1
|
Beak G, Cho WS, Hwang ET. Highly sensitive quantification of carbon black in lung burden through simplified proteinase K-mediated digestion. Colloids Surf B Biointerfaces 2025; 250:114547. [PMID: 39908956 DOI: 10.1016/j.colsurfb.2025.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 10/15/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Accurate evaluation and quantification of nanomaterials are crucial in hazard and risk assessment. In this study, we tested simplified proteinase K (PK)-mediated digestion methods via a UVVis spectrophotometer for sensitive and accurate quantification of carbon black (CB) on the lung burden. We evaluated enzyme activity and digestion efficiency under different buffer conditions for lung burden digestion, focusing on the effects of varying surfactant and calcium chloride concentrations. The most effective conditions for PK characteristics with the model peptide substrate involved the use of Triton X-100, SDS, and CaCl2. However, better results were observed for lung burden digestion when only SDS-containing media were used. Based on the influence of the interactions between lung burden tissue and PK, we improved the digestion efficiency and catalytic activity of PK. This led to 98 % recovery rates when 10 μg of PK was added to a buffer containing only the SDS surfactant within a 24-hour reaction time. These results demonstrate that the reaction media significantly affects the enzymatic reactions with different substrates. Proper conditions can be challenging to predict or engineer by solely studying the PK enzyme itself. Furthermore, this study provides potential fundamental features for future biomolecule extraction designs and clearance kinetics, utilizing protein digestive enzymatic strategies.
Collapse
Affiliation(s)
- Geunyoung Beak
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Wan-Seob Cho
- Department of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
2
|
Afrasiabi S, Partoazar A, Goudarzi R, Dehpour AR. Carbon-Based Nanomaterials Alter the Behavior and Gene Expression Patterns of Bacteria. J Basic Microbiol 2025:e2400545. [PMID: 39895035 DOI: 10.1002/jobm.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025]
Abstract
One of the most dangerous characteristics of bacteria is their propensity to form biofilms and their resistance to the drugs used in clinical practice today. The total number of genes that can be categorized as virulence genes ranges from a few hundred to more than a thousand. The bacteria employ a variety of mechanisms to regulate the expression of these genes in a coordinated manner during infection. The search for new agents with anti-virulence capacity is therefore crucial. Nanotechnology provides safe platforms for targeted therapies to combat a broad spectrum of microbial infections. As a new class of innovative materials, carbon-based nanomaterials (CBNs), which include carbon dots, carbon nanotubes, graphene, and fullerenes can have strong antibacterial activity. Exposure to CBNs has been shown to affect bacterial gene expression patterns. This study investigated the effect of CBNs on the repression of specific genes related to bacterial virulence/pathogenicity.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, California, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ilmiawati A, Solikhin A, Mangurai SUNM, Setiawan Y, Istikorini Y, Lowe AJ, Malik A, Mubarok M, Herawati E, Khabibi J, Siruru H, Purnawati R, Octaviani EA, Kulat MI, Kurniawan T, Larekeng SH, Muhammad R, Aulia F, Firmansyah MA, Alalawi AS. Potential of carbon micro/nanofibers derived from lignocellulose biomass valorisation for CO 2 adsorption: A review on decarbonization biotechnology for climate change solutions. Int J Biol Macromol 2025; 301:140305. [PMID: 39864712 DOI: 10.1016/j.ijbiomac.2025.140305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO2. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO2 uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability. The published studies show that carbon fiber has been researched for GHG emissions adsorption since the 1950s, with an increasing trend of publication numbers. The trend of studies has commenced from activated carbon to nanocarbonaceous materials and their composites. The excellent performance of both micro/nano-sized carbon provides promising opportunities for absorbing CO2 and other GHGs, such as NO2 and CH4, facilitating decarbonization. Several types of carbonaceous activation processes and modifications were utilized to enhance the performances of the resultant biochars, especially in surface materials, CO2 adsorption capacity, and CO2 selectivity. Proposed mechanisms for the absorption of CO2 by activated carbonaceous materials through physisorption and chemisorption were also observed. To date, regulatory frameworks on the use of activated carbon for CO2 capture are still rarely found, but biochar has been mainstreamed and regulated internationally for CO2 removal. Other regulations have been enacted but have not yet internationally harmonized, mostly focusing on the terminology of carbon nanotubes, characterization, general applications, labelling, packaging, transportation, and the effects of toxicity on health. This study also proposed the sustainability aspects and performance indicators that can be used for circular economy application with an ultimate goal of climate change mitigation through GHG reduction. Besides the regulatory framework, elements of the business model and sustainability were proposed in the circular economy framework of the fibers. By scoping carbon micro/nanofibers studies, it is shown with obvious evidence that carbon micro/nanofibers and their composites have the potential for CO2 adsorption and removal, leading to the acceleration of the decarbonization process that is in line with the Paris Agreement, especially in applying innovative CO2 capture, storage, and utilization (CCSU) technologies.
Collapse
Affiliation(s)
- Auliya Ilmiawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Achmad Solikhin
- UN Decade on Ecosystem Restoration, Nairobi 00100, Kenya; Indonesian Green Action Forum, Jepara 59452, Indonesia; Healthcare Unit, Economic Research Institute for ASEAN and East Asia, Jakarta, 10270, Indonesia.
| | | | - Yudi Setiawan
- Department of Forest Resources Conservation and Ecotourism, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia
| | - Yunik Istikorini
- Department of Silviculture, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Andrew J Lowe
- Ecology and Evolutionary Biology, The University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Arif Malik
- Ecology and Evolutionary Biology, The University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Mahdi Mubarok
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia
| | - Evalina Herawati
- Department of Forest Products, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Jauhar Khabibi
- Department of Forestry, Faculty of Agriculture, Universitas Jambi, Jambi 36361, Indonesia; Center of Excellence for Land-Use Transformation Systems, Universitas Jambi, Jambi 36361, Indonesia
| | - Herman Siruru
- Department of Forestry, Faculty of Agriculture, Universitas Pattimura, Ambon, Maluku 97233, Indonesia
| | - Renny Purnawati
- Department of Forestry, Universitas Papua, Manokwari, West Papua 98314, Indonesia
| | - Eti Artiningsih Octaviani
- Department of Forestry Engineering, Institut Teknologi Sumatera, South Lampung, Lampung 35365, Indonesia
| | | | - Tegar Kurniawan
- Department of Accounting, Universitas Islam Sultan Agung, Semarang, Central Java 50112, Indonesia
| | - Siti Halimah Larekeng
- Department of Forestry Engineering, Faculty of Forestry, Universitas Hasanuddin, Makassar, South Sulawesi 90245, Indonesia
| | | | - Fauzan Aulia
- Research Center for Chemistry, National Research and Innovation Agency, South Tangerang, Banten 15314, Indonesia
| | - Muhammad Alam Firmansyah
- Department of Silviculture, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Abdulrahman S Alalawi
- Desalination Technology Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| |
Collapse
|
4
|
Ai Z, Li D, Lan S, Zhang C. Nanomaterials exert biological effects by influencing the ubiquitin-proteasome system. Eur J Med Chem 2025; 282:116974. [PMID: 39556894 DOI: 10.1016/j.ejmech.2024.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
The ubiquitin-proteasome system (UPS) is an important type of protein post-translational modification that affects the quantity and quality of various proteins and influences cellular processes such as the cell cycle, transcription, oxidative stress, and autophagy. Nanomaterials (NMs), which exhibit excellent physicochemical properties, can directly interact with the UPS and act as molecular-targeted drugs to induce changes in biological processes. This review provides an overview of the influence of NMs on the UPS of misfolded proteins and key proteins, which are related to cancer, neurodegenerative diseases and oxidative stress. This review also summarizes the role of modification processes involved in ubiquitination the biological effects of NMs and the mechanism of such effects of NMs through regulation of the UPS. This review deepens our understanding of the influence of NMs on the protein degradation process and provides new potential therapeutic targets for disease.
Collapse
Affiliation(s)
- Zhen Ai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Dan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shuquan Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
5
|
Sharma D, Gautam S, Singh S, Srivastava N, Khan AM, Bisht D. Unveiling the nanoworld of antimicrobial resistance: integrating nature and nanotechnology. Front Microbiol 2025; 15:1391345. [PMID: 39850130 PMCID: PMC11754303 DOI: 10.3389/fmicb.2024.1391345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
A significant global health crisis is predicted to emerge due to antimicrobial resistance by 2050, with an estimated 10 million deaths annually. Increasing antibiotic resistance necessitates continuous therapeutic innovation as conventional antibiotic treatments become increasingly ineffective. The naturally occurring antibacterial, antifungal, and antiviral compounds offer a viable alternative to synthetic antibiotics. This review presents bacterial resistance mechanisms, nanocarriers for drug delivery, and plant-based compounds for nanoformulations, particularly nanoantibiotics (nAbts). Green synthesis of nanoparticles has emerged as a revolutionary approach, as it enhances the effectiveness, specificity, and transport of encapsulated antimicrobials. In addition to minimizing systemic side effects, these nanocarriers can maximize therapeutic impact by delivering the antimicrobials directly to the infection site. Furthermore, combining two or more antibiotics within these nanoparticles often exhibits synergistic effects, enhancing the effectiveness against drug-resistant bacteria. Antimicrobial agents are routinely obtained from secondary metabolites of plants, including essential oils, phenols, polyphenols, alkaloids, and others. Integrating plant-based antibacterial agents and conventional antibiotics, assisted by suitable nanocarriers for codelivery, is a potential solution for addressing bacterial resistance. In addition to increasing their effectiveness and boosting the immune system, this synergistic approach provides a safer and more effective method of tackling future bacterial infections.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sakshi Singh
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Abdul Mabood Khan
- Division of Clinical Trials and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
6
|
Park J, Akbaba GE, Sharma N, Das R, Vinikoor T, Liu Y, Le DQ, Angadi K, Nguyen TD. Electrically Active Biomaterials for Stimulation and Regeneration in Tissue Engineering. J Biomed Mater Res A 2025; 113:e37871. [PMID: 39806919 PMCID: PMC11773453 DOI: 10.1002/jbm.a.37871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
In the human body, bioelectric cues are crucial for tissue stimulation and regeneration. Electrical stimulation (ES) significantly enhances the regeneration of nerves, bones, cardiovascular tissues, and wounds. However, the use of conventional devices with stimulating metal electrodes is invasive and requires external batteries. Consequently, electrically active materials with excellent biocompatibility have attracted attention for their applications in stimulation and regeneration in tissue engineering. To fully exploit the potential of these materials, biocompatibility, operating mechanisms, electrical properties, and even biodegradability should be carefully considered. In this review, we categorize various electrically active biomaterials based on their mechanisms for generating electrical cues, such as piezoelectric effect, triboelectric effect, and others. We also summarize the key material properties, including electrical characteristics and biodegradability, and describe their applications in tissue stimulation and regeneration for nerves, musculoskeletal tissues, and cardiovascular tissues. The electrically active biomaterials hold great potential for advancing the field of tissue engineering and their demonstrated success underscores the importance of continued research in this field.
Collapse
Affiliation(s)
- Jinyoung Park
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Gulsah Erel Akbaba
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, Connecticut, USA
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Nidhi Sharma
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- National Institute of Biomedical Imaging and Bioengineering, National Institute of Health, Bethesda, Maryland, USA
| | - Tra Vinikoor
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Yang Liu
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Duong Quang Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Research Institute of Stem Cell and Gene Technology, College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Kishan Angadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Thanh Duc Nguyen
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, Connecticut, USA
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Abonyi HN, Peter IE, Onwuka AM, Achile PA, Obi CB, Akunne MO, Ejikeme PM, Amos S, Akunne TC, Attama AA, Akah PA. Nanotoxicology: developments and new insights. Nanomedicine (Lond) 2025; 20:225-241. [PMID: 39723590 PMCID: PMC11731054 DOI: 10.1080/17435889.2024.2443385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
The use of nanoparticles (NPs) in treatment of diseases have increased exponentially recently, giving rise to the science of nanomedicine. The safety of these NPs in humans has also led to the science of nanotoxicology. Due to a dearth of both readily available models and precise bio-dispersion characterization techniques, nanotoxicological research has obviously been constrained. However, the ensuing years were notable for the emergence of improved synthesis methods and characterization tools. Major advances have been made in linking certain physical variables, paralleling improvements in characterization size, shape, or coating factors to the resulting physiological reactions. Although significant progress has been a contribution to the development of nanotoxicology, however, it faces numerous difficulties and technical constraints distinct from those of conventional toxicological assessment as it attempts to improve the therapeutic effects of medicines. Determining thorough characterization standards, standardizing dosimetry, assessing the kinetics of ions dissolving and enhancing the accuracy of in vitro-in vivo correlation efficiency, also defining restrictions on exposure protection are some of the most important and pressing concerns. This article will explore the past advancement and potential prospects of nanotoxicology, standard models, emphasizing significant findings from earlier studies and examining current challenges, giving insight on the way forward.
Collapse
Affiliation(s)
- Henry N. Abonyi
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, State University of Medical and Applied Sciences, Igbo-Eno, Nigeria
| | - Ikechukwu E. Peter
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Akachukwu M. Onwuka
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Paul A. Achile
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics University of Nigeria Nsukka, Nsukka, Nigeria
| | - Chinonso B. Obi
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Maureen O. Akunne
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Clinical Pharmacy and Pharmacy Management, University of Nigeria, Nsukka, Nigeria
| | - Paul M. Ejikeme
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Samson Amos
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- School of Pharmacy, Cedarville University, Cedarville, OH, USA
| | - Theophine C. Akunne
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
- School of Pharmacy, Cedarville University, Cedarville, OH, USA
| | - Anthony A. Attama
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics University of Nigeria Nsukka, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutics and Pharmaceutical Technology, State University of Medical and Applied Sciences, Igbo-Eno, Nigeria
| | - Peter A. Akah
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
8
|
Cho S, Kim H, Song D, Jung J, Park S, Jo H, Seo S, Han C, Park S, Kwon W, Han H. Insights into glucose-derived carbon dot synthesis via Maillard reaction: from reaction mechanism to biomedical applications. Sci Rep 2024; 14:31325. [PMID: 39733004 DOI: 10.1038/s41598-024-82767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported. In this study, we developed a method to synthesize N-doped CDs using the Maillard reaction with glucose and ethanolamine as precursors (namely, G-CDs). Comprehensive characterization of these G-CDs revealed the successful incorporation of nitrogen- and glucose-like functionalities. The optical properties and electronic band structures of G-CDs were analyzed using transient absorption and time-resolved photoluminescence spectroscopy. The prepared G-CDs demonstrated near-infrared photoluminescence, low cytotoxicity, glucose transporter-facilitated cellular uptake, and effective heat generation under an 808-nm laser. Particularly, the cellular uptake of G-CDs was reduced by up to 25% after preincubation with a Glut1 inhibitor. These features are suitable for in vitro biological imaging and photothermal therapy in prostate cancer cells. This paper highlights the potential of G-CDs in clinical applications owing to their multicolor emission, photothermal conversion functionality, and versatile surface structure.
Collapse
Affiliation(s)
- Soohyun Cho
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, South Korea
| | - Dongwook Song
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jungchan Jung
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sehyeon Park
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Hyunda Jo
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Sejeong Seo
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Chaewon Han
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Soye Park
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea.
- Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa- ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea.
| | - Hyunho Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
9
|
C M, N M, N K S, M D, C IR, E S. Evaluation of high temperature impacts and nanotechnology as a shield against temperature stress on tomatoes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177551. [PMID: 39557167 DOI: 10.1016/j.scitotenv.2024.177551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rising temperature due to changing climate significantly impacts the production of tomato. The morpho-physiological functions of tomato such as gas exchange, growth and development, flowering, fruit setting, quality, fruit size, weight that can influence the yield and production is drastically affected by higher temperatures. Among the growth stages of tomato, flowering and fruit setting stage is highly vulnerable to high temperature resulting in reduced flower numbers, increased flower abortion, stigma exertion, abnormal ovule, reduced pollen germination, pollen numbers, pollen tube development, pollen viability and increased male sterility. The flower to fruit ratio and duration also highly influenced by higher temperatures. It significantly reduced fruit set, fruit number, weight and quality (Lycopene, carotenoids), changing sugars and acids ratio. Apart from day temperature, the asymmetrically rising night temperature and difference in day and night temperature pattern plays a considerable role in physiological and biochemical processes of tomato. Nanotechnology proves to be a successful tool for sustainable production of tomato than many other alternative mitigation strategies due to its localized action, low quantity requirement, minimal wastage, less residues, eco friendliness, biodegradability, multifunctionality, synergistic capabilities and higher plant productivity. It imitates the antioxidant enzymes playing active role in physiological functions in tomato thereby inducing tolerance mechanisms for managing high temperature stress. Further research should focus on use of several other nanoparticles that have potential but not yet experimented on tomato to mitigate heat stress and producing biodegradable, green synthesized nanoparticles that are cost effective and affordable to farmers.
Collapse
Affiliation(s)
- Musierose C
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Maragatham N
- Centre for Students Welfare, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Sathyamoorthy N K
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Djanaguiraman M
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Indu Rani C
- Department of Vegetable Sciences, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Somasundaram E
- Agri Business Management, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
10
|
Fenoglio I, Gul S, Barbero F, Mecarelli E, Medana C, Gallo A, Polizzi C. Molecular insights into the interaction between cytochrome c and carbon nanomaterials. Heliyon 2024; 10:e40587. [PMID: 39654707 PMCID: PMC11625997 DOI: 10.1016/j.heliyon.2024.e40587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Carbon nanomaterials (CNMs) are a heterogeneous class of advanced materials. Their widespread use is associated with human safety concerns, which can be addressed by safe-by design strategies. This implies a deep knowledge of how physico-chemical properties drive biological effects. The ability of CNMs to interact with cytochrome c (cyt c), a heme-protein playing a key role in the respiratory chain, in apoptosis and in cellular redox homeostasis, has been reported in some studies. However, the consequences of this interaction on the cyt c functions are controversial. Here the mechanism of interaction of carbon nanoparticles (CNPs), chosen as model of redox-active CNMs, with cyt c has been studied with the aim to shed light into these discrepancies. The effect of CNPs on the redox state of cyt c was monitored by UV-vis spectroscopy and 1D 1H NMR, while the effect on the primary, secondary, and tertiary cyt c structure was investigated by FIA/LC-MS and Circular Dichroism (CD). Finally, the peroxidase activity of cyt c and the involvement of superoxide radicals was evaluated by EPR spectroscopy. We demonstrate the existence of two mechanisms, one leading to the suppression of the cyt c peroxidase activity following the NADH-independent reduction of the heme-iron, and the other resulting in the irreversible protein unfolding. Overall, the results suggest that these two processes might be independently modulated by redox and surface properties respectively.
Collapse
Affiliation(s)
- Ivana Fenoglio
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125, Torino, Italy
| | - Shagufta Gul
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125, Torino, Italy
| | - Francesco Barbero
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125, Torino, Italy
| | - Enrica Mecarelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44, 10126, Torino, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 44, 10126, Torino, Italy
| | - Angelo Gallo
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125, Torino, Italy
| | - Carlotta Polizzi
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125, Torino, Italy
| |
Collapse
|
11
|
Rao W, Yue Q, Gao S, Li M, Lin T, Pan X, Fan G, Hu J. ZnO quantum dots reduce acquisition of huanglongbing pathogen by Diaphorina citri. PEST MANAGEMENT SCIENCE 2024. [PMID: 39641400 DOI: 10.1002/ps.8569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/07/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Diaphorina citri Kuwayama is the main vector of the Huanglongbing (HLB) pathogen Candidatus Liberibacter asiaticus (CLas). Therefore, reducing CLas acquisition by D. citri is crucial for controlling the spread of HLB. RESULTS This study aimed to investigate the effect of ZnO quantum dots (ZnO QDs) on CLas acquisition by D. citri. The results showed that ZnO QDs were absorbed by citrus plants and D. citri, inducing reactive oxygen species generation in the intestine and causing intestinal cell apoptosis. The uptake rate of CLas was reduced to 75% and 22.3% after treatment with 2 and 5 mg ∙ mL-1 ZnO QDs, respectively, compared with 100% in the control group. Transcription analysis showed significant changes in the expression of D. citri genes related to apoptosis, oxidative stress, and DNA replication and repair. CONCLUSION The results suggested that ZnO QDs could efficiently reduce CLas acquisition by D. citri, providing a safe and reliable tool for HLB prevention and control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhua Rao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qi Yue
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Shang Gao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Minyu Li
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Tao Lin
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xiaohong Pan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Guocheng Fan
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jinfeng Hu
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
12
|
Wang D, Bai L, Wang W, Zhang R, Li S, Yan W. Adsorption behavior of ZIF-67 to bisphenol compounds affects combined toxicity on Photobacterium phosphoreum. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136140. [PMID: 39426145 DOI: 10.1016/j.jhazmat.2024.136140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
ZIF-67, as a typical MOF material, is considered a new type of high-potential adsorbent due to its ample surface area and tunable surface chemistry, which has the potential to interact with other contaminants in unforeseen ways, resulting in combined toxicity. To further elucidate this possibility, we chose typical bisphenol compound (BP) which is widely used in commercial manufacturing, to explore the combined toxicity with MOF. MOF showed a high adsorption capacity for BPAF (> 80 %) and the weakest adsorption capacity for BPA (< 10 %), and DFT confirmed the different interaction strengths of MOF for BPs. The difference in adsorption capacity for BPs resulted in different amounts of free BPs, contributing to combined toxicity. Based on flow cytometry and TEM, the results showed that membrane damage was reduced and the ability of ZIF-67 to enter the cell was decreased in the low-concentration ZIF-67 mixing group, and the ability of ZIF-67 to enter the cell was increased in the high-concentration ZIF-67 mixing group, and the membranes were severely damaged. RT-PCR and biochemical indicators measurements helped to explain the underlying toxicity mechanism. This study is of practical significance for the development of environmental guidelines for mixed contaminant effects and accurate risk assessments.
Collapse
Affiliation(s)
- Dan Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; China National Key Laboratory of Aerospace Chemical Power, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Linming Bai
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; China National Key Laboratory of Aerospace Chemical Power, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Wenlong Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ruixue Zhang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan Li
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wei Yan
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Liu Y, Li J, Guo H, Fang C, Yang Q, Qin W, Wang H, Xian Y, Yan X, Yin B, Zhang K. Nanomaterials for stroke diagnosis and treatment. iScience 2024; 27:111112. [PMID: 39502285 PMCID: PMC11536039 DOI: 10.1016/j.isci.2024.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Nanomaterials and nanotechnology innovations possess unique physicochemical properties that present new opportunities in the realm of stroke detection, diagnosis, and treatment. This comprehensive review explores the utilization of nanomaterials in the diagnosis and treatment of strokes, encompassing recent advancements in computed tomography (CT), magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), as well as groundbreaking applications of nanomaterials and bionanomaterials in drug delivery systems and brain tissue repair. Additionally, this review meticulously examines significant challenges such as biocompatibility toxicity and long-term safety, proposing potential strategies to surmount these obstacles. Moreover, this review delves into the application of nanomaterials to improve the clinical diagnosis of stroke patients, elucidates the potential of nanotechnology in post-stroke therapy, and identifies future research directions and potential clinical applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Junying Li
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, No. 18 Jinfeng Road, Zhuhai 519087, Guangdong Province, China
| | - Huaijuan Guo
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Chao Fang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Qiaoling Yang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Wen Qin
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Hai Wang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Yong Xian
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Xuebing Yan
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People’s Hospital, Affiliated Hospital of Xuzhou Medical University, Suining 221200, China
| | - Binxu Yin
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| | - Kun Zhang
- Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, China
| |
Collapse
|
14
|
Li K, Ge P, Wu XL, Shen C. In vitro cytotoxicity assessment of carbonaceous gels for bone marrow mesenchymal stem cells. Food Chem Toxicol 2024; 193:114961. [PMID: 39197522 DOI: 10.1016/j.fct.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
The current work aimed to elucidate the potential applications of the carbonaceous gels and assess the in vitro cytotoxicity of these gels when suspended in a culture medium and exposed to bone marrow mesenchymal stem cells. Cellular viability, cell cycle distribution, apoptotic cell death, and mitochondrial membrane potential in bone marrow mesenchymal stem cells co-incubated with different concentrations of carbonaceous gels (0.1, 1, 10, 50, and 100 μg/mL) were evaluated. Flow cytometry and immunofluorescence were used to investigate apoptosis and cell cycle distribution. The expression of associated apoptotic proteins was analysed using Western Blot. Although the co-incubation of carbonaceous gels did not significantly affect cell viability, high dosages (100 μg/mL) of these gels led to cellular dysfunction. Specifically, cells exposed to high concentrations of these gels exhibited G2-phase arrest and increased levels of reactive oxygen species. However, the reported impacts did not cause considerable cell death. At the same time, carbonaceous gels did not significantly induce apoptosis. Compared to other carbon nanomaterials, carbonaceous gels' biotoxicity was relatively low, suggesting their potential for various biological applications. Nonetheless, caution should be exercised when considering the concentration of carbonaceous gels for future medical applications.
Collapse
Affiliation(s)
- Kaixuan Li
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Peng Ge
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xi-Lin Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
15
|
Park BJ, Dhong KR, Park HJ. Cordyceps militaris Grown on Germinated Rhynchosia nulubilis (GRC) Encapsulated in Chitosan Nanoparticle (GCN) Suppresses Particulate Matter (PM)-Induced Lung Inflammation in Mice. Int J Mol Sci 2024; 25:10642. [PMID: 39408971 PMCID: PMC11477187 DOI: 10.3390/ijms251910642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: TPP w/w ratio of 4:1; TPP pH 2) exhibited a zeta potential of +22.77 mV, suitable for GRC encapsulation. At different GRC concentrations, higher levels (60 and 120 mg/mL) led to increased negative zeta potential, enhancing stability. The optimal GRC concentration for maximum entrapment (31.4 ± 1.35%) and loading efficiency (7.6 ± 0.33%) of GRC encapsulated in CN (GCN) was 8 mg/mL with a diameter of 146.1 ± 54 nm and zeta potential of +30.68. In vivo studies revealed that administering 300 mg/kg of GCN significantly decreased the infiltration of macrophages and T cells in the lung tissues of PM-treated mice, as shown by immunohistochemical analysis of CD4 and F4/80 markers. Additionally, GCN ameliorated PM-induced lung tissue damage, inflammatory cell infiltration, and alveolar septal hypertrophy. GCN also decreased total cells and neutrophils, showing notable anti-inflammatory effects in the bronchoalveolar lavage fluid (BALF) from PM-exposed mice, compared to GRC. Next the anti-inflammatory properties of GCN were further explored in PM- and LPS-exposed RAW264.7 cells; it significantly reduced PM- and LPS-induced cell death, NO production, and levels of inflammatory cytokine mRNAs (IL-1β, IL-6, and COX-2). GCN also suppressed NF-κB/MAPK signaling pathways by reducing levels of p-NF-κB, p-ERK, and p-c-Jun proteins, indicating its potential in managing PM-related inflammatory lung disease. Furthermore, GCN significantly reduced PM- and LPS-induced ROS production. The enhanced bioavailability of GRC components was demonstrated by an increase in fluorescence intensity in the intestinal absorption study using FITC-GCN. Our data indicated that GCN exhibited enhanced bioavailability and potent anti-inflammatory and antioxidant effects in cells and in vivo, making it a promising candidate for mitigating PM-induced lung inflammation and oxidative stress.
Collapse
Affiliation(s)
- Byung-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Kyu-Ree Dhong
- Magicbullettherapeutics Inc., 150 Yeongdeungpo-ro, Yeongdeungpo-gu, Seoul 07292, Republic of Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
16
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
17
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
18
|
Li M, Sui J, Wang X, Song C, Cao X, Sun X, Zhao R, Wang S, Qin L, Wang Y, Liu K, Zhao S, Huo N. Single-walled carbon nanotube-protein complex: A strategy to improve the immune response to protein in mice. Vaccine 2024; 42:126013. [PMID: 38834429 DOI: 10.1016/j.vaccine.2024.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/30/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Vaccines represent an effective tool for controlling disease infection. As a key component of vaccines, many types of adjuvants have been developed and used today. This study is designed to investigate the efficacy of single-walled carbon nanotubes (SWCNTs) as a new adjuvant. The results showed that SWCNT could adsorb the antigen by intermolecular action, and the adsorption rate was significantly higher after dispersion of the SWCNTs in a sonic bath. The titer of specific antibody of mice in the SWCNTs group was higher than that of the mice in the antigen control group, confirming the adjuvant efficacy of SWCNTs. During immunisation, the specific antibody was detected earlier in the mice of the SWCNTs group, especially when the amount of antigen was reduced. And it was proved that the titer of antibodies was higher after subcutaneous and intraperitoneal injection compared to intramuscular injection. Most importantly, the mice immunised with SWCNTs showed almost the same level of immunity as the mice in the FCA (Freund's complete adjuvant) group, indicating that the SWCNTs were an effective adjuvant. In addition, the mice in the SWCNT group maintained antibody levels for 90 days after the last booster vaccination and showed a good state of health during the observed period. We also found that the SWCNTs were able to induce macrophages activation and enhance antigen uptake by mouse peritoneal macrophages.
Collapse
Affiliation(s)
- Muzi Li
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Jinyu Sui
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xiaoyin Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Cuiping Song
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xumin Cao
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xiaoliang Sun
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Ruimin Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Shuting Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Lide Qin
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Yudong Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Kun Liu
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Sijun Zhao
- Laboratory of Quality and Safety Risk Assessment for Animal Products of Ministry of Agriculture, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Nairui Huo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| |
Collapse
|
19
|
Zeng L, Ma J, Yang J, Yang J, Zeng X, Zhou Y. Ball milling nano-sized biochar: bibliometrics, preparation, and environmental application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52724-52739. [PMID: 39190254 DOI: 10.1007/s11356-024-34777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Nano-sized biochar, which is a small structure prepared from biochar by grinding, has surpassed traditional biochar in performance, showing enhanced effects and potential for a wide range of environmental applications. Firstly, this paper visualizes and analyzes the literature in this field by CiteSpace to clarify the development trend of nano-sized biochar. The review intuitively shows the most influential countries, the most productive institutions, and the most concerned hot spots in the field of nano-sized biochar. Secondly, these hotspots in environment management are summarized by keywords and clustering: (1) The application of ball milling is a modification scheme that researchers have paid attention to, and it is also a key method for preparing biochar nanomaterials. It has a more dispersed structure and can support more modified materials. (2) Nano-sized biochar in the comprehensive utilization of water, soil, and plants was discussed and is a small range of application modification methods. (3) The bidirectional effects of nano-sized biochar on plants were analyzed, and the challenges in its application were listed. Finally, the economic management of nano-sized biochar and the relationship between microorganisms are the focus of the next research.
Collapse
Affiliation(s)
- Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiezhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha City, 410013, Hunan Province, China
| | - Jie Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xiangzhou Zeng
- Huaihua Ecological Environment Bureau, Huaihua, 418000, Hunan Province, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
20
|
Yadav B, Yadav JS. Carbon Nanotube Immunotoxicity in Alveolar Epithelial Type II Cells Is Mediated by Physical Contact-Independent Cell-Cell Interaction with Macrophages as Demonstrated in an Optimized Air-Liquid Interface (ALI) Coculture Model. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1273. [PMID: 39120378 PMCID: PMC11314342 DOI: 10.3390/nano14151273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
There is a need for the assessment of respiratory hazard potential and mode of action of carbon nanotubes (CNTs) before their approval for technological or medical applications. In CNT-exposed lungs, both alveolar macrophages (MФs), which phagocytose CNTs, and alveolar epithelial type II cells (AECII cells), which show tissue injury, are impacted but cell-cell interactions between them and the impacted mechanisms are unclear. To investigate this, we first optimized an air-liquid interface (ALI) transwell coculture of human AECII cell line A549 (upper chamber) and human monocyte cell line THP-1 derived macrophages (lower chamber) in a 12-well culture by exposing macrophages to CNTs at varying doses (5-60 ng/well) for 12-48 h and measuring the epithelial response markers for cell differentiation/maturation (proSP-C), proliferation (Ki-67), and inflammation (IL-1β). In optimal ALI epithelial-macrophage coculture (3:1 ratio), expression of Ki-67 in AECII cells showed dose dependence, peaking at 15 ng/well CNT dose; the Ki-67 and IL-1β responses were detectable within 12 h, peaking at 24-36 h in a time-course. Using the optimized ALI transwell coculture set up with and without macrophages, we demonstrated that direct interaction between CNTs and MФs, but not a physical cell-cell contact between MФ and AECII cells, was essential for inducing immunotoxicity (proliferative and inflammatory responses) in the AECII cells.
Collapse
Affiliation(s)
| | - Jagjit S. Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| |
Collapse
|
21
|
Lv Z, Ji Y, Wen G, Liang X, Zhang K, Zhang W. Structure-optimized and microenvironment-inspired nanocomposite biomaterials in bone tissue engineering. BURNS & TRAUMA 2024; 12:tkae036. [PMID: 38855573 PMCID: PMC11162833 DOI: 10.1093/burnst/tkae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Critical-sized bone defects represent a significant clinical challenge due to their inability to undergo spontaneous regeneration, necessitating graft interventions for effective treatment. The development of tissue-engineered scaffolds and regenerative medicine has made bone tissue engineering a highly viable treatment for bone defects. The physical and biological properties of nanocomposite biomaterials, which have optimized structures and the ability to simulate the regenerative microenvironment of bone, are promising for application in the field of tissue engineering. These biomaterials offer distinct advantages over traditional materials by facilitating cellular adhesion and proliferation, maintaining excellent osteoconductivity and biocompatibility, enabling precise control of degradation rates, and enhancing mechanical properties. Importantly, they can simulate the natural structure of bone tissue, including the specific microenvironment, which is crucial for promoting the repair and regeneration of bone defects. This manuscript provides a comprehensive review of the recent research developments and applications of structure-optimized and microenvironment-inspired nanocomposite biomaterials in bone tissue engineering. This review focuses on the properties and advantages these materials offer for bone repair and tissue regeneration, summarizing the latest progress in the application of nanocomposite biomaterials for bone tissue engineering and highlighting the challenges and future perspectives in the field. Through this analysis, the paper aims to underscore the promising potential of nanocomposite biomaterials in bone tissue engineering, contributing to the informed design and strategic planning of next-generation biomaterials for regenerative medicine.
Collapse
Affiliation(s)
- Zheng Lv
- Department of Radiology, Affiliated Hospital, Guilin Medical University, No. 15 Lequn Road, Guilin 541001, Guangxi, China
| | - Ying Ji
- Department of Orthopaedics, Affiliated Hospital, Guilin Medical University, No. 15 Lequn Road, Guilin 541001, Guangxi, China
| | - Guoliang Wen
- Department of Radiology, Affiliated Hospital, Guilin Medical University, No. 15 Lequn Road, Guilin 541001, Guangxi, China
| | - Xiayi Liang
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, Sichuan, China
| | - Kun Zhang
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, Sichuan, China
| | - Wei Zhang
- Department of Radiology, Liuzhou People’s Hospital, Guangxi Medical University, No. 8 Wenchang Road, Liuzhou 545006, Guangxi, China
| |
Collapse
|
22
|
Moulick D, Majumdar A, Choudhury A, Das A, Chowardhara B, Pattnaik BK, Dash GK, Murmu K, Bhutia KL, Upadhyay MK, Yadav P, Dubey PK, Nath R, Murmu S, Jana S, Sarkar S, Garai S, Ghosh D, Mondal M, Chandra Santra S, Choudhury S, Brahmachari K, Hossain A. Emerging concern of nano-pollution in agro-ecosystem: Flip side of nanotechnology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108704. [PMID: 38728836 DOI: 10.1016/j.plaphy.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Nanomaterials (NMs) have proven to be a game-changer in agriculture, showcasing their potential to boost plant growth and safeguarding crops. The agricultural sector has widely adopted NMs, benefiting from their small size, high surface area, and optical properties to augment crop productivity and provide protection against various stressors. This is attributed to their unique characteristics, contributing to their widespread use in agriculture. Human exposure from various components of agro-environmental sectors (soil, crops) NMs residues are likely to upsurge with exposure paths may stimulates bioaccumulation in food chain. With the aim to achieve sustainability, nanotechnology (NTs) do exhibit its potentials in various domains of agriculture also have its flip side too. In this review article we have opted a fusion approach using bibliometric based analysis of global research trend followed by a holistic assessment of pros and cons i.e. toxicological aspect too. Moreover, we have also tried to analyse the current scenario of policy associated with the application of NMs in agro-environment.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India; Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788 011, India.
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| | - Abir Choudhury
- Department of Agricultural Chemistry and Soil Science, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Anupam Das
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh, 792103, India.
| | - Binaya Kumar Pattnaik
- Institute of Environment Education and Research, Bharati Vidyapeeth (Deemed to be University), Pune-411043, Maharastra, India.
| | - Goutam Kumar Dash
- Department of Biochemistry and Crop Physiology, MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, Gajapati, Odisha, India.
| | - Kanu Murmu
- Department of Agronomy, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Karma Landup Bhutia
- Deptt. Agri. Biotechnology & Molecular Biology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848 125, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Pradeep Kumar Dubey
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, India.
| | - Sidhu Murmu
- Department of Agricultural Chemistry and Soil Science, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, 700103, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, 700103, India.
| | - Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, 700103, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India.
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, Neotia University, Sarisha, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788 011, India.
| | - Koushik Brahmachari
- Department of Agronomy, F/Ag., Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, 741252, India.
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
| |
Collapse
|
23
|
Antonopoulou M, Tzamaria A, Pedrosa MFF, Ribeiro ARL, Silva AMT, Kaloudis T, Hiskia A, Vlastos D. Spirulina-based carbon materials as adsorbents for drinking water taste and odor control: Removal efficiency and assessment of cyto-genotoxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172227. [PMID: 38582104 DOI: 10.1016/j.scitotenv.2024.172227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The sensory quality of drinking water, and particularly its taste and odor (T&O) is a key determinant of consumer acceptability, as consumers evaluate water by their senses. Some of the conventional treatment processes to control compounds which impart unpleasant T&O have limitations because of their low efficiency and/or high costs. Therefore, there is a great need to develop an effective process for removing T&O compounds without secondary concerns. The primary objective of this study was to assess for the first time the effectiveness of spirulina-based carbon materials in removing geosmin (GSM) and 2-methylisoborneol (2-MIB) from water, two commonly occurring natural T&O compounds. The efficiency of the materials to remove environmentally relevant concentrations of GSM and 2-MIB (ng L-1) from ultrapure and raw water was investigated using a sensitive headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC/MS) method. Moreover, the genotoxic and cytotoxic effects of the spirulina-based materials were assessed for the first time to evaluate their safety and their potential in the treatment of water for human consumption. Based on the results, spirulina-based materials were found to be promising for drinking water treatment applications, as they did not exert geno-cytotoxic effects on human cells, while presenting high efficiency in removing GSM and 2-MIB from water.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece.
| | - Anna Tzamaria
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Marta F F Pedrosa
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana R L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Triantafyllos Kaloudis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Patr. Gregoriou E' & 27 Neapoleos Str, 15341 Agia Paraskevi, Athens, Greece
| | - Anastasia Hiskia
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Patr. Gregoriou E' & 27 Neapoleos Str, 15341 Agia Paraskevi, Athens, Greece
| | - Dimitris Vlastos
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, 26500 Patras, Greece
| |
Collapse
|
24
|
Stoleriu MG, Ansari M, Strunz M, Schamberger A, Heydarian M, Ding Y, Voss C, Schneider JJ, Gerckens M, Burgstaller G, Castelblanco A, Kauke T, Fertmann J, Schneider C, Behr J, Lindner M, Stacher-Priehse E, Irmler M, Beckers J, Eickelberg O, Schubert B, Hauck SM, Schmid O, Hatz RA, Stoeger T, Schiller HB, Hilgendorff A. COPD basal cells are primed towards secretory to multiciliated cell imbalance driving increased resilience to environmental stressors. Thorax 2024; 79:524-537. [PMID: 38286613 PMCID: PMC11137452 DOI: 10.1136/thorax-2022-219958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
INTRODUCTION Environmental pollutants injure the mucociliary elevator, thereby provoking disease progression in chronic obstructive pulmonary disease (COPD). Epithelial resilience mechanisms to environmental nanoparticles in health and disease are poorly characterised. METHODS We delineated the impact of prevalent pollutants such as carbon and zinc oxide nanoparticles, on cellular function and progeny in primary human bronchial epithelial cells (pHBECs) from end-stage COPD (COPD-IV, n=4), early disease (COPD-II, n=3) and pulmonary healthy individuals (n=4). After nanoparticle exposure of pHBECs at air-liquid interface, cell cultures were characterised by functional assays, transcriptome and protein analysis, complemented by single-cell analysis in serial samples of pHBEC cultures focusing on basal cell differentiation. RESULTS COPD-IV was characterised by a prosecretory phenotype (twofold increase in MUC5AC+) at the expense of the multiciliated epithelium (threefold reduction in Ac-Tub+), resulting in an increased resilience towards particle-induced cell damage (fivefold reduction in transepithelial electrical resistance), as exemplified by environmentally abundant doses of zinc oxide nanoparticles. Exposure of COPD-II cultures to cigarette smoke extract provoked the COPD-IV characteristic, prosecretory phenotype. Time-resolved single-cell transcriptomics revealed an underlying COPD-IV unique basal cell state characterised by a twofold increase in KRT5+ (P=0.018) and LAMB3+ (P=0.050) expression, as well as a significant activation of Wnt-specific (P=0.014) and Notch-specific (P=0.021) genes, especially in precursors of suprabasal and secretory cells. CONCLUSION We identified COPD stage-specific gene alterations in basal cells that affect the cellular composition of the bronchial elevator and may control disease-specific epithelial resilience mechanisms in response to environmental nanoparticles. The identified phenomena likely inform treatment and prevention strategies.
Collapse
Affiliation(s)
- Mircea Gabriel Stoleriu
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich, Germany
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Meshal Ansari
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Maximilian Strunz
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Andrea Schamberger
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Motaharehsadat Heydarian
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Yaobo Ding
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Carola Voss
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Juliane Josephine Schneider
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Michael Gerckens
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
- Department of Medicine V, University Hospital, LMU Munich and Asklepios Medical Center, Munich, Germany
| | - Gerald Burgstaller
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Alejandra Castelblanco
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Teresa Kauke
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich, Germany
| | - Jan Fertmann
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich, Germany
| | - Christian Schneider
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich, Germany
| | - Juergen Behr
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
- Department of Medicine V, University Hospital, LMU Munich and Asklepios Medical Center, Munich, Germany
| | - Michael Lindner
- Department of Visceral and Thoracic Surgery Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | - Martin Irmler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Neuherberg, Germany
| | - Johannes Beckers
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany
| | - Oliver Eickelberg
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
- Department of Medicine, Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin Schubert
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
- Department of Mathematics, Technische Universität München, Garching bei München, München, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Otmar Schmid
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Rudolf A Hatz
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich, Germany
| | - Tobias Stoeger
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Herbert B Schiller
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Anne Hilgendorff
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
- Center for Comprehensive Developmental Care at the iSPZ Hauner, Dr. von Haunersches Children's University Hospital, Ludwig-Maximilians-University of Munich (LMU); Member of the German Lung Research Center (DZL), Munich, Germany
| |
Collapse
|
25
|
Baratta M, Nezhdanov AV, Mashin AI, Nicoletta FP, De Filpo G. Carbon nanotubes buckypapers: A new frontier in wastewater treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171578. [PMID: 38460681 DOI: 10.1016/j.scitotenv.2024.171578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Occurrence of contaminants in water is one of the major global concerns humanity is still facing today: most of them are extremely toxic and dangerous for human health, obliging their removal for a proper and correct process of sanitation. Among wastewater treatment technologies, in the view of development of sustainable and environmentally friendly processes, membrane adsorption has proved to be a fast and simple method in the removal of pollutants, offering great contaminants recovery percentages, fast adsorbent regeneration and recycle, and easy scale-up. Due to their large surface area and tunable chemistry, carbon nanotubes (CNTs)-based materials revealed to be extraordinary adsorbents, exceeding by far performances of ordinary organic and inorganic membranes such as polyethersulfone, polyvinylidene fluoride, polytetrafluoroethylene, ceramics, currently employed in membrane technologies for wastewater treatment. In consideration of this, the review aims to summarize recent developments in the field of carbon nanotubes-based materials for pollutants recovery from water through adsorption processes. After a brief introduction concerning what adsorption phenomenon is and how it is performed and governed by using carbon nanotubes-based materials, the review discusses into detail the employment of three common typologies of CNTs-based materials (CNTs powders, CNTs-doped polymeric membranes and CNTs membranes) in adsorption process for the removal of water pollutants. Particularly focus will be devoted on the emergent category of self-standing CNTs membranes (buckypapers), made entirely of carbon nanotubes, exhibiting superior performances than CNTs and CNTs-doped polymeric membranes in terms of preparation strategy, recovery percentages of pollutants and regeneration possibilities. The extremely encouraging results presented in this review aim to support and pave the way to the introduction of alternative and more efficient pathways in wastewater treatment technologies to contrast the problem of water pollution.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | | | - Alexandr Ivanovic Mashin
- Applied Physics & Microelectronics, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod 603105, Russia
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
26
|
Kargar B, Fazeli M, Sobhani Z, Hosseinzadeh S, Solhjoo A, Akbarizadeh AR. Exploration of the photothermal role of curcumin-loaded targeted carbon nanotubes as a potential therapy for melanoma cancer. Sci Rep 2024; 14:10117. [PMID: 38698033 PMCID: PMC11066107 DOI: 10.1038/s41598-024-57612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
In this research, the hydrophilic structure of multi-walled carbon nanotubes (MWCNTs) was modified by synthesizing polycitric acid (PCA) and attaching folic acid (FA) to create MWCNT-PCA-FA. This modified nanocomplex was utilized as a carrier for the lipophilic compound curcumin (Cur). Characterization techniques including TGA, TEM, and UV-visible spectrophotometry were used to analyze the nanocomplex. The mechanism of cancer cell death induced by MWCNT-PCA-FA was studied extensively using the MTT assay, colony formation analysis, cell cycle assessment via flow cytometry, and apoptosis studies. Furthermore, we assessed the antitumor efficacy of these targeted nanocomplexes following exposure to laser radiation. The results showed that the nanocomposites and free Cur had significant toxicity on melanoma cancer cells (B16F10 cells) while having minimal impact on normal cells (NHDF cells). This selectivity for cancerous cells demonstrates the potential of these compounds as therapeutic agents. Furthermore, MWCNT-PCA-FA/Cur showed superior cytotoxicity compared to free Cur alone. Colony formation studies confirmed these results. The researchers found that MWCNT-FA-PCA/Cur effectively induced programmed cell death. In photothermal analysis, MWCNT-PCA-FA/Cur combined with laser treatment achieved the highest mortality rate. These promising results suggest that this multifunctional therapeutic nanoplatform holds the potential for combination cancer therapies that utilize various established therapeutic methods.
Collapse
Affiliation(s)
- Bahareh Kargar
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Fazeli
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Zahra Sobhani
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Aida Solhjoo
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Molina BG, Fuentes J, Alemán C, Sánchez S. Merging BioActuation and BioCapacitive properties: A 3D bioprinted devices to self-stimulate using self-stored energy. Biosens Bioelectron 2024; 251:116117. [PMID: 38350239 DOI: 10.1016/j.bios.2024.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Biofabrication of three-dimensional (3D) cultures through the 3D Bioprinting technique opens new perspectives and applications of cell-laden hydrogels. However, to continue with the progress, new BioInks with specific properties must be carefully designed. In this study, we report the synthesis and 3D Bioprinting of an electroconductive BioInk made of gelatin/fibrinogen hydrogel, C2C12 mouse myoblast and 5% w/w of conductive poly (3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs). The influence of PEDOT NPs, incorporated in the cell-laden BioInk, not only showed a positive effect in cells viability, differentiation and myotube functionalities, also allowed the printed constructs to behaved as BioCapacitors. Such devices were able to electrochemically store a significant amount of energy (0.5 mF/cm2), enough to self-stimulate as BioActuator, with typical contractions ranging from 27 to 38 μN, during nearly 50 min. The biofabrication of 3D constructs with the proposed electroconductive BioInk could lead to new devices for tissue engineering, biohybrid robotics or bioelectronics.
Collapse
Affiliation(s)
- Brenda G Molina
- Departament D'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019, Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. C, 08019, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| | - Judith Fuentes
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Carlos Alemán
- Departament D'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019, Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. C, 08019, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
28
|
Khadanga V, Mishra PC. A review on toxicity mechanism and risk factors of nanoparticles in respiratory tract. Toxicology 2024; 504:153781. [PMID: 38493948 DOI: 10.1016/j.tox.2024.153781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
This comprehensive review focuses on various dimensions of nanoparticle toxicity, emphasizing toxicological characteristics, assessment techniques, and examinations of relevant studies on the effects on biological systems. The primary objective is to comprehend the potential risks associated with nanoparticles and to provide efficient strategies for mitigating them by consolidating current research discoveries. For in-depth insights, the discussions extend to crucial aspects such as toxicity associated with different nanoparticles, human exposure, and nanoparticle deposition in the human respiratory tract. The analysis utilizes the multiple-path particle dosimetry (MPPD) modeling for computational simulation. The SiO2 nanoparticles with a volume concentration of 1% and a particle size of 50 nm are used to depict the MPPD modeling of the Left upper (LU), left lower (LL), right upper (RU), right middle (RM), and right lower (RL) lobes in the respiratory tract. The analysis revealed a substantial 67.5% decrease in the deposition fraction as the particle size increased from 10 nm to 100 nm. Graphical representation emphasizes the significant impact of exposure path selection on nanoparticle deposition, with distinct deposition values observed for nasal, oral, oronasal-mouth breather, oronasal - normal augmenter, and endotracheal paths (0.00291 μg, 0.00332 μg, 0.00297 μg, 0.00291 μg, and 0.00383 μg, respectively). Consistent with the focus of the review, the article also addresses crucial mitigation strategies for managing nanoparticle toxicity.
Collapse
Affiliation(s)
- Vidyasri Khadanga
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Purna Chandra Mishra
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
29
|
Lyra KM, Tournis I, Subrati M, Spyrou K, Papavasiliou A, Athanasekou C, Papageorgiou S, Sakellis E, Karakassides MA, Sideratou Z. Carbon Nanodisks Decorated with Guanidinylated Hyperbranched Polyethyleneimine Derivatives as Efficient Antibacterial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:677. [PMID: 38668171 PMCID: PMC11054016 DOI: 10.3390/nano14080677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Non-toxic carbon-based hybrid nanomaterials based on carbon nanodisks were synthesized and assessed as novel antibacterial agents. Specifically, acid-treated carbon nanodisks (oxCNDs), as a safe alternative material to graphene oxide, interacted through covalent and non-covalent bonding with guanidinylated hyperbranched polyethyleneimine derivatives (GPEI5K and GPEI25K), affording the oxCNDs@GPEI5K and oxCNDs@GPEI25K hybrids. Their physico-chemical characterization confirmed the successful and homogenous attachment of GPEIs on the surface of oxCNDs, which, due to the presence of guanidinium groups, offered them improved aqueous stability. Moreover, the antibacterial activity of oxCNDs@GPEIs was evaluated against Gram-negative E. coli and Gram-positive S. aureus bacteria. It was found that both hybrids exhibited enhanced antibacterial activity, with oxCNDs@GPEI5K being more active than oxCNDs@GPEI25K. Their MIC and MBC values were found to be much lower than those of oxCNDs, revealing that the GPEI attachment endowed the hybrids with enhanced antibacterial properties. These improved properties were attributed to the polycationic character of the oxCNDs@GPEIs, which enables effective interaction with the bacterial cytoplasmic membrane and cell walls, leading to cell envelope damage, and eventually cell lysis. Finally, oxCNDs@GPEIs showed minimal cytotoxicity on mammalian cells, indicating that these hybrid nanomaterials have great potential to be used as safe and efficient antibacterial agents.
Collapse
Affiliation(s)
- Kyriaki-Marina Lyra
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Ioannis Tournis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Mohammed Subrati
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Konstantinos Spyrou
- Department of Material Science & Engineering, University of Ioannina, 45110 Ioannina, Greece; (K.S.); (M.A.K.)
| | - Aggeliki Papavasiliou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Chrysoula Athanasekou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Sergios Papageorgiou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
- Physics Department, Condensed Matter Physics Section, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, 15784 Athens, Greece
| | - Michael A. Karakassides
- Department of Material Science & Engineering, University of Ioannina, 45110 Ioannina, Greece; (K.S.); (M.A.K.)
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| |
Collapse
|
30
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
31
|
Durodola SS, Akeremale OK, Ore OT, Bayode AA, Badamasi H, Olusola JA. A Review on Nanomaterial as Photocatalysts for Degradation of Organic Pollutants. J Fluoresc 2024; 34:501-514. [PMID: 37432581 DOI: 10.1007/s10895-023-03332-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Eliminating hazardous organic contaminants from water is a major concern today. Nanomaterials with their textural features, large surface area, electrical conductivity, and magnetic properties make them efficient for the removal and photocatalytic degradation of organic pollutants. The reaction mechanisms of the photocatalytic oxidation of common organic pollutants were critically examined. A detailed review of articles published on photocatalytic degradation of hydrocarbons, pesticides, and dyes was presented therein. This review seeks to bridge information gaps on the reported nanomaterial as photocatalysts for the degradation of organic pollutants under sub-headings, nanomaterials, organic pollutants, degradation of organic pollutants, and mechanisms of photocatalytic activities.
Collapse
Affiliation(s)
- Solomon S Durodola
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria.
| | - Olaniran K Akeremale
- Department of Science and Technology Education, Bayero University, 3011, Kano, Nigeria
| | - Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria
| | - Ajibola A Bayode
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, Ede, 232101, Nigeria
| | - Hamza Badamasi
- Department of Chemistry, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Johnson Adedeji Olusola
- Department of Geography and Planning Science, Ekiti State University, Ado Ekiti, Ekiti State, Nigeria
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| |
Collapse
|
32
|
Arjunan N, Thiruvengadam V, Sushil SN. Nanoparticle-mediated dsRNA delivery for precision insect pest control: a comprehensive review. Mol Biol Rep 2024; 51:355. [PMID: 38400844 DOI: 10.1007/s11033-023-09187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems have emerged as powerful tools in the field of pest management, offering precise and effective means of delivering double-stranded RNA (dsRNA), a potent agent for pest control through RNA interference (RNAi). This comprehensive review aims to evaluate and compare various types of nanoparticles for their suitability in dsRNA delivery for pest management applications. The review begins by examining the unique properties and advantages of different nanoparticle materials, including clay, chitosan, liposomes, carbon, gold and silica. Each material's ability to protect dsRNA from degradation and its potential for targeted delivery to pests are assessed. Furthermore, this review delves into the surface modification strategies employed to enhance dsRNA delivery efficiency. Functionalization with oligonucleotides, lipids, polymers, proteins and peptides is discussed in detail, highlighting their role in improving stability, cellular uptake, and specificity of dsRNA delivery.This review also provides valuable guidance on choosing the most suitable nanoparticle-based system for delivering dsRNA effectively and sustainably in pest management. Moreover, it identifies existing knowledge gaps and proposes potential research directions aimed at enhancing pest control strategies through the utilization of nanoparticles and dsRNA.
Collapse
Affiliation(s)
- Nareshkumar Arjunan
- Division of Molecular Entomology, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India.
| | - Venkatesan Thiruvengadam
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, H.A. Farm Post, Hebbal, P.B. No. 2491, Bangalore, 560024, India.
| | - S N Sushil
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, H.A. Farm Post, Hebbal, P.B. No. 2491, Bangalore, 560024, India
| |
Collapse
|
33
|
Chiang MC, Yang YP, Nicol CJB, Wang CJ. Gold Nanoparticles in Neurological Diseases: A Review of Neuroprotection. Int J Mol Sci 2024; 25:2360. [PMID: 38397037 PMCID: PMC10888679 DOI: 10.3390/ijms25042360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This review explores the diverse applications of gold nanoparticles (AuNPs) in neurological diseases, with a specific focus on Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The introduction highlights the pivotal role of neuroinflammation in these disorders and introduces the unique properties of AuNPs. The review's core examines the mechanisms by which AuNPs exert neuroprotection and anti-neuro-inflammatory effects, elucidating various pathways through which they manifest these properties. The potential therapeutic applications of AuNPs in AD are discussed, shedding light on promising avenues for therapy. This review also explores the prospects of utilizing AuNPs in PD interventions, presenting a hopeful outlook for future treatments. Additionally, the review delves into the potential of AuNPs in providing neuroprotection after strokes, emphasizing their significance in mitigating cerebrovascular accidents' aftermath. Experimental findings from cellular and animal models are consolidated to provide a comprehensive overview of AuNPs' effectiveness, offering insights into their impact at both the cellular and in vivo levels. This review enhances our understanding of AuNPs' applications in neurological diseases and lays the groundwork for innovative therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher J. B. Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
34
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
35
|
Periasamy VS, Athinarayanan J, Alshatwi AA. Understanding the Interaction between Nanomaterials Originated from High-Temperature Processed Starch/Myristic Acid and Human Monocyte Cells. Foods 2024; 13:554. [PMID: 38397531 PMCID: PMC10888307 DOI: 10.3390/foods13040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
High-temperature cooking approaches trigger many metabolically undesirable molecule formations, which pose health risks. As a result, nanomaterial formation has been observed while cooking and reported recently. At high temperatures, starch and myristic acid interact and lead to the creation of nanomaterials (cMS-NMs). We used a non-polar solvent chloroform to separate the nanomaterials using a liquid-liquid extraction technique. The physico-chemical characterization was carried out using dynamic light scattering (DLS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). To determine the biological impact of these nanomaterials using different in vitro assays, including a cell viability assay, microscopic staining, and gene expression analysis, we adopted the THP-1 cell line as an in vitro monocyte model in our study. The TEM images revealed that fabricated cMS nanomaterials are smaller than 100 nm in diameter. There were significant concerns found in the cytotoxicity assay and gene expression analysis. At concentrations of 100-250 µg/mL, the cMS-NMs caused up to 95% cell death. We found both necrosis and apoptosis in cMS-NMs treated THP-1 cells. In cMS-NMs-treated THP-1 cells, we found decreased expression levels in IL1B and NFKB1A genes and significant upregulation in MIF genes, suggesting a negative immune response. These findings strongly suggest that cMS-NMs originated from high-temperature food processing can cause adverse effects on biological systems. Therefore, charred materials in processed foods should be avoided in order to minimize the risk of health complications.
Collapse
Affiliation(s)
| | | | - Ali A. Alshatwi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (V.S.P.); (J.A.)
| |
Collapse
|
36
|
Selim MS, Azzam AM, Shenashen MA, Higazy SA, Mostafa BB, El-Safty SA. Comparative study between three carbonaceous nanoblades and nanodarts for antimicrobial applications. J Environ Sci (China) 2024; 136:594-605. [PMID: 37923468 DOI: 10.1016/j.jes.2023.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 11/07/2023]
Abstract
The design of nanostructured materials occupies a privileged position in the development and management of affordable and effective technology in the antibacterial sector. Here, we discuss the antimicrobial properties of three carbonaceous nanoblades and nanodarts materials of graphene oxide (GO), reduced graphene oxide (RGO), and single-wall carbon nanotubes (SWCNTs) that have a mechano-bactericidal effect, and the ability to piercing or slicing bacterial membranes. To demonstrate the significance of size, morphology and composition on the antibacterial activity mechanism, the designed nanomaterials have been characterized. The minimum inhibitory concentration (MIC), standard agar well diffusion, and transmission electron microscopy were utilized to evaluate the antibacterial activity of GO, RGO, and SWCNTs. Based on the evidence obtained, the three carbonaceous materials exhibit activity against all microbial strains tested by completely encapsulating bacterial cells and causing morphological disruption by degrading the microbial cell membrane in the order of RGO > GO > SWCNTs. Because of the external cell wall structure and outer membrane proteins, the synthesized carbonaceous nanomaterials exhibited higher antibacterial activity against Gram-positive bacterial strains than Gram-negative and fungal microorganisms. RGO had the lowest MIC values (0.062, 0.125, and 0.25 mg/mL against B. subtilis, S. aureus, and E. coli, respectively), as well as minimum fungal concentrations (0.5 mg/mL for both A. fumigatus and C. albicans). At 12 hr, the cell viability values against tested microbial strains were completely suppressed. Cell lysis and death occurred as a result of severe membrane damage caused by microorganisms perched on RGO nanoblades. Our work gives an insight into the design of effective graphene-based antimicrobial materials for water treatment and remediation.
Collapse
Affiliation(s)
- Mohamed S Selim
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi, Ibaraki-Ken 305-0047, Japan; Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City 11727, Egypt
| | - Ahmed M Azzam
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi, Ibaraki-Ken 305-0047, Japan; Department of Environmental Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi, Ibaraki-Ken 305-0047, Japan; Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City 11727, Egypt.
| | - Shimaa A Higazy
- Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City 11727, Egypt
| | - Bayaumy B Mostafa
- Department of Environmental Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi, Ibaraki-Ken 305-0047, Japan.
| |
Collapse
|
37
|
Gržeta Krpan N, Harej Hrkać A, Janković T, Dolenec P, Bekyarova E, Parpura V, Pilipović K. Chemically Functionalized Single-Walled Carbon Nanotubes Prevent the Reduction in Plasmalemmal Glutamate Transporter EAAT1 Expression in, and Increase the Release of Selected Cytokines from, Stretch-Injured Astrocytes in Vitro. Cells 2024; 13:225. [PMID: 38334617 PMCID: PMC10854924 DOI: 10.3390/cells13030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.
Collapse
Affiliation(s)
- Nika Gržeta Krpan
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Elena Bekyarova
- Department of Chemistry, University of California, Riverside, CA 92521, USA;
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| |
Collapse
|
38
|
Didonè L, Shin Y, Silvestri A, Prato M, Park S, Bianco A. Electrochemical impedance spectroscopy, another arrow in the arsenal to study the biodegradability of two-dimensional materials. NANOSCALE 2024; 16:1304-1311. [PMID: 38131206 DOI: 10.1039/d3nr04502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Carbon nitride (C3N4) is an innovative material with a high potential in many applications including energy storage, catalysis, composites, and biomedicine. C3N4 appears remarkably interesting not only for its properties but also because its simple preparation routes involve low-cost starting materials and reagents. However, there is still a lack of information on its degradability. For this reason, in this study, we evaluate the environmental persistence of C3N4 and its oxidized form by applying the photo-Fenton reaction. The morphological and structural changes of both materials were monitored by transmission electron microscopy and Raman spectroscopy respectively. In addition, electrochemical impedance spectroscopy has been used as an original technique to validate the degradation process of C3N4.
Collapse
Affiliation(s)
- Livia Didonè
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France.
| | - Yunseok Shin
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology, Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia, San Sebastián, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology, Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Dipartimento di Scienze Chimiche e Farmaceutiche, INSTM UdR Trieste, University of Trieste Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Sungjin Park
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
39
|
Jung YJ, Muneeswaran T, Choi JS, Kim S, Han JH, Cho WS, Park JW. Modified toxic potential of multi-walled carbon nanotubes to zebrafish (Danio rerio) following a two-year incubation in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132763. [PMID: 37839374 DOI: 10.1016/j.jhazmat.2023.132763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs), widely used in several industrial fields, are not readily degradable thus, persist in environmental matrices, serving as a source of environmental toxicity to organisms. However, the effects of environmental weathering on nanomaterial toxicity remain unclear. Herein, we prepared aged-MWCNTs (a-CNTs) by incubating commercial pristine-MWCNTs (p-CNTs) for two years and compared their changes in physicochemical properties and toxic effects on zebrafish. The characterization of a-CNTs by transmission electron microscopy, X-ray photoelectron spectra, Raman spectroscopy, and Fourier-transform infrared spectroscopy showed an increased surface area, pore size, structural defects, and surface oxidation than those of p-CNTs. Zebrafish were exposed to 100 mg/L p-CNT and a-CNT for four days. Subsequently, the mRNA expression of antioxidant enzymes, including cat, gst, and sod, in a-CNT group increased by 1.5- to 1.7-fold, consistent with increased expression of genes associated with inflammation (interleukin-8) and apoptosis (p53) compared to control. The higher toxicity of a-CNTs to zebrafish than p-CNT might be due to the increased oxidative potential by altered physicochemical properties. These findings provide new insights into the risk assessment and environmental management of MWCNTs in the aquatic environment. However, further testing at environmentally relevant doses, different exposure durations, and diverse weathering parameters is warranted.
Collapse
Affiliation(s)
- Youn-Joo Jung
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea; Joint Research Center for Alternative and Predictive Toxicology (JRC-APT), Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Thillaichidambaram Muneeswaran
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jin Soo Choi
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea; Joint Research Center for Alternative and Predictive Toxicology (JRC-APT), Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Sumin Kim
- School of Applied Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong Hun Han
- School of Applied Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea; Joint Research Center for Alternative and Predictive Toxicology (JRC-APT), Korea Institute of Toxicology, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
40
|
Romo-Ávila SL, Márquez-Ruíz D, Guirado-López RA. ClO-driven degradation of graphene oxide: new insights from DFT calculations. Phys Chem Chem Phys 2024; 26:830-841. [PMID: 38099823 DOI: 10.1039/d3cp04015a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
We present an extensive investigation using density functional theory (DFT) calculations on various model graphene oxide (GO) nanostructures interacting with chlorine monoxide ClO, aiming to understand the role of this highly oxidizing species in C-C bond breakage and the formation of significant holes on GO sheets. During its function, the myeloperoxidase (MPO) enzyme abundantly generates chlorine-oxygen-containing species and their presence has been identified as the cause of degradation in carbon nanotubes of diverse sizes, morphologies, and chemical compositions, both in in vivo and in vitro samples. Notably, Kurapati et al. (Small, 2015, 11, 3985-3994) demonstrated efficient degradation of single GO monolayers through MPO catalysis, though the exact degradation mechanism remains unclear. In our study, we discover that breaking C-C bonds in a single graphene oxide sheet is achievable through a simple mechanism involving the dissociation of two ClO molecules that are chemically attached as nearest neighbor species but bonded to opposite sides of the GO layer (up/down configuration). Two new carbonyl oxygens appear on the surface and the Cl atoms can be transferred to the carbon layer or as physisorbed species near the GO surface. Relatively small energy barriers are associated with these molecular events. Continuing this process on neighboring sites leads to the presence of larger holes on the GO surface, accompanied by an increase in carbonyl species on the carbon network, consistent with X-ray photoelectron spectroscopy measurements. Indeed, the distribution of oxygen functionalities is found to be crucial in defining the damage pattern induced in the carbon layer. We emphasize the important role played by the local charge distribution in the stability or instability of chemical bonds, as well as in the energy barriers and reaction pathways. Finally, we explore the possibility of achieving chlorination of GO following MPO exposure. The here-reported predictions could be the root cause of the experimentally observed low stability of individual GO sheets during the MPO catalytic cycle.
Collapse
Affiliation(s)
- S L Romo-Ávila
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| | - D Márquez-Ruíz
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| | - R A Guirado-López
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| |
Collapse
|
41
|
Hirulkar R, Chaurawal N, Alhodieb FS, Barkat H, Preet S, Raza K. Nanotheranostics: Clinical Status, Toxicity, Regulatory Consideration, and Future Prospects. NANOTHERANOSTICS FOR DIAGNOSIS AND THERAPY 2024:249-285. [DOI: 10.1007/978-981-97-3115-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Lomboni DJ, Ozgun A, de Medeiros TV, Staines W, Naccache R, Woulfe J, Variola F. Electroconductive Collagen-Carbon Nanodots Nanocomposite Elicits Neurite Outgrowth, Supports Neurogenic Differentiation and Accelerates Electrophysiological Maturation of Neural Progenitor Spheroids. Adv Healthc Mater 2024; 13:e2301894. [PMID: 37922888 PMCID: PMC11481026 DOI: 10.1002/adhm.202301894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Neuronal disorders are characterized by the loss of functional neurons and disrupted neuroanatomical connectivity, severely impacting the quality of life of patients. This study investigates a novel electroconductive nanocomposite consisting of glycine-derived carbon nanodots (GlyCNDs) incorporated into a collagen matrix and validates its beneficial physicochemical and electro-active cueing to relevant cells. To this end, this work employs mouse induced pluripotent stem cell (iPSC)-derived neural progenitor (NP) spheroids. The findings reveal that the nanocomposite markedly augmented neuronal differentiation in NP spheroids and stimulate neuritogenesis. In addition, this work demonstrates that the biomaterial-driven enhancements of the cellular response ultimately contribute to the development of highly integrated and functional neural networks. Lastly, acute dizocilpine (MK-801) treatment provides new evidence for a direct interaction between collagen-bound GlyCNDs and postsynaptic N-methyl-D-aspartate (NMDA) receptors, thereby suggesting a potential mechanism underlying the observed cellular events. In summary, the findings establish a foundation for the development of a new nanocomposite resulting from the integration of carbon nanomaterials within a clinically approved hydrogel, toward an effective biomaterial-based strategy for addressing neuronal disorders by restoring damaged/lost neurons and supporting the reestablishment of neuroanatomical connectivity.
Collapse
Affiliation(s)
- David J. Lomboni
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Ottawa‐Carleton Institute for Biomedical Engineering (OCIBME)OttawaONK1N 6N5Canada
| | - Alp Ozgun
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| | - Tayline V. de Medeiros
- Department of Chemistry and Biochemistry and the Centre for NanoScience ResearchConcordia UniversityMontrealQCH4B 1R6Canada
- Quebec Centre for Advanced MaterialsDepartment of Chemistry and BiochemistryConcordia UniversityMontrealQCH4B 1R6Canada
| | - William Staines
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and the Centre for NanoScience ResearchConcordia UniversityMontrealQCH4B 1R6Canada
- Quebec Centre for Advanced MaterialsDepartment of Chemistry and BiochemistryConcordia UniversityMontrealQCH4B 1R6Canada
| | - John Woulfe
- The Ottawa Hospital Research InstituteOttawaONK1Y 4E9Canada
| | - Fabio Variola
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Ottawa‐Carleton Institute for Biomedical Engineering (OCIBME)OttawaONK1N 6N5Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| |
Collapse
|
43
|
Yuan X, Shi J, Kang Y, Dong J, Pei Z, Ji X. Piezoelectricity, Pyroelectricity, and Ferroelectricity in Biomaterials and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308726. [PMID: 37842855 DOI: 10.1002/adma.202308726] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Piezoelectric, pyroelectric, and ferroelectric materials are considered unique biomedical materials due to their dielectric crystals and asymmetric centers that allow them to directly convert various primary forms of energy in the environment, such as sunlight, mechanical energy, and thermal energy, into secondary energy, such as electricity and chemical energy. These materials possess exceptional energy conversion ability and excellent catalytic properties, which have led to their widespread usage within biomedical fields. Numerous biomedical applications have demonstrated great potential with these materials, including disease treatment, biosensors, and tissue engineering. For example, piezoelectric materials are used to stimulate cell growth in bone regeneration, while pyroelectric materials are applied in skin cancer detection and imaging. Ferroelectric materials have even found use in neural implants that record and stimulate electrical activity in the brain. This paper reviews the relationship between ferroelectric, piezoelectric, and pyroelectric effects and the fundamental principles of different catalytic reactions. It also highlights the preparation methods of these three materials and the significant progress made in their biomedical applications. The review concludes by presenting key challenges and future prospects for efficient catalysts based on piezoelectric, pyroelectric, and ferroelectric nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiacheng Shi
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Zhengcun Pei
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Medical College, Linyi University, Linyi, 276000, China
| |
Collapse
|
44
|
Liu Y, Liu H, Guo S, Zhao Y, Qi J, Zhang R, Ren J, Cheng H, Zong M, Wu X, Li B. A review of carbon nanomaterials/bacterial cellulose composites for nanomedicine applications. Carbohydr Polym 2024; 323:121445. [PMID: 37940307 DOI: 10.1016/j.carbpol.2023.121445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
Carbon nanomaterials (CNMs) mainly include fullerene, carbon nanotubes, graphene, carbon quantum dots, nanodiamonds, and their derivatives. As a new type of material in the field of nanomaterials, it has outstanding physical and chemical properties, such as minor size effects, substantial specific surface area, extremely high reaction activity, biocompatibility, and chemical stability, which have attracted widespread attention in the medical community in the past decade. However, the single use of carbon nanomaterials has problems such as self-aggregation and poor water solubility. Researchers have recently combined them with bacterial cellulose to form a new intelligent composite material to improve the defects of carbon nanomaterials. This composite material has been widely synthesized and used in targeted drug delivery, biosensors, antibacterial dressings, tissue engineering scaffolds, and other nanomedicine fields. This paper mainly reviews the research progress of carbon nanomaterials based on bacterial cellulose in nanomedicine. In addition, the potential cytotoxicity of these composite materials and their components in vitro and in vivo was discussed, as well as the challenges and gaps that need to be addressed in future clinical applications.
Collapse
Affiliation(s)
- Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Haiyan Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Susu Guo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jin Qi
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China.
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
45
|
Deir S, Mozhdehbakhsh Mofrad Y, Mashayekhan S, Shamloo A, Mansoori-Kermani A. Step-by-step fabrication of heart-on-chip systems as models for cardiac disease modeling and drug screening. Talanta 2024; 266:124901. [PMID: 37459786 DOI: 10.1016/j.talanta.2023.124901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases are caused by hereditary factors, environmental conditions, and medication-related issues. On the other hand, the cardiotoxicity of drugs should be thoroughly examined before entering the market. In this regard, heart-on-chip (HOC) systems have been developed as a more efficient and cost-effective solution than traditional methods, such as 2D cell culture and animal models. HOCs must replicate the biology, physiology, and pathology of human heart tissue to be considered a reliable platform for heart disease modeling and drug testing. Therefore, many efforts have been made to find the best methods to fabricate different parts of HOCs and to improve the bio-mimicry of the systems in the last decade. Beating HOCs with different platforms have been developed and techniques, such as fabricating pumpless HOCs, have been used to make HOCs more user-friendly systems. Recent HOC platforms have the ability to simultaneously induce and record electrophysiological stimuli. Additionally, systems including both heart and cancer tissue have been developed to investigate tissue-tissue interactions' effect on cardiac tissue response to cancer drugs. In this review, all steps needed to be considered to fabricate a HOC were introduced, including the choice of cellular resources, biomaterials, fabrication techniques, biomarkers, and corresponding biosensors. Moreover, the current HOCs used for modeling cardiac diseases and testing the drugs are discussed. We finally introduced some suggestions for fabricating relatively more user-friendly HOCs and facilitating the commercialization process.
Collapse
Affiliation(s)
- Sara Deir
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
46
|
Montalvão MF, Gomes AR, Guimarães ATB, Rodrigues ASDL, Matos LPD, Mendonça JDS, da Luz TM, Matos SGDS, Rahman MS, Ragavendran C, Senthil-Nathan S, Guru A, Rakib MRJ, Mubarak NM, Rahman MM, Rocha TL, Islam ARMT, Malafaia G. Toxicity of carbon nanofibers in earthworms (Lumbricus terrestris) naturally infected with Monocystis sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167712. [PMID: 37832683 DOI: 10.1016/j.scitotenv.2023.167712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Although the ecotoxicity of carbon-based nanomaterials (CBNs) is known, the potential effect of carbon nanofibers (CNFs) on edaphic organisms has been insufficiently explored. Thus, we aimed at the ecotoxicity of CNFs (at 10 and 100 mg/kg) in Lumbricus terrestris earthworms naturally infected with Monocystis sp. After 28 days of exposure, treatments did not affect the survival rate. However, we observed a significant loss of body biomass, and Monocystis sp. infection in seminal vesicles was potentiated by exposure to CNFs. Earthworms exposed to CNFs showed a redox imbalance in the seminal vesicle, muscle, and intestine and an alteration in nitric oxide production in these organs. In muscles, we also noticed a significant reduction in AChE activity in earthworms exposed to CNFs. The histopathological analyses revealed the treatments' significant effect on the structures of the different evaluated tissues. Although we did not notice a concentration-response for several of the biomarkers, when taken together and after the application of Integrated Biomarker Response (IBR) and principal component analysis (PCA), we noticed that the response of earthworms to CNFs at 100 mg/kg showed a more significant deviation from the unexposed group. This was mainly determined by inhibiting antioxidant activity in the seminal vesicle, biochemical biomarkers assessed in muscle and intestine, and histomorphometric muscle biomarkers from earthworms exposed to CNFs at 100 mg/kg. Thus, we demonstrate that CNFs increase the parasite load of Monocystis sp. of adult L. terrestris earthworms and induce biochemical and histopathological changes, especially at 100 mg/kg. Our results point to the additional impact these nanomaterials can have on the health of earthworms, signaling the need for greater attention to their disposal and ecotoxicological effects on soil organisms.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Alex Rodrigues Gomes
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Abraão Tiago Batista Guimarães
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Juliana Dos Santos Mendonça
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Thiarlen Marinho da Luz
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Stênio Gonçalves da Silva Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - M Safiur Rahman
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Chinnasamy Ragavendran
- Saveetha Dental College and Hospitals (SIMATS), Saveetha University Chennai, Tamil Nadu, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India.
| | | | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| | | | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
47
|
Tang B, Ma W, Lin Y. Emerging applications of anti-angiogenic nanomaterials in oncotherapy. J Control Release 2023; 364:61-78. [PMID: 37871753 DOI: 10.1016/j.jconrel.2023.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Angiogenesis is the process of generating new blood vessels from pre-existing vasculature. Under normal conditions, this process is delicately controlled by pro-angiogenic and anti-angiogenic factors. Tumor cells can produce plentiful pro-angiogenic molecules promoting pathological angiogenesis for uncontrollable growth. Therefore, anti-angiogenic therapy, which aims to inhibit tumor angiogenesis, has become an attractive approach for oncotherapy. However, classic anti-angiogenic agents have several limitations in clinical use, such as lack of specific targeting, low bioavailability, and poor therapeutic outcomes. Hence, alternative angiogenic inhibitors are highly desired. With the emergence of nanotechnology, various nanomaterials have been designed for anti-angiogenesis purposes, offering promising features like excellent targeting capabilities, reduced side effects, and enhanced therapeutic efficacy. In this review, we describe tumor vascular features, discuss current dilemma of traditional anti-angiogenic medicines in oncotherapy, and underline the potential of nanomaterials in tumor anti-angiogenic therapy. Moreover, we discuss the current challenges of anti-angiogenic cancer treatment. We expect that this summary of anti-angiogenic nanomaterials in oncotherapy will offer valuable insights, facilitating their extensive applications in the future.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
48
|
Priyam J, Saxena U. Therapeutic applications of carbon nanomaterials in renal cancer. Biotechnol Lett 2023; 45:1395-1416. [PMID: 37864745 DOI: 10.1007/s10529-023-03429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/23/2023]
Abstract
Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene, and nanodiamonds (NDs), have shown great promise in detecting and treating numerous cancers, including kidney cancer. CNMs can increase the sensitivity of diagnostic techniques for better kidney cancer identification and surveillance. They enable targeted medicine delivery specifically to tumour locations, with little effect on healthy tissue. Because of their unique chemical and physical characteristics, they can avoid the body's defence mechanisms, making it easier to accumulate where tumours exist. Consequently, CNMs provide more effective drug delivery to kidney cancer cells. It also helps in improving the efficacy of treatment. This review explores the potential of several CNMs in improving therapeutic strategies for kidney cancer. We briefly covered the physicochemical properties and therapeutic applications of CNMs. Additionally, we discussed how structural modifications in CNMs enhance their precision in treating renal cancer. A thorough overview of CNM-based gene, peptide, and drug delivery strategies for the treatment of renal cancer is presented in this review. It covers information on other CNM-based therapeutic approaches, such as hyperthermia, photodynamic therapy, and photoacoustic therapy. Also, the interactions of CNMs with the tumour microenvironment (TME) are explored, including modulation of the immune response, regulation of tumour hypoxia, interactions between CNMs and TME cells, effects of TME pH on CNMs, and more. Finally, potential side effects of CNMs, such as toxicity, bio corona formation, enzymatic degradation, and biocompatibility, are also discussed.
Collapse
Affiliation(s)
- Jyotsna Priyam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Urmila Saxena
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
49
|
Yoon J, Han H, Jang J. Nanomaterials-incorporated hydrogels for 3D bioprinting technology. NANO CONVERGENCE 2023; 10:52. [PMID: 37968379 PMCID: PMC10651626 DOI: 10.1186/s40580-023-00402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.
Collapse
Affiliation(s)
- Jungbin Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hohyeon Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute of Convergence Science, Yonsei University, Seoul, South Korea.
| |
Collapse
|
50
|
Cid-Samamed A, Correa-Duarte MÁ, Mariño-López A, Diniz MS. Exposure to Oxidized Multi-Walled CNTs Can Lead to Oxidative Stress in the Asian Freshwater Clam Corbicula fluminea (Müller, 1774). Int J Mol Sci 2023; 24:16122. [PMID: 38003314 PMCID: PMC10671163 DOI: 10.3390/ijms242216122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The increasing attention that carbon-based nanomaterials have attracted due to their distinctive properties makes them one of the most widely used nanomaterials for industrial purposes. However, their toxicity and environmental effects must be carefully studied, particularly regarding aquatic biota. The implications of these carbon-based nanomaterials on aquatic ecosystems, due to their potential entry or accidental release during manufacturing and treatment processes, need to be studied because their impacts upon living organisms are not fully understood. In this research work, the toxicity of oxidized multi-walled carbon nanotubes (Ox-MWCNTs) was measured using the freshwater bivalve (Corbicula fluminea) after exposure to different concentrations (0, 0.1, 0.2, and 0.5 mg·L-1 Ox-MWCNTs) for 14 days. The oxidized multi-walled carbon nanotubes were analyzed (pH, Raman microscopy, high-resolution electron microscopy, and dynamic light scattering), showing their properties and behavior (size, aggregation state, and structure) in water media. The antioxidant defenses in the organism's digestive gland and gills were evaluated through measuring oxidative stress enzymes (glutathione-S-transferase, catalase, and superoxide dismutase), lipid peroxidation, and total ubiquitin. The results showed a concentration-dependent response of antioxidant enzymes (CAT and GST) in both tissues (gills and digestive glands) for all exposure periods in bivalves exposed to the different concentrations of oxidized multi-walled carbon nanotubes. Lipid peroxidation (MDA content) showed a variable response with the increase in oxidized multi-walled carbon nanotubes in the gills after 7 and 14 exposure days. Overall, after 14 days, there was an increase in total Ub compared to controls. Overall, the oxidative stress observed after the exposure of Corbicula fluminea to oxidized multi-walled carbon nanotubes indicates that the discharge of these nanomaterials into aquatic ecosystems can affect the biota as well as potentially accumulate in the trophic chain, and may even put human health at risk if they ingest contaminated animals.
Collapse
Affiliation(s)
- Antonio Cid-Samamed
- Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Campus de As Lagoas S/N, 32004 Ourense, Spain
| | - Miguel Ángel Correa-Duarte
- Team NanoTech, Department of Physical Chemistry, University of Vigo, 36310 Vigo, Spain; (M.Á.C.-D.); (A.M.-L.)
| | - Andrea Mariño-López
- Team NanoTech, Department of Physical Chemistry, University of Vigo, 36310 Vigo, Spain; (M.Á.C.-D.); (A.M.-L.)
| | - Mário S. Diniz
- i4HB—Associate Laboratory Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|