1
|
Potdar P, Kharat A, Sanap A, Kheur S, Bhonde R. Pancreatic β cell models for screening insulin secretagogues and cytotoxicity. J Appl Toxicol 2025; 45:89-106. [PMID: 39662958 DOI: 10.1002/jat.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 12/13/2024]
Abstract
In the past 2-3 decades, numerous attempts have been made to create an insulin-secreting β cell line that maintains normal insulin secretion. However, primary β cell cultures have finite life and, therefore, cannot be used for long-term experiments. The most widely used insulin-secreting cell lines are Insulinoma-1, rat insulinoma cell line, hamster pancreatic β cell line, mouse insulinoma, and β tumor cell line. Insulinoma-derived cell lines show infinite growth in tissue culture but exhibit varying differences in their insulin responsiveness to glucose levels compared to normal β cells. Despite difficulties with β cell cultures, these cell lines have offered some useful insights in diabetes research concerning physiological functions and pathological investigations. In this review, we describe insulinoma cell lines used for drug screening, insulin secretion, cell viability, proliferation, and other relevant cellular functions. In addition, we have also incorporated recently developed human β cell lines. These cell lines have provided some helpful insights into physiological activities and pathology in diabetes research, despite challenges with β cell culturing. We propose that these cell lines could also be explored for screening Ayurvedic Rasayanas and homeopathy preparations for their cytotoxicity and insulin secretagogue activities to have evidence-based data on alternative and complementary medicines.
Collapse
Affiliation(s)
- Pranjali Potdar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| |
Collapse
|
2
|
Sun Z, Shao Y, Yan K, Yao T, Liu L, Sun F, Wu J, Huang Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023; 13:1048. [PMID: 37887373 PMCID: PMC10608713 DOI: 10.3390/metabo13101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Trace metal elements are of vital importance for fundamental biological processes. They function in various metabolic pathways after the long evolution of living organisms. Glucose is considered to be one of the main sources of biological energy that supports biological activities, and its metabolism is tightly regulated by trace metal elements such as iron, zinc, copper, and manganese. However, there is still a lack of understanding of the regulation of glucose metabolism by trace metal elements. In particular, the underlying mechanism of action remains to be elucidated. In this review, we summarize the current concepts and progress linking trace metal elements and glucose metabolism, particularly for the trace metal elements zinc, copper, manganese, and iron.
Collapse
Affiliation(s)
- Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kunhao Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lulu Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
3
|
Goktepe E, Baltaci SB, Unal O, Unlukal N, Mogulkoc R, Baltaci AK. The relationship between beta cell activation and SLC30A8/ZnT8 levels of the endocrine pancreas and maternal zinc deficiency in rats. J Trace Elem Med Biol 2023; 79:127217. [PMID: 37224745 DOI: 10.1016/j.jtemb.2023.127217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES Zinc, which is found in high concentrations in the β-cells of the pancreas, is also a critical component for the endocrine functions of the pancreas. SLC30A8/ZnT8 is the carrier protein responsible for the transport of zinc from the cytoplasm to the insulin granules. The aim of this study was to investigate how dietary zinc status affects pancreatic beta cell activation and ZnT8 levels in infant male rats born to zinc-deficient mothers. METHODS The study was performed on male pups born to mothers fed a zinc-deficient diet. A total of 40 male rats were divided into 4 equal groups. Group 1: In addition to maternal zinc deficiency, this group was fed a zinc-deficient diet. Group 2: In addition to maternal zinc deficiency, this group was fed a standard diet. Group 3: In addition to maternal zinc deficiency, this group was fed a standard diet and received additional zinc supplementation. Group 4: Control group. Pancreas ZnT8 levels were determined by ELISA method and insulin-positive cell ratios in β-cells by immunohistochemistry. RESULTS The highest pancreatic ZnT8 levels and anti-insulin positive cell ratios in the current study were obtained in Group 3 and Group 4. In our study, the lowest pancreatic ZnT8 levels were obtained in Group 1 and Group 2, and the lowest pancreatic anti-insulin positive cell ratios were obtained in Group 1. CONCLUSION The results of the present study; in rats fed a zinc-deficient diet after maternal zinc deficiency has been established shows that ZnT8 levels and anti-insulin positive cell ratios in pancreatic tissue, which is significantly suppressed, reach control values with intraperitoneal zinc supplementation.
Collapse
Affiliation(s)
- Emre Goktepe
- Selçuk University, Medical Faculty, Departments Physiology and Histology and Embriyology, Konya, Turkey
| | - Saltuk Bugra Baltaci
- Selçuk University, Medical Faculty, Departments Physiology and Histology and Embriyology, Konya, Turkey
| | - Omer Unal
- Kirikkale University, Medical Faculty, Departments of Physiology, Kirikkale, Turkey
| | - Nejat Unlukal
- Selçuk University, Medical Faculty, Departments Physiology and Histology and Embriyology, Konya, Turkey
| | - Rasim Mogulkoc
- Selçuk University, Medical Faculty, Departments Physiology and Histology and Embriyology, Konya, Turkey
| | - Abdulkerim Kasim Baltaci
- Selçuk University, Medical Faculty, Departments Physiology and Histology and Embriyology, Konya, Turkey.
| |
Collapse
|
4
|
Serbis A, Giapros V, Tsamis K, Balomenou F, Galli-Tsinopoulou A, Siomou E. Beta Cell Dysfunction in Youth- and Adult-Onset Type 2 Diabetes: An Extensive Narrative Review with a Special Focus on the Role of Nutrients. Nutrients 2023; 15:2217. [PMID: 37432389 PMCID: PMC10180650 DOI: 10.3390/nu15092217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/12/2023] Open
Abstract
Traditionally a disease of adults, type 2 diabetes (T2D) has been increasingly diagnosed in youth, particularly among adolescents and young adults of minority ethnic groups. Especially, during the recent COVID-19 pandemic, obesity and prediabetes have surged not only in minority ethnic groups but also in the general population, further raising T2D risk. Regarding its pathogenesis, a gradually increasing insulin resistance due to central adiposity combined with a progressively defective β-cell function are the main culprits. Especially in youth-onset T2D, a rapid β-cell activity decline has been observed, leading to higher treatment failure rates, and early complications. In addition, it is well established that both the quantity and quality of food ingested by individuals play a key role in T2D pathogenesis. A chronic imbalance between caloric intake and expenditure together with impaired micronutrient intake can lead to obesity and insulin resistance on one hand, and β-cell failure and defective insulin production on the other. This review summarizes our evolving understanding of the pathophysiological mechanisms involved in defective insulin secretion by the pancreatic islets in youth- and adult-onset T2D and, further, of the role various micronutrients play in these pathomechanisms. This knowledge is essential if we are to curtail the serious long-term complications of T2D both in pediatric and adult populations.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Konstantinos Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Assimina Galli-Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| |
Collapse
|
5
|
Verhoeff K, Cuesta-Gomez N, Jasra I, Marfil-Garza B, Dadheech N, Shapiro AMJ. Optimizing Generation of Stem Cell-Derived Islet Cells. Stem Cell Rev Rep 2022; 18:2683-2698. [PMID: 35639237 DOI: 10.1007/s12015-022-10391-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
Islet transplantation is a highly effective treatment for select patients with type 1 diabetes. Unfortunately, current use is limited to those with brittle disease due to donor limitations and immunosuppression requirements. Discovery of factors for induction of pluripotent stem cells from adult somatic cells into a malleable state has reinvigorated the possibility of autologous-based regenerative cell therapies. Similarly, recent progress in allogeneic human embryonic stem cell islet products is showing early success in clinical trials. Describing safe and standardized differentiation protocols with clear pathways to optimize yield and minimize off-target growth is needed to efficiently move the field forward. This review discusses current islet differentiation protocols with a detailed break-down of differentiation stages to guide step-wise controlled generation of functional islet products.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nerea Cuesta-Gomez
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ila Jasra
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio Marfil-Garza
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, and CHRISTUS-LatAm Hub - Excellence and Innovation Center, Monterrey, Mexico
| | - Nidheesh Dadheech
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.
- 1-002 Li Ka Shing Centre for Health Research Innovation, 112 St. NW & 87 Ave NW, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
6
|
Karsai M, Zuellig RA, Lehmann R, Cuozzo F, Nasteska D, Luca E, Hantel C, Hodson DJ, Spinas GA, Rutter GA, Gerber PA. Lack of ZnT8 protects pancreatic islets from hypoxia- and cytokine-induced cell death. J Endocrinol 2022; 253:1-11. [PMID: 35017316 PMCID: PMC8859919 DOI: 10.1530/joe-21-0271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022]
Abstract
Pancreatic β-cells depend on the well-balanced regulation of cytosolic zinc concentrations, providing sufficient zinc ions for the processing and storage of insulin, but avoiding toxic effects. The zinc transporter ZnT8, encoded by SLC30A8,is a key player regarding islet cell zinc homeostasis, and polymorphisms in this gene are associated with altered type 2 diabetes susceptibility in man. The objective of this study was to investigate the role of ZnT8 and zinc in situations of cellular stress as hypoxia or inflammation. Isolated islets of WT and global ZnT8-/- mice were exposed to hypoxia or cytokines and cell death was measured. To explore the role of changing intracellular Zn2+ concentrations, WT islets were exposed to different zinc concentrations using zinc chloride or the zinc chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN). Hypoxia or cytokine (TNF-α, IFN-γ, IL1-β) treatment induced islet cell death, but to a lesser extent in islets from ZnT8-/- mice, which were shown to have a reduced zinc content. Similarly, chelation of zinc with TPEN reduced cell death in WT islets treated with hypoxia or cytokines, whereas increased zinc concentrations aggravated the effects of these stressors. This study demonstrates a reduced rate of cell death in islets from ZnT8-/- mice as compared to WT islets when exposed to two distinct cellular stressors, hypoxia or cytotoxic cytokines. This protection from cell death is, in part, mediated by a reduced zinc content in islet cells of ZnT8-/- mice. These findings may be relevant for altered diabetes burden in carriers of risk SLC30A8 alleles in man.
Collapse
Affiliation(s)
- Maria Karsai
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Richard A Zuellig
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Roger Lehmann
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Giatgen A Spinas
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- CR-CHUM, University of Montreal, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Philipp A Gerber
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
7
|
Abstract
Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid β and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
8
|
Barragán-Álvarez CP, Padilla-Camberos E, Díaz NF, Cota-Coronado A, Hernández-Jiménez C, Bravo-Reyna CC, Díaz-Martínez NE. Loss of Znt8 function in diabetes mellitus: risk or benefit? Mol Cell Biochem 2021; 476:2703-2718. [PMID: 33666829 DOI: 10.1007/s11010-021-04114-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
The zinc transporter 8 (ZnT8) plays an essential role in zinc homeostasis inside pancreatic β cells, its function is related to the stabilization of insulin hexameric form. Genome-wide association studies (GWAS) have established a positive and negative relationship of ZnT8 variants with type 2 diabetes mellitus (T2DM), exposing a dual and controversial role. The first hypotheses about its role in T2DM indicated a higher risk of developing T2DM for loss of function; nevertheless, recent GWAS of ZnT8 loss-of-function mutations in humans have shown protection against T2DM. With regard to the ZnT8 role in T2DM, most studies have focused on rodent models and common high-risk variants; however, considerable differences between human and rodent models have been found and the new approaches have included lower-frequency variants as a tool to clarify gene functions, allowing a better understanding of the disease and offering possible therapeutic targets. Therefore, this review will discuss the physiological effects of the ZnT8 variants associated with a major and lower risk of T2DM, emphasizing the low- and rare-frequency variants.
Collapse
Affiliation(s)
- Carla P Barragán-Álvarez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Nestor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Agustín Cota-Coronado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Claudia Hernández-Jiménez
- Departamento de Cirugía Experimental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Carlos C Bravo-Reyna
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nestor E Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico.
| |
Collapse
|
9
|
Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response. BIOLOGY 2021; 10:biology10030176. [PMID: 33652748 PMCID: PMC7996892 DOI: 10.3390/biology10030176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Defective insulin secretion by pancreatic beta cells is key for the development of type 2 diabetes but the precise mechanisms involved are poorly understood. Metallothioneins are metal binding proteins whose precise biological roles have not been fully characterized. Available evidence indicated that Metallothioneins are protective cellular effectors involved in heavy metal detoxification, metal ion homeostasis and antioxidant defense. This concept has however been challenged by emerging evidence in different medical research fields revealing novel negative roles of Metallothioneins, including in the context of diabetes. In this review, we gather and analyze the available knowledge regarding the complex roles of Metallothioneins in pancreatic beta cell biology and insulin secretion. We comprehensively analyze the evidence showing positive effects of Metallothioneins on beta cell function and survival as well as the emerging evidence revealing negative effects and discuss the possible underlying mechanisms. We expose in parallel findings from other medical research fields and underscore unsettled questions. Then, we propose some future research directions to improve knowledge in the field. Abstract Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins whose precise biological roles have not been fully characterized. Existing evidence implicated MTs in heavy metal detoxification, metal ion homeostasis and antioxidant defense. MTs were thus categorized as protective effectors that contribute to cellular homeostasis and survival. This view has, however, been challenged by emerging evidence in different medical fields revealing novel pathophysiological roles of MTs, including inflammatory bowel disease, neurodegenerative disorders, carcinogenesis and diabetes. In the present focused review, we discuss the evidence for the role of MTs in pancreatic beta-cell biology and insulin secretion. We highlight the pattern of specific isoforms of MT gene expression in rodents and human beta-cells. We then discuss the mechanisms involved in the regulation of MTs in islets under physiological and pathological conditions, particularly type 2 diabetes, and analyze the evidence revealing adaptive and negative roles of MTs in beta-cells and the potential mechanisms involved. Finally, we underscore the unsettled questions in the field and propose some future research directions.
Collapse
|
10
|
Vahidi Ferdowsi P, Ng R, Adulcikas J, Sohal SS, Myers S. Zinc Modulates Several Transcription-Factor Regulated Pathways in Mouse Skeletal Muscle Cells. Molecules 2020; 25:E5098. [PMID: 33153045 PMCID: PMC7663025 DOI: 10.3390/molecules25215098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Zinc is an essential metal ion involved in many biological processes. Studies have shown that zinc can activate several molecules in the insulin signalling pathway and the concomitant uptake of glucose in skeletal muscle cells. However, there is limited information on other potential pathways that zinc can activate in skeletal muscle. Accordingly, this study aimed to identify other zinc-activating pathways in skeletal muscle cells to further delineate the role of this metal ion in cellular processes. Mouse C2C12 skeletal muscle cells were treated with insulin (10 nM), zinc (20 µM), and the zinc chelator TPEN (various concentrations) over 60 min. Western blots were performed for the zinc-activation of pAkt, pErk, and pCreb. A Cignal 45-Reporter Array that targets 45 signalling pathways was utilised to test the ability of zinc to activate pathways that have not yet been described. Zinc and insulin activated pAkt over 60 min as expected. Moreover, the treatment of C2C12 skeletal muscle cells with TPEN reduced the ability of zinc to activate pAkt and pErk. Zinc also activated several associated novel transcription factor pathways including Nrf1/Nrf2, ATF6, CREB, EGR1, STAT1, AP-1, PPAR, and TCF/LEF, and pCREB protein over 120 min of zinc treatment. These studies have shown that zinc's activity extends beyond that of insulin signalling and plays a role in modulating novel transcription factor activated pathways. Further studies to determine the exact role of zinc in the activation of transcription factor pathways will provide novel insights into this metal ion actions.
Collapse
Affiliation(s)
| | | | | | | | - Stephen Myers
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston 7250, Australia; (P.V.F.); (R.N.); (J.A.); (S.S.S.)
| |
Collapse
|
11
|
Dzianová P, Asai S, Chrudinová M, Kosinová L, Potalitsyn P, Šácha P, Hadravová R, Selicharová I, Kříž J, Turkenburg JP, Brzozowski AM, Jiráček J, Žáková L. The efficiency of insulin production and its content in insulin-expressing model β-cells correlate with their Zn 2+ levels. Open Biol 2020; 10:200137. [PMID: 33081637 PMCID: PMC7653362 DOI: 10.1098/rsob.200137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 12/29/2022] Open
Abstract
Insulin is produced and stored inside the pancreatic β-cell secretory granules, where it is assumed to form Zn2+-stabilized oligomers. However, the actual storage forms of this hormone and the impact of zinc ions on insulin production in vivo are not known. Our initial X-ray fluorescence experiment on granules from native Langerhans islets and insulinoma-derived INS-1E cells revealed a considerable difference in the zinc content. This led our further investigation to evaluate the impact of the intra-granular Zn2+ levels on the production and storage of insulin in different model β-cells. Here, we systematically compared zinc and insulin contents in the permanent INS-1E and BRIN-BD11 β-cells and in the native rat pancreatic islets by flow cytometry, confocal microscopy, immunoblotting, specific messenger RNA (mRNA) and total insulin analysis. These studies revealed an impaired insulin production in the permanent β-cell lines with the diminished intracellular zinc content. The drop in insulin and Zn2+ levels was paralleled by a lower expression of ZnT8 zinc transporter mRNA and hampered proinsulin processing/folding in both permanent cell lines. To summarize, we showed that the disruption of zinc homeostasis in the model β-cells correlated with their impaired insulin and ZnT8 production. This indicates a need for in-depth fundamental research about the role of zinc in insulin production and storage.
Collapse
Affiliation(s)
- Petra Dzianová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Seiya Asai
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Lucie Kosinová
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Pavlo Potalitsyn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Jan Kříž
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Andrzej Marek Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| |
Collapse
|
12
|
Li Z, Xu Y, Huang Z, Wei Y, Hou J, Long T, Wang F, Hu H, Duan Y, Guo H, Zhang X, Chen X, Yuan H, Wu T, Shen M, He M. Association between exposure to arsenic, nickel, cadmium, selenium, and zinc and fasting blood glucose levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113325. [PMID: 31614327 DOI: 10.1016/j.envpol.2019.113325] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/08/2019] [Accepted: 09/28/2019] [Indexed: 05/18/2023]
Abstract
Associations between single metal and fasting blood glucose (FBG) levels have been reported in previous studies. However, the association between multi-metals exposure and FBG level are little known. To assess the joints of arsenic (As), nickel (Ni), cadmium (Cd), selenium (Se), and zinc (Zn) co-exposure on FBG levels, Bayesian kernel machine regression (BKMR) statistical method was used to estimate the potential joint associations between As, Ni, Cd, Se, and Zn co-exposure and FBG levels among 1478 community-based Chinese adults from two counties, Shimen (n = 696) and Huayuan (n = 782), with different exposure profiles in Hunan province of China. The metals levels were measured in spot urine (As, Ni, and Cd) and plasma (Se and Zn) using inductively coupled plasma-mass spectrometry, respectively. The exposure levels of all the five metals were significantly higher in Shimen area (median: As = 57.76 μg/L, Cd = 2.75 μg/L, Ni = 2.73 μg/L, Se = 112.67 μg/L, Zn = 905.68 μg/L) than those in Huayuan area (As = 41.14 μg/L, Cd = 2.22 μg/L, Ni = 1.88 μg/L, Se = 65.59 μg/L, Zn = 819.18 μg/L). The BKMR analyses showed a significantly positive over-all effect of the five metals on FBG levels when metals concentrations were all above the 50th percentile while a statistically negative over-all effect when metals concentrations were all under the 50th percentile in Shimen area. However, a totally opposite over-all effect of the mixture of the five metals on FBG levels was found in Huayuan area. BKMR also revealed a non-linear exposure-effect of Zn on FBG levels in Huayuan area. In addition, interaction effects of As and Se on FBG level were observed. The relationship between single or combined metals exposure and FBG was different against different exposure profiles. Potential interaction effects of As and Se on FBG levels may exist.
Collapse
Affiliation(s)
- Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijun Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Hou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Tengfei Long
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Hu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hong Yuan
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Organic and inorganic zinc show similar regulatory effects on the expression of some germ cell specific markers induced in bone marrow mesenchymal stem cells after treatment with retinoic acid. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00306-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Cao AL, Beaver LM, Wong CP, Hudson LG, Ho E. Zinc deficiency alters the susceptibility of pancreatic beta cells (INS-1) to arsenic exposure. Biometals 2019; 32:845-859. [PMID: 31542844 DOI: 10.1007/s10534-019-00217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic beta cells produce and release insulin, a hormone that regulates blood glucose levels, and their dysfunction contributes to the development of diabetes mellitus. Zinc deficiency and inorganic arsenic exposure both independently associate with the development of diabetes, although the effects of their combination on pancreatic beta cell health and function remain unknown. We hypothesized zinc deficiency increases the toxicity associated with arsenic exposure, causing an increased susceptibility to DNA damage and disruption of insulin production. Zinc deficiency decreased cell proliferation by 30% in pancreatic INS-1 rat insulinoma cells. Arsenic exposure (0, 50 or 500 ppb exposures) significantly decreased cell proliferation, and increased mRNA levels of genes involved in stress response (Mt1, Mt2, Hmox1) and DNA damage (p53, Ogg1). When co-exposed to both zinc deficiency and arsenic, zinc deficiency attenuated this response to arsenic, decreasing the expression of Mt1, Hmox1, and Ogg1, and significantly increasing DNA double-strand breaks 2.9-fold. Arsenic exposure decreased insulin expression, but co-exposure did not decrease insulin levels beyond the arsenic alone condition, but did result in a further 33% decline in cell proliferation at the 500 ppb arsenic dose, and a significant increase in beta cell apoptosis. These results suggest zinc deficiency and arsenic, both independently and in combination, adversely affect pancreatic beta cell health and both factors should be considered in the evaluation of health outcomes for susceptible populations.
Collapse
Affiliation(s)
- Annie L Cao
- School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR, 97331, USA
| | - Laura M Beaver
- School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR, 97331, USA.,Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR, 97331, USA
| | - Carmen P Wong
- School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR, 97331, USA.,Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR, 97331, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Emily Ho
- School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR, 97331, USA. .,Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR, 97331, USA. .,Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, Oregon State University, 103 Milam Hall, Corvallis, OR, 97331, USA.
| |
Collapse
|
15
|
Tian H, Wang ZY. Zinc Chelator Inhibits Zinc-Induced Islet Amyloid Polypeptide Deposition and Apoptosis in INS-1 Cells. Biol Trace Elem Res 2019; 189:201-208. [PMID: 30027367 DOI: 10.1007/s12011-018-1444-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
Abstract
Amyloid deposition and beta cell apoptosis are characteristic pathological features of type 2 diabetes mellitus (DM). Islet amyloid polypeptide (IAPP) is the most abundant component of amyloid deposition. Monomeric IAPP does not form amyloid deposition, but the fibrous IAPP may aggregate and form amyloid deposits. Previous studies have shown that zinc is closely related to IAPP deposition through crosslink with monomeric IAPP into fibrous aggregates. In this study, we aimed to investigate whether chelating zinc could inhibit zinc-induced amyloid deposits and apoptosis of islet beta cell. N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) is a specific chelator of zinc, with membrane permeability. It could effectively reduce the concentration of intracellular zinc. So, we used TPEN to treat hIAPP-transfected INS-1 cells. By MTT assay, the concentration (1 μM) and incubation time (12 h) of TPEN without affecting cell viability were determined. The results showed that TPEN reduced zinc-induced IAPP deposition in the culture system. Furthermore, we analyzed the effect of zinc and TPEN on the apoptosis and insulin level. The results showed that TPEN could reverse zinc-induced INS-1 cell apoptosis and insulin secretion. And the anti-apoptosis effects of TPEN is related to extracellular regulated protein kinases (ERK)/c-jun N-terminal kinase (JNK) signaling pathway. The present data indicated that chelating zinc could inhibit zinc-induced amyloid deposition and beta cell apoptosis. Thus, maintaining zinc homeostasis in islet beta cell might become a useful strategy for DM therapy.
Collapse
Affiliation(s)
- He Tian
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of education, China Medical University, Shenyang, 110122, People's Republic of China
- Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Zhan-You Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of education, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
16
|
Dover EN, Patel NY, Stýblo M. Impact of in vitro heavy metal exposure on pancreatic β-cell function. Toxicol Lett 2018; 299:137-144. [PMID: 30300733 PMCID: PMC6214754 DOI: 10.1016/j.toxlet.2018.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 11/24/2022]
Abstract
Susceptibility to type-2 diabetes mellitus (DM) is determined, in part, by a variety of environmental factors, including exposure to metals. Heavy metals including inorganic arsenic (iAs), zinc (Zn), manganese (Mn), and cadmium (Cd) have been reported to affect glucose homeostasis or DM risk in population-based and/or laboratory studies. Previous evidence from our lab has shown that iAs can increase DM risk by impairing mitochondrial metabolism, one of the key steps in the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. The goal of the current study was to compare the effects of iAs on GSIS and mitochondrial function in INS-1 832/13 β-cells with those of Cd, Mn, and Zn, and to evaluate effects of binary mixtures of these metals. As expected, 24-hour exposure to iAs (arsenite, ≥1 μM) significantly inhibited GSIS as did Cd (5 μM) and Mn (12.5, 25, or 50 μM). Zn had no effects on GSIS at concentrations up to 50 μM. Mitochondrial function was assessed by measuring oxygen consumption rate (OCR) after glucose stimulation and during simulated mitochondrial stress. While both iAs and Mn impaired mitochondrial function (inhibiting OCR, maximal respiration, and/or spare respiratory capacity of mitochondria), no significant effects were found in cells exposed to Cd. Interestingly, no additive or synergistic effects on GSIS or OCR were observed in binary mixtures of iAs with either Mn or Cd. These data suggest that Mn, like iAs, may inhibit GSIS by impairing mitochondrial function, whereas Cd may target other mechanisms that regulate GSIS in β-cells.
Collapse
Affiliation(s)
- E Nicole Dover
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Naishal Y Patel
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Cruz KJC, de Oliveira ARS, Morais JBS, Severo JS, Mendes PMV, de Sousa Melo SR, de Sousa GS, Marreiro DDN. Zinc and Insulin Resistance: Biochemical and Molecular Aspects. Biol Trace Elem Res 2018; 186:407-412. [PMID: 29564656 DOI: 10.1007/s12011-018-1308-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/14/2018] [Indexed: 01/31/2023]
Abstract
Studies have shown the participation of minerals in mechanisms involved in the pathogenesis of insulin resistance. Zinc, in particular, seems to play an important role in the secretion and action of this hormone. Therefore, the aim of this review is to understand the role of zinc in increasing insulin sensitivity. We conducted a search of articles published in the PubMed and ScienceDirect database selected from March 2016 to February 2018, using the keywords "zinc," "insulin," "insulin resistance," "insulin sensitivity," and "supplementation." Following the eligibility criteria were selected 53 articles. The scientific evidences presented in this review show the importance of zinc and their carrier proteins in the synthesis and secretion of insulin, as well as in the signaling pathway of action of this hormone. Zinc deficiency is associated with glucose intolerance and insulin resistance; however, the effectiveness of the intervention with the zinc supplementation is still inconclusive.
Collapse
Affiliation(s)
- Kyria Jayanne Clímaco Cruz
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Ana Raquel Soares de Oliveira
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Jennifer Beatriz Silva Morais
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Juliana Soares Severo
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Priscyla Maria Vieira Mendes
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | | | | | - Dilina do Nascimento Marreiro
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil.
| |
Collapse
|
18
|
Cooper-Capetini V, de Vasconcelos DAA, Martins AR, Hirabara SM, Donato J, Carpinelli AR, Abdulkader F. Zinc Supplementation Improves Glucose Homeostasis in High Fat-Fed Mice by Enhancing Pancreatic β-Cell Function. Nutrients 2017; 9:nu9101150. [PMID: 29053582 PMCID: PMC5691766 DOI: 10.3390/nu9101150] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential component of the insulin granule and it possibly modulates insulin secretion and signaling. Since insulin resistance is a hallmark in the development of type 2 diabetes mellitus, this study aimed at investigating if zinc supplementation is able to improve glucose tolerance and β-cell function in a model of insulin resistance. Male C57BL/6 mice were distributed in four groups according to the diet: normal fat (NF); normal fat supplemented with ZnCl2 (NFZ); high-fat (HF); and, high-fat chow supplemented with ZnCl2 (HFZ). Intraperitoneal glucose (ipGTT) and insulin (ipITT) tolerance, glycemia, insulinemia, HOMA-IR, and HOMA-β were determined after 15 weeks in each diet. Glucose-stimulated insulin secretion (GSIS) was investigated in isolated islets. The insulin effect on glucose uptake, metabolism, and signaling was investigated in soleus muscle. ZnCl2 did not affect body mass or insulin sensitivity as assessed by ipITT, HOMA-IR, muscle glucose metabolism, and Akt and GSK3-β phosphorylation. However, glucose tolerance, HOMA-β, and GSIS were significantly improved by ZnCl2 supplementation. Therefore, ZnCl2 supplementation improves glucose homeostasis in high fat-fed mice by a mechanism that enhances β-cell function, rather than whole-body or muscle insulin sensitivity.
Collapse
Affiliation(s)
- Vinícius Cooper-Capetini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | | | - Amanda Roque Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo 05508-000, Brazil.
| | - José Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | - Fernando Abdulkader
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
19
|
Hirata T, Yoshitomi T, Inoue M, Iigo Y, Matsumoto K, Kubota K, Shinagawa A. Pathological and gene expression analysis of a polygenic diabetes model, NONcNZO10/LtJ mice. Gene 2017; 629:52-58. [PMID: 28760554 DOI: 10.1016/j.gene.2017.07.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/19/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023]
Abstract
The NONcNZO10/LtJ mouse is a polygenic model of type-2 diabetes (T2D) that shows moderate obesity and diabetes, and is regarded as a good model reflective of the conditions of human T2D. In this study, we analyzed pathological changes of pancreases with the progress of time by using histopathology and gene expression analysis, including microRNA. A number of gene expression changes associated with decreased insulin secretion (possibly regulated by miR-29a/b) were observed, and zinc homeostasis (Slc30a8, Mt1 and Mt2) or glucose metabolism (Slc2a2) was suggested as being the candidate mechanism of pancreas failure in NONcNZO10/LtJ mice. These results demonstrate NONcNZO10/LtJ mice have a complex pathogenic mechanism of diabetes, and moreover, this fundamental information of NONcNZO10/LtJ mice would offer the opportunity for research and development of a novel antidiabetic drug.
Collapse
Affiliation(s)
- Tsuyoshi Hirata
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Tomomi Yoshitomi
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Minoru Inoue
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yutaka Iigo
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Koji Matsumoto
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazuishi Kubota
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Akira Shinagawa
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
20
|
Genomic instability related to zinc deficiency and excess in an in vitro model: is the upper estimate of the physiological requirements recommended for children safe? In Vitro Cell Dev Biol Anim 2017; 53:586-592. [PMID: 28550622 DOI: 10.1007/s11626-017-0146-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
Abstract
Micronutrients are important for the prevention of degenerative diseases due to their role in maintaining genomic stability. Therefore, there is international concern about the need to redefine the optimal mineral and vitamin requirements to prevent DNA damage. We analyzed the cytostatic, cytotoxic, and genotoxic effect of in vitro zinc supplementation to determine the effects of zinc deficiency and excess and whether the upper estimate of the physiological requirement recommended for children is safe. To achieve zinc deficiency, DMEM/Ham's F12 medium (HF12) was chelated (HF12Q). Lymphocytes were isolated from healthy female donors (age range, 5-10 yr) and cultured for 7 d as follows: negative control (HF12, 60 μg/dl ZnSO4); deficient (HF12Q, 12 μg/dl ZnSO4); lower level (HF12Q + 80 μg/dl ZnSO4); average level (HF12Q + 180 μg/dl ZnSO4); upper limit (HF12Q + 280 μg/dl ZnSO4); and excess (HF12Q + 380 μg/dl ZnSO4). The comet (quantitative analysis) and cytokinesis-block micronucleus cytome assays were used. Differences were evaluated with Kruskal-Wallis and ANOVA (p < 0.05). Olive tail moment, tail length, micronuclei frequency, and apoptotic and necrotic percentages were significantly higher in the deficient, upper limit, and excess cultures compared with the negative control, lower, and average limit ones. In vitro zinc supplementation at the lower and average limit (80 and 180 μg/dl ZnSO4) of the physiological requirement recommended for children proved to be the most beneficial in avoiding genomic instability, whereas the deficient, upper limit, and excess (12, 280, and 380 μg/dl) cultures increased DNA and chromosomal damage and apoptotic and necrotic frequencies.
Collapse
|
21
|
Cherrak SA, Mokhtari-Soulimane N, Berroukeche F, Bensenane B, Cherbonnel A, Merzouk H, Elhabiri M. In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation. PLoS One 2016; 11:e0165575. [PMID: 27788249 PMCID: PMC5082868 DOI: 10.1371/journal.pone.0165575] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/13/2016] [Indexed: 01/24/2023] Open
Abstract
Natural flavonoids such as quercetin, (+)catechin and rutin as well as four methoxylated derivatives of quercetin used as models were investigated to elucidate their impact on the oxidant and antioxidant status of human red blood cells (RBCs). The impact of these compounds against metal toxicity was studied as well as their antiradical activities with DPPH assay. Antihemolytic experiments were conducted on quercetin, (+)catechin and rutin with excess of Fe, Cu and Zn (400 μM), and the oxidant (malondialdehyde, carbonyl proteins) and antioxidant (reduced glutathione, catalase activity) markers were evaluated. The results showed that Fe and Zn have the highest prooxidant effect (37 and 33% of hemolysis, respectively). Quercetin, rutin and (+)catechin exhibited strong antioxidant properties toward Fe, but this effect was decreased with respect to Zn ions. However, the Cu showed a weak antioxidant effect at the highest flavonoid concentration (200 μM), while a prooxidant effect was observed at the lowest flavonoid concentration (100 μM). These results are in agreement with the physico-chemical and antiradical data which demonstrated that binding of the metal ions (for FeNTA: (+)Catechin, KLFeNTA = 1.6(1) × 106 M-1 > Rutin, KLFeNTA = 2.0(9) × 105 M-1 > Quercetin, KLFeNTA = 1.0(7) × 105 M-1 > Q35OH, KLFeNTA = 6.3(8.7) × 104 M-1 > Quercetin3’4’OH and Quercetin 3OH, KLFeNTA ~ 2 × 104 M-1) reflects the (anti)oxidant status of the RBCs. This study reveals that flavonoids have both prooxidant and antioxidant activity depending on the nature and concentration of the flavonoids and metal ions.
Collapse
Affiliation(s)
- Sabri Ahmed Cherrak
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou Bekr Belkaid University, 13000 Tlemcen, Algeria
| | - Nassima Mokhtari-Soulimane
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou Bekr Belkaid University, 13000 Tlemcen, Algeria
- * E-mail: (NMS); (ME)
| | - Farid Berroukeche
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou Bekr Belkaid University, 13000 Tlemcen, Algeria
| | - Bachir Bensenane
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou Bekr Belkaid University, 13000 Tlemcen, Algeria
| | - Angéline Cherbonnel
- Laboratory of Bioorganic and Medicinal Chemistry, UMR 7509 CNRS, ECPM, 25 rue Becquerel, 67200 Strasbourg, France
| | - Hafida Merzouk
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou Bekr Belkaid University, 13000 Tlemcen, Algeria
| | - Mourad Elhabiri
- Laboratory of Bioorganic and Medicinal Chemistry, UMR 7509 CNRS, ECPM, 25 rue Becquerel, 67200 Strasbourg, France
- * E-mail: (NMS); (ME)
| |
Collapse
|
22
|
The zinc transporter ZNT3 co-localizes with insulin in INS-1E pancreatic beta cells and influences cell survival, insulin secretion capacity, and ZNT8 expression. Biometals 2016; 29:287-98. [DOI: 10.1007/s10534-016-9915-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/05/2016] [Indexed: 01/21/2023]
|
23
|
Maxel T, Smidt K, Larsen A, Bennetzen M, Cullberg K, Fjeldborg K, Lund S, Pedersen SB, Rungby J. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes. BMC OBESITY 2015; 2:46. [PMID: 26623077 PMCID: PMC4657294 DOI: 10.1186/s40608-015-0076-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022]
Abstract
Background The expansion and function of adipose tissue are important during the development of insulin resistance and inflammation in obesity. Zinc dyshomeostasis is common in obese individuals. In the liver, zinc influx transporter ZIP14, affects proliferation and glucose metabolism but the role of ZIP14 in adipose tissue is still unknown. This study investigates ZIP14 gene expression in human adipose tissue before and after weight loss as well as the regulation of ZIP14 during early adipogenesis. Methods Fourteen obese individuals were investigated before and after a 10 week weight loss intervention and compared to 14 non-obese controls. Gene expressions of ZIP14 and peroxisome proliferator-activated receptor γ (PPARγ) were measured in subcutaneous adipose tissue and correlated with metabolic and inflammatory markers. Further, we investigated gene expression of ZIP14 and PPARγ during early adipogenesis of 3T3-L1 pre-adipocytes, together with an in silico analysis of PPARγ binding motifs in the promoter sequence of ZIP14. Results ZIP14 was down-regulated in obese individuals compared to non-obese controls (p = 0.0007) and was up-regulated after weight loss (p = 0.0005). Several metabolic markers of clinical importance, including body mass index, triglyceride, and insulin resistance, were inversely correlated with ZIP14. During early adipogensis an up-regulation of ZIP14 gene expression was found. PPARγ gene expression was positively correlated with the ZIP14 gene expression in both adipose tissue and during adipogenesis. However, in silico analysis revealed that the ZIP14 promoter does not contain PPARγ-binding motifs. Conclusions We hypothesize that ZIP14-mediated zinc influx might directly influence PPARγ activity and that ZIP14 may regulate expansion and function of adipose tissue and serve as a potential biomarker for metabolic stress. Electronic supplementary material The online version of this article (doi:10.1186/s40608-015-0076-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trine Maxel
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Kamille Smidt
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark ; Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Marianne Bennetzen
- Department of Endocrinology (MEA), Aarhus University Hospital, Aarhus, Denmark
| | - Karina Cullberg
- Department of Endocrinology (MEA), Aarhus University Hospital, Aarhus, Denmark
| | - Karen Fjeldborg
- Department of Endocrinology (MEA), Aarhus University Hospital, Aarhus, Denmark
| | - Sten Lund
- Department of Endocrinology (MEA), Aarhus University Hospital, Aarhus, Denmark
| | - Steen B Pedersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark ; Department of Endocrinology (MEA), Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Rungby
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark ; Department of Medicine, Center for Diabetes Research, Gentofte University Hospital, Hellerup, Denmark
| |
Collapse
|
24
|
Moore WT, Bowser SM, Fausnacht DW, Staley LL, Suh KS, Liu D. Beta Cell Function and the Nutritional State: Dietary Factors that Influence Insulin Secretion. Curr Diab Rep 2015; 15:76. [PMID: 26294335 DOI: 10.1007/s11892-015-0650-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approximately 366 million people worldwide have been diagnosed with type-2 diabetes (T2D). Chronic insulin resistance, decreased functional β-cell mass, and elevated blood glucose are defining characteristics of T2D. Great advances have been made in understanding the pathogenesis of T2D with respect to the effects of dietary macronutrient composition and energy intake on β-cell physiology and glucose homeostasis. It has been further established that obesity is a leading pathogenic factor for developing insulin resistance. However, insulin resistance may not progress to T2D unless β-cells are unable to secret an adequate amount of insulin to compensate for decreased insulin sensitivity. Therefore, pancreatic β-cell dysfunction plays an important role in the development of overt diabetes. This paper reviews recent research findings on the effects of several micronutrients (zinc, vitamin D, iron, vitamin A), leucine, and the phytochemical, genistein on pancreatic β-cell physiology with emphasis on their effects on insulin secretion, specifically in the context of T2D.
Collapse
Affiliation(s)
- William T Moore
- Department of Human Nutrition, Foods and Exercises, College of Agricultural and Life Sciences, Virginia Tech Corporate Research Center, 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | | | | | | | | | | |
Collapse
|
25
|
Liu Y, Batchuluun B, Ho L, Zhu D, Prentice KJ, Bhattacharjee A, Zhang M, Pourasgari F, Hardy AB, Taylor KM, Gaisano H, Dai FF, Wheeler MB. Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic β Cells: ROLES IN REGULATING CYTOSOLIC ZINC HOMEOSTASIS AND INSULIN SECRETION. J Biol Chem 2015; 290:18757-69. [PMID: 25969539 PMCID: PMC4513131 DOI: 10.1074/jbc.m115.640524] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
Zinc plays an essential role in the regulation of pancreatic β cell function, affecting important processes including insulin biosynthesis, glucose-stimulated insulin secretion, and cell viability. Mutations in the zinc efflux transport protein ZnT8 have been linked with both type 1 and type 2 diabetes, further supporting an important role for zinc in glucose homeostasis. However, very little is known about how cytosolic zinc is controlled by zinc influx transporters (ZIPs). In this study, we examined the β cell and islet ZIP transcriptome and show consistent high expression of ZIP6 (Slc39a6) and ZIP7 (Slc39a7) genes across human and mouse islets and MIN6 β cells. Modulation of ZIP6 and ZIP7 expression significantly altered cytosolic zinc influx in pancreatic β cells, indicating an important role for ZIP6 and ZIP7 in regulating cellular zinc homeostasis. Functionally, this dysregulated cytosolic zinc homeostasis led to impaired insulin secretion. In parallel studies, we identified both ZIP6 and ZIP7 as potential interacting proteins with GLP-1R by a membrane yeast two-hybrid assay. Knock-down of ZIP6 but not ZIP7 in MIN6 β cells impaired the protective effects of GLP-1 on fatty acid-induced cell apoptosis, possibly via reduced activation of the p-ERK pathway. Therefore, our data suggest that ZIP6 and ZIP7 function as two important zinc influx transporters to regulate cytosolic zinc concentrations and insulin secretion in β cells. In particular, ZIP6 is also capable of directly interacting with GLP-1R to facilitate the protective effect of GLP-1 on β cell survival.
Collapse
Affiliation(s)
- Ying Liu
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Battsetseg Batchuluun
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Louisa Ho
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Dan Zhu
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Kacey J Prentice
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alpana Bhattacharjee
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Ming Zhang
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Farzaneh Pourasgari
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alexandre B Hardy
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Kathryn M Taylor
- the Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VIIth Avenue, Cardiff CF10 3NB United Kingdom
| | - Herbert Gaisano
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Feihan F Dai
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Michael B Wheeler
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| |
Collapse
|
26
|
Ma X, Duan H, Liu J, Mo Q, Sun C, Ma D, Wang J. Effect of LIV1 on the sensitivity of ovarian cancer cells to trichostatin A. Oncol Rep 2014; 33:893-8. [PMID: 25420545 DOI: 10.3892/or.2014.3622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/31/2014] [Indexed: 11/05/2022] Open
Abstract
In a previous study, we used a functional gene screen approach to identify the key genes responsible for the tumor-selective action of trichostatin A (TSA), of which LIV1, a novel zinc transporter, was isolated by its marked ability to confer resistance against TSA-induced apoptosis. The aim of the present study was to investigate the effect of LIV1 expression on the sensitivity of ovarian cancer cells to TSA. We tested the induction of LIV1 in ovarian cancer cells and clinical samples after TSA treatment by real-time PCR and western blot analysis. We investigated the effect of LIV1 expression on the sensitivity of ovarian cancer cells to TSA by MTT assay, flow cytometry and colony forming assays. Finally, we analyzed the mechanism of LIV1 in ovarian cancer cells by western blot analysis. We found that the levels of LIV1 mRNA and protein were significantly upregulated after TSA treatment. The viability and colony forming rates of the ovarian cancer cells transfected with AS-LIV1 (pCEP4 carrying antisense LIV1 cDNA) were obviously higher than the rates of the control as detected by MTT and colony forming assays, which could be reversed by FL-LIV1 (pCEP4 carrying full-length LIV1 cDNA). The apoptotic rate of the AS-LIV1 cells was markedly lower than the rate of the control as determined FACS. Using western blot analysis, we demostrated that the inhibition of TSA-induced apoptosis by knockdown of LIV1 might be associated with decreased endogenous levels of Bcl-2, enhanced levels of Bax and cleavage of procaspase-3. The present study suggests that the drug resistance of ovarian cancer cells to TSA may be related to expression of the LIV1 gene, and targeting LIV1 could be exploited as a novel strategy to more effectively kill ovarian cancer cells.
Collapse
Affiliation(s)
- Xiaoli Ma
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Hua Duan
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Jia Liu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qingqing Mo
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chengjuan Sun
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiandong Wang
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| |
Collapse
|
27
|
Nygaard SB, Lund NS, Larsen A, Pedersen N, Rungby J, Smidt K. Exogenous metallothionein potentiates the insulin response at normal glucose concentrations in INS-1E beta-cells without disturbing intracellular ZnT8 expression. Basic Clin Pharmacol Toxicol 2014; 116:173-7. [PMID: 24964825 DOI: 10.1111/bcpt.12287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/10/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Sanne B Nygaard
- Department of Biomedicine - Pharmacology, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|