1
|
Tan M, Sun S, Liu Y, Perreault AA, Phanstiel DH, Dou L, Pang B. Targeting the 3D genome by anthracyclines for chemotherapeutic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.614434. [PMID: 39463926 PMCID: PMC11507702 DOI: 10.1101/2024.10.15.614434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The chromatins are folded into three-dimensional (3D) structures inside cells, which coordinates the regulation of gene transcription by the non-coding regulatory elements. Aberrant chromatin 3D folding has been shown in many diseases, such as acute myeloid leukemia (AML), and may contribute to tumorigenesis. The anthracycline topoisomerase II inhibitors can induce histone eviction and DNA damage. We performed genome-wide high-resolution mapping of the chemotherapeutic effects of various clinically used anthracycline drugs. ATAC-seq was used to profile the histone eviction effects of different anthracyclines. TOP2A ChIP-seq was used to profile the potential DNA damage regions. Integrated analyses show that different anthracyclines have distinct target selectivity on epigenomic regions, based on their respective ATAC-seq and ChIP-seq profiles. We identified the underlying molecular mechanism that unique anthracycline variants selectively target chromatin looping anchors via disrupting CTCF binding, suggesting an additional potential therapeutic effect on the 3D genome. We further performed Hi-C experiments, and data from K562 cells treated with the selective anthracycline drugs indicate that the 3D chromatin organization is disrupted. Furthermore, AML patients receiving anthracycline drugs showed altered chromatin structures around potential looping anchors, which linked to distinct clinical outcomes. Our data indicate that anthracyclines are potent and selective epigenomic targeting drugs and can target the 3D genome for anticancer therapy, which could be used for personalized medicine to treat tumors with aberrant 3D chromatin structures.
Collapse
|
2
|
Frenkel M, Corban JE, Hujoel MLA, Morris Z, Raman S. Large-scale discovery of chromatin dysregulation induced by oncofusions and other protein-coding variants. Nat Biotechnol 2024:10.1038/s41587-024-02347-4. [PMID: 39048711 DOI: 10.1038/s41587-024-02347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Population-scale databases have expanded to millions of protein-coding variants, yet insight into their mechanistic consequences has lagged. Here we present PROD-ATAC, a high-throughput method for discovering the effects of protein-coding variants on chromatin regulation. A pooled variant library is expressed in a disease-agnostic cell line, and single-cell assay for transposase-accessible chromatin resolves each variant's effect on the chromatin landscape. Using PROD-ATAC, we characterized the effects of more than 100 oncofusions (cancer-causing chimeric proteins) and controls and revealed that chromatin remodeling is common to fusions spanning an enormous range of fusion frequencies. Furthermore, fusion-induced dysregulation can be context agnostic, as observed mechanisms often overlapped with cancer and cell-type-specific prior knowledge. We also showed that gain-of-function activity is common among oncofusions. This work begins to outline a global map of fusion-induced chromatin alterations. We suggest that there might be convergent mechanisms among disparate oncofusions and shared modes of dysregulation among fusions present in tumors at different frequencies. PROD-ATAC is generalizable to any set of protein-coding variants.
Collapse
Affiliation(s)
- Max Frenkel
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - James E Corban
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Uckelmann M, Levina V, Taveneau C, Ng XH, Pandey V, Martinez J, Mendiratta S, Houx J, Boudes M, Venugopal H, Trépout S, Zhang Q, Flanigan S, Li M, Sierecki E, Gambin Y, Das PP, Bell O, de Marco A, Davidovich C. Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.08.539931. [PMID: 38405976 PMCID: PMC10888862 DOI: 10.1101/2023.05.08.539931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organisation and dynamics of chromatin compacted by gene-repressing factors are unknown. Using cryo-electron tomography, we solved the three-dimensional structure of chromatin condensed by the Polycomb Repressive Complex 1 (PRC1) in a complex with CBX8. PRC1-condensed chromatin is porous and stabilised through multivalent dynamic interactions of PRC1 with chromatin. Mechanistically, positively charged residues on the internally disordered regions (IDRs) of CBX8 mask negative charges on the DNA to stabilize the condensed state of chromatin. Within condensates, PRC1 remains dynamic while maintaining a static chromatin structure. In differentiated mouse embryonic stem cells, CBX8-bound chromatin remains accessible. These findings challenge the idea of rigidly compacted polycomb domains and instead provides a mechanistic framework for dynamic and accessible PRC1-chromatin condensates.
Collapse
|
4
|
Nair VD, Pincas H, Smith GR, Zaslavsky E, Ge Y, Amper MAS, Vasoya M, Chikina M, Sun Y, Raja AN, Mao W, Gay NR, Esser KA, Smith KS, Zhao B, Wiel L, Singh A, Lindholm ME, Amar D, Montgomery S, Snyder MP, Walsh MJ, Sealfon SC. Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures. CELL GENOMICS 2024; 4:100421. [PMID: 38697122 PMCID: PMC11228891 DOI: 10.1016/j.xgen.2023.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 05/04/2024]
Abstract
Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hanna Pincas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gregory R Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Anne S Amper
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mital Vasoya
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Weiguang Mao
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole R Gay
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Kevin S Smith
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Bingqing Zhao
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Laurens Wiel
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Aditya Singh
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Malene E Lindholm
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - David Amar
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Stephen Montgomery
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
5
|
Stankey CT, Bourges C, Haag LM, Turner-Stokes T, Piedade AP, Palmer-Jones C, Papa I, Silva Dos Santos M, Zhang Q, Cameron AJ, Legrini A, Zhang T, Wood CS, New FN, Randzavola LO, Speidel L, Brown AC, Hall A, Saffioti F, Parkes EC, Edwards W, Direskeneli H, Grayson PC, Jiang L, Merkel PA, Saruhan-Direskeneli G, Sawalha AH, Tombetti E, Quaglia A, Thorburn D, Knight JC, Rochford AP, Murray CD, Divakar P, Green M, Nye E, MacRae JI, Jamieson NB, Skoglund P, Cader MZ, Wallace C, Thomas DC, Lee JC. A disease-associated gene desert directs macrophage inflammation through ETS2. Nature 2024; 630:447-456. [PMID: 38839969 PMCID: PMC11168933 DOI: 10.1038/s41586-024-07501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Increasing rates of autoimmune and inflammatory disease present a burgeoning threat to human health1. This is compounded by the limited efficacy of available treatments1 and high failure rates during drug development2, highlighting an urgent need to better understand disease mechanisms. Here we show how functional genomics could address this challenge. By investigating an intergenic haplotype on chr21q22-which has been independently linked to inflammatory bowel disease, ankylosing spondylitis, primary sclerosing cholangitis and Takayasu's arteritis3-6-we identify that the causal gene, ETS2, is a central regulator of human inflammatory macrophages and delineate the shared disease mechanism that amplifies ETS2 expression. Genes regulated by ETS2 were prominently expressed in diseased tissues and more enriched for inflammatory bowel disease GWAS hits than most previously described pathways. Overexpressing ETS2 in resting macrophages reproduced the inflammatory state observed in chr21q22-associated diseases, with upregulation of multiple drug targets, including TNF and IL-23. Using a database of cellular signatures7, we identified drugs that might modulate this pathway and validated the potent anti-inflammatory activity of one class of small molecules in vitro and ex vivo. Together, this illustrates the power of functional genomics, applied directly in primary human cells, to identify immune-mediated disease mechanisms and potential therapeutic opportunities.
Collapse
Affiliation(s)
- C T Stankey
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Washington University School of Medicine, St Louis, MO, USA
| | - C Bourges
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - L M Haag
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - T Turner-Stokes
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - A P Piedade
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - C Palmer-Jones
- Department of Gastroenterology, Royal Free Hospital, London, UK
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - I Papa
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | | | - Q Zhang
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Hinxton, UK
| | - A J Cameron
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - A Legrini
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - T Zhang
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - C S Wood
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - F N New
- NanoString Technologies, Seattle, WA, USA
| | - L O Randzavola
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - L Speidel
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- Genetics Institute, University College London, London, UK
| | - A C Brown
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - A Hall
- The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - F Saffioti
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
- The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
| | - E C Parkes
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - W Edwards
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - H Direskeneli
- Department of Internal Medicine, Division of Rheumatology, Marmara University, Istanbul, Turkey
| | - P C Grayson
- Systemic Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | - L Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - P A Merkel
- Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Epidemiology, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - G Saruhan-Direskeneli
- Department of Physiology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - A H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Lupus Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Tombetti
- Department of Biomedical and Clinical Sciences, Milan University, Milan, Italy
- Internal Medicine and Rheumatology, ASST FBF-Sacco, Milan, Italy
| | - A Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
- UCL Cancer Institute, London, UK
| | - D Thorburn
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
- The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
| | - J C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
| | - A P Rochford
- Department of Gastroenterology, Royal Free Hospital, London, UK
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - C D Murray
- Department of Gastroenterology, Royal Free Hospital, London, UK
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - P Divakar
- NanoString Technologies, Seattle, WA, USA
| | - M Green
- Experimental Histopathology STP, The Francis Crick Institute, London, UK
| | - E Nye
- Experimental Histopathology STP, The Francis Crick Institute, London, UK
| | - J I MacRae
- Metabolomics STP, The Francis Crick Institute, London, UK
| | - N B Jamieson
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - P Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - M Z Cader
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - C Wallace
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
| | - D C Thomas
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - J C Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK.
- Department of Gastroenterology, Royal Free Hospital, London, UK.
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK.
| |
Collapse
|
6
|
Verma P, Sánchez Alvarado A, Duncan EM. Chromatin remodeling protein BPTF regulates transcriptional stability in planarian stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595819. [PMID: 38826365 PMCID: PMC11142235 DOI: 10.1101/2024.05.24.595819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Trimethylation of histone H3 lysine 4 (H3K4me3) correlates strongly with gene expression in many different organisms, yet the question of whether it plays a causal role in transcriptional activity remains unresolved. Although H3K4me3 does not directly affect chromatin accessibility, it can indirectly affect genome accessibility by recruiting the ATP-dependent chromatin remodeling complex NuRF (Nucleosome Remodeling Factor). The largest subunit of NuRF, BPTF/NURF301, binds H3K4me3 specifically and recruits the NuRF complex to loci marked by this modification. Studies have shown that the strength and duration of BPTF binding likely also depends on additional chromatin features at these loci, such as lysine acetylation and variant histone proteins. However, the exact details of this recruitment mechanism vary between studies and have largely been tested in vitro. Here, we use stem cells isolated directly from live planarian animals to investigate the role of BPTF in regulating chromatin accessibility in vivo. We find that BPTF operates at gene promoters and is most effective at facilitating transcription at genes marked by Set1-dependent H3K4me3 peaks, which are significantly broader than those added by the lysine methyltransferase MLL1/2. Moreover, BPTF is essential for planarian stem cell biology and its loss of function phenotype mimics that of Set1 knockdown. Together, these data suggest that BPTF and H3K4me3 are important mediators of both transcription and in vivo stem cell function.
Collapse
|
7
|
Hu G, Grover CE, Vera DL, Lung PY, Girimurugan SB, Miller ER, Conover JL, Ou S, Xiong X, Zhu D, Li D, Gallagher JP, Udall JA, Sui X, Zhang J, Bass HW, Wendel JF. Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton. Mol Biol Evol 2024; 41:msae095. [PMID: 38758089 PMCID: PMC11140268 DOI: 10.1093/molbev/msae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.
Collapse
Affiliation(s)
- Guanjing Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated, Chinese Academy of Agricultural Sciences, Institute of Cotton Research, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel L Vera
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | | | - Emma R Miller
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shujun Ou
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dongming Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Joseph P Gallagher
- Forage Seed and Cereal Research Unit, USDA/Agricultural Research Service, Corvallis, OR 97331, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Castellano-Castillo D, Ramos-Molina B, Frutos MD, Arranz-Salas I, Reyes-Engel A, Queipo-Ortuño MI, Cardona F. RNA expression changes driven by altered epigenetics status related to NASH etiology. Biomed Pharmacother 2024; 174:116508. [PMID: 38579398 DOI: 10.1016/j.biopha.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing health problem due to the increased obesity rates, among other factors. In its more severe stage (NASH), inflammation, hepatocellular ballooning and fibrosis are present in the liver, which can further evolve to total liver dysfunction or even hepatocarcinoma. As a metabolic disease, is associated to environmental factors such as diet and lifestyle conditions, which in turn can influence the epigenetic landscape of the cells, affecting to the gene expression profile and chromatin organization. In this study we performed ATAC-sequencing and RNA-sequencing to interrogate the chromatin status of liver biopsies in subjects with and without NASH and its effects on RNA transcription and NASH etiology. NASH subjects showed transcriptional downregulation for lipid and glucose metabolic pathways (e.g., ABC transporters, AMPK, FoxO or insulin pathways). A total of 229 genes were differentially enriched (ATAC and mRNA) in NASH, which were mainly related to lipid transport activity, nuclear receptor-binding, dicarboxylic acid transporter, and PPARA lipid regulation. Interpolation of ATAC data with known liver enhancer regions showed differential openness at 8 enhancers, some linked to genes involved in lipid metabolism, (i.e., FASN) and glucose homeostasis (i.e., GCGR). In conclusion, the chromatin landscape is altered in NASH patients compared to patients without this liver condition. This alteration might cause mRNA changes explaining, at least partially, the etiology and pathophysiology of the disease.
Collapse
Affiliation(s)
- Daniel Castellano-Castillo
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, Málaga 29010, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia 30120, Spain.
| | - María Dolores Frutos
- General and Digestive System Surgery Department, Virgen de la Arrixaca University Hospital, Murcia 31020, Spain
| | - Isabel Arranz-Salas
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA), Virgen de la Victoria University Hospital, Malaga University, 2ª Planta, Campus Teatinos S/N, Málaga 29010, Spain; Department of Human Physiology, Human Histology, Anatomical Pathology and Physical Education, Malaga University, Málaga 29010, Spain; 11 Department of Anatomical Pathology, Virgen de la Victoria Hospital, Málaga, Spain
| | - Armando Reyes-Engel
- Departamento de especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010, Spain
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, Málaga 29010, Spain; Departamento de especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010, Spain.
| | - Fernando Cardona
- Departamento de especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010, Spain
| |
Collapse
|
9
|
Mononen J, Taipale M, Malinen M, Velidendla B, Niskanen E, Levonen AL, Ruotsalainen AK, Heikkinen S. Genetic variation is a key determinant of chromatin accessibility and drives differences in the regulatory landscape of C57BL/6J and 129S1/SvImJ mice. Nucleic Acids Res 2024; 52:2904-2923. [PMID: 38153160 PMCID: PMC11014276 DOI: 10.1093/nar/gkad1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Most common genetic variants associated with disease are located in non-coding regions of the genome. One mechanism by which they function is through altering transcription factor (TF) binding. In this study, we explore how genetic variation is connected to differences in the regulatory landscape of livers from C57BL/6J and 129S1/SvImJ mice fed either chow or a high-fat diet. To identify sites where regulatory variation affects TF binding and nearby gene expression, we employed an integrative analysis of H3K27ac ChIP-seq (active enhancers), ATAC-seq (chromatin accessibility) and RNA-seq (gene expression). We show that, across all these assays, the genetically driven (i.e. strain-specific) differences in the regulatory landscape are more pronounced than those modified by diet. Most notably, our analysis revealed that differentially accessible regions (DARs, N = 29635, FDR < 0.01 and fold change > 50%) are almost always strain-specific and enriched with genetic variation. Moreover, proximal DARs are highly correlated with differentially expressed genes. We also show that TF binding is affected by genetic variation, which we validate experimentally using ChIP-seq for TCF7L2 and CTCF. This study provides detailed insights into how non-coding genetic variation alters the gene regulatory landscape, and demonstrates how this can be used to study the regulatory variation influencing TF binding.
Collapse
Affiliation(s)
- Juho Mononen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Mari Taipale
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Marjo Malinen
- Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu FI- 80101, Finland
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Kouvola FI-45100, Finland
| | - Bharadwaja Velidendla
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Einari Niskanen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
10
|
van Dijk AD, Hoff FW, Qiu Y, Hubner SE, Go RL, Ruvolo VR, Leonti AR, Gerbing RB, Gamis AS, Aplenc R, Kolb EA, Alonzo TA, Meshinchi S, de Bont ESJM, Horton TM, Kornblau SM. Chromatin Profiles Are Prognostic of Clinical Response to Bortezomib-Containing Chemotherapy in Pediatric Acute Myeloid Leukemia: Results from the COG AAML1031 Trial. Cancers (Basel) 2024; 16:1448. [PMID: 38672531 PMCID: PMC11048007 DOI: 10.3390/cancers16081448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The addition of the proteasome inhibitor bortezomib to standard chemotherapy did not improve survival in pediatric acute myeloid leukemia (AML) when all patients were analyzed as a group in the Children's Oncology Group phase 3 trial AAML1031 (NCT01371981). Proteasome inhibition influences the chromatin landscape and proteostasis, and we hypothesized that baseline proteomic analysis of histone- and chromatin-modifying enzymes (HMEs) would identify AML subgroups that benefitted from bortezomib addition. A proteomic profile of 483 patients treated with AAML1031 chemotherapy was generated using a reverse-phase protein array. A relatively high expression of 16 HME was associated with lower EFS and higher 3-year relapse risk after AML standard treatment compared to low expressions (52% vs. 29%, p = 0.005). The high-HME profile correlated with more transposase-accessible chromatin, as demonstrated via ATAC-sequencing, and the bortezomib addition improved the 3-year overall survival compared with standard therapy (62% vs. 75%, p = 0.033). These data suggest that there are pediatric AML populations that respond well to bortezomib-containing chemotherapy.
Collapse
Affiliation(s)
- Anneke D. van Dijk
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Fieke W. Hoff
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Yihua Qiu
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Stefan E. Hubner
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Robin L. Go
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Vivian R. Ruvolo
- Department of Molecular Therapy and Hematology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Amanda R. Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Alan S. Gamis
- Department of Hematology-Oncology, Children’s Mercy Hospitals and Clinics, Kansas City, MO 64108, USA
| | - Richard Aplenc
- Division of Pediatric Oncology and Stem Cell Transplant, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward A. Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Todd A. Alonzo
- COG Statistics and Data Center, Monrovia, CA 91016, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eveline S. J. M. de Bont
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
| | - Terzah M. Horton
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven M. Kornblau
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| |
Collapse
|
11
|
Ling Z, Li J, Jiang T, Zhang Z, Zhu Y, Zhou Z, Yang J, Tong X, Yang B, Huang L. Omics-based construction of regulatory variants can be applied to help decipher pig liver-related traits. Commun Biol 2024; 7:381. [PMID: 38553586 PMCID: PMC10980749 DOI: 10.1038/s42003-024-06050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Genetic variants can influence complex traits by altering gene expression through changes to regulatory elements. However, the genetic variants that affect the activity of regulatory elements in pigs are largely unknown, and the extent to which these variants influence gene expression and contribute to the understanding of complex phenotypes remains unclear. Here, we annotate 90,991 high-quality regulatory elements using acetylation of histone H3 on lysine 27 (H3K27ac) ChIP-seq of 292 pig livers. Combined with genome resequencing and RNA-seq data, we identify 28,425 H3K27ac quantitative trait loci (acQTLs) and 12,250 expression quantitative trait loci (eQTLs). Through the allelic imbalance analysis, we validate two causative acQTL variants in independent datasets. We observe substantial sharing of genetic controls between gene expression and H3K27ac, particularly within promoters. We infer that 46% of H3K27ac exhibit a concomitant rather than causative relationship with gene expression. By integrating GWAS, eQTLs, acQTLs, and transcription factor binding prediction, we further demonstrate their application, through metabolites dulcitol, phosphatidylcholine (PC) (16:0/16:0) and published phenotypes, in identifying likely causal variants and genes, and discovering sub-threshold GWAS loci. We provide insight into the relationship between regulatory elements and gene expression, and the genetic foundation for dissecting the molecular mechanism of phenotypes.
Collapse
Affiliation(s)
- Ziqi Ling
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China.
| | - Jing Li
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Tao Jiang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Zhen Zhang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Yaling Zhu
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Zhimin Zhou
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Jiawen Yang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Xinkai Tong
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China
| | - Bin Yang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China.
| | - Lusheng Huang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, P.R. China.
| |
Collapse
|
12
|
Zheng R, Moynahan K, Georgomanolis T, Pavlenko E, Geissen S, Mizi A, Grimm S, Nemade H, Rehimi R, Bastigkeit J, Lackmann JW, Adam M, Rada-Iglesias A, Nuernberg P, Klinke A, Poepsel S, Baldus S, Papantonis A, Kargapolova Y. Remodeling of the endothelial cell transcriptional program via paracrine and DNA-binding activities of MPO. iScience 2024; 27:108898. [PMID: 38322992 PMCID: PMC10844825 DOI: 10.1016/j.isci.2024.108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Myeloperoxidase (MPO) is an enzyme that functions in host defense. MPO is released into the vascular lumen by neutrophils during inflammation and may adhere and subsequently penetrate endothelial cells (ECs) coating vascular walls. We show that MPO enters the nucleus of ECs and binds chromatin independently of its enzymatic activity. MPO drives chromatin decondensation at its binding sites and enhances condensation at neighboring regions. It binds loci relevant for endothelial-to-mesenchymal transition (EndMT) and affects the migratory potential of ECs. Finally, MPO interacts with the RNA-binding factor ILF3 thereby affecting its relative abundance between cytoplasm and nucleus. This interaction leads to change in stability of ILF3-bound transcripts. MPO-knockout mice exhibit reduced number of ECs at scar sites following myocardial infarction, indicating reduced neovascularization. In summary, we describe a non-enzymatic role for MPO in coordinating EndMT and controlling the fate of endothelial cells through direct chromatin binding and association with co-factors.
Collapse
Affiliation(s)
- Ruiyuan Zheng
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Kyle Moynahan
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Theodoros Georgomanolis
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Egor Pavlenko
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Simon Geissen
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Simon Grimm
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Harshal Nemade
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Jil Bastigkeit
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Jan-Wilm Lackmann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Cluster of Excellence on Cellular Stress Responses in Age-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Matti Adam
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria, 39011 Santander, Spain
| | - Peter Nuernberg
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Anna Klinke
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Simon Poepsel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Stephan Baldus
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Yulia Kargapolova
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany
| |
Collapse
|
13
|
Walters BW, Rainsford SR, Heuer RA, Dias N, Huang X, de Rooij D, Lesch BJ. KDM6A/UTX promotes spermatogenic gene expression across generations and is not required for male fertility†. Biol Reprod 2024; 110:391-407. [PMID: 37861693 PMCID: PMC11484508 DOI: 10.1093/biolre/ioad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023] Open
Abstract
Paternal chromatin undergoes extensive structural and epigenetic changes during mammalian spermatogenesis, producing sperm with an epigenome optimized for the transition to embryogenesis. Lysine demethylase 6a (KDM6A, also called UTX) promotes gene activation in part via demethylation of H3K27me3, a developmentally important repressive modification abundant throughout the epigenome of spermatogenic cells and sperm. We previously demonstrated increased cancer risk in genetically wild-type mice derived from a paternal germ line lacking Kdm6a (Kdm6a cKO), indicating a role for KDM6A in regulating heritable epigenetic states. However, the regulatory function of KDM6A during spermatogenesis is not known. Here, we show that Kdm6a is transiently expressed in spermatogenesis, with RNA and protein expression largely limited to late spermatogonia and early meiotic prophase. Kdm6a cKO males do not have defects in fertility or the overall progression of spermatogenesis. However, hundreds of genes are deregulated upon loss of Kdm6a in spermatogenic cells, with a strong bias toward downregulation coinciding with the time when Kdm6a is expressed. Misregulated genes encode factors involved in chromatin organization and regulation of repetitive elements, and a subset of these genes was persistently deregulated in the male germ line across two generations of offspring of Kdm6a cKO males. Genome-wide epigenetic profiling revealed broadening of H3K27me3 peaks in differentiating spermatogonia of Kdm6a cKO mice, suggesting that KDM6A demarcates H3K27me3 domains in the male germ line. Our findings highlight KDM6A as a transcriptional activator in the mammalian male germ line that is dispensable for spermatogenesis but important for safeguarding gene regulatory state intergenerationally.
Collapse
Affiliation(s)
| | | | - Rachel A Heuer
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicolas Dias
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Xiaofang Huang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Dirk de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bluma J Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Gardner EE, Earlie EM, Li K, Thomas J, Hubisz MJ, Stein BD, Zhang C, Cantley LC, Laughney AM, Varmus H. Lineage-specific intolerance to oncogenic drivers restricts histological transformation. Science 2024; 383:eadj1415. [PMID: 38330136 PMCID: PMC11155264 DOI: 10.1126/science.adj1415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
Lung adenocarcinoma (LUAD) and small cell lung cancer (SCLC) are thought to originate from different epithelial cell types in the lung. Intriguingly, LUAD can histologically transform into SCLC after treatment with targeted therapies. In this study, we designed models to follow the conversion of LUAD to SCLC and found that the barrier to histological transformation converges on tolerance to Myc, which we implicate as a lineage-specific driver of the pulmonary neuroendocrine cell. Histological transformations are frequently accompanied by activation of the Akt pathway. Manipulating this pathway permitted tolerance to Myc as an oncogenic driver, producing rare, stem-like cells that transcriptionally resemble the pulmonary basal lineage. These findings suggest that histological transformation may require the plasticity inherent to the basal stem cell, enabling tolerance to previously incompatible oncogenic driver programs.
Collapse
Affiliation(s)
| | - Ethan M. Earlie
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Kate Li
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Jerin Thomas
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Melissa J. Hubisz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY
| | - Benjamin D. Stein
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Medicine, Weill Cornell Medicine
| | - Chen Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Medicine, Weill Cornell Medicine
| | - Ashley M. Laughney
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Harold Varmus
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
15
|
Shaw DE, Naftaly AS, White MA. Positive Selection Drives cis-regulatory Evolution Across the Threespine Stickleback Y Chromosome. Mol Biol Evol 2024; 41:msae020. [PMID: 38306314 PMCID: PMC10899008 DOI: 10.1093/molbev/msae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Allele-specific gene expression evolves rapidly on heteromorphic sex chromosomes. Over time, the accumulation of mutations on the Y chromosome leads to widespread loss of gametolog expression, relative to the X chromosome. It remains unclear if expression evolution on degrading Y chromosomes is primarily driven by mutations that accumulate through processes of selective interference, or if positive selection can also favor the down-regulation of coding regions on the Y chromosome that contain deleterious mutations. Identifying the relative rates of cis-regulatory sequence evolution across Y chromosomes has been challenging due to the limited number of reference assemblies. The threespine stickleback (Gasterosteus aculeatus) Y chromosome is an excellent model to identify how regulatory mutations accumulate on Y chromosomes due to its intermediate state of divergence from the X chromosome. A large number of Y-linked gametologs still exist across 3 differently aged evolutionary strata to test these hypotheses. We found that putative enhancer regions on the Y chromosome exhibited elevated substitution rates and decreased polymorphism when compared to nonfunctional sites, like intergenic regions and synonymous sites. This suggests that many cis-regulatory regions are under positive selection on the Y chromosome. This divergence was correlated with X-biased gametolog expression, indicating the loss of expression from the Y chromosome may be favored by selection. Our findings provide evidence that Y-linked cis-regulatory regions exhibit signs of positive selection quickly after the suppression of recombination and allow comparisons with recent theoretical models that suggest the rapid divergence of regulatory regions may be favored to mask deleterious mutations on the Y chromosome.
Collapse
Affiliation(s)
- Daniel E Shaw
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Michael A White
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
16
|
de la Rosa S, del Mar Rigual M, Vargiu P, Ortega S, Djouder N. Endogenous retroviruses shape pluripotency specification in mouse embryos. SCIENCE ADVANCES 2024; 10:eadk9394. [PMID: 38266080 PMCID: PMC10807815 DOI: 10.1126/sciadv.adk9394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The smooth and precise transition from totipotency to pluripotency is a key process in embryonic development, generating pluripotent stem cells capable of forming all cell types. While endogenous retroviruses (ERVs) are essential for early development, their precise roles in this transition remains mysterious. Using cutting-edge genetic and biochemical techniques in mice, we identify MERVL-gag, a retroviral protein, as a crucial modulator of pluripotent factors OCT4 and SOX2 during lineage specification. MERVL-gag tightly operates with URI, a prefoldin protein that concurs with pluripotency bias in mouse blastomeres, and which is indeed required for totipotency-to-pluripotency transition. Accordingly, URI loss promotes a stable totipotent-like state and embryo arrest at 2C stage. Mechanistically, URI binds and shields OCT4 and SOX2 from proteasome degradation, while MERVL-gag displaces URI from pluripotent factor interaction, causing their degradation. Our findings reveal the symbiotic coevolution of ERVs with their host cells to ensure the smooth and timely progression of early embryo development.
Collapse
Affiliation(s)
- Sergio de la Rosa
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - María del Mar Rigual
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Pierfrancesco Vargiu
- Mouse Genome Editing Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sagrario Ortega
- Mouse Genome Editing Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| |
Collapse
|
17
|
Graca Marques J, Pavlovic B, Ngo QA, Pedot G, Roemmele M, Volken L, Kisele S, Perbet R, Wachtel M, Schäfer BW. The Chromatin Remodeler CHD4 Sustains Ewing Sarcoma Cell Survival by Controlling Global Chromatin Architecture. Cancer Res 2024; 84:241-257. [PMID: 37963210 DOI: 10.1158/0008-5472.can-22-3950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Ewing sarcoma is an aggressive cancer with a defective response to DNA damage leading to an enhanced sensitivity to genotoxic agents. Mechanistically, Ewing sarcoma is driven by the fusion transcription factor EWS-FLI1, which reprograms the tumor cell epigenome. The nucleosome remodeling and deacetylase (NuRD) complex is an important regulator of chromatin function, controlling both gene expression and DNA damage repair, and has been associated with EWS-FLI1 activity. Here, a NuRD-focused CRISPR/Cas9 inactivation screen identified the helicase CHD4 as essential for Ewing sarcoma cell proliferation. CHD4 silencing induced tumor cell death by apoptosis and abolished colony formation. Although CHD4 and NuRD colocalized with EWS-FLI1 at enhancers and super-enhancers, CHD4 promoted Ewing sarcoma cell survival not by modulating EWS-FLI1 activity and its oncogenic gene expression program but by regulating chromatin structure. CHD4 depletion led to a global increase in DNA accessibility and induction of spontaneous DNA damage, resulting in an increased susceptibility to DNA-damaging agents. CHD4 loss delayed tumor growth in vivo, increased overall survival, and combination with PARP inhibition by olaparib treatment further suppressed tumor growth. Collectively, these findings highlight the NuRD subunit CHD4 as a therapeutic target in Ewing sarcoma that can potentiate the antitumor activity of genotoxic agents. SIGNIFICANCE CRISPR/Cas9 screening in Ewing sarcoma identifies a dependency on CHD4, which is crucial for the maintenance of chromatin architecture to suppress DNA damage and a promising therapeutic target for DNA damage repair-deficient malignancies.
Collapse
Affiliation(s)
- Joana Graca Marques
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Blaz Pavlovic
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Quy A Ngo
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Gloria Pedot
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michaela Roemmele
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Larissa Volken
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Samanta Kisele
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Romain Perbet
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Fregona V, Bayet M, Bouttier M, Largeaud L, Hamelle C, Jamrog LA, Prade N, Lagarde S, Hebrard S, Luquet I, Mansat-De Mas V, Nolla M, Pasquet M, Didier C, Khamlichi AA, Broccardo C, Delabesse É, Mancini SJ, Gerby B. Stem cell-like reprogramming is required for leukemia-initiating activity in B-ALL. J Exp Med 2024; 221:e20230279. [PMID: 37930337 PMCID: PMC10626194 DOI: 10.1084/jem.20230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) is a multistep disease characterized by the hierarchical acquisition of genetic alterations. However, the question of how a primary oncogene reprograms stem cell-like properties in committed B cells and leads to a preneoplastic population remains unclear. Here, we used the PAX5::ELN oncogenic model to demonstrate a causal link between the differentiation blockade, the self-renewal, and the emergence of preleukemic stem cells (pre-LSCs). We show that PAX5::ELN disrupts the differentiation of preleukemic cells by enforcing the IL7r/JAK-STAT pathway. This disruption is associated with the induction of rare and quiescent pre-LSCs that sustain the leukemia-initiating activity, as assessed using the H2B-GFP model. Integration of transcriptomic and chromatin accessibility data reveals that those quiescent pre-LSCs lose B cell identity and reactivate an immature molecular program, reminiscent of human B-ALL chemo-resistant cells. Finally, our transcriptional regulatory network reveals the transcription factor EGR1 as a strong candidate to control quiescence/resistance of PAX5::ELN pre-LSCs as well as of blasts from human B-ALL.
Collapse
Affiliation(s)
- Vincent Fregona
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Manon Bayet
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Mathieu Bouttier
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Laetitia Largeaud
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Camille Hamelle
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Laura A. Jamrog
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Naïs Prade
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphanie Lagarde
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Sylvie Hebrard
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Isabelle Luquet
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Véronique Mansat-De Mas
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marie Nolla
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marlène Pasquet
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Christine Didier
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre Nationale de la Recherche Scientifique, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Cyril Broccardo
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| | - Éric Delabesse
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphane J.C. Mancini
- Université de Rennes, Etablissement Français du Sang, Inserm, MOBIDIC—UMR_S 1236, Rennes, France
| | - Bastien Gerby
- Université de Toulouse, Inserm, Centre Nationale de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2023, Toulouse, France
- Équipe Labellisée Institut Carnot Opale, Toulouse, France
| |
Collapse
|
19
|
Lee S, Kim MJ, Ahn SI, Choi SK, Min KY, Choi WS, You JS. Epigenetic landscape analysis reveals the significance of early reduced chromatin accessibility in osteoclastogenesis. Bone 2023; 177:116918. [PMID: 37739296 DOI: 10.1016/j.bone.2023.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Recently improved techniques could provide snapshots of chromatin structure generated based on chromatin accessibility. Since chromatin accessibility determines transcriptional potential, it has been attempted in a variety of cell systems. However, there has been no genome-wide analysis of chromatin accessibility for the entire murine osteoclast (OC) differentiation process. We performed an Assay for Transposase-Accessible Chromatin (ATAC)-sequencing (seq) during RANKL-induced OC differentiation and found that global chromatin accessibility decreased, especially early in OC differentiation. The global histone H3K27Ac level, an active histone modification mark, was diminished during OC differentiation by western blot and histone extract experiments. Its genomic enrichment was also reduced based on publicly available H3K27Ac chromatin immunoprecipitation (ChIP)-seq data. ATAC-seq and H3K27Ac ChIP-seq data demonstrated that RANKL induced a less accessible chromatin state during OC differentiation. Restoration of reduced H3K27Ac, presumably representing accessible states upon acetate treatment, suppresses OC differentiation by provoking immune-related gene expression. Subsequential integrative analysis of ATAC-seq, RNA-seq after acetate treatment, and H3K27Ac ChIP-seq reveals that Irf8 and its downstream targets are the most vulnerable to chromatin accessibility changes and acetate supplementation. Taken together, our study generated chromatin accessibility maps during the whole OC differentiation and suggested perturbation of chromatin accessibility might be a potential therapeutic strategy for excessive OC diseases.
Collapse
Affiliation(s)
- Sangyong Lee
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Myoung Jun Kim
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Seor I Ahn
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Sung Kyung Choi
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea; KU Open Innovation Center, Research Institute of Medical Science, Konkuk University, Republic of Korea
| | - Jueng Soo You
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea; KU Open Innovation Center, Research Institute of Medical Science, Konkuk University, Republic of Korea.
| |
Collapse
|
20
|
Park SG, Kim WJ, Moon JI, Kim KT, Ryoo HM. MESIA: multi-epigenome sample integration approach for precise peak calling. Sci Rep 2023; 13:20859. [PMID: 38012291 PMCID: PMC10681995 DOI: 10.1038/s41598-023-47948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
The assay for transposase-accessible chromatin with sequencing (ATAC-seq) is the most widely used method for measuring chromatin accessibility. Researchers have included multi-sample replication in ATAC-seq experimental designs. In epigenomic analysis, researchers should measure subtle changes in the peak by considering the read depth of individual samples. It is important to determine whether the peaks of each replication have an integrative meaning for the region of interest observed during multi-sample integration. We developed multi-epigenome sample integration approach for precise peak calling (MESIA), which integrates replication with high representativeness and reproducibility in multi-sample replication and determines the optimal peak. After identifying the reproducibility between all replications, our method integrated multiple samples determined as representative replicates. MESIA detected 6.06 times more peaks, and the value of the peaks was 1.32 times higher than the previously used method. MESIA is a shell-script-based open-source code that provides researchers involved in the epigenome with comprehensive insights.
Collapse
Grants
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 Korean government (MSIT)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 Korean government (MSIT)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 Korean government (MSIT)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 Korean government (MSIT)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 Korean government (MSIT)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 National Research Foundation of Korea (NRF)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 National Research Foundation of Korea (NRF)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 National Research Foundation of Korea (NRF)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 National Research Foundation of Korea (NRF)
- RS-2023-00207971, 2020R1A4A1019423, 2022R1I1A1A01062894 and 2021R1C1C2095130 National Research Foundation of Korea (NRF)
Collapse
Affiliation(s)
- Seung Gwa Park
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Multiomics Center, Dental Research Institute, Seoul National University, Seoul, South Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Multiomics Center, Dental Research Institute, Seoul National University, Seoul, South Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Jae-I Moon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Multiomics Center, Dental Research Institute, Seoul National University, Seoul, South Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Multiomics Center, Dental Research Institute, Seoul National University, Seoul, South Korea.
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea.
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Multiomics Center, Dental Research Institute, Seoul National University, Seoul, South Korea.
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
21
|
Takeuchi F, Liang YQ, Shimizu-Furusawa H, Isono M, Ang MY, Mori K, Mori T, Kakazu E, Yoshio S, Kato N. Gene-regulation modules in nonalcoholic fatty liver disease revealed by single-nucleus ATAC-seq. Life Sci Alliance 2023; 6:e202301988. [PMID: 37491046 PMCID: PMC10368228 DOI: 10.26508/lsa.202301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
We investigated the progression of nonalcoholic fatty liver disease from fatty liver to steatohepatitis using single-nucleus and bulk ATAC-seq on the livers of rats fed a high-fat diet (HFD). Rats fed HFD for 4 wk developed fatty liver, and those fed HFD for 8 wk further progressed to steatohepatitis. We observed an increase in the proportion of inflammatory macrophages, consistent with the pathological progression. Utilizing machine learning, we divided global gene regulation into modules, wherein transcription factors within a module could regulate genes within the same module, reaffirming known regulatory relationships between transcription factors and biological processes. We identified core genes-central to co-expression and protein-protein interaction-for the biological processes discovered. Notably, a large part of the core genes overlapped with genes previously implicated in nonalcoholic fatty liver disease. Single-nucleus ATAC-seq, combined with data-driven statistical analysis, offers insight into in vivo global gene regulation as a combination of modules and assists in identifying core genes of relevant biological processes.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Systems Genomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Yi-Qiang Liang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hana Shimizu-Furusawa
- Department of Hygiene and Public Health, School of Medicine, Teikyo University, Tokyo, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mia Yang Ang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Mori
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Eiji Kakazu
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Komatsu V, Cooper B, Yim P, Chan K, Gong W, Wheatley L, Rohs R, Fraser SE, Trinh LA. Hand2 represses non-cardiac cell fates through chromatin remodeling at cis- regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559156. [PMID: 37790542 PMCID: PMC10542161 DOI: 10.1101/2023.09.23.559156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Developmental studies have revealed the importance of the transcription factor Hand2 in cardiac development. Hand2 promotes cardiac progenitor differentiation and epithelial maturation, while repressing other tissue types. The mechanisms underlying the promotion of cardiac fates are far better understood than those underlying the repression of alternative fates. Here, we assess Hand2-dependent changes in gene expression and chromatin remodeling in cardiac progenitors of zebrafish embryos. Cell-type specific transcriptome analysis shows a dual function for Hand2 in activation of cardiac differentiation genes and repression of pronephric pathways. We identify functional cis- regulatory elements whose chromatin accessibility are increased in hand2 mutant cells. These regulatory elements associate with non-cardiac gene expression, and drive reporter gene expression in tissues associated with Hand2-repressed genes. We find that functional Hand2 is sufficient to reduce non-cardiac reporter expression in cardiac lineages. Taken together, our data support a model of Hand2-dependent coordination of transcriptional programs, not only through transcriptional activation of cardiac and epithelial maturation genes, but also through repressive chromatin remodeling at the DNA regulatory elements of non-cardiac genes.
Collapse
|
23
|
Schreiber J, Boix C, Wook Lee J, Li H, Guan Y, Chang CC, Chang JC, Hawkins-Hooker A, Schölkopf B, Schweikert G, Carulla MR, Canakoglu A, Guzzo F, Nanni L, Masseroli M, Carman MJ, Pinoli P, Hong C, Yip KY, Spence JP, Batra SS, Song YS, Mahony S, Zhang Z, Tan W, Shen Y, Sun Y, Shi M, Adrian J, Sandstrom R, Farrell N, Halow J, Lee K, Jiang L, Yang X, Epstein C, Strattan JS, Bernstein B, Snyder M, Kellis M, Stafford W, Kundaje A. The ENCODE Imputation Challenge: a critical assessment of methods for cross-cell type imputation of epigenomic profiles. Genome Biol 2023; 24:79. [PMID: 37072822 PMCID: PMC10111747 DOI: 10.1186/s13059-023-02915-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023] Open
Abstract
A promising alternative to comprehensively performing genomics experiments is to, instead, perform a subset of experiments and use computational methods to impute the remainder. However, identifying the best imputation methods and what measures meaningfully evaluate performance are open questions. We address these questions by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. We find that imputation evaluations are challenging and confounded by distributional shifts from differences in data collection and processing over time, the amount of available data, and redundancy among performance measures. Our analyses suggest simple steps for overcoming these issues and promising directions for more robust research.
Collapse
Affiliation(s)
| | - Carles Boix
- Stanford University School of Medicine, Stanford, CA, USA
| | - Jin Wook Lee
- Stanford University School of Medicine, Stanford, CA, USA
| | - Hongyang Li
- Stanford University School of Medicine, Stanford, CA, USA
| | - Yuanfang Guan
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | - Arif Canakoglu
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Luca Nanni
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Pietro Pinoli
- Stanford University School of Medicine, Stanford, CA, USA
| | - Chenyang Hong
- Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin Y Yip
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Yun S Song
- Stanford University School of Medicine, Stanford, CA, USA
| | - Shaun Mahony
- Stanford University School of Medicine, Stanford, CA, USA
| | - Zheng Zhang
- Stanford University School of Medicine, Stanford, CA, USA
| | - Wuwei Tan
- Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Shen
- Stanford University School of Medicine, Stanford, CA, USA
| | - Yuanfei Sun
- Stanford University School of Medicine, Stanford, CA, USA
| | - Minyi Shi
- Stanford University School of Medicine, Stanford, CA, USA
| | - Jessika Adrian
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Nina Farrell
- Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica Halow
- Stanford University School of Medicine, Stanford, CA, USA
| | - Kristen Lee
- Stanford University School of Medicine, Stanford, CA, USA
| | - Lixia Jiang
- Stanford University School of Medicine, Stanford, CA, USA
| | - Xinqiong Yang
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Michael Snyder
- Stanford University School of Medicine, Stanford, CA, USA
| | - Manolis Kellis
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Anshul Kundaje
- Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
24
|
Wong YY, Harbison JE, Hope CM, Gundsambuu B, Brown KA, Wong SW, Brown CY, Couper JJ, Breen J, Liu N, Pederson SM, Köhne M, Klee K, Schultze J, Beyer M, Sadlon T, Barry SC. Parallel recovery of chromatin accessibility and gene expression dynamics from frozen human regulatory T cells. Sci Rep 2023; 13:5506. [PMID: 37016052 PMCID: PMC10073253 DOI: 10.1038/s41598-023-32256-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023] Open
Abstract
Epigenetic features such as DNA accessibility dictate transcriptional regulation in a cell type- and cell state- specific manner, and mapping this in health vs. disease in clinically relevant material is opening the door to new mechanistic insights and new targets for therapy. Assay for Transposase Accessible Chromatin Sequencing (ATAC-seq) allows chromatin accessibility profiling from low cell input, making it tractable on rare cell populations, such as regulatory T (Treg) cells. However, little is known about the compatibility of the assay with cryopreserved rare cell populations. Here we demonstrate the robustness of an ATAC-seq protocol comparing primary Treg cells recovered from fresh or cryopreserved PBMC samples, in the steady state and in response to stimulation. We extend this method to explore the feasibility of conducting simultaneous quantitation of chromatin accessibility and transcriptome from a single aliquot of 50,000 cryopreserved Treg cells. Profiling of chromatin accessibility and gene expression in parallel within the same pool of cells controls for cellular heterogeneity and is particularly beneficial when constrained by limited input material. Overall, we observed a high correlation of accessibility patterns and transcription factor dynamics between fresh and cryopreserved samples. Furthermore, highly similar transcriptomic profiles were obtained from whole cells and from the supernatants recovered from ATAC-seq reactions. We highlight the feasibility of applying these techniques to profile the epigenomic landscape of cells recovered from cryopreservation biorepositories.
Collapse
Affiliation(s)
- Ying Y Wong
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Jessica E Harbison
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Women's and Children's Hospital, North Adelaide, Australia
| | - Christopher M Hope
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Women's and Children's Hospital, North Adelaide, Australia
| | | | - Katherine A Brown
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Soon W Wong
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Cheryl Y Brown
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Women's and Children's Hospital, North Adelaide, Australia
| | - Jennifer J Couper
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Women's and Children's Hospital, North Adelaide, Australia
| | - Jimmy Breen
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Ning Liu
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Stephen M Pederson
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Maren Köhne
- German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Kathrin Klee
- German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Joachim Schultze
- German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Marc Beyer
- German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Timothy Sadlon
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Women's and Children's Hospital, North Adelaide, Australia
| | - Simon C Barry
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.
- Women's and Children's Hospital, North Adelaide, Australia.
| |
Collapse
|
25
|
Antón-García P, Haghighi EB, Rose K, Vladimirov G, Boerries M, Hecht A. TGFβ1-Induced EMT in the MCF10A Mammary Epithelial Cell Line Model Is Executed Independently of SNAIL1 and ZEB1 but Relies on JUNB-Coordinated Transcriptional Regulation. Cancers (Basel) 2023; 15:558. [PMID: 36672507 PMCID: PMC9856774 DOI: 10.3390/cancers15020558] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) fosters cancer cell invasion and metastasis, the main cause of cancer-related mortality. Growing evidence that SNAIL and ZEB transcription factors, typically portrayed as master regulators of EMT, may be dispensable for this process, led us to re-investigate its mechanistic underpinnings. For this, we used an unbiased computational approach that integrated time-resolved analyses of chromatin structure and differential gene expression, to predict transcriptional regulators of TGFβ1-inducible EMT in the MCF10A mammary epithelial cell line model. Bioinformatic analyses indicated comparatively minor contributions of SNAIL proteins and ZEB1 to TGFβ1-induced EMT, whereas the AP-1 subunit JUNB was anticipated to have a much larger impact. CRISPR/Cas9-mediated loss-of-function studies confirmed that TGFβ1-induced EMT proceeded independently of SNAIL proteins and ZEB1. In contrast, JUNB was necessary and sufficient for EMT in MCF10A cells, but not in A549 lung cancer cells, indicating cell-type-specificity of JUNB EMT-regulatory capacity. Nonetheless, the JUNB-dependence of EMT-associated transcriptional reprogramming in MCF10A cells allowed to define a gene expression signature which was regulated by TGFβ1 in diverse cellular backgrounds, showed positively correlated expression with TGFβ signaling in multiple cancer transcriptomes, and was predictive of patient survival in several cancer types. Altogether, our findings provide novel mechanistic insights into the context-dependent control of TGFβ1-driven EMT and thereby may lead to improved diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Pablo Antón-García
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Elham Bavafaye Haghighi
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Katja Rose
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Georg Vladimirov
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
26
|
Ito T, Ohta M, Osada A, Nishiyama A, Ishiguro KI, Tamura T, Sekita Y, Kimura T. Switching defective/sucrose non-fermenting chromatin remodeling complex coordinates meiotic gene activation via promoter remodeling and Meiosin activation in female germline. Genes Cells 2023; 28:15-28. [PMID: 36371617 DOI: 10.1111/gtc.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
In mammals, primordial germ cells (PGCs) enter meiosis and differentiate into primary oocytes in embryonic ovaries. Previously, we demonstrated that meiotic gene induction and meiotic initiation were impaired in female germline cells of conditional knockout (CKO) mice lacking the Smarcb1 (Snf5) gene, which encodes a core subunit of the switching defective/sucrose non-fermenting (SWI/SNF) complex. In this study, we classified meiotic genes expressed at lower levels in Snf5 CKO females into two groups based on promoter accessibility. The promoters of 74% of these genes showed lower accessibility in mutant mice, whereas those of the remaining genes were opened without the SWI/SNF complex. Notably, the former genes included Meiosin, which encodes a transcriptional regulator essential for meiotic gene activation. The promoters of the former and the latter genes were mainly modified with H3K27me3/bivalent and H3K4me3 histone marks, respectively. A subset of the former genes was precociously activated in female PGCs deficient in polycomb repressive complexes (PRCs). Our results point to a mechanism through which the SWI/SNF complex coordinates meiotic gene activation via the remodeling of PRC-repressed genes, including Meiosin, in female germline cells.
Collapse
Affiliation(s)
- Toshiaki Ito
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
- Chitose Laboratory Corp., Biotechnology Research Center, Kawasaki, Kanagawa, Japan
| | - Masami Ohta
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Atsuki Osada
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yoichi Sekita
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Graduate School of Science, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
27
|
Van den Berge K, Chou HJ, Roux de Bézieux H, Street K, Risso D, Ngai J, Dudoit S. Normalization benchmark of ATAC-seq datasets shows the importance of accounting for GC-content effects. CELL REPORTS METHODS 2022; 2:100321. [PMID: 36452861 PMCID: PMC9701614 DOI: 10.1016/j.crmeth.2022.100321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/23/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The assay for transposase-accessible chromatin using sequencing (ATAC-seq) allows the study of epigenetic regulation of gene expression by assessing chromatin configuration for an entire genome. Despite its popularity, there have been limited studies investigating the analytical challenges related to ATAC-seq data, with most studies leveraging tools developed for bulk transcriptome sequencing. Here, we show that GC-content effects are omnipresent in ATAC-seq datasets. Since the GC-content effects are sample specific, they can bias downstream analyses such as clustering and differential accessibility analysis. We introduce a normalization method based on smooth-quantile normalization within GC-content bins and evaluate it together with 11 different normalization procedures on 8 public ATAC-seq datasets. Accounting for GC-content effects in the normalization is crucial for common downstream ATAC-seq data analyses, improving accuracy and interpretability. Through case studies, we show that exploratory data analysis is essential to guide the choice of an appropriate normalization method for a given dataset.
Collapse
Affiliation(s)
- Koen Van den Berge
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Hsin-Jung Chou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hector Roux de Bézieux
- Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kelly Street
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Sandrine Dudoit
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
- Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
28
|
Wilson MR, Reske JJ, Chandler RL. AP-1 Subunit JUNB Promotes Invasive Phenotypes in Endometriosis. Reprod Sci 2022; 29:3266-3277. [PMID: 35616875 PMCID: PMC9669088 DOI: 10.1007/s43032-022-00974-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/15/2022] [Indexed: 01/06/2023]
Abstract
Endometriosis is a disease defined by the presence of abnormal endometrium at ectopic sites, causing pain and infertility in 10% of women. Mutations in the chromatin remodeling protein ARID1A (AT-rich interactive domain-containing protein 1A) have been identified in endometriosis, particularly in the more severe deep infiltrating endometriosis and ovarian endometrioma subtypes. ARID1A has been shown to regulate chromatin at binding sites of the Activator Protein 1 (AP-1) transcription factor, and AP-1 expression has been shown in multiple endometriosis models. Here, we describe a role for AP-1 subunit JUNB in promoting invasive phenotypes in endometriosis. Through a series of knockdown experiments in the 12Z endometriosis cell line, we show that JUNB expression in endometriosis promotes the expression of epithelial-to-mesenchymal transition genes co-regulated by ARID1A including transcription factors SNAI1 and SNAI2, cell adhesion molecules ICAM1 and VCAM1, and extracellular matrix remodelers LOX and LOXL2. In highly invasive ARID1A-deficient endometriotic cells, co-knockdown of JUNB is sufficient to suppress invasion. These results suggest that AP-1 plays an important role in the progression of invasive endometriosis, and that therapeutic inhibition of AP-1 could prevent the occurrence of deep infiltrating endometriosis.
Collapse
Affiliation(s)
- Mike R Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Jake J Reske
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
29
|
Iwasaki-Yokozawa S, Nanjo R, Akiyama-Oda Y, Oda H. Lineage-specific, fast-evolving GATA-like gene regulates zygotic gene activation to promote endoderm specification and pattern formation in the Theridiidae spider. BMC Biol 2022; 20:223. [PMID: 36203191 PMCID: PMC9535882 DOI: 10.1186/s12915-022-01421-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background
The process of early development varies across the species-rich phylum Arthropoda. Owing to the limited research strategies for dissecting lineage-specific processes of development in arthropods, little is known about the variations in early arthropod development at molecular resolution. The Theridiidae spider, Parasteatoda tepidariorum, has its genome sequenced and could potentially contribute to dissecting early embryonic processes. Results We present genome-wide identification of candidate genes that exhibit locally restricted expression in germ disc forming stage embryos of P. tepidariorum, based on comparative transcriptomes of isolated cells from different regions of the embryo. A subsequent pilot screen by parental RNA interference identifies three genes required for body axis formation. One of them is a GATA-like gene that has been fast evolving after duplication and divergence from a canonical GATA family gene. This gene is designated fuchi nashi (fuchi) after its knockdown phenotypes, where the cell movement toward the formation of a germ disc was reversed. fuchi expression occurs in cells outside a forming germ disc and persists in the endoderm. Transcriptome and chromatin accessibility analyses of fuchi pRNAi embryos suggest that early fuchi activity regulates chromatin state and zygotic gene activation to promote endoderm specification and pattern formation. We also show that there are many uncharacterized genes regulated by fuchi. Conclusions Our genome-based research using an arthropod phylogenetically distant from Drosophila identifies a lineage-specific, fast-evolving gene with key developmental roles in one of the earliest, genome-wide regulatory events, and allows for molecular exploration of the developmental variations in early arthropod embryos. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01421-0.
Collapse
Affiliation(s)
- Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan
| | - Ryota Nanjo
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.,Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| |
Collapse
|
30
|
Hsia CR, McAllister J, Hasan O, Judd J, Lee S, Agrawal R, Chang CY, Soloway P, Lammerding J. Confined migration induces heterochromatin formation and alters chromatin accessibility. iScience 2022; 25:104978. [PMID: 36117991 PMCID: PMC9474860 DOI: 10.1016/j.isci.2022.104978] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
During migration, cells often squeeze through small constrictions, requiring extensive deformation. We hypothesized that nuclear deformation associated with such confined migration could alter chromatin organization and function. By studying cells migrating through microfluidic devices that mimic interstitial spaces in vivo, we found that confined migration results in increased H3K9me3 and H3K27me3 heterochromatin marks that persist for days. This "confined migration-induced heterochromatin" (CMiH) was distinct from heterochromatin formation during migration initiation. Confined migration decreased chromatin accessibility at intergenic regions near centromeres and telomeres, suggesting heterochromatin spreading from existing sites. Consistent with the overall decrease in accessibility, global transcription was decreased during confined migration. Intriguingly, we also identified increased accessibility at promoter regions of genes linked to chromatin silencing, tumor invasion, and DNA damage response. Inhibiting CMiH reduced migration speed, suggesting that CMiH promotes confined migration. Together, our findings indicate that confined migration induces chromatin changes that regulate cell migration and other functions.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jawuanna McAllister
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ovais Hasan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Seoyeon Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Richa Agrawal
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chao-Yuan Chang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul Soloway
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Aivalioti MM, Bartholdy BA, Pradhan K, Bhagat TD, Zintiridou A, Jeong JJ, Thiruthuvanathan VJ, Pujato M, Paranjpe A, Zhang C, Levine RL, Viny AD, Wickrema A, Verma A, Will B. PU.1-Dependent Enhancer Inhibition Separates Tet2-Deficient Hematopoiesis from Malignant Transformation. Blood Cancer Discov 2022; 3:444-467. [PMID: 35820129 PMCID: PMC9894728 DOI: 10.1158/2643-3230.bcd-21-0226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022] Open
Abstract
Cytosine hypermethylation in and around DNA-binding sites of master transcription factors, including PU.1, occurs in aging hematopoietic stem cells following acquired loss-of-function mutations of DNA methyl-cytosine dioxygenase ten-eleven translocation-2 (TET2), albeit functional relevance has been unclear. We show that Tet2-deficient mouse hematopoietic stem and progenitor cells undergo malignant transformation upon compromised gene regulation through heterozygous deletion of an upstream regulatory region (UREΔ/WT) of the PU.1 gene. Although compatible with multilineage blood formation at young age, Tet2-deficient PU.1 UREΔ/WT mice develop highly penetrant, transplantable acute myeloid leukemia (AML) during aging. Leukemic stem and progenitor cells show hypermethylation at putative PU.1-binding sites, fail to activate myeloid enhancers, and are hallmarked by a signature of genes with impaired expression shared with human AML. Our study demonstrates that Tet2 and PU.1 jointly suppress leukemogenesis and uncovers a methylation-sensitive PU.1-dependent gene network as a unifying molecular vulnerability associated with AML. SIGNIFICANCE We identify moderately impaired PU.1 mRNA expression as a biological modality predisposing Tet2-deficient hematopoietic stem and progenitor cells to malignant transformation. Our study furthermore uncovers a methylation-sensitive PU.1 gene network as a common feature of myeloid leukemia potentially allowing for the identification of patients at risk for malignant transformation. See related commentary by Schleicher and Pietras, p. 378. This article is highlighted in the In This Issue feature, p. 369.
Collapse
Affiliation(s)
- Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Graduate Programs in the Biomedical Sciences, Albert Einstein College of Medicine, Bronx, New York
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Kith Pradhan
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Tushar D Bhagat
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Jong Jin Jeong
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Victor J Thiruthuvanathan
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Mario Pujato
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Aditi Paranjpe
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chi Zhang
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Ross L Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aaron D Viny
- Department of Genetics and Development, Columbia University, New York, New York
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Amit Verma
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| |
Collapse
|
32
|
Comprehensive assessment of differential ChIP-seq tools guides optimal algorithm selection. Genome Biol 2022; 23:119. [PMID: 35606795 PMCID: PMC9128273 DOI: 10.1186/s13059-022-02686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Background The analysis of chromatin binding patterns of proteins in different biological states is a main application of chromatin immunoprecipitation followed by sequencing (ChIP-seq). A large number of algorithms and computational tools for quantitative comparison of ChIP-seq datasets exist, but their performance is strongly dependent on the parameters of the biological system under investigation. Thus, a systematic assessment of available computational tools for differential ChIP-seq analysis is required to guide the optimal selection of analysis tools based on the present biological scenario. Results We created standardized reference datasets by in silico simulation and sub-sampling of genuine ChIP-seq data to represent different biological scenarios and binding profiles. Using these data, we evaluated the performance of 33 computational tools and approaches for differential ChIP-seq analysis. Tool performance was strongly dependent on peak size and shape as well as on the scenario of biological regulation. Conclusions Our analysis provides unbiased guidelines for the optimized choice of software tools in differential ChIP-seq analysis. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02686-y.
Collapse
|
33
|
So J, Lewis AC, Smith LK, Stanley K, Franich R, Yoannidis D, Pijpers L, Dominguez P, Hogg SJ, Vervoort SJ, Brown FC, Johnstone RW, McDonald G, Ulanet DB, Murtie J, Gruber E, Kats LM. Inhibition of pyrimidine biosynthesis targets protein translation in acute myeloid leukemia. EMBO Mol Med 2022; 14:e15203. [PMID: 35514210 PMCID: PMC9260210 DOI: 10.15252/emmm.202115203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) catalyzes one of the rate‐limiting steps in de novo pyrimidine biosynthesis, a pathway that provides essential metabolic precursors for nucleic acids, glycoproteins, and phospholipids. DHODH inhibitors (DHODHi) are clinically used for autoimmune diseases and are emerging as a novel class of anticancer agents, especially in acute myeloid leukemia (AML) where pyrimidine starvation was recently shown to reverse the characteristic differentiation block in AML cells. Herein, we show that DHODH blockade rapidly shuts down protein translation in leukemic stem cells (LSCs) and has potent and selective activity against multiple AML subtypes. Moreover, we find that ablation of CDK5, a gene that is recurrently deleted in AML and related disorders, increases the sensitivity of AML cells to DHODHi. Our studies provide important molecular insights and identify a potential biomarker for an emerging strategy to target AML.
Collapse
Affiliation(s)
- Joan So
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | - Lorey K Smith
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Kym Stanley
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Rheana Franich
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - David Yoannidis
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Lizzy Pijpers
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Pilar Dominguez
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephin J Vervoort
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Fiona C Brown
- Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | - Emily Gruber
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Lev M Kats
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
34
|
Hunter AL, Poolman TM, Kim D, Gonzalez FJ, Bechtold DA, Loudon ASI, Iqbal M, Ray DW. HNF4A modulates glucocorticoid action in the liver. Cell Rep 2022; 39:110697. [PMID: 35443180 PMCID: PMC9380254 DOI: 10.1016/j.celrep.2022.110697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 01/24/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
The glucocorticoid receptor (GR) is a nuclear receptor critical to the regulation of energy metabolism and inflammation. The actions of GR are dependent on cell type and context. Here, we demonstrate the role of liver lineage-determining factor hepatocyte nuclear factor 4A (HNF4A) in defining liver specificity of GR action. In mouse liver, the HNF4A motif lies adjacent to the glucocorticoid response element (GRE) at GR binding sites within regions of open chromatin. In the absence of HNF4A, the liver GR cistrome is remodeled, with loss and gain of GR recruitment evident. Loss of chromatin accessibility at HNF4A-marked sites associates with loss of GR binding at weak GRE motifs. GR binding and chromatin accessibility are gained at sites characterized by strong GRE motifs, which show GR recruitment in non-liver tissues. The functional importance of these HNF4A-regulated GR sites is indicated by an altered transcriptional response to glucocorticoid treatment in the Hnf4a-null liver.
Collapse
Affiliation(s)
- A Louise Hunter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Toryn M Poolman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Bechtold
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andrew S I Loudon
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Mudassar Iqbal
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
35
|
Brauns E, Azouz A, Grimaldi D, Xiao H, Thomas S, Nguyen M, Olislagers V, Vu Duc I, Orte Cano C, Del Marmol V, Pannus P, Libert F, Saussez S, Dauby N, Das J, Marchant A, Goriely S. Functional reprogramming of monocytes in acute and convalescent severe COVID-19 patients. JCI Insight 2022; 7:154183. [PMID: 35380990 PMCID: PMC9090263 DOI: 10.1172/jci.insight.154183] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Severe COVID-19 disease is associated with dysregulation of the myeloid compartment during acute infection. Survivors frequently experience long-lasting sequelae, but little is known about the eventual persistence of this immune alteration. Herein, we evaluated TLR-induced cytokine responses in a cohort of mild to critical patients during acute or convalescent phases (n = 97). In the acute phase, we observed impaired cytokine production by monocytes in the patients with the most severe COVID-19. This capacity was globally restored in convalescent patients. However, we observed increased responsiveness to TLR1/2 ligation in patients who recovered from severe disease, indicating that these cells display distinct functional properties at the different stages of the disease. In patients with acute severe COVID-19, we identified a specific transcriptomic and epigenomic state in monocytes that can account for their functional refractoriness. The molecular profile of monocytes from recovering patients was distinct and characterized by increased chromatin accessibility at activating protein 1 (AP1) and MAF loci. These results demonstrate that severe COVID-19 infection has a profound impact on the differentiation status and function of circulating monocytes, during both the acute and the convalescent phases, in a completely distinct manner. This could have important implications for our understanding of short- and long-term COVID-19–related morbidity.
Collapse
Affiliation(s)
- Elisa Brauns
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Hanxi Xiao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Séverine Thomas
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Muriel Nguyen
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Olislagers
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Ines Vu Duc
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Pieter Pannus
- SD Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Frédérick Libert
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Sven Saussez
- Department of Otolaryngology, Université de Mons, Mons, Belgium
| | - Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
36
|
Bediaga NG, Garnham AL, Naselli G, Bandala-Sanchez E, Stone NL, Cobb J, Harbison JE, Wentworth JM, Ziegler AG, Couper JJ, Smyth GK, Harrison LC. Cytotoxicity-Related Gene Expression and Chromatin Accessibility Define a Subset of CD4+ T Cells That Mark Progression to Type 1 Diabetes. Diabetes 2022; 71:566-577. [PMID: 35007320 PMCID: PMC8893947 DOI: 10.2337/db21-0612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/12/2021] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes in children is heralded by a preclinical phase defined by circulating autoantibodies to pancreatic islet antigens. How islet autoimmunity is initiated and then progresses to clinical diabetes remains poorly understood. Only one study has reported gene expression in specific immune cells of children at risk associated with progression to islet autoimmunity. We analyzed gene expression with RNA sequencing in CD4+ and CD8+ T cells, natural killer (NK) cells, and B cells, and chromatin accessibility by assay for transposase-accessible chromatin sequencing (ATAC-seq) in CD4+ T cells, in five genetically at risk children with islet autoantibodies who progressed to diabetes over a median of 3 years ("progressors") compared with five children matched for sex, age, and HLA-DR who had not progressed ("nonprogressors"). In progressors, differentially expressed genes (DEGs) were largely confined to CD4+ T cells and enriched for cytotoxicity-related genes/pathways. Several top-ranked DEGs were validated in a semi-independent cohort of 13 progressors and 11 nonprogressors. Flow cytometry confirmed that progression was associated with expansion of CD4+ cells with a cytotoxic phenotype. By ATAC-seq, progression was associated with reconfiguration of regulatory chromatin regions in CD4+ cells, some linked to differentially expressed cytotoxicity-related genes. Our findings suggest that cytotoxic CD4+ T cells play a role in promoting progression to type 1 diabetes.
Collapse
Affiliation(s)
- Naiara G. Bediaga
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Gaetano Naselli
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Esther Bandala-Sanchez
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Natalie L. Stone
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Joanna Cobb
- Murdoch Children’s Research Institute, Parkville, Australia
| | - Jessica E. Harbison
- Department of Endocrinology and Diabetes, Women’s and Children’s Hospital, North Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - John M. Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia
| | - Annette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jennifer J. Couper
- Department of Endocrinology and Diabetes, Women’s and Children’s Hospital, North Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Leonard C. Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Corresponding author: Leonard C. Harrison,
| |
Collapse
|
37
|
Zhu P, Hamlish NX, Thakkar AV, Steffeck AWT, Rendleman EJ, Khan NH, Waldeck NJ, DeVilbiss AW, Martin-Sandoval MS, Mathews TP, Chandel NS, Peek CB. BMAL1 drives muscle repair through control of hypoxic NAD + regeneration in satellite cells. Genes Dev 2022; 36:149-166. [PMID: 35115380 PMCID: PMC8887128 DOI: 10.1101/gad.349066.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023]
Abstract
The process of tissue regeneration occurs in a developmentally timed manner, yet the role of circadian timing is not understood. Here, we identify a role for the adult muscle stem cell (MuSC)-autonomous clock in the control of muscle regeneration following acute ischemic injury. We observed greater muscle repair capacity following injury during the active/wake period as compared with the inactive/rest period in mice, and loss of Bmal1 within MuSCs leads to impaired muscle regeneration. We demonstrate that Bmal1 loss in MuSCs leads to reduced activated MuSC number at day 3 postinjury, indicating a failure to properly expand the myogenic precursor pool. In cultured primary myoblasts, we observed that loss of Bmal1 impairs cell proliferation in hypoxia (a condition that occurs in the first 1-3 d following tissue injury in vivo), as well as subsequent myofiber differentiation. Loss of Bmal1 in both cultured myoblasts and in vivo activated MuSCs leads to reduced glycolysis and premature activation of prodifferentiation gene transcription and epigenetic remodeling. Finally, hypoxic cell proliferation and myofiber formation in Bmal1-deficient myoblasts are restored by increasing cytosolic NAD+ Together, we identify the MuSC clock as a pivotal regulator of oxygen-dependent myoblast cell fate and muscle repair through the control of the NAD+-driven response to injury.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Noah X Hamlish
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Abhishek Vijay Thakkar
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Adam W T Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Nabiha H Khan
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Nathan J Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Andrew W DeVilbiss
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Misty S Martin-Sandoval
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Thomas P Mathews
- Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Navdeep S Chandel
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
38
|
Corrales E, Levit-Zerdoun E, Metzger P, Kowar S, Ku M, Brummer T, Boerries M. Dynamic transcriptome analysis reveals signatures of paradoxical effect of vemurafenib on human dermal fibroblasts. Cell Commun Signal 2021; 19:123. [PMID: 34930313 PMCID: PMC8686565 DOI: 10.1186/s12964-021-00801-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vemurafenib (PLX4032) is one of the most frequently used treatments for late-stage melanoma patients with the BRAFV600E mutation; however, acquired resistance to the drug poses as a major challenge. It remains to be determined whether off-target effects of vemurafenib on normal stroma components could reshape the tumor microenvironment in a way that contributes to cancer progression and drug resistance. METHODS By using temporally-resolved RNA- and ATAC-seq, we studied the early molecular changes induced by vemurafenib in human dermal fibroblast (HDF), a main stromal component in melanoma and other tumors with high prevalence of BRAFV600 mutations. RESULTS Transcriptomics analyses revealed a stepwise up-regulation of proliferation signatures, together with a down-regulation of autophagy and proteolytic processes. The gene expression changes in HDF strongly correlated in an inverse way with those in BRAFV600E mutant malignant melanoma (MaMel) cell lines, consistent with the observation of a paradoxical effect of vemurafenib, leading to hyperphosphorylation of MEK1/2 and ERK1/2. The transcriptional changes in HDF were not strongly determined by alterations in chromatin accessibility; rather, an already permissive chromatin landscape seemed to facilitate the early accessibility to MAPK/ERK-regulated transcription factor binding sites. Combinatorial treatment with the MEK inhibitor trametinib did not preclude the paradoxical activation of MAPK/ERK signaling in HDF. When administered together, vemurafenib partially compensated for the reduction of cell viability and proliferation induced by trametinib. These paradoxical changes were restrained by using the third generation BRAF inhibitor PLX8394, a so-called paradox breaker compound. However, the advantageous effects on HDF during combination therapies were also lost. CONCLUSIONS Vemurafenib induces paradoxical changes in HDF, enabled by a permissive chromatin landscape. These changes might provide an advantage during combination therapies, by compensating for the toxicity induced in stromal cells by less specific MAPK/ERK inhibitors. Our results highlight the relevance of evaluating the effects of the drugs on non-transformed stromal components, carefully considering the implications of their administration either as mono- or combination therapies. Video Abstract.
Collapse
Affiliation(s)
- Eyleen Corrales
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Ella Levit-Zerdoun
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Silke Kowar
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, 79106 Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
39
|
Bachireddy P, Azizi E, Burdziak C, Nguyen VN, Ennis CS, Maurer K, Park CY, Choo ZN, Li S, Gohil SH, Ruthen NG, Ge Z, Keskin DB, Cieri N, Livak KJ, Kim HT, Neuberg DS, Soiffer RJ, Ritz J, Alyea EP, Pe'er D, Wu CJ. Mapping the evolution of T cell states during response and resistance to adoptive cellular therapy. Cell Rep 2021; 37:109992. [PMID: 34758319 PMCID: PMC9035342 DOI: 10.1016/j.celrep.2021.109992] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 06/23/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
To elucidate mechanisms by which T cells eliminate leukemia, we study donor lymphocyte infusion (DLI), an established immunotherapy for relapsed leukemia. We model T cell dynamics by integrating longitudinal, multimodal data from 94,517 bone marrow-derived single T cell transcriptomes in addition to chromatin accessibility and single T cell receptor sequencing from patients undergoing DLI. We find that responsive tumors are defined by enrichment of late-differentiated T cells before DLI and rapid, durable expansion of early differentiated T cells after treatment, highly similar to "terminal" and "precursor" exhausted subsets, respectively. Resistance, in contrast, is defined by heterogeneous T cell dysfunction. Surprisingly, early differentiated T cells in responders mainly originate from pre-existing and novel clonotypes recruited to the leukemic microenvironment, rather than the infusion. Our work provides a paradigm for analyzing longitudinal single-cell profiling of scenarios beyond adoptive cell therapy and introduces Symphony, a Bayesian approach to infer regulatory circuitry underlying T cell subsets, with broad relevance to exhaustion antagonists across cancers.
Collapse
Affiliation(s)
- Pavan Bachireddy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Hematopoietic Biology & Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Prevention and Research Institute of Texas (CPRIT) Scholar in Cancer Research, Austin, TX 78701, USA.
| | - Elham Azizi
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Biomedical Engineering and Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA.
| | - Cassandra Burdziak
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vinhkhang N Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Christina S Ennis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Katie Maurer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Cameron Y Park
- Department of Biomedical Engineering and Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
| | - Zi-Ning Choo
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Satyen H Gohil
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Neil G Ruthen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhongqi Ge
- Department of Hematopoietic Biology & Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Derin B Keskin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicoletta Cieri
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Haesook T Kim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Edwin P Alyea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute of Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Barragán-Rosillo AC, Peralta-Alvarez CA, Ojeda-Rivera JO, Arzate-Mejía RG, Recillas-Targa F, Herrera-Estrella L. Genome accessibility dynamics in response to phosphate limitation is controlled by the PHR1 family of transcription factors in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:e2107558118. [PMID: 34385324 PMCID: PMC8379931 DOI: 10.1073/pnas.2107558118] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As phosphorus is one of the most limiting nutrients in many natural and agricultural ecosystems, plants have evolved strategies that cope with its scarcity. Genetic approaches have facilitated the identification of several molecular elements that regulate the phosphate (Pi) starvation response (PSR) of plants, including the master regulator of the transcriptional response to phosphate starvation PHOSPHATE STARVATION RESPONSE1 (PHR1). However, the chromatin modifications underlying the plant transcriptional response to phosphate scarcity remain largely unknown. Here, we present a detailed analysis of changes in chromatin accessibility during phosphate starvation in Arabidopsis thaliana root cells. Root cells undergo a genome-wide remodeling of chromatin accessibility in response to Pi starvation that is often associated with changes in the transcription of neighboring genes. Analysis of chromatin accessibility in the phr1 phl2 double mutant revealed that the transcription factors PHR1 and PHL2 play a key role in remodeling chromatin accessibility in response to Pi limitation. We also discovered that PHR1 and PHL2 play an important role in determining chromatin accessibility and the associated transcription of many genes under optimal Pi conditions, including genes involved in the PSR. We propose that a set of transcription factors directly activated by PHR1 in Pi-starved root cells trigger a second wave of epigenetic changes required for the transcriptional activation of the complete set of low-Pi-responsive genes.
Collapse
Affiliation(s)
- Alfonso Carlos Barragán-Rosillo
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Intituto Politecnico Nacional, 36500 Irapuato, Guanajuato, México
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79430
| | - Carlos Alberto Peralta-Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Jonathan Odilón Ojeda-Rivera
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Intituto Politecnico Nacional, 36500 Irapuato, Guanajuato, México
| | - Rodrigo G Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Intituto Politecnico Nacional, 36500 Irapuato, Guanajuato, México;
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79430
| |
Collapse
|
41
|
Polit L, Kerdivel G, Gregoricchio S, Esposito M, Guillouf C, Boeva V. CHIPIN: ChIP-seq inter-sample normalization based on signal invariance across transcriptionally constant genes. BMC Bioinformatics 2021; 22:407. [PMID: 34404353 PMCID: PMC8371782 DOI: 10.1186/s12859-021-04320-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 07/30/2021] [Indexed: 01/02/2023] Open
Abstract
Background Multiple studies rely on ChIP-seq experiments to assess the effect of gene modulation and drug treatments on protein binding and chromatin structure. However, most methods commonly used for the normalization of ChIP-seq binding intensity signals across conditions, e.g., the normalization to the same number of reads, either assume a constant signal-to-noise ratio across conditions or base the estimates of correction factors on genomic regions with intrinsically different signals between conditions. Inaccurate normalization of ChIP-seq signal may, in turn, lead to erroneous biological conclusions. Results We developed a new R package, CHIPIN, that allows normalizing ChIP-seq signals across different conditions/samples when spike-in information is not available, but gene expression data are at hand. Our normalization technique is based on the assumption that, on average, no differences in ChIP-seq signals should be observed in the regulatory regions of genes whose expression levels are constant across samples/conditions. In addition to normalizing ChIP-seq signals, CHIPIN provides as output a number of graphs and calculates statistics allowing the user to assess the efficiency of the normalization and qualify the specificity of the antibody used. In addition to ChIP-seq, CHIPIN can be used without restriction on open chromatin ATAC-seq or DNase hypersensitivity data. We validated the CHIPIN method on several ChIP-seq data sets and documented its superior performance in comparison to several commonly used normalization techniques. Conclusions The CHIPIN method provides a new way for ChIP-seq signal normalization across conditions when spike-in experiments are not available. The method is implemented in a user-friendly R package available on GitHub: https://github.com/BoevaLab/CHIPIN Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04320-3.
Collapse
Affiliation(s)
- Lélia Polit
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, 75014, Paris, France
| | - Gwenneg Kerdivel
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, 75014, Paris, France
| | - Sebastian Gregoricchio
- INSERM UMR1170, Equipe Labellisée Ligue Nationale Contre Le Cancer, Gustave Roussy, Paris-Saclay University, 94800, Villejuif, France
| | - Michela Esposito
- INSERM UMR1170, Equipe Labellisée Ligue Nationale Contre Le Cancer, Gustave Roussy, Paris-Saclay University, 94800, Villejuif, France
| | - Christel Guillouf
- INSERM UMR1170, Equipe Labellisée Ligue Nationale Contre Le Cancer, Gustave Roussy, Paris-Saclay University, 94800, Villejuif, France
| | - Valentina Boeva
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, 75014, Paris, France. .,Department of Computer Science, Institute for Machine Learning, ETH Zurich, 8092, Zurich, Switzerland. .,Swiss Institute for Bioinformatics (SIB), Zürich, Switzerland.
| |
Collapse
|
42
|
Brien GL, Bressan RB, Monger C, Gannon D, Lagan E, Doherty AM, Healy E, Neikes H, Fitzpatrick DJ, Deevy O, Grant V, Marqués-Torrejón MA, Alfazema N, Pollard SM, Bracken AP. Simultaneous disruption of PRC2 and enhancer function underlies histone H3.3-K27M oncogenic activity in human hindbrain neural stem cells. Nat Genet 2021; 53:1221-1232. [PMID: 34294917 DOI: 10.1038/s41588-021-00897-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
Driver mutations in genes encoding histone H3 proteins resulting in p.Lys27Met substitutions (H3-K27M) are frequent in pediatric midline brain tumors. However, the precise mechanisms by which H3-K27M causes tumor initiation remain unclear. Here, we use human hindbrain neural stem cells to model the consequences of H3.3-K27M on the epigenomic landscape in a relevant developmental context. Genome-wide mapping of epitope-tagged histone H3.3 revealed that both the wild type and the K27M mutant incorporate abundantly at pre-existing active enhancers and promoters, and to a lesser extent at Polycomb repressive complex 2 (PRC2)-bound regions. At active enhancers, H3.3-K27M leads to focal H3K27ac loss, decreased chromatin accessibility and reduced transcriptional expression of nearby neurodevelopmental genes. In addition, H3.3-K27M deposition at a subset of PRC2 target genes leads to increased PRC2 and PRC1 binding and augmented transcriptional repression that can be partially reversed by PRC2 inhibitors. Our work suggests that, rather than imposing de novo transcriptional circuits, H3.3-K27M drives tumorigenesis by locking initiating cells in their pre-existing, immature epigenomic state, via disruption of PRC2 and enhancer functions.
Collapse
Affiliation(s)
- Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | - Raul Bardini Bressan
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Craig Monger
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Dáire Gannon
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Eimear Lagan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Anthony M Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Hannah Neikes
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Deevy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Vivien Grant
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria-Angeles Marqués-Torrejón
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Neza Alfazema
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Steven M Pollard
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK.
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
43
|
Dhaka B, Sabarinathan R. Differential chromatin accessibility landscape of gain-of-function mutant p53 tumours. BMC Cancer 2021; 21:669. [PMID: 34090364 PMCID: PMC8180165 DOI: 10.1186/s12885-021-08362-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in TP53 not only affect its tumour suppressor activity but also exerts oncogenic gain-of-function activity. While the genome-wide mutant p53 binding sites have been identified in cancer cell lines, the chromatin accessibility landscape driven by mutant p53 in primary tumours is unknown. Here, we leveraged the chromatin accessibility data of primary tumours from The Cancer Genome Atlas (TCGA) to identify differentially accessible regions in mutant p53 tumours compared to wild-type p53 tumours, especially in breast and colon cancers. RESULTS We identified 1587 lost and 984 gained accessible chromatin regions in breast, and 1143 lost and 640 gained regions in colon cancers. However, only less than half of those regions in both cancer types contain sequence motifs for wild-type or mutant p53 binding. Whereas, the remaining showed enrichment for master transcriptional regulators, such as FOX-Family TFs and NF-kB in lost and SMAD and KLF TFs in gained regions of breast. In colon, ATF3 and FOS/JUN TFs were enriched in lost, and CDX family TFs and HNF4A in gained regions. By integrating the gene expression data, we identified known and novel target genes regulated by the mutant p53. CONCLUSION This study reveals the direct and indirect mechanisms by which gain-of-function mutant p53 targets the chromatin and subsequent gene expression patterns in a tumour-type specific manner. This furthers our understanding of the impact of mutant p53 in cancer development.
Collapse
Affiliation(s)
- Bhavya Dhaka
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Radhakrishnan Sabarinathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.
| |
Collapse
|
44
|
Cabral JM, Cushman CH, Sodroski CN, Knipe DM. ATRX limits the accessibility of histone H3-occupied HSV genomes during lytic infection. PLoS Pathog 2021; 17:e1009567. [PMID: 33909709 PMCID: PMC8109836 DOI: 10.1371/journal.ppat.1009567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/10/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Histones are rapidly loaded on the HSV genome upon entry into the nucleus of human fibroblasts, but the effects of histone loading on viral replication have not been fully defined. We showed recently that ATRX is dispensable for de novo deposition of H3 to HSV genomes after nuclear entry but restricted infection through maintenance of viral heterochromatin. To further investigate the roles that ATRX and other histone H3 chaperones play in restriction of HSV, we infected human fibroblasts that were systematically depleted of nuclear H3 chaperones. We found that the ATRX/DAXX complex is unique among nuclear H3 chaperones in its capacity to restrict ICP0-null HSV infection. Only depletion of ATRX significantly alleviated restriction of viral replication. Interestingly, no individual nuclear H3 chaperone was required for deposition of H3 onto input viral genomes, suggesting that during lytic infection, H3 deposition may occur through multiple pathways. ChIP-seq for total histone H3 in control and ATRX-KO cells infected with ICP0-null HSV showed that HSV DNA is loaded with high levels of histones across the entire viral genome. Despite high levels of H3, ATAC-seq analysis revealed that HSV DNA is highly accessible, especially in regions of high GC content, and is not organized largely into ordered nucleosomes during lytic infection. ATRX reduced accessibility of viral DNA to the activity of a TN5 transposase and enhanced accumulation of viral DNA fragment sizes associated with nucleosome-like structures. Together, these findings support a model in which ATRX restricts viral infection by altering the structure of histone H3-loaded viral chromatin that reduces viral DNA accessibility for transcription. High GC rich regions of the HSV genome, especially the S component inverted repeats of the HSV-1 genome, show increased accessibility, which may lead to increased ability to transcribe the IE genes encoded in these regions during initiation of infection.
Collapse
Affiliation(s)
- Joseph M. Cabral
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Camille H. Cushman
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Catherine N. Sodroski
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David M. Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
45
|
Wang FX, Shang GD, Wu LY, Mai YX, Gao J, Xu ZG, Wang JW. Protocol for assaying chromatin accessibility using ATAC-seq in plants. STAR Protoc 2021; 2:100289. [PMID: 33532736 PMCID: PMC7821035 DOI: 10.1016/j.xpro.2020.100289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Open or accessible regions of the genome are the primary positions of binding sites for transcription factors and chromatin regulators. Transposase-accessible chromatin sequencing (ATAC-seq) can probe chromatin accessibility in the intact nucleus. Here, we describe a protocol to generate ATAC-seq libraries from fresh Arabidopsis thaliana tissues and establish an easy-to-use bioinformatic analysis pipeline. Our method could be applied to other plants and other tissues and allows for the reliable detection of changes in chromatin accessibility throughout plant growth and development. For complete details on the use and execution of this protocol, please refer to Wang et al. (2020). A protocol to generate ATAC-seq libraries from fresh plant tissues An easy-to-use bioinformatic analysis pipeline for ATAC-seq Identification of differentially accessible peaks by ATAC-seq
Collapse
Affiliation(s)
- Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China.,University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China.,University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Lian-Yu Wu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China.,ShanghaiTech University, Shanghai 200031, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China.,University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China.,University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS center for Excellence in Molecular Plant Science, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China.,ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
46
|
Minnoye L, Marinov GK, Krausgruber T, Pan L, Marand AP, Secchia S, Greenleaf WJ, Furlong EEM, Zhao K, Schmitz RJ, Bock C, Aerts S. Chromatin accessibility profiling methods. NATURE REVIEWS. METHODS PRIMERS 2021; 1:10. [PMID: 38410680 PMCID: PMC10895463 DOI: 10.1038/s43586-020-00008-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Chromatin accessibility, or the physical access to chromatinized DNA, is a widely studied characteristic of the eukaryotic genome. As active regulatory DNA elements are generally 'accessible', the genome-wide profiling of chromatin accessibility can be used to identify candidate regulatory genomic regions in a tissue or cell type. Multiple biochemical methods have been developed to profile chromatin accessibility, both in bulk and at the single-cell level. Depending on the method, enzymatic cleavage, transposition or DNA methyltransferases are used, followed by high-throughput sequencing, providing a view of genome-wide chromatin accessibility. In this Primer, we discuss these biochemical methods, as well as bioinformatics tools for analysing and interpreting the generated data, and insights into the key regulators underlying developmental, evolutionary and disease processes. We outline standards for data quality, reproducibility and deposition used by the genomics community. Although chromatin accessibility profiling is invaluable to study gene regulation, alone it provides only a partial view of this complex process. Orthogonal assays facilitate the interpretation of accessible regions with respect to enhancer-promoter proximity, functional transcription factor binding and regulatory function. We envision that technological improvements including single-molecule, multi-omics and spatial methods will bring further insight into the secrets of genome regulation.
Collapse
Affiliation(s)
- Liesbeth Minnoye
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lixia Pan
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | | | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stein Aerts
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Reske JJ, Wilson MR, Holladay J, Wegener M, Adams M, Chandler RL. SWI/SNF inactivation in the endometrial epithelium leads to loss of epithelial integrity. Hum Mol Genet 2020; 29:3412-3430. [PMID: 33075803 PMCID: PMC7749707 DOI: 10.1093/hmg/ddaa227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Although ARID1A mutations are a hallmark feature, mutations in other SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling subunits are also observed in endometrial neoplasms. Here, we interrogated the roles of Brahma/SWI2-related gene 1 (BRG1, SMARCA4), the SWI/SNF catalytic subunit, in the endometrial epithelium. BRG1 loss affects more than one-third of all active genes and highly overlaps with the ARID1A gene regulatory network. Chromatin immunoprecipitation studies revealed widespread subunit-specific differences in transcriptional regulation, as BRG1 promoter interactions are associated with gene activation, while ARID1A binding is associated with gene repression. However, we identified a physiologically relevant subset of BRG1 and ARID1A co-regulated epithelial identity genes. Mice were genetically engineered to inactivate BRG1 specifically in the endometrial epithelium. Endometrial glands were observed embedded in uterine myometrium, indicating adenomyosis-like phenotypes. Molecular similarities were observed between BRG1 and ARID1A mutant endometrial cells in vivo, including loss of epithelial cell adhesion and junction genes. Collectively, these studies illustrate overlapping contributions of multiple SWI/SNF subunit mutations in the translocation of endometrium to distal sites, with loss of cell integrity being a common feature in SWI/SNF mutant endometrial epithelia.
Collapse
Affiliation(s)
- Jake J Reske
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Mike R Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jeanne Holladay
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Marc Wegener
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Marie Adams
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ronald L Chandler
- To whom correspondence should be addressed at: Grand Rapids Research Center, 400 Monroe NW, Grand Rapids, MI 49503, USA. Tel: +1 6162340980;
| |
Collapse
|