1
|
Gualtieri P, Frank G, Cianci R, Smeriglio A, Alibrandi A, Di Renzo L, Trombetta D. Mediterranean Diet Influence on SARS-CoV-2 Vaccine Adverse Reaction: Friend or Foe? Nutrients 2024; 16:1846. [PMID: 38931201 PMCID: PMC11206327 DOI: 10.3390/nu16121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The Mediterranean Diet (MedDiet) has long been recognized for its health-promoting attributes, with proven benefits in preventing cardiovascular and metabolic diseases. During the global COVID-19 pandemic, MedDiet's potential to mitigate the impact of SARS-CoV-2 infection gained attention. This study aims to investigate the interplay among MedDiet adherence, immune system response to SARS-CoV-2 vaccines, and potential sex-related variations. METHODS A retrospective observational study was conducted through collecting data from a web survey for the Italian population. Adherence to the MedDiet was assessed using the Mediterranean Diet Adherence Screener (MEDAS); in addition, COVID-19 symptoms and vaccination details were also obtained. RESULTS Significant associations between MedDiet adherence, COVID-19 symptoms, and vaccine-related side effects were observed. Notably, females demonstrated distinct responses, reporting lymph node enlargement and a different prevalence and severity of vaccine side effects compared to males. CONCLUSIONS This study highlights the protective role of the MedDiet against COVID-19 and emphasizes the relevance of sex-specific responses in vaccination outcomes according to MEDAS score.
Collapse
Affiliation(s)
- Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (P.G.); (L.D.R.)
| | - Giulia Frank
- PhD School of Applied Medical-Surgical Sciences, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.S.); (D.T.)
| | - Angela Alibrandi
- Department of Economics, University of Messina, 98100 Messina, Italy;
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (P.G.); (L.D.R.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.S.); (D.T.)
| |
Collapse
|
2
|
Xu C, Jiang H, Feng LJ, Jiang MZ, Wang YL, Liu SJ. Christensenella minuta interacts with multiple gut bacteria. Front Microbiol 2024; 15:1301073. [PMID: 38440147 PMCID: PMC10910051 DOI: 10.3389/fmicb.2024.1301073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Gut microbes form complex networks that significantly influence host health and disease treatment. Interventions with the probiotic bacteria on the gut microbiota have been demonstrated to improve host well-being. As a representative of next-generation probiotics, Christensenella minuta (C. minuta) plays a critical role in regulating energy balance and metabolic homeostasis in human bodies, showing potential in treating metabolic disorders and reducing inflammation. However, interactions of C. minuta with the members of the networked gut microbiota have rarely been explored. Methods In this study, we investigated the impact of C. minuta on fecal microbiota via metagenomic sequencing, focusing on retrieving bacterial strains and coculture assays of C. minuta with associated microbial partners. Results Our results showed that C. minuta intervention significantly reduced the diversity of fecal microorganisms, but specifically enhanced some groups of bacteria, such as Lactobacillaceae. C. minuta selectively enriched bacterial pathways that compensated for its metabolic defects on vitamin B1, B12, serine, and glutamate synthesis. Meanwhile, C. minuta cross-feeds Faecalibacterium prausnitzii and other bacteria via the production of arginine, branched-chain amino acids, fumaric acids and short-chain fatty acids (SCFAs), such as acetic. Both metagenomic data analysis and culture experiments revealed that C. minuta negatively correlated with Klebsiella pneumoniae and 14 other bacterial taxa, while positively correlated with F. prausnitzii. Our results advance our comprehension of C. minuta's in modulating the gut microbial network. Conclusions C. minuta disrupts the composition of the fecal microbiota. This disturbance is manifested through cross-feeding, nutritional competition, and supplementation of its own metabolic deficiencies, resulting in the specific enrichment or inhibition of the growth of certain bacteria. This study will shed light on the application of C. minuta as a probiotic for effective interventions on gut microbiomes and improvement of host health.
Collapse
Affiliation(s)
- Chang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li-Juan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min-Zhi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Flores-López A, Quiroz-Olguin G, González-Garay AG, Serralde-Zúñiga AE. It is not just about prescription. A cohort study of the impact of enteral nutrition on mortality of hospitalized patients with COVID-19. NUTR HOSP 2024; 41:11-18. [PMID: 37929849 DOI: 10.20960/nh.04828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction Introduction: during COVID-19 pandemic, international societies released guidelines and recommendations for patients requiring nutritional support according to previous similar respiratory diseases. Objectives: the aim of the study was to evaluate the nutritional support provided by enteral nutrition (EN) in patients with COVID-19 infection, identify if the recommendations from international societies were met and their impact on mortality rate. Methods: a cohort study was conducted on adult patients with COVID-19 admitted to a tertiary hospital. Demographic, clinical, biochemical, and nutritional variables were obtained. A random-effect parametric survival-time model was performed to quantify the risk of death for each variable, and the Hausman test was used to confirm the model. Results: two hundred and twenty-nine patients were enrolled. The delivered energy was > 80 % of adequacy in the first two days, as suggested by international guidelines (11.7 ± 4.9 kcal/kg); however, an adequacy rate less than 60 % was achieved on day 14 (25.4 ± 7.4 kcal/kg). The protein adequacy was > 75 % on the first days of infusion (1.3 ± 0.3 g/kg); however, the infusion was < 50 % (1.5 ± 0.4 g/kg) after being extubated. Age, sex, and nutritional risk were related to higher mortality in patients with EN, whereas the infused energy and protein, the percentage of protein adequacy, arginine, and n-3 PUFA were associated with lower mortality. Conclusion: achieving at least 80 % of the energy and protein requirements, as well as n-3 PUFA and arginine supplementation could be associated with lower mortality in COVID-19 patients. More studies are needed to confirm the role of these nutrients on the mortality rate.
Collapse
Affiliation(s)
- Adriana Flores-López
- Servicio Nutriología Clínica. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | | | | | - Aurora E Serralde-Zúñiga
- Servicio Nutriología Clínica. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| |
Collapse
|
4
|
Ma Y, Fei Y, Ding S, Jiang H, Fang J, Liu G. Trace metal elements: a bridge between host and intestinal microorganisms. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1976-1993. [PMID: 37528296 DOI: 10.1007/s11427-022-2359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/23/2023] [Indexed: 08/03/2023]
Abstract
Trace metal elements, such as iron, copper, manganese, and zinc, are essential nutrients for biological processes. Although their intake demand is low, they play a crucial role in cell homeostasis as the cofactors of various enzymes. Symbiotic intestinal microorganisms compete with their host for the use of trace metal elements. Moreover, the metabolic processes of trace metal elements in the host and microorganisms affect the organism's health. Supplementation or the lack of trace metal elements in the host can change the intestinal microbial community structure and function. Functional changes in symbiotic microorganisms can affect the host's metabolism of trace metal elements. In this review, we discuss the absorption and transport processes of trace metal elements in the host and symbiotic microorganisms and the effects of dynamic changes in the levels of trace metal elements on the intestinal microbial community structure. We also highlight the participation of trace metal elements as enzyme cofactors in the host immune process. Our findings indicate that the host uses metal nutrition immunity or metal poisoning to resist pathogens and improve immunity.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
5
|
Boicean LC, Birlutiu RM, Birlutiu V. Correlations between serum leptin levels and classical biomarkers in SARS-CoV-2 infection, in critically ill patients. Microb Pathog 2023; 182:106238. [PMID: 37419217 DOI: 10.1016/j.micpath.2023.106238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Altered levels of some blood markers might be linked with the degree of severity and mortality of patients with SARS-CoV-2 infection. This study aimed to find out if there are correlations between serum leptin levels and classical biomarkers. MATERIALS AND METHODS We present a single-center observational cohort study on SARS-CoV-2 infected patients. The study was conducted at Infectious Diseases Clinic of Academic Emergency Hospital Sibiu, from May through November 2020. In this study, we retrospectively analyzed 54 patients, all with confirmed SARS-CoV-2 infection. RESULTS Our results revealed that there is a negative correlation between serum leptin and Interleukin-6 levels and a positive correlation between serum leptin and blood glucose levels. A positive correlation between ferritin and lactate dehydrogenase levels was also observed. No correlation was found between leptin and other biomarkers such as ferritin, neutrophil/lymphocyte ratio, lactate dehydrogenase, C-reactive protein, fibrinogen, erythrocyte sedimentation rate, or D-dimer. CONCLUSIONS Further studies need to be conducted to investigate the role of leptin in SARS-CoV-2 infection. The results of this research could contribute to the introduction of the determination of serum leptin levels in the routine evaluation of patients with critical illness.
Collapse
Affiliation(s)
- Loredana Camelia Boicean
- "Lucian Blaga" University of Sibiu, Faculty of Medicine, Sibiu, Romania; Academic Emergency Hospital Sibiu, Infectious Diseases Clinic, Sibiu, Romania.
| | | | - Victoria Birlutiu
- "Lucian Blaga" University of Sibiu, Faculty of Medicine, Sibiu, Romania; Academic Emergency Hospital Sibiu, Infectious Diseases Clinic, Sibiu, Romania
| |
Collapse
|
6
|
Gualtieri P, Trombetta D, Smeriglio A, Frank G, Alibrandi A, Leggeri G, Marchetti M, Zingale I, Fanelli S, Stocchi A, Di Renzo L. Effectiveness of Nutritional Supplements for Attenuating the Side Effects of SARS-CoV-2 Vaccines. Nutrients 2023; 15:nu15081807. [PMID: 37111026 PMCID: PMC10141698 DOI: 10.3390/nu15081807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Supplementation is known to enhance the immune response and reduce infection. Therefore, the association between immune nutrients and vaccine side effects needs to be investigated. Our aim was to analyze the relationship between vaccination side effects and supplement intake among the Italian population. The study included a questionnaire asking for personal data, anthropometric information, COVID-19 infection and immunity response, and COVID-19 vaccination and supplementation. The survey was conducted from 8 February to 15 June 2022. In the study, 776 respondents were included, aged between 18 and 86 (71.3% females). We observed a statistically significant correlation between supplement consumption and side effects at the end of the vaccination cycle (p = 0.000), which was also confirmed by logistic regression (p = 0.02). Significant associations were observed between supplement intake and side effects of diarrhea and nausea at the end of the vaccination cycle (p = 0.001; p = 0.04, respectively). Significant associations were observed between side effects and omega-3 and mineral supplementation at the start of the vaccination cycle (p = 0.02; p = 0.001, respectively), and between side effects and vitamin supplementation at the end of the vaccination cycle (p = 0.005). In conclusion, our study shows a positive impact of supplementation on vaccination response, increasing host immune defenses, and reducing side effects.
Collapse
Affiliation(s)
- Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giulia Frank
- Ph.D. School of Applied Medical-Surgical Sciences, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Angela Alibrandi
- Department of Economy, University of Messina, Via dei Verdi 75, 98122 Messina, Italy
| | - Giulia Leggeri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Marchetti
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Ilaria Zingale
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Fanelli
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Arianna Stocchi
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
7
|
Scarcella M, Scarpellini E, Piergallini S, Rinninella E, Routhiaux K, Rasetti C, Abenavoli L, De Robertis E, Manzi P, Commissari R, Monti R, Zanetti M. Effect of Immuno-Nutrition on Malnutrition, Inflammatory Response and Clinical Course of Semi-Critically Ill COVID-19 Patients: A Pilot Perspective Study. Nutrients 2023; 15:nu15051250. [PMID: 36904249 PMCID: PMC10004815 DOI: 10.3390/nu15051250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND The SARS-COV 2 pandemic has hit on our lives since early 2020. During different contagion waves, both malnutrition and overweight significantly correlated with patient mortality. Immune-nutrition (IN) has shown promising results in the clinical course of pediatric inflammatory bowel disease (IBD) and in both the rate of extubation and mortality of patients admitted to an intensive care unit (ICU). Thus, we wanted to assess the effects of IN on a clinical course of patients admitted to a semi-intensive COVID-19 Unit during the fourth wave of contagion that occurred at the end of 2021. METHODS we prospectively enrolled patients admitted to the semi-intensive COVID-19 Unit of San Benedetto General hospital. All patients had a biochemical, anthropometric, high-resolution tomography chest scan (HRCT) and complete nutritional assessments at the time of admission, after oral administration of immune-nutrition (IN) formula, and at 15 days interval follow-up. RESULTS we enrolled 34 consecutive patients (age 70.3 ± 5.4 years, 6 F, BMI 27.0 ± 0.5 kg/m2). Main comorbidities were diabetes (20%, type 2 90 %), hyperuricemia (15%), hypertension (38%), chronic ischemic heart disease (8 %), COPD (8%), anxiety syndrome (5%), and depression (5%). 58% of patients were affected as moderately-to-severely overweight; mini nutritional assessment (MNA) score (4.8 ± 0.7) and phase angle (PA) values (3.8 ± 0.5) suggestive of malnutrition were present in 15% of patients, mainly with a history of cancer. After 15 days upon admission, we recorded 3 deaths (mean age 75.7 ± 5.1 years, BMI 26.3 ± 0.7 kg/m2) and 4 patients were admitted to the ICU. Following IN formula administration, inflammatory markers significantly decreased (p < 0.05) while BMI and PA did not worsen. These latter findings were not observed in a historical control group that did not receive IN. Only one patient needed protein-rich formula administration. CONCLUSIONS in this overweight COVID-19 population immune-nutrition prevented malnutrition development with a significant decrease of inflammatory markers.
Collapse
Affiliation(s)
- Marialaura Scarcella
- Anesthesia, Intensive Care and Nutritional Science—Azienda Ospedaliera “Santa Maria”, Via Tristano di Joannuccio, 05100 Terni, Italy
| | - Emidio Scarpellini
- Clinical Nutrition Unit and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, Via Luciano Manara 7, 63074 San Benedetto del Tronto, Italy
- Translational Research Center for Gastrointestinal Disease (T.A.R.G.I.D.), Gasthuisberg University Hospital, KULeuven, Herestraat 49, 3000 Lueven, Belgium
| | - Sara Piergallini
- Clinical Nutrition Unit and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, Via Luciano Manara 7, 63074 San Benedetto del Tronto, Italy
- School of Nursing, Politechnics University of Marche, 60121 Ancona, Italy
| | - Emanuele Rinninella
- Department of Translational Medicine and Surgery, Clinical Nutrition Unit, Catholic University of Sacred Heart, Gemelli Foundation, 00168 Rome, Italy
| | - Karen Routhiaux
- Translational Research Center for Gastrointestinal Disease (T.A.R.G.I.D.), Gasthuisberg University Hospital, KULeuven, Herestraat 49, 3000 Lueven, Belgium
| | - Carlo Rasetti
- Clinical Nutrition Unit and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, Via Luciano Manara 7, 63074 San Benedetto del Tronto, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Edoardo De Robertis
- Division of Anaesthesia, Analgesia, and Intensive Care - Department of Medicine and Surgery-University of Perugia, 06121 Perugia, Italy
| | - Pietro Manzi
- Azienda Ospedaliera Santa Maria di Terni, 05100 Terni, Italy
| | - Rita Commissari
- Anesthesia and Intensive Care Azienda Ospedaliera Santa Maria Terni, 05100 Terni, Italy
| | - Riccardo Monti
- Cardiologic and Pediatric Intensive Care Unit, 05100 Terni, Italy
| | - Michela Zanetti
- Department of Medical and Surgical Sciences, Azienda Sanitaria Universitaria “Giuliano-Isontina”, Trieste University, 34148 Trieste, Italy
- Correspondence:
| |
Collapse
|
8
|
Hasankhani A, Bahrami A, Tavakoli-Far B, Iranshahi S, Ghaemi F, Akbarizadeh MR, Amin AH, Abedi Kiasari B, Mohammadzadeh Shabestari A. The role of peroxisome proliferator-activated receptors in the modulation of hyperinflammation induced by SARS-CoV-2 infection: A perspective for COVID-19 therapy. Front Immunol 2023; 14:1127358. [PMID: 36875108 PMCID: PMC9981974 DOI: 10.3389/fimmu.2023.1127358] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a severe respiratory disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that affects the lower and upper respiratory tract in humans. SARS-CoV-2 infection is associated with the induction of a cascade of uncontrolled inflammatory responses in the host, ultimately leading to hyperinflammation or cytokine storm. Indeed, cytokine storm is a hallmark of SARS-CoV-2 immunopathogenesis, directly related to the severity of the disease and mortality in COVID-19 patients. Considering the lack of any definitive treatment for COVID-19, targeting key inflammatory factors to regulate the inflammatory response in COVID-19 patients could be a fundamental step to developing effective therapeutic strategies against SARS-CoV-2 infection. Currently, in addition to well-defined metabolic actions, especially lipid metabolism and glucose utilization, there is growing evidence of a central role of the ligand-dependent nuclear receptors and peroxisome proliferator-activated receptors (PPARs) including PPARα, PPARβ/δ, and PPARγ in the control of inflammatory signals in various human inflammatory diseases. This makes them attractive targets for developing therapeutic approaches to control/suppress the hyperinflammatory response in patients with severe COVID-19. In this review, we (1) investigate the anti-inflammatory mechanisms mediated by PPARs and their ligands during SARS-CoV-2 infection, and (2) on the basis of the recent literature, highlight the importance of PPAR subtypes for the development of promising therapeutic approaches against the cytokine storm in severe COVID-19 patients.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Bahareh Tavakoli-Far
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Physiology and Pharmacology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Setare Iranshahi
- School of Pharmacy, Shahid Beheshty University of Medical Sciences, Tehran, Iran
| | - Farnaz Ghaemi
- Department of Biochemistry, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, School of Medicine, Amir al momenin Hospital, Zabol University of Medical Sciences, Zabol, Iran
| | - Ali H. Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Mohammadzadeh Shabestari
- Department of Dental Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
- Khorasan Covid-19 Scientific Committee, Mashhad, Iran
| |
Collapse
|
9
|
Gualtieri P, Marchetti M, Frank G, Smeriglio A, Trombetta D, Colica C, Cianci R, De Lorenzo A, Di Renzo L. Antioxidant-Enriched Diet on Oxidative Stress and Inflammation Gene Expression: A Randomized Controlled Trial. Genes (Basel) 2023; 14:206. [PMID: 36672947 PMCID: PMC9859217 DOI: 10.3390/genes14010206] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The Mediterranean Diet (MedDiet) is associated with beneficial effects against chronic non-communicable diseases (CNCDs). In particular, the content of micronutrients leads to an improvement of the oxidative and inflammatory profiles. A randomized, parallel, controlled study, on 24 subjects, was conducted to evaluate if 2-week supplementation with a mixed apple and bergamot juice (MAB juice), had a positive impact on the body composition, the biochemical profile, and oxidative and inflammatory gene expression (Superoxide dismutase (SOD1), Peroxisome Proliferator-Activated Receptor γ (PPARγ), catalase (CAT), chemokine C-C motif ligand 5 (CCL5), Nuclear Factor Kappa B Subunit 1 (NFKB1), Vitamin D Receptor (VDR), and Macrophage Migration Inhibitory Factor (MIF)), respect to a MedDiet. Body composition evaluation analysis showed a gain in lean mass (p < 0.01). Moreover, a significant reduction in total cholesterol/HDL index (p < 0.01) was pointed out between the two groups. Gene expression analysis highlighted an increase in MIF (p ≤ 0.05), PPARγ (p < 0.001), SOD1 (p ≤ 0.05), and VDR (p ≤ 0.05) expressions when comparing MedDiet and MedDiet + MAB juice groups. These data based on the nutrigenomics approach demonstrated that supplementing 2 weeks of MAB juice to the MedDiet could contribute to a reduction in the risk of CNCDs.
Collapse
Affiliation(s)
- Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Marchetti
- School of Specialization in Food Science, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Frank
- Ph.D. School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carmela Colica
- CNR, IBFM UOS, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Gualtieri P, Marchetti M, Renzo LD, De Santis GL, Palma R, Colica C, Frank G, De Lorenzo A, Di Lorenzo N. Impact of COVID-19 on the Destiny of Bariatric Patients. Nutrients 2022; 15:nu15010163. [PMID: 36615820 PMCID: PMC9824221 DOI: 10.3390/nu15010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Obese patients reported worse outcomes of COVID-19 related to prothrombotic and low-grade inflammation status. During the SARS-CoV-2 outbreak, all non-elective surgeries were postponed, including bariatric surgery (BS). This umbrella review wants to underline obesity as a condition provoking low-grade chronic inflammation, and increasing severe COVID-19 risk; to relaunch the prioritization of BS. The literature search was conducted in March 2022 via Pubmed (MEDLINE) and focused on reviews, systematic reviews, and meta-analyses published in peer-reviewed journals. Terms "bariatric surgery" OR "obesity surgery" OR "metabolic surgery" were analyzed with "COVID-19" OR "SARS-CoV-2" using the AND modifier. Only 13 studies of the 406 screened met the objective. The procrastination of BS over the past two years determined a delay in obesity treatment and severe consequences. The COVID-19 pandemic has had a huge impact on economic costs. Although BS has high costs, a lifetime cost advantage over conventional weight loss methods was demonstrated. As the pandemic continues, health policies must recognize obesity as a disease-predisposing factor for SARS-CoV-2 infection, considering COVID-19 as a new comorbidity mitigable by BS. Care pathways for obese patients in COVID/post-COVID era should be revitalized and the concept of elective surgery attributed to BS should be reformulated.
Collapse
Affiliation(s)
- Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Marco Marchetti
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gemma Lou De Santis
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Roselisa Palma
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carmela Colica
- CNR, IBFM UOS, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy
| | - Giulia Frank
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Di Lorenzo
- Department of Surgical Sciences, Università di Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
11
|
Exploring the Sustainable Benefits of Adherence to the Mediterranean Diet during the COVID-19 Pandemic in Italy. Nutrients 2022; 15:nu15010110. [PMID: 36615768 PMCID: PMC9824251 DOI: 10.3390/nu15010110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to identify adherence to the Mediterranean diet (MedDiet) and its effect on health and environmental and socioeconomic sustainability during the COVID-19 pandemic among a sample of the Italian population. Notably, it intended to assess the effect of adherence to the MedDiet on ecological footprints and food expenditure. A survey was conducted from the 5th to the 24th of April 2020 on Google Forms. The MEDAS questionnaire was used to determine the level of adherence to the MedDiet. The carbon footprint (CO2), water footprint (H2O), and food cost were calculated. In total, 3353 participants completed the questionnaire, ranging from 18 to 86 years old. A statistically significant difference was observed in the CO2 and H2O among BMI groups (p < 0.001). The low- and medium-MEDAS groups showed higher CO2 (p < 0.001). The food cost (EUR/week) resulted in statistically significant differences among the MEDAS groups. The CO2 results were significantly lower in organic-market buyers compared to non-organic-market buyers (p < 0.001). Public health must promote awareness of how adhering to a healthy lifestyle and making appropriate food choices can positively impact our health and social and economic well-being.
Collapse
|
12
|
Bacorn M, Romero-Soto HN, Levy S, Chen Q, Hourigan SK. The Gut Microbiome of Children during the COVID-19 Pandemic. Microorganisms 2022; 10:microorganisms10122460. [PMID: 36557713 PMCID: PMC9783902 DOI: 10.3390/microorganisms10122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome has been shown to play a critical role in maintaining a healthy state. Dysbiosis of the gut microbiome is involved in modulating disease severity and potentially contributes to long-term outcomes in adults with COVID-19. Due to children having a significantly lower risk of severe illness and limited sample availability, much less is known about the role of the gut microbiome in children with COVID-19. It is well recognized that the developing gut microbiome of children differs from that of adults, but it is unclear if this difference contributes to the different clinical presentations and complications. In this review, we discuss the current knowledge of the gut microbiome in children with COVID-19, with gut microbiome dysbiosis being found in pediatric COVID-19 but specific taxa change often differing from those described in adults. Additionally, we discuss possible mechanisms of how the gut microbiome may mediate the presentation and complications of COVID-19 in children and the potential role for microbial therapeutics.
Collapse
|
13
|
Abe T, Yamaguchi F, Sakakura S, Yamazaki Y, Shikama Y. Effect of tocilizumab treatment in mildly-obese patients with coronavirus disease 2019: a case series. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1263. [PMID: 36618789 PMCID: PMC9816833 DOI: 10.21037/atm-2022-49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Background The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an increasingly widespread international medical problem. Several randomized trials and observational studies in patients with COVID-19 have been performed. However, the standard treatment strategy has not yet been established. The purpose of this study is to report effect of tocilizumab treatment combined with remdesivir, dexamethasone, and heparin on obese Japanese patients with COVID-19. Tocilizumab is a monoclonal antibody against the interleukin-6 (IL-6) receptor. Obesity, characterized by systemic enlarged adipocytes, promotes proinflammatory cytokine expression in adipose tissue. More specifically, obesity induces detrimental adipocytokine production including tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and IL-6. In addition, its production in the adipose tissue is associated with body mass index (BMI) and adipocyte size. IL-6 can promote inflammation not only in the adipose tissues but also in endothelial cells and triggers systemic inflammation. Methods A cross-sectional observational study was conducted. The study sample consisted of 96 patients between August 2020 and January 2021 at Showa University Fujigaoka Hospital. Results Overall, 56.3% (54 of 96) were administered with remdesivir, 54.2% (52 of 96) with dexamethasone, 19.8% (19 of 96) with anticoagulant therapy with heparin. Of the patients, nine were administered tocilizumab with remdesivir, dexamethasone, and heparin. The current study indicated that single-dose treatment of tocilizumab in combination with remdesivir, dexamethasone, and heparin is beneficial for obese Japanese patients with COVID-19. Conclusions We believe that the severity of obesity is related to the anti-IL-6 treatment sensitivity in patients with COVID-19.
Collapse
|
14
|
Mekky RY, Elemam NM, Eltahtawy O, Zeinelabdeen Y, Youness RA. Evaluating Risk: Benefit Ratio of Fat-Soluble Vitamin Supplementation to SARS-CoV-2-Infected Autoimmune and Cancer Patients: Do Vitamin-Drug Interactions Exist? Life (Basel) 2022; 12:1654. [PMID: 36295089 PMCID: PMC9604733 DOI: 10.3390/life12101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
COVID-19 is a recent pandemic that mandated the scientific society to provide effective evidence-based therapeutic approaches for the prevention and treatment for such a global threat, especially to those patients who hold a higher risk of infection and complications, such as patients with autoimmune diseases and cancer. Recent research has examined the role of various fat-soluble vitamins (vitamins A, D, E, and K) in reducing the severity of COVID-19 infection. Studies showed that deficiency in fat-soluble vitamins abrogates the immune system, thus rendering individuals more susceptible to COVID-19 infection. Moreover, another line of evidence showed that supplementation of fat-soluble vitamins during the course of infection enhances the viral clearance episode by promoting an adequate immune response. However, more thorough research is needed to define the adequate use of vitamin supplements in cancer and autoimmune patients infected with COVID-19. Moreover, it is crucial to highlight the vitamin-drug interactions of the COVID-19 therapeutic modalities and fat-soluble vitamins. With an emphasis on cancer and autoimmune patients, the current review aims to clarify the role of fat-soluble vitamins in SARS-CoV-2 infection and to estimate the risk-to-benefit ratio of a fat-soluble supplement administered to patients taking FDA-approved COVID-19 medications such as antivirals, anti-inflammatory, receptor blockers, and monoclonal antibodies.
Collapse
Affiliation(s)
- Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Noha M. Elemam
- Sharjah Institute for Medical Research (SIMR), College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Omar Eltahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
| | - Yousra Zeinelabdeen
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
- Faculty of Medical Sciences, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 12622, Egypt
| |
Collapse
|
15
|
Bencze D, Fekete T, Pázmándi K. Correlation between Type I Interferon Associated Factors and COVID-19 Severity. Int J Mol Sci 2022; 23:ijms231810968. [PMID: 36142877 PMCID: PMC9506204 DOI: 10.3390/ijms231810968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
16
|
Rocchi G, Giovanetti M, Benedetti F, Borsetti A, Ceccarelli G, Zella D, Altomare A, Ciccozzi M, Guarino MPL. Gut Microbiota and COVID-19: Potential Implications for Disease Severity. Pathogens 2022; 11:1050. [PMID: 36145482 PMCID: PMC9503814 DOI: 10.3390/pathogens11091050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 pandemic resulted in an unprecedented global crisis. SARS-CoV-2 primarily causes lung infection trough the binding of the virus with the ACE-2 cell receptor located on the surface of the alveolar epithelial cells. Notably, ACE-2 cell receptors are also expressed in the epithelial cells of the intestinal tract (GI). Recent data showed that the microbial communities of the GI might act as local and systematic inflammatory modulators. Gastrointestinal symptoms, including diarrhea, are frequently observed in infected individuals, and recent released data indicate that SARS-CoV-2 may also spread by fecal-oral transmission. Moreover, the gut microbiota's ecosystem can regulate and be regulated by invading pathogens, including viruses, facilitating an effective immune response, which in turn results in less severe diseases. In this regard, increased SARS-CoV-2 mortality and morbidities appear to be frequently observed in elderly immunocompromised patients and in people with essential health problems, such as diabetes, who, indeed, tend to have a less diverse gut microbiota (dysbiosis). Therefore, it is important to understand how the interaction between the gut microbiota and SARS-CoV-2 might shape the intensity of the infection and different clinical outcomes. Here, we provide insights into the current knowledge of dysbiosis during SARS-CoV-2 infection and methods that may be used to re-establish a more correct microbiota composition.
Collapse
Affiliation(s)
- Giulia Rocchi
- Department of Science and Engineering for Human and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
| | - Marta Giovanetti
- Laboratorio de Flavivirus, lnstituto Oswaldo Cruz/Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
| | - Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Annamaria Altomare
- Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico, 00128 Rome, Italy
- Unit of Digestive Disease, Campus Bio-Medico University, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University of Biomedical Campus, 00128 Rome, Italy
| | | |
Collapse
|
17
|
Yu L, Zhang X, Ye S, Lian H, Wang H, Ye J. Obesity and COVID-19: Mechanistic Insights From Adipose Tissue. J Clin Endocrinol Metab 2022; 107:1799-1811. [PMID: 35262698 PMCID: PMC8992328 DOI: 10.1210/clinem/dgac137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Obesity is associated with an increase in morbidity and mortality from coronavirus disease 2019 (COVID-19). The risk is related to the cytokine storm, a major contributor to multiorgan failure and a pathological character of COVID-19 patients with obesity. While the exact cause of the cytokine storm remains elusive, disorders in energy metabolism has provided insights into the mechanism. Emerging data suggest that adipose tissue in obesity contributes to the disorders in several ways. First, adipose tissue restricts the pulmonary function by generation of mechanical pressures to promote systemic hypoxia. Second, adipose tissue supplies a base for severe acute respiratory syndrome coronavirus 2 entry by overexpression of viral receptors [angiotensin-converting enzyme 2 and dipeptidyl peptidase 4]. Third, impaired antiviral responses of adipocytes and immune cells result in dysfunction of immunologic surveillance as well as the viral clearance systems. Fourth, chronic inflammation in obesity contributes to the cytokine storm by secreting more proinflammatory cytokines. Fifth, abnormal levels of adipokines increase the risk of a hyperimmune response to the virus in the lungs and other organs to enhance the cytokine storm. Mitochondrial dysfunction in adipocytes, immune cells, and other cell types (endothelial cells and platelets, etc) is a common cellular mechanism for the development of cytokine storm, which leads to the progression of mild COVID-19 to severe cases with multiorgan failure and high mortality. Correction of energy surplus through various approaches is recommended in the prevention and treatment of COVID-19 in the obese patients.
Collapse
Affiliation(s)
- Lili Yu
- Department of Immunology, Institute of Precision Medicine, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoying Zhang
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Sarah Ye
- Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Hongkai Lian
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
- Corresponding author:
| |
Collapse
|
18
|
Li Y, Huang J, Zhang S, Yang F, Zhou H, Song Y, Wang B, Li H. Sodium alginate and galactooligosaccharides ameliorate metabolic disorders and alter the composition of the gut microbiota in mice with high-fat diet-induced obesity. Int J Biol Macromol 2022; 215:113-122. [PMID: 35718141 DOI: 10.1016/j.ijbiomac.2022.06.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 12/12/2022]
Abstract
We aimed to investigate the effects of sodium alginate (SA) and galactooligosaccharides (GOS) on the metabolism and gut microbiota of high-fat diet (HFD)-fed obese mice. GOS and SA delayed high-fat diet-induced obesity, reduced the epididymal fat and liver indices, and improved the circulating lipid profile. Low- and high-dose GOS reduced weight gain by 48.8 % and 35.3 %, and low- and high-dose SA reduced it by 37.7 % and 34.4 %, respectively. GOS and SA reduced blood glucose concentration, probably by increasing the expression of glucose transporter 4. GOS and SA increased the expression of tight junction proteins (ZO-1 and occludin), reduced the D-lactic acid (D-LA) and lipopolysaccharide concentrations, and reduced the expression of toll-like receptors, consistent with improved intestinal barrier function. GOS and SA also increased the abundance of Bacteroidota, Bifidobacterium, and Lactobacillus; and reduced that of Patescibacteria in the gut. The abundance of Parabacteroides positively correlated with the circulating low-density lipoprotein-cholesterol (LDL-C) concentration; that of Lactobacillus negatively correlated with LDL-C, D-LA, and tumor necrosis factor-α concentration; and that of Bifidobacterium positively correlated with high-density lipoprotein-cholesterol concentration, according to Spearman correlation analysis. In conclusion, SA and GOS ameliorate obesity and the associated metabolic disorders in mice, and also modulate their gut microbial composition.
Collapse
Affiliation(s)
- Yao Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Juan Huang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Silu Zhang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Fan Yang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Haolin Zhou
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Yang Song
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Huajun Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| |
Collapse
|
19
|
Urolithin A Inactivation of TLR3/TRIF Signaling to Block the NF-κB/STAT1 Axis Reduces Inflammation and Enhances Antioxidant Defense in Poly(I:C)-Induced RAW264.7 Cells. Int J Mol Sci 2022; 23:ijms23094697. [PMID: 35563088 PMCID: PMC9101441 DOI: 10.3390/ijms23094697] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Urolithin A is an active compound of gut-microbiota-derived metabolites of polyphenol ellagic acid that has anti-aging, antioxidative, and anti-inflammatory effects. However, the effects of urolithin A on polyinosinic acid-polycytidylic acid (poly(I:C))-induced inflammation remain unclear. Poly(I:C) is a double-stranded RNA (dsRNA) similar to a virus and is recognized by Toll-like receptor-3 (TLR3), inducing an inflammatory response in immune cells, such as macrophages. Inflammation is a natural defense process of the innate immune system. Therefore, we used poly(I:C)-induced RAW264.7 cells and attenuated the inflammation induced by urolithin A. First, our data suggested that 1–30 μM urolithin A does not reduce RAW264.7 cell viability, whereas 1 μM urolithin A is sufficient for antioxidation and the decreased production of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and C-C chemokine ligand 5. The inflammation-related proteins cyclooxygenase-2 and inducible nitric oxide synthase were also downregulated by urolithin A. Next, 1 μM urolithin A inhibited the levels of interferon (INF)-α and INF-β. Urolithin A was applied to investigate the blockade of the TLR3 signaling pathway in poly(I:C)-induced RAW264.7 cells. Moreover, the TLR3 signaling pathway, subsequent inflammatory-related pathways, and antioxidation pathways showed changes in nuclear factor-κB (NF-κB) signaling and blocked ERK/mitogen-activated protein kinase (MAPK) signaling. Urolithin A enhanced catalase (CAT) and superoxide dismutase (SOD) activities, but decreased malondialdehyde (MDA) levels in poly(I:C)-induced RAW264.7 cells. Thus, our results suggest that urolithin A inhibits TLR3-activated inflammatory and oxidative-associated pathways in macrophages, and that this inhibition is induced by poly(I:C). Therefore, urolithin A may have antiviral effects and could be used to treat viral-infection-related diseases.
Collapse
|
20
|
Stahel VP, Blum SD, Anand P. The impact of immune dysfunction on perioperative complications in surgical COVID-19 patients: an imperative for early immunonutrition. Patient Saf Surg 2022; 16:14. [PMID: 35365199 PMCID: PMC8972719 DOI: 10.1186/s13037-022-00323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Surgical patients with coronavirus disease 2019 (COVID-19) are vulnerable to increased perioperative complications and postoperative mortality, independent of the risk for contracting COVID-19 pneumonia after endotracheal intubation for general anesthesia. The presumed root cause of postoperative infections, microvascular soft tissue injuries and thromboembolic complications is largely attributed to the profound immune dysfunction induced by COVID-19 as a result of complement activation and the "cytokine storm". The empirical therapy with anti-inflammatory agents has been shown to attenuate some of the adverse effects of systemic hyperinflammation in COVID-19 patients. In addition, the proactive concept of "immunonutrition" may represent a new promising avenue for mitigating the complex immune dysregulation in COVID-19 and thereby reduce the rates of surgical complications and postoperative mortality. This letter provides a narrative summary of the current state-of-the-art in the field of immunonutrition as it pertains to surgical patient safety in COVID-19 patients.
Collapse
Affiliation(s)
| | - Samson D Blum
- University of Colorado (CU), Boulder, CO, 80309, USA
| | - Pratibha Anand
- University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
21
|
Di Renzo L, De Lorenzo A, Fontanari M, Gualtieri P, Monsignore D, Schifano G, Alfano V, Marchetti M. Immunonutrients involved in the regulation of the inflammatory and oxidative processes: implication for gamete competence. J Assist Reprod Genet 2022; 39:817-846. [PMID: 35353297 PMCID: PMC9050992 DOI: 10.1007/s10815-022-02472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose The purpose of this umbrella review is to bring together the most recent reviews concerning the role of immunonutrients for male and female infertility. Methods Regarding immunonutrients and fertility, the authors have analyzed reviews, systematic reviews, and meta-analyses published between 2011 and June 2021. All reviews on animal or in vitro studies were excluded. Relevant keywords to term micronutrients were analyzed alone or in association with other terms such as “gamete competence,” “male OR female fertility,” “male OR female infertility,” “fertile, “folliculogenesis,” “spermatogenesis,” “immunomodulation,” “immune system,” “oxidative stress.” Results The primary research has included 108 results, and after screening by title, abstract. and not topic-related, 41 studies have been included by full texts. The results show the molecular mechanisms and the immunonutrients related impact on gamete formation, development. and competence. In particular, this review focused on arginine, glutamine, vitamin C, vitamin D, vitamin E, omega-3, selenium, and zinc. Conclusions Inflammation and oxidative stress significantly impact human reproduction. For this reason, immunonutrients may play an important role in the treatment of infertile patients. However, due to the lack of consistent clinical trials, their application is limited. Therefore, the development of clinical trials is necessary to define the correct supplementation, in case of deficiency.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,Italian University Network for Sustainable Development (RUS), Food Working Group, University of Tor Vergata, Via Cracovia, 00133, Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Marco Fontanari
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Diego Monsignore
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Giulia Schifano
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Valentina Alfano
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Marco Marchetti
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | | |
Collapse
|
22
|
The Effects of Vitamins and Micronutrients on Helicobacter pylori Pathogenicity, Survival, and Eradication: A Crosstalk between Micronutrients and Immune System. J Immunol Res 2022; 2022:4713684. [PMID: 35340586 PMCID: PMC8942682 DOI: 10.1155/2022/4713684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori as a class I carcinogen is correlated with a variety of severe gastroduodenal diseases; therefore, H. pylori eradication has become a priority to prevent gastric carcinogenesis. However, due to the emergence and spread of multidrug and single drug resistance mechanisms in H. pylori, as well as serious side effects of currently used antibiotic interventions, achieving successful H. pylori eradication has become exceedingly difficult. Recent studies expressed the intention of seeking novel strategies to improve H. pylori management and reduce the risk of H. pylori-associated intestinal and extragastrointestinal disorders. For which, vitamin supplementation has been demonstrated in many studies to have a tight interaction with H. pylori infection, either directly through the regulation of the host inflammatory pathways or indirectly by promoting the host immune response. On the other hand, H. pylori infection is reported to result in micronutrient malabsorption or deficiency. Furthermore, serum levels of particular micronutrients, especially vitamin D, are inversely correlated to the risk of H. pylori infection and eradication failure. Accordingly, vitamin supplementation might increase the efficiency of H. pylori eradication and reduce the risk of drug-related adverse effects. Therefore, this review aims at highlighting the regulatory role of micronutrients in H. pylori-induced host immune response and their potential capacity, as intrinsic antioxidants, for reducing oxidative stress and inflammation. We also discuss the uncovered mechanisms underlying the molecular and serological interactions between micronutrients and H. pylori infection to present a perspective for innovative in vitro investigations, as well as novel clinical implications.
Collapse
|
23
|
Vaccines, Microbiota and Immunonutrition: Food for Thought. Vaccines (Basel) 2022; 10:vaccines10020294. [PMID: 35214752 PMCID: PMC8874781 DOI: 10.3390/vaccines10020294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Vaccines are among the most effective health measures and have contributed to eradicating some diseases. Despite being very effective, response rates are low in some individuals. Different factors have been proposed to explain why some people are not as responsive as others, but what appears to be of critical importance is the presence of a healthy functioning immune system. In this respect, a key factor in modulating the immune system, both in its adaptive and innate components, is the microbiota. While microbiota can be modulated in different ways (i.e., antibiotics, probiotics, prebiotics), an effective and somewhat obvious mechanism is via nutrition. The science of nutrients and their therapeutic application is called immunonutrition, and it is increasingly being considered in several conditions. Our review will focus on the importance of nutrition and microbiota modulation in promoting a healthy immune system while also discussing the overall impact on vaccination response.
Collapse
|
24
|
Bruno A, Ferrante G, Di Vincenzo S, Pace E, La Grutta S. Leptin in the Respiratory Tract: Is There a Role in SARS-CoV-2 Infection? Front Physiol 2022; 12:776963. [PMID: 35002761 PMCID: PMC8727443 DOI: 10.3389/fphys.2021.776963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Leptin is a pleiotropic adipocytokine involved in several physiologic functions, with a known role in innate and adaptive immunity as well as in tissue homeostasis. Long- and short-isoforms of leptin receptors are widely expressed in many peripheral tissues and organs, such as the respiratory tract. Similar to leptin, microbiota affects the immune system and may interfere with lung health through the bidirectional crosstalk called the “gut-lung axis.” Obesity leads to impaired protective immunity and altered susceptibility to pulmonary infections, as those by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although it is known that leptin and microbiota link metabolism and lung health, their role within the SARS-CoV2 coronavirus disease 2019 (COVID-19) deserves further investigations. This review aimed to summarize the available evidence about: (i) the role of leptin in immune modulation; (ii) the role of gut microbiota within the gut-lung axis in modulating leptin sensitivity; and (iii) the role of leptin in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Andreina Bruno
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Giuliana Ferrante
- Pediatric Division, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Serena Di Vincenzo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| |
Collapse
|
25
|
Walusansa A, Asiimwe S, Ssenku JE, Anywar G, Namara M, Nakavuma JL, Kakudidi EK. Herbal medicine used for the treatment of diarrhea and cough in Kampala city, Uganda. Trop Med Health 2022; 50:5. [PMID: 34991719 PMCID: PMC8739351 DOI: 10.1186/s41182-021-00389-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Globally, diarrheal and respiratory diseases are among the main causes of mortality and morbidity. In Uganda, cities are facing proliferation of trade in herbal medicines (HM), including those for diarrhea and/or cough. Information on the economic, and the ethnopharmacological aspects of these HM is scarce, deterring the sector from achieving optimal capacity to support national development. We profiled the anti-diarrhea and/or anti-cough HM, and the basic economic aspects of HM trade in Kampala city, to support ethnopharmacological knowledge conservation and strategic planning. METHODS A cross-sectional survey was conducted on 65 herbalists using semi-structured questionnaires. This was supplemented by an observational survey using a high-resolution digital camera. Data were collected following the guidelines for research on HM, established by Uganda National Drug Authority, and World Health organization. RESULTS Eighty-four plant species from 41 families were documented. Fabaceae and Myricaceae had the highest number of species (9, 10.7% each). Citrus limon (L.) Osbeck was the most commonly cited for cough, with a relative frequency of citation (RFC) of 1.00, and its relative medical importance was not significantly different from the other top 5 species except for Azadirachta indica A.Juss (RFC = 0.87). Entada abyssinica A. Rich (RFC = 0.97) was the most cited for diarrhea. Trees (34, 40.5%) were mostly used, and mainly harvested from wild habitats (55.2%) in 20 districts across Uganda. These HM were mainly sold as powders and concoctions, in markets, shops, pharmacies, and roadside or mobile stalls. The highest prices were Uganda Shillings (UGX) 48,000 ($13.15)/kg for Allium sativum L, and UGX 16,000 ($4.38)/kg for C. limon. All participants used HM trade as a sole source of basic needs; majority (60.0%) earned net monthly profit of UGX. 730,000 ($200) ≤ 1,460,000 ($400). The main hindrances to HM trade were the; disruptions caused by the COVID-19 pandemic (n = 65, 100%), and the scarcity of medicinal plants (58, 89.2%). CONCLUSION There is a rich diversity of medicinal plant species traded in Kampala to treat diarrhea and cough. The HM trade significantly contributes to the livelihoods of the traders in Kampala, as well as the different actors along the HM value chain throughout the country.
Collapse
Affiliation(s)
- Abdul Walusansa
- Department of Plant Sciences, Microbiology and Biotechnology, School of Biosciences, Makerere University, Kampala, Uganda.
- Department of Medical Microbiology and Immunology, Faculty of Health Sciences, Habib Medical School, Islamic University in Uganda, Kampala, Uganda.
- Department of Medical Microbiology and Immunology, Faculty of Health Sciences, Busitema University, Mbale, Uganda.
| | - Savina Asiimwe
- Department of Plant Sciences, Microbiology and Biotechnology, School of Biosciences, Makerere University, Kampala, Uganda
| | - Jamilu E Ssenku
- Department of Plant Sciences, Microbiology and Biotechnology, School of Biosciences, Makerere University, Kampala, Uganda
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, School of Biosciences, Makerere University, Kampala, Uganda
| | - Milbert Namara
- College of Natural and Mathematical Sciences, University of Maryland, Baltimore County, 1000 Hilltop Cir, Baltimore, MD, 21250, USA
| | - Jesca L Nakavuma
- Department of Biomolecular and Biolaboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Esezah K Kakudidi
- Department of Plant Sciences, Microbiology and Biotechnology, School of Biosciences, Makerere University, Kampala, Uganda
| |
Collapse
|
26
|
Larsson A, Lipcsey M, Hultström M, Frithiof R, Eriksson M. Plasma Leptin Is Increased in Intensive Care Patients with COVID-19-An Investigation Performed in the PronMed-Cohort. Biomedicines 2021; 10:biomedicines10010004. [PMID: 35052684 PMCID: PMC8773415 DOI: 10.3390/biomedicines10010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
COVID-19 has shaken the world and intensive care units (ICU) have been challenged by numerous patients suffering from a previously unknown disease. Leptin is a polypeptide pleiotropic hormone, mainly expressed by adipocytes. It acts as a proinflammatory cytokine and is associated with several conditions, known to increase the risk of severe COVID-19. Very little is known about leptin in severe viral disorders. Plasma leptin was analyzed in 222 out of 229 patients with severe COVID-19 on admission to an ICU at Uppsala University Hospital, a tertiary care hospital in Sweden, and compared to plasma leptin in 25 healthy blood donors. COVID-19 was confirmed by positive PCR. Leptin levels were significantly higher in patients with COVID-19 (18.3 ng × mL−1; IQR = 30.4), than in healthy controls (7.8 ng × mL−1; IQR = 6.4). Women had significantly higher leptin values (22.9 ng × mL−1; IQR = 29.8) than men (17.5 ng × mL−1; IQR = 29.9). Mortality at 30 days was 23% but was not associated with increased leptin levels. Neither median duration of COVID-19 before admission to ICU (10 days; IQR = 4) or median length of ICU stay (8 days; IQR = 11) correlated with the plasma leptin levels. Leptin levels in COVID-19 were higher in females than in males. Both treatment (e.g., use of corticosteroids) and prophylaxis (vaccines) have been improved since the start of the COVID-19 pandemic, which may contribute to some difficulties in deciphering relations between COVID-19 and leptin.
Collapse
Affiliation(s)
- Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, 751 85 Uppsala, Sweden
- Correspondence: ; Tel.: +46-186114271
| | - Miklós Lipcsey
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.); (M.E.)
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Michael Hultström
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.); (M.E.)
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.); (M.E.)
| | - Mats Eriksson
- Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.); (M.E.)
| |
Collapse
|
27
|
Singla RK, He X, Chopra H, Tsagkaris C, Shen L, Kamal MA, Shen B. Natural Products for the Prevention and Control of the COVID-19 Pandemic: Sustainable Bioresources. Front Pharmacol 2021; 12:758159. [PMID: 34925017 PMCID: PMC8671886 DOI: 10.3389/fphar.2021.758159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The world has been unprecedentedly hit by a global pandemic which broke the record of deadly pandemics that faced humanity ever since its existence. Even kids are well-versed in the terminologies and basics of the SARS-CoV-2 virus and COVID-19 now. The vaccination program has been successfully launched in various countries, given that the huge global population of concern is still far behind to be vaccinated. Furthermore, the scarcity of any potential drug against the COVID-19-causing virus forces scientists and clinicians to search for alternative and complementary medicines on a war-footing basis. Aims and Objectives: The present review aims to cover and analyze the etiology and epidemiology of COVID-19, the role of intestinal microbiota and pro-inflammatory markers, and most importantly, the natural products to combat this deadly SARS-CoV-2 virus. Methods: A primary literature search was conducted through PubMed and Google Scholar using relevant keywords. Natural products were searched from January 2020 to November 2020. No timeline limit has been imposed on the search for the biological sources of those phytochemicals. Interactive mapping has been done to analyze the multi-modal and multi-target sources. Results and Discussion: The intestinal microbiota and the pro-inflammatory markers that can serve the prognosis, diagnosis, and treatment of COVID-19 were discussed. The literature search resulted in yielding 70 phytochemicals and ten polyherbal formulations which were scientifically analyzed against the SARS-CoV-2 virus and its targets and found significant. Retrospective analyses led to provide information about 165 biological sources that can also be screened if not done earlier. Conclusion: The interactive analysis mapping of biological sources with phytochemicals and targets as well as that of phytochemical class with phytochemicals and COVID-19 targets yielded insights into the multitarget and multimodal evidence-based complementary medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | | | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Effect of immunonutrition on serum levels of C-reactive protein and lymphocytes in patients with COVID-19: a randomized, controlled, double-blind clinical trial. NUTR HOSP 2021; 39:20-26. [PMID: 34839672 DOI: 10.20960/nh.03847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION patients with COVID-19 undergo changes in leukocyte count, respiratory disorders, and an increase in inflammatory substances. To improve the inflammatory condition, some nutrients can be used, including arginine, omega-3 fatty acids and nucleotides. This study aims to evaluate how oral immunonutrient supplements affects serum C-reactive protein (CRP) levels and lymphocyte count in patients with COVID-19. METHODS in this double-blind clinical trial, we randomized 43 adult patients with COVID-19 to receive a standard high-protein normocaloric supplement (control) or an immunonutrient-enriched supplement (experiment) for 7 days. The primary outcome was to evaluate changes in total lymphocyte count and serum level of CRP. The assessment of risk and nutritional status of these patients was also performed. RESULTS forty-three patients with mean age of 41.5 (± 1.8) years were followed up, 39.5 % of them women. The mean body mass index was 27.6 (± 0.8) kg/m² and 58.1 % had low nutritional risk. In the experiment group, there was a CRP reduction of 23.6 (± 7.5) mg/L, while in the control branch the decrease was 14.8 (± 12.1) mg/L (p = 0.002). There was an increase in lymphocytes in the experiment group (+367.5 ± 401.8 cells/mm³) and a reduction in the control group (-282.8 ± 327.8 cells/mm³), although there was no statistical significance (p = 0.369). Relative risk (RR) of treatment in reducing CRP by 30 % or more was 4.45 (p < 0.001; 95 % CI, 1.79-11.07). RR in increasing lymphocyte count by 30 % or more was 1.28 (p = 0.327; 95 % CI, 0.67-2.45). CONCLUSION we conclude that immunonutrient supplements seem to reduce CRP levels more than standard high-protein normocaloric supplements.
Collapse
|
29
|
Todosenko N, Vulf M, Yurova K, Khaziakhmatova O, Mikhailova L, Litvinova L. Causal Links between Hypovitaminosis D and Dysregulation of the T Cell Connection of Immunity Associated with Obesity and Concomitant Pathologies. Biomedicines 2021; 9:1750. [PMID: 34944566 PMCID: PMC8698424 DOI: 10.3390/biomedicines9121750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
Subclinical inflammation in morbid obesity is associated with immune activation and the development of concomitant diseases. Impaired immune homeostasis and immune cell dysregulation in adipose tissue are associated with phenotypic and functional changes in the pool of T lymphocytes and the development of chronic hypovitaminosis D. Low vitamin D levels in obesity lead to the activation, proliferation and production of pro-inflammatory mediators by T cells. Hypovitaminosis D is the cause of a decrease in the functional potential of regulatory and anti-inflammatory lymphocytes and the maintenance of the inflammatory response. The exact molecular genetic mechanisms of the effect of vitamin D on T lymphocytes have not been fully elucidated. Therefore, uncovering the functional role of T cells and their relationship to vitamin D homeostasis in the context of obesity development may contribute to the development of new pathogenetic methods for clinical prediction of the risk of metabolic, oncologic, autoimmune and infectious complications. The review presents the molecular genetic mechanisms of the effect of vitamin D on adipose tissue resident T lymphocytes and the characteristics of vitamin D receptor expression, and analyzes the phenotypic and functional characteristics of potentially pathogenic T lymphocytes in relation to the development of obesity and its associated complications.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (K.Y.); (O.K.); (L.L.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (K.Y.); (O.K.); (L.L.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (K.Y.); (O.K.); (L.L.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (K.Y.); (O.K.); (L.L.)
| | - Larisa Mikhailova
- Department of Therapy Medical Institute, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia;
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (K.Y.); (O.K.); (L.L.)
| |
Collapse
|
30
|
Hawryłkowicz V, Lietz-Kijak D, Kaźmierczak-Siedlecka K, Sołek-Pastuszka J, Stachowska L, Folwarski M, Parczewski M, Stachowska E. Patient Nutrition and Probiotic Therapy in COVID-19: What Do We Know in 2021? Nutrients 2021; 13:3385. [PMID: 34684384 PMCID: PMC8538178 DOI: 10.3390/nu13103385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The main nutritional consequences of COVID-19 include reduced food intake, hypercatabolism, and rapid muscle wasting. Some studies showed that malnutrition is a significant problem among patients hospitalized due to COVID-19 infection, and the outcome of patients with SARS-CoV-2 is strongly associated with their nutritional status. The purpose of this study was to collect useful information about the possible elements of nutritional and probiotic therapy in patients infected with the SARS-CoV-2 virus. METHODS A narrative review of the literature, including studies published up to 13 September 2021. RESULTS Probiotics may support patients by inhibiting the ACE2 receptor, i.e., the passage of the virus into the cell, and may also be effective in suppressing the immune response caused by the proinflammatory cytokine cascade. In patients' diet, it is crucial to ensure an adequate intake of micronutrients, such as omega-3 fatty acids (at 2-4 g/d), selenium (300-450 μg/d) and zinc (30-50 mg/d), and vitamins A (900-700 µg/d), E (135 mg/d), D (20,000-50,000 IU), C (1-2 g/d), B6, and B12. Moreover, the daily calorie intake should amount to ≥1500-2000 with 75-100 g of protein. CONCLUSION In conclusion, the treatment of gut dysbiosis involving an adequate intake of prebiotic dietary fiber and probiotics could turn out to be an immensely helpful instrument for immunomodulation, both in COVID-19 patients and prophylactically in individuals with no history of infection.
Collapse
Affiliation(s)
- Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| | - Danuta Lietz-Kijak
- Department of Propedeutics, Physiodiagnostics and Dental Physiotherapy, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | | | - Joanna Sołek-Pastuszka
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| | - Marcin Folwarski
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Miłosz Parczewski
- Department of Infectious, Tropical and Acquired Immunological Diseases, Pomeranian Medical University, 71-455 Szczecin, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (L.S.)
| |
Collapse
|
31
|
Dalamaga M, Christodoulatos GS, Karampela I, Vallianou N, Apovian CM. Understanding the Co-Epidemic of Obesity and COVID-19: Current Evidence, Comparison with Previous Epidemics, Mechanisms, and Preventive and Therapeutic Perspectives. Curr Obes Rep 2021; 10:214-243. [PMID: 33909265 PMCID: PMC8080486 DOI: 10.1007/s13679-021-00436-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW A growing body of evidence suggests that obesity and increased visceral adiposity are strongly and independently linked to adverse outcomes and death due to COVID-19. This review summarizes current epidemiologic data, highlights pathogenetic mechanisms on the association between excess body weight and COVID-19, compares data from previous pandemics, discusses why COVID-19 challenges the "obesity paradox," and presents implications in prevention and treatment as well as future perspectives. RECENT FINDINGS Data from meta-analyses based on recent observational studies have indicated that obesity increases the risks of infection from SARS-CoV-2, severe infection and hospitalization, admission to the ICU and need of invasive mechanical ventilation (IMV), and the risk of mortality, particularly in severe obesity. The risks of IMV and mortality associated with obesity are accentuated in younger individuals (age ≤ 50 years old). The meta-inflammation in obesity intersects with and exacerbates underlying pathogenetic mechanisms in COVID-19 through the following mechanisms and factors: (i) impaired innate and adaptive immune responses; (ii) chronic inflammation and oxidative stress; (iii) endothelial dysfunction, hypercoagulability, and aberrant activation of the complement; (iv) overactivation of the renin-angiotensin-aldosterone system; (v) overexpression of the angiotensin-converting enzyme 2 receptor in the adipose tissue; (vi) associated cardiometabolic comorbidities; (vii) vitamin D deficiency; (viii) gut dysbiosis; and (ix) mechanical and psychological issues. Mechanistic and large epidemiologic studies using big data sources with omics data exploring genetic determinants of risk and disease severity as well as large randomized controlled trials (RCTs) are necessary to shed light on the pathways connecting chronic subclinical inflammation/meta-inflammation with adverse COVID-19 outcomes and establish the ideal preventive and therapeutic approaches for patients with obesity.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece
| | - Irene Karampela
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462 Athens, Greece
| | - Natalia Vallianou
- Department of Internal Medicine and Endocrinology, Evangelismos General Hospital of Athens, 45-47 Ypsilantou street, 10676 Athens, Greece
| | - Caroline M. Apovian
- Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Doctor’s Office Building, 720 Harrison Avenue, Suite, Boston, MA 8100 USA
| |
Collapse
|
32
|
Epsi NJ, Richard SA, Laing ED, Fries AC, Millar E, Simons MP, English C, Colombo CJ, Colombo RE, Lindholm DA, Ganesan A, Maves RC, Huprikar N, Larson D, Mende K, Chi SW, Madar C, Lalani T, Broder CC, Tribble D, Agan BK, Burgess TH, Pollett SD. Clinical, immunological and virological SARS-CoV-2 phenotypes in obese and non-obese military health system beneficiaries. J Infect Dis 2021; 224:1462-1472. [PMID: 34331541 PMCID: PMC8385847 DOI: 10.1093/infdis/jiab396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
Background The mechanisms underlying the association between obesity and coronavirus disease 2019 (COVID-19) severity remain unclear. After verifying that obesity was a correlate of severe COVID-19 in US Military Health System (MHS) beneficiaries, we compared immunological and virological phenotypes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in both obese and nonobese participants. Methods COVID-19–infected MHS beneficiaries were enrolled, and anthropometric, clinical, and demographic data were collected. We compared the SARS-CoV-2 peak IgG humoral response and reverse-transcription polymerase chain reaction viral load in obese and nonobese patients, stratified by hospitalization, utilizing logistic regression models. Results Data from 511 COVID-19 patients were analyzed, among whom 24% were obese and 14% severely obese. Obesity was independently associated with hospitalization (adjusted odds ratio [aOR], 1.91; 95% confidence interval [CI], 1.15–3.18) and need for oxygen therapy (aOR, 3.39; 95% CI, 1.61–7.11). In outpatients, severely obese had a log10 (1.89) higher nucleocapsid (N1) genome equivalents (GE)/reaction and log10 (2.62) higher N2 GE/reaction than nonobese (P = 0.03 and P < .001, respectively). We noted a correlation between body mass index and peak anti-spike protein IgG in inpatients and outpatients (coefficient = 5.48, P < .001). Conclusions Obesity is a strong correlate of COVID-19 severity in MHS beneficiaries. These findings offer new pathophysiological insights into the relationship between obesity and COVID-19 severity.
Collapse
Affiliation(s)
- Nusrat J Epsi
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Stephanie A Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Anthony C Fries
- U.S. Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Eugene Millar
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Mark P Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Caroline English
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Christopher J Colombo
- Madigan Army Medical Center, Joint Base Lewis McChord, WA, USA.,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rhonda E Colombo
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA.,Madigan Army Medical Center, Joint Base Lewis McChord, WA, USA
| | | | - Anuradha Ganesan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA.,Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Ryan C Maves
- Naval Medical Center San Diego, San Diego, CA, USA
| | - Nikhil Huprikar
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Derek Larson
- Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Katrin Mende
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA.,Brooke Army Medical Center, Fort Sam Houston, TX, USA
| | - Sharon W Chi
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA.,Tripler Army Medical Center, Honolulu, HI, USA
| | | | - Tahaniyat Lalani
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA.,Naval Medical Center Portsmouth, Portsmouth, VA, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brian K Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Timothy H Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Simon D Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | | |
Collapse
|
33
|
Rochette L, Ghibu S. Mechanics Insights of Alpha-Lipoic Acid against Cardiovascular Diseases during COVID-19 Infection. Int J Mol Sci 2021; 22:7979. [PMID: 34360751 PMCID: PMC8348748 DOI: 10.3390/ijms22157979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China, in late December 2019. Since then, COVID-19 has spread rapidly worldwide and was declared a global pandemic on 20 March 2020. Cardiovascular complications are rapidly emerging as a major peril in COVID-19 in addition to respiratory disease. The mechanisms underlying the excessive effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities remain only partly understood. SARS-CoV-2 infection is caused by binding of the viral surface spike (S) protein to the human angiotensin-converting enzyme 2 (ACE2), followed by the activation of the S protein by transmembrane protease serine 2 (TMPRSS2). ACE2 is expressed in the lung (mainly in type II alveolar cells), heart, blood vessels, small intestine, etc., and appears to be the predominant portal to the cellular entry of the virus. Based on current information, most people infected with SARS-CoV-2 virus have a good prognosis, while a few patients reach critical condition, especially the elderly and those with chronic underlying diseases. The "cytokine storm" observed in patients with severe COVID-19 contributes to the destruction of the endothelium, leading to "acute respiratory distress syndrome" (ARDS), multiorgan failure, and death. At the origin of the general proinflammatory state may be the SARS-CoV-2-mediated redox status in endothelial cells via the upregulation of ACE/Ang II/AT1 receptors pathway or the increased mitochondrial reactive oxygen species (mtROS) production. Furthermore, this vicious circle between oxidative stress (OS) and inflammation induces endothelial dysfunction, endothelial senescence, high risk of thrombosis and coagulopathy. The microvascular dysfunction and the formation of microthrombi in a way differentiate the SARS-CoV-2 infection from the other respiratory diseases and bring it closer to cardiovascular diseases like myocardial infarction and stroke. Due the role played by OS in the evolution of viral infection and in the development of COVID-19 complications, the use of antioxidants as adjuvant therapy seems appropriate in this new pathology. Alpha-lipoic acid (ALA) could be a promising candidate that, through its wide tissue distribution and versatile antioxidant properties, interferes with several signaling pathways. Thus, ALA improves endothelial function by restoring the endothelial nitric oxide synthase activity and presents an anti-inflammatory effect dependent or independent of its antioxidant properties. By improving mitochondrial function, it can sustain the tissues' homeostasis in critical situation and by enhancing the reduced glutathione it could indirectly strengthen the immune system. This complex analysis could open a new therapeutic perspective for ALA in COVID-19 infection.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne-Franche Comté, 21000 Dijon, France;
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
34
|
Tang G, Zhang L, Huang W, Wei Z. Could Immunonutrition Help in the Fight against COVID-19 in Cancer Patient? Nutr Cancer 2021; 74:1203-1212. [PMID: 34309463 DOI: 10.1080/01635581.2021.1957128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid and widespread global pandemic of 2019 coronavirus disease (COVID-19) has had unprecedented negative health and economic impacts. Immune responses play a key role in the development of COVID-19, including the disruption of immune balance and cytokine storms caused by excessive inflammatory responses. Due to the effects of cancer itself and treatment, patients often accompanied by immunosuppression appear to be a susceptible population for COVID-19. Worryingly, COVID-19 with cancer is associated with a poor prognosis. Cancer patients are a vulnerable group, threatened by COVID-19, finding a way to combat COVID-19 for them is urgent. Immunonutrition is closely related to balance and strong immune function. Supplementary immunonutrition can improve the immune function and inflammatory response of cancer patients after surgery, which provides evidence for the role of immunonutrition in combating COVID-19. We reviewed possible mechanisms of immunonutrition against COVID-19, including enhancing immune cell function, increasing immune cell count, ameliorating excessive inflammatory response, and regulating gut microbiota. Immunonutrition supplementation in cancer patients may be beneficial to enhance immune function in the early stage of COVID-19 infection and control excessive inflammatory response in the late stage. Therefore, immunonutrition is a potential strategy for the prevention and treatment of COVID-19 in cancer.
Collapse
Affiliation(s)
- Gang Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linyu Zhang
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Wang Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengqiang Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Rakhra G, Rakhra G. Zinc finger proteins: insights into the transcriptional and post transcriptional regulation of immune response. Mol Biol Rep 2021; 48:5735-5743. [PMID: 34304391 PMCID: PMC8310398 DOI: 10.1007/s11033-021-06556-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Zinc finger proteins encompass one of the unique and large families of proteins with diversified biological functions in the human body. These proteins are primarily considered to be DNA binding transcription factors; however, owing to the diverse array of zinc-finger domains, they are able to interact with molecules other than DNA like RNA, proteins, lipids and PAR (poly-ADP-ribose). Evidences from recent scientific studies have provided an insight into the potential functions of zinc finger proteins in immune system regulation both at the transcriptional and post transcriptional level. However, the mechanism and importance of zinc finger proteins in the regulation of immune response is not very well defined and understood. This review highlights in detail the importance of zinc finger proteins in the regulation of immune system at transcriptional and post transcriptional level. CONCLUSION Different types of zinc finger proteins are involved in immune system regulation and their mechanism of regulation is discussed herewith.
Collapse
Affiliation(s)
- Gurseen Rakhra
- Department of Nutrition & Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, 121004, India
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
36
|
Joshi C, Jadeja V, Zhou H. Molecular Mechanisms of Palmitic Acid Augmentation in COVID-19 Pathologies. Int J Mol Sci 2021; 22:7127. [PMID: 34281182 PMCID: PMC8269364 DOI: 10.3390/ijms22137127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed over 2.7 million lives globally. Obesity has been associated with increased severity and mortality of COVID-19. However, the molecular mechanisms by which obesity exacerbates COVID-19 pathologies are not well-defined. The levels of free fatty acids (FFAs) are elevated in obese subjects. This study was therefore designed to examine how excess levels of different FFAs may affect the progression of COVID-19. Biological molecules associated with palmitic acid (PA) and COVID-19 were retrieved from QIAGEN Knowledge Base, and Ingenuity Pathway Analysis tools were used to analyze these datasets and explore the potential pathways affected by different FFAs. Our study found that one of the top 10 canonical pathways affected by PA was the coronavirus pathogenesis pathway, mediated by key inflammatory mediators, including PTGS2; cytokines, including IL1β and IL6; chemokines, including CCL2 and CCL5; transcription factors, including NFκB; translation regulators, including EEF1A1; and apoptotic mediators, including BAX. In contrast, n-3 fatty acids may attenuate PA's activation of the coronavirus pathogenesis pathway by inhibiting the activity of such mediators as IL1β, CCL2, PTGS2, and BAX. Furthermore, PA may modulate the expression of ACE2, the main cell surface receptor for the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
| | | | - Heping Zhou
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (C.J.); (V.J.)
| |
Collapse
|
37
|
Maltoni G, Zioutas M, Deiana G, Biserni GB, Pession A, Zucchini S. Gender differences in weight gain during lockdown due to COVID-19 pandemic in adolescents with obesity. Nutr Metab Cardiovasc Dis 2021; 31:2181-2185. [PMID: 33994065 DOI: 10.1016/j.numecd.2021.03.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIM Lockdown due to COVID-19 pandemic has forced a decrease in physical activity (PA), an increase in sedentary behavior (SB) and a possibly worsening of fat accumulation in already obese subjects. The aim of this study was to investigate how social restriction may have contributed to weight changes in adolescents with obesity. Secondary aim was to evaluate possible parameters influencing weight changes. METHODS AND RESULTS Parameters of 51 obese adolescents were compared between two visits: within 2 months before 8 March, start of lockdown, and within 40 days after the end of it. RESULTS Mean weight gain during lockdown was 2.8 ± 3.7 kg (p < 0.001). Weight increase was higher in males than in females (3.8 ± 3.4 kg vs 1.2 ± 3.7 kg, p = 0.02). The hours dedicated to SB increased (+2.9 ± 2.8 h/day; p < 0.001) while the hours of PA decreased (-1.0 ± 1.6 h/week; p < 0.001). Males spent more hours in SB than females (+3.8 ± 2.7 h/day vs +1.5 ± 2.5 h/day; p = 0.003). There were minor changes in diet during lockdown. The most significant variables influencing both delta BMI and waist/height ratio increase were hours devoted to SB during lockdown and differences in mild and moderate PA before and after lockdown. CONCLUSIONS Obese adolescents showed a worsening of obesity during lockdown, with males mainly affected, mainly due to a reduced mild PA and increased hours spent in SB.
Collapse
Affiliation(s)
- Giulio Maltoni
- Pediatric Unit, Department of Woman, Child and Urologic Diseases, University of Bologna, IRCCS S.Orsola-Malpighi Hospital, Italy
| | - Maximiliano Zioutas
- Pediatric Unit, Department of Woman, Child and Urologic Diseases, University of Bologna, IRCCS S.Orsola-Malpighi Hospital, Italy
| | - Giuseppina Deiana
- Pediatric Unit, Department of Woman, Child and Urologic Diseases, University of Bologna, IRCCS S.Orsola-Malpighi Hospital, Italy
| | - Giovanni Battista Biserni
- Pediatric Unit, Department of Woman, Child and Urologic Diseases, University of Bologna, IRCCS S.Orsola-Malpighi Hospital, Italy
| | - Andrea Pession
- Pediatric Unit, Department of Woman, Child and Urologic Diseases, University of Bologna, IRCCS S.Orsola-Malpighi Hospital, Italy
| | - Stefano Zucchini
- Pediatric Unit, Department of Woman, Child and Urologic Diseases, University of Bologna, IRCCS S.Orsola-Malpighi Hospital, Italy.
| |
Collapse
|
38
|
Toni T, Alverdy J. Harnessing the Microbiome to Optimize Surgical Outcomes in the COVID-19 Era. ANNALS OF SURGERY OPEN 2021; 2:e056. [PMID: 36590034 PMCID: PMC9794001 DOI: 10.1097/as9.0000000000000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
In this era of testing uncertainties, changing guidelines, and incomplete knowledge, "clearing" patients for surgery in the time of SARS-COVID-19 has been met with various challenges. Efforts to increase patient fitness have long been at the forefront of surgical practicing guidelines, but the current climate requires a renewed sense of focus on these measures. It is essential to understand how dietary history, previous antibiotic exposure, and baseline microbiota can inform and optimize preoperative and postoperative management of the surgical patient in the time of COVID-19. This piece focuses on the clinical, molecular, and physiologic dynamics that occur in preparing patients for surgery during COVID-19, considering the physiologic stress inherent in the procedure itself and the importance of specialized perioperative management approaches. COVID-19 has created a renewed sense of urgency to maintain our discipline in implementing those practices that have long been confirmed to be beneficial to patient outcome. This practice, along with a renewed interest in understanding how the gut microbiome is affected by the confinement, social distancing, etc., due to the COVID pandemic, is ever more important. Therefore, here we discuss the microbiome's role as a defense against viral infection and its potential for reactivation during the process of surgery as the next frontier for surgical advancement.
Collapse
Affiliation(s)
- Tiffany Toni
- From the Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - John Alverdy
- From the Pritzker School of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
39
|
Abulmeaty MMA, Aljuraiban GS, Shaikh SM, ALEid NE, Mazrou LRA, Turjoman AA, Aldosari MS, Razak S, El-Sayed MM, Areabi TM, Alsalafi RM, Al-Helio YS, Almutairy AB, Molla HN. The Efficacy of Antioxidant Oral Supplements on the Progression of COVID-19 in Non-Critically Ill Patients: A Randomized Controlled Trial. Antioxidants (Basel) 2021; 10:804. [PMID: 34069549 PMCID: PMC8160844 DOI: 10.3390/antiox10050804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Modulation of cytokine production using immunonutrition is a relatively novel concept to improve outcomes among patients with SARS-CoV-2 infection and is now hypothesized to help manage COVID-19, however, clinical evidence is lacking. This prospective, double-blinded, randomized parallel-controlled interventional clinical trial investigated the effect of antioxidant supplements on inflammatory cytokines and disease progression in non-critically ill patients. A total of 87 hospitalized COVID-19 patients were randomized using computer-generated-randomization into the supplement group (n = 18) and the placebo group (n = 16) for 10 days. Baseline and final nutritional screening via nutrition risk screening (NRS-2002) and subjective global assessment (SGA), as well as the recording of anthropometric, clinical, biochemical, and functional parameters, were done. Serum ferritin level, cytokine storm parameters such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein 1(MCP-1), C-reactive protein, total leukocyte count, lymphocytic count, and neutrophil-to-lymphocyte ratio were measured. Anthropometric and clinical parameters showed nonsignificant differences between groups. The hematology profile showed improvement in lymphocyte count in the supplement group. However, levels of alkaline phosphatase, IL-6, TNF-α, and MCP-1 were significantly lower in the supplement group. In conclusion, antioxidant oral supplementation significantly reduced the cytokine storm and led to partial improvements in clinical parameters among patients with non-critical COVID-19.
Collapse
Affiliation(s)
- Mahmoud M. A. Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (G.S.A.); (S.R.)
| | - Ghadeer S. Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (G.S.A.); (S.R.)
| | - Sumaya M. Shaikh
- Prince Mohamed Bin Abdulaziz Hospital, Riyadh 14214, Saudi Arabia; (S.M.S.); (N.E.A.); (L.R.A.M.); (A.A.T.); (T.M.A.); (R.M.A.); (Y.S.A.-H.); (A.B.A.)
| | - Naif E. ALEid
- Prince Mohamed Bin Abdulaziz Hospital, Riyadh 14214, Saudi Arabia; (S.M.S.); (N.E.A.); (L.R.A.M.); (A.A.T.); (T.M.A.); (R.M.A.); (Y.S.A.-H.); (A.B.A.)
| | - Lulwa R. Al Mazrou
- Prince Mohamed Bin Abdulaziz Hospital, Riyadh 14214, Saudi Arabia; (S.M.S.); (N.E.A.); (L.R.A.M.); (A.A.T.); (T.M.A.); (R.M.A.); (Y.S.A.-H.); (A.B.A.)
| | - Abdullah A. Turjoman
- Prince Mohamed Bin Abdulaziz Hospital, Riyadh 14214, Saudi Arabia; (S.M.S.); (N.E.A.); (L.R.A.M.); (A.A.T.); (T.M.A.); (R.M.A.); (Y.S.A.-H.); (A.B.A.)
| | - Mona S. Aldosari
- Clinical Nutrition Department, King Saud University Medical City, Riyadh 11472, Saudi Arabia; (M.S.A.); (H.N.M.)
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (G.S.A.); (S.R.)
| | - Mervat M. El-Sayed
- College of Food Sciences and Agriculture, King Saud University, Riyadh 11362, Saudi Arabia;
| | - Tahani M. Areabi
- Prince Mohamed Bin Abdulaziz Hospital, Riyadh 14214, Saudi Arabia; (S.M.S.); (N.E.A.); (L.R.A.M.); (A.A.T.); (T.M.A.); (R.M.A.); (Y.S.A.-H.); (A.B.A.)
| | - Rokia M. Alsalafi
- Prince Mohamed Bin Abdulaziz Hospital, Riyadh 14214, Saudi Arabia; (S.M.S.); (N.E.A.); (L.R.A.M.); (A.A.T.); (T.M.A.); (R.M.A.); (Y.S.A.-H.); (A.B.A.)
| | - Yasser S. Al-Helio
- Prince Mohamed Bin Abdulaziz Hospital, Riyadh 14214, Saudi Arabia; (S.M.S.); (N.E.A.); (L.R.A.M.); (A.A.T.); (T.M.A.); (R.M.A.); (Y.S.A.-H.); (A.B.A.)
| | - Abdulrhman B. Almutairy
- Prince Mohamed Bin Abdulaziz Hospital, Riyadh 14214, Saudi Arabia; (S.M.S.); (N.E.A.); (L.R.A.M.); (A.A.T.); (T.M.A.); (R.M.A.); (Y.S.A.-H.); (A.B.A.)
| | - Haneen N. Molla
- Clinical Nutrition Department, King Saud University Medical City, Riyadh 11472, Saudi Arabia; (M.S.A.); (H.N.M.)
| |
Collapse
|
40
|
Abstract
Fasting potentials are the most interesting topics in the Nutritional Era. Fasting consists of the catabolism of lipids, proteins, and carbohydrates to maintain blood glucose levels in a normal range. The action mechanisms of fasting were firstly understood in minor organisms and later in humans. Nutritional interventions of caloric restriction could attenuate age-associated epigenetic alterations and could have a protective effect against cellular alterations, promoting longevity and health span. While most fasting studies point out the weight and fat mass decreases, it is important to define specific guidelines for fasting and non-fasting days to enhance adherence, minimize the dropout rates of the interventions, and maximize body composition improvement. Although the panorama of evidence on fasting and caloric restriction is wide, there is a lack of a safe fasting protocol to guide physicians in its prescription. The main goal is to identify a how to use guide, a major posology of fasting, inserted within a huge dietetic personalized strategy leading to an optimal and healthy nutritional status.
Collapse
|
41
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|
42
|
Cummings CL, Miller CS. COVID-19: how a self-monitoring checklist can empower early intervention and slow disease progression. ENVIRONMENT SYSTEMS & DECISIONS 2021; 41:181-183. [PMID: 33717825 PMCID: PMC7938383 DOI: 10.1007/s10669-021-09806-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 02/20/2021] [Indexed: 01/27/2023]
Abstract
The SARS-CoV-2 novel coronavirus pandemic has revealed many scientific, social, and institutional challenges required to improve the health and wellbeing of individuals stricken by this disease. While organizations and governing institutions have risen to the task to concurrently prepare for and respond to this pandemic under conditions of high uncertainty and extreme pressure, another important aspect of this viral infection deserves attention and is not being fully considered, that is early intervention strategies and structured tools for individuals who test positive for the virus and begin developing symptoms. For those whose infection is progressing, we describe the potential benefits of a self-monitoring tool for use in combination with physician directed early medical interventions to slow COVID-19 progression.
Collapse
Affiliation(s)
- Christopher L. Cummings
- Genetic Engineering and Society, Senior Research Fellow, North Carolina State University and Gene Edited Foods Project, Iowa State University, Iowa, USA
| | - Craig S. Miller
- Professor and Chief, Division of Oral Diagnosis, Oral Medicine and Maxillofacial Radiology, College of Dentistry, University of Kentucky, Kentucky, USA
| |
Collapse
|
43
|
Li Q, Cheng F, Xu Q, Su Y, Cai X, Zeng F, Zhang Y. The role of probiotics in coronavirus disease-19 infection in Wuhan: A retrospective study of 311 severe patients. Int Immunopharmacol 2021; 95:107531. [PMID: 33714884 PMCID: PMC7934664 DOI: 10.1016/j.intimp.2021.107531] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 01/06/2023]
Abstract
Purpose Researches revealed that probiotics maybe a potential strategy for COVID-19, whereas there is a lack of related evidence. This study aims to analyze the role of probiotics on severe COVID-19 patients. Methods In the current retrospective single-center study, we collected data of 311 consecutive severe patients with confirmed COVID-19 in Wuhan Union Hospital from Feb 3rd to Feb 20th, 2020. Epidemiological, clinical and medication characteristics were compared and analyzed between patients with or without probiotics. Results In total, 93 of the 123 patients (75.61%) who were treated with probiotics survived to hospital discharge with the median inpatient day of 32 days and mean virus clearance time of 23 days, which were significantly longer than those of patients without probiotics. There were no bias in laboratory parameters, except for IL-6 and ESR, which were significantly higher in patients treated probiotics. We tracked the dynamic changes of 8 selected laboratory parameters (IL-6, CRP, total T lymphocytes, NK cells, B lymphocyte, CD4 + T cells, CD8 + T cells and CD4/CD8 ratio) and found that probiotics could not reduce the increased IL-6 levels but possessed the ability to moderate the immunity and decreased the incidence of secondary infection in COVID-19 patients. Conclusions Probiotics could be an effective strategy for the treatment of COVID-19 patients to reduce the secondary infection and moderated the immunity.
Collapse
Affiliation(s)
- Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Qiling Xu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Yuyong Su
- Department of Pharmacy, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Xuefeng Cai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| |
Collapse
|
44
|
Samad N, Sodunke TE, Abubakar AR, Jahan I, Sharma P, Islam S, Dutta S, Haque M. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res 2021; 14:527-550. [PMID: 33679136 PMCID: PMC7930604 DOI: 10.2147/jir.s295377] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
The global pandemic from COVID-19 infection has generated significant public health concerns, both health-wise and economically. There is no specific pharmacological antiviral therapeutic option to date available for COVID-19 management. Also, there is an urgent need to discover effective medicines, prevention, and control methods because of the harsh death toll from this novel coronavirus infection. Acute respiratory tract infections, significantly lower respiratory tract infections, and pneumonia are the primary cause of millions of deaths worldwide. The role of micronutrients, including trace elements, boosted the human immune system and was well established. Several vitamins such as vitamin A, B6, B12, C, D, E, and folate; microelement including zinc, iron, selenium, magnesium, and copper; omega-3 fatty acids as eicosapentaenoic acid and docosahexaenoic acid plays essential physiological roles in promoting the immune system. Furthermore, zinc is an indispensable microelement essential for a thorough enzymatic physiological process. It also helps regulate gene-transcription such as DNA replication, RNA transcription, cell division, and cell activation in the human biological system. Subsequently, zinc, together with natural scavenger cells and neutrophils, are also involved in developing cells responsible for regulating nonspecific immunity. The modern food habit often promotes zinc deficiency; as such, quite a few COVID-19 patients presented to hospitals were frequently diagnosed as zinc deficient. Earlier studies documented that zinc deficiency predisposes patients to a viral infection such as herpes simplex, common cold, hepatitis C, severe acute respiratory syndrome coronavirus (SARS-CoV-1), the human immunodeficiency virus (HIV) because of reducing antiviral immunity. This manuscript aimed to discuss the various roles played by zinc in the management of COVID-19 infection.
Collapse
Affiliation(s)
- Nandeeta Samad
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, 700233, Nigeria
| | - Iffat Jahan
- Department of Physiology, Eastern Medical College, Cumilla, Bangladesh
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Zarandi PK, Zinatizadeh MR, Zinatizadeh M, Yousefi MH, Rezaei N. SARS-CoV-2: From the pathogenesis to potential anti-viral treatments. Biomed Pharmacother 2021; 137:111352. [PMID: 33550050 PMCID: PMC7969672 DOI: 10.1016/j.biopha.2021.111352] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction The world is witnessing the spread of one of the members of Coronaviruses (CoVs) family, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the 21st century. Considering the short time spent after its prevalence, limited information is known about the effect of the virus mechanism on different organs of the body; meanwhile the lack of specific treatment and vaccine for this virus has exposed millions of people to a big challenge. Areas covered The review article aims to describe the general and particular characteristics of CoVs, their classification, genome structure, host cell infection, cytokine storm, anti-viral treatments, and inhibition of COVID-19-related ER-mitochondrial stress. In addition, it refers to drugs such as Chloroquine/Hydroxychloroquine, Lopinavir/Ritonavir, darunavir, ribavirin, remdesivir, and favipiravir, which have undergone clinical trials for coronavirus disease 2019 (COVID-19) treatment. This analysis was derived from an extensive scientific literature search including Pubmed, ScienceDirect, and Google Scholar performed. Expert opinion The effectiveness rate and complications of these drugs can reveal new insights into the potential therapeutic goals for the disease. Moreover, lifestyle change can effectively prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maryam Zinatizadeh
- Department of Anesthesiology, Semnan Branch, Islamic Azad University, Shahrood, Iran
| | - Mohammad Hadi Yousefi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|