1
|
Lovén K, Hagvall L, Rex J, Nilsson CA, Malmborg V, Pagels J, Strandberg B, Hedmer M. Characterization of exposure to air pollutants for workers in and around fires. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024:1-17. [PMID: 39418654 DOI: 10.1080/15459624.2024.2406244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Firefighters can be occupationally exposed to a wide range of airborne pollutants during fire-extinguishing operations. The overall study aim was to characterize occupational exposure to smoke for several groups of workers responding to fires, with specific aims to determine the correlations between exposure markers and to biologically assess their systemic exposure to polycyclic aromatic hydrocarbons (PAHs) in urine. Personal exposure measurements of equivalent black carbon (eBC), elemental carbon (EC), organic carbon (OC), nitrogen dioxide (NO2), PAHs, lung deposited surface area (LDSA), and particle number concentration (PNC) of ultrafine particles were performed on firefighters, observers, and post-fire workers during firefighting exercises. Urine samples were collected before and after exposure and analyzed for PAH metabolites. Additional routes for PAH skin exposure were investigated by wipe sampling on defined surfaces: equipment, personal protective equipment (PPE), and vehicles. Among workers without PPE, observers generally had higher exposures than post-fire workers. The observers and post-fire workers had an occupational exposure to smoke measured e.g. as EC of 7.3 µg m-3 and 1.9 µg m-3, respectively. There was a good agreement between measurements of carbonaceous particles measured as EC from filters and as eBC with high time resolution, especially for the observers and post-fire workers. Ultrafine particle exposure measured as LDSA was two times higher for observers compared to the post-fire workers. The urinary levels of PAH metabolites were generally higher in firefighters and observers compared to post-fire workers. Investigation of PAH contamination on firefighters' PPE revealed high PAH contamination on surfaces with frequent skin contact both before and after cleaning. Exposure to smoke can be assessed with several different exposure markers. For workers residing unprotected around fire scenes, there can be high peak exposures depending on their behavior concerning the smoke plume. Several workers had high urinary PAH metabolite concentrations even though they were exposed to low air concentrations of PAHs, indicating skin absorption of PAH as a plausible exposure route.
Collapse
Affiliation(s)
- Karin Lovén
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Lina Hagvall
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Johannes Rex
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Carina A Nilsson
- Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Vilhelm Malmborg
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Joakim Pagels
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Maria Hedmer
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| |
Collapse
|
2
|
Uski OJ, Rankin G, Wingfors H, Magnusson R, Boman C, Lindgren R, Muala A, Blomberg A, Bosson JA, Sandström T. The Toxic Effects of Petroleum Diesel, Biodiesel, and Renewable Diesel Exhaust Particles on Human Alveolar Epithelial Cells. J Xenobiot 2024; 14:1432-1449. [PMID: 39449421 PMCID: PMC11503417 DOI: 10.3390/jox14040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate matter (PM) emissions from a diesel engine powered by conventional petroleum diesel fuel (SD10) and two biodiesel and renewable diesel fuels in vitro. The fuels used were rapeseed methyl ester (RME), soy methyl ester (SME), and Hydrogenated Vegetable Oil (HVO), either pure or as 50% blends with SD10. Additionally, a 5% RME blend was also used. The highest concentration of polycyclic aromatic hydrocarbon emissions and elemental carbon (EC) was found in conventional diesel and the 5% RME blend. HVO PM samples also exhibited a high amount of EC. A dose-dependent genotoxic response was detected with PM from SD10, pure SME, and RME as well as their blends. Reactive oxygen species levels were several times higher in cells exposed to PM from SD10, pure HVO, and especially the 5% RME blend. Apoptotic cell death was observed in cells exposed to PM from SD10, 5% RME blend, the 50% SME blend, and HVO samples. In conclusion, all diesel PM samples, including biodiesel and renewable diesel fuels, exhibited toxicity.
Collapse
Affiliation(s)
- Oskari J. Uski
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Håkan Wingfors
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Roger Magnusson
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Christoffer Boman
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Robert Lindgren
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Jenny A. Bosson
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| |
Collapse
|
3
|
Gutierrez CT, Hadrup N, Loizides C, Hafez I, Biskos G, Roursgaard M, Saber AT, Møller P, Vogel U. Absence of genotoxicity following pulmonary exposure to metal oxides of copper, tin, aluminum, zinc, and titanium in mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:251-260. [PMID: 39394842 DOI: 10.1002/em.22634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024]
Abstract
Inhalation of nanosized metal oxides may occur at the workplace. Thus, information on potential hazardous effects is needed for risk assessment. We report an investigation of the genotoxic potential of different metal oxide nanomaterials. Acellular and intracellular reactive oxygen species (ROS) production were determined for all the studied nanomaterials. Moreover, mice were exposed by intratracheal instillation to copper oxide (CuO) at 2, 6, and 12 μg/mouse, tin oxide (SnO2) at 54 and 162 μg/mouse, aluminum oxide (Al2O3) at 18 and 54 μg/mouse, zinc oxide (ZnO) at 0.7 and 2 μg/mouse, titanium dioxide (TiO2) and the benchmark carbon black at 162 μg/mouse. The doses were selected based on pilot studies. Post-exposure time points were 1 or 28 days. Genotoxicity, assessed as DNA strand breaks by the comet assay, was measured in lung and liver tissue. The acellular and intracellular ROS measurements were fairly consistent. The CuO and the carbon black bench mark particle were potent ROS generators in both assays, followed by TiO2. Al2O3, ZnO, and SnO2 generated low levels of ROS. We detected no increased genotoxicity in this study using occupationally relevant dose levels of metal oxide nanomaterials after pulmonary exposure in mice, except for a slight increase in DNA damage in liver tissue at the highest dose of CuO. The present data add to the body of evidence for risk assessment of these metal oxides.
Collapse
Affiliation(s)
- Claudia Torero Gutierrez
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Research group for risk-benefit, National Food Institute, Technical University of Denmark
| | - Charis Loizides
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Iosif Hafez
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - George Biskos
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Brown LM, Hagenson RA, Koklič T, Urbančič I, Qiao L, Strancar J, Sheltzer JM. An elevated rate of whole-genome duplications in cancers from Black patients. Nat Commun 2024; 15:8218. [PMID: 39300140 PMCID: PMC11413164 DOI: 10.1038/s41467-024-52554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
In the United States, Black individuals have higher rates of cancer mortality than any other racial group. Here, we examine chromosome copy number changes in cancers from more than 1800 self-reported Black patients. We find that tumors from self-reported Black patients are significantly more likely to exhibit whole-genome duplications (WGDs), a genomic event that enhances metastasis and aggressive disease, compared to tumors from self-reported white patients. This increase in WGD frequency is observed across multiple cancer types, including breast, endometrial, and lung cancer, and is associated with shorter patient survival. We further demonstrate that combustion byproducts are capable of inducing WGDs in cell culture, and cancers from self-reported Black patients exhibit mutational signatures consistent with exposure to these carcinogens. In total, these findings identify a type of genomic alteration that is associated with environmental exposures and that may influence racial disparities in cancer outcomes.
Collapse
Affiliation(s)
| | | | - Tilen Koklič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
| | - Lu Qiao
- Yale University, School of Medicine, New Haven, CT, USA
| | - Janez Strancar
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia
- Infinite d.o.o, Zagrebška cesta 20, Maribor, Slovenia
| | | |
Collapse
|
5
|
Srivastava S, Pandey VK, Singh K, Dar AH, Dash KK, Shams R, Mukarram Shaikh A, Kovács B. Advances in detection technology for authentication of vegetable oils: A comprehensive review. Heliyon 2024; 10:e34759. [PMID: 39170539 PMCID: PMC11336277 DOI: 10.1016/j.heliyon.2024.e34759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Biomarkers are specific indicators that can be used to authenticate vegetable oils by reflecting unique characteristics such as variety or geographical origin. Biomarkers can originate from the primary components of the vegetable oil itself or from contaminants and trace substances linked to processing methods or adulterants. The review highlights the key findings in the identification of novel biomarkers for vegetable oil authentication. Various analytical techniques have proven effective in distinguishing unique biomarkers associated with specific vegetable oil varieties or geographical origins. The use of biomarkers of vegetable oils and associated contaminants or trace substances offers a comprehensive approach to authentication. However, the identification of novel biomarkers holds immense potential for enhancing food safety, preventing fraud, and safeguarding consumer health in the vegetable oil industry. The ongoing research and advancements in biomarker identification represent a promising avenue for addressing authenticity concerns in vegetable oils.
Collapse
Affiliation(s)
- Shivangi Srivastava
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, 121004, Haryana, India
| | - Kunal Singh
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road Barabanki, Uttar Pradesh, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
6
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. The respiratory health effects of acute in vivo diesel and biodiesel exhaust in a mouse model. CHEMOSPHERE 2024; 362:142621. [PMID: 38880256 DOI: 10.1016/j.chemosphere.2024.142621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice. Male BALB/c mice were exposed for 2-hrs to diluted exhaust obtained from a diesel engine running on mineral diesel, Tallow biodiesel or Canola biodiesel. A room air exposure group was used as a control. Twenty-four hours after exposure, a variety of respiratory related end point measurements were assessed, including lung function, responsiveness to methacholine and airway and systemic immune responses. RESULTS Tallow biodiesel exhaust exposure resulted in the greatest number of significant effects compared to Air controls, including increased airway hyperresponsiveness (178.1 ± 31.3% increase from saline for Tallow biodiesel exhaust exposed mice compared to 155.8 ± 19.1 for Air control), increased airway inflammation (63463 ± 13497 cells/mL in the bronchoalveolar lavage of Tallow biodiesel exhaust exposed mice compared to 40561 ± 11800 for Air exposed controls) and indications of immune dysregulation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer significant effects compared to Air controls with a slight increase in airway resistance at functional residual capacity and indications of immune dysregulation. Exposure to mineral diesel exhaust resulted in significant effects between that of the two biodiesels with increased airway hyperresponsiveness and indications of immune dysregulation. CONCLUSION These data show that a single, brief exposure to biodiesel exhaust can result in negative health impacts in a mouse model, and that the biological effects of exposure change depending on the feedstock used to make the biodiesel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia.
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA, 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia
| |
Collapse
|
7
|
Uski OJ, Rankin GD, Wingfors H, Magnusson R, Boman C, Muala A, Blomberg A, Bosson J, Sandström T. In vitro toxicity evaluation in A549 cells of diesel particulate matter from two different particle sampling systems and several resuspension media. J Appl Toxicol 2024; 44:1269-1278. [PMID: 38705171 DOI: 10.1002/jat.4616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
In urban areas, inhalation of fine particles from combustion sources such as diesel engines causes adverse health effects. For toxicity testing, a substantial amount of particulate matter (PM) is needed. Conventional sampling involves collection of PM onto substrates by filtration or inertial impaction. A major drawback to those methodologies is that the extraction process can modify the collected particles and alter their chemical composition. Moreover, prior to toxicity testing, PM samples need to be resuspended, which can alter the PM sample even further. Lastly, the choice of the resuspension medium may also impact the detected toxicological responses. In this study, we compared the toxicity profile of PM obtained from two alternative sampling systems, using in vitro toxicity assays. One system makes use of condensational growth before collection in water in an impinger - BioSampler (CG-BioSampler), and the other, a Dekati® Gravimetric Impactor (DGI), is based on inertial impaction. In addition, various methods for resuspension of DGI collected PM were compared. Tested endpoints included cytotoxicity, formation of cellular reactive oxygen species, and genotoxicity. The alternative collection and suspension methods affected different toxicological endpoints. The water/dimethyl sulfoxide mixture and cell culture medium resuspended particles, along with the CG-BioSampler sample, produced the strongest responses. The water resuspended sample from the DGI appeared least toxic. CG-BioSampler collected PM caused a clear increased response in apoptotic cell death. We conclude that the CG-BioSampler PM sampler is a promising alternative to inertial impaction sampling.
Collapse
Affiliation(s)
- Oskari J Uski
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Gregory D Rankin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Håkan Wingfors
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Roger Magnusson
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Christoffer Boman
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jenny Bosson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Soler-Segovia D, de Homdedeu M, Sánchez-Díez S, Romero-Mesones C, Espejo D, Marain F, Vanoirbeek J, Munoz X, Cruz MJ. Immunological Effects of Diesel Particles in a Murine Model of Healthy Mice. TOXICS 2024; 12:530. [PMID: 39195632 PMCID: PMC11359652 DOI: 10.3390/toxics12080530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024]
Abstract
Introduction: Exposure to environmental pollutants such as diesel exhaust particles (DEP) increases the risk of respiratory disease exacerbation. However, the possible effects of these particles on the general population remain poorly understood. The present study aimed to assess the immunomodulatory and inflammatory effects of the inhalation of DEP in a model of healthy mice undergoing short-, mid- and long-term exposure. Materials and Methods: BALB/c ByJ mice were randomly divided into five experimental groups. The control group received three intranasal instillations of saline over 8 days while the other four groups received intranasal instillations of 150 µg of DEP 3 days per week for 8, 17, 26, and 53 days. Lung function assessment and flow cytometry were performed. Results: In lung tissue, intranasal exposure to DEP decreased total monocytes (p < 0.015 in all groups). At 26 days, a reduction in inflammatory monocytes and an increase in resident monocytes were observed, p = 0.001 and 0.0001, respectively. Eosinophils and neutrophils decreased at 26 days (p = 0.017 and p = 0.041, respectively). The intranasal challenges of DEP increased the total population of dendritic cells (DC) at 26 and 53 days (p = 0.017 and p = 0.022, respectively) and decreased the total and alveolar populations of macrophages (p < 0.003 for all groups compared to control), while interstitial macrophage populations increased over the time period (p = 0.0001 for all groups compared to control). Conclusions: Continuous DEP exposure triggers immune mechanisms that predispose healthy individuals to a pro-inflammatory and hyper-reactive microenvironment. This mouse model provides evidence of the capacity of DEP to increase DC, interstitial macrophages, and resident monocytes.
Collapse
Affiliation(s)
- David Soler-Segovia
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Miquel de Homdedeu
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Silvia Sánchez-Díez
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Christian Romero-Mesones
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - David Espejo
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Fopke Marain
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium;
| | - Jeroen Vanoirbeek
- Centre of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium;
| | - Xavier Munoz
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - María-Jesús Cruz
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
9
|
Sebastijanović A, Azzurra Camassa LM, Malmborg V, Kralj S, Pagels J, Vogel U, Zienolddiny-Narui S, Urbančič I, Koklič T, Štrancar J. Particulate matter constituents trigger the formation of extracellular amyloid β and Tau -containing plaques and neurite shortening in vitro. Nanotoxicology 2024; 18:335-353. [PMID: 38907733 DOI: 10.1080/17435390.2024.2362367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is an environmental factor associated with an increased risk of neurodegenerative diseases, such as Alzheimer's and Parkinson's, characterized by decreased cognitive abilities and memory. The limited models of sporadic Alzheimer's disease fail to replicate all pathological hallmarks of the disease, making it challenging to uncover potential environmental causes. Environmentally driven models of Alzheimer's disease are thus timely and necessary. We used live-cell confocal fluorescent imaging combined with high-resolution stimulated emission depletion (STED) microscopy to follow the response of retinoic acid-differentiated human neuroblastoma SH-SY5Y cells to nanomaterial exposure. Here, we report that exposure of the cells to some particulate matter constituents reproduces a neurodegenerative phenotype, including extracellular amyloid beta-containing plaques and decreased neurite length. Consistent with the existing in vivo research, we observed detrimental effects, specifically a substantial reduction in neurite length and formation of amyloid beta plaques, after exposure to iron oxide and diesel exhaust particles. Conversely, after exposure to engineered cerium oxide nanoparticles, the lengths of neurites were maintained, and almost no extracellular amyloid beta plaques were formed. Although the exact mechanism behind this effect remains to be explained, the retinoic acid differentiated SH-SY5Y cell in vitro model could serve as an alternative, environmentally driven model of neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Aleksandar Sebastijanović
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Vilhelm Malmborg
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Slavko Kralj
- Material Synthesis Department, Jožef Stefan Institute, Slovenia
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tilen Koklič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janez Štrancar
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
10
|
Weatherly LM, Shane HL, Baur R, Lukomska E, McKinney W, Roberts JR, Fedan JS, Anderson SE. Effects of inhaled tier-2 diesel engine exhaust on immunotoxicity in a rat model: A hazard identification study. Part II. Immunotoxicology. Toxicol Rep 2024; 12:135-147. [PMID: 38304699 PMCID: PMC10831500 DOI: 10.1016/j.toxrep.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Diesel exhaust (DE) is an air pollutant containing gaseous compounds and particulate matter. Diesel engines are common on gas extraction and oil sites, leading to complex DE exposure to a broad range of compounds through occupational settings. The US EPA concluded that short-term exposure to DE leads to allergic inflammatory disorders of the airways. To further evaluate the immunotoxicity of DE, the effects of whole-body inhalation of 0.2 and 1 mg/m3 DE (total carbon; 6 h/d for 4 days) were investigated 1-, 7-, and 27-days post exposure in Sprague-Dawley rats using an occupationally relevant exposure system. DE exposure of 1 mg/m3 increased total cellularity, number of CD4+ and CD8+ T-cells, and B-cells at 1 d post-exposure in the lung lymph nodes. At 7 d post-exposure to 1 mg/m3, cellularity and the number of CD4+ and CD8+ T-cells decreased in the LLNs. In the bronchoalveolar lavage, B-cell number and frequency increased at 1 d post-exposure, Natural Killer cell number and frequency decreased at 7 d post-exposure, and at 27 d post-exposure CD8+ T-cell and CD11b+ cell number and frequency decreased with 0.2 mg/m3 exposure. In the spleen, 0.2 mg/m3 increased CD4+ T-cell frequency at 1 and 7 d post-exposure and at 27 d post-exposure increased CD4+ and CD8+ T-cell number and CD8+ T-cell frequency. B-cells were the only immune cell subset altered in the three tissues (spleen, LLNs, and BALF), suggesting the induction of the adaptive immune response. The increase in lymphocytes in several different organ types also suggests an induction of a systemic inflammatory response occurring following DE exposure. These results show that DE exposure induced modifications of cellularity of phenotypic subsets that may impair immune function and contribute to airway inflammation induced by DE exposure in rats.
Collapse
Affiliation(s)
- Lisa M. Weatherly
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Hillary L. Shane
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Rachel Baur
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Ewa Lukomska
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Jenny R. Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Jeffrey S. Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Stacey E. Anderson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
11
|
Cary CM, Fournier SB, Adams S, Wang X, Yurkow EJ, Stapleton PA. Single pulmonary nanopolystyrene exposure in late-stage pregnancy dysregulates maternal and fetal cardiovascular function. Toxicol Sci 2024; 199:149-159. [PMID: 38366927 PMCID: PMC11057520 DOI: 10.1093/toxsci/kfae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024] Open
Abstract
Large-scale production and waste of plastic materials have resulted in widespread environmental contamination by the breakdown product of bulk plastic materials to micro- and nanoplastics (MNPs). The small size of these particles enables their suspension in the air, making pulmonary exposure inevitable. Previous work has demonstrated that xenobiotic pulmonary exposure to nanoparticles during gestation leads to maternal vascular impairments, as well as cardiovascular dysfunction within the fetus. Few studies have assessed the toxicological consequences of maternal nanoplastic (NP) exposure; therefore, the objective of this study was to assess maternal and fetal health after a single maternal pulmonary exposure to polystyrene NP in late gestation. We hypothesized that this acute exposure would impair maternal and fetal cardiovascular function. Pregnant rats were exposed to nanopolystyrene on gestational day 19 via intratracheal instillation. 24 h later, maternal and fetal health outcomes were evaluated. Cardiovascular function was assessed in dams using vascular myography ex vivo and in fetuses in vivo function was measured via ultrasound. Both fetal and placental weight were reduced after maternal exposure to nanopolystyrene. Increased heart weight and vascular dysfunction in the aorta were evident in exposed dams. Maternal exposure led to vascular dysfunction in the radial artery of the uterus, a resistance vessel that controls blood flow to the fetoplacental compartment. Function of the fetal heart, fetal aorta, and umbilical artery after gestational exposure was dysregulated. Taken together, these data suggest that exposure to NPs negatively impacts maternal and fetal health, highlighting the concern of MNPs exposure on pregnancy and fetal development.
Collapse
Affiliation(s)
- C M Cary
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S Adams
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - X Wang
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - E J Yurkow
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
12
|
Sassano M, Collatuzzo G, Teglia F, Boffetta P. Occupational exposure to diesel exhausts and liver and pancreatic cancers: a systematic review and meta-analysis. Eur J Epidemiol 2024; 39:241-255. [PMID: 38289519 PMCID: PMC10995068 DOI: 10.1007/s10654-024-01099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/09/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Diesel exhaust (DE) is human carcinogen with sufficient evidence only for lung cancer. Systematic evidence on other cancer types is scarce, thus we aimed to systematically review current literature on the association between occupational DE exposure and risk of liver and pancreatic cancers. METHODS We performed a systematic literature review to identify cohort studies on occupational DE exposure and risk of cancers other than lung. We computed pooled relative risks (RRs) and corresponding 95% confidence intervals (CIs) for liver and pancreatic cancers using DerSimonian and Laird random-effects model. RESULTS Fifteen studies reporting results on pancreatic cancer and fourteen on liver cancer were included. We found a weakly increased risk of pancreatic cancer in workers exposed to DE (RR: 1.07, 95% CI: 1.00, 1.14), mainly driven by results on incidence (RR: 1.11, 95% CI: 1.02, 1.22). As for liver cancer, results were suggestive of a positive association (RR: 1.09; 95% CI: 0.99, 1.19), although a significant estimate was present in studies published before 2000 (RR: 1.41; 95% CI: 1.09, 1.82). We found no compelling evidence of publication bias. CONCLUSIONS Our findings suggest an association between occupational DE exposure and liver and pancreatic cancer. Further studies with detailed exposure assessment, environmental monitoring data, and appropriate control for confounders are warranted.
Collapse
Affiliation(s)
- Michele Sassano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Federica Teglia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
13
|
Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China) 2024; 135:449-473. [PMID: 37778818 DOI: 10.1016/j.jes.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/03/2023]
Abstract
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China.
| |
Collapse
|
14
|
Berthing T, Lard M, Danielsen PH, Abariute L, Barfod KK, Adolfsson K, Knudsen KB, Wolff H, Prinz CN, Vogel U. Pulmonary toxicity and translocation of gallium phosphide nanowires to secondary organs following pulmonary exposure in mice. J Nanobiotechnology 2023; 21:322. [PMID: 37679803 PMCID: PMC10483739 DOI: 10.1186/s12951-023-02049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND III-V semiconductor nanowires are envisioned as being integrated in optoelectronic devices in the near future. However, the perspective of mass production of these nanowires raises concern for human safety due to their asbestos- and carbon nanotube-like properties, including their high aspect ratio shape. Indeed, III-V nanowires have similar dimensions as Mitsui-7 multi-walled carbon nanotubes, which induce lung cancer by inhalation in rats. It is therefore urgent to investigate the toxicological effects following lung exposure to III-V nanowires prior to their use in industrial production, which entails risk of human exposure. Here, female C57BL/6J mice were exposed to 2, 6, and 18 µg (0.12, 0.35 and 1.1 mg/kg bw) of gallium phosphide (III-V) nanowires (99 nm diameter, 3.7 μm length) by intratracheal instillation and the toxicity was investigated 1, 3, 28 days and 3 months after exposure. Mitsui-7 multi-walled carbon nanotubes and carbon black Printex 90 nanoparticles were used as benchmark nanomaterials. RESULTS Gallium phosphide nanowires induced genotoxicity in bronchoalveolar lavage cells and acute inflammation with eosinophilia observable both in bronchoalveolar lavage and lung tissue (1 and 3 days post-exposure). The inflammatory response was comparable to the response following exposure to Mitsui-7 multi-walled carbon nanotubes at similar dose levels. The nanowires underwent partial dissolution in the lung resulting in thinner nanowires, with an estimated in vivo half-life of 3 months. Despite the partial dissolution, nanowires were detected in lung, liver, spleen, kidney, uterus and brain 3 months after exposure. CONCLUSION Pulmonary exposure to gallium phosphide nanowires caused similar toxicological effects as the multi-walled carbon nanotube Mitsui-7.
Collapse
Affiliation(s)
- Trine Berthing
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Mercy Lard
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
| | | | - Laura Abariute
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
- Phase Holographic Imaging PHI AB, Lund, 224 78, Sweden
| | - Kenneth K Barfod
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Food Science, Microbiology and Fermentation, University of Copenhagen, Copenhagen, Denmark
| | - Karl Adolfsson
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
- Axis Communications AB, Lund, 223 69, Sweden
| | - Kristina B Knudsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Christelle N Prinz
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden.
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark.
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
15
|
Rothmann MH, Møller P, Essig YJ, Gren L, Malmborg VB, Tunér M, Pagels J, Krais AM, Roursgaard M. Genotoxicity by rapeseed methyl ester and hydrogenated vegetable oil combustion exhaust products in lung epithelial (A549) cells. Mutagenesis 2023; 38:238-249. [PMID: 37232551 DOI: 10.1093/mutage/gead016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/25/2023] [Indexed: 05/27/2023] Open
Abstract
Biofuel is an attractive substitute for petrodiesel because of its lower environmental footprint. For instance, the polycyclic aromatic hydrocarbons (PAH) emission per fuel energy content is lower for rapeseed methyl ester (RME) than for petrodiesel. This study assesses genotoxicity by extractable organic matter (EOM) of exhaust particles from the combustion of petrodiesel, RME, and hydrogenated vegetable oil (HVO) in lung epithelial (A549) cells. Genotoxicity was assessed as DNA strand breaks by the alkaline comet assay. EOM from the combustion of petrodiesel and RME generated the same level of DNA strand breaks based on the equal concentration of total PAH (i.e. net increases of 0.13 [95% confidence interval (CI): 0.002, 0.25, and 0.12 [95% CI: 0.01, 0.24] lesions per million base pairs, respectively). In comparison, the positive control (etoposide) generated a much higher level of DNA strand breaks (i.e. 0.84, 95% CI: 0.72, 0.97) lesions per million base pairs. Relatively low concentrations of EOM from RME and HVO combustion particles (<116 ng/ml total PAH) did not cause DNA strand breaks in A549 cells, whereas benzo[a]pyrene and PAH-rich EOM from petrodiesel combusted using low oxygen inlet concentration were genotoxic. The genotoxicity was attributed to high molecular weight PAH isomers with 5-6 rings. In summary, the results show that EOM from the combustion of petrodiesel and RME generate the same level of DNA strand breaks on an equal total PAH basis. However, the genotoxic hazard of engine exhaust from on-road vehicles is lower for RME than petrodiesel because of lower PAH emission per fuel energy content.
Collapse
Affiliation(s)
- Monika Hezareh Rothmann
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Yona J Essig
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden
| | - Louise Gren
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Vilhelm B Malmborg
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Martin Tunér
- Division of Combustion Engines, Lund University, SE-221 00 Lund, Sweden
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, SE-22100 Lund, Sweden
- NanoLund, Lund University, SE-22100 Lund, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
16
|
Vallabani NVS, Gruzieva O, Elihn K, Juárez-Facio AT, Steimer SS, Kuhn J, Silvergren S, Portugal J, Piña B, Olofsson U, Johansson C, Karlsson HL. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. ENVIRONMENTAL RESEARCH 2023; 231:116186. [PMID: 37224945 DOI: 10.1016/j.envres.2023.116186] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
Collapse
Affiliation(s)
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, 104 20, Stockholm, Sweden
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden; Environment and Health Administration, 104 20, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
17
|
Refsnes M, Skuland T, Jørgensen R, Sæter-Grytting V, Snilsberg B, Øvrevik J, Holme JA, Låg M. Role of different mechanisms in pro-inflammatory responses triggered by traffic-derived particulate matter in human bronchiolar epithelial cells. Part Fibre Toxicol 2023; 20:31. [PMID: 37537647 PMCID: PMC10399033 DOI: 10.1186/s12989-023-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Traffic-derived particles are important contributors to the adverse health effects of ambient particulate matter (PM). In Nordic countries, mineral particles from road pavement and diesel exhaust particles (DEP) are important constituents of traffic-derived PM. In the present study we compared the pro-inflammatory responses of mineral particles and DEP to PM from two road tunnels, and examined the mechanisms involved. METHODS The pro-inflammatory potential of 100 µg/mL coarse (PM10-2.5), fine (PM2.5-0.18) and ultrafine PM (PM0.18) sampled in two road tunnels paved with different stone materials was assessed in human bronchial epithelial cells (HBEC3-KT), and compared to DEP and particles derived from the respective stone materials. Release of pro-inflammatory cytokines (CXCL8, IL-1α, IL-1β) was measured by ELISA, while the expression of genes related to inflammation (COX2, CXCL8, IL-1α, IL-1β, TNF-α), redox responses (HO-1) and metabolism (CYP1A1, CYP1B1, PAI-2) was determined by qPCR. The roles of the aryl hydrocarbon receptor (AhR) and reactive oxygen species (ROS) were examined by treatment with the AhR-inhibitor CH223191 and the anti-oxidant N-acetyl cysteine (NAC). RESULTS Road tunnel PM caused time-dependent increases in expression of CXCL8, COX2, IL-1α, IL-1β, TNF-α, COX2, PAI-2, CYP1A1, CYP1B1 and HO-1, with fine PM as more potent than coarse PM at early time-points. The stone particle samples and DEP induced lower cytokine release than all size-fractionated PM samples for one tunnel, and versus fine PM for the other tunnel. CH223191 partially reduced release and expression of IL-1α and CXCL8, and expression of COX2, for fine and coarse PM, depending on tunnel, response and time-point. Whereas expression of CYP1A1 was markedly reduced by CH223191, HO-1 expression was not affected. NAC reduced the release and expression of IL-1α and CXCL8, and COX2 expression, but augmented expression of CYP1A1 and HO-1. CONCLUSIONS The results indicate that the pro-inflammatory responses of road tunnel PM in HBEC3-KT cells are not attributed to the mineral particles or DEP alone. The pro-inflammatory responses seem to involve AhR-dependent mechanisms, suggesting a role for organic constituents. ROS-mediated mechanisms were also involved, probably through AhR-independent pathways. DEP may be a contributor to the AhR-dependent responses, although other sources may be of importance.
Collapse
Affiliation(s)
- Magne Refsnes
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | - Tonje Skuland
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | - Rikke Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Vegard Sæter-Grytting
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | | | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway
| | - Marit Låg
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo, 0213, Norway.
| |
Collapse
|
18
|
Yin J, Wang C, Vogel U, Ma Y, Zhang Y, Wang H, Sun Z, Du S. Common variants of pro-inflammatory gene IL1B and interactions with PPP1R13L and POLR1G in relation to lung cancer among Northeast Chinese. Sci Rep 2023; 13:7352. [PMID: 37147350 PMCID: PMC10161999 DOI: 10.1038/s41598-023-34069-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Lung cancer is a complex disease influenced by a variety of genetic and environmental factors. The cytokine interleukin 1 encoded by IL1B is an important mediator of the inflammatory response, and is involved in a variety of cellular activities. The effect of single nucleotide polymorphisms (SNP) at IL1B has been investigated in relation to cancer with inconsistent results. This Northeastern-Chinese case-control study involving 627 cases and 633 controls evaluated the role of three haplotype-tagging single nucleotide polymorphisms (htSNP) (rs1143633, rs3136558 and rs1143630) representing 95% of the common haplotype diversity across the IL1B gene and assessed interactions with IL1B, PPP1R13L, POLR1G and smoking duration in relation to lung cancer risk. The analyses of five genetic models showed associations with lung cancer risk for rs1143633 in the dominant model [adjusted-OR (95% CI) = 0.67 (0.52-0.85), P = 0.0012] and rs3136558 in the recessive model [adjusted-OR (95% CI) = 1.44 (1.05-1.98), P = 0.025]. Haplotype4 was associated with increased lung cancer risk [adjusted-OR (95% CI) = 1.55 (1.07-2.24), P = 0.021]. The variant G-allele of rs1143633 was protective in smoking sub-group of > 20 years. Using multifactor dimensionality reduction (MDR) analyses, we identified the three best candidate models of interactions and smoking-duration or IL1B rs1143633 as main effect. In conclusion, our findings suggest that IL1B SNP rs1143633 may associate with lower risk of lung cancer, confirming previously identified marker; IL1B SNP rs3136558 and haplotype4 consisting of IL1B htSNPs may associate with increasing risk of lung cancer; interactions of IL1B with POLR1G or PPP1R13L or smoking-duration, which is independent or combined, may involve in risk of lung cancer and lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Jiaoyang Yin
- Key Laboratory of Environment and Population Health of Liaoning Education Ministry (Shenyang Medical College), Shenyang, 110034, People's Republic of China.
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| | - Chunhong Wang
- Key Laboratory of Environment and Population Health of Liaoning Education Ministry (Shenyang Medical College), Shenyang, 110034, People's Republic of China
| | - Ulla Vogel
- National Research Centre for the Working Environment, 2100, Copenhagen, Denmark
| | - Yegang Ma
- Department of Thoracic Surgery, Liaoning Cancer Hospital, Shenyang, 110042, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Environment and Population Health of Liaoning Education Ministry (Shenyang Medical College), Shenyang, 110034, People's Republic of China
| | - Huiwen Wang
- Key Laboratory of Environment and Population Health of Liaoning Education Ministry (Shenyang Medical College), Shenyang, 110034, People's Republic of China
| | - Zhenxiang Sun
- Key Laboratory of Environment and Population Health of Liaoning Education Ministry (Shenyang Medical College), Shenyang, 110034, People's Republic of China
| | - Shuai Du
- College of Information, Liaoning University, Shenyang, 110036, People's Republic of China
| |
Collapse
|
19
|
Zhu X, Liu B, Guo C, Li Z, Cheng M, Zhu X, Wei Y. Short and long-term association of exposure to ambient black carbon with all-cause and cause-specific mortality: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121086. [PMID: 36649881 DOI: 10.1016/j.envpol.2023.121086] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Black carbon (BC) is a product of incomplete or inefficient combustion and may be associated with a variety of adverse effects on human health. The objective of this study was to analyze the association between various mortalities and long-/short-term exposure to BC as an independent pollutant. In this systematic review, we searched 4 databases for original research in English up to 6th October 2022, that investigated population-wide mortality due to BC exposure. We pooled mortality estimates and expressed them as relative risk (RR) per 10 μg/m3 increase in BC. We used a random-effect model to derive the pooled RRs. Of the 3186 studies identified, 29 articles met the eligibility criteria, including 18 long-term exposure studies and 11 short-term exposure studies. In the major meta-analysis and sensitivity analysis, positive associations were found between BC and total mortality and cause-specific disease mortalities. Among them, the short-term effects of BC on total mortality, cardiovascular disease mortality, respiratory disease mortality, and the long-term effects of BC on total mortality, ischemic heart disease mortality, respiratory disease mortality and lung cancer mortality were found to be statistically significant. The heterogeneity of the meta-analysis results was much lower for short-term studies than for long-term. Few studies were at a high risk of bias in any domain. The certainty of the evidence for most of the exposure-outcome pairs was moderate. Our study showed a significantly positive association between short-/long-term BC exposure and various mortalities. We speculate that BC has a higher adverse health effect on the respiratory system than on the cardiovascular system. This is different from the effect of PM2.5. Therefore, more studies are needed to consider BC as a separate pollutant, and not just as a component of PM2.5.
Collapse
Affiliation(s)
- Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bingqian Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miaomiao Cheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoyan Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
20
|
Izzotti A, Spatera P, Khalid Z, Pulliero A. Importance of Punctual Monitoring to Evaluate the Health Effects of Airborne Particulate Matter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10587. [PMID: 36078301 PMCID: PMC9518414 DOI: 10.3390/ijerph191710587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) pollution is one of the major public health problems worldwide, given the high mortality attributable to exposure to PM pollution and the high pathogenicity that is found above all in the respiratory, cardiovascular, and neurological systems. The main sources of PM pollution are the daily use of fuels (wood, coal, organic residues) in appliances without emissions abatement systems, industrial emissions, and vehicular traffic. This review aims to investigate the causes of PM pollution and classify the different types of dust based on their size. The health effects of exposure to PM will also be discussed. Particular attention is paid to the measurement method, which is unsuitable in the risk assessment process, as the evaluation of the average PM compared to the evaluation of PM with punctual monitoring significantly underestimates the health risk induced by the achievement of high PM values, even for limited periods of time.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paola Spatera
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Zumama Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | |
Collapse
|
21
|
Di Ianni E, Møller P, Cholakova T, Wolff H, Jacobsen NR, Vogel U. Assessment of primary and inflammation-driven genotoxicity of carbon black nanoparticles in vitro and in vivo. Nanotoxicology 2022; 16:526-546. [PMID: 35993455 DOI: 10.1080/17435390.2022.2106906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Carbon black nanoparticles (CBNPs) have a large surface area/volume ratio and are known to generate oxidative stress and inflammation that may result in genotoxicity and cancer. Here, we evaluated the primary and inflammatory response-driven (i.e. secondary) genotoxicity of two CBNPs, Flammruss101 (FL101) and PrintexXE2B (XE2B) that differ in size and specific surface area (SSA), and cause different amounts of reactive oxygen species. Three doses (low, medium and high) of FL101 and XE2B were assessed in vitro in the lung epithelial (A549) and activated THP-1 (THP-1a) monocytic cells exposed in submerged conditions for 6 and 24 h, and in C57BL/6 mice at day 1, 28 and 90 following intratracheal instillation. In vitro, we assessed pro-inflammatory response as IL-8 and IL-1β gene expression, and in vivo, inflammation was determined as inflammatory cell infiltrates in bronchial lavage (BAL) fluid and as histological changes in lung tissue. DNA damage was quantified in vitro and in vivo as DNA strand breaks levels by the alkaline comet assay. Inflammatory responses in vitro and in vivo correlated with dosed CBNPs SSA. Both materials induced DNA damage in THP-1a (correlated with dosed mass), and only XE2B in A549 cells. Non-statistically significant increase in DNA damage in vivo was observed in BAL cells. In conclusion, this study shows dosed SSA predicted inflammation both in vivo and in vitro, whereas dosed mass predicted genotoxicity in vitro in THP-1a cells. The observed lack of correlation between CBNP surface area and genotoxicity provides little evidence of inflammation-driven genotoxicity in vivo and in vitro.
Collapse
Affiliation(s)
- Emilio Di Ianni
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Tanya Cholakova
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.,National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Shkirkova K, Lamorie-Foote K, Zhang N, Li A, Diaz A, Liu Q, Thorwald MA, Godoy-Lugo JA, Ge B, D'Agostino C, Zhang Z, Mack WJ, Sioutas C, Finch CE, Mack WJ, Zhang H. Neurotoxicity of Diesel Exhaust Particles. J Alzheimers Dis 2022; 89:1263-1278. [PMID: 36031897 DOI: 10.3233/jad-220493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Air pollution particulate matter (PM) is strongly associated with risks of accelerated cognitive decline, dementia and Alzheimer's disease. Ambient PM batches have variable neurotoxicity by collection site and season, which limits replicability of findings within and between research groups for analysis of mechanisms and interventions. Diesel exhaust particles (DEP) offer a replicable model that we define in further detail. OBJECTIVE Define dose- and time course neurotoxic responses of mice to DEP from the National Institute of Science and Technology (NIST) for neurotoxic responses shared by DEP and ambient PM. METHODS For dose-response, adult C57BL/6 male mice were exposed to 0, 25, 50, and 100μg/m3 of re-aerosolized DEP (NIST SRM 2975) for 5 h. Then, mice were exposed to 100μg/m3 DEP for 5, 100, and 200 h and assayed for amyloid-β peptides, inflammation, oxidative damage, and microglial activity and morphology. RESULTS DEP exposure at 100μg/m3 for 5 h, but not lower doses, caused oxidative damage, complement and microglia activation in cerebral cortex and corpus callosum. Longer DEP exposure for 8 weeks/200 h caused further oxidative damage, increased soluble Aβ, white matter injury, and microglial soma enlargement that differed by cortical layer. CONCLUSION Exposure to 100μg/m3 DEP NIST SRM 2975 caused robust neurotoxic responses that are shared with prior studies using DEP or ambient PM0.2. DEP provides a replicable model to study neurotoxic mechanisms of ambient PM and interventions relevant to cognitive decline and dementia.
Collapse
Affiliation(s)
- Kristina Shkirkova
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Krista Lamorie-Foote
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nathan Zhang
- Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Andrew Li
- Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Arnold Diaz
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Qinghai Liu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jose A Godoy-Lugo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brandon Ge
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Zijiao Zhang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Wendy J Mack
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Dornsife College, University of Southern California, Los Angeles, CA, USA.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - William J Mack
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Delaval MN, Jonsdottir HR, Leni Z, Keller A, Brem BT, Siegerist F, Schönenberger D, Durdina L, Elser M, Salathe M, Baumlin N, Lobo P, Burtscher H, Liati A, Geiser M. Responses of reconstituted human bronchial epithelia from normal and health-compromised donors to non-volatile particulate matter emissions from an aircraft turbofan engine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119521. [PMID: 35623573 PMCID: PMC10024864 DOI: 10.1016/j.envpol.2022.119521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Health effects of particulate matter (PM) from aircraft engines have not been adequately studied since controlled laboratory studies reflecting realistic conditions regarding aerosols, target tissue, particle exposure and deposited particle dose are logistically challenging. Due to the important contributions of aircraft engine emissions to air pollution, we employed a unique experimental setup to deposit exhaust particles directly from an aircraft engine onto reconstituted human bronchial epithelia (HBE) at air-liquid interface under conditions similar to in vivo airways to mimic realistic human exposure. The toxicity of non-volatile PM (nvPM) from a CFM56-7B26 aircraft engine was evaluated under realistic engine conditions by sampling and exposing HBE derived from donors of normal and compromised health status to exhaust for 1 h followed by biomarker analysis 24 h post exposure. Particle deposition varied depending on the engine thrust levels with 85% thrust producing the highest nvPM mass and number emissions with estimated surface deposition of 3.17 × 109 particles cm-2 or 337.1 ng cm-2. Transient increase in cytotoxicity was observed after exposure to nvPM in epithelia derived from a normal donor as well as a decrease in the secretion of interleukin 6 and monocyte chemotactic protein 1. Non-replicated multiple exposures of epithelia derived from a normal donor to nvPM primarily led to a pro-inflammatory response, while both cytotoxicity and oxidative stress induction remained unaffected. This raises concerns for the long-term implications of aircraft nvPM for human pulmonary health, especially in occupational settings.
Collapse
Affiliation(s)
| | | | - Zaira Leni
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Alejandro Keller
- Institute for Sensors and Electronics, University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch, Switzerland
| | - Benjamin T Brem
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, 8600 Dübendorf, Switzerland
| | | | - David Schönenberger
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, 8600 Dübendorf, Switzerland
| | - Lukas Durdina
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, 8600 Dübendorf, Switzerland
| | - Miriam Elser
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, 8600 Dübendorf, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Automotive Powertrain Technologies Laboratory, 8600 Dübendorf, Switzerland
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Prem Lobo
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Heinz Burtscher
- Institute for Sensors and Electronics, University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch, Switzerland
| | - Anthi Liati
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Automotive Powertrain Technologies Laboratory, 8600 Dübendorf, Switzerland
| | - Marianne Geiser
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
24
|
Saber AT, Hadrup N, Williams A, Mortensen A, Szarek J, Kyjovska Z, Kurz A, Jacobsen NR, Wallin H, Halappanavar S, Vogel U. Unchanged pulmonary toxicity of ZnO nanoparticles formulated in a liquid matrix for glass coating. Nanotoxicology 2022; 16:812-827. [PMID: 36480659 DOI: 10.1080/17435390.2022.2152751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The inclusion of nanoparticles can increase the quality of certain products. One application is the inclusion of Zinc oxide (ZnO) nanoparticles in a glass coating matrix to produce a UV-absorbing coating for glass sheets. Yet, the question is whether the inclusion of ZnO in the matrix induces toxicity at low exposure levels. To test this, mice were given single intratracheal instillation of 1) ZnO powder (ZnO), 2) ZnO in a glass matrix coating in its liquid phase (ZnO-Matrix), and 3) the matrix with no ZnO (Matrix). Doses of ZnO were 0.23, 0.67, and 2 µg ZnO/mouse. ZnO Matrix doses had equal amounts of ZnO, while Matrix was adjusted to have an equal volume of matrix as ZnO Matrix. Post-exposure periods were 1, 3, or 28 d. Endpoints were pulmonary inflammation as bronchoalveolar lavage (BAL) fluid cellularity, genotoxicity in lung and liver, measured by comet assay, histopathology of lung and liver, and global gene expression in lung using microarrays. Neutrophil numbers were increased to a similar extent with ZnO and ZnO-Matrix at 1 and 3 d. Only weak genotoxicity without dose-response effects was observed in the lung. Lung histology showed an earlier onset of inflammation in material-exposed groups as compared to controls. Microarray analysis showed a stronger response in terms of the number of differentially regulated genes in ZnO-Matrix exposed mice as compared to Matrix only. Activated canonical pathways included inflammatory and cardiovascular ones. In conclusion, the pulmonary toxicity of ZnO was not changed by formulation in a liquid matrix for glass coating.
Collapse
Affiliation(s)
| | - Niels Hadrup
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark.,Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Alicja Mortensen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Jozef Szarek
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Zdenka Kyjovska
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | | | | | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark.,DTU Food, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
25
|
Skuland T, Grytting VS, Låg M, Jørgensen RB, Snilsberg B, Leseman DLAC, Kubátová A, Emond J, Cassee FR, Holme JA, Øvrevik J, Refsnes M. Road tunnel-derived coarse, fine and ultrafine particulate matter: physical and chemical characterization and pro-inflammatory responses in human bronchial epithelial cells. Part Fibre Toxicol 2022; 19:45. [PMID: 35787286 PMCID: PMC9251916 DOI: 10.1186/s12989-022-00488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traffic particulate matter (PM) comprises a mixture of particles from fuel combustion and wear of road pavement, tires and brakes. In countries with low winter temperatures the relative contribution of mineral-rich PM from road abrasion may be especially high due to use of studded tires during winter season. The aim of the present study was to sample and characterize size-fractioned PM from two road tunnels paved with different stone materials in the asphalt, and to compare the pro-inflammatory potential of these fractions in human bronchial epithelial cells (HBEC3-KT) in relation to physicochemical characteristics. METHODS The road tunnel PM was collected with a vacuum pump and a high-volume cascade impactor sampler. PM was sampled during winter, both during humid and dry road surface conditions, and before and after cleaning the tunnels. Samples were analysed for hydrodynamic size distribution, content of elemental carbon (EC), organic carbon (OC) and endotoxin, and the capacity for acellular generation of reactive oxygen species. Cytotoxicity and pro-inflammatory responses were assessed in HBEC3-KT cells after exposure to coarse (2.5-10 μm), fine (0.18-2.5 μm) and ultrafine PM (≤ 0.18 μm), as well as particles from the respective stone materials used in the pavement. RESULTS The pro-inflammatory potency of the PM samples varied between road tunnels and size fractions, but showed more marked responses than for the stone materials used in asphalt of the respective tunnels. In particular, fine samples showed significant increases as low as 25 µg/mL (2.6 µg/cm2) and were more potent than coarse samples, while ultrafine samples showed more variable responses between tunnels, sampling conditions and endpoints. The most marked responses were observed for fine PM sampled during humid road surface conditions. Linear correlation analysis showed that particle-induced cytokine responses were correlated to OC levels, while no correlations were observed for other PM characteristics. CONCLUSIONS The pro-inflammatory potential of fine road tunnel PM sampled during winter season was high compared to coarse PM. The differences between the PM-induced cytokine responses were not related to stone materials in the asphalt. However, the ratio of OC to total PM mass was associated with the pro-inflammatory potential.
Collapse
Affiliation(s)
- Tonje Skuland
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway.
| | - Vegard Sæter Grytting
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Marit Låg
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Rikke Bræmming Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | | | - Daan L A C Leseman
- National Institute for Public Health and the Environment - RIVM, PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Jessica Emond
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Flemming R Cassee
- National Institute for Public Health and the Environment - RIVM, PO Box 1, 3720 BA, Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jørn A Holme
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Johan Øvrevik
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066, 0316, Blindern, Oslo, Norway
| | - Magne Refsnes
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| |
Collapse
|
26
|
Di Ianni E, Jacobsen NR, Vogel UB, Møller P. Systematic review on primary and secondary genotoxicity of carbon black nanoparticles in mammalian cells and animals. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108441. [PMID: 36007825 DOI: 10.1016/j.mrrev.2022.108441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/01/2023]
Abstract
Carbon black exposure causes oxidative stress, inflammation and genotoxicity. The objective of this systematic review was to assess the contributions of primary (i.e. direct formation of DNA damage) and secondary genotoxicity (i.e., DNA lesions produced indirectly by inflammation) to the overall level of DNA damage by carbon black. The database is dominated by studies that have measured DNA damage by the comet assay. Cell culture studies indicate a genotoxic action of carbon black, which might be mediated by oxidative stress. Many in vivo studies originate from one laboratory that has investigated the genotoxic effects of Printex 90 in mice by intra-tracheal instillation. Meta-analysis and pooled analysis of these results demonstrate that Printex 90 exposure is associated with a slightly increased level of DNA strand breaks in bronchoalveolar lavage cells and lung tissue. Other types of genotoxic damage have not been investigated as thoroughly as DNA strand breaks, although there is evidence to suggest that carbon black exposure might increase the mutation frequency and cytogenetic endpoints. Stratification of studies according to concurrent inflammation and DNA damage does not indicate that carbon black exposure gives rise to secondary genotoxicity. Even substantial pulmonary inflammation is at best only associated with a weak genotoxic response in lung tissue. In conclusion, the review indicates that nanosized carbon black is a weak genotoxic agent and this effect is more likely to originate from a primary genotoxic mechanism of action, mediated by e.g., oxidative stress, than inflammation-driven (secondary) genotoxicity.
Collapse
Affiliation(s)
- Emilio Di Ianni
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Nicklas Raun Jacobsen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Ulla Birgitte Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark; National Food Institute, Technical University of Denmark, Kemitorvet, Bygning 202, DK-2800 Kgs Lyngby, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen, Denmark.
| |
Collapse
|
27
|
Pan X, Qin P, Liu R, Yu W. Molecular mechanism of coating carbon black nanoparticles with polycyclic aromatic hydrocarbons on the binding to serum albumin and the related cytotoxicity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Visser M, Gosens I, Bard D, van Broekhuizen P, Janer G, Kuempel E, Riediker M, Vogel U, Dekkers S. Towards health-based nano reference values (HNRVs) for occupational exposure: Recommendations from an expert panel. NANOIMPACT 2022; 26:100396. [PMID: 35560294 PMCID: PMC10617652 DOI: 10.1016/j.impact.2022.100396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 06/15/2023]
Abstract
Unique physicochemical characteristics of engineered nanomaterials (ENMs) suggest the need for nanomaterial-specific occupational exposure limits (OELs). Setting these limits remains a challenge. Therefore, the aim of this study was to set out a framework to evaluate the feasibility of deriving advisory health-based occupational limit values for groups of ENMs, based on scientific knowledge. We have used an expert panel approach to address three questions: 1) What ENM-categories should be distinguished to derive advisory health-based occupational limit values (or health-based Nano Reference Values, HNRVs) for groups of ENMs? 2) What evidence would be needed to define values for these categories? And 3) How much effort would it take to achieve this? The panel experts distinguished six possible categories of HNRVs: A) WHO-fiber-like high aspect ratio ENMs (HARNs), B) Non-WHO-fiber-like HARNs and other non-spheroidal ENMs, C) readily soluble spheroidal ENMs, D) biopersistent spheroidal ENMs with unknown toxicity, E) biopersistent spheroidal ENMs with substance-specific toxicity and F) biopersistent spheroidal ENMs with relatively low substance-specific toxicity. For category A, the WHO-fiber-like HARNs, agreement was reached on criteria defining this category and the approach of using health-based risk estimates for asbestos to derive the HNRV. For category B, a quite heterogeneous category, more toxicity data are needed to set an HNRV. For category C, readily soluble spheroidal ENMs, using the OEL of their molecular or ionic counterpart would be a good starting point. For the biopersistent ENMs with unknown toxicity, HNRVs cannot be applied as case-by-case testing is required. For the other biopersistent ENMs in category E and F, we make several recommendations that can facilitate the derivation of these HNRVs. The proposed categories and recommendations as outlined by this expert panel can serve as a reference point for derivation of HNRVs when health-based OELs for ENMs are not yet available.
Collapse
Affiliation(s)
- Maaike Visser
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Ilse Gosens
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Delphine Bard
- Health and Safety Executive (HSE) Science and Research Centre, Buxton, United Kingdom
| | | | - Gemma Janer
- Leitat Technological Center, Barcelona, Spain
| | - Eileen Kuempel
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Michael Riediker
- Swiss Centre for Occupational and Environmental Health, Winterthur, Switzerland
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Susan Dekkers
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
29
|
Kumar M, Yano N, Fedulov AV. Gestational exposure to titanium dioxide, diesel exhaust, and concentrated urban air particles affects levels of specialized pro-resolving mediators in response to allergen in asthma-susceptible neonate lungs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:243-261. [PMID: 34802391 PMCID: PMC8785906 DOI: 10.1080/15287394.2021.2000906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Maternal gestational exposures to traffic and urban air pollutant particulates have been linked to increased risk and/or worsening asthma in children; however, mechanisms underlying this vertical transmission are not entirely understood. It was postulated that gestational particle exposure might affect the ability to elicit specialized proresolving mediator (SPM) responses upon allergen encounter in neonates. Lipidomic profiling of 50 SPMs was performed in lungs of neonates born to mice exposed to concentrated urban air particles (CAP), diesel exhaust particles (DEP), or less immunotoxic titanium dioxide particles (TiO2). While asthma-like phenotypes were induced with identical eosinophilia intensity across neonates of all particle-exposed mothers, levels of LXA4, HEPE and HETE isoforms, and HDoHe were only decreased by CAP and DEP only but not by TiO2. However, RvE2 and RvD1 were inhibited by all particles. In contrast, isomers of Maresin1 and Protectin D1 were variably elevated by CAP and DEP, whereas Protectin DX, PGE2, and TxB2 were increased in all groups. Only Protectin D1/DX, MaR1(n-3,DPA), 5(S),15(S)-DiHETE, PGE2, and RvE3 correlated with eosinophilia but the majority of other analytes, elevated or inhibited, showed no marked correlation with inflammation intensity. Evidence indicates that gestational particle exposure leads to both particle-specific and nonspecific effects on the SPM network.
Collapse
Affiliation(s)
- Mohan Kumar
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Naohiro Yano
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Alexey V. Fedulov
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| |
Collapse
|
30
|
Grytting VS, Chand P, Låg M, Øvrevik J, Refsnes M. The pro-inflammatory effects of combined exposure to diesel exhaust particles and mineral particles in human bronchial epithelial cells. Part Fibre Toxicol 2022; 19:14. [PMID: 35189914 PMCID: PMC8862321 DOI: 10.1186/s12989-022-00455-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND People are exposed to ambient particulate matter (PM) from multiple sources simultaneously in both environmental and occupational settings. However, combinatory effects of particles from different sources have received little attention in experimental studies. In the present study, the pro-inflammatory effects of combined exposure to diesel exhaust particles (DEP) and mineral particles, two common PM constituents, were explored in human lung epithelial cells. METHODS Particle-induced secretion of pro-inflammatory cytokines (CXCL8 and IL-1β) and changes in expression of genes related to inflammation (CXCL8, IL-1α, IL-1β and COX-2), redox responses (HO-1) and xenobiotic metabolism (CYP1A1 and CYP1B1) were assessed in human bronchial epithelial cells (HBEC3-KT) after combined exposure to different samples of DEP and mineral particles. Combined exposure was also conducted using lipophilic organic extracts of DEP to assess the contribution of soluble organic chemicals. Moreover, the role of the aryl hydrocarbon receptor (AhR) pathway was assessed using an AhR-specific inhibitor (CH223191). RESULTS Combined exposure to DEP and mineral particles induced increases in pro-inflammatory cytokines and expression of genes related to inflammation and redox responses in HBEC3-KT cells that were greater than either particle sample alone. Moreover, robust increases in the expression of CYP1A1 and CYP1B1 were observed. The effects were most pronounced after combined exposure to α-quartz and DEP from an older fossil diesel, but enhanced responses were also observed using DEP generated from a modern biodiesel blend and several stone particle samples of mixed mineral composition. Moreover, the effect of combined exposure on cytokine secretion could also be induced by lipophilic organic extracts of DEP. Pre-incubation with an AhR-specific inhibitor reduced the particle-induced cytokine responses, suggesting that the effects were at least partially dependent on AhR. CONCLUSIONS Exposure to DEP and mineral particles in combination induces enhanced pro-inflammatory responses in human bronchial epithelial cells compared with exposure to the individual particle samples. The effects are partly mediated through an AhR-dependent pathway and lipophilic organic chemicals in DEP appear to play a central role. These possible combinatory effects between different sources and components of PM warrant further attention and should also be considered when assessing measures to reduce PM-induced health effects.
Collapse
Affiliation(s)
- Vegard Sæter Grytting
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway.
| | - Prem Chand
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| | - Marit Låg
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway.
| | - Johan Øvrevik
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| | - Magne Refsnes
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| |
Collapse
|
31
|
Hadrup N, Knudsen KB, Carriere M, Mayne-L'Hermite M, Bobyk L, Allard S, Miserque F, Pibaleau B, Pinault M, Wallin H, Vogel U. Safe-by-design strategies for lowering the genotoxicity and pulmonary inflammation of multiwalled carbon nanotubes: Reduction of length and the introduction of COOH groups. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103702. [PMID: 34252584 DOI: 10.1016/j.etap.2021.103702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Potentially, the toxicity of multiwalled carbon nanotubes (MWCNTs) can be reduced in a safe-by-design strategy. We investigated if genotoxicity and pulmonary inflammation of MWCNTs from the same batch were lowered by a) reducing length and b) introducing COOH-groups into the structure. Mice were administered: 1) long and pristine MWCNT (CNT-long) (3.9 μm); 2) short and pristine CNT (CNT-short) (1 μm); 3) CNT modified with high ratio COOH-groups (CNT-COOH-high); 4) CNT modified with low ratio COOH-groups (CNT-COOH-low). MWCNTs were dosed by intratracheal instillation at 18 or 54 μg/mouse (∼0.9 and 2.7 mg/kg bw). Neutrophils numbers were highest after CNT-long exposure, and both shortening the MWCNT and addition of COOH-groups lowered pulmonary inflammation (day 1 and 28). Likewise, CNT-long induced genotoxicity, which was absent with CNT-short and after introduction of COOH groups. In conclusion, genotoxicity and pulmonary inflammation of MWCNTs were lowered, but not eliminated, by shortening the fibres or introducing COOH-groups.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Marie Carriere
- INAC (Institute for Nanoscience and Cryogenics), LAN (Laboratoire Lésions des Acides Nucléiques, Nucleic Acid Lesions Laboratory), 17 Avenue des Martyrs, 38054, Grenoble Cedex 09, France.
| | | | - Laure Bobyk
- INAC (Institute for Nanoscience and Cryogenics), LAN (Laboratoire Lésions des Acides Nucléiques, Nucleic Acid Lesions Laboratory), 17 Avenue des Martyrs, 38054, Grenoble Cedex 09, France.
| | - Soline Allard
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91 191, Gif sur Yvette Cedex, France.
| | - Frédéric Miserque
- CEA, DES, Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Laboratoire d'Etude de la Corrosion Aqueuse (LECA), Université Paris-Saclay, F-91191, Gif-sur-Yvette, France.
| | - Baptiste Pibaleau
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91 191, Gif sur Yvette Cedex, France.
| | - Mathieu Pinault
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91 191, Gif sur Yvette Cedex, France.
| | - Håkan Wallin
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; National Institute of Occupational Health, Pb 5330 Majorstuen, 0304, Oslo, Norway.
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; DTU Food, Danish Technical University (DTU), Anker Engelunds Vej 1, 2800 Kgs. Lyngby, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
32
|
Scholten RH, Essig YJ, Roursgaard M, Jensen A, Krais AM, Gren L, Dierschke K, Gudmundsson A, Wierzbicka A, Møller P. Inhalation of hydrogenated vegetable oil combustion exhaust and genotoxicity responses in humans. Arch Toxicol 2021; 95:3407-3416. [PMID: 34468814 DOI: 10.1007/s00204-021-03143-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Biofuels from vegetable oils or animal fats are considered to be more sustainable than petroleum-derived diesel fuel. In this study, we have assessed the effect of hydrogenated vegetable oil (HVO) exhaust on levels of DNA damage in peripheral blood mononuclear cells (PBMCs) as primary outcome, and oxidative stress and inflammation as mediators of genotoxicity. In a randomized cross-over study, healthy humans were exposed to filtered air, inorganic salt particles, exhausts from combustion of HVO in engines with aftertreatment [i.e. emission with nitrogen oxides and low amounts of particulate matter less than 2.5 µm (approximately 1 µg/m3)], or without aftertreatment (i.e. emission with nitrogen oxides and 93 ± 13 µg/m3 of PM2.5). The subjects were exposed for 3 h and blood samples were collected before, within 1 h after the exposure and 24 h after. None of the exposures caused generation of DNA strand breaks and oxidatively damaged DNA, or affected gene expression of factors related to DNA repair (Ogg1), antioxidant defense (Hmox1) or pro-inflammatory cytokines (Ccl2, Il8 and Tnfa) in PBMCs. The results from this study indicate that short-term HVO exhaust exposure is not associated with genotoxic hazard in humans.
Collapse
Affiliation(s)
- Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Yona J Essig
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Louise Gren
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Katrin Dierschke
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark.
| |
Collapse
|
33
|
Cosnier F, Seidel C, Valentino S, Schmid O, Bau S, Vogel U, Devoy J, Gaté L. Retained particle surface area dose drives inflammation in rat lungs following acute, subacute, and subchronic inhalation of nanomaterials. Part Fibre Toxicol 2021; 18:29. [PMID: 34353337 PMCID: PMC8340536 DOI: 10.1186/s12989-021-00419-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023] Open
Abstract
Background An important aspect of nanomaterial (NM) risk assessment is establishing relationships between physicochemical properties and key events governing the toxicological pathway leading to adverse outcomes. The difficulty of NM grouping can be simplified if the most toxicologically relevant dose metric is used to assess the toxicological dose-response. Here, we thoroughly investigated the relationship between acute and chronic inflammation (based on polymorphonuclear neutrophil influx (% PMN) in lung bronchoalveolar lavage) and the retained surface area in the lung. Inhalation studies were performed in rats with three classes of NMs: titanium dioxides (TiO2) and carbon blacks (CB) as poorly soluble particles of low toxicity (PSLT), and multiwall carbon nanotubes (MWCNTs). We compared our results to published data from nearly 30 rigorously selected articles. Results This analysis combined data specially generated for this work on three benchmark materials - TiO2 P25, the CB Printex-90 and the MWCNT MWNT-7 - following subacute (4-week) inhalation with published data relating to acute (1-week) to subchronic (13-week) inhalation exposure to the classes of NMs considered. Short and long post-exposure recovery times (immediately after exposure up to more than 6 months) allowed us to examine both acute and chronic inflammation. A dose-response relationship across short-term and long-term studies was revealed linking pulmonary retained surface area dose (measured or estimated) and % PMN. This relationship takes the form of sigmoid curves, and is independent of the post-exposure time. Curve fitting equations depended on the class of NM considered, and sometimes on the duration of exposure. Based on retained surface area, long and thick MWCNTs (few hundred nm long with an aspect ratio greater than 25) had a higher inflammatory potency with 5 cm2/g lung sufficient to trigger an inflammatory response (at 6% PMN), whereas retained surfaces greater than 150 cm2/g lung were required for PSLT. Conclusions Retained surface area is a useful metric for hazard grouping purposes. This metric would apply to both micrometric and nanometric materials, and could obviate the need for direct measurement in the lung. Indeed, it could alternatively be estimated from dosimetry models using the aerosol parameters (rigorously determined following a well-defined aerosol characterization strategy). Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00419-w.
Collapse
Affiliation(s)
- Frédéric Cosnier
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France.
| | - Carole Seidel
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Sarah Valentino
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Comprehensive Pneumology Center, Munich (CPC-M) - Member of the German Center for Lung Research (DZL), 81377, Munich, Germany
| | - Sébastien Bau
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark.,Department of Health Technology by DTU Food, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Jérôme Devoy
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| | - Laurent Gaté
- Institut National de Recherche et de Sécurité, 1 Rue du Morvan, CS 60027, 54519, Vandœuvre-les-Nancy Cedex, France
| |
Collapse
|
34
|
Krais AM, Essig JY, Gren L, Vogs C, Assarsson E, Dierschke K, Nielsen J, Strandberg B, Pagels J, Broberg K, Lindh CH, Gudmundsson A, Wierzbicka A. Biomarkers after Controlled Inhalation Exposure to Exhaust from Hydrogenated Vegetable Oil (HVO). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6492. [PMID: 34208511 PMCID: PMC8296316 DOI: 10.3390/ijerph18126492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/23/2023]
Abstract
Hydrogenated vegetable oil (HVO) is a renewable diesel fuel used to replace petroleum diesel. The organic compounds in HVO are poorly characterized; therefore, toxicological properties could be different from petroleum diesel exhaust. The aim of this study was to evaluate the exposure and effective biomarkers in 18 individuals after short-term (3 h) exposure to HVO exhaust and petroleum diesel exhaust fumes. Liquid chromatography tandem mass spectrometry was used to analyze urinary biomarkers. A proximity extension assay was used for the measurement of inflammatory proteins in plasma samples. Short-term (3 h) exposure to HVO exhaust (PM1 ~1 µg/m3 and ~90 µg/m3 for vehicles with and without exhaust aftertreatment systems, respectively) did not increase any exposure biomarker, whereas petroleum diesel exhaust (PM1 ~300 µg/m3) increased urinary 4-MHA, a biomarker for p-xylene. HVO exhaust from the vehicle without exhaust aftertreatment system increased urinary 4-HNE-MA, a biomarker for lipid peroxidation, from 64 ng/mL urine (before exposure) to 141 ng/mL (24 h after exposure, p < 0.001). There was no differential expression of plasma inflammatory proteins between the HVO exhaust and control exposure group. In conclusion, short-term exposure to low concentrations of HVO exhaust did not increase urinary exposure biomarkers, but caused a slight increase in lipid peroxidation associated with the particle fraction.
Collapse
Affiliation(s)
- Annette M. Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Julie Y. Essig
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Louise Gren
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| | - Carolina Vogs
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
| | - Eva Assarsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Katrin Dierschke
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Jörn Nielsen
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Joakim Pagels
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Anders Gudmundsson
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| | - Aneta Wierzbicka
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
35
|
Nymark P, Karlsson HL, Halappanavar S, Vogel U. Adverse Outcome Pathway Development for Assessment of Lung Carcinogenicity by Nanoparticles. FRONTIERS IN TOXICOLOGY 2021; 3:653386. [PMID: 35295099 PMCID: PMC8915843 DOI: 10.3389/ftox.2021.653386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer, one of the most common and deadly forms of cancer, is in some cases associated with exposure to certain types of particles. With the rise of nanotechnology, there is concern that some engineered nanoparticles may be among such particles. In the absence of epidemiological evidence, assessment of nanoparticle carcinogenicity is currently performed on a time-consuming case-by-case basis, relying mainly on animal experiments. Non-animal alternatives exist, including a few validated cell-based methods accepted for regulatory risk assessment of nanoparticles. Furthermore, new approach methodologies (NAMs), focused on carcinogenic mechanisms and capable of handling the increasing numbers of nanoparticles, have been developed. However, such alternative methods are mainly applied as weight-of-evidence linked to generally required animal data, since challenges remain regarding interpretation of the results. These challenges may be more easily overcome by the novel Adverse Outcome Pathway (AOP) framework, which provides a basis for validation and uptake of alternative mechanism-focused methods in risk assessment. Here, we propose an AOP for lung cancer induced by nanosized foreign matter, anchored to a selection of 18 standardized methods and NAMs for in silico- and in vitro-based integrated assessment of lung carcinogenicity. The potential for further refinement of the AOP and its components is discussed in relation to available nanosafety knowledge and data. Overall, this perspective provides a basis for development of AOP-aligned alternative methods-based integrated testing strategies for assessment of nanoparticle-induced lung cancer.
Collapse
Affiliation(s)
- Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hanna L. Karlsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
36
|
Lei J, Li Z, Huang X, Li X, Zhang G, Kan H, Chen R, Zhang Y. The Acute Effect of Diesel Exhaust Particles and Different Fractions Exposure on Blood Coagulation Function in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084136. [PMID: 33919809 PMCID: PMC8070753 DOI: 10.3390/ijerph18084136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 11/27/2022]
Abstract
The toxicity and widespread exposure opportunity of diesel exhaust particles (DEP) has aroused public health concerns. This study aimed to investigate the acute effect of DEP and different fractions exposure on blood coagulation function in mice. In this study, nine- week-old C57BL/6J male mice were divided into four exposure groups (with 15 mice in each group). The water-soluble (WS) and water-insoluble (WIS) fractions of DEP were isolated, and intratracheal instillation was used for DEP, WS and WIS exposure. The phosphate buffer saline (PBS) exposure group was set as the control group. After 24 h exposure, the mice were sacrificed for blood routine, coagulation function and bleeding time examinations to estimate the acute effect of DEP, WS and WIS exposure on the blood coagulation function. In our results, no statistically significant difference in weight of body, brain and lung was observed in different exposure groups. While several core indexes in blood coagulation like bleeding time (BT), fibrinogen (FIB), activated partial thromboplastin time (APTT) and prothrombin time (PT) altered or showed a lower tendency after DEP, WS and WIS exposure. For example, BT was lower In WIS exposure group (211.00 s) compared with PBS exposure group (238.50 s) (p < 0.01), and FIB was lower in WS exposure group (233.00 g/L) compared with PBS exposure group (249.50 g/L) (p < 0.05). Additionally, systemic inflammation-related indexes like white blood cell count (WBC), neutrophil count (NEUT), lymphocyte count (LYMPH) altered after DEP, WS and WIS exposure. In conclusion, DEP, WS and WIS fractions exposure could result in the hypercoagulable state of blood in mice. The noteworthy effects of WS and WIS fractions exposure on blood coagulation function deserve further investigation of the potential mechanism.
Collapse
Affiliation(s)
- Jian Lei
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Zhouzhou Li
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Xingke Huang
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Xin Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (X.L.); (G.Z.)
| | - Guangzheng Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (X.L.); (G.Z.)
| | - Haidong Kan
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Renjie Chen
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (X.L.); (G.Z.)
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Correspondence:
| |
Collapse
|