1
|
Yao S, Marron MM, Farsijani S, Miljkovic I, Tseng GC, Shah RV, Murthy VL, Newman AB. Circulating metabolomic biomarkers of 5-year body weight and composition change in a biracial cohort of community-dwelling older adults. GeroScience 2025:10.1007/s11357-024-01490-9. [PMID: 39786684 DOI: 10.1007/s11357-024-01490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Unintentional weight loss in older populations is linked to greater mortality and morbidity risks. This study aims to understand the metabolic mechanisms of unintentional weight loss and their relationship with body composition changes in older adults. We investigated plasma metabolite associations with weight and body composition changes over 5 years in 1335 participants (mean age 73.4 years at Year 1, 51% women, and 33% Black) from the Health, Aging and Body Composition (Health ABC) study. Multinomial logistic regressions were used to examine associations of the 442 metabolites with weight loss > 5% over 5 years with/without an intention, weight gain > 5%, and fluctuating weight relative to weight stability. Metabolite associations with unintentional weight loss differed from other weight change patterns. Lower levels of essential amino acids, phospholipids, long-chain polyunsaturated triglycerides, cholesterol esters, and uridine were associated with higher odds of unintentional weight loss versus weight stability after adjusting for age, sex, race, and Year 1 BMI categories. Losses in fat mass and muscle mass each attenuated > 20% of the associations between many metabolites, such as phospholipids and essential amino acids, and unintentional weight loss. DXA whole-body fat mass loss (mean 3% annually) further attenuated 9 metabolite associations by > 50% after CT muscle loss (mean 2% annually) adjustment. Lipids and amino acids related to energy and protein balance were associated with unintentional weight loss in older adults. Fat and muscle mass losses partially attenuated these associations, suggesting connections of these metabolic pathways with muscle, and particularly adiposity dynamics.
Collapse
Affiliation(s)
- Shanshan Yao
- Center for Aging and Population Health, School of Public Health, University of Pittsburgh, 310 BelPB, 130 N. Bellefield Avenue, Pittsburgh, PA, 15213, USA
| | - Megan M Marron
- Center for Aging and Population Health, School of Public Health, University of Pittsburgh, 310 BelPB, 130 N. Bellefield Avenue, Pittsburgh, PA, 15213, USA
| | - Samaneh Farsijani
- Center for Aging and Population Health, School of Public Health, University of Pittsburgh, 310 BelPB, 130 N. Bellefield Avenue, Pittsburgh, PA, 15213, USA
| | - Iva Miljkovic
- Center for Aging and Population Health, School of Public Health, University of Pittsburgh, 310 BelPB, 130 N. Bellefield Avenue, Pittsburgh, PA, 15213, USA
| | - George C Tseng
- Center for Aging and Population Health, School of Public Health, University of Pittsburgh, 310 BelPB, 130 N. Bellefield Avenue, Pittsburgh, PA, 15213, USA
| | - Ravi V Shah
- Vanderbilt University Medical Center, 2525 West End Ave, Suite 300, Nashville, TN, USA.
| | - Venkatesh L Murthy
- University of Michigan, 1338 Cardiovascular Center, 1500 E. Medical Center Dr, SPC 5873, Ann Arbor, MI, 48105, USA.
| | - Anne B Newman
- Center for Aging and Population Health, School of Public Health, University of Pittsburgh, 310 BelPB, 130 N. Bellefield Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
2
|
Wang S, Myers AJ, Irvine EB, Wang C, Maiello P, Rodgers MA, Tomko J, Kracinovsky K, Borish HJ, Chao MC, Mugahid D, Darrah PA, Seder RA, Roederer M, Scanga CA, Lin PL, Alter G, Fortune SM, Flynn JL, Lauffenburger DA. Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. Cell Syst 2024; 15:1278-1294.e4. [PMID: 39504969 DOI: 10.1016/j.cels.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
Analysis of multi-modal datasets can identify multi-scale interactions underlying biological systems but can be beset by spurious connections due to indirect impacts propagating through an unmapped biological network. For example, studies in macaques have shown that Bacillus Calmette-Guerin (BCG) vaccination by an intravenous route protects against tuberculosis, correlating with changes across various immune data modes. To eliminate spurious correlations and identify critical immune interactions in a public multi-modal dataset (systems serology, cytokines, and cytometry) of vaccinated macaques, we applied Markov fields (MFs), a data-driven approach that explains vaccine efficacy and immune correlations via multivariate network paths, without requiring large numbers of samples (i.e., macaques) relative to multivariate features. We find that integrating multiple data modes with MFs helps remove spurious connections. Finally, we used the MF to predict outcomes of perturbations at various immune nodes, including an experimentally validated B cell depletion that induced network-wide shifts without reducing vaccine protection.
Collapse
Affiliation(s)
- Shu Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amy J Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Edward B Irvine
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Chuangqi Wang
- Department of Immunology and Microbiology, University of Colorado, Anschuntz Medical Campus, Aurora, CO 80045, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael C Chao
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Douaa Mugahid
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Philana Ling Lin
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15620, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sarah M Fortune
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Yao S, Marron MM, Farsijani S, Miljkovic I, Tseng GC, Shah RV, Murthy VL, Newman AB. Metabolomic characterization of unintentional weight loss among community-dwelling older Black and White men and women. Aging Cell 2024:e14410. [PMID: 39544124 DOI: 10.1111/acel.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
This study aims to understand the metabolic mechanisms of unintentional weight loss in older adults. We investigated plasma metabolite associations of subsequent weight change over 2 years in 1536 previously weight stable participants (mean age 74.6 years, 50% women, 35% Black) from the Health, Aging and Body Composition (Health ABC) Study. Multinomial logistic regressions were used to examine associations of the 442 metabolites with weight loss with/without an intention and weight gain >3% annually relative to weight stability. The metabolite associations of unintentional weight loss differed from those of intentional weight loss and weight gain. Lower levels of aromatic amino acids, phospholipids, long-chain poly-unsaturated triglycerides, and higher levels of amino acid derivatives, poly-unsaturated fatty acids, and carbohydrates were associated with higher odds of unintentional weight loss after adjusting for age, sex, race, and BMI categories. Prevalent diseases attenuated four and lower mid-thigh muscle mass and poorer appetite each attenuated 2 of 77 identified metabolite associations by >20%, respectively. Other factors (e.g., energy expenditure, diet, and medication) attenuated all associations by <20%. While 16 metabolite associations were attenuated by 20%-48% when adjusting for all these risk factors, 47 metabolite associations remained significant. Altered amino acid metabolism, impaired mitochondrial fatty acid oxidation, and inflammaging implicated by identified metabolites appear to precede unintentional weight loss in Health ABC older adults. Furthermore, these pathways seem to be associated with prevalent diseases especially diabetes, lower muscle mass, and poorer appetite.
Collapse
Affiliation(s)
- Shanshan Yao
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Iva Miljkovic
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Ravi V Shah
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Anne B Newman
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Wang S, Myers AJ, Irvine EB, Wang C, Maiello P, Rodgers MA, Tomko J, Kracinovsky K, Borish HJ, Chao MC, Mugahid D, Darrah PA, Seder RA, Roederer M, Scanga CA, Lin PL, Alter G, Fortune SM, Flynn JL, Lauffenburger DA. Markov Field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589359. [PMID: 39554028 PMCID: PMC11565837 DOI: 10.1101/2024.04.13.589359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Analysis of multi-modal datasets can identify multi-scale interactions underlying biological systems, but can be beset by spurious connections due to indirect impacts propagating through an unmapped biological network. For example, studies in macaques have shown that BCG vaccination by an intravenous route protects against tuberculosis, correlating with changes across various immune data modes. To eliminate spurious correlations and identify critical immune interactions in a public multi-modal dataset (systems serology, cytokines, cytometry) of vaccinated macaques, we applied Markov Fields (MF), a data-driven approach that explains vaccine efficacy and immune correlations via multivariate network paths, without requiring large numbers of samples (i.e. macaques) relative to multivariate features. Furthermore, we find that integrating multiple data modes with MFs helps to remove spurious connections. Finally, we used the MF to predict outcomes of perturbations at various immune nodes, including a B-cell depletion that induced network-wide shifts without reducing vaccine protection, which we validated experimentally.
Collapse
Affiliation(s)
- Shu Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amy J Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Edward B Irvine
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Chuangqi Wang
- Department of Immunology and Microbiology, University of Colorado, Anschuntz Medical Campus, Aurora, CO 80045, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael C Chao
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Douaa Mugahid
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Philana Ling Lin
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15620, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sarah M Fortune
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Kundu P, Beura S, Mondal S, Das AK, Ghosh A. Machine learning for the advancement of genome-scale metabolic modeling. Biotechnol Adv 2024; 74:108400. [PMID: 38944218 DOI: 10.1016/j.biotechadv.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/13/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Constraint-based modeling (CBM) has evolved as the core systems biology tool to map the interrelations between genotype, phenotype, and external environment. The recent advancement of high-throughput experimental approaches and multi-omics strategies has generated a plethora of new and precise information from wide-ranging biological domains. On the other hand, the continuously growing field of machine learning (ML) and its specialized branch of deep learning (DL) provide essential computational architectures for decoding complex and heterogeneous biological data. In recent years, both multi-omics and ML have assisted in the escalation of CBM. Condition-specific omics data, such as transcriptomics and proteomics, helped contextualize the model prediction while analyzing a particular phenotypic signature. At the same time, the advanced ML tools have eased the model reconstruction and analysis to increase the accuracy and prediction power. However, the development of these multi-disciplinary methodological frameworks mainly occurs independently, which limits the concatenation of biological knowledge from different domains. Hence, we have reviewed the potential of integrating multi-disciplinary tools and strategies from various fields, such as synthetic biology, CBM, omics, and ML, to explore the biochemical phenomenon beyond the conventional biological dogma. How the integrative knowledge of these intersected domains has improved bioengineering and biomedical applications has also been highlighted. We categorically explained the conventional genome-scale metabolic model (GEM) reconstruction tools and their improvement strategies through ML paradigms. Further, the crucial role of ML and DL in omics data restructuring for GEM development has also been briefly discussed. Finally, the case-study-based assessment of the state-of-the-art method for improving biomedical and metabolic engineering strategies has been elaborated. Therefore, this review demonstrates how integrating experimental and in silico strategies can help map the ever-expanding knowledge of biological systems driven by condition-specific cellular information. This multiview approach will elevate the application of ML-based CBM in the biomedical and bioengineering fields for the betterment of society and the environment.
Collapse
Affiliation(s)
- Pritam Kundu
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Satyajit Beura
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Suman Mondal
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
6
|
Murthy VL, Mosley JD, Perry AS, Jacobs DR, Tanriverdi K, Zhao S, Sawicki KT, Carnethon M, Wilkins JT, Nayor M, Das S, Abel ED, Freedman JE, Clish CB, Shah RV. Metabolic liability for weight gain in early adulthood. Cell Rep Med 2024; 5:101548. [PMID: 38703763 PMCID: PMC11148768 DOI: 10.1016/j.xcrm.2024.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/27/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
While weight gain is associated with a host of chronic illnesses, efforts in obesity have relied on single "snapshots" of body mass index (BMI) to guide genetic and molecular discovery. Here, we study >2,000 young adults with metabolomics and proteomics to identify a metabolic liability to weight gain in early adulthood. Using longitudinal regression and penalized regression, we identify a metabolic signature for weight liability, associated with a 2.6% (2.0%-3.2%, p = 7.5 × 10-19) gain in BMI over ≈20 years per SD higher score, after comprehensive adjustment. Identified molecules specified mechanisms of weight gain, including hunger and appetite regulation, energy expenditure, gut microbial metabolism, and host interaction with external exposure. Integration of longitudinal and concurrent measures in regression with Mendelian randomization highlights the complexity of metabolic regulation of weight gain, suggesting caution in interpretation of epidemiologic or genetic effect estimates traditionally used in metabolic research.
Collapse
Affiliation(s)
- Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Jonathan D Mosley
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kahraman Tanriverdi
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Zhao
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | - Matthew Nayor
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Saumya Das
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane E Freedman
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
7
|
Corbin LJ, Hughes DA, Bull CJ, Vincent EE, Smith ML, McConnachie A, Messow CM, Welsh P, Taylor R, Lean MEJ, Sattar N, Timpson NJ. The metabolomic signature of weight loss and remission in the Diabetes Remission Clinical Trial (DiRECT). Diabetologia 2024; 67:74-87. [PMID: 37878066 PMCID: PMC10709482 DOI: 10.1007/s00125-023-06019-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/04/2023] [Indexed: 10/26/2023]
Abstract
AIMS/HYPOTHESIS High-throughput metabolomics technologies in a variety of study designs have demonstrated a consistent metabolomic signature of overweight and type 2 diabetes. However, the extent to which these metabolomic patterns can be reversed with weight loss and diabetes remission has been weakly investigated. We aimed to characterise the metabolomic consequences of a weight-loss intervention in individuals with type 2 diabetes. METHODS We analysed 574 fasted serum samples collected within an existing RCT (the Diabetes Remission Clinical Trial [DiRECT]) (N=298). In the trial, participating primary care practices were randomly assigned (1:1) to provide either a weight management programme (intervention) or best-practice care by guidelines (control) treatment to individuals with type 2 diabetes. Here, metabolomics analysis was performed on samples collected at baseline and 12 months using both untargeted MS and targeted 1H-NMR spectroscopy. Multivariable regression models were fitted to evaluate the effect of the intervention on metabolite levels. RESULTS Decreases in branched-chain amino acids, sugars and LDL triglycerides, and increases in sphingolipids, plasmalogens and metabolites related to fatty acid metabolism were associated with the intervention (Holm-corrected p<0.05). In individuals who lost more than 9 kg between baseline and 12 months, those who achieved diabetes remission saw greater reductions in glucose, fructose and mannose, compared with those who did not achieve remission. CONCLUSIONS/INTERPRETATION We have characterised the metabolomic effects of an integrated weight management programme previously shown to deliver weight loss and diabetes remission. A large proportion of the metabolome appears to be modifiable. Patterns of change were largely and strikingly opposite to perturbances previously documented with the development of type 2 diabetes. DATA AVAILABILITY The data used for analysis are available on a research data repository ( https://researchdata.gla.ac.uk/ ) with access given to researchers subject to appropriate data sharing agreements. Metabolite data preparation, data pre-processing, statistical analyses and figure generation were performed in R Studio v.1.0.143 using R v.4.0.2. The R code for this study has been made publicly available on GitHub at: https://github.com/lauracorbin/metabolomics_of_direct .
Collapse
Affiliation(s)
- Laura J Corbin
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - David A Hughes
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline J Bull
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | - Madeleine L Smith
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alex McConnachie
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Claudia-Martina Messow
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Paul Welsh
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Roy Taylor
- Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michael E J Lean
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Drouard G, Hagenbeek FA, Whipp AM, Pool R, Hottenga JJ, Jansen R, Hubers N, Afonin A, Willemsen G, de Geus EJC, Ripatti S, Pirinen M, Kanninen KM, Boomsma DI, van Dongen J, Kaprio J. Longitudinal multi-omics study reveals common etiology underlying association between plasma proteome and BMI trajectories in adolescent and young adult twins. BMC Med 2023; 21:508. [PMID: 38129841 PMCID: PMC10740308 DOI: 10.1186/s12916-023-03198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remains underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. METHODS Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N = 651) and the Netherlands Twin Register (NTR) (N = 665). Follow-up comprised 4 BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated in latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. In FinnTwin12, the sources of genetic and environmental variation underlying the protein abundances were quantified by twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) applying mixed-effects models and correlation networks. RESULTS We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 7 and 3 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. CONCLUSIONS Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.
Collapse
Affiliation(s)
- Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Fiona A Hagenbeek
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Alyce M Whipp
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Aleksei Afonin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Beuchel C, Dittrich J, Becker S, Kirsten H, Tönjes A, Kovacs P, Stumvoll M, Loeffler M, Teren A, Thiery J, Isermann B, Ceglarek U, Scholz M. An atlas of genome-wide gene expression and metabolite associations and possible mediation effects towards body mass index. J Mol Med (Berl) 2023; 101:1305-1321. [PMID: 37672078 PMCID: PMC10560167 DOI: 10.1007/s00109-023-02362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Investigating the cross talk of different omics layers is crucial to understand molecular pathomechanisms of metabolic diseases like obesity. Here, we present a large-scale association meta-analysis of genome-wide whole blood and peripheral blood mononuclear cell (PBMC) gene expressions profiled with Illumina HT12v4 microarrays and metabolite measurements from dried blood spots (DBS) characterized by targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) in three large German cohort studies with up to 7706 samples. We found 37,295 associations comprising 72 amino acids (AA) and acylcarnitine (AC) metabolites (including ratios) and 8579 transcripts. We applied this catalogue of associations to investigate the impact of associating transcript-metabolite pairs on body mass index (BMI) as an example metabolic trait. This is achieved by conducting a comprehensive mediation analysis considering metabolites as mediators of gene expression effects and vice versa. We discovered large mediation networks comprising 27,023 potential mediation effects within 20,507 transcript-metabolite pairs. Resulting networks of highly connected (hub) transcripts and metabolites were leveraged to gain mechanistic insights into metabolic signaling pathways. In conclusion, here, we present the largest available multi-omics integration of genome-wide transcriptome data and metabolite data of amino acid and fatty acid metabolism and further leverage these findings to characterize potential mediation effects towards BMI proposing candidate mechanisms of obesity and related metabolic diseases. KEY MESSAGES: Thousands of associations of 72 amino acid and acylcarnitine metabolites and 8579 genes expand the knowledge of metabolome-transcriptome associations. A mediation analysis of effects on body mass index revealed large mediation networks of thousands of obesity-related gene-metabolite pairs. Highly connected, potentially mediating hub genes and metabolites enabled insight into obesity and related metabolic disease pathomechanisms.
Collapse
Affiliation(s)
- Carl Beuchel
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Julia Dittrich
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
| | - Susen Becker
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
- Department of Forensic Toxicology, Institute of Legal Medicine, University Leipzig, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Anke Tönjes
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | | | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany.
- LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany.
| |
Collapse
|
10
|
Astarita G, Kelly RS, Lasky-Su J. Metabolomics and lipidomics strategies in modern drug discovery and development. Drug Discov Today 2023; 28:103751. [PMID: 37640150 PMCID: PMC10543515 DOI: 10.1016/j.drudis.2023.103751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Metabolomics and lipidomics have an increasingly pivotal role in drug discovery and development. In the context of drug discovery, monitoring changes in the levels or composition of metabolites and lipids relative to genetic variations yields functional insights, bolstering human genetics and (meta)genomic methodologies. This approach also sheds light on potential novel targets for therapeutic intervention. In the context of drug development, metabolite and lipid biomarkers contribute to enhanced success rates, promising a transformative impact on precision medicine. In this review, we deviate from analytical chemist-focused perspectives, offering an overview tailored to drug discovery. We provide introductory insight into state-of-the-art mass spectrometry (MS)-based metabolomics and lipidomics techniques utilized in drug discovery and development, drawing from the collective expertise of our research teams. We comprehensively outline the application of metabolomics and lipidomics in advancing drug discovery and development, spanning fundamental research, target identification, mechanisms of action, and the exploration of biomarkers.
Collapse
Affiliation(s)
- Giuseppe Astarita
- Georgetown University, Washington, DC, USA; Arkuda Therapeutics, Watertown, MA, USA.
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Drouard G, Hagenbeek FA, Whipp A, Pool R, Hottenga JJ, Jansen R, Hubers N, Afonin A, Willemsen G, de Geus EJC, Ripatti S, Pirinen M, Kanninen KM, Boomsma DI, van Dongen J, Kaprio J. Longitudinal multi-omics study reveals common etiology underlying association between plasma proteome and BMI trajectories in adolescent and young adult twins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.28.23291995. [PMID: 37425750 PMCID: PMC10327285 DOI: 10.1101/2023.06.28.23291995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remain underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. Methods Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N=651) and the Netherlands Twin Register (NTR) (N=665). Follow-up comprised four BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated using latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. The sources of genetic and environmental variation underlying the protein abundances were quantified using twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) using mixed-effect models and correlation networks. Results We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 6 and 4 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with many metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. Conclusions Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.
Collapse
Affiliation(s)
- Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Fiona A. Hagenbeek
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Alyce Whipp
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rick Jansen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Aleksei Afonin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - BIOS Consortium
- Biobank-based Integrative Omics Study Consortium. Lists of authors and their affiliations appear in the supplementary material (see Additional file 1)
| | | | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Ge S, Liu J, Cheng Y, Meng X, Wang X. Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping. Brief Bioinform 2023; 24:6850565. [PMID: 36445207 DOI: 10.1093/bib/bbac500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 10/22/2022] [Indexed: 11/30/2022] Open
Abstract
Driven by multi-omics data, some multi-view clustering algorithms have been successfully applied to cancer subtypes prediction, aiming to identify subtypes with biometric differences in the same cancer, thereby improving the clinical prognosis of patients and designing personalized treatment plan. Due to the fact that the number of patients in omics data is much smaller than the number of genes, multi-view spectral clustering based on similarity learning has been widely developed. However, these algorithms still suffer some problems, such as over-reliance on the quality of pre-defined similarity matrices for clustering results, inability to reasonably handle noise and redundant information in high-dimensional omics data, ignoring complementary information between omics data, etc. This paper proposes multi-view spectral clustering with latent representation learning (MSCLRL) method to alleviate the above problems. First, MSCLRL generates a corresponding low-dimensional latent representation for each omics data, which can effectively retain the unique information of each omics and improve the robustness and accuracy of the similarity matrix. Second, the obtained latent representations are assigned appropriate weights by MSCLRL, and global similarity learning is performed to generate an integrated similarity matrix. Third, the integrated similarity matrix is used to feed back and update the low-dimensional representation of each omics. Finally, the final integrated similarity matrix is used for clustering. In 10 benchmark multi-omics datasets and 2 separate cancer case studies, the experiments confirmed that the proposed method obtained statistically and biologically meaningful cancer subtypes.
Collapse
Affiliation(s)
- Shuguang Ge
- School of Information and Control Engineering, China University of Mining and Technology, No. 1, Daxue Road, 221116 Xuzhou, Jiangsu, China.,Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, No. 1, Daxue Road, 221116 Xuzhou, Jiangsu, China
| | - Jian Liu
- School of Information and Control Engineering, China University of Mining and Technology, No. 1, Daxue Road, 221116 Xuzhou, Jiangsu, China.,Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, No. 1, Daxue Road, 221116 Xuzhou, Jiangsu, China
| | - Yuhu Cheng
- School of Information and Control Engineering, China University of Mining and Technology, No. 1, Daxue Road, 221116 Xuzhou, Jiangsu, China.,Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, No. 1, Daxue Road, 221116 Xuzhou, Jiangsu, China
| | - Xiaojing Meng
- School of Medical Information and Engineering, Xuzhou Medical University, No. 209, Tongshan Road, 221116 Xuzhou, Jiangsu, China
| | - Xuesong Wang
- School of Information and Control Engineering, China University of Mining and Technology, No. 1, Daxue Road, 221116 Xuzhou, Jiangsu, China.,Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, No. 1, Daxue Road, 221116 Xuzhou, Jiangsu, China
| |
Collapse
|
13
|
Niranjan V, Uttarkar A, Kaul A, Varghese M. A Machine Learning-Based Approach Using Multi-omics Data to Predict Metabolic Pathways. Methods Mol Biol 2023; 2553:441-452. [PMID: 36227554 DOI: 10.1007/978-1-0716-2617-7_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The integrative method approaches are continuously evolving to provide accurate insights from the data that is received through experimentation on various biological systems. Multi-omics data can be integrated with predictive machine learning algorithms in order to provide results with high accuracy. This protocol chapter defines the steps required for the ML-multi-omics integration methods that are applied on biological datasets for its analysis and the visual interpretation of the results thus obtained.
Collapse
Affiliation(s)
- Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bengaluru, India.
| | - Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bengaluru, India
| | - Aakaanksha Kaul
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bengaluru, India
| | - Maryanne Varghese
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bengaluru, India
| |
Collapse
|
14
|
Remme CA. Sudden cardiac death in diabetes and obesity: mechanisms and therapeutic strategies. Can J Cardiol 2022; 38:418-426. [PMID: 35017043 DOI: 10.1016/j.cjca.2022.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias and sudden cardiac death (SCD) occur most frequently in the setting of coronary artery disease, cardiomyopathy and heart failure, but are also increasingly observed in individuals suffering from diabetes mellitus and obesity. The incidence of these metabolic disorders is rising in Western countries, but adequate prevention and treatment of arrhythmias and SCD in affected patients is limited due to our incomplete knowledge of the underlying disease mechanisms. Here, an overview is presented of the prevalence of electrophysiological disturbances, ventricular arrhythmias and SCD in the clinical setting of diabetes and obesity. Experimental studies are reviewed, which have identified disease pathways and associated modulatory factors, in addition to pro-arrhythmic mechanisms. Key processes are discussed, including mitochondrial dysfunction, oxidative stress, cardiac structural derangements, abnormal cardiac conduction, ion channel dysfunction, prolonged repolarization and dysregulation of intracellular sodium and calcium homeostasis. In addition, the recently identified pro-arrhythmic effects of dysregulated branched chain amino acid metabolism, a common feature in patients with metabolic disorders, are addressed. Finally, current management options are discussed, in addition to the potential development of novel preventive and therapeutic strategies based on recent insight gained from translational studies.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Decreasing severity of obesity from early to late adolescence and young adulthood associates with longitudinal metabolomic changes implicated in lower cardiometabolic disease risk. Int J Obes (Lond) 2022; 46:646-654. [PMID: 34987202 DOI: 10.1038/s41366-021-01034-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Obesity in childhood is associated with metabolic dysfunction, adverse subclinical cardiovascular phenotypes and adult cardiovascular disease. Longitudinal studies of youth with obesity investigating changes in severity of obesity with metabolomic profiles are sparse. We investigated associations between (i) baseline body mass index (BMI) and follow-up metabolomic profiles; (ii) change in BMI with follow-up metabolomic profiles; and (iii) change in BMI with change in metabolomic profiles (mean interval 5.5 years). METHODS Participants (n = 98, 52% males) were recruited from the Childhood Overweight Biorepository of Australia study. At baseline and follow-up, BMI and the % >95th BMI-centile (percentage above the age-, and sex-specific 95th BMI-centile) indicate severity of obesity, and nuclear magnetic resonance spectroscopy profiling of 72 metabolites/ratios, log-transformed and scaled to standard deviations (SD), was performed in fasting serum. Fully adjusted linear regression analyses were performed. RESULTS Mean (SD) age and % >95th BMI-centile were 10.3 (SD 3.5) years and 134.6% (19.0) at baseline, 15.8 (3.7) years and 130.7% (26.2) at follow-up. Change in BMI over time, but not baseline BMI, was associated with metabolites at follow-up. Each unit (kg/m2) decrease in sex- and age-adjusted BMI was associated with change (SD; 95% CI; p value) in metabolites of: alanine (-0.07; -0.11 to -0.04; p < 0.001), phenylalanine (-0.07; -0.10 to -0.04; p < 0.001), tyrosine (-0.07; -0.10 to -0.04; p < 0.001), glycoprotein acetyls (-0.06; -0.09 to -0.04; p < 0.001), degree of fatty acid unsaturation (0.06; 0.02 to 0.10; p = 0.003), monounsaturated fatty acids (-0.04; -0.07 to -0.01; p = 0.004), ratio of ApoB/ApoA1 (-0.05; -0.07 to -0.02; p = 0.001), VLDL-cholesterol (-0.04; -0.06 to -0.01; p = 0.01), HDL cholesterol (0.05; 0.08 to 0.1; p = 0.01), pyruvate (-0.08; -0.11 to -0.04; p < 0.001), acetoacetate (0.07; 0.02 to 0.11; p = 0.005) and 3-hydroxybuturate (0.07; 0.02 to 0.11; p = 0.01). Results using the % >95th BMI-centile were largely consistent with age- and sex-adjusted BMI measures. CONCLUSIONS In children and young adults with obesity, decreasing the severity of obesity was associated with changes in metabolomic profiles consistent with lower cardiovascular and metabolic disease risk in adults.
Collapse
|
16
|
Verkouter I, Noordam R, Loh NY, van Dijk KW, Zock PL, Mook-Kanamori DO, le Cessie S, Rosendaal FR, Karpe F, Christodoulides C, de Mutsert R. The Relation Between Adult Weight Gain, Adipocyte Volume, and the Metabolic Profile at Middle Age. J Clin Endocrinol Metab 2021; 106:e4438-e4447. [PMID: 34181708 PMCID: PMC8530710 DOI: 10.1210/clinem/dgab477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/02/2022]
Abstract
CONTEXT Weight gain during adulthood increases cardiometabolic disease risk, possibly through adipocyte hypertrophy. OBJECTIVE We aimed to study the specific metabolomic profile of adult weight gain, and to examine its association with adipocyte volume. METHODS Nuclear magnetic resonance-based metabolomics were measured in the Netherlands Epidemiology of Obesity (NEO) study (n = 6347, discovery) and Oxford Biobank (n = 6317, replication). Adult weight gain was calculated as the absolute difference between body mass index (BMI) at middle age and recalled BMI at age 20 years. We performed linear regression analyses with both exposures BMI at age 20 years and weight gain, and separately with BMI at middle age in relation to 149 serum metabolomic measures, adjusted for age, sex, and multiple testing. Additionally, subcutaneous abdominal adipocyte biopsies were collected in a subset of the Oxford Biobank (n = 114) to estimate adipocyte volume. RESULTS Mean (SD) weight gain was 4.5 (3.7) kg/m2 in the NEO study and 3.6 (3.7) kg/m2 in the Oxford Biobank. Weight gain, and not BMI at age 20 nor middle age, was associated with concentrations of 7 metabolomic measures after successful replication, which included polyunsaturated fatty acids, small to medium low-density lipoproteins, and total intermediate-density lipoprotein. One SD weight gain was associated with 386 μm3 (95% CI, 143-629) higher median adipocyte volume. Adipocyte volume was associated with lipoprotein particles specific for adult weight gain. CONCLUSION Adult weight gain is associated with specific metabolomic alterations of which the higher lipoprotein concentrations were likely contributed by larger adipocyte volumes, presumably linking weight gain to cardiometabolic disease.
Collapse
Affiliation(s)
- Inge Verkouter
- Department of Clinical Epidemiology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Nellie Y Loh
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Peter L Zock
- Department of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Saskia le Cessie
- Department of Clinical Epidemiology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Fredrik Karpe
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, OX4 2PG, UK
- Oxford University Hospitals Foundation Trust, Oxford, OX4 4XN, UK
| | - Costantinos Christodoulides
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Oxford University Hospitals Foundation Trust, Oxford, OX4 4XN, UK
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| |
Collapse
|
17
|
Wörheide MA, Krumsiek J, Kastenmüller G, Arnold M. Multi-omics integration in biomedical research - A metabolomics-centric review. Anal Chim Acta 2021; 1141:144-162. [PMID: 33248648 PMCID: PMC7701361 DOI: 10.1016/j.aca.2020.10.038] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Recent advances in high-throughput technologies have enabled the profiling of multiple layers of a biological system, including DNA sequence data (genomics), RNA expression levels (transcriptomics), and metabolite levels (metabolomics). This has led to the generation of vast amounts of biological data that can be integrated in so-called multi-omics studies to examine the complex molecular underpinnings of health and disease. Integrative analysis of such datasets is not straightforward and is particularly complicated by the high dimensionality and heterogeneity of the data and by the lack of universal analysis protocols. Previous reviews have discussed various strategies to address the challenges of data integration, elaborating on specific aspects, such as network inference or feature selection techniques. Thereby, the main focus has been on the integration of two omics layers in their relation to a phenotype of interest. In this review we provide an overview over a typical multi-omics workflow, focusing on integration methods that have the potential to combine metabolomics data with two or more omics. We discuss multiple integration concepts including data-driven, knowledge-based, simultaneous and step-wise approaches. We highlight the application of these methods in recent multi-omics studies, including large-scale integration efforts aiming at a global depiction of the complex relationships within and between different biological layers without focusing on a particular phenotype.
Collapse
Affiliation(s)
- Maria A Wörheide
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
18
|
A metabolome-wide association study in the general population reveals decreased levels of serum laurylcarnitine in people with depression. Mol Psychiatry 2021; 26:7372-7383. [PMID: 34088979 PMCID: PMC8873015 DOI: 10.1038/s41380-021-01176-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Depression constitutes a leading cause of disability worldwide. Despite extensive research on its interaction with psychobiological factors, associated pathways are far from being elucidated. Metabolomics, assessing the final products of complex biochemical reactions, has emerged as a valuable tool for exploring molecular pathways. We conducted a metabolome-wide association analysis to investigate the link between the serum metabolome and depressed mood (DM) in 1411 participants of the KORA (Cooperative Health Research in the Augsburg Region) F4 study (discovery cohort). Serum metabolomics data comprised 353 unique metabolites measured by Metabolon. We identified 72 (5.1%) KORA participants with DM. Linear regression tests were conducted modeling each metabolite value by DM status, adjusted for age, sex, body-mass index, antihypertensive, cardiovascular, antidiabetic, and thyroid gland hormone drugs, corticoids and antidepressants. Sensitivity analyses were performed in subcohorts stratified for sex, suicidal ideation, and use of antidepressants. We replicated our results in an independent sample of 968 participants of the SHIP-Trend (Study of Health in Pomerania) study including 52 (5.4%) individuals with DM (replication cohort). We found significantly lower laurylcarnitine levels in KORA F4 participants with DM after multiple testing correction according to Benjamini/Hochberg. This finding was replicated in the independent SHIP-Trend study. Laurylcarnitine remained significantly associated (p value < 0.05) with depression in samples stratified for sex, suicidal ideation, and antidepressant medication. Decreased blood laurylcarnitine levels in depressed individuals may point to impaired fatty acid oxidation and/or mitochondrial function in depressive disorders, possibly representing a novel therapeutic target.
Collapse
|
19
|
Burton-Pimentel KJ, Pimentel G, Hughes M, Michielsen CC, Fatima A, Vionnet N, Afman LA, Roche HM, Brennan L, Ibberson M, Vergères G. Discriminating Dietary Responses by Combining Transcriptomics and Metabolomics Data in Nutrition Intervention Studies. Mol Nutr Food Res 2020; 65:e2000647. [PMID: 33325641 PMCID: PMC8221028 DOI: 10.1002/mnfr.202000647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Scope Combining different “omics” data types in a single, integrated analysis may better characterize the effects of diet on human health. Methods and results The performance of two data integration tools, similarity network fusion tool (SNFtool) and Data Integration Analysis for Biomarker discovery using Latent variable approaches for “Omics” (DIABLO; MixOmics), in discriminating responses to diet and metabolic phenotypes is investigated by combining transcriptomics and metabolomics datasets from three human intervention studies: a postprandial crossover study testing dairy foods (n = 7; study 1), a postprandial challenge study comparing obese and non‐obese subjects (n = 13; study 2); and an 8‐week parallel intervention study that assessed three diets with variable lipid content on fasting parameters (n = 39; study 3). In study 1, combining datasets using SNF or DIABLO significantly improve sample classification. For studies 2 and 3, the value of SNF integration depends on the dietary groups being compared, while DIABLO discriminates samples well but does not perform better than transcriptomic data alone. Conclusion The integration of associated “omics” datasets can help clarify the subtle signals observed in nutritional interventions. The performance of each integration tool is differently influenced by study design, size of the datasets, and sample size.
Collapse
Affiliation(s)
- Kathryn J Burton-Pimentel
- Federal Department of Economic Affairs, Education and Research EAER, Agroscope, Schwarzenburgstrasse 161, Bern, 3003, Switzerland
| | - Grégory Pimentel
- Federal Department of Economic Affairs, Education and Research EAER, Agroscope, Schwarzenburgstrasse 161, Bern, 3003, Switzerland
| | - Maria Hughes
- UCD Institute of Food and Health, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin 4, D04 C7X2, Ireland.,Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin 4, Ireland.,Nutrigenomics Research Group, UCD Conway Institute and UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Charlotte Cjr Michielsen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, Wageningen, 6700 AA, The Netherlands
| | - Attia Fatima
- UCD Institute of Food and Health, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin 4, D04 C7X2, Ireland.,Nutrigenomics Research Group, UCD Conway Institute and UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Nathalie Vionnet
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, 1011, Switzerland
| | - Lydia A Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, Wageningen, 6700 AA, The Netherlands
| | - Helen M Roche
- UCD Institute of Food and Health, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin 4, D04 C7X2, Ireland.,Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin 4, Ireland.,Nutrigenomics Research Group, UCD Conway Institute and UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, Belfield, Dublin 4, D04 V1W8, Ireland.,Institute for Global Food Security, Queens University Belfast, Belfast, BT7 1NN, United Kingdom
| | - Lorraine Brennan
- UCD Institute of Food & Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Mark Ibberson
- Vital IT, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland.,Swiss Institute of Bioinformatics, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| | - Guy Vergères
- Federal Department of Economic Affairs, Education and Research EAER, Agroscope, Schwarzenburgstrasse 161, Bern, 3003, Switzerland
| |
Collapse
|
20
|
Fraser K, Roy NC, Goumidi L, Verdu A, Suchon P, Leal-Valentim F, Trégouët DA, Morange PE, Martin JC. Plasma Biomarkers and Identification of Resilient Metabolic Disruptions in Patients With Venous Thromboembolism Using a Metabolic Systems Approach. Arterioscler Thromb Vasc Biol 2020; 40:2527-2538. [PMID: 32757649 DOI: 10.1161/atvbaha.120.314480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Deep vein thrombosis and pulmonary embolism referred as venous thromboembolism (VTE) are a common cause of morbidity and mortality. Plasma from healthy controls or individuals who have experienced a VTE were analyzed using metabolomics to characterize biomarkers and metabolic systems of patients with VTE. Approach and Results: Polar metabolite and lipidomic profiles from plasma collected 3 months after an incident VTE were obtained using liquid chromatography mass spectrometry. Fasting-state plasma samples from 42 patients with VTE and 42 healthy controls were measured. Plasma metabolomic profiling identified 512 metabolites forming 62 biological clusters. Multivariate analysis revealed a panel of 21 metabolites altogether capable of predicting VTE status with an area under the curve of 0.92 (P=0.00174, selectivity=0.857, sensitivity=0.971). Multiblock systems analysis revealed 25 of the 62 functional biological groups as significantly affected in the VTE group (P<0.05 to control). Complementary correlation network analysis of the dysregulated functions highlighted a subset of the lipidome composed mainly of n-3 long-chain polyunsaturated fatty acids within the predominant triglycerides as a potential regulator of the post-VTE event biological response, possibly controlling oxidative and inflammatory defence systems, and metabolic disorder associated dysregulations. Of interest was microbiota metabolites including trimethylamine N-oxide that remained associated to post incident VTE patients, highlighting a possible involvement of gut microbiota on VTE risk and relapse. CONCLUSIONS These findings show promise for the elucidation of underlying mechanisms and the design of a diagnostic test to assess the likely efficacy of clinical care in patients with VTE.
Collapse
Affiliation(s)
- Karl Fraser
- Food Nutrition and Health, AgResearch Grasslands, Palmerston North, New Zealand (K.F., N.C.R.).,High-Value Nutrition National Science Challenge, Auckland, New Zealand (K.F., N.C.R.).,Riddet Institute, Massey University, New Zealand (K.F., N.C.R.)
| | - Nicole C Roy
- Food Nutrition and Health, AgResearch Grasslands, Palmerston North, New Zealand (K.F., N.C.R.).,High-Value Nutrition National Science Challenge, Auckland, New Zealand (K.F., N.C.R.).,Riddet Institute, Massey University, New Zealand (K.F., N.C.R.).,Liggins Institute, University of Auckland, New Zealand Paris, France (N.C.R.).,Department of Human Nutrition, University of Otago, Dunedin, New Zealand (N.C.R.)
| | - Louisa Goumidi
- C2VN, INRAE (Institut national de recherche pour l'agriculture, l'alimentation et l'environnement), INSERM (L.G., P.S., P.-E.M., J.-C.M.), Aix-Marseille University, France
| | | | - Pierre Suchon
- C2VN, INRAE (Institut national de recherche pour l'agriculture, l'alimentation et l'environnement), INSERM (L.G., P.S., P.-E.M., J.-C.M.), Aix-Marseille University, France.,Bruker Daltonics, Marne la Vallée, France (A.V., P.S.)
| | - Felipe Leal-Valentim
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, France (F.L.-V., D.-A.T.)
| | - David-Alexandre Trégouët
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, France (F.L.-V., D.-A.T.)
| | - Pierre-Emmanuel Morange
- C2VN, INRAE (Institut national de recherche pour l'agriculture, l'alimentation et l'environnement), INSERM (L.G., P.S., P.-E.M., J.-C.M.), Aix-Marseille University, France.,APHM, France (P.-E.M.)
| | - Jean-Charles Martin
- C2VN, INRAE (Institut national de recherche pour l'agriculture, l'alimentation et l'environnement), INSERM (L.G., P.S., P.-E.M., J.-C.M.), Aix-Marseille University, France.,BIOMET (J.-C.M.), Aix-Marseille University, France
| |
Collapse
|
21
|
Eicher T, Kinnebrew G, Patt A, Spencer K, Ying K, Ma Q, Machiraju R, Mathé EA. Metabolomics and Multi-Omics Integration: A Survey of Computational Methods and Resources. Metabolites 2020; 10:E202. [PMID: 32429287 PMCID: PMC7281435 DOI: 10.3390/metabo10050202] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
As researchers are increasingly able to collect data on a large scale from multiple clinical and omics modalities, multi-omics integration is becoming a critical component of metabolomics research. This introduces a need for increased understanding by the metabolomics researcher of computational and statistical analysis methods relevant to multi-omics studies. In this review, we discuss common types of analyses performed in multi-omics studies and the computational and statistical methods that can be used for each type of analysis. We pinpoint the caveats and considerations for analysis methods, including required parameters, sample size and data distribution requirements, sources of a priori knowledge, and techniques for the evaluation of model accuracy. Finally, for the types of analyses discussed, we provide examples of the applications of corresponding methods to clinical and basic research. We intend that our review may be used as a guide for metabolomics researchers to choose effective techniques for multi-omics analyses relevant to their field of study.
Collapse
Affiliation(s)
- Tara Eicher
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Computer Science and Engineering Department, The Ohio State University College of Engineering, Columbus, OH 43210, USA
| | - Garrett Kinnebrew
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA;
- Bioinformatics Shared Resource Group, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Patt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20892, USA;
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle Spencer
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Nationwide Children’s Research Hospital, Columbus, OH 43210, USA
| | - Kevin Ying
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA;
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Qin Ma
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
| | - Raghu Machiraju
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Computer Science and Engineering Department, The Ohio State University College of Engineering, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Ewy A. Mathé
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20892, USA;
| |
Collapse
|
22
|
Tini G, Marchetti L, Priami C, Scott-Boyer MP. Multi-omics integration-a comparison of unsupervised clustering methodologies. Brief Bioinform 2020; 20:1269-1279. [PMID: 29272335 DOI: 10.1093/bib/bbx167] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/06/2017] [Indexed: 12/19/2022] Open
Abstract
With the recent developments in the field of multi-omics integration, the interest in factors such as data preprocessing, choice of the integration method and the number of different omics considered had increased. In this work, the impact of these factors is explored when solving the problem of sample classification, by comparing the performances of five unsupervised algorithms: Multiple Canonical Correlation Analysis, Multiple Co-Inertia Analysis, Multiple Factor Analysis, Joint and Individual Variation Explained and Similarity Network Fusion. These methods were applied to three real data sets taken from literature and several ad hoc simulated scenarios to discuss classification performance in different conditions of noise and signal strength across the data types. The impact of experimental design, feature selection and parameter training has been also evaluated to unravel important conditions that can affect the accuracy of the result.
Collapse
|
23
|
Apper E, Privet L, Taminiau B, Le Bourgot C, Svilar L, Martin JC, Diez M. Relationships Between Gut Microbiota, Metabolome, Body Weight, and Glucose Homeostasis of Obese Dogs Fed with Diets Differing in Prebiotic and Protein Content. Microorganisms 2020; 8:E513. [PMID: 32260190 PMCID: PMC7232476 DOI: 10.3390/microorganisms8040513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/14/2023] Open
Abstract
Obesity is a major issue in pets and nutritional strategies need to be developed, like promoting greater protein and fiber intake. This study aimed to evaluate the effects of dietary protein levels and prebiotic supplementation on the glucose metabolism and relationships between the gut, microbiota, metabolome, and phenotype of obese dogs. Six obese Beagle dogs received a diet containing 25.6% or 36.9% crude protein, with or without 1% short-chain fructo-oligosaccharide (scFOS) or oligofructose (OF), in a Latin-square study design. Fecal and blood samples were collected for metabolite analysis, untargeted metabolomics, and 16S rRNA amplicon sequencing. A multi-block analysis was performed to build a correlation network to identify relationships between fecal microbiota, metabolome, and phenotypic variables. Diets did not affect energy homeostasis, but scFOS supplementation modulated fecal microbiota composition and induced significant changes of the fecal metabolome. Bile acids and several amino acids were related to glucose homeostasis while specific bacteria gathered in metavariables had a high number of links with phenotypic and metabolomic parameters. It also suggested that fecal aminoadipate and hippurate act as potential markers of glucose homeostasis. This preliminary study provides new insights into the relationships between the gut microbiota, the metabolome, and several phenotypic markers involved in obesity and associated metabolic dysfunctions.
Collapse
Affiliation(s)
| | - Lisa Privet
- MS Nutrition, C2VN, INRA, INSERM, Aix-Marseille University, 13385 Marseille, France;
| | - Bernard Taminiau
- Farah Centre, Department of Food Sciences, University of Liege, 4000 Liège, Belgium;
| | | | - Ljubica Svilar
- CRIBIOM, C2VN, INRA, INSERM, Aix-Marseille University, 13385 Marseille, France;
| | - Jean-Charles Martin
- BioMeT, C2VN, INRA, INSERM, Aix-Marseille University, 13385 Marseille, France;
| | - Marianne Diez
- Nutrition Unit, Department of Animal Production, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium;
| |
Collapse
|
24
|
Using metabolite profiling to construct and validate a metabolite risk score for predicting future weight gain. PLoS One 2019; 14:e0222445. [PMID: 31560688 PMCID: PMC6764659 DOI: 10.1371/journal.pone.0222445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background Excess weight gain throughout adulthood can lead to adverse clinical outcomes and are influenced by complex factors that are difficult to measure in free-living individuals. Metabolite profiling offers an opportunity to systematically discover new predictors for weight gain that are relatively easy to measure compared to traditional approaches. Methods and results Using baseline metabolite profiling data of middle-aged individuals from the Framingham Heart Study (FHS; n = 1,508), we identified 42 metabolites associated (p < 0.05) with longitudinal change in body mass index (BMI). We performed stepwise linear regression to select 8 of these metabolites to build a metabolite risk score (MRS) for predicting future weight gain. We replicated the MRS using data from the Mexico City Diabetes Study (MCDS; n = 768), in which one standard deviation increase in the MRS corresponded to ~0.03 increase in BMI (kg/m2) per year (i.e. ~0.09 kg/year for a 1.7 m adult). We observed that none of the available anthropometric, lifestyle, and glycemic variables fully account for the MRS prediction of weight gain. Surprisingly, we found the MRS to be strongly correlated with baseline insulin sensitivity in both cohorts and to be negatively predictive of T2D in MCDS. Genome-wide association study of the MRS identified 2 genome-wide (p < 5 × 10−8) and 5 suggestively (p < 1 × 10−6) significant loci, several of which have been previously linked to obesity-related phenotypes. Conclusions We have constructed and validated a generalizable MRS for future weight gain that is an independent predictor distinct from several other known risk factors. The MRS captures a composite biological picture of weight gain, perhaps hinting at the anabolic effects of preserved insulin sensitivity. Future investigation is required to assess the relationships between MRS-predicted weight gain and other obesity-related diseases.
Collapse
|
25
|
Beuchel C, Becker S, Dittrich J, Kirsten H, Toenjes A, Stumvoll M, Loeffler M, Thiele H, Beutner F, Thiery J, Ceglarek U, Scholz M. Clinical and lifestyle related factors influencing whole blood metabolite levels - A comparative analysis of three large cohorts. Mol Metab 2019; 29:76-85. [PMID: 31668394 PMCID: PMC6734104 DOI: 10.1016/j.molmet.2019.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Objective Human blood metabolites are influenced by a number of lifestyle and environmental factors. Identification of these factors and the proper quantification of their relevance provides insights into human biological and metabolic disease processes, is key for standardized translation of metabolite biomarkers into clinical applications, and is a prerequisite for comparability of data between studies. However, so far only limited data exist from large and well-phenotyped human cohorts and current methods for analysis do not fully account for the characteristics of these data. The primary aim of this study was to identify, quantify and compare the impact of a comprehensive set of clinical and lifestyle related factors on metabolite levels in three large human cohorts. To achieve this goal, we improve current methodology by developing a principled analysis approach, which could be translated to other cohorts and metabolite panels. Methods 63 Metabolites (amino acids, acylcarnitines) were quantified by liquid chromatography tandem mass spectrometry in three cohorts (total N = 16,222). Supported by a simulation study evaluating various analytical approaches, we developed an analysis pipeline including preprocessing, identification, and quantification of factors affecting metabolite levels. We comprehensively identified uni- and multivariable metabolite associations considering 29 environmental and clinical factors and performed metabolic pathway enrichment and network analyses. Results Inverse normal transformation of batch corrected and outlier removed metabolite levels accompanied by linear regression analysis proved to be the best suited method to deal with the metabolite data. Association analyses revealed numerous uni- and multivariable significant associations. 15 of the analyzed 29 factors explained >1% of variance for at least one of the metabolites. Strongest factors are application of steroid hormones, reticulocytes, waist-to-hip ratio, sex, haematocrit, and age. Effect sizes of factors are comparable across studies. Conclusions We introduced a principled approach for the analysis of MS data allowing identification, and quantification of effects of clinical and lifestyle factors with metabolite levels. We detected a number of known and novel associations broadening our understanding of the regulation of the human metabolome. The large heterogeneity observed between cohorts could almost completely be explained by differences in the distribution of influencing factors emphasizing the necessity of a proper confounder analysis when interpreting metabolite associations. Amino-acids and acylcarnitines analyzed in three studies with >16,000 individuals. Develop a generic and adaptable bioinformatics workflow. Analysis of the impact of 29 clinical and life-style factors on blood metabolites. Analysis of network between factors and metabolites. Comparison of results between studies.
Collapse
Affiliation(s)
- Carl Beuchel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Susen Becker
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany; Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Julia Dittrich
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Anke Toenjes
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | | | | | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany; IFB Adiposity Diseases, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
26
|
Chu SH, Huang M, Kelly RS, Benedetti E, Siddiqui JK, Zeleznik OA, Pereira A, Herrington D, Wheelock CE, Krumsiek J, McGeachie M, Moore SC, Kraft P, Mathé E, Lasky-Su J. Integration of Metabolomic and Other Omics Data in Population-Based Study Designs: An Epidemiological Perspective. Metabolites 2019; 9:E117. [PMID: 31216675 PMCID: PMC6630728 DOI: 10.3390/metabo9060117] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
It is not controversial that study design considerations and challenges must be addressed when investigating the linkage between single omic measurements and human phenotypes. It follows that such considerations are just as critical, if not more so, in the context of multi-omic studies. In this review, we discuss (1) epidemiologic principles of study design, including selection of biospecimen source(s) and the implications of the timing of sample collection, in the context of a multi-omic investigation, and (2) the strengths and limitations of various techniques of data integration across multi-omic data types that may arise in population-based studies utilizing metabolomic data.
Collapse
Affiliation(s)
- Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Mengna Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Elisa Benedetti
- Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Jalal K Siddiqui
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Alexandre Pereira
- Department of Genetics and Molecular Medicine, University of Sao Paulo Medical School, Sao Paulo 01246-903, Brazil.
| | - David Herrington
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden.
| | - Jan Krumsiek
- Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Michael McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA.
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| | - Ewy Mathé
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
The Metabolomic Signatures of Weight Change. Metabolites 2019; 9:metabo9040067. [PMID: 30987392 PMCID: PMC6523676 DOI: 10.3390/metabo9040067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity represents a major health concern, not just in the West but increasingly in low and middle income countries. In order to develop successful strategies for losing weight, it is essential to understand the molecular pathogenesis of weight change. A number of pathways, implicating oxidative stress but also the fundamental regulatory of insulin, have been implicated in weight gain and in the regulation of energy expenditure. In addition, a considerable body of work has highlighted the role of metabolites generated by the gut microbiome, in particular short chain fatty acids, in both processes. The current review provides a brief understanding of the mechanisms underlying the associations of weight change with changes in lipid and amino acid metabolism, energy metabolism, dietary composition and insulin dynamics, as well as the influence of the gut microbiome. The changes in metabolomic profiles and the models outlined can be used as an accurate predictor for obesity and obesity related disorders.
Collapse
|
28
|
Onderwater GLJ, Ligthart L, Bot M, Demirkan A, Fu J, van der Kallen CJH, Vijfhuizen LS, Pool R, Liu J, Vanmolkot FHM, Beekman M, Wen KX, Amin N, Thesing CS, Pijpers JA, Kies DA, Zielman R, de Boer I, van Greevenbroek MMJ, Arts ICW, Milaneschi Y, Schram MT, Dagnelie PC, Franke L, Ikram MA, Ferrari MD, Goeman JJ, Slagboom PE, Wijmenga C, Stehouwer CDA, Boomsma DI, van Duijn CM, Penninx BW, 't Hoen PAC, Terwindt GM, van den Maagdenberg AMJM. Large-scale plasma metabolome analysis reveals alterations in HDL metabolism in migraine. Neurology 2019; 92:e1899-e1911. [PMID: 30944236 PMCID: PMC6550500 DOI: 10.1212/wnl.0000000000007313] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/21/2018] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To identify a plasma metabolomic biomarker signature for migraine. METHODS Plasma samples from 8 Dutch cohorts (n = 10,153: 2,800 migraine patients and 7,353 controls) were profiled on a 1H-NMR-based metabolomics platform, to quantify 146 individual metabolites (e.g., lipids, fatty acids, and lipoproteins) and 79 metabolite ratios. Metabolite measures associated with migraine were obtained after single-metabolite logistic regression combined with a random-effects meta-analysis performed in a nonstratified and sex-stratified manner. Next, a global test analysis was performed to identify sets of related metabolites associated with migraine. The Holm procedure was applied to control the family-wise error rate at 5% in single-metabolite and global test analyses. RESULTS Decreases in the level of apolipoprotein A1 (β -0.10; 95% confidence interval [CI] -0.16, -0.05; adjusted p = 0.029) and free cholesterol to total lipid ratio present in small high-density lipoprotein subspecies (HDL) (β -0.10; 95% CI -0.15, -0.05; adjusted p = 0.029) were associated with migraine status. In addition, only in male participants, a decreased level of omega-3 fatty acids (β -0.24; 95% CI -0.36, -0.12; adjusted p = 0.033) was associated with migraine. Global test analysis further supported that HDL traits (but not other lipoproteins) were associated with migraine status. CONCLUSIONS Metabolic profiling of plasma yielded alterations in HDL metabolism in migraine patients and decreased omega-3 fatty acids only in male migraineurs.
Collapse
Affiliation(s)
- Gerrit L J Onderwater
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Lannie Ligthart
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Mariska Bot
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Ayse Demirkan
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Jingyuan Fu
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Carla J H van der Kallen
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Lisanne S Vijfhuizen
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - René Pool
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Jun Liu
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Floris H M Vanmolkot
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Marian Beekman
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Ke-Xin Wen
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Najaf Amin
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Carisha S Thesing
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Judith A Pijpers
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Dennis A Kies
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Ronald Zielman
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Irene de Boer
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Marleen M J van Greevenbroek
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Ilja C W Arts
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Yuri Milaneschi
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Miranda T Schram
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Pieter C Dagnelie
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Lude Franke
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - M Arfan Ikram
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Michel D Ferrari
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Jelle J Goeman
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - P Eline Slagboom
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Cisca Wijmenga
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Coen D A Stehouwer
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Dorret I Boomsma
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Cornelia M van Duijn
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Brenda W Penninx
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Peter A C 't Hoen
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Gisela M Terwindt
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Arn M J M van den Maagdenberg
- From the Departments of Neurology (G.L.J.O., J.A.P., D.A.K., R.Z., I.d.B., M.D.F., G.M.T., A.M.J.M.v.d.M.), Human Genetics (A.D., L.S.V., P.A.C.'tH., A.M.J.M.v.d.M.), Molecular Epidemiology (M.B., P.E.S.), Radiology (D.A.K.), and Medical Statistics (J.J.G.), Leiden University Medical Centre; Department of Biological Psychology (L.L., R.P., D.I.B.), Vrije Universiteit Amsterdam; Amsterdam Public Health Institute (L.L.); Amsterdam Neuroscience and Amsterdam Public Health (M.B., C.S.T., Y.M., D.I.B., B.W.P.); Department of Psychiatry (M.B., C.S.T., Y.M., B.W.P.), VU University Medical Centre/GGZ inGeest, Amsterdam; Departments of Epidemiology (A.D., J.L., K.-x.W., N.A., M.A.I., C.M.v.D.) and Neurology (M.A.I.), Erasmus Medical Centre, Rotterdam; Departments of Genetics (J.F., L.F., C.W.) and Pediatrics (J.F.), University Medical Centre Groningen; Department of Internal Medicine (C.J.H.v.d.K., F.H.M.V., M.M.J.v.G., M.T.S., C.D.A.S.) and Heart and Vascular Center (M.T.S.), Maastricht University Medical Centre; CARIM School for Cardiovascular Diseases (C.J.H.v.d.K., M.M.J.v.G., I.C.W.A., M.T.S., P.C.D., C.D.A.S.), Department of Epidemiology (I.C.W.A.), MaCSBio Maastricht Centre for Systems Biology (I.C.W.A.), and Department of Epidemiology (P.C.D.), Maastricht University; Department of Radiology (M.A.I.), Erasmus MC University Medical Centre, Rotterdam; Leiden Academic Centre in Drug Research, Faculty Science (C.M.v.D.), Leiden University; and Centre for Molecular and Biomolecular Informatics (P.A.C.'tH.), Radboud University Medical Centre Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.
| | | |
Collapse
|
29
|
Wulaningsih W, Proitsi P, Wong A, Kuh D, Hardy R. Metabolomic correlates of central adiposity and earlier-life body mass index. J Lipid Res 2019; 60:1136-1143. [PMID: 30885925 DOI: 10.1194/jlr.p085944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 03/03/2019] [Indexed: 11/20/2022] Open
Abstract
BMI is correlated with circulating metabolites, but few studies discuss other adiposity measures, and little is known about metabolomic correlates of BMI from early life. We investigated associations between different adiposity measures, BMI from childhood through adulthood, and metabolites quantified from serum using 1H NMR spectroscopy in 900 British men and women aged 60-64. We assessed BMI, waist-to-hip ratio (WHR), android-to-gynoid fat ratio (AGR), and BMI from childhood through adulthood. Linear regression with Bonferroni adjustment was performed to assess adiposity and metabolites. Of 233 metabolites, 168; 126; and 133 were associated with BMI, WHR, and AGR at age 60-64, respectively. Associations were strongest for HDL, particularly HDL particle size-e.g., there was 0.08 SD decrease in HDL diameter (95% CI: 0.07-0.10) with each unit increase in BMI. BMI-adjusted AGR or WHR were associated with 31 metabolites where there was no metabolome-wide association with BMI. We identified inverse associations between BMI at age 7 and glucose or glycoprotein at age 60-64 and relatively large LDL cholesteryl ester with postadolescent BMI gains. In summary, we identified metabolomic correlates of central adiposity and earlier-life BMI. These findings support opportunities to leverage metabolomics in early prevention of cardiovascular risk attributable to body fatness.
Collapse
Affiliation(s)
- Wahyu Wulaningsih
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, King's College London, London SE5 9RS, United Kingdom
| | - Petroula Proitsi
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, King's College London, London SE5 9RS, United Kingdom.,University College London, London WC1B 5JU, United Kingdom; and Clinical Neuroscience Institute, King's College London, London SE5 9RS, United Kingdom
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, King's College London, London SE5 9RS, United Kingdom
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, King's College London, London SE5 9RS, United Kingdom
| | - Rebecca Hardy
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, King's College London, London SE5 9RS, United Kingdom
| |
Collapse
|
30
|
Cirulli ET, Guo L, Leon Swisher C, Shah N, Huang L, Napier LA, Kirkness EF, Spector TD, Caskey CT, Thorens B, Venter JC, Telenti A. Profound Perturbation of the Metabolome in Obesity Is Associated with Health Risk. Cell Metab 2019; 29:488-500.e2. [PMID: 30318341 PMCID: PMC6370944 DOI: 10.1016/j.cmet.2018.09.022] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/27/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022]
Abstract
Obesity is a heterogeneous phenotype that is crudely measured by body mass index (BMI). There is a need for a more precise yet portable method of phenotyping and categorizing risk in large numbers of people with obesity to advance clinical care and drug development. Here, we used non-targeted metabolomics and whole-genome sequencing to identify metabolic and genetic signatures of obesity. We find that obesity results in profound perturbation of the metabolome; nearly a third of the assayed metabolites associated with changes in BMI. A metabolome signature identifies the healthy obese and lean individuals with abnormal metabolomes-these groups differ in health outcomes and underlying genetic risk. Specifically, an abnormal metabolome associated with a 2- to 5-fold increase in cardiovascular events when comparing individuals who were matched for BMI but had opposing metabolome signatures. Because metabolome profiling identifies clinically meaningful heterogeneity in obesity, this approach could help select patients for clinical trials.
Collapse
Affiliation(s)
| | | | | | - Naisha Shah
- Human Longevity, Inc., San Diego, CA 92121, USA
| | - Lei Huang
- Human Longevity, Inc., San Diego, CA 92121, USA
| | | | | | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - C Thomas Caskey
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Amalio Telenti
- The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
31
|
Mayengbam S, Lambert JE, Parnell JA, Tunnicliffe JM, Nicolucci AC, Han J, Sturzenegger T, Shearer J, Mickiewicz B, Vogel HJ, Madsen KL, Reimer RA. Impact of dietary fiber supplementation on modulating microbiota-host-metabolic axes in obesity. J Nutr Biochem 2019; 64:228-236. [PMID: 30572270 DOI: 10.1016/j.jnutbio.2018.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
Abstract
Low dietary fiber intake is associated with higher rates of microbiota-associated chronic diseases such as obesity. Low-fiber diets alter not only microbial composition but also the availability of metabolic end products derived from fermentation of fiber. Our objective was to examine the effects of dietary fiber supplementation on gut microbiota and associated fecal and serum metabolites in relation to metabolic markers of obesity. We conducted a 12-week, single-center, double-blind, placebo-controlled trial with 53 adults with overweight or obesity. They were randomly assigned to a pea fiber (PF, 15 g/d in wafer form; n=29) or control (CO, isocaloric amount of wafers; n=24) group. Blood and fecal samples were collected at baseline and 12 weeks. Serum metabolomics, gut microbiota and fecal short-chain fatty acids (SCFAs) and bile acids (BAs) were examined. Within-group but not between-group analysis showed a significant effect of treatment on serum metabolites at 12 weeks compared to baseline. Fiber significantly altered fecal SCFAs and BAs with higher acetate and reduced isovalerate, cholate, deoxycholate and total BAs content in the PF group compared to baseline. Microbiota was differentially modulated in the two groups, including an increase in the SCFA producer Lachnospira in the PF group and decrease in the CO group. The change in body weight of participants showed a negative correlation with their change in Lachnospira (r=-0.463, P=.006) abundance. The current study provides insight into the actions of pea fiber and its impact on modulating microbiota-host-metabolic axes in obesity.
Collapse
Affiliation(s)
- Shyamchand Mayengbam
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Jennifer E Lambert
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Jill A Parnell
- Health and Physical Education, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, Canada, T3E 6K6
| | - Jasmine M Tunnicliffe
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Alissa C Nicolucci
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Jay Han
- Food Processing Development Centre, Alberta Agriculture and Forestry, 6309-45 Street, Leduc, AB, Canada, T9E 7C5
| | - Troy Sturzenegger
- Food Processing Development Centre, Alberta Agriculture and Forestry, 6309-45 Street, Leduc, AB, Canada, T9E 7C5
| | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | - Beata Mickiewicz
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Karen L Madsen
- Division of Gastroenterology, Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, 7-142 Katz Group-Rexall Centre, University of Alberta, Edmonton, AB, Canada, T6G 2C2
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1.
| |
Collapse
|
32
|
Mirza B, Wang W, Wang J, Choi H, Chung NC, Ping P. Machine Learning and Integrative Analysis of Biomedical Big Data. Genes (Basel) 2019; 10:E87. [PMID: 30696086 PMCID: PMC6410075 DOI: 10.3390/genes10020087] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues.
Collapse
Affiliation(s)
- Bilal Mirza
- NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Wei Wang
- NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Scalable Analytics Institute (ScAi), University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Jie Wang
- NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Howard Choi
- NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Neo Christopher Chung
- NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland.
| | - Peipei Ping
- NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Scalable Analytics Institute (ScAi), University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Bioinformatics, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Medicine (Cardiology), University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
Nguyen TL, Chun WK, Kim A, Kim N, Roh HJ, Lee Y, Yi M, Kim S, Park CI, Kim DH. Dietary Probiotic Effect of Lactococcus lactis WFLU12 on Low-Molecular-Weight Metabolites and Growth of Olive Flounder ( Paralichythys olivaceus). Front Microbiol 2018; 9:2059. [PMID: 30233536 PMCID: PMC6134039 DOI: 10.3389/fmicb.2018.02059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/13/2018] [Indexed: 01/21/2023] Open
Abstract
The use of probiotics is considered an attractive biocontrol method. It is effective in growth promotion in aquaculture. However, the mode of action of probiotics in fish in terms of growth promotion remains unclear. The objective of the present study was to investigate growth promotion effect of dietary administration of host-derived probiotics, Lactococcus lactis WFLU12, on olive flounder compared to control group fed with basal diet by analyzing their intestinal and serum metabolome using capillary electrophoresis mass spectrometry with time-of flight (CE-TOFMS). Results of CE-TOFMS revealed that 53 out of 200 metabolites from intestinal luminal metabolome and 5 out of 171 metabolites from serum metabolome, respectively, were present in significantly higher concentrations in the probiotic-fed group than those in the control group. Concentrations of metabolites such as citrulline, tricarboxylic acid cycle (TCA) intermediates, short chain fatty acids, vitamins, and taurine were significantly higher in the probiotic-fed group than those in the control group. The probiotic strain WFLU12 also possesses genes encoding enzymes to help produce these metabolites. Therefore, it is highly likely that these increased metabolites linked to growth promotion in olive flounder are due to supplementation of the probiotic strain. To the best of our knowledge, this is the first study to show that dietary probiotics can greatly influence metabolome in fish. Findings of the present study may reveal important implications for maximizing the efficiency of using dietary additives to optimize fish health and growth.
Collapse
Affiliation(s)
- Thanh Luan Nguyen
- Department of Veterinary Medicine, HUTECH Institute of Applied Science, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam.,Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Won-Kyong Chun
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Ahran Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Nameun Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Heyong Jin Roh
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Myunggi Yi
- Department of Biomedical Engineering, College of Engineering, Pukyong National University, Busan, South Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics, Chemistry Institute for Functional Materials, Pusan National University, Busan, South Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| |
Collapse
|
34
|
Fazelzadeh P, Hangelbroek RWJ, Joris PJ, Schalkwijk CG, Esser D, Afman L, Hankemeier T, Jacobs DM, Mihaleva VV, Kersten S, van Duynhoven J, Boekschoten MV. Weight loss moderately affects the mixed meal challenge response of the plasma metabolome and transcriptome of peripheral blood mononuclear cells in abdominally obese subjects. Metabolomics 2018; 14:46. [PMID: 29527144 PMCID: PMC5838115 DOI: 10.1007/s11306-018-1328-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The response to dietary challenges has been proposed as a more accurate measure of metabolic health than static measurements performed in the fasted state. This has prompted many groups to explore the potential of dietary challenge tests for assessment of diet and lifestyle induced shifts in metabolic phenotype. OBJECTIVES We examined whether the response to a mixed-meal challenge could provide a readout for a weight loss (WL)-induced phenotype shift in abdominally obese male subjects. The underlying assumption of a mixed meal challenge is that it triggers all aspects of phenotypic flexibility and provokes a more prolonged insulin response, possibly allowing for better differentiation between individuals. METHODS Abdominally obese men (n = 29, BMI = 30.3 ± 2.4 kg/m2) received a mixed-meal challenge prior to and after an 8-week WL or no-WL control intervention. Lean subjects (n = 15, BMI = 23.0 ± 2.0 kg/m2) only received the mixed meal challenge at baseline to have a benchmark for WL-induced phenotype shifts. RESULTS Levels of several plasma metabolites were significantly different between lean and abdominally obese at baseline as well as during postprandial metabolic responses. Genes related to oxidative phosphorylation in peripheral blood mononuclear cells (PBMCs) were expressed at higher levels in abdominally obese subjects as compared to lean subjects at fasting, which was partially reverted after WL. The impact of WL on the postprandial response was modest, both at the metabolic and gene expression level in PBMCs. CONCLUSION We conclude that mixed-meal challenges are not necessarily superior to measurements in the fasted state to assess metabolic health. Furthermore, the mechanisms accounting for the observed differences between lean and abdominally obese in the fasted state are different from those underlying the dissimilarity observed during the postprandial response.
Collapse
Affiliation(s)
- Parastoo Fazelzadeh
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Roland W J Hangelbroek
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Peter J Joris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Diederik Esser
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Lydia Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | | | - Doris M Jacobs
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- Unilever R&D, Vlaardingen, The Netherlands
| | - Velitchka V Mihaleva
- Netherlands Metabolomics Centre, Leiden, The Netherlands
- Unilever R&D, Vlaardingen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.
- Top Institute Food and Nutrition, Wageningen, The Netherlands.
- Netherlands Metabolomics Centre, Leiden, The Netherlands.
- Unilever R&D, Vlaardingen, The Netherlands.
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| |
Collapse
|
35
|
|
36
|
Polakof S, Rémond D, David J, Dardevet D, Savary-Auzeloux I. Time-course changes in circulating branched-chain amino acid levels and metabolism in obese Yucatan minipig. Nutrition 2017; 50:66-73. [PMID: 29547796 DOI: 10.1016/j.nut.2017.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/24/2017] [Accepted: 11/01/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVES High-fat high-sucrose diet (HFHS) overfeeding is one of the main factors responsible for the increased prevalence of metabolic disorders. Elevated levels of branched-chain amino acids (BCAAs) have been associated with metabolic dysfunctions, including insulin resistance (IR). The aim of this study was to elucidate whether elevated BCAA levels are the cause or the consequence of IR and to determine the mechanisms and tissues involved in such a phenotype. METHODS We performed a 2-mo follow-up on minipigs overfed an HFHS diet and focused on kinetics fasting and postprandial (PP) BCAA levels and BCAA catabolism in key tissues. RESULTS The study of the fasting BCAA elevation reveals that BCAA accumulation in the plasma compartment is well correlated with IR markers and body weight. Furthermore, the PP excursion of BCAA levels after the last HFHS meal was exacerbated when compared with that of the first meal, suggesting a reduced amino acid oxidation potential. Although only minor changes in BCAA metabolism were observed in liver, muscle, and the visceral adipose tissue, the oxidative deamination potential of the subcutaneous adipose tissue was blunted after 60 d of HFHS feeding. CONCLUSIONS To our knowledge, the present results demonstrated for the first time in a swine model of obesity and IR, the existence of a phenotype related to high-circulating BCAA levels and metabolic dysregulation. The oxidative BCAA capacity reduction specifically in the subcutaneous adipose tissue emerges, at least in the present swine model, as the more plausible metabolic explanation for the elevated blood BCAA phenotype.
Collapse
Affiliation(s)
- Sergio Polakof
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Didier Rémond
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérémie David
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Dominique Dardevet
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Isabelle Savary-Auzeloux
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
37
|
Würtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies. Am J Epidemiol 2017; 186:1084-1096. [PMID: 29106475 PMCID: PMC5860146 DOI: 10.1093/aje/kwx016] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022] Open
Abstract
Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings.
Collapse
Affiliation(s)
- Peter Würtz
- Correspondence to Dr. Peter Würtz, Computational Medicine, Faculty of Medicine, Aapistie 5A, P.O. Box 5000, FI-90014 University of Oulu, Finland (e-mail: ); or Dr. Mika Ala-Korpela, Computational Medicine, Faculty of Medicine, Aapistie 5A, P.O. Box 5000, FI-90014 University of Oulu, Finland (e-mail: )
| | | | | | | | | | - Mika Ala-Korpela
- Correspondence to Dr. Peter Würtz, Computational Medicine, Faculty of Medicine, Aapistie 5A, P.O. Box 5000, FI-90014 University of Oulu, Finland (e-mail: ); or Dr. Mika Ala-Korpela, Computational Medicine, Faculty of Medicine, Aapistie 5A, P.O. Box 5000, FI-90014 University of Oulu, Finland (e-mail: )
| |
Collapse
|
38
|
|
39
|
Phenotype-driven identification of modules in a hierarchical map of multifluid metabolic correlations. NPJ Syst Biol Appl 2017; 3:28. [PMID: 28948040 PMCID: PMC5608949 DOI: 10.1038/s41540-017-0029-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 12/27/2022] Open
Abstract
The identification of phenotype-driven network modules in complex, multifluid metabolomics data poses a considerable challenge for statistical analysis and result interpretation. This is the case for phenotypes with only few associations ('sparse' effects), but, in particular, for phenotypes with a large number of metabolite associations ('dense' effects). Herein, we postulate that examining the data at different layers of resolution, from metabolites to pathways, will facilitate the interpretation of modules for both the sparse and the dense cases. We propose an approach for the phenotype-driven identification of modules on multifluid networks based on untargeted metabolomics data of plasma, urine, and saliva samples from the German Study of Health in Pomerania (SHIP-TREND) study. We generated a hierarchical, multifluid map of metabolism covering both metabolite and pathway associations using Gaussian graphical models. First, this map facilitates a fundamental understanding of metabolism within and across fluids for our study, and can serve as a valuable and downloadable resource. Second, based on this map, we then present an algorithm to identify regulated modules that associate with factors such as gender and insulin-like growth factor I (IGF-I) as examples of traits with dense and sparse associations, respectively. We found IGF-I to associate at the rather fine-grained metabolite level, while gender shows well-interpretable associations at pathway level. Our results confirm that a holistic and interpretable view of metabolic changes associated with a phenotype can only be obtained if different layers of metabolic resolution from multiple body fluids are considered. Metabolism consists of complex interactions across various organs and body fluids, which poses a substantial challenge for the analysis of metabolic data. To address this problem, Jan Krumsiek from Helmholtz Zentrum München and colleagues used metabolomics measurements of plasma, urine, and saliva from 1000 people to statistically reconstruct a map of interactions in human metabolism. Based on this map, a novel approach that identifies highly correlated biochemical modules that are associated with a given phenotype, was tested for gender and insulin-like growth factor I (IGF-I). The identified modules provided insights into the interaction between metabolome and phenotype that reach beyond what can be found by commonly used statistical approaches for metabolomics. The approach is generic and can be readily applied to new datasets by other colleagues from the field.
Collapse
|
40
|
Herzig KH, Leppäluoto J, Jokelainen J, Meugnier E, Pesenti S, Selänne H, Mäkelä KA, Ahola R, Jämsä T, Vidal H, Keinänen-Kiukaanniemi S. Low level activity thresholds for changes in NMR biomarkers and genes in high risk subjects for Type 2 Diabetes. Sci Rep 2017; 7:11267. [PMID: 28924247 PMCID: PMC5603534 DOI: 10.1038/s41598-017-09753-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/28/2017] [Indexed: 01/26/2023] Open
Abstract
Our objectives were to determine if there are quantitative associations between amounts and intensities of physical activities (PA) on NMR biomarkers and changes in skeletal muscle gene expressions in subjects with high risk for type 2 diabetes (T2D) performing a 3-month PA intervention. We found that PA was associated with beneficial biomarker changes in a factor containing several VLDL and HDL subclasses and lipids in principal component analysis (P = <0.01). Division of PA into quartiles demonstrated significant changes in NMR biomarkers in the 2nd - 4th quartiles compared to the 1st quartile representing PA of less than 2850 daily steps (P = 0.0036). Mediation analysis of PA-related reductions in lipoproteins showed that the effects of PA was 4-15 times greater than those of body weight or fat mass reductions. In a subset study in highly active subjects' gene expressions of oxidative fiber markers, Apo D, and G0/G1 Switch Gene 2, controlling insulin signaling and glucose metabolism were significantly increased. Slow walking at speeds of 2-3 km/h exceeding 2895 steps/day attenuated several circulating lipoprotein lipids. The effects were mediated rather by PA than body weight or fat loss. Thus, lower thresholds for PA may exist for long term prevention of cardio-metabolic diseases in sedentary overweight subjects.
Collapse
Affiliation(s)
- Karl-Heinz Herzig
- Research Unit of Biomedicine, and Biocenter of Oulu, Oulu University, 90014, Oulu, Finland. .,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland. .,Medical Research Center and Oulu University Hospital, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | - Juhani Leppäluoto
- Research Unit of Biomedicine, and Biocenter of Oulu, Oulu University, 90014, Oulu, Finland
| | - Jari Jokelainen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.,Oulu University Hospital, Unit of General Practice, and Health Center of Oulu, Oulu, Finland
| | - Emmanuelle Meugnier
- CarMeN Laboratory, INSERM U1060, INRA U1397, University of Lyon, 69600, Oullins, France
| | - Sandra Pesenti
- CarMeN Laboratory, INSERM U1060, INRA U1397, University of Lyon, 69600, Oullins, France
| | - Harri Selänne
- Department of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Kari A Mäkelä
- Research Unit of Biomedicine, and Biocenter of Oulu, Oulu University, 90014, Oulu, Finland
| | - Riikka Ahola
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, 90014, Oulu, Finland
| | - Timo Jämsä
- Medical Research Center and Oulu University Hospital, University of Oulu and Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, 90014, Oulu, Finland.,Department of Diagnostic Imaging, Oulu University Hospital, Oulu, Finland
| | - Hubert Vidal
- CarMeN Laboratory, INSERM U1060, INRA U1397, University of Lyon, 69600, Oullins, France
| | - Sirkka Keinänen-Kiukaanniemi
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.,Oulu University Hospital, Unit of General Practice, and Health Center of Oulu, Oulu, Finland
| |
Collapse
|
41
|
Menni C, Migaud M, Kastenmüller G, Pallister T, Zierer J, Peters A, Mohney RP, Spector TD, Bagnardi V, Gieger C, Moore SC, Valdes AM. Metabolomic Profiling of Long-Term Weight Change: Role of Oxidative Stress and Urate Levels in Weight Gain. Obesity (Silver Spring) 2017; 25:1618-1624. [PMID: 28758372 PMCID: PMC5601206 DOI: 10.1002/oby.21922] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the association between long-term weight change and blood metabolites. METHODS Change in BMI over 8.6 ± 3.79 years was assessed in 3,176 females from the TwinsUK cohort (age range: 18.3-79.6, baseline BMI: 25.11 ± 4.35) measured for 280 metabolites at follow-up. Statistically significant metabolites (adjusting for covariates) were included in a multivariable least absolute shrinkage and selection operator (LASSO) model. Findings were replicated in the Cooperative Health Research in the Region of Augsburg (KORA) study (n = 1,760; age range: 25-70, baseline BMI: 27.72 ± 4.53). The study examined whether the metabolites identified could prospectively predict weight change in KORA and in the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) study (n = 471; age range: 55-74, baseline BMI: 27.24 ± 5.37). RESULTS Thirty metabolites were significantly associated with change in BMI per year in TwinsUK using Bonferroni correction. Four were independently associated with weight change in the multivariable LASSO model and replicated in KORA: namely, urate (meta-analysis β [95% CI] = 0.05 [0.040 to 0.063]; P = 1.37 × 10-19 ), gamma-glutamyl valine (β [95% CI] = 0.06 [0.046 to 0.070]; P = 1.23 × 10-20 ), butyrylcarnitine (β [95% CI] = 0.04 [0.028 to 0.051]; P = 6.72 × 10-12 ), and 3-phenylpropionate (β [95% CI] = -0.03 [-0.041 to -0.019]; P = 9.8 × 10-8 ), all involved in oxidative stress. Higher levels of urate at baseline were associated with weight gain in KORA and PLCO. CONCLUSIONS Metabolites linked to higher oxidative stress are associated with increased long-term weight gain.
Collapse
Affiliation(s)
- Cristina Menni
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
| | - Marie Migaud
- Mitchell Cancer InstituteUniversity of South AlabamaMobileAlabamaUSA
| | - Gabi Kastenmüller
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes ResearchNeuherbergGermany
| | - Tess Pallister
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
| | - Jonas Zierer
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum MünchenNeuherbergGermany
| | | | - Tim D. Spector
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative MethodsUniversity of Milano‐BicoccaMilanItaly
| | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Steve C. Moore
- Division of Cancer Epidemiology and GeneticsNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Ana M. Valdes
- Department of Twin Research & Genetic EpidemiologyKing's College LondonLondonUK
- School of Medicine, University of NottinghamNottinghamUK
- National Institute for Health Research, Nottingham Biomedical Research CentreNottinghamUK
| |
Collapse
|
42
|
Wichmann HE. Epidemiology in Germany-general development and personal experience. Eur J Epidemiol 2017; 32:635-656. [PMID: 28815360 DOI: 10.1007/s10654-017-0290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Did you ever hear about epidemiology in Germany? Starting from an epidemiological desert the discipline has grown remarkably, especially during the last 10-15 years: research institutes have been established, research funding has improved, multiple curriculae in Epidemiology and Public Health are offered. This increase has been quite steep, and now the epidemiological infrastructure is much better. Several medium-sized and even big population cohorts are ongoing, and the number and quality of publications from German epidemiologists has reached a respectable level. My own career in epidemiology started in the field of environmental health. After German reunification I concentrated for many years on environmental problems in East Germany and observed the health benefits after improvement of the situation. Later, I concentrated on population-based cohorts in newborns (GINI/LISA) and adults (KORA, German National Cohort), and on biobanking. This Essay describes the development in Germany after worldwar 2, illustrated by examples of research results and build-up of epidemiological infractructures worth mentioning.
Collapse
Affiliation(s)
- Heinz-Erich Wichmann
- Institute of Epidemiology, 2, Helmholtz Center Munich, Munich, Germany. .,Chair of Epidemiology, University of Munich, Munich, Germany.
| |
Collapse
|
43
|
Nath AP, Ritchie SC, Byars SG, Fearnley LG, Havulinna AS, Joensuu A, Kangas AJ, Soininen P, Wennerström A, Milani L, Metspalu A, Männistö S, Würtz P, Kettunen J, Raitoharju E, Kähönen M, Juonala M, Palotie A, Ala-Korpela M, Ripatti S, Lehtimäki T, Abraham G, Raitakari O, Salomaa V, Perola M, Inouye M. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation. Genome Biol 2017; 18:146. [PMID: 28764798 PMCID: PMC5540552 DOI: 10.1186/s13059-017-1279-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up. RESULTS We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus. CONCLUSIONS This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.
Collapse
Affiliation(s)
- Artika P Nath
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Scott C Ritchie
- Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Sean G Byars
- Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Liam G Fearnley
- Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Aki S Havulinna
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland
| | - Anni Joensuu
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland
| | | | - Lili Milani
- University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Andres Metspalu
- University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Peter Würtz
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
| | - Johannes Kettunen
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland.,Biocenter Oulu, University of Oulu, Oulu, 90014, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 33014, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, FI-33521, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, FI-20520, Turku, Finland.,Murdoch Childrens Research Institute, Parkville, 3052, Victoria, Australia
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, 70211, Finland.,Biocenter Oulu, University of Oulu, Oulu, 90014, Finland.,Computational Medicine, School of Social and Community Medicine, University of Bristol, Bristol, BS8 1TH, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 33014, Tampere, Finland
| | - Gad Abraham
- Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia.,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, 20520, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20520, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, 00271, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, 00271, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, 00014, Finland.,University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Michael Inouye
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010, Victoria, Australia. .,Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. .,Department of Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia. .,School of BioSciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
44
|
Erythritol is a pentose-phosphate pathway metabolite and associated with adiposity gain in young adults. Proc Natl Acad Sci U S A 2017; 114:E4233-E4240. [PMID: 28484010 DOI: 10.1073/pnas.1620079114] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Metabolomic markers associated with incident central adiposity gain were investigated in young adults. In a 9-mo prospective study of university freshmen (n = 264). Blood samples and anthropometry measurements were collected in the first 3 d on campus and at the end of the year. Plasma from individuals was pooled by phenotype [incident central adiposity, stable adiposity, baseline hemoglobin A1c (HbA1c) > 5.05%, HbA1c < 4.92%] and assayed using GC-MS, chromatograms were analyzed using MetaboliteDetector software, and normalized metabolite levels were compared using Welch's t test. Assays were repeated using freshly prepared pools, and statistically significant metabolites were quantified in a targeted GC-MS approach. Isotope tracer studies were performed to determine if the potential marker was an endogenous human metabolite in men and in whole blood. Participants with incident central adiposity gain had statistically significantly higher blood erythritol [P < 0.001, false discovery rate (FDR) = 0.0435], and the targeted assay revealed 15-fold [95% confidence interval (CI): 13.27, 16.25] higher blood erythritol compared with participants with stable adiposity. Participants with baseline HbA1c > 5.05% had 21-fold (95% CI: 19.84, 21.41) higher blood erythritol compared with participants with lower HbA1c (P < 0.001, FDR = 0.00016). Erythritol was shown to be synthesized endogenously from glucose via the pentose-phosphate pathway (PPP) in stable isotope-assisted ex vivo blood incubation experiments and through in vivo conversion of erythritol to erythronate in stable isotope-assisted dried blood spot experiments. Therefore, endogenous production of erythritol from glucose may contribute to the association between erythritol and obesity observed in young adults.
Collapse
|
45
|
Lin E, Lane HY. Machine learning and systems genomics approaches for multi-omics data. Biomark Res 2017; 5:2. [PMID: 28127429 PMCID: PMC5251341 DOI: 10.1186/s40364-017-0082-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/03/2017] [Indexed: 11/15/2022] Open
Abstract
In light of recent advances in biomedical computing, big data science, and precision medicine, there is a mammoth demand for establishing algorithms in machine learning and systems genomics (MLSG), together with multi-omics data, to weigh probable phenotype-genotype relationships. Software frameworks in MLSG are extensively employed to analyze hundreds of thousands of multi-omics data by high-throughput technologies. In this study, we reviewed the MLSG software frameworks and future directions with respect to multi-omics data analysis and integration. Our review was targeted at researching recent approaches and technical solutions for the MLSG software frameworks using multi-omics platforms.
Collapse
Affiliation(s)
- Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Vita Genomics, Inc, Taipei, Taiwan.,TickleFish Systems Corporation, Seattle, WA USA
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
46
|
Chronic Diseases and Lifestyle Biomarkers Identification by Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:235-263. [DOI: 10.1007/978-3-319-47656-8_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Geyer PE, Wewer Albrechtsen NJ, Tyanova S, Grassl N, Iepsen EW, Lundgren J, Madsbad S, Holst JJ, Torekov SS, Mann M. Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol Syst Biol 2016; 12:901. [PMID: 28007936 PMCID: PMC5199119 DOI: 10.15252/msb.20167357] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill‐defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed by a year of weight maintenance. Using mass spectrometry‐based plasma proteome profiling, we measured 1,294 plasma proteomes. Longitudinal monitoring of the cohort revealed individual‐specific protein levels with wide‐ranging effects of losing weight on the plasma proteome reflected in 93 significantly affected proteins. The adipocyte‐secreted SERPINF1 and apolipoprotein APOF1 were most significantly regulated with fold changes of −16% and +37%, respectively (P < 10−13), and the entire apolipoprotein family showed characteristic differential regulation. Clinical laboratory parameters are reflected in the plasma proteome, and eight plasma proteins correlated better with insulin resistance than the known marker adiponectin. Nearly all study participants benefited from weight loss regarding a ten‐protein inflammation panel defined from the proteomics data. We conclude that plasma proteome profiling broadly evaluates and monitors intervention in metabolic diseases.
Collapse
Affiliation(s)
- Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefka Tyanova
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Niklas Grassl
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eva W Iepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Lundgren
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany .,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Ala-Korpela M, Davey Smith G. Metabolic profiling-multitude of technologies with great research potential, but (when) will translation emerge? Int J Epidemiol 2016; 45:1311-1318. [PMID: 27789667 PMCID: PMC5100630 DOI: 10.1093/ije/dyw305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland .,Medical Research Council Integrative Epidemiology Unit and School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit and School of Social and Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
49
|
Tebani A, Afonso C, Marret S, Bekri S. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations. Int J Mol Sci 2016; 17:ijms17091555. [PMID: 27649151 PMCID: PMC5037827 DOI: 10.3390/ijms17091555] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.
Collapse
Affiliation(s)
- Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, 76031 Rouen, France.
- Normandie University, UNIROUEN, INSERM, CHU Rouen, Laboratoire NeoVasc ERI28, 76000 Rouen, France.
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Carlos Afonso
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Stéphane Marret
- Normandie University, UNIROUEN, INSERM, CHU Rouen, Laboratoire NeoVasc ERI28, 76000 Rouen, France.
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76031 Rouen, France.
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, 76031 Rouen, France.
- Normandie University, UNIROUEN, INSERM, CHU Rouen, Laboratoire NeoVasc ERI28, 76000 Rouen, France.
| |
Collapse
|
50
|
Vogt S, Wahl S, Kettunen J, Breitner S, Kastenmüller G, Gieger C, Suhre K, Waldenberger M, Kratzsch J, Perola M, Salomaa V, Blankenberg S, Zeller T, Soininen P, Kangas AJ, Peters A, Grallert H, Ala-Korpela M, Thorand B. Characterization of the metabolic profile associated with serum 25-hydroxyvitamin D: a cross-sectional analysis in population-based data. Int J Epidemiol 2016; 45:1469-1481. [PMID: 27605587 PMCID: PMC5100623 DOI: 10.1093/ije/dyw222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Numerous observational studies have observed associations between vitamin D deficiency and cardiometabolic diseases, but these findings might be confounded by obesity. A characterization of the metabolic profile associated with serum 25-hydroxyvitamin D [25(OH)D] levels, in general and stratified by abdominal obesity, may help to untangle the relationship between vitamin D, obesity and cardiometabolic health. METHODS Serum metabolomics measurements were obtained from a nuclear magnetic resonance spectroscopy (NMR)- and a mass spectrometry (MS)-based platform. The discovery was conducted in 1726 participants of the population-based KORA-F4 study, in which the associations of the concentrations of 415 metabolites with 25(OH)D levels were assessed in linear models. The results were replicated in 6759 participants (NMR) and 609 (MS) participants, respectively, of the population-based FINRISK 1997 study. RESULTS Mean [standard deviation (SD)] 25(OH)D levels were 15.2 (7.5) ng/ml in KORA F4 and 13.8 (5.9) ng/ml in FINRISK 1997; 37 metabolites were associated with 25(OH)D in KORA F4 at P < 0.05/415. Of these, 30 associations were replicated in FINRISK 1997 at P < 0.05/37. Among these were constituents of (very) large very-low-density lipoprotein and small low-density lipoprotein subclasses and related measures like serum triglycerides as well as fatty acids and measures reflecting the degree of fatty acid saturation. The observed associations were independent of waist circumference and generally similar in abdominally obese and non-obese participants. CONCLUSIONS Independently of abdominal obesity, higher 25(OH)D levels were associated with a metabolite profile characterized by lower concentrations of atherogenic lipids and a higher degree of fatty acid polyunsaturation. These results indicate that the relationship between vitamin D deficiency and cardiometabolic diseases is unlikely to merely reflect obesity-related pathomechanisms.
Collapse
Affiliation(s)
- Susanne Vogt
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Munich Heart Alliance, Munich, Germany
| | - Simone Wahl
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Johannes Kettunen
- Computational Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, University of Eastern Finland, Kuopio, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - Susanne Breitner
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Doha, Qatar
| | - Melanie Waldenberger
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland.,Institute for Molecular Medicine (FIMM) and Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland.,Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Stefan Blankenberg
- University Heart Center Hamburg, Clinic of General and Interventional Cardiology, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany and
| | - Tanja Zeller
- University Heart Center Hamburg, Clinic of General and Interventional Cardiology, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany and
| | - Pasi Soininen
- Computational Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, University of Eastern Finland, Kuopio, Finland
| | - Antti J Kangas
- Computational Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Munich Heart Alliance, Munich, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Harald Grallert
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Mika Ala-Korpela
- Computational Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, University of Eastern Finland, Kuopio, Finland.,Computational Medicine, School of Social and Community Medicine, University of Bristol and Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Barbara Thorand
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, .,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|