1
|
Depaepe T, Prinsen E, Hu Y, Sanchez-Munoz R, Denoo B, Buyst D, Darouez H, Werbrouck S, Hayashi KI, Martins J, Winne J, Van Der Straeten D. Arinole, a novel auxin-stimulating benzoxazole, affects root growth and promotes adventitious root formation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5681-5702. [PMID: 38920303 DOI: 10.1093/jxb/erae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
The triple response phenotype is characteristic for seedlings treated with the phytohormone ethylene or its direct precursor 1-aminocyclopropane-carboxylic acid, and is often employed to find novel chemical tools to probe ethylene responses. We identified a benzoxazole-urea derivative (B2) partially mimicking ethylene effects in a triple response bioassay. A phenotypic analysis demonstrated that B2 and its closest analogue arinole (ARI) induced phenotypic responses reminiscent of seedlings with elevated levels of auxin, including impaired hook development and inhibition of seedling growth. Specifically, ARI reduced longitudinal cell elongation in roots, while promoting cell division. In contrast to other natural or synthetic auxins, ARI mostly acts as an inducer of adventitious root development, with only limited effects on lateral root development. Quantification of free auxins and auxin biosynthetic precursors as well as auxin-related gene expression demonstrated that ARI boosts global auxin levels. In addition, analyses of auxin reporter lines and mutants, together with pharmacological assays with auxin-related inhibitors, confirmed that ARI effects are facilitated by TRYPTOPHAN AMINOTRANSFERASE1 (TAA1)-mediated auxin synthesis. ARI treatment in an array of species, including Arabidopsis, pea, tomato, poplar, and lavender, resulted in adventitious root formation, which is a desirable trait in both agriculture and horticulture.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Els Prinsen
- Laboratory of Integrated Molecular Plant Physiological Research (IMPRES), Department of Biology, Faculty of Sciences, University of Antwerp, Antwerp, Belgium
| | - Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Raul Sanchez-Munoz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Bram Denoo
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dieter Buyst
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Hajer Darouez
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Stefaan Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Ken-Ichiro Hayashi
- Natural Products Chemistry Lab, Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - José Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Johan Winne
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Brukental H, Doron-Faigenboim A, Bar-Ya’akov I, Harel-Beja R, Trainin T, Hatib K, Aharon S, Azoulay-Shemer T, Holland D. Exploring the wild almond, Prunus arabica (Olivier), as a genetic source for almond breeding. TREE GENETICS & GENOMES 2024; 20:37. [PMID: 39398478 PMCID: PMC11469977 DOI: 10.1007/s11295-024-01668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/09/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
During the process of almond (Prunus dulcis) domestication, essential traits, which gave plants the plasticity for facing unstable environmental conditions, were lost. In general, the domestication process often narrows the natural genetic diversity. Modern selections (i.e., breeding programs) dramatically accelerated this genetic bottleneck trend to a few successful almond cultivars, which are presently the founders of most commercial cultivars worldwide. The concept of utilizing wild species as a source for important traits and for the enrichment of the gene pool was deeply discussed in previous studies. However, in almonds and other Prunus species, deliberate utilization of wild species as a genetic resource for breeding programs is quite rare. To address these significant challenges, we generated an interspecific F1 population between the Israeli almond cultivar Um el Fahem (UEF) and a specimen of a local wild almond species, Prunus arabica (P. arabica), originating from the Judea desert. This interspecific F1 population possesses high phenotypic variability, and sixteen segregating traits were phenotyped. Among the segregating traits, we were able to genetically associate six agriculturally important traits, such as leaf chlorophyll content (LCC), flower size, and fruit size. The alleles for Self-Compatibility (SC) and kernel bitterness were previously mapped in almond and were reexamined on the background of the distinctive wild genetic material of P. arabica. Finally, phenotypic interactions between traits were suggested, such as rootstock perimeter and canopy area that were positively correlated with total yield in the F1 population. This study is a first step towards developing a well-characterized almond interspecies genetic population. The availability of such a genetic tool with detailed phenotypic analysis is crucial to address and explore the profound influence of almond wild species in Prunus genetic research and breeding. By using the interspecific population as the infrastructure, we show the advantages and importance of utilizing wild relatives. Supplementary information The online version contains supplementary material available at 10.1007/s11295-024-01668-4.
Collapse
Affiliation(s)
- Hillel Brukental
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Irit Bar-Ya’akov
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Rotem Harel-Beja
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Taly Trainin
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Kamel Hatib
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Shlomi Aharon
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Tamar Azoulay-Shemer
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Doron Holland
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| |
Collapse
|
3
|
Jang YJ, Kim T, Lin M, Kim J, Begcy K, Liu Z, Lee S. Genome-wide gene network uncover temporal and spatial changes of genes in auxin homeostasis during fruit development in strawberry (F. × ananassa). BMC PLANT BIOLOGY 2024; 24:876. [PMID: 39304822 DOI: 10.1186/s12870-024-05577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The plant hormone auxin plays a crucial role in regulating important functions in strawberry fruit development. Although a few studies have described the complex auxin biosynthetic and signaling pathway in wild diploid strawberry (Fragaria vesca), the molecular mechanisms underlying auxin biosynthesis and crosstalk in octoploid strawberry fruit development are not fully characterized. To address this knowledge gap, comprehensive transcriptomic analyses were conducted at different stages of fruit development and compared between the achene and receptacle to identify developmentally regulated auxin biosynthetic genes and transcription factors during the fruit ripening process. Similar to wild diploid strawberry, octoploid strawberry accumulates high levels of auxin in achene compared to receptacle. RESULTS Genes involved in auxin biosynthesis and conjugation, such as Tryptophan Aminotransferase of Arabidopsis (TAAs), YUCCA (YUCs), and Gretchen Hagen 3 (GH3s), were found to be primarily expressed in the achene, with low expression in the receptacle. Interestingly, several genes involved in auxin transport and signaling like Pin-Formed (PINs), Auxin/Indole-3-Acetic Acid Proteins (Aux/IAAs), Transport Inhibitor Response 1 / Auxin-Signaling F-Box (TIR/AFBs) and Auxin Response Factor (ARFs) were more abundantly expressed in the receptacle. Moreover, by examining DEGs and their transcriptional profiles across all six developmental stages, we identified key auxin-related genes co-clustered with transcription factors from the NAM-ATAF1,2-CUC2/ WRKYGQK motif (NAC/WYKY), Heat Shock Transcription Factor and Heat Shock Proteins (HSF/HSP), APETALA2/Ethylene Responsive Factor (AP2/ERF) and MYB transcription factor groups. CONCLUSIONS These results elucidate the complex regulatory network of auxin biosynthesis and its intricate crosstalk within the achene and receptacle, enriching our understanding of fruit development in octoploid strawberries.
Collapse
Affiliation(s)
- Yoon Jeong Jang
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA
| | - Taehoon Kim
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Makou Lin
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
| | - Kevin Begcy
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA.
| |
Collapse
|
4
|
Fang H, Huang S, Li R, Wang P, Jiang Q, Zhong C, Yang Y, Yu W. Combined BSA-Seq and RNA-Seq to Identify Potential Genes Regulating Fruit Size in Bottle Gourd ( Lagenaria siceraria L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2154. [PMID: 39124272 PMCID: PMC11314176 DOI: 10.3390/plants13152154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Fruit size is a crucial agronomic trait in bottle gourd, impacting both yield and utility. Despite its significance, the regulatory mechanism governing fruit size in bottle gourd remains largely unknown. In this study, we used bottle gourd (small-fruited H28 and large-fruited H17) parent plants to measure the width and length of fruits at various developmental stages, revealing a single 'S' growth curve for fruit expansion. Paraffin section observations indicated that both cell number and size significantly influence bottle gourd fruit size. Through bulked segregant analysis and combined genotype-phenotype analysis, the candidate interval regulating fruit size was pinpointed to 17,747,353 bp-18,185,825 bp on chromosome 9, encompassing 0.44 Mb and including 44 genes. Parental fruits in the rapid expansion stage were subjected to RNA-seq, highlighting that differentially expressed genes were mainly enriched in pathways related to cell wall biosynthesis, sugar metabolism, and hormone signaling. Transcriptome and resequencing analysis, combined with gene function annotation, identified six genes within the localized region as potential regulators of fruit size. This study not only maps the candidate interval of genes influencing fruit size in bottle gourd through forward genetics, but also offers new insights into the potential molecular mechanisms underlying this trait through transcriptome analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China; (H.F.); (S.H.); (R.L.); (P.W.); (Q.J.); (C.Z.); (Y.Y.)
| |
Collapse
|
5
|
Keller B, Jung M, Bühlmann-Schütz S, Hodel M, Studer B, Broggini GAL, Patocchi A. The genetic basis of apple shape and size unraveled by digital phenotyping. G3 (BETHESDA, MD.) 2024; 14:jkae045. [PMID: 38441135 PMCID: PMC11075547 DOI: 10.1093/g3journal/jkae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 05/08/2024]
Abstract
Great diversity of shape, size, and skin color is observed among the fruits of different apple genotypes. These traits are critical for consumers and therefore interesting targets for breeding new apple varieties. However, they are difficult to phenotype and their genetic basis, especially for fruit shape and ground color, is largely unknown. We used the FruitPhenoBox to digitally phenotype 525 genotypes of the apple reference population (apple REFPOP) genotyped for 303,148 single nucleotide polymorphism (SNP) markers. From the apple images, 573 highly heritable features describing fruit shape and size as well as 17 highly heritable features for fruit skin color were extracted to explore genotype-phenotype relationships. Out of these features, seven principal components (PCs) and 16 features with the Pearson's correlation r < 0.75 (selected features) were chosen to carry out genome-wide association studies (GWAS) for fruit shape and size. Four PCs and eight selected features were used in GWAS for fruit skin color. In total, 69 SNPs scattered over all 17 apple chromosomes were significantly associated with round, conical, cylindrical, or symmetric fruit shapes and fruit size. Novel associations with major effect on round or conical fruit shapes and fruit size were identified on chromosomes 1 and 2. Additionally, 16 SNPs associated with PCs and selected features related to red overcolor as well as green and yellow ground color were found on eight chromosomes. The identified associations can be used to advance marker-assisted selection in apple fruit breeding to systematically select for desired fruit appearance.
Collapse
Affiliation(s)
- Beat Keller
- Division of Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil 8820, Switzerland
| | - Michaela Jung
- Division of Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil 8820, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich 8092, Switzerland
| | - Simone Bühlmann-Schütz
- Division of Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil 8820, Switzerland
| | - Marius Hodel
- Division of Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil 8820, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich 8092, Switzerland
| | - Giovanni A L Broggini
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich 8092, Switzerland
| | - Andrea Patocchi
- Division of Plant Breeding, Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil 8820, Switzerland
| |
Collapse
|
6
|
Vondracek K, Altpeter F, Liu T, Lee S. Advances in genomics and genome editing for improving strawberry ( Fragaria ×ananassa). Front Genet 2024; 15:1382445. [PMID: 38706796 PMCID: PMC11066249 DOI: 10.3389/fgene.2024.1382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The cultivated strawberry, Fragaria ×ananassa, is a recently domesticated fruit species of economic interest worldwide. As such, there is significant interest in continuous varietal improvement. Genomics-assisted improvement, including the use of DNA markers and genomic selection have facilitated significant improvements of numerous key traits during strawberry breeding. CRISPR/Cas-mediated genome editing allows targeted mutations and precision nucleotide substitutions in the target genome, revolutionizing functional genomics and crop improvement. Genome editing is beginning to gain traction in the more challenging polyploid crops, including allo-octoploid strawberry. The release of high-quality reference genomes and comprehensive subgenome-specific genotyping and gene expression profiling data in octoploid strawberry will lead to a surge in trait discovery and modification by using CRISPR/Cas. Genome editing has already been successfully applied for modification of several strawberry genes, including anthocyanin content, fruit firmness and tolerance to post-harvest disease. However, reports on many other important breeding characteristics associated with fruit quality and production are still lacking, indicating a need for streamlined genome editing approaches and tools in Fragaria ×ananassa. In this review, we present an overview of the latest advancements in knowledge and breeding efforts involving CRISPR/Cas genome editing for the enhancement of strawberry varieties. Furthermore, we explore potential applications of this technology for improving other Rosaceous plant species.
Collapse
Affiliation(s)
- Kaitlyn Vondracek
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Fredy Altpeter
- University of Florida, Agronomy Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
| |
Collapse
|
7
|
Rossouw GC, Orr R, Bennett D, Bally ISE. The roles of non-structural carbohydrates in fruiting: a review focusing on mango ( Mangifera indica). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23195. [PMID: 38588720 DOI: 10.1071/fp23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Reproductive development of fruiting trees, including mango (Mangifera indica L.), is limited by non-structural carbohydrates. Competition for sugars increases with cropping, and consequently, vegetative growth and replenishment of starch reserves may reduce with high yields, resulting in interannual production variability. While the effect of crop load on photosynthesis and the distribution of starch within the mango tree has been studied, the contribution of starch and sugars to different phases of reproductive development requires attention. This review focuses on mango and examines the roles of non-structural carbohydrates in fruiting trees to clarify the repercussions of crop load on reproductive development. Starch buffers the plant's carbon availability to regulate supply with demand, while sugars provide a direct resource for carbon translocation. Sugar signalling and interactions with phytohormones play a crucial role in flowering, fruit set, growth, ripening and retention, as well as regulating starch, sugar and secondary metabolites in fruit. The balance between the leaf and fruit biomass affects the availability and contributions of starch and sugars to fruiting. Crop load impacts photosynthesis and interactions between sources and sinks. As a result, the onset and rate of reproductive processes are affected, with repercussions for fruit size, composition, and the inter-annual bearing pattern.
Collapse
Affiliation(s)
- Gerhard C Rossouw
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ryan Orr
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Dale Bennett
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ian S E Bally
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| |
Collapse
|
8
|
Dujak C, Coleto-Alcudia V, Aranzana MJ. Genomic analysis of fruit size and shape traits in apple: unveiling candidate genes through GWAS analysis. HORTICULTURE RESEARCH 2024; 11:uhad270. [PMID: 38419968 PMCID: PMC10901474 DOI: 10.1093/hr/uhad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 03/02/2024]
Abstract
Genomic tools facilitate the efficient selection of improved genetic materials within a breeding program. Here, we focus on two apple fruit quality traits: shape and size. We utilized data from 11 fruit morphology parameters gathered across three years of harvest from 355 genotypes of the apple REFPOP collection, which serves as a representative sample of the genetic variability present in European-cultivated apples. The data were then employed for genome-wide association studies (GWAS) using the FarmCPU and the BLINK models. The analysis identified 59 SNPs associated with fruit size and shape traits (35 with FarmCPU and 45 with BLINK) responsible for 71 QTNs. These QTNs were distributed across all chromosomes except for chromosomes 10 and 15. Thirty-four QTNs, identified by 27 SNPs, were related for size traits, and 37 QTNs, identified by 26 SNPs, were related to shape attributes. The definition of the haploblocks containing the most relevant SNPs served to propose candidate genes, among them the genes of the ovate family protein MdOFP17 and MdOFP4 that were in a 9.7kb haploblock on Chromosome 11. RNA-seq data revealed low or null expression of these genes in the oblong cultivar "Skovfoged" and higher expression in the flat "Grand'mere." The Gene Ontology enrichment analysis support a role of OFPs and hormones in shape regulation. In conclusion, this comprehensive GWAS analysis of the apple REFPOP collection has revealed promising genetic markers and candidate genes associated with apple fruit shape and size attributes, providing valuable insights that could enhance the efficiency of future breeding programs.
Collapse
Affiliation(s)
- Christian Dujak
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UABUB, Plant and Animal Genomics, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Veredas Coleto-Alcudia
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UABUB, Plant and Animal Genomics, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Maria José Aranzana
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UABUB, Plant and Animal Genomics, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Genomics and Biotechnology, 08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
9
|
Cardarelli M, El Chami A, Rouphael Y, Ciriello M, Bonini P, Erice G, Cirino V, Basile B, Corrado G, Choi S, Kim HJ, Colla G. Plant biostimulants as natural alternatives to synthetic auxins in strawberry production: physiological and metabolic insights. FRONTIERS IN PLANT SCIENCE 2024; 14:1337926. [PMID: 38264017 PMCID: PMC10803581 DOI: 10.3389/fpls.2023.1337926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
The demand for high-quality strawberries continues to grow, emphasizing the need for innovative agricultural practices to enhance both yield and fruit quality. In this context, the utilization of natural products, such as biostimulants, has emerged as a promising avenue for improving strawberry production while aligning with sustainable and eco-friendly agricultural approaches. This study explores the influence of a bacterial filtrate (BF), a vegetal-derived protein hydrolysate (PH), and a standard synthetic auxin (SA) on strawberry, investigating their effects on yield, fruit quality, mineral composition and metabolomics of leaves and fruits. Agronomic trial revealed that SA and BF significantly enhanced early fruit yield due to their positive influence on flowering and fruit set, while PH treatment favored a gradual and prolonged fruit set, associated with an increased shoot biomass and sustained production. Fruit quality analysis showed that PH-treated fruits exhibited an increase of firmness and soluble solids content, whereas SA-treated fruits displayed lower firmness and soluble solids content. The ionomic analysis of leaves and fruits indicated that all treatments provided sufficient nutrients, with heavy metals within regulatory limits. Metabolomics indicated that PH stimulated primary metabolites, while SA and BF directly affected flavonoid and anthocyanin biosynthesis, and PH increased fruit quality through enhanced production of beneficial metabolites. This research offers valuable insights for optimizing strawberry production and fruit quality by harnessing the potential of natural biostimulants as viable alternative to synthetic compounds.
Collapse
Affiliation(s)
| | - Antonio El Chami
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Gorka Erice
- Atens - Agrotecnologías Naturales, La Riera de Gaià, Spain
| | | | - Boris Basile
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Seunghyun Choi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX, United States
| | - Hye-Ji Kim
- Agri-tech and Food Innovation Department, Urban Food Solutions Division, Singapore Food Agency, Singapore, Singapore
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
10
|
Tian Z, Wu B, Liu J, Zhang L, Wu T, Wang Y, Han Z, Zhang X. Genetic variations in MdSAUR36 participate in the negative regulation of mesocarp cell division and fruit size in Malus species. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:1. [PMID: 38222974 PMCID: PMC10784262 DOI: 10.1007/s11032-024-01441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Final fruit size of apple (Malus domestica) cultivars is related to both mesocarp cell division and cell expansion during fruit growth, but it is unclear whether the cell division and/or cell enlargement determine most of the differences in fruit size between Malus species. In this study, by using an interspecific hybrid population between Malus asiatica "Zisai Pearl" and Malus domestica cultivar "Red Fuji," we found that the mesocarp cell number was the main causal factor of diversity in fruit size between Malus species. Rapid increase in mesocarp cell number occurred prior to 28 days after anthesis (DAA), while cell size increased gradually after 28 DAA until fruit ripening. Six candidate genes related to auxin signaling or cell cycle were predicted by combining the RNA-seq data and previous QTL data for fruit weight. Two InDels and 10 SNPs in the promoter of a small auxin upregulated RNA gene MdSAUR36 in Zisai Pearl led to a lower promoter activity than that of Red Fuji. One non-synonymous SNP G/T at 379 bp downstream of the ATG codon of MdSAUR36, which was heterozygous in Zisai Pearl, exerted significant genotype effects on fruit weight, length, and width. Transgenic apple calli by over-expressing or RNAi MdSAUR36 confirmed that MdSAUR36 participated in the negative regulation of mesocarp cell division and thus apple fruit size. These results could provide new insights in the molecular mechanism of small fruit size in Malus accession and be potentially used in molecular assisted breeding via interspecific hybridization. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01441-4.
Collapse
Affiliation(s)
- Zhendong Tian
- College of Horticulture, China Agricultural University, Beijing, China
| | - Bei Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jing Liu
- College of Horticultural Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Libo Zhang
- Zhongbaolvdu Agricultural Research Centre, Beidaihe, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Pramanik D, Vaskimo L, Batenburg KJ, Kostenko A, Droppert K, Smets E, Gravendeel B. Orchid fruit and root movement analyzed using 2D photographs and a bioinformatics pipeline for processing sequential 3D scans. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11567. [PMID: 38369982 PMCID: PMC10873816 DOI: 10.1002/aps3.11567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 02/20/2024]
Abstract
Premise Most studies of the movement of orchid fruits and roots during plant development have focused on morphological observations; however, further genetic analysis is required to understand the molecular mechanisms underlying this phenomenon. A precise tool is required to observe these movements and harvest tissue at the correct position and time for transcriptomics research. Methods We utilized three-dimensional (3D) micro-computed tomography (CT) scans to capture the movement of fast-growing Erycina pusilla roots, and built an integrated bioinformatics pipeline to process 3D images into 3D time-lapse videos. To record the movement of slowly developing E. pusilla and Phalaenopsis equestris fruits, two-dimensional (2D) photographs were used. Results The E. pusilla roots twisted and resupinated multiple times from early development. The first period occurred in the early developmental stage (77-84 days after germination [DAG]) and the subsequent period occurred later in development (140-154 DAG). While E. pusilla fruits twisted 45° from 56-63 days after pollination (DAP), the fruits of P. equestris only began to resupinate a week before dehiscence (133 DAP) and ended a week after dehiscence (161 DAP). Discussion Our methods revealed that each orchid root and fruit had an independent direction and degree of torsion from the initial to the final position. Our innovative approaches produced detailed spatial and temporal information on the resupination of roots and fruits during orchid development.
Collapse
Affiliation(s)
- Dewi Pramanik
- Evolutionary EcologyNaturalis Biodiversity CenterDarwinweg 22333 CRLeidenThe Netherlands
- Institute of Biology Leiden, Faculty of ScienceLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- Research Center for Horticulture, Research Organization for Agriculture and FoodNational Research and Innovation Agency (Badan Riset dan Inovasi Nasional/BRIN)Cibinong Science Center, Jl. Raya Jakarta‐Bogor, Pakansari, CibinongWest Java16915Indonesia
| | - Lotta Vaskimo
- Faculty of Science and TechnologyUniversity of Applied Sciences LeidenZernikedreef 112333 CKLeidenThe Netherlands
| | - K. Joost Batenburg
- Leiden Institute of Advanced Computer Science, Faculty of ScienceLeiden University, SnelliusNiels Bohrweg 12333 CALeidenThe Netherlands
- Computational ImagingCentrum Wiskunde en InformaticaScience Park 1231090 GBAmsterdamThe Netherlands
| | - Alexander Kostenko
- Computational ImagingCentrum Wiskunde en InformaticaScience Park 1231090 GBAmsterdamThe Netherlands
| | - Kevin Droppert
- Faculty of Science and TechnologyUniversity of Applied Sciences LeidenZernikedreef 112333 CKLeidenThe Netherlands
| | - Erik Smets
- Evolutionary EcologyNaturalis Biodiversity CenterDarwinweg 22333 CRLeidenThe Netherlands
- Institute of Biology Leiden, Faculty of ScienceLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- Ecology, Evolution and Biodiversity Conservation, KU LeuvenKasteelpark Arenberg 31, BOX 24353001LeuvenBelgium
| | - Barbara Gravendeel
- Evolutionary EcologyNaturalis Biodiversity CenterDarwinweg 22333 CRLeidenThe Netherlands
- Institute of Biology Leiden, Faculty of ScienceLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- Radboud Institute for Biological and Environmental SciencesRadboud UniversityHeyendaalseweg 1356500 GLNijmegenThe Netherlands
| |
Collapse
|
12
|
Zhang W, Xu Y, Jing L, Jiang B, Wang Q, Wang Y. Preliminary Study on the Formation Mechanism of Malformed Sweet Cherry ( Prunus avium L.) Fruits in Southern China Using Transcriptome and Metabolome Data. Int J Mol Sci 2023; 25:153. [PMID: 38203324 PMCID: PMC10779264 DOI: 10.3390/ijms25010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Gibberellin (GA) is an important plant hormone that is involved in various physiological processes during plant development. Sweet cherries planted in southern China have always encountered difficulty in bearing fruit. In recent years, gibberellin has successfully solved this problem, but there has also been an increase in malformed fruits. This study mainly explores the mechanism of malformed fruit formation in sweet cherries. By analyzing the synthesis pathway of gibberellin using metabolomics and transcriptomics, the relationship between gibberellin and the formation mechanism of deformed fruit was preliminarily determined. The results showed that the content of GA3 in malformed fruits was significantly higher than in normal fruits. The differentially expressed genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were mainly enriched in pathways such as "plant hormone signal transduction", "diterpenoid biosynthesis", and "carotenoid biosynthesis". Using Quantitative Real-Time Reverse Transcription PCR (qRT-PCR) analysis, the gibberellin hydrolase gene GA2ox and gibberellin synthase genes GA20ox and GA3ox were found to be significantly up-regulated. Therefore, we speculate that the formation of malformed fruits in sweet cherries may be related to the accumulation of GA3. This lays the foundation for further research on the mechanism of malformed sweet cherry fruits.
Collapse
Affiliation(s)
- Wangshu Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
- National & Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yue Xu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Luyang Jing
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Baoxin Jiang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Qinghao Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| | - Yuxi Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China; (Y.X.); (B.J.); (Q.W.); (Y.W.)
| |
Collapse
|
13
|
Perotti MF, Posé D, Martín-Pizarro C. Non-climacteric fruit development and ripening regulation: 'the phytohormones show'. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6237-6253. [PMID: 37449770 PMCID: PMC10627154 DOI: 10.1093/jxb/erad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Fruit ripening involves numerous physiological, structural, and metabolic changes that result in the formation of edible fruits. This process is controlled at different molecular levels, with essential roles for phytohormones, transcription factors, and epigenetic modifications. Fleshy fruits are classified as either climacteric or non-climacteric species. Climacteric fruits are characterized by a burst in respiration and ethylene production at the onset of ripening, while regulation of non-climacteric fruit ripening has been commonly attributed to abscisic acid (ABA). However, there is controversy as to whether mechanisms regulating fruit ripening are shared between non-climacteric species, and to what extent other hormones contribute alongside ABA. In this review, we summarize classic and recent studies on the accumulation profile and role of ABA and other important hormones in the regulation of non-climacteric fruit development and ripening, as well as their crosstalk, paying special attention to the two main non-climacteric plant models, strawberry and grape. We highlight both the common and different roles of these regulators in these two crops, and discuss the importance of the transcriptional and environmental regulation of fruit ripening, as well as the need to optimize genetic transformation methodologies to facilitate gene functional analyses.
Collapse
Affiliation(s)
- María Florencia Perotti
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - David Posé
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Carmen Martín-Pizarro
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| |
Collapse
|
14
|
Huang X, Wu X, Sun G, Jiang Y, Yan H. Transcriptome Analysis Reveals Candidate Genes Involved in Gibberellin-Induced Fruit Development in Rosa roxburghii. PLANTS (BASEL, SWITZERLAND) 2023; 12:3425. [PMID: 37836165 PMCID: PMC10575181 DOI: 10.3390/plants12193425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Gibberellins (GAs) play indispensable roles in the fruit development of horticultural plants. Unfortunately, the molecular basis behind GAs regulating fruit development in R. roxburghii remains obscure. Here, GA3 spraying to R. roxburghii 'Guinong 5' at full-bloom promoted fruit size and weight, prickle development, seed abortion, ascorbic acid accumulation, and reduction in total soluble sugar. RNA-Seq analysis was conducted to generate 45.75 Gb clean reads from GA3- and non-treated fruits at 120 days after pollination. We obtained 4275 unigenes belonging to differently expressed genes (DEGs). Gene ontology and the Kyoto Encyclopedia of Genes and Genomes displayed that carbon metabolism and oxidative phosphorylation were highly enriched. The increased critical genes of DEGs related to pentose phosphate, glycolysis/gluconeogenesis, and citrate cycle pathways might be essential for soluble sugar degradation. Analysis of DEGs implicated in ascorbate revealed the myoinositol pathway required to accumulate ascorbic acid. Finally, DEGs involved in endogenous phytohormones and transcription factors, including R2R3 MYB, bHLH, and WRKY, were determined. These findings indicated that GA3-trigged morphological alterations might be related to the primary metabolites, hormone signaling, and transcription factors, providing potential candidate genes that could be guided to enhance the fruit development of R. roxburghii in practical approaches.
Collapse
Affiliation(s)
- Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550001, China
- Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang 550001, China
| | - Xiaoai Wu
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
| | - Guilian Sun
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550001, China
- Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang 550001, China
| | - Yu Jiang
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
| | - Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (X.W.); (G.S.); (Y.J.)
| |
Collapse
|
15
|
Grimm E, Peters M, Kaltenbach J, Zhang C, Knoche M. Growth strains cause vascular browning and cavities in ´Nicoter´ apples. PLoS One 2023; 18:e0289013. [PMID: 37471438 PMCID: PMC10359005 DOI: 10.1371/journal.pone.0289013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023] Open
Abstract
'Nicoter' apples (Malus × domestica Borkh.) occasionally develop a disorder referred to as vascular browning. Symptomatic fruit are perceived as being of low quality. The objective was to identify the mechanistic basis of this disorder. The frequency of symptomatic 'Nicoter' apples differed between growing sites and increased with delayed harvest. Typical symptoms are tissue browning and cavities in the ray parenchyma of the calyx region, and occasionally also of the stem end. Cavity size is positively correlated with the extent of tissue browning. Cavities were oriented radially in the direction of the bisecting line between the radii connecting the calyx/pedicel axis to the sepal and petal bundles. Microscopy revealed cell wall fragments in the cavities indicating physical rupture of cell walls. Immunolabelling of cell wall epitopes offered no evidence for separation of cells along cell walls. The growth pattern in 'Nicoter' is similar to that in its parents 'Gala' and 'Braeburn'. Allometric analyses revealed no differences in growth in fruit length among the three cultivars. However, the allometric analyses of growth in diameter revealed a marked increase in the distance between the surface of the calyx cavity and the vascular bundle in 'Nicoter', that was absent in 'Braeburn' and 'Gala'. This increase displaced the petal bundles in the ray parenchyma outwards and subjected the tissue between the petal and sepal bundles to tangential strain. Rupture of cells results in tissue browning and cavity formation. A timely harvest is a practicable countermeasure for decreasing the incidence of vascular browning.
Collapse
Affiliation(s)
- Eckhard Grimm
- Institut für Gartenbauliche Produktionssysteme, Abteilung Obstbau, Leibniz Universität Hannover, Hannover, Germany
| | - Merle Peters
- Institut für Gartenbauliche Produktionssysteme, Abteilung Obstbau, Leibniz Universität Hannover, Hannover, Germany
| | - Julian Kaltenbach
- Institut für Gartenbauliche Produktionssysteme, Abteilung Obstbau, Leibniz Universität Hannover, Hannover, Germany
| | - Chu Zhang
- Institut für Gartenbauliche Produktionssysteme, Abteilung Obstbau, Leibniz Universität Hannover, Hannover, Germany
| | - Moritz Knoche
- Institut für Gartenbauliche Produktionssysteme, Abteilung Obstbau, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
16
|
Ding H, Zhou G, Zhao L, Li X, Wang Y, Xia C, Xia Z, Wan Y. Genome-Wide Association Analysis of Fruit Shape-Related Traits in Areca catechu. Int J Mol Sci 2023; 24:ijms24054686. [PMID: 36902116 PMCID: PMC10003628 DOI: 10.3390/ijms24054686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The areca palm (Areca catechu L.) is one of the most economically important palm trees in tropical areas. To inform areca breeding programs, it is critical to characterize the genetic bases of the mechanisms that regulate areca fruit shape and to identify candidate genes related to fruit-shape traits. However, few previous studies have mined candidate genes associated with areca fruit shape. Here, the fruits produced by 137 areca germplasms were divided into three categories (spherical, oval, and columnar) based on the fruit shape index. A total of 45,094 high-quality single-nucleotide polymorphisms (SNPs) were identified across the 137 areca cultivars. Phylogenetic analysis clustered the areca cultivars into four subgroups. A genome-wide association study that used a mixed linear model identified the 200 loci that were the most significantly associated with fruit-shape traits in the germplasms. In addition, 86 candidate genes associated with areca fruit-shape traits were further mined. Among the proteins encoded by these candidate genes were UDP-glucosyltransferase 85A2, the ABA-responsive element binding factor GBF4, E3 ubiquitin-protein ligase SIAH1, and LRR receptor-like serine/threonine-protein kinase ERECTA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the gene that encoded UDP-glycosyltransferase, UGT85A2, was significantly upregulated in columnar fruits as compared to spherical and oval fruits. The identification of molecular markers that are closely related to fruit-shape traits not only provides genetic data for areca breeding, but it also provides new insights into the shape formation mechanisms of drupes.
Collapse
|
17
|
Jahed KR, Hirst PM. Fruit growth and development in apple: a molecular, genomics and epigenetics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1122397. [PMID: 37123845 PMCID: PMC10130390 DOI: 10.3389/fpls.2023.1122397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Fruit growth and development are physiological processes controlled by several internal and external factors. This complex regulatory mechanism comprises a series of events occurring in a chronological order over a growing season. Understanding the underlying mechanism of fruit development events, however, requires consideration of the events occurring prior to fruit development such as flowering, pollination, fertilization, and fruit set. Such events are interrelated and occur in a sequential order. Recent advances in high-throughput sequencing technology in conjunction with improved statistical and computational methods have empowered science to identify some of the major molecular components and mechanisms involved in the regulation of fruit growth and have supplied encouraging successes in associating genotypic differentiation with phenotypic observations. As a result, multiple approaches have been developed to dissect such complex regulatory machinery and understand the genetic basis controlling these processes. These methods include transcriptomic analysis, quantitative trait loci (QTLs) mapping, whole-genome approach, and epigenetics analyses. This review offers a comprehensive overview of the molecular, genomic and epigenetics perspective of apple fruit growth and development that defines the final fruit size and provides a detailed analysis of the mechanisms by which fruit growth and development are controlled. Though the main emphasis of this article is on the molecular, genomic and epigenetics aspects of fruit growth and development, we will also deliver a brief overview on events occurring prior to fruit growth.
Collapse
|
18
|
Milyaev A, Kofler J, Moya YAT, Lempe J, Stefanelli D, Hanke MV, Flachowsky H, von Wirén N, Wünsche JN. Profiling of phytohormones in apple fruit and buds regarding their role as potential regulators of flower bud formation. TREE PHYSIOLOGY 2022; 42:2319-2335. [PMID: 35867427 PMCID: PMC9912367 DOI: 10.1093/treephys/tpac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Apple (Malus × domestica Borkh.) cropping behavior, if not regulated, is often manifested by high yields of small-sized fruit in so called ON-years, which are usually followed by strongly reduced crop loads in OFF-years. Such cropping pattern is defined as biennial bearing and causes significant losses in apple production. The growth of apple fruit overlaps with the formation of flower buds, which remain dormant until the following spring. Earlier works proposed that some fruit-derived mobile compounds, as e.g., phytohormones, could suppress flower bud formation that thereby leads to biennial bearing. We addressed this hypothesis by analyzing 39 phytohormones in apple seeds, fruit flesh and by measuring phytohormone export from the fruits of the biennial bearing cultivar 'Fuji' and of the regular bearing cultivar 'Gala'. Moreover, we analyzed the same compounds in bourse buds from fruiting (ON-trees) and non-fruiting (OFF-trees) spurs of both apple cultivars over the period of flower bud formation. Our results showed that apple fruit exported at least 14 phytohormones including indole-3-acetic acid and gibberellin A3; however, their influence on flower bud formation was inconclusive. A gibberellin-like compound, which was detected exclusively in bourse buds, was significantly more abundant in bourse buds from ON-trees compared with OFF-trees. Cultivar differences were marked by the accumulation of trans-zeatin-O-glucoside in bourse buds of 'Gala' ON-trees, whereas the levels of this compound in 'Gala' OFF were significantly lower and comparable to those in 'Fuji' ON- and OFF-trees. Particular phytohormones including five cytokinin forms as well as abscisic acid and its degradation products had higher levels in bourse buds from OFF-trees compared with ON-trees and were therefore proposed as potential promotors of flower bud initiation. The work discusses regulatory roles of phytohormones in flower bud formation in apple based on the novel and to date most comprehensive phytohormone profiles of apple fruit and buds.
Collapse
Affiliation(s)
| | - Julian Kofler
- Institute of Crop Science, Section of Crop Physiology of Specialty Crops (340f), University of Hohenheim, Emil-Wolff-Street 25, 70599 Stuttgart, Germany
| | - Yudelsy Antonia Tandron Moya
- Department Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Janne Lempe
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Dario Stefanelli
- Department of Primary Industries and Regional Development, Government of Western Australia, Locked Bag 7, 6258 Manjimup, Australia
| | - Magda-Viola Hanke
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institute (JKI), Institute for Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Nicolaus von Wirén
- Department Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Jens-Norbert Wünsche
- Institute of Crop Science, Section of Crop Physiology of Specialty Crops (340f), University of Hohenheim, Emil-Wolff-Street 25, 70599 Stuttgart, Germany
| |
Collapse
|
19
|
Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells 2022; 11:cells11172761. [PMID: 36078168 PMCID: PMC9454831 DOI: 10.3390/cells11172761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Auxin, a plant hormone, regulates virtually every aspect of plant growth and development. Many current studies on auxin focus on the model plant Arabidopsis thaliana, or on field crops, such as rice and wheat. There are relatively few studies on what role auxin plays in various physiological processes of a range of horticultural plants. In this paper, recent studies on the role of auxin in horticultural plant growth, development, and stress response are reviewed to provide novel insights for horticultural researchers and cultivators to improve the quality and application of horticultural crops.
Collapse
|
20
|
Bu H, Sun X, Yue P, Qiao J, Sun J, Wang A, Yuan H, Yu W. The MdAux/IAA2 Transcription Repressor Regulates Cell and Fruit Size in Apple Fruit. Int J Mol Sci 2022; 23:ijms23169454. [PMID: 36012719 PMCID: PMC9408813 DOI: 10.3390/ijms23169454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Auxin plays an important role in regulating plant development, and Auxin/indole acetic acid (Aux/IAA) is a type of auxin-responsive gene and plays an important role in auxin signaling; to date, although 29 Aux/IAA proteins have been reported in Abrabidopsis thaliana, only parts of the Aux/IAA family gene functions have been identified. We previously reported that a bud sport of ‘Longfeng’ (LF) apple (Malus domestica), named ‘Grand longfeng’ (GLF), which showed a larger fruit size than LF, has lower expression of MdAux/IAA2. In this study, we identified the function of the MdAux/IAA2 gene in apple fruit size difference using Agrobacterium-mediated genetic transformation. Overexpression of MdAux/IAA2 decreased the apple flesh callus increment and caused a smaller globular cell size. In addition, overexpression of MdAux/IAA2 in GLF fruit resulted in the reduction of apple fruit size, weight, and cell size, while silencing MdAux/IAA2 in LF apple fruit resulted in an increase in apple fruit weight and cell size. We suggest that the high auxin content depressed the expression of MdAux/IAA2, and that the downregulated expression of MdAux/IAA2 led to the formation of GLF. Our study suggests a mechanism for fruit size regulation in plants and we will explore the transcription factors functioning in this process in the future.
Collapse
Affiliation(s)
- Haidong Bu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China
| | - Xiaohuan Sun
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China
| | - Pengtao Yue
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Junling Qiao
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiamao Sun
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (H.Y.); (W.Y.)
| | - Wenquan Yu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China
- Correspondence: (H.Y.); (W.Y.)
| |
Collapse
|
21
|
Pan L, Wang M, Yang Y, Chen C, Dai H, Zhang Z, Hua B, Miao M. Whole-genome resequencing identified QTLs, candidate genes and Kompetitive Allele-Specific PCR markers associated with the large fruit of Atlantic Giant ( Cucurbita maxima). FRONTIERS IN PLANT SCIENCE 2022; 13:942004. [PMID: 35937359 PMCID: PMC9354748 DOI: 10.3389/fpls.2022.942004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Atlantic Giant (AG) pumpkin (Cucurbita maxima) produces the world's largest fruit. Elucidating the molecular mechanism of AG fruit formation is of scientific and practical importance. In this research, genome-wide resequencing of an F2 population produced by a cross between AG and its small-fruit ancestor Hubbard was used to identify quantitative trait loci (QTLs) and candidate genes. Transgressive segregation of fruit size-related traits was observed in the F2 population, suggesting that fruit size was a quantitative trait controlled by multiple genes. A genetic map with an average physical distance of 154 kb per marker was constructed, and 13 QTLs related to fruit size were identified using bin-map construction. RNA sequencing analysis revealed that pathways associated with assimilate accumulation into the fruit, including carbohydrate metabolism, were significantly enriched in differentially expressed genes. According to the predicted impact of mutation on the biological function of certain proteins, 13 genes were selected as candidate genes associated with fruit size, among which two phytohormone-related genes, CmaCh17G011340 (a flavin-containing monooxygenase) and CmaCh04G029660 (a leucine-rich repeat protein kinase) were chosen for further investigation. Finally, one insertion-deletion (inDel) and three single nucleotide polymorphisms (SNPs) were successfully transformed to Kompetitive Allele-Specific PCR (KASP) markers. The novel QTLs and candidate genes identified provide insights into the genetic mechanism of large fruit formation of AG, and the genetic map and tightly linked KASP markers developed in this study can be employed for marker-assisted breeding to alter fruit size of C. maxima.
Collapse
Affiliation(s)
- Liu Pan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Min Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yating Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chen Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Haibo Dai
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhiping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Bing Hua
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Minmin Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Liu W, Chen Z, Jiang S, Wang Y, Fang H, Zhang Z, Chen X, Wang N. Research Progress on Genetic Basis of Fruit Quality Traits in Apple ( Malus × domestica). FRONTIERS IN PLANT SCIENCE 2022; 13:918202. [PMID: 35909724 PMCID: PMC9330611 DOI: 10.3389/fpls.2022.918202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/23/2022] [Indexed: 06/01/2023]
Abstract
Identifying the genetic variation characteristics of phenotypic traits is important for fruit tree breeding. During the long-term evolution of fruit trees, gene recombination and natural mutation have resulted in a high degree of heterozygosity. Apple (Malus × domestica Borkh.) shows strong ecological adaptability and is widely cultivated, and is among the most economically important fruit crops worldwide. However, the high level of heterozygosity and large genome of apple, in combination with its perennial life history and long juvenile phase, complicate investigation of the genetic basis of fruit quality traits. With continuing augmentation in the apple genomic resources available, in recent years important progress has been achieved in research on the genetic variation of fruit quality traits. This review focuses on summarizing recent genetic studies on apple fruit quality traits, including appearance, flavor, nutritional, ripening, and storage qualities. In addition, we discuss the mapping of quantitative trait loci, screening of molecular markers, and mining of major genes associated with fruit quality traits. The overall aim of this review is to provide valuable insights into the mechanisms of genetic variation and molecular breeding of important fruit quality traits in apple.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Zijing Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Shenghui Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yicheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| |
Collapse
|
23
|
Batista-Silva W, Carvalho de Oliveira A, Martins AO, Siqueira JA, Rodrigues-Salvador A, Omena-Garcia RP, Medeiros DB, Peres LEP, Ribeiro DM, Zsögön A, Fernie AR, Nunes-Nesi A, Araújo WL. Reduced auxin signalling through the cyclophilin gene DIAGEOTROPICA impacts tomato fruit development and metabolism during ripening. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4113-4128. [PMID: 35383842 DOI: 10.1093/jxb/erac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Auxin is an important hormone playing crucial roles during fruit growth and ripening; however, the metabolic impact of changes in auxin signalling during tomato (Solanum lycopersicum L.) ripening remains unclear. Here, we investigated the significance of changes in auxin signalling during different stages of fruit development by analysing changes in tomato fruit quality and primary metabolism using mutants with either lower or higher auxin sensitivity [diageotropica (dgt) and entire mutants, respectively]. Altered auxin sensitivity modifies metabolism, through direct impacts on fruit respiration and fruit growth. We verified that the dgt mutant plants exhibit reductions in fruit set, total fruit dry weight, fruit size, number of seeds per fruit, and fresh weight loss during post-harvest. Sugar accumulation was associated with delayed fruit ripening in dgt, probably connected with reduced ethylene levels and respiration, coupled with a lower rate of starch degradation. In contrast, despite exhibiting parthenocarpy, increased auxin perception (entire) did not alter fruit ripening, leading to only minor changes in primary metabolism. By performing a comprehensive analysis, our results connect auxin signalling and metabolic changes during tomato fruit development, indicating that reduced auxin signalling led to extensive changes in sugar concentration and starch metabolism during tomato fruit ripening.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Rebeca P Omena-Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - David Barbosa Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lázaro Eustáquio Pereira Peres
- Departmento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Dimas Mendes Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
24
|
Jiang L, Shen W, Liu C, Tahir MM, Li X, Zhou S, Ma F, Guan Q. Engineering drought-tolerant apple by knocking down six GH3 genes and potential application of transgenic apple as a rootstock. HORTICULTURE RESEARCH 2022; 9:uhac122. [PMID: 35937857 PMCID: PMC9347023 DOI: 10.1093/hr/uhac122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/15/2022] [Indexed: 06/01/2023]
Abstract
Drought poses a major threat to apple fruit production and quality. Because of the apple's long juvenile phase, developing varieties with improved drought tolerance using biotechnology approaches is needed. Here, we used the RNAi approach to knock down six GH3 genes in the apple. Under prolonged drought stress, the MdGH3 RNAi plants performed better than wild-type plants and had stronger root systems, higher root-to-shoot ratio, greater hydraulic conductivity, increased photosynthetic capacity, and increased water use efficiency. Moreover, MdGH3 RNAi plants promoted the drought tolerance of the scion when they were used as rootstock, compared with wild-type and M9-T337 rootstocks. Scions grafted onto MdGH3 RNAi plants showed increased plant height, stem diameter, photosynthetic capacity, specific leaf weight, and water use efficiency. The use of MdGH3 RNAi plants as rootstocks can also increase the C/N ratio of the scion and achieve the same effect as the M9-T337 rootstock in promoting the flowering and fruiting of the scion. Notably, using MdGH3 RNAi plants as rootstocks did not reduce fruit weight and scion quality compared with using M9-T337 rootstock. Our research provides candidate genes and demonstrates a general approach that could be used to improve the drought tolerance of fruit trees without sacrificing the yield and quality of scion fruits.
Collapse
Affiliation(s)
| | | | - Chen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangxi Zhou
- The New Zealand Institute for Plant and Food Research Ltd, Hawke’s Bay 4130, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | |
Collapse
|
25
|
Zhou Z, Zhang L, Shu J, Wang M, Li H, Shu H, Wang X, Sun Q, Zhang S. Root Breeding in the Post-Genomics Era: From Concept to Practice in Apple. PLANTS (BASEL, SWITZERLAND) 2022; 11:1408. [PMID: 35684181 PMCID: PMC9182997 DOI: 10.3390/plants11111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The development of rootstocks with a high-quality dwarf-type root system is a popular research topic in the apple industry. However, the precise breeding of rootstocks is still challenging, mainly because the root system is buried deep underground, roots have a complex life cycle, and research on root architecture has progressed slowly. This paper describes ideas for the precise breeding and domestication of wild apple resources and the application of key genes. The primary goal of this research is to combine the existing rootstock resources with molecular breeding and summarize the methods of precision breeding. Here, we reviewed the existing rootstock germplasm, high-quality genome, and genetic resources available to explain how wild resources might be used in modern breeding. In particular, we proposed the 'from genotype to phenotype' theory and summarized the difficulties in future breeding processes. Lastly, the genetics governing root diversity and associated regulatory mechanisms were elaborated on to optimize the precise breeding of rootstocks.
Collapse
Affiliation(s)
- Zhou Zhou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Lei Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Jing Shu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Mengyu Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Han Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Huairui Shu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Xiaoyun Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| |
Collapse
|
26
|
Li X, Zhang X, Shi T, Chen M, Jia C, Wang J, Hou Z, Han J, Bian S. Identification of ARF family in blueberry and its potential involvement of fruit development and pH stress response. BMC Genomics 2022; 23:329. [PMID: 35477362 PMCID: PMC9047364 DOI: 10.1186/s12864-022-08556-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Auxin responsive factor (ARF) family is one of core components in auxin signalling pathway, which governs diverse developmental processes and stress responses. Blueberry is an economically important berry-bearing crop and prefers to acidic soil. However, the understandings of ARF family has not yet been reported in blueberry. Results In the present study, 60 ARF genes (VcARF) were identified in blueberry, and they showed diverse gene structures and motif compositions among the groups and similar within each group in the phylogenetic tree. Noticeably, 9 digenic, 5 trigenic and 6 tetragenic VcARF pairs exhibited more than 95% identity to each other. Computational analysis indicated that 23 VcARFs harbored the miRNA responsive element (MRE) of miR160 or miR167 like other plant ARF genes. Interestingly, the MRE of miR156d/h-3p was observed in the 5’UTR of 3 VcARFs, suggesting a potentially novel post-transcriptional control. Furthermore, the transcript accumulations of VcARFs were investigated during fruit development, and three categories of transcript profiles were observed, implying different functional roles. Meanwhile, the expressions of VcARFs to different pH conditions (pH4.5 and pH6.5) were surveyed in pH-sensitive and tolerant blueberry species, and a number of VcARFs showed different transcript accumulations. More importantly, distinct transcriptional response to pH stress (pH6.5) were observed for several VcARFs (such as VcARF6s and VcARF19-3/19–4) between pH-sensitive and tolerant species, suggesting their potential roles in adaption to pH stress. Conclusions Sixty VcARF genes were identified and characterized, and their transcript profiles were surveyed during fruit development and in response to pH stress. These findings will contribute to future research for eliciting the functional roles of VcARFs and regulatory mechanisms, especially fruit development and adaption to pH stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08556-y.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaoyi Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Tianran Shi
- College of Plant Science, Jilin University, Changchun, China
| | - Min Chen
- College of Plant Science, Jilin University, Changchun, China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, China
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Research & Development Center of Blueberry, Beijing, 100083, China
| | - Junyou Han
- College of Plant Science, Jilin University, Changchun, China.
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China.
| |
Collapse
|
27
|
Shen F, Bianco L, Wu B, Tian Z, Wang Y, Wu T, Xu X, Han Z, Velasco R, Fontana P, Zhang X. A bulked segregant analysis tool for out-crossing species (BSATOS) and QTL-based genomics-assisted prediction of complex traits in apple. J Adv Res 2022; 42:149-162. [PMID: 36513410 PMCID: PMC9788957 DOI: 10.1016/j.jare.2022.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Genomic heterozygosity, self-incompatibility, and rich-in somatic mutations hinder the molecular breeding efficiency of outcrossing plants. OBJECTIVES We attempted to develop an efficient integrated strategy to identify quantitative trait loci (QTLs) and trait-associated genes, to develop gene markers, and to construct genomics-assisted prediction (GAP) modes. METHODS A novel protocol, bulked segregant analysis tool for out-crossing species (BSATOS), is presented here, which is characterized by taking full advantage of all segregation patterns (including AB × AB markers) and haplotype information. To verify the effectiveness of the protocol in dealing with the complex traits of outbreeding species, three apple cross populations with 9,654 individuals were adopted. RESULTS By using BSATOS, 90, 60, and 77 significant QTLs were identified successfully and candidate genes were predicted for apple fruit weight (FW), fruit ripening date (FRD), and fruit soluble solid content (SSC), respectively. The gene-based markers were developed and genotyped for 1,396 individuals in a training population, including 145 Malus accessions and 1,251 F1 plants of the three full-sib families. GAP models were trained using marker genotype effect estimates of the training population. The prediction accuracy was 0.7658, 0.6455, and 0.3758 for FW, FRD, and SSC, respectively. CONCLUSION The BSATOS and GAP models provided a convenient and efficient methodology for candidate gene mining and molecular breeding in out-crossing plant species. The BSATOS pipeline can be freely downloaded from: https://github.com/maypoleflyn/BSATOS.
Collapse
Affiliation(s)
- Fei Shen
- College of Horticulture, China Agricultural University, Beijing 100193, China,Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy,Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Luca Bianco
- Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy
| | - Bei Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhendong Tian
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, China,Corresponding authors.
| | - Riccardo Velasco
- Research Centre for Viticulture and Enology, CREA, Conegliano, Italy
| | - Paolo Fontana
- Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy,Corresponding authors.
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China,Corresponding authors.
| |
Collapse
|
28
|
Su Y, Wang P, Lu S, Chen B. Molecular cloning, bioinformatics analysis, and transient expression of MdAux/IAA28 in apple (Malus domestic). GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Peng Z, Zhao C, Li S, Guo Y, Xu H, Hu G, Liu Z, Chen X, Chen J, Lin S, Su W, Yang X. Integration of genomics, transcriptomics and metabolomics identifies candidate loci underlying fruit weight in loquat. HORTICULTURE RESEARCH 2022; 9:uhac037. [PMID: 35137085 PMCID: PMC9071381 DOI: 10.1093/hr/uhac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 05/05/2023]
Abstract
Fruit weight is an integral part of fruit-quality traits and directly influences commodity values and economic returns of fruit crops. Despite its importance, the molecular mechanisms underlying fruit weight remain understudied, especially for perennial fruit tree crops such as cultivated loquat (Eriobotrya japonica Lindl.). Auxin is known to regulate fruit development, whereas its role and metabolism in fruit development remain obscure in loquat. In this study, we applied a multi-omics approach, integrating whole-genome resequencing-based quantitative trait locus (QTL) mapping with an F1 population, population genomics analysis using germplasm accessions, transcriptome analysis, and metabolic profiling to identify the genomic regions potentially associated with fruit weight in loquat. We identified three major loci associated with fruit weight, supported by both QTL mapping and comparative genomic analysis between small- and big-fruited loquat cultivars. Comparison between two genotypes with contrasting fruit weight performance through transcriptomic and metabolic profiling revealed an important role of auxin in regulating fruit development, especially at the fruit enlarging stage. The multi-omics approach identified two homologs of ETHYLENE INSENSITIVE 4 (EjEIN4) and TORNADO 1 (EjTRN1) as promising candidates controlling fruit weight. Moreover, three single nucleotide polymorphism (SNP) markers were closely associated with fruit weight. Results from this study provided insights from multiple perspectives into the genetic and metabolic controls of fruit weight in loquat. The candidate genomic regions, genes, and sequence variants will facilitate understanding the molecular basis of fruit weight and lay a foundation for future breeding and manipulation of fruit weight in loquat.
Collapse
Affiliation(s)
- Ze Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Chongbin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuqing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yihan Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hongxia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zongli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiuping Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Junwei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wenbing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Xianghui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
30
|
Lu S, Wang P, Nai G, Li Y, Su Y, Liang G, Chen B, Mao J. Insight into VvGH3 genes evolutional relationship from monocotyledons and dicotyledons reveals that VvGH3-9 negatively regulates the drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:70-86. [PMID: 35033858 DOI: 10.1016/j.plaphy.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The Gretchen Hagen3 (GH3) gene family is necessary for growth and development in plants and is regulated by osmotic stress and various hormones. Although it has been reported in many plants, the evolutionary relationship of GH3 in grape has not been systematically analyzed from the perspective of monocotyledonous and dicotyledonous. This study identified and analyzed 188 GH3 genes, which were distinctly divided into 9 subgroups, and found these subgroups have obviously been clustered between monocotyledonous and dicotyledonous. VvGH3-x genes had higher synteny with apple and Arabidopsis than that of rice, and the average Ka/Ks value in monocotyledons was higher than that of dicotyledons. The codon usage index showed that monocotyledons preferred to use G3s, C3s, and GC3s, while dicotyledons preferred to use A3s and T3s. The GH3 genes of grape exhibited different expression patterns in various tissues, different abiotic stresses, and hormonal treatments. The subcellular localization showed that VvGH3-9 was expressed in the nucleus and cytoplasm. Additionally, under 20% PEG treatment, the IAA and ABA contents, relative expression levels of VvGH3-9, relative electrical conductivity (REC), as well as MDA were obviously increased in VvGH3-9 overexpression lines at 72 h. In contrast, compared to WT, the contents of proline and H2O2, the activities of POD, SOD, and CAT, and the relative expression levels of drought responsive genes were significantly decreased in overexpressing lines. Collectively, this study provided helpful insight for the evolution of GH3 genes and presented some possibilities to study the functions of GH3 genes in monocotyledons and dicotyledons.
Collapse
Affiliation(s)
- Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanli Su
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
31
|
Genetic and Molecular Regulation Mechanisms in the Formation and Development of Vegetable Fruit Shape. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vegetable crops have a long history of cultivation worldwide and rich germplasm resources. With its continuous development and progress, molecular biology technology has been applied to various fields of vegetable crop research. Fruit is an important organ in vegetable crops, and fruit shape can affect the yield and commercialization of vegetables. In nature, fruits show differences in size and shape. Based on fruit shape diversity, the growth direction and coordination mechanism of fruits remain unclear. In this review, we discuss the latest research on fruit shape. In addition, we compare the current theories on the molecular mechanisms that regulate fruit growth, size, and shape in different vegetable families.
Collapse
|
32
|
Identification of yield-related genes through genome-wide association: case study of weeping forsythia, an emerging medicinal crop. Genes Genomics 2022; 44:145-154. [PMID: 34767154 PMCID: PMC8586636 DOI: 10.1007/s13258-021-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 11/12/2022]
Abstract
KEY MESSAGE This study identified candidate genes related to fruit yield for an emerging medicinal crop, weeping forsythia. BACKGROUND The genetic basis of crop yield is an agricultural research hotspot. Identifying the genes related to yield traits is the key to increase the yield. Weeping forsythia is an emerging medicinal crop that currently lacks excellent varieties. The genes related to fruit yield in weeping forsythia have not been identified. OBJECTIVE Thus, we aimed to screen the candidate genes related to fruit yield of weeping forsythia by using genome-wide association analysis. METHODS Here, 60 samples from the same field and source of weeping forsythia were collected to identify its yield-related candidate genes. Association analysis was performed on the variant loci and the traits related to yield, i.e., fruit length, width, thickness, and weight. RESULTS Results from admixture, neighbor-joining, and kinship matrix analyses supported the non-significant genetic differentiation of these samples. Significant association was found between 2 variant loci and fruit length, 8 loci and fruit width, 24 loci and fruit thickness, and 13 loci and fruit weight. Further search on the 20 kb up/downstream of these variant loci revealed 1 gene related to fruit length, 16 genes related to fruit width, 12 genes related to fruit thickness, and 13 genes related to fruit weight. Among which, 4 genes, namely, WRKY transcription factor 35, salicylic acid-binding protein, auxin response factor 6, and alpha-mannosidase were highly related to the fruit development of weeping forsythia. CONCLUSION This study identify four candidate genes related to fruit development, which will provide useful information for the subsequent molecular-assisted and genetic breeding of weeping forsythia.
Collapse
|
33
|
Gan Z, Yuan X, Shan N, Wan C, Chen C, Zhu L, Xu Y, Kai W, Zhai X, Chen J. AcERF1B and AcERF073 Positively Regulate Indole-3-acetic Acid Degradation by Activating AcGH3.1 Transcription during Postharvest Kiwifruit Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13859-13870. [PMID: 34779211 DOI: 10.1021/acs.jafc.1c03954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ethylene can accelerate the postharvest ripening process of kiwifruit, while indole-3-acetic acid (IAA) delays it. However, the molecular mechanism by which ethylene regulates IAA degradation is unclear. Here, we found that ethephon promotes the degradation of free IAA in kiwifruit. Furthermore, ethylene can promote the expression of AcGH3.1 and enhance its promoter activity. Two ethylene response factors (ERFs), AcERF1B and AcERF073, were obtained using an AcGH3.1 promoter as bait for a yeast one-hybrid screening library. Both AcERF1B and AcERF073 bind to the AcGH3.1 promoter to activate it. Also, AcERF1B/073 enhanced AcGH3.1 expression, decreased the free IAA content, and increased the IAA-Asp content in kiwifruit. In addition, we found that the AcERF1B and AcERF073 proteins directly interact, and this interaction enhanced their binding to the AcGH3.1 promoter. In summary, our results suggest that AcERF1B and AcERF073 positively regulate IAA degradation by activating AcGH3.1 transcription, which accelerated postharvest kiwifruit ripening.
Collapse
Affiliation(s)
- Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Yuan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nan Shan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liqin Zhu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yunhe Xu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenbin Kai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiawan Zhai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, China
| |
Collapse
|
34
|
Gonzalez-Ibeas D, Ibanez V, Perez-Roman E, Borredá C, Terol J, Talon M. Shaping the biology of citrus: II. Genomic determinants of domestication. THE PLANT GENOME 2021; 14:e20133. [PMID: 34464512 DOI: 10.1002/tpg2.20133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
We performed genomic analyses on species and varieties of the genus Citrus to identify several determinants of domestication, based on the pattern of pummelo [Citrus maxima (Burr. f) Merr] and mandarin (Citrus reticulata Blanco) admixture into the ancestral genome, as well as population genetic tests at smaller scales. Domestication impacted gene families regulating pivotal components of citrus flavor (such as acidity) because in edible mandarin varieties, chromosome areas with negative Tajimas values were enriched with genes associated with the regulation of citric acid. Detection of sweeps in edible mandarins that diverged from wild relatives indicated that domestication reduced chemical defenses involving cyanogenesis and alkaloid synthesis, thus increasing palatability. Also, a cluster of SAUR genes in domesticated mandarins derived from the pummelo genome appears to contain candidate genes controlling fruit size. Similarly, conserved stretches of pure mandarin areas were likely important as well for domestication, as, for example, a fragment in chromosome 1 that is involved in the apomictic reproduction of most edible mandarins. Interestingly, our results also support the hypothesis that various genes subject to selective pressure during evolution or derived from whole genome duplication events later became potential targets of domestication.
Collapse
Affiliation(s)
- Daniel Gonzalez-Ibeas
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| | - Victoria Ibanez
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| | - Estela Perez-Roman
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| | - Carles Borredá
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| | - Javier Terol
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| | - Manuel Talon
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| |
Collapse
|
35
|
Li M, Chen R, Gu H, Cheng D, Guo X, Shi C, Li L, Xu G, Gu S, Wu Z, Chen J. Grape Small Auxin Upregulated RNA ( SAUR) 041 Is a Candidate Regulator of Berry Size in Grape. Int J Mol Sci 2021; 22:ijms222111818. [PMID: 34769249 PMCID: PMC8584205 DOI: 10.3390/ijms222111818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Grape (Vitis vinifera) is an important horticultural crop that can be used to make juice and wine. However, the small size of the berry limits its yield. Cultivating larger berry varieties can be an effective way to solve this problem. As the largest family of auxin early response genes, SAUR (small auxin upregulated RNA) plays an important role in the growth and development of plants. Berry size is one of the important factors that determine grape quality. However, the SAUR gene family’s function in berry size of grape has not been studied systematically. We identified 60 SAUR members in the grape genome and divided them into 12 subfamilies based on phylogenetic analysis. Subsequently, we conducted a comprehensive and systematic analysis on the SAUR gene family by analyzing distribution of key amino acid residues in the domain, structural features, conserved motifs, and protein interaction network, and combined with the heterologous expression in Arabidopsis and tomato. Finally, the member related to grape berry size in SAUR gene family were screened. This genome-wide study provides a systematic analysis of grape SAUR gene family, further understanding the potential functions of candidate genes, and provides a new idea for grape breeding.
Collapse
Affiliation(s)
- Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Rui Chen
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China;
| | - Hong Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Dawei Cheng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Xizhi Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Caiyun Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Lan Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Guoyi Xu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Shicao Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Zhiyong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Jinyong Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
- Correspondence:
| |
Collapse
|
36
|
Brumos J. Gene regulation in climacteric fruit ripening. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102042. [PMID: 33971378 DOI: 10.1016/j.pbi.2021.102042] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Seed dispersion and consequent plant propagation depend on the success of fruit ripening. Thus, ripening is a highly regulated developmental process aiming to maximize fruit organoleptic traits to attract herbivores. During ripening, the developing fruit experiences dramatic modifications, including color change, flavor improvement, and loss of firmness that are remarkably coordinated. Dynamic interactions between multiple hormones, transcription factors, and epigenetic modifications establish the complex regulatory network that controls the expression levels of ripening-related genes. Tomato, as a climacteric fruit, displays a burst of respiration once the seeds mature, followed by an increase in ethylene that regulates ripening. The accepted paradigm of the ripening transcriptional regulation has been recently challenged by the generation of true-null mutants of the previously considered master regulators of ripening. In addition to hormonal and transcriptional control, epigenetic shifts regulate the ripening process. Future research will contribute to better understanding the factors regulating fruit ripening.
Collapse
Affiliation(s)
- Javier Brumos
- Institute of Molecular and Cellular Biology of Plants, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
37
|
Liao L, Zhang W, Zhang B, Fang T, Wang XF, Cai Y, Ogutu C, Gao L, Chen G, Nie X, Xu J, Zhang Q, Ren Y, Yu J, Wang C, Deng CH, Ma B, Zheng B, You CX, Hu DG, Espley R, Lin-Wang K, Yao JL, Allan AC, Khan A, Korban SS, Fei Z, Ming R, Hao YJ, Li L, Han Y. Unraveling a genetic roadmap for improved taste in the domesticated apple. MOLECULAR PLANT 2021; 14:1454-1471. [PMID: 34022440 DOI: 10.1016/j.molp.2021.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 05/26/2023]
Abstract
Although taste is an important aspect of fruit quality, an understanding of its genetic control remains elusive in apple and other fruit crops. In this study, we conducted genomic sequence analysis of 497 Malus accessions and revealed erosion of genetic diversity caused by apple breeding and possible independent domestication events of dessert and cider apples. Signatures of selection for fruit acidity and size, but not for fruit sugar content, were detected during the processes of both domestication and improvement. Furthermore, we found that single mutations in major genes affecting fruit taste, including Ma1, MdTDT, and MdSOT2, dramatically decrease malate, citrate, and sorbitol accumulation, respectively, and correspond to important domestication events. Interestingly, Ma1 was identified to have pleiotropic effects on both organic acid content and sugar:acid ratio, suggesting that it plays a vital role in determining fruit taste. Fruit taste is unlikely to have been negatively affected by linkage drag associated with selection for larger fruit that resulted from the pyramiding of multiple genes with minor effects on fruit size. Collectively, our study provides new insights into the genetic basis of fruit quality and its evolutionary roadmap during apple domestication, pinpointing several candidate genes for genetic manipulation of fruit taste in apple.
Collapse
Affiliation(s)
- Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Weihan Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Ting Fang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqing Nie
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsheng Xu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Quanyan Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yiran Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Jianqiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Chukun Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Baiquan Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Da-Gang Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Richard Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yu-Jin Hao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Li Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
38
|
Godoy F, Kühn N, Muñoz M, Marchandon G, Gouthu S, Deluc L, Delrot S, Lauvergeat V, Arce-Johnson P. The role of auxin during early berry development in grapevine as revealed by transcript profiling from pollination to fruit set. HORTICULTURE RESEARCH 2021; 8:140. [PMID: 34127649 PMCID: PMC8203632 DOI: 10.1038/s41438-021-00568-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 05/07/2023]
Abstract
Auxin is a key phytohormone that modulates fruit formation in many fleshy fruits through the regulation of cell division and expansion. Auxin content rapidly increases after pollination and the manipulation in its levels may lead to the parthenocarpic development. ln Vitis vinifera L., little is known about the early fruit development that encompasses from pollination to fruit set. Pollination/fertilization events trigger fruit formation, and auxin treatment mimics their effect in grape berry set. However, the role of auxin in this process at the molecular level is not well understood. To elucidate the participation of auxin in grapevine fruit formation, morphological, reproductive, and molecular events from anthesis to fruit set were described in sequential days after pollination. Exploratory RNA-seq analysis at four time points from anthesis to fruit set revealed that the highest percentage of genes induced/repressed within the hormone-related gene category were auxin-related genes. Transcript profiling showed significant transcript variations in auxin signaling and homeostasis-related genes during the early fruit development. Indole acetic acid and several auxin metabolites were present during this period. Finally, application of an inhibitor of auxin action reduced cell number and the mesocarp diameter, similarly to unpollinated berries, further confirming the key role of auxin during early berry development. This work sheds light into the molecular features of the initial fruit development and highlights the auxin participation during this stage in grapevine.
Collapse
Affiliation(s)
- Francisca Godoy
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Nathalie Kühn
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2340025, Valparaíso, Chile
| | - Mindy Muñoz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Germán Marchandon
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | - Laurent Deluc
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Serge Delrot
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, ISVV, Université de Bordeaux, Villenave d´Ornon, France
| | - Virginie Lauvergeat
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, ISVV, Université de Bordeaux, Villenave d´Ornon, France
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| |
Collapse
|
39
|
Fenn MA, Giovannoni JJ. Phytohormones in fruit development and maturation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:446-458. [PMID: 33274492 DOI: 10.1111/tpj.15112] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 05/21/2023]
Abstract
Phytohormones are integral to the regulation of fruit development and maturation. This review expands upon current understanding of the relationship between hormone signaling and fruit development, emphasizing fleshy fruit and highlighting recent work in the model crop tomato (Solanum lycopersicum) and additional species. Fruit development comprises fruit set initiation, growth, and maturation and ripening. Fruit set transpires after fertilization and is associated with auxin and gibberellic acid (GA) signaling. Interaction between auxin and GAs, as well as other phytohormones, is mediated by auxin-responsive Aux/IAA and ARF proteins. Fruit growth consists of cell division and expansion, the former shown to be influenced by auxin signaling. While regulation of cell expansion is less thoroughly understood, evidence indicates synergistic regulation via both auxin and GAs, with input from additional hormones. Fruit maturation, a transitional phase that precipitates ripening, occurs when auxin and GA levels subside with a concurrent rise in abscisic acid (ABA) and ethylene. During fruit ripening, ethylene plays a clear role in climacteric fruits, whereas non-climacteric ripening is generally associated with ABA. Recent evidence indicates varying requirements for both hormones within both ripening physiologies, suggesting rebalancing and specification of roles for common regulators rather than reliance upon one. Numerous recent discoveries pertaining to the molecular basis of hormonal activity and crosstalk are discussed, while we also note that many questions remain such as the molecular basis of additional hormonal activities, the role of epigenome changes, and how prior discoveries translate to the plethora of angiosperm species.
Collapse
Affiliation(s)
- Matthew A Fenn
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - James J Giovannoni
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
- United States Department of Agriculture - Agricultural Research Service and Boyce Thompson Institute for Plant Research, Cornell University campus, Ithaca, NY, 14853, USA
| |
Collapse
|
40
|
Su Y, He H, Wang P, Ma Z, Mao J, Chen B. Genome-wide characterization and expression analyses of the auxin/indole-3-acetic acid (Aux/IAA) gene family in apple (Malus domestica). Gene 2020; 768:145302. [PMID: 33181252 DOI: 10.1016/j.gene.2020.145302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022]
Abstract
Auxin is a necessary phytohormone for fruit development, accompanying the whole process of fruit growth and development. The Aux/IAA gene family is one of the early auxin-responsive gene families. At present, there were few reports involved in Aux/IAA genes in the fruit, especially in apple. In our study, we identified 42 MdAux/IAAs, phylogenetic analysis showed that Aux/IAA proteins from apple, tomato, and strawberry were clustered into 5 groups, 42 MdAux/IAAs randomly distributed on 13 chromosomes. Additionally, a comprehensive analysis of Aux/IAA gene family was completed, including gene structures, conserved motifs, phylogenetic analysis, chromosome mapping, orthologous identification, selection pressure analyses, synteny analysis, and protein interaction. We also tested the expression of MdAux/IAAs in different tissues and fruit development stages using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), we found that the most members of Aux/IAA showed higher expression in seeds compared within stem and leaves, indicating they may play a role in regulating fruit development. We also declared that the expression of Aux/IAA gene was not consistent in the pericarp and seeds at the same developmental stage, 3 MdAux/IAAs of the pericarp were upregulated over 20-fold at 90 d and 5 MdAux/IAAs of the seeds were upregulated over 40-fold at 90 d. It was MdAux/IAA23 that showed extreme up-regulated expression in both pericarp and seeds. This study proved that the Aux/IAA gene families may perform a different function in apple fruit development and ripening, more importantly, it provided a foundation for further exploring the biological function of these MdAux/IAAs.
Collapse
Affiliation(s)
- Yanli Su
- Department of Horticulture, Gansu Agricultural University, Lanzhou 730000, China
| | - Honghong He
- Department of Horticulture, Gansu Agricultural University, Lanzhou 730000, China
| | - Ping Wang
- Department of Horticulture, Gansu Agricultural University, Lanzhou 730000, China
| | - Zonghuan Ma
- Department of Horticulture, Gansu Agricultural University, Lanzhou 730000, China
| | - Juan Mao
- Department of Horticulture, Gansu Agricultural University, Lanzhou 730000, China
| | - Baihong Chen
- Department of Horticulture, Gansu Agricultural University, Lanzhou 730000, China.
| |
Collapse
|
41
|
Mao J, Niu C, Li K, Mobeen Tahir M, Khan A, Wang H, Li S, Liang Y, Li G, Yang Z, Zuo L, Han M, Ren X, An N, Zhang D. Exogenous 6-benzyladenine application affects root morphology by altering hormone status and gene expression of developing lateral roots in Malus hupehensis. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1150-1159. [PMID: 32597557 DOI: 10.1111/plb.13154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Malus hupehensis is an extensively used apple rootstock in China. In the current study, M. hupehensis seedlings were treated with exogenous 2.2 µm 6-benzyladenine (6-BA) so as to investigate the mechanism by which 6-BA affects lateral root development. The results indicate that 6-BA treatment promotes elongation and thickening of both root and shoot in M. hupehensis, but reduces the number of lateral roots, as well as reducing the auxin level after 6-BA treatment. Moreover, MhAHK4, MhRR1 and MhRR2 were also significantly up-regulated in response to 6-BA treatment. Expression levels of auxin synthesis- and transport-related genes, such as MhYUCCA6, MhYUCCA10, MhPIN1 and MhPIN2, were down-regulated, which corresponds with lower auxin levels in the 6-BA-treated seedlings. A negative regulator of auxin, MhIAA3, was induced by 6-BA treatment, leading to reduced expression of MhARF7 and MhARF19 in 6-BA-treated seedlings. As a result, expression of MhWOX11, MhWOX5, MhLBD16 and MhLBD29 was blocked, which in turn inhibited lateral root initiation. In addition, a lower auxin level decreased expression of MhRR7 and MhRR15, which repressed expression of key transcription factors associated with root development, thus inhibiting lateral root development. In contrast, 6-BA treatment promoted secondary growth (thickening) of the root by inducing expression of MhCYCD3;1 and MhCYCD3;2. Collectively, the changes in hormone levels and gene expression resulted in a reduced number of lateral roots and thicker roots in 6-BA-treated plants.
Collapse
Affiliation(s)
- J Mao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
- College of Life Science, Northwest Agriculture & Forestry University, Yangling, China
| | - C Niu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - K Li
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - M Mobeen Tahir
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - A Khan
- Department of Agricultural Sciences, the University of Haripur, Haripur, Pakistan
| | - H Wang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - S Li
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Y Liang
- Beijing Ori-Gene Science and Technology Corp., Ltd., Beijing, China
| | - G Li
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Z Yang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - L Zuo
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - M Han
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - X Ren
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - N An
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
- College of Life Science, Northwest Agriculture & Forestry University, Yangling, China
| | - D Zhang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
- College of Life Science, Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
42
|
Wu L, Lan J, Xiang X, Xiang H, Jin Z, Khan S, Liu Y. Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis). PLoS One 2020; 15:e0240355. [PMID: 33044982 PMCID: PMC7549808 DOI: 10.1371/journal.pone.0240355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
Kiwifruit (Actinidia chinensis) is a rich nutritious fruit crop owing to a markedly higher content of vitamin C and minerals. To promote fruit set and to increase the yield of kiwifruit, forchlorfenuron (CPPU) has been widely applied. However, the molecular details regarding CPPU controlling kiwifruit development, especially at the fastest fruit growth stage, remain unknown. In the present study, we measured the effect of CPPU on developmental regulation in red-fleshed kiwifruit (Actinidia chinensis 'Hongyang'). Additionally, a cytological analysis was performed to clarify the precise changes in the cell structure of the CPPU-treated kiwifruits. Moreover, the concentration of endogenous phytohormones, including indoleacetic acid (IAA), zeatin (ZT), gibberellic acid 3 (GA3), and abscisic acid (ABA), were measured by Enzyme-linked Immunosorbent Assay (ELISA). Furthermore, RNA-Seq was performed to dissect the complicated molecular mechanisms, with a focus on biosynthesis, metabolism, and signaling compounds, such as endogenous hormones, sugars, and L-ascorbic acid. Our results demonstrated that CPPU treatment not only regulates the size and weight of a single fruit but also improves the quality in 'Hongyang' kiwifruit through the accumulation of both soluble sugar and vitamin C. It was also seen that CPPU regulates kiwifruit development by enhancing cell expansion of epidermal cells and parenchyma cells, while, promoting cell division of subepidermal cells. Additionally, CPPU significantly increased the gibberellin and cytokinin biosynthetic pathway and signaling, while repressing auxin and ABA biosynthetic pathway; thus, signaling plays an essential role in CPPU controlling kiwifruit development. Notably, transcriptomic analysis revealed that a total of 2244 genes, including 352 unannotated genes, were differentially expressed in kiwifruits because of CPPU treatment, including 127 transcription factors. These genes are mainly enriched in plant hormone signal transduction, photosynthesis, MAPK signaling pathway, starch and sucrose metabolism, and phenylpropanoid biosynthesis. Overall, our results highlight that CPPU regulation of kiwifruit development is mainly associated with an antagonistic and/or synergistic regulatory role of endogenous phytohormones, and enhancing the energy supply. This provides new insights into the molecular details of CPPU controlling kiwifruit development at the fastest fruit growth stage, which is of agricultural importance for kiwifruit breeding and crop improvement.
Collapse
Affiliation(s)
- Lin Wu
- Institute of Special Plants, Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Jianbin Lan
- Institute of Special Plants, Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Xiaoxue Xiang
- Institute of Special Plants, Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Haiyang Xiang
- Institute of Special Plants, Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Zhao Jin
- Institute of Special Plants, Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Sadia Khan
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario, Canada
| | - Yiqing Liu
- College of Horticulture and Gardening, Institute of Horticulture Plants, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
43
|
Chang HY, Tong CBS. Identification of Candidate Genes Involved in Fruit Ripening and Crispness Retention Through Transcriptome Analyses of a 'Honeycrisp' Population. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1335. [PMID: 33050481 PMCID: PMC7650588 DOI: 10.3390/plants9101335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 02/05/2023]
Abstract
Crispness retention is a postharvest trait that fruit of the 'Honeycrisp' apple and some of its progeny possess. To investigate the molecular mechanisms of crispness retention, progeny individuals derived from a 'Honeycrisp' × MN1764 population with fruit that either retain crispness (named "Retain"), lose crispness (named "Lose"), or that are not crisp at harvest (named "Non-crisp") were selected for transcriptomic comparisons. Differentially expressed genes (DEGs) were identified using RNA-Seq, and the expression levels of the DEGs were validated using nCounter®. Functional annotation of the DEGs revealed distinct ripening behaviors between fruit of the "Retain" and "Non-crisp" individuals, characterized by opposing expression patterns of auxin- and ethylene-related genes. However, both types of genes were highly expressed in the fruit of "Lose" individuals and 'Honeycrisp', which led to the potential involvements of genes encoding auxin-conjugating enzyme (GH3), ubiquitin ligase (ETO), and jasmonate O-methyltransferase (JMT) in regulating fruit ripening. Cell wall-related genes also differentiated the phenotypic groups; greater numbers of cell wall synthesis genes were highly expressed in fruit of the "Retain" individuals and 'Honeycrisp' when compared with "Non-crisp" individuals and MN1764. On the other hand, the phenotypic differences between fruit of the "Retain" and "Lose" individuals could be attributed to the functioning of fewer cell wall-modifying genes. A cell wall-modifying gene, MdXTH, was consistently identified as differentially expressed in those fruit over two years in this study, so is a major candidate for crispness retention.
Collapse
Affiliation(s)
- Hsueh-Yuan Chang
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108, USA;
| | | |
Collapse
|
44
|
Cucumber Fruit Size and Shape Variations Explored from the Aspects of Morphology, Histology, and Endogenous Hormones. PLANTS 2020; 9:plants9060772. [PMID: 32575654 PMCID: PMC7356835 DOI: 10.3390/plants9060772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
Fruit size and shape are important qualities and yield traits in cucumber (Cucumis sativus L.), but the factors that influence fruit size and shape remain to be explored. In this study, we investigated the dynamic changes of fruit size and shape from the aspects of morphology, cellular levels and endogenous hormones for nine typical cucumber inbred lines. The results show that fruit length had a strong positive correlation to the cell number in the longitudinal section of fruit throughout the four stages of 0, 6, 12, and 30 DAA (days after anthesis). However, the significant negative correlations were found between fruit length and the fruit cell size at 12 and 30 DAA. Furthermore, fruit diameter was positively correlated to the cell number in the cross section at all the investigated fruit growth stages. The indole-3-acetic acid (IAA) content showed significant positive correlations to the fruit length at all fruit growth stages of −6, −3, 0, 3, 6, 9 and 12 DAA, but IAA content and fruit diameter showed significant negative correlations for all the stages except for at −6 DAA. The trans-zeatin riboside (tZR), zeatin (ZT), gibberellic acid (GA3) and jasmonic acid (JA) content had a positive or negative correlation with fruit length or diameter only at certain stages. Neither fruit length nor diameter had significant correlations to abscisic acid (ABA) content. These results indicate that variations in fruit size and shape of different cucumber inbred lines mainly result from the differences in fruit cell number and endogenous IAA content. The present work is the first to propose cucumber fruit size and shape changes from the combined aspects of morphology, cellular levels, and endogenous hormones.
Collapse
|
45
|
Nardozza S, Cooney J, Boldingh HL, Hewitt KG, Trower T, Jones D, Thrimawithana AH, Allan AC, Richardson AC. Phytohormone and Transcriptomic Analysis Reveals Endogenous Cytokinins Affect Kiwifruit Growth under Restricted Carbon Supply. Metabolites 2020; 10:E23. [PMID: 31947989 PMCID: PMC7022440 DOI: 10.3390/metabo10010023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022] Open
Abstract
Following cell division, fruit growth is characterized by both expansion through increases in cell volume and biomass accumulation in cells. Fruit growth is limited by carbon starvation; however, the mechanism controlling fruit growth under restricted carbohydrate supply is poorly understood. In a previous study using red-fleshed kiwifruit, we showed that long-term carbon starvation had detrimental effects on carbohydrate, anthocyanin metabolism, and fruit growth. To elucidate the mechanisms underlying the reduction in fruit growth during kiwifruit development, we integrated phytohormone profiling with transcriptomic and developmental datasets for fruit under high or low carbohydrate supplies. Phytohormone profiling of the outer pericarp tissue of kiwifruit showed a 6-fold reduction in total cytokinin concentrations in carbon-starved fruit, whilst other hormones were less affected. Principal component analysis visualised that cytokinin composition was distinct between fruit at 16 weeks after mid bloom, based on their carbohydrate supply status. Cytokinin biosynthetic genes (IPT, CYP735A) were significantly downregulated under carbon starvation, in agreement with the metabolite data. Several genes that code for expansins, proteins involved in cell wall loosening, were also downregulated under carbon starvation. In contrast to other fleshy fruits, our results suggest that cytokinins not only promote cell division, but also drive fruit cell expansion and growth in kiwifruit.
Collapse
Affiliation(s)
- Simona Nardozza
- The New Zealand Institute for Plant and Food Research Limited (PFR), 1142 Auckland, New Zealand; (D.J.); (A.H.T.); (A.C.A.)
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Limited (PFR), 3240 Hamilton, New Zealand; (J.C.); (H.L.B.); (K.G.H.); (T.T.)
| | - Helen L. Boldingh
- The New Zealand Institute for Plant and Food Research Limited (PFR), 3240 Hamilton, New Zealand; (J.C.); (H.L.B.); (K.G.H.); (T.T.)
| | - Katrin G. Hewitt
- The New Zealand Institute for Plant and Food Research Limited (PFR), 3240 Hamilton, New Zealand; (J.C.); (H.L.B.); (K.G.H.); (T.T.)
| | - Tania Trower
- The New Zealand Institute for Plant and Food Research Limited (PFR), 3240 Hamilton, New Zealand; (J.C.); (H.L.B.); (K.G.H.); (T.T.)
| | - Dan Jones
- The New Zealand Institute for Plant and Food Research Limited (PFR), 1142 Auckland, New Zealand; (D.J.); (A.H.T.); (A.C.A.)
| | - Amali H. Thrimawithana
- The New Zealand Institute for Plant and Food Research Limited (PFR), 1142 Auckland, New Zealand; (D.J.); (A.H.T.); (A.C.A.)
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), 1142 Auckland, New Zealand; (D.J.); (A.H.T.); (A.C.A.)
- School of Biological Sciences, University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand
| | - Annette C. Richardson
- The New Zealand Institute for Plant and Food Research Limited (PFR), 0294 Kerikeri, New Zealand;
| |
Collapse
|
46
|
Bu H, Yu W, Yuan H, Yue P, Wei Y, Wang A. Endogenous Auxin Content Contributes to Larger Size of Apple Fruit. FRONTIERS IN PLANT SCIENCE 2020; 11:592540. [PMID: 33519848 PMCID: PMC7841441 DOI: 10.3389/fpls.2020.592540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 05/21/2023]
Abstract
Fruit size is an important economic trait that is controlled by multiple genes. However, the regulatory mechanism for fruit size remains poorly understood. A bud sport variety of "Longfeng" (LF) apple (Malus domestica) was identified and named "Grand Longfeng" (GLF). The fruit size of GLF is larger than that of LF, and both varieties are diploid. We found that the cell size in GLF fruit was larger than that of LF. Then, we compared the fruit transcriptomes of the two varieties using RNA-Seq technology. A total of 1166 differentially expressed genes (DEGs) were detected between GLF and LF fruits. The KEGG analysis revealed that the phytohormone pathway was the most enriched, in which most of the DEGs were related to auxin signaling. Moreover, the endogenous auxin levels of GLF fruit were higher than those of LF. The expressions of auxin synthetic genes, including MdTAR1 and MdYUCCA6, were higher in GLF fruit than LF. Collectively, our findings suggest that auxin plays an important role in fruit size development.
Collapse
Affiliation(s)
- Haidong Bu
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Wenquan Yu
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Pengtao Yue
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yun Wei
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Aide Wang,
| |
Collapse
|
47
|
Bu H, Yu W, Yuan H, Yue P, Wei Y, Wang A. Endogenous Auxin Content Contributes to Larger Size of Apple Fruit. FRONTIERS IN PLANT SCIENCE 2020; 11:592540. [PMID: 33519848 DOI: 10.3389/fpls.2020.592540/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 05/21/2023]
Abstract
Fruit size is an important economic trait that is controlled by multiple genes. However, the regulatory mechanism for fruit size remains poorly understood. A bud sport variety of "Longfeng" (LF) apple (Malus domestica) was identified and named "Grand Longfeng" (GLF). The fruit size of GLF is larger than that of LF, and both varieties are diploid. We found that the cell size in GLF fruit was larger than that of LF. Then, we compared the fruit transcriptomes of the two varieties using RNA-Seq technology. A total of 1166 differentially expressed genes (DEGs) were detected between GLF and LF fruits. The KEGG analysis revealed that the phytohormone pathway was the most enriched, in which most of the DEGs were related to auxin signaling. Moreover, the endogenous auxin levels of GLF fruit were higher than those of LF. The expressions of auxin synthetic genes, including MdTAR1 and MdYUCCA6, were higher in GLF fruit than LF. Collectively, our findings suggest that auxin plays an important role in fruit size development.
Collapse
Affiliation(s)
- Haidong Bu
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Wenquan Yu
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Pengtao Yue
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yun Wei
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
48
|
Net Enclosure of ‘Honeycrisp’ and ‘Gala’ Apple Trees at Different Bloom Stages Affects Fruit Set and Alters Seed Production. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thinning is a critical but challenging practice in apple production, especially for organic producers. The objective of this experiment was to determine if exclusion netting, used to manage insect pests and stress, could reduce fruit set and thinning requirements of ‘Gala’ and ‘Honeycrisp’ apple trees in Michigan and Washington, U.S.A., respectively. Nets were closed around whole canopies at different timings based on a predetermined percentage of open flowers. In 2017 and 2018, netted trees set a full commercial crop regardless of percentage of open bloom at the time of netting, including prebloom enclosures. Fruit set and yield of netted ‘Honeycrisp’ trees were significantly lower than non-netted, nonthinned controls but similar to non-netted hand-thinned controls. ‘Gala’ fruit set and yield did not differ among treatments. Exclusion netting markedly reduced the number of mature seeds and increased the number of nonfertilized seeds in both cultivars. Pollinator exclusion to ‘Gala’ in a frost year increased parthenocarpic fruit set two-fold compared to non-netted trees. Fruit size, shape, and quality attributes of ‘Gala’ were were similar among treatments, but ‘Honeycrisp’ fruit were significantly smaller than hand-thinned, non-netted controls. Netting may constitute an alternative, viable strategy to manage fruit set but requires testing on different cultivars.
Collapse
|
49
|
Li X, Singh J, Qin M, Li S, Zhang X, Zhang M, Khan A, Zhang S, Wu J. Development of an integrated 200K SNP genotyping array and application for genetic mapping, genome assembly improvement and genome wide association studies in pear (Pyrus). PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1582-1594. [PMID: 30690857 PMCID: PMC6662108 DOI: 10.1111/pbi.13085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 05/06/2023]
Abstract
Pear (Pyrus; 2n = 34), the third most important temperate fruit crop, has great nutritional and economic value. Despite the availability of many genomic resources in pear, it is challenging to genotype novel germplasm resources and breeding progeny in a timely and cost-effective manner. Genotyping arrays can provide fast, efficient and high-throughput genetic characterization of diverse germplasm, genetic mapping and breeding populations. We present here 200K AXIOM® PyrSNP, a large-scale single nucleotide polymorphism (SNP) genotyping array to facilitate genotyping of Pyrus species. A diverse panel of 113 re-sequenced pear genotypes was used to discover SNPs to promote increased adoption of the array. A set of 188 diverse accessions and an F1 population of 98 individuals from 'Cuiguan' × 'Starkrimson' was genotyped with the array to assess its effectiveness. A large majority of SNPs (166 335 or 83%) are of high quality. The high density and uniform distribution of the array SNPs facilitated prediction of centromeric regions on 17 pear chromosomes, and significantly improved the genome assembly from 75.5% to 81.4% based on genetic mapping. Identification of a gene associated with flowering time and candidate genes linked to size of fruit core via genome wide association studies showed the usefulness of the array in pear genetic research. The newly developed high-density SNP array presents an important tool for rapid and high-throughput genotyping in pear for genetic map construction, QTL identification and genomic selection.
Collapse
Affiliation(s)
- Xiaolong Li
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Jugpreet Singh
- Plant Pathology and Plant‐Microbe Biology SectionCornell UniversityGenevaNYUSA
| | - Mengfan Qin
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Siwei Li
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xun Zhang
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Mingyue Zhang
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Awais Khan
- Plant Pathology and Plant‐Microbe Biology SectionCornell UniversityGenevaNYUSA
| | - Shaoling Zhang
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Jun Wu
- Centre of Pear Engineering Technology ResearchState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
50
|
Grab H, Branstetter MG, Amon N, Urban-Mead KR, Park MG, Gibbs J, Blitzer EJ, Poveda K, Loeb G, Danforth BN. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 2019; 363:282-284. [PMID: 30655441 DOI: 10.1126/science.aat6016] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 12/12/2018] [Indexed: 01/25/2023]
Abstract
Land-use change threatens global biodiversity and may reshape the tree of life by favoring some lineages over others. Whether phylogenetic diversity loss compromises ecosystem service delivery remains unknown. We address this knowledge gap using extensive genomic, community, and crop datasets to examine relationships among land use, pollinator phylogenetic structure, and crop production. Pollinator communities in highly agricultural landscapes contain 230 million fewer years of evolutionary history; this loss was strongly associated with reduced crop yield and quality. Our study links landscape-mediated changes in the phylogenetic structure of natural communities to the disruption of ecosystem services. Measuring conservation success by species counts alone may fail to protect ecosystem functions and the full diversity of life from which they are derived.
Collapse
Affiliation(s)
- Heather Grab
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Michael G Branstetter
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Nolan Amon
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.,Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Mia G Park
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Jason Gibbs
- Department of Entomology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Greg Loeb
- Department of Entomology, Cornell AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|