated with nivolumab or pembrolizumab at several time points during the first cycle. We applied the enzyme‐linked immunosorbent assays (ELISAs) and multiplex assays to measure the levels of immune modulators. Results A total of 40 patients treated with nivolumab and 26 patients treated with pembrolizumab were studied. By ELISA, serum perforin, but not granzyme B, was measured in all samples. By multiplex assay, 10 immune modulators, including granzyme B, were measured in some, but not all, samples. Serum baseline perforin levels were strongly associated with increased progression‐free survival (PFS) and overall survival (OS) times. Sequential changes in perforin levels during the first cycle were weakly associated with the clinical outcome. Conclusions Serum baseline perforin levels may be used to predict the prognosis of NSCLC patients treated with anti‐PD‐1 antibody therapy. Key points To identify a useful predictive marker for anti‐PD‐1 antibody therapy, using blood samples might be helpful. Serum baseline perforin levels were closely associated with prognosis with anti‐PD‐1 antibody therapy in non‐small cell lung cancer.
Collapse
Affiliation(s)
- Takayo Ota
- Department of Medical Oncology, Izumi City General Hospital, Osaka, Japan
| | - Tomoya Fukui
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiro Nakahara
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Japan.,Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan.,Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takako Mouri
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keita Kudo
- Department of Medical Oncology and Respiratory Medicine, National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Saki Nakajima
- Department of Medical Oncology and Respiratory Medicine, National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Tomohiro Suzumura
- Department of Clinical Oncology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masahiro Fukuoka
- Department of Medical Oncology, Izumi City General Hospital, Osaka, Japan
| |
Collapse
|
46
|
van Eeden C, Khan L, Osman MS, Cohen Tervaert JW. Natural Killer Cell Dysfunction and Its Role in COVID-19. Int J Mol Sci 2020; 21:E6351. [PMID: 32883007 PMCID: PMC7503862 DOI: 10.3390/ijms21176351] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
When facing an acute viral infection, our immune systems need to function with finite precision to enable the elimination of the pathogen, whilst protecting our bodies from immune-related damage. In many instances however this "perfect balance" is not achieved, factors such as ageing, cancer, autoimmunity and cardiovascular disease all skew the immune response which is then further distorted by viral infection. In SARS-CoV-2, although the vast majority of COVID-19 cases are mild, as of 24 August 2020, over 800,000 people have died, many from the severe inflammatory cytokine release resulting in extreme clinical manifestations such as acute respiratory distress syndrome (ARDS) and hemophagocytic lymphohistiocytosis (HLH). Severe complications are more common in elderly patients and patients with cardiovascular diseases. Natural killer (NK) cells play a critical role in modulating the immune response and in both of these patient groups, NK cell effector functions are blunted. Preliminary studies in COVID-19 patients with severe disease suggests a reduction in NK cell number and function, resulting in decreased clearance of infected and activated cells, and unchecked elevation of tissue-damaging inflammation markers. SARS-CoV-2 infection skews the immune response towards an overwhelmingly inflammatory phenotype. Restoration of NK cell effector functions has the potential to correct the delicate immune balance required to effectively overcome SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | - Jan Willem Cohen Tervaert
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.v.E.); (L.K.); (M.S.O.)
| |
Collapse
|
47
|
Gather R, Aichele P, Goos N, Rohr J, Pircher H, Kögl T, Zeiser R, Hengel H, Schmitt-Gräff A, Weaver C, Ehl S. Trigger-dependent differences determine therapeutic outcome in murine primary hemophagocytic lymphohistiocytosis. Eur J Immunol 2020; 50:1770-1782. [PMID: 32419134 DOI: 10.1002/eji.201948123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) is a hyperinflammatory syndrome affecting patients with genetic cytotoxicity defects. Perforin-deficient (PKO) mice recapitulate the full clinical picture of FHL after infection with lymphocytic choriomeningitis virus (LCMV). Hyperactivated CD8+ T cells and IFN-γ have been identified as the key drivers of FHL and represent targets for therapeutic interventions. However, the response of patients is variable. This could be due to trigger-dependent differences in pathogenesis, which is difficult to address in FHL patients, since the trigger frequently escapes detection. We established an alternative FHL model using intravenous infection of PKO mice with murine CMV (MCMV)Smith . PKO mice developed acute FHL after both infections and fulfilled HLH diagnostic criteria accompanied by excessive IFN-γ production by disease-inducing T cells, that enrich in the BM. However, direct comparison of the two infection models disclosed trigger-dependence of FHL progression and revealed a higher contribution of CD4 T cells and NK cells to IFN-γ production after MCMV infection. Importantly, therapeutic intervention by IFN-γ neutralization or CD8+ T-cell depletion had less benefit in MCMV-triggered FHL compared to LCMV-triggered FHL, likely due to MCMV-induced cytopathology. Thus, the context of the specific triggering viral infection can impact the success of targeted immunotherapeutic HLH control.
Collapse
Affiliation(s)
- Ruth Gather
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Institute for Immunodeficiency, Medical Center, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany
| | - Peter Aichele
- Faculty of Medicine, Institute of Immunology, Medical Center, University of Freiburg, Germany
| | - Nadja Goos
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Institute for Immunodeficiency, Medical Center, University of Freiburg, Germany
| | - Jan Rohr
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Institute for Immunodeficiency, Medical Center, University of Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Germany
| | - Hanspeter Pircher
- Faculty of Medicine, Institute of Immunology, Medical Center, University of Freiburg, Germany
| | - Tamara Kögl
- Faculty of Medicine, Institute of Immunology, Medical Center, University of Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, Medical Center, University of Freiburg, Germany
| | - Hartmut Hengel
- Faculty of Medicine, Institute of Virology, Medical Center, University of Freiburg, Germany
| | - Annette Schmitt-Gräff
- Department of General Pathology, Faculty of Medicine, Institute of Pathology, Medical Center, University of Freiburg, Germany
| | - Casey Weaver
- Department of Immunology, School of Medicine, University of Alabama, Birmingham, AL, USA
| | - Stephan Ehl
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Institute for Immunodeficiency, Medical Center, University of Freiburg, Germany
| |
Collapse
|
48
|
Wegehaupt O, Wustrau K, Lehmberg K, Ehl S. Cell Versus Cytokine - Directed Therapies for Hemophagocytic Lymphohistiocytosis (HLH) in Inborn Errors of Immunity. Front Immunol 2020; 11:808. [PMID: 32457750 PMCID: PMC7225316 DOI: 10.3389/fimmu.2020.00808] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a heterogeneous hyperinflammatory syndrome with different pathways of pathogenesis resulting in similar clinical presentations. It is best defined and understood if presenting in the context of genetic immunodeficiencies associated with defects of lymphocyte cytotoxicity. In these "primary" forms of HLH, cellular and soluble immune effectors are relatively well characterized. While etoposide-based broad cell-directed therapies remain standard of care, more specific therapies targeting these effectors individually are increasingly available. Anti-CD52 as a cell-directed therapy and anti-IFN-gamma, IL-18BP, and JAK-inhibition as cytokine-directed therapies are expected to broaden the therapeutic options, but the precise role of these drugs in first-line and rescue treatment indications remains to be defined. A number of additional inborn errors of immunity are associated with episodes of immune activation fulfilling the clinical criteria of HLH. Impaired pathogen control is a key driver of hyperinflammation in some conditions, while others are characterized by a strong autoinflammatory component. This heterogeneity of disease-driving factors and the variable severity in disease progression in these conditions do not allow a simple adaptation of protocols established for "primary" HLH to HLH in the context of other inborn errors of immunity. Cytokine-directed therapies hold significant promise in these increasingly recognized disorders.
Collapse
Affiliation(s)
- Oliver Wegehaupt
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany
- Center for Pediatrics, Faculty of Medicine, Medical Center – University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Katharina Wustrau
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany
- Center for Pediatrics, Faculty of Medicine, Medical Center – University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Osman MS, van Eeden C, Cohen Tervaert JW. Fatal COVID-19 infections: Is NK cell dysfunction a link with autoimmune HLH? Autoimmun Rev 2020; 19:102561. [PMID: 32376401 PMCID: PMC7252043 DOI: 10.1016/j.autrev.2020.102561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Mohammed S Osman
- Department of Medicine, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
50
|
Dou Y, Blaine Crowley T, Gallagher S, Bailey A, McGinn D, Zackai E, Gur RE, McGinn DM, Sullivan KE. Increased T-cell counts in patients with 22q11.2 deletion syndrome who have anxiety. Am J Med Genet A 2020; 182:1815-1818. [PMID: 32302047 DOI: 10.1002/ajmg.a.61588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Ying Dou
- Division of Allergy Immunology, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.,Division of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - T Blaine Crowley
- Division of Genetics, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Sean Gallagher
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alice Bailey
- Division of Genetics, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Daniel McGinn
- Division of Genetics, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elaine Zackai
- Division of Genetics, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Raquel E Gur
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Donna McDonald McGinn
- Division of Genetics, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kathleen E Sullivan
- Division of Allergy Immunology, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|