1
|
Kim C, Tsai TH, Lopez R, McCullough A, Kasumov T. Obeticholic acid's effect on HDL function in MASH varies by diabetic status. Lipids 2024. [PMID: 39014264 DOI: 10.1002/lipd.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Inflammation and oxidative stress are the key factors in the pathogenesis of both metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis. Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, improves hepatic inflammation and fibrosis in patients with MASH. However, it also reduces HDL cholesterol, suggesting that OCA may increase cardiovascular disease (CVD) risk in patients with MASH. We assessed HDL cholesterol efflux function, antioxidant (paraoxonase and ceruloplasmin activity), pro-inflammatory index, and particle sizes in a small group of patients with and without diabetes (n = 10/group) at baseline and after 18 months of OCA treatment. Patients on lipid-lowering medications (statins, fibrates) were excluded. At baseline, ferritin levels were higher in patients with MASH without diabetes (336.5 [157.0, 451.0] vs. 83 [36.0, 151.0] ng/mL, p < 0.005). Markers of HDL functions were similar in both groups. OCA therapy significantly improved liver histology and liver enzymes but increased alkaline phosphatase levels in nondiabetic patients with MASH (p < 0.05). However, it did not have any significant effect on cholesterol efflux and the antioxidant paraoxonase functions. In nondiabetics, ceruloplasmin (CP) antioxidant activity decreased (p < 0.005) and the pro-inflammatory index of HDL increased (p < 0.005) due to OCA therapy. In contrast, in diabetics, OCA increased levels of pre-β-HDL-the HDL particles enhanced protective capacity (p = 0.005) with no alteration in HDL functionality. In all patients, serum glucose levels were negatively correlated with OCA-induced change in pro-inflammatory function in HDL (p < 0.001), which was primarily due to diabetes (p = 0.05). These preliminary results suggest a distinct effect of OCA therapy on diabetic and nondiabetic patients with MASH and warrant a future large-scale study.
Collapse
Affiliation(s)
- Chunki Kim
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Tsung-Heng Tsai
- Department of Mathematical Sciences, Kent State University, Kent, Ohio, USA
| | - Rocio Lopez
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Arthur McCullough
- Department of Hepatology and Gastroenterology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
- Department of Hepatology and Gastroenterology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Chen KL, Chou RH, Chang CC, Kuo CS, Wei JH, Huang PH, Lin SJ. The high-density lipoprotein cholesterol (HDL-C)-concentration-dependent association between anti-inflammatory capacity and sepsis: A single-center cross-sectional study. PLoS One 2024; 19:e0296863. [PMID: 38603717 PMCID: PMC11008828 DOI: 10.1371/journal.pone.0296863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 04/13/2024] Open
Abstract
INTRODUCTION Known to have pleiotropic functions, high-density lipoprotein (HDL) helps to regulate systemic inflammation during sepsis. As preserving HDL-C level is a promising therapeutic strategy for sepsis, the interaction between HDL and sepsis worth further investigation. This study aimed to determine the impact of sepsis on HDL's anti-inflammatory capacity and explore its correlations with disease severity and laboratory parameters. METHODS AND MATERIALS We enrolled 80 septic subjects admitted to the intensive care unit and 50 controls admitted for scheduled coronary angiography in this cross-sectional study. We used apolipoprotein-B depleted (apoB-depleted) plasma to measure the anti-inflammatory capacity of HDL-C. ApoB-depleted plasma's anti-inflammatory capacity is defined as its ability to suppress tumor necrosis factor-α-induced vascular cell adhesion molecule-1 (VCAM-1) expression in human umbilical-vein endothelial cells. A subgroup analysis was conducted to investigate in septic subjects according to disease severity. RESULTS ApoB-depleted plasma's anti-inflammatory capacity was reduced in septic subjects relative to controls (VCAM-1 mRNA fold change: 50.1% vs. 35.5%; p < 0.0001). The impairment was more pronounced in septic subjects with than in those without septic shock (55.8% vs. 45.3%, p = 0.0022). Both associations were rendered non-significant with the adjustment for the HDL-C level. In sepsis patients, VCAM-1 mRNA fold change correlated with the SOFA score (Spearman's r = 0.231, p = 0.039), lactate level (r = 0.297, p = 0.0074), HDL-C level (r = -0.370, p = 0.0007), and inflammatory markers (C-reactive protein level: r = 0.441, p <0.0001; white blood cell: r = 0.353, p = 0.0013). CONCLUSION ApoB-depleted plasma's anti-inflammatory capacity is reduced in sepsis patients and this association depends of HDL-C concentration. In sepsis patients, this capacity correlates with disease severity and inflammatory markers. These findings explain the prognostic role of the HDL-C level in sepsis and indirectly support the rationale for targeting HDL-C as sepsis treatment.
Collapse
Affiliation(s)
- Kai-Lee Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ruey-Hsing Chou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Chin Chang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Sung Kuo
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jih-Hua Wei
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Lai M, Jiang X, Wang B, Cheng Y, Su X. Novel Insights of ANGPTL-3 on Modulating Cholesterol Efflux Capacity Induced by HDL Particle. Curr Mol Med 2024; 24:771-779. [PMID: 37073658 DOI: 10.2174/1566524023666230418104400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND Angiopoietin-like protein 3 (ANGPTL-3) modulates lipid metabolism and the risk of coronary artery disease (CAD), especially stable angina (SA), via suppressing lipoprotein lipase (LPL). However, whether there are other mechanisms is not elucidated yet. The current research explored the modulatory roles of ANGPTL-3 on high-density lipoprotein (HDL), which further affects atherosclerotic development. METHODS A total of 200 individuals were enrolled in the present study. Serum ANGPTL- 3 levels were detected via enzyme-linked immunosorbent assays (ELISA). Cholesterol efflux capacity induced by HDL particles was detected through H3-cholesterol loading THP-1 cell. RESULTS The serum ANGPTL-3 levels presented no significant discordance between the SA group and the non-SA group, whereas the serum ANGPTL-3 levels in type 2 diabetes mellitus (T2DM) group were significantly elevated compared with those in the non-T2DM group [428.3 (306.2 to 736.8) ng/ml vs. 298.2 (156.8 to 555.6) ng/ml, p <0.05]. Additionally, the serum ANGPTL-3 levels were elevated in patients with low TG levels compared to those in patients with high TG levels [519.9 (377.6 to 809.0) ng/ml vs. 438.7 (329.2 to 681.0) ng/ml, p <0.05]. By comparison, the individuals in the SA group and T2DM group presented decreased cholesterol efflux induced by HDL particles [SA: (12.21±2.11)% vs. (15.51±2.76)%, p <0.05; T2DM: (11.24±2.13)% vs. (14.65± 3.27)%, p <0.05]. In addition, the serum concentrations of ANGPTL-3 were inversely associated with the cholesterol efflux capacity of HDL particles (r=-0.184, p <0.05). Through regression analysis, the serum concentrations of ANGPTL-3 were found to be an independent modulator of the cholesterol efflux capacity of HDL particles (standardized β=-0.172, p <0.05). CONCLUSION ANGPTL-3 exhibited a negative modulatory function on cholesterol efflux capacity induced by HDL particles.
Collapse
Affiliation(s)
- Min Lai
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiang Jiang
- Department of Pharmacy, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Hong BV, Zheng JJ, Romo EZ, Agus JK, Tang X, Arnold CD, Adu-Afarwuah S, Lartey A, Okronipa H, Dewey KG, Zivkovic AM. Seasonal Factors Are Associated with Activities of Enzymes Involved in High-Density Lipoprotein Metabolism among Pregnant Females in Ghana. Curr Dev Nutr 2023; 7:102041. [PMID: 38130330 PMCID: PMC10733676 DOI: 10.1016/j.cdnut.2023.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Background Small-quantity lipid-based nutrient supplements (SQ-LNS) during pregnancy and postnatally were previously shown to improve high-density lipoprotein (HDL) cholesterol efflux capacity (CEC) and length in the children of supplemented mothers at 18 mo of age in the International Lipid-Based Nutrient Supplements (iLiNS) DYAD trial in Ghana. However, the effects of SQ-LNS on maternal HDL functionality during pregnancy are unknown. Objective The goal of this cross-sectional, secondary outcome analysis was to compare HDL function in mothers supplemented with SQ-LNS vs. iron and folic acid (IFA) during gestation. Methods HDL CEC and the activities of 3 HDL-associated enzymes were analyzed in archived plasma samples (N = 197) from a subsample of females at 36 weeks of gestation enrolled in the iLiNS-DYAD trial in Ghana. Correlations between HDL function and birth outcomes, inflammatory markers C-reactive protein (CRP) and alpha-1-acid glycoprotein (AGP), and the effects of season were explored to determine the influence of these factors on HDL function in this cohort of pregnant females. Results There were no statistically significant differences in HDL CEC, plasma lecithin-cholesterol acyltransferase (LCAT) activity, cholesteryl ester transfer protein (CETP) activity, or phospholipid transfer protein (PLTP) activity between mothers supplemented with SQ-LNS compared with IFA control, and no statistically significant relationships between maternal HDL function and childbirth outcomes. LCAT activity was negatively correlated with plasma AGP (R = -0.19, P = 0.007) and CRP (R = -0.28, P < 0.001), CETP and LCAT activity were higher during the dry season compared to the wet season, and PLTP activity was higher in the wet season compared to the dry season. Conclusions Mothers in Ghana supplemented with SQ-LNS compared with IFA during gestation did not have measurable differences in HDL functionality, and maternal HDL function was not associated with childbirth outcomes. However, seasonal factors and markers of inflammation were associated with HDL function, indicating that these factors had a stronger influence on HDL functionality than SQ-LNS supplementation during pregnancy. Clinical Trial Registry number The study was registered as NCT00970866. https://clinicaltrials.gov/study/NCT00970866.
Collapse
Affiliation(s)
- Brian V Hong
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Eduardo Z Romo
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Charles D Arnold
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Seth Adu-Afarwuah
- Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | - Anna Lartey
- Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | - Harriet Okronipa
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Kathryn G Dewey
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
Wang Z, Yelamanchili D, Liu J, Gotto AM, Rosales C, Gillard BK, Pownall HJ. Serum opacity factor normalizes erythrocyte morphology in Scarb1 -/- mice in an HDL-free cholesterol-dependent way. J Lipid Res 2023; 64:100456. [PMID: 37821077 PMCID: PMC10641538 DOI: 10.1016/j.jlr.2023.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023] Open
Abstract
Compared with WT mice, HDL receptor-deficient (Scarb1-/-) mice have higher plasma levels of free cholesterol (FC)-rich HDL and exhibit multiple pathologies associated with a high mol% FC in ovaries, platelets, and erythrocytes, which are reversed by lowering HDL. Bacterial serum opacity factor (SOF) catalyzes the opacification of plasma by targeting and quantitatively converting HDL to neo HDL (HDL remnant), a cholesterol ester-rich microemulsion, and lipid-free APOA1. SOF delivery with an adeno-associated virus (AAVSOF) constitutively lowers plasma HDL-FC and reverses female infertility in Scarb1-/- mice in an HDL-dependent way. We tested whether AAVSOF delivery to Scarb1-/- mice will normalize erythrocyte morphology in an HDL-FC-dependent way. We determined erythrocyte morphology and FC content (mol%) in three groups-WT, untreated Scarb1-/- (control), and Scarb1-/- mice receiving AAVSOF-and correlated these with their respective HDL-mol% FC. Plasma-, HDL-, and tissue-lipid compositions were also determined. Plasma- and HDL-mol% FC positively correlated across all groups. Among Scarb1-/- mice, AAVSOF treatment normalized reticulocyte number, erythrocyte morphology, and erythrocyte-mol% FC. Erythrocyte-mol% FC positively correlated with HDL-mol% FC and with both the number of reticulocytes and abnormal erythrocytes. AAVSOF treatment also reduced FC of extravascular tissues to a lesser extent. HDL-FC spontaneously transfers from plasma HDL to cell membranes. AAVSOF treatment lowers erythrocyte-FC and normalizes erythrocyte morphology and lipid composition by reducing HDL-mol% FC.
Collapse
Affiliation(s)
- Ziyi Wang
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Departments of Endocrinology and Xiangya Hospital, Central South University, Changsha, China
| | | | - Jing Liu
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Departments of Endocrinology and Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Antonio M Gotto
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Baiba K Gillard
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Hong BV, Zheng J, Zivkovic AM. HDL Function across the Lifespan: From Childhood, to Pregnancy, to Old Age. Int J Mol Sci 2023; 24:15305. [PMID: 37894984 PMCID: PMC10607703 DOI: 10.3390/ijms242015305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The function of high-density lipoprotein (HDL) particles has emerged as a promising therapeutic target and the measurement of HDL function is a promising diagnostic across several disease states. The vast majority of research on HDL functional biology has focused on adult participants with underlying chronic diseases, whereas limited research has investigated the role of HDL in childhood, pregnancy, and old age. Yet, it is apparent that functional HDL is essential at all life stages for maintaining health. In this review, we discuss current data regarding the role of HDL during childhood, pregnancy and in the elderly, how disturbances in HDL may lead to adverse health outcomes, and knowledge gaps in the role of HDL across these life stages.
Collapse
Affiliation(s)
| | | | - Angela M. Zivkovic
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.)
| |
Collapse
|
7
|
Sadana P, Edler M, Aghayev M, Arias-Alvarado A, Cohn E, Ilchenko S, Piontkivska H, Pillai JA, Kashyap S, Kasumov T. Metabolic labeling unveils alterations in the turnover of HDL-associated proteins during diabetes progression in mice. Am J Physiol Endocrinol Metab 2022; 323:E480-E491. [PMID: 36223521 PMCID: PMC9722254 DOI: 10.1152/ajpendo.00158.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/21/2023]
Abstract
Several aspects of diabetes pathophysiology and complications result from hyperglycemia-induced alterations in the structure and function of plasma proteins. Furthermore, insulin has a significant influence on protein metabolism by affecting both the synthesis and degradation of proteins in various tissues. To understand the role of progressive hyperglycemia on plasma proteins, in this study, we measured the turnover rates of high-density lipoprotein (HDL)-associated proteins in control (chow diet), prediabetic [a high-fat diet (HFD) for 8 wk] or diabetic [HFD for 8 wk with low-dose streptozotocin (HFD + STZ) in weeks 5-8 of HFD] C57BL/6J mice using heavy water (2H2O)-based metabolic labeling approach. Compared with control mice, HFD and HFD + STZ mice showed elevations of fasting plasma glucose levels in the prediabetic and diabetic range, respectively. Furthermore, the HFD and HFD + STZ mice showed increased hepatic triglyceride (TG) levels, total plasma cholesterol, and plasma TGs. The kinetics of 40 proteins were quantified using the proteome dynamics method, which revealed an increase in the fractional synthesis rate (FSR) of HDL-associated proteins in the prediabetic mice compared with control mice, and a decrease in FSR in the diabetic mice. The pathway analysis revealed that proteins with altered turnover rates were involved in acute-phase response, lipid metabolism, and coagulation. In conclusion, prediabetes and diabetes have distinct effects on the turnover rates of HDL proteins. These findings suggest that an early dysregulation of the HDL proteome dynamics can provide mechanistic insights into the changes in protein levels in these conditions.NEW & NOTEWORTHY This study is the first to examine the role of gradual hyperglycemia during diabetes disease progression on HDL-associated protein dynamics in the prediabetes and diabetic mice. Our results show that the fractional synthesis rate of HDL-associated proteins increased in the prediabetic mice whereas it decreased in the diabetic mice compared with control mice. These kinetic changes can help to elucidate the mechanism of altered protein levels and HDL dysfunction during diabetes disease progression.
Collapse
Affiliation(s)
- Prabodh Sadana
- Department of Pharmacy Practice, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Melissa Edler
- Department of Anthropology, Kent State University, Kent, Ohio
| | - Mirjavid Aghayev
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Andrea Arias-Alvarado
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Emilie Cohn
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Serguei Ilchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| | - Helen Piontkivska
- Department of Biological Sciences, and Brain Health Research Institute, Kent State University, Kent, Ohio
| | - Jagan A Pillai
- Lou Ruvo Center for Brain Health, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Takhar Kasumov
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
8
|
Holzer M, Ljubojevic-Holzer S, Souza Junior DR, Stadler JT, Rani A, Scharnagl H, Ronsein GE, Marsche G. HDL Isolated by Immunoaffinity, Ultracentrifugation, or Precipitation is Compositionally and Functionally Distinct. J Lipid Res 2022; 63:100307. [PMID: 36511335 PMCID: PMC9720336 DOI: 10.1016/j.jlr.2022.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The HDL proteome has been widely recognized as an important mediator of HDL function. While a variety of HDL isolation methods exist, their impact on the HDL proteome and its associated function remain largely unknown. Here, we compared three of the most common methods for HDL isolation, namely immunoaffinity (IA), density gradient ultracentrifugation (UC), and dextran-sulfate precipitation (DS), in terms of their effects on the HDL proteome and associated functionalities. We used state-of-the-art mass spectrometry to identify 171 proteins across all three isolation methods. IA-HDL contained higher levels of paraoxonase 1, apoB, clusterin, vitronectin, and fibronectin, while UC-HDL had higher levels of apoA2, apoC3, and α-1-antytrypsin. DS-HDL was enriched with apoA4 and complement proteins, while the apoA2 content was very low. Importantly, size-exclusion chromatography analysis showed that IA-HDL isolates contained subspecies in the size range above 12 nm, which were entirely absent in UC-HDL and DS-HDL isolates. Analysis of these subspecies indicated that they primarily consisted of apoA1, IGκC, apoC1, and clusterin. Functional analysis revealed that paraoxonase 1 activity was almost completely lost in IA-HDL, despite high paraoxonase content. We observed that the elution conditions, using 3M thiocyanate, during IA resulted in an almost complete loss of paraoxonase 1 activity. Notably, the cholesterol efflux capacity of UC-HDL and DS-HDL was significantly higher compared to IA-HDL. Together, our data clearly demonstrate that the isolation procedure has a substantial impact on the composition, subclass distribution, and functionality of HDL. In summary, our data show that the isolation procedure has a significant impact on the composition, subclass distribution and functionality of HDL. Our data can be helpful in the comparison, replication and analysis of proteomic datasets of HDL.
Collapse
Affiliation(s)
- Michael Holzer
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria,BioTechMed Graz, Graz, Austria,For correspondence: Michael Holzer
| | - Senka Ljubojevic-Holzer
- BioTechMed Graz, Graz, Austria,Department of Cardiology, Medical University of Graz, Graz, Austria,Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | - Julia T. Stadler
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria
| | - Alankrita Rani
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gunther Marsche
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria,BioTechMed Graz, Graz, Austria
| |
Collapse
|
9
|
Mobilia M, Whitus C, Karakashian A, Lu HS, Daugherty A, Gordon SM. Dennd5b-Deficient Mice are Resistant to PCSK9-Induced Hypercholesterolemia and Diet-Induced Hepatic Steatosis. J Lipid Res 2022; 63:100296. [PMID: 36243100 PMCID: PMC9685390 DOI: 10.1016/j.jlr.2022.100296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022] Open
Abstract
Dennd5b plays a pivotal role in intestinal absorption of dietary lipids in mice and is associated with body mass index in humans. This study examined the impact of whole-body Dennd5b deletion on plasma lipid concentrations, atherosclerosis, and hepatic lipid metabolism in mice. Hypercholesterolemia was induced in Dennd5b-/- mice by infection with an adeno-associated virus expressing the proprotein convertase subtilisin/kexin type 9 serine protease (PCSK9) gain-of-function mutation (PCSK9D377Y) and feeding a Western diet for 12 weeks. Body weight and plasma lipid concentrations were monitored over 12 weeks, and then aortic atherosclerosis and hepatic lipid content were quantified. Compared to Dennd5b+/+ mice, Dennd5b-/- mice were resistant to diet-induced weight gain and PCSK9-induced hypercholesterolemia. Atherosclerosis quantified by en face analysis and in aortic root sections, revealed significantly smaller lesions in Dennd5b-/- compared to Dennd5b+/+ mice. Additionally, Dennd5b-/- mice had significantly less hepatic lipid content (triglyceride and cholesterol) compared to Dennd5b+/+ mice. To gain insight into the basis for reduced hepatic lipids, quantitative PCR was used to measure mRNA abundance of genes involved in hepatic lipid metabolism. Key genes involved in hepatic lipid metabolism and lipid storage were differentially expressed in Dennd5b-/- liver including Pparg, Cd36, and Pnpla3. These findings demonstrate a significant impact of Dennd5b on plasma and hepatic lipid concentrations and resistance to PCSK9-induced hypercholesterolemia in the absence of Dennd5b.
Collapse
Affiliation(s)
- Maura Mobilia
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Callie Whitus
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA,Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Scott M. Gordon
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA,Department of Physiology, University of Kentucky, Lexington, KY, USA,For correspondence: Scott M. Gordon
| |
Collapse
|
10
|
Krittanawong C, Isath A, Rosenson RS, Khawaja M, Wang Z, Fogg SE, Virani SS, Qi L, Cao Y, Long MT, Tangney CC, Lavie CJ. Alcohol Consumption and Cardiovascular Health. Am J Med 2022; 135:1213-1230.e3. [PMID: 35580715 PMCID: PMC9529807 DOI: 10.1016/j.amjmed.2022.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Studies evaluating alcohol consumption and cardiovascular diseases have shown inconsistent results. METHODS We performed a systematic review of peer-reviewed publications from an extensive query of Ovid MEDLINE, Ovid Embase, Ovid Cochrane Database of Systematic Reviews, Scopus, and Web of Science from database inception to March 2022 for all studies that reported the association between alcohol consumption in terms of quantity (daily or weekly amounts) and type of beverage (wine, beer or spirit) and cardiovascular disease events. RESULTS The study population included a total of 1,579,435 individuals based on 56 cohorts from several countries. We found that moderate wine consumption defined as 1-4 drinks per week was associated with a reduction in risk for cardiovascular mortality when compared with beer or spirits. However, higher risk for cardiovascular disease mortality was typically seen with heavier daily or weekly alcohol consumption across all types of beverages. CONCLUSIONS It is possible that the observational studies may overestimate the benefits of alcohol for cardiovascular disease outcomes. Although moderate wine consumption is probably associated with low cardiovascular disease events, there are many confounding factors, in particular, lifestyle, genetic, and socioeconomic associations with wine drinking, which likely explain much of the association with wine and reduced cardiovascular disease events. Further prospective study of alcohol and all-cause mortality, including cancer, is needed.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- The Michael E. DeBakey VA Medical Center, Houston, Texas; Section of Cardiology, Baylor College of Medicine, Houston, Texas.
| | - Ameesh Isath
- Department of Cardiology, Westchester Medical Center, New York Medical College, Valhalla
| | - Robert S Rosenson
- Cardiometabolic Unit, Mount Sinai Hospital, Mount Sinai Heart, New York, NY; Mayo Clinic Evidence-based Practice Center, Rochester, Minn
| | - Muzamil Khawaja
- Section of Cardiology, Baylor College of Medicine, Houston, Texas
| | - Zhen Wang
- Cardiometabolic Unit, Mount Sinai Hospital, Mount Sinai Heart, New York, NY; Mayo Clinic Evidence-based Practice Center, Rochester, Minn; Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery; Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, Minn
| | - Sonya E Fogg
- Library and Learning Resource Center, Texas Heart Institute, Houston
| | - Salim S Virani
- The Michael E. DeBakey VA Medical Center, Houston, Texas; Section of Cardiology, Baylor College of Medicine, Houston, Texas
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, La
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Mo
| | - Michelle T Long
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Mass
| | - Christy C Tangney
- Department of Clinical Nutrition, Rush University Medical Center, Chicago, Ill
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, La
| |
Collapse
|
11
|
Flaherty SM, Wood EK, Ryff CD, Love GD, Kelesidis T, Berkowitz L, Echeverría G, Rivera K, Rigotti A, Coe CL. Race and sex differences in HDL peroxide content among American adults with and without type 2 diabetes. Lipids Health Dis 2022; 21:18. [PMID: 35125112 PMCID: PMC8818198 DOI: 10.1186/s12944-021-01608-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background High-density lipoprotein (HDL) plays a critical role in protection against atherosclerosic and cardiovascular disease (ASCVD). In addition to contributing to clearing excess vascular cholesterol, HDL particles exhibit antioxidative functions, helping to attenuate adverse effects of oxidized low-density lipoproteins. However, these beneficial properties can be undermined by oxidative stress, inflammation, and unhealthy lifestyles and diet, as well as influenced by race and sex. Thus, when assessing cardiovascular risk, it is important to consider multifactorial aspects of HDL, including antioxidant activity rather than just total amount and type of HDL-cholesterol (HDL-C) particles. Because prior research showed HDL peroxide content (HDLperox) can be inversely associated with normal anti-oxidant HDL activity, elevated HDLperox may serve as a bioindicator of HDL dysfunction. Methods In this study, data from a large national cohort of Americans was utilized to determine the impact of sex, race, and diabetes status on HDLperox in middle-aged and older adults. A previously developed cell-free fluorometric method was utilized to quantify HDLperox in serum depleted of apo-B containing lipoproteins. Results In keeping with predictions, white men and diabetics exhibited HDLperox in the atypical upper range, suggestive of less functional HDL. White men had higher HDLperox levels than African American males (13.46 ± 6.10 vs. 10.88 ± 5.81, p < .001). There was also a significant main effect of type 2 diabetes (F(1,1901) = 14.9, p < .0001). Overall, African Americans evinced lower HDLperox levels, despite more obesity (10.3 ± 4.7 vs.11.81 ± 5.66 for Whites) suggesting that other aspects of lipid metabolism and psychosocial factors account for the higher prevalence of ASCVD in African Americans. Conclusion This research helps to provide a more comprehensive understanding of HDL function in a racially and metabolically diverse adult population. HDLperox content was significantly different in adults with type 2 diabetes, and distinctive in nondiabetic White males, and suggests other processes account for the higher prevalence of ASCVD among African Americans. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01608-4.
Collapse
|
12
|
Liu J, Gillard BK, Yelamanchili D, Gotto AM, Rosales C, Pownall HJ. High Free Cholesterol Bioavailability Drives the Tissue Pathologies in Scarb1 -/- Mice. Arterioscler Thromb Vasc Biol 2021; 41:e453-e467. [PMID: 34380332 PMCID: PMC8458258 DOI: 10.1161/atvbaha.121.316535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Overall and atherosclerosis-associated mortality is elevated in humans with very high HDL (high-density lipoprotein) cholesterol concentrations. Mice with a deficiency of the HDL receptor, Scarb1 (scavenger receptor class B type 1), are a robust model of this phenotype and exhibit several additional pathologies. We hypothesized that the previously reported high plasma concentration of free cholesterol (FC)-rich HDL in Scarb1-/- mice produces a state of high HDL-FC bioavailability that increases whole-body FC and dysfunction in multiple tissue sites. Approach and Results: The higher mol% FC in Scarb1-/- versus WT (wild type) HDL (41.1 versus 16.0 mol%) affords greater FC bioavailability for transfer to multiple sites. Plasma clearance of autologous HDL-FC mass was faster in WT versus Scarb1-/- mice. FC influx from Scarb1-/- HDL to LDL (low-density lipoprotein) and J774 macrophages was greater ([almost equal to]4x) than that from WT HDL, whereas FC efflux capacity was similar. The higher mol% FC of ovaries, erythrocytes, heart, and macrophages of Scarb1-/- versus WT mice is associated with previously reported female infertility, impaired cell maturation, cardiac dysfunction, and atherosclerosis. The FC contents of other tissues were similar in the two genotypes, and these tissues were not associated with any overt pathology. In addition to the differences between WT versus Scarb1-/- mice, there were many sex-dependent differences in tissue-lipid composition and plasma FC clearance rates. Conclusions: Higher HDL-FC bioavailability among Scarb1-/- versus WT mice drives increased FC content of multiple cell sites and is a potential biomarker that is mechanistically linked to multiple pathologies.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
| | - Baiba K. Gillard
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Dedipya Yelamanchili
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
| | - Antonio M. Gotto
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Henry J. Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| |
Collapse
|
13
|
Schachtl-Riess JF, Coassin S, Lamina C, Demetz E, Streiter G, Hilbe R, Kronenberg F. Lysis reagents, cell numbers, and calculation method influence high-throughput measurement of HDL-mediated cholesterol efflux capacity. J Lipid Res 2021; 62:100125. [PMID: 34571016 PMCID: PMC8521207 DOI: 10.1016/j.jlr.2021.100125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
HDL-mediated cholesterol efflux capacity (CEC) may protect against cardiovascular disease. However, CEC assays are not standardized, hampering their application in large cohorts and comparison between studies. To improve standardization, we systematically investigated technical differences between existing protocols that influence assay performance that have not been previously addressed. CEC was measured in 96-well plates using J774A.1 macrophages labeled with BODIPY-cholesterol and incubated for 4 h with 2% apolipoprotein B-depleted human serum. The time zero method, which calculates CEC using control wells, and the per-well method, which calculates CEC based on the actual content of BODIPY-cholesterol in each well, were compared in 506 samples. We showed that the per-well method had a considerably lower sample rejection rate (4.74% vs. 13.44%) and intra-assay (4.48% vs. 5.28%) and interassay coefficients of variation (two controls: 7.85%, 9.86% vs. 13.58%, 15.29%) compared with the time zero method. Correction for plate-to-plate differences using four controls on each plate also improved assay performance of both methods. In addition, we observed that the lysis reagent used had a significant effect. Compared with cholic acid, lysis with sodium hydroxide results in higher (P = 0.0082) and Triton X-100 in lower (P = 0.0028) CEC values. Furthermore, large cell seeding errors (30% variation) greatly biased CEC for both referencing methods (P < 0.0001) as measured by a resazurin assay. In conclusion, lysis reagents, cell numbers, and assay setup greatly impact the quality and reliability of CEC quantification and should be considered when this method is newly established in a laboratory.
Collapse
Affiliation(s)
- Johanna F Schachtl-Riess
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Lamina
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Gertraud Streiter
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
14
|
Effects of Elaidic Acid on HDL Cholesterol Uptake Capacity. Nutrients 2021; 13:nu13093112. [PMID: 34578988 PMCID: PMC8464738 DOI: 10.3390/nu13093112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recently we established a cell-free assay to evaluate “cholesterol uptake capacity (CUC)” as a novel concept for high-density lipoprotein (HDL) functionality and demonstrated the feasibility of CUC for coronary risk stratification, although its regulatory mechanism remains unclear. HDL fluidity affects cholesterol efflux, and trans fatty acids (TFA) reduce lipid membrane fluidity when incorporated into phospholipids (PL). This study aimed to clarify the effect of TFA in HDL-PL on CUC. Serum was collected from 264 patients after coronary angiography or percutaneous coronary intervention to measure CUC and elaidic acid levels in HDL-PL, and in vitro analysis using reconstituted HDL (rHDL) was used to determine the HDL-PL mechanism affecting CUC. CUC was positively associated with HDL-PL levels but negatively associated with the proportion of elaidic acid in HDL-PL (elaidic acid in HDL-PL/HDL-PL ratio). Increased elaidic acid-phosphatidylcholine (PC) content in rHDL exhibited no change in particle size or CUC compared to rHDL containing oleic acid in PC. Recombinant human lecithin-cholesterol acyltransferase (LCAT) enhanced CUC, and LCAT-dependent enhancement of CUC and LCAT-dependent cholesterol esterification were suppressed in rHDL containing elaidic acid in PC. Therefore, CUC is affected by HDL-PL concentration, HDL-PL acyl group composition, and LCAT-dependent cholesterol esterification. Elaidic acid precipitated an inhibition of cholesterol uptake and maturation of HDL; therefore, modulation of HDL-PL acyl groups could improve CUC.
Collapse
|
15
|
Breakfast partly restores the anti-inflammatory function of high-density lipoproteins from patients with type 2 diabetes mellitus. ATHEROSCLEROSIS PLUS 2021; 44:43-50. [PMID: 36644668 PMCID: PMC9833245 DOI: 10.1016/j.athplu.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023]
Abstract
Background and aims High-density lipoproteins (HDL) of patients with type 2 diabetes mellitus (T2DM) have impaired anti-inflammatory activities. The anti-inflammatory activity of HDL has been determined ex vivo after isolation by different methods from blood mostly obtained after overnight fasting. We first determined the effect of the HDL isolation method, and subsequently the effect of food intake on the anti-inflammatory function of HDL from T2DM patients. Methods Blood was collected from healthy controls and T2DM patients after an overnight fast, and from T2DM patients 3 h after breakfast (n = 17 each). HDL was isolated by a two-step density gradient ultracentrifugation in iodixanol (HDLDGUC2), by sequential salt density flotation (HDLSEQ) or by PEG precipitation (HDLPEG). The anti-inflammatory function of HDL was determined by the reduction of the TNFα-induced expression of VCAM-1 in human coronary artery endothelial cells (HCAEC) and retinal endothelial cells (REC). Results HDL isolated by the three different methods from healthy controls inhibited TNFα-induced VCAM-1 expression in HCAEC. With apoA-I at 0.7 μM, HDLDGUC2 and HDLSEQ were similarly effective (16% versus 14% reduction; n = 3; p > 0.05) but less effective than HDLPEG (28%, p < 0.05). Since ultracentrifugation removes most of the unbound plasma proteins, we used HDLDGUC2 for further experiments. With apoA-I at 3.2 μM, HDL from fasting healthy controls and T2DM patients reduced TNFα-induced VCAM-1 expression in HCAEC by 58 ± 13% and 51 ± 20%, respectively (p = 0.35), and in REC by 42 ± 13% and 25 ± 18%, respectively (p < 0.05). Compared to preprandial HDL, postprandial HDL from T2DM patients reduced VCAM-1 expression by 56 ± 16% (paired test: p < 0.001) in HCAEC and by 34 ± 13% (paired test: p < 0.05) in REC. Conclusions The ex vivo anti-inflammatory activity of HDL is affected by the HDL isolation method. Two-step ultracentrifugation in an iodixanol gradient is a suitable method for HDL isolation when testing HDL anti-inflammatory function. The anti-inflammatory activity of HDL from overnight fasted T2DM patients is significantly impaired in REC but not in HCAEC. The anti-inflammatory function of HDL is partly restored by food intake.
Collapse
|
16
|
Pregnancy is accompanied by larger high density lipoprotein particles and compositionally distinct subspecies. J Lipid Res 2021; 62:100107. [PMID: 34416270 PMCID: PMC8441201 DOI: 10.1016/j.jlr.2021.100107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Pregnancy is accompanied by significant physiological changes, which can impact the health and development of the fetus and mother. Pregnancy-induced changes in plasma lipoproteins are well documented, with modest to no impact observed on the generic measure of high density lipoprotein (HDL) cholesterol. However, the impact of pregnancy on the concentration and composition of HDL subspecies has not been examined in depth. In this prospective study, we collected plasma from 24 nonpregnant and 19 pregnant women in their second trimester. Using nuclear magnetic resonance (NMR), we quantified 11 different lipoprotein subspecies from plasma by size, including three in the HDL class. We observed an increase in the number of larger HDL particles in pregnant women, which were confirmed by tracking phospholipids across lipoproteins using high-resolution gel-filtration chromatography. Using liquid chromatography-mass spectrometry (LC-MS), we identified 87 lipid-associated proteins across size-speciated fractions. We report drastic shifts in multiple protein clusters across different HDL size fractions in pregnant females compared with nonpregnant controls that have major implications on HDL function. These findings significantly elevate our understanding of how changes in lipoprotein metabolism during pregnancy could impact the health of both the fetus and the mother.
Collapse
|
17
|
Zheng JJ, Agus JK, Hong BV, Tang X, Rhodes CH, Houts HE, Zhu C, Kang JW, Wong M, Xie Y, Lebrilla CB, Mallick E, Witwer KW, Zivkovic AM. Isolation of HDL by sequential flotation ultracentrifugation followed by size exclusion chromatography reveals size-based enrichment of HDL-associated proteins. Sci Rep 2021; 11:16086. [PMID: 34373542 PMCID: PMC8352908 DOI: 10.1038/s41598-021-95451-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/23/2021] [Indexed: 01/02/2023] Open
Abstract
High-density lipoprotein (HDL) particles have multiple beneficial and cardioprotective roles, yet our understanding of their full structural and functional repertoire is limited due to challenges in separating HDL particles from contaminating plasma proteins and other lipid-carrying particles that overlap HDL in size and/or density. Here we describe a method for isolating HDL particles using a combination of sequential flotation density ultracentrifugation and fast protein liquid chromatography with a size exclusion column. Purity was visualized by polyacrylamide gel electrophoresis and verified by proteomics, while size and structural integrity were confirmed by transmission electron microscopy. This HDL isolation method can be used to isolate a high yield of purified HDL from a low starting plasma volume for functional analyses. This method also enables investigators to select their specific HDL fraction of interest: from the least inclusive but highest purity HDL fraction eluting in the middle of the HDL peak, to pooling all of the fractions to capture the breadth of HDL particles in the original plasma sample. We show that certain proteins such as lecithin cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), and clusterin (CLUS) are enriched in large HDL particles whereas proteins such as alpha-2HS-glycoprotein (A2HSG), alpha-1 antitrypsin (A1AT), and vitamin D binding protein (VDBP) are enriched or found exclusively in small HDL particles.
Collapse
Affiliation(s)
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Brian V Hong
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | | | - Hannah E Houts
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Chenghao Zhu
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Jea Woo Kang
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Emily Mallick
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
18
|
High-Density Lipoprotein Subfractions: Much Ado about Nothing or Clinically Important? Biomedicines 2021; 9:biomedicines9070836. [PMID: 34356900 PMCID: PMC8301429 DOI: 10.3390/biomedicines9070836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
High-density lipoproteins (HDL) are a heterogenous group of plasma molecules with a large variety in composition. There is a wide specter in lipid content and the number of different proteins that has been associated with HDL is approaching 100. Given this heterogeneity and the fact that the total amount of HDL is inversely related to the risk of coronary heart disease (CHD), there has been increasing interest in the function of specific HDL subgroups and in what way measuring and quantifying these subgroups could be of clinical importance in determining individual CHD risk. If certain subgroups appear to be more protective than others, it may also in the future be possible to pharmacologically increase beneficial and decrease harmful subgroups in order to reduce CHD risk. In this review we give a short historical perspective, summarize some of the recent clinical findings regarding HDL subclassifications and discuss why such classification may or may not be of clinical relevance.
Collapse
|
19
|
High-sensitivity CRP may be a marker of HDL dysfunction and remodeling in patients with acute coronary syndrome. Sci Rep 2021; 11:11444. [PMID: 34075063 PMCID: PMC8169928 DOI: 10.1038/s41598-021-90638-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
In patients with coronary artery disease (CAD), further increasing the level of high-density lipoprotein (HDL) cholesterol (HDL-C) as an add-on to statins cannot reduce cardiovascular risk. And it has been reported that HDL functional metric—cholesterol efflux capacity (CEC) may be a better predictor of CAD risk than HDL-C. CEC measurement is time-consuming and not applicable in clinical settings. Thus, it is meaningful to explore an easily acquired index for evaluating CEC. Thirty-six CAD patients and sixty-one non-CAD controls were enrolled in this cross-sectional study. All CAD patients had acute coronary syndrome (ACS). CEC was measured using a [3H] cholesterol loading Raw 264.7 cell model with apolipoprotein B-depleted plasma (a surrogate for HDL). Proton nuclear magnetic resonance (NMR) spectroscopy was used to assess HDL components and subclass distribution. CEC was significantly impaired in CAD patients (11.9 ± 2.3%) compared to controls (13.0 ± 2.2%, p = 0.022). In control group, CEC was positively correlated with enzymatically measured HDL-C levels (r = 0.358, p = 0.006) or with NMR-determined HDL-C levels (NMR-HDL-C, r = 0.416, p = 0.001). However, in CAD group, there was no significant correlation between CEC and HDL-C (r = 0.216, p = 0.206) or NMR-HDL-C (r = 0.065, p = 0.708). Instead, we found that the level of high-sensitivity C-reactive protein (hsCRP) was inversely associated with CEC (r = − 0.351, p = 0.036). Multiple regression analysis showed that the hsCRP level was associated with CEC after adjusting other cardiovascular risk factors and HDL-C, although the association would not reach significance if adjusting for multiple testing. NMR spectroscopy showed that HDL particles shifted to larger ones in patients with high hsCRP levels, and this phenomenon was accompanied by decreased CEC. In patients with CAD, the level of HDL-C cannot reflect HDL function. The impaired correlation between HDL-C and CEC is possibly due to an inflammation-induced HDL subclass remodeling. These hypothesis-generating data suggest that hsCRP levels, a marker of acute inflammation, may associate with HDL dysfunction in ACS subjects. Due to the design limited to be correlative in nature, not permitting causal inference and a larger, strictly designed study is still needed.
Collapse
|
20
|
Long-term dietary supplementation with plant-derived omega-3 fatty acid improves outcome in experimental ischemic stroke. Atherosclerosis 2021; 325:89-98. [PMID: 33915355 DOI: 10.1016/j.atherosclerosis.2021.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Early revascularization -the gold standard therapy for ischemic stroke- is often withheld in the elderly population due to high risk of complications. Thus, safe and effective preventive and therapeutic options are needed. The plant-derived omega-3-fatty-acid alpha-linolenic-acid (ALA) has emerged as a novel cardiovascular-protective agent. As of yet, little is known about its potential therapeutic effects on stroke. We hereby aimed to investigate the impact of a clinically relevant long-term dietary intervention with ALA on stroke outcome. METHODS Six month-old C57BL/6 wildtype males were either fed an ALA-rich (high ALA) or a control diet (low ALA) for 12 months. At 18 months, brain ischemia/reperfusion was induced by transient middle cerebral artery occlusion (tMCAO). Stroke size and neurological function were assessed. Functional blood-brain-barrier-(BBB) permeability and protein expression were assessed by immunohistochemistry. Baseline inflammatory markers were measured at 18 months. RESULTS High ALA-fed animals displayed decreased circulating TNF-α levels and Neutrophil-to-Lymphocyte Ratios at 18 months. Stroke size and neurological dysfunction were significantly reduced in high ALA-fed animals. Coherently to the reduced stroke size, functional BBB integrity and occludin endothelial expression were maintained by high ALA supplementation. Additionally, ALA reduced endothelial activation and thus recruitment and activation of macrophages and resident microglia. Finally, high ALA diet reduced the expression of BBB-degrading and neurotoxic MMP-3 and MMP-9. CONCLUSIONS We demonstrate the beneficial effects of a clinically relevant and feasible dietary intervention with a safe and readily available compound in the setting of stroke. The protective effects observed with ALA supplementation may relate to blunting of inflammation and might pave the way for novel stroke treatments.
Collapse
|
21
|
Davidson WS, Cooke AL, Swertfeger DK, Shah AS. The Difference Between High Density Lipoprotein Subfractions and Subspecies: an Evolving Model in Cardiovascular Disease and Diabetes. Curr Atheroscler Rep 2021; 23:23. [PMID: 33772657 DOI: 10.1007/s11883-021-00925-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The term high density lipoproteins (HDL) refers to an eclectic collection of subparticles that play diverse roles in physiology. Here, we define the term "HDL subspecies" and review recent work on their molecular characterization and relation to disease, focusing on cardiovascular disease and diabetes. RECENT FINDINGS The HDL family contains over 200 proteins and nearly 200 lipids that partition into different particles in plasma. Simple subfractionation of HDL based on a particular physicochemical property has not risen to the challenge of revealing the roles of specific particles in disease. However, by targeting minor protein or lipid components, a handful of compositionally defined HDL subspecies have been described and characterized. By combining targeted particle isolation techniques with the power of large human studies, progress is being made in understanding HDL subspecies functions and implications for disease. However, much work remains before these advancements can be translated into disease mitigation strategies.
Collapse
Affiliation(s)
- W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, 45237, USA.
| | | | - Debi K Swertfeger
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, 45229, USA
| | - Amy S Shah
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, 45229, USA
| |
Collapse
|
22
|
Nilsson O, Lindvall M, Obici L, Ekström S, Lagerstedt JO, Del Giudice R. Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux. J Lipid Res 2020; 62:100004. [PMID: 33410751 PMCID: PMC7890215 DOI: 10.1194/jlr.ra120000920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 01/17/2023] Open
Abstract
Apolipoprotein A-I (ApoA-I) of high density lipoproteins (HDLs) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in ApoA-I of HDLs are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/HDL cholesterol. To explain this paradox, we show that the HDL particle profiles of patients carrying either L75P or L174S ApoA-I amyloidogenic variants show a higher relative abundance of the 8.4-nm versus 9.6-nm particles and that serum from patients, as well as reconstituted 8.4- and 9.6-nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4-nm rHDL have altered secondary structure composition and display a more flexible binding to lipids than their native counterpart. The reduced HDL cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles, and better cholesterol efflux due to altered, region-specific protein structure dynamics.
Collapse
Affiliation(s)
- Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mikaela Lindvall
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Obici
- Amyloidosis Research & Treatment Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simon Ekström
- BioMS - Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Lund Institute of Advanced Neutron and X-ray Science (LINXS), Lund, Sweden.
| | - Rita Del Giudice
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
McMahon KM, Calvert AE, Dementieva IS, Hussain S, Wilkins JT, Thaxton CS. Interparticle Molecular Exchange of Surface Chemical Components of Native High-Density Lipoproteins to Complementary Nanoparticle Scaffolds. ACS Sens 2020; 5:3019-3024. [PMID: 32643928 DOI: 10.1021/acssensors.0c01117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-density lipoproteins (HDL) are constitutionally dynamic nanoparticles that circulate in the blood. The biological functions of HDLs are impacted by interchangeable surface chemical components, like cholesterol and HDL-associated proteins. Current methods to quantify the chemical constituents of HDL are largely restricted to clinical or academic laboratories and require expensive instrumentation, and there is no commonality to the techniques required to detect and quantify different analytes (e.g., cholesterol versus HDL-associated protein). To potentially facilitate and streamline the analysis of HDL composition, we hypothesized that mixing native HDLs with similarly sized gold nanoparticles whose surfaces are endowed with phospholipids, called complementary nanoparticle scaffolds (CNS), would enable interparticle exchange of surface components. Then, easy isolation of the newly formed particles could be accomplished using benchtop centrifugation for subsequent measurement of HDL components exchanged to the surface of the CNS. As proof-of-concept, data demonstrate that CNS incubated with only a few microliters of human serum rapidly (1 h) sequester cholesterol and HDL-associated proteins with direct correlation to native HDLs. As such, data show that the CNS assay is a single platform for rapid isolation and subsequent detection of the surface components of native HDLs.
Collapse
Affiliation(s)
- Kaylin M. McMahon
- Northwestern University, Feinberg School of Medicine, Department of Urology, Chicago, Illinois 60611, United States
- Northwestern University, Simpson Querrey Institute for Bionanotechnology (SQI), Chicago, Illinois 60611, United States
| | - Andrea E. Calvert
- Northwestern University, Feinberg School of Medicine, Department of Urology, Chicago, Illinois 60611, United States
- Northwestern University, Simpson Querrey Institute for Bionanotechnology (SQI), Chicago, Illinois 60611, United States
| | - Irina S. Dementieva
- Northwestern University, Feinberg School of Medicine, Department of Urology, Chicago, Illinois 60611, United States
- Northwestern University, Simpson Querrey Institute for Bionanotechnology (SQI), Chicago, Illinois 60611, United States
| | - Saber Hussain
- Air Force Research Laboratory, Wright-Patterson
Air Force Base, Dayton, Ohio 45433, United States
| | - John T. Wilkins
- Northwestern University, Feinberg School of Medicine, Department of Cardiology, Chicago, Illinois 60611, United States
- Northwestern University, Feinberg School of Medicine, Department of Preventive Medicine, Chicago, Illinois 60611, United States
| | - C. Shad Thaxton
- Northwestern University, Feinberg School of Medicine, Department of Urology, Chicago, Illinois 60611, United States
- Northwestern University, Simpson Querrey Institute for Bionanotechnology (SQI), Chicago, Illinois 60611, United States
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Northwestern University, International Institute of Nanotechnology, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
Early Pro-Inflammatory Remodeling of HDL Proteome in a Model of Diet-Induced Obesity: 2H 2O-Metabolic Labeling-Based Kinetic Approach. Int J Mol Sci 2020; 21:ijms21207472. [PMID: 33050482 PMCID: PMC7656294 DOI: 10.3390/ijms21207472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
Mice fed a high-fat diet for 12 weeks or longer develop hyperglycemia, insulin resistance, dyslipidemia, and fatty liver. Additionally, a high-fat diet induces inflammation that remodels and affects the anti-inflammatory and antiatherogenic property of the high-density lipoprotein (HDL). However, the precise time course of metabolic disease progression and HDL remodeling remains unclear. Short-term (four weeks) high-fat feeding (60% fat calories) was performed in wild-type male C57BL/6J mice to gain insights into the early metabolic disease processes in conjunction with a HDL proteome dynamics analysis using a heavy water metabolic labeling approach. The high-fat diet-fed mice developed hyperglycemia, impaired glucose tolerance, hypercholesterolemia without hypertriglyceridemia or hepatic steatosis. A plasma HDL proteome dynamics analysis revealed increased turnover rates (and reduced half-lives) of several acute-phase response proteins involved in innate immunity, including complement C3 (12.77 ± 0.81 vs. 9.98 ± 1.20 h, p < 0.005), complement factor B (12.71 ± 1.01 vs. 10.85 ± 1.04 h, p < 0.05), complement Factor H (19.60 ± 1.84 vs. 16.80 ± 1.58 h, p < 0.05), and complement factor I (25.25 ± 1.29 vs. 19.88 ± 1.50 h, p < 0.005). Our findings suggest that an early immune response-induced inflammatory remodeling of the plasma HDL proteome precedes the diet-induced steatosis and dyslipidemia.
Collapse
|
25
|
Dergunov AD, Litvinov DY, Malkov AA, Baserova VB, Nosova EV, Dergunova LV. Denaturation of human plasma high-density lipoproteins by urea studied by apolipoprotein A-I dissociation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158814. [PMID: 32961276 DOI: 10.1016/j.bbalip.2020.158814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
We studied the mechanism of HDL denaturation with concomitant apoA-I dissociation with HDL preparations from 48 patients with a wide range of plasma HDL-C and evaluated the contribution of lipid-free apoA-I into cholesterol efflux from macrophage, in particular, mediated by cholesterol transporter ABCA1. We prepared HDL by precipitation of apoB-containing lipoproteins by polyethylene glycol and used the chaotropic agent urea to denature HDL preparations. Apo-I dissociation from urea-treated HDL was assessed by the increase of preβ-band fraction with agarose gel electrophoresis followed by electro transfer and immunodetection and by the increase of ABCA1-mediated efflux of fluorescent analogue BODIPY-Cholesterol from RAW 264.7 macrophages. The HDL denaturation is governed by a single transition to fully dissociated apoA-I and the transition cooperativity decreases with increasing HDL-C. The apoA-I release depends on phospholipid concentration of HDL preparation and HDL compositional and structural heterogeneity and is well described by apolipoprotein partition between aqueous and lipid phases. Dissociated apoA-I determines the increase of ABCA1-mediated efflux of BODIPY-Cholesterol from RAW 264.7 macrophages to patient HDL. The increase in apoA-I dissociation is associated with the increase of ABCA1 gene transcript in peripheral blood mononuclear cells from patients. The low level of plasma HDL particles may be compensated by their increased potency for apoA-I release, thus suggesting apoA-I dissociation as a new HDL functional property.
Collapse
Affiliation(s)
- Alexander D Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia.
| | - Dmitry Y Litvinov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia
| | - Artem A Malkov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia
| | - Veronika B Baserova
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia
| | - Elena V Nosova
- Laboratory of Functional Genomics, Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Liudmila V Dergunova
- Laboratory of Functional Genomics, Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Huang J, Yancey PG, Tao H, Borja MS, Smith LE, Kon V, Davies SS, Linton MF. Reactive Dicarbonyl Scavenging Effectively Reduces MPO-Mediated Oxidation of HDL and Restores PON1 Activity. Nutrients 2020; 12:nu12071937. [PMID: 32629758 PMCID: PMC7400685 DOI: 10.3390/nu12071937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Atheroprotective functions of high-density lipoproteins (HDL) are related to the activity of HDL-associated enzymes such as paraoxonase 1 (PON1). We examined the impact of inhibition of myeloperoxidase (MPO)-mediated HDL oxidation by PON1 on HDL malondialdehyde (MDA) content and HDL function. In the presence of PON1, crosslinking of apoAI in response to MPO-mediated oxidation of HDL was abolished, and MDA-HDL adduct levels were decreased. PON1 prevented the impaired cholesterol efflux capacity of MPO-oxidized HDL from Apoe−/− macrophages. Direct modification of HDL with MDA increased apoAI crosslinking and reduced the cholesterol efflux capacity. MDA modification of HDL reduced its anti-inflammatory function compared to native HDL. MDA-HDL also had impaired ability to increase PON1 activity. Importantly, HDL from subjects with familial hypercholesterolemia (FH-HDL) versus controls had increased MDA-apoAI adducts, and PON1 activity was also impaired in FH. Consistently, FH-HDL induced a pro-inflammatory response in Apoe−/− macrophages and had an impaired ability to promote cholesterol efflux. Interestingly, reactive dicarbonyl scavengers, including 2-hydroxybenzylamine (2-HOBA) and pentyl-pyridoxamine (PPM), effectively abolished MPO-mediated apoAI crosslinking, MDA adduct formation, and improved cholesterol efflux capacity. Treatment of hypercholesterolemic mice with reactive dicarbonyl scavengers reduced MDA-HDL adduct formation and increased HDL cholesterol efflux capacity, supporting the therapeutic potential of reactive carbonyl scavenging for improving HDL function.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.H.); (P.G.Y.); (H.T.)
| | - Patricia G. Yancey
- Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.H.); (P.G.Y.); (H.T.)
| | - Huan Tao
- Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.H.); (P.G.Y.); (H.T.)
| | - Mark S. Borja
- Department of Chemistry & Biochemistry, California State University East Bay, Hayward, CA 94542, USA;
| | - Loren E. Smith
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Sean S. Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA;
| | - MacRae F. Linton
- Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.H.); (P.G.Y.); (H.T.)
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA;
- Correspondence:
| |
Collapse
|
27
|
Soria-Florido MT, Schröder H, Grau M, Fitó M, Lassale C. High density lipoprotein functionality and cardiovascular events and mortality: A systematic review and meta-analysis. Atherosclerosis 2020; 302:36-42. [PMID: 32438197 DOI: 10.1016/j.atherosclerosis.2020.04.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/11/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS The aim of this systematic review and meta-analysis is to synthesize studies assessing the associations between high-density lipoprotein functionality and risk of cardiovascular disease and mortality. METHODS We searched Medline and Embase for the identification of observational studies meeting the inclusion criteria. This meta-analysis was conducted following the PRISMA statement and was registered in PROSPERO (CRD42017065857). We pooled risk estimates with a random-effect model separately for cardiovascular disease (fatal and non-fatal) and all-cause mortality. RESULTS Out of 29 manuscripts, 20 articles investigated cholesterol efflux capacity (13 prospective and 7 cross-sectional), 10 antioxidant capacity (7 prospective and 3 cross-sectional) and two anti-inflammatory capacity of high-density lipoprotein (1 prospective and 1 cross-sectional). A greater cholesterol efflux capacity was associated with lower risk of cardiovascular disease in 8 studies (RR for 1SD increase: 0.86; 95% CI: 0.76-0.98) and of mortality in 5 studies (RR for 1SD increase: 0,77; 0.60-1.00). Better antioxidant capacity was non-significantly associated with lower cardiovascular disease risk in 2 studies (RR for 1SD increase 0.70; 0.32-1.53) and significantly with mortality in 3 studies (RR for 1SD increase 0.48; 0.28-0.81). High-density lipoprotein anti-inflammatory ability was associated with a lower cardiovascular disease risk in the only prospective study. CONCLUSIONS Greater high-density lipoprotein cholesterol efflux capacity and antioxidant/anti-inflammatory capacities were associated with lower risk of cardiovascular disease. However, the heterogeneity between studies and evidence of publication bias warrants caution and highlights the need for larger prospective studies with standardized assays and specific outcomes.
Collapse
Affiliation(s)
- Maria T Soria-Florido
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; PhD Program in Food Sciences and Nutrition, Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Science, Campus de l'Alimentació Torribera, University of Barcelona, Barcelona, Spain; Department of Behavioural Science and Health, University College London, London, United Kingdom
| | - Helmut Schröder
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - María Grau
- Registre Gironí del COR. Group, Cardiovascular, Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; CIBER of Cardiovascular Diseases (CIBERCV), Institute of Health Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Camille Lassale
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Behavioural Science and Health, University College London, London, United Kingdom; CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Oshita T, Toh R, Nagano Y, Kuroda K, Nagasawa Y, Harada A, Murakami K, Kiriyama M, Yoshikawa K, Miwa K, Kubo T, Iino T, Nagao M, Irino Y, Hara T, Shinohara M, Otake H, Shinke T, Nakajima K, Ishida T, Hirata KI. Association of cholesterol uptake capacity, a novel indicator for HDL functionality, and coronary plaque properties: An optical coherence tomography-based observational study. Clin Chim Acta 2020; 503:136-144. [PMID: 31972150 DOI: 10.1016/j.cca.2020.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cholesterol efflux from atherosclerotic lesion is a key function of high-density lipoprotein (HDL). Recently, we established a simple, high-throughput, cell-free assay to evaluate the capacity of HDL to accept additional cholesterol, which is herein referred to as "cholesterol uptake capacity (CUC)". OBJECTIVE To clarify the cross-sectional relationship between CUC and coronary plaque properties. METHODS We enrolled 135 patients to measure CUC and assess the morphological features of angiographic stenosis by optical coherence tomography (OCT). We estimated the extent of the lipid-rich plaque by multiplying the mean lipid arc by lipid length (lipid index). The extent of the OCT-detected macrophage accumulation in the target plaque was semi-quantitatively estimated using a grading system. RESULTS Lipid-rich plaque lesions were identified in 125 patients (92.6%). CUC was inversely associated with the lipid index (R = -0.348, P < 0.0001). In addition, CUC was also inversely associated with macrophage score (R = -0.327, P < 0.0001). Conversely, neither circulating levels of HDL cholesterol nor apoA1 showed a similar relationship. CONCLUSIONS We demonstrated that CUC was inversely related to lipid-rich plaque burden and the extent of macrophage accumulation, suggesting that CUC could be useful for cardiovascular risk stratification.
Collapse
Affiliation(s)
- Toshihiko Oshita
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yuichiro Nagano
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Kuroda
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshinori Nagasawa
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Amane Harada
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | | | - Maria Kiriyama
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Keiko Yoshikawa
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Keiko Miwa
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Takuya Kubo
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Takuya Iino
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Manabu Nagao
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsuya Hara
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiro Shinke
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
29
|
Cipollari E, Szapary HJ, Picataggi A, Billheimer JT, Lyssenko CA, Ying GS, Shaw LM, Kling MA, Kaddurah-Daouk R, Rader DJ, Pratico D, Lyssenko NN. Correlates and Predictors of Cerebrospinal Fluid Cholesterol Efflux Capacity from Neural Cells, a Family of Biomarkers for Cholesterol Epidemiology in Alzheimer's Disease. J Alzheimers Dis 2020; 74:563-578. [PMID: 32065798 PMCID: PMC7333913 DOI: 10.3233/jad-191246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Basic research has implicated intracellular cholesterol in neurons, microglia, and astrocytes in the pathogenesis of Alzheimer's disease (AD), but there is presently no assay to access intracellular cholesterol in neural cells in living people in the context of AD. OBJECTIVE To devise and characterize an assay that can access intracellular cholesterol and cholesterol efflux in neural cells in living subjects. METHODS We modified the protocol for high-density lipoprotein cholesterol efflux capacity (CEC) from macrophages, a biomarker that accesses cholesterol in macrophages in atherosclerosis. To measure cerebrospinal fluid (CSF) CECs from neurons, microglia, and astrocytes, CSF was exposed to, correspondingly, neuronal, microglial, and astrocytic cholesterol source cells. Human neuroblastoma SH-SY5Y, mouse microglial N9, and human astroglial A172 cells were used as the cholesterol source cells. CSF samples were screened for contamination with blood. CSF CECs were measured in a small cohort of 22 individuals. RESULTS CSF CECs from neurons, microglia, and astrocytes were moderately to moderately strongly correlated with CSF concentrations of cholesterol, apolipoprotein A-I, apolipoprotein E, and clusterin (Pearson's r = 0.53-0.86), were in poor agreement with one another regarding CEC of the CSF samples (Lin's concordance coefficient rc = 0.71-0.76), and were best predicted by models consisting of, correspondingly, CSF phospholipid (R2 = 0.87, p < 0.0001), CSF apolipoprotein A-I and clusterin (R2 = 0.90, p < 0.0001), and CSF clusterin (R2 = 0.62, p = 0.0005). CONCLUSION Characteristics of the CSF CEC metrics suggest a potential for independent association with AD and provision of fresh insight into the role of cholesterol in AD pathogenesis.
Collapse
Affiliation(s)
- Eleonora Cipollari
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah J. Szapary
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Antonino Picataggi
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey T. Billheimer
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine A. Lyssenko
- Office of Institutional Research & Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - Gui-Shuang Ying
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchel A. Kling
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Behavioral Health Services, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Daniel J. Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Domenico Pratico
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Nicholas N. Lyssenko
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
30
|
da Silva JL, Maranhão RC, Silva MSM, Dias RG, Freitas FR, Bolani W, Lemos Junior JR, Alves CR, Oliveira PA, Alves GB, Oliveira EM, Negrao CE, Krieger JE, Pereira AC, Silva GA, Souza JP, Vinagre CGC. Aerobic Training in Young Men Increases the Transfer of Cholesterol to High Density Lipoprotein In Vitro: Impact of High Density Lipoprotein Size. Lipids 2019; 54:381-388. [PMID: 31141200 DOI: 10.1002/lipd.12155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/11/2019] [Accepted: 04/24/2019] [Indexed: 11/10/2022]
Abstract
Exercise training not only improves the plasma lipid profile but also reduces risk of developing coronary heart disease. We investigate whether plasma lipids and high density lipoprotein (HDL) metabolism are affected by aerobic training and whether the high-density lipoprotein cholesterol (HDL-C) levels at baseline influence exercise-induced changes in HDL. Seventy-one male sedentary volunteers were evaluated and allocated in two subgroups, according to the HLD-C levels (< or >40 mg/dL). Participants underwent an 18-week aerobic training period. Blood was sampled before and after training for biochemical analysis. Plasma lipids, apolipoproteins, HDL diameter, and VO2 peak were determined. Lipid transfers to HDL were determined in vitro by incubating plasma samples with a donor lipid artificial nanoemulsion. After the 18-week period of aerobic training, the VO2 peak increased, while the mean body mass index (BMI) decreased. HDL-C concentration was higher after the training period, but low-density lipoprotein cholesterol (LDL-C) and non-HDL-C did not change. The transfer of esterified cholesterol and phospholipids was greater after exercise training, but the triacylglycerol and unesterified cholesterol transfers were unchanged. The HDL particle diameter increased after aerobic training in all participants. When the participants were separated in low-HDL and normal-HDL groups, the postaerobic exercise increment in HDL-C was higher in the low-HDL group, while the transfer of esterified cholesterol was lower. In conclusion, aerobic exercise training increases the lipid transfers to HDL, as measured by an in vitro method, which possibly contributes to the classical elevation of the HDL-C associated with training.
Collapse
Affiliation(s)
- Jeferson L da Silva
- Laboratoriode Metabolismo e Lipides, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Eneas de CarvalhoAguiar 44, São, Paulo, SP, 05403-000, Brazil
| | - Raul C Maranhão
- Laboratoriode Metabolismo e Lipides, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Eneas de CarvalhoAguiar 44, São, Paulo, SP, 05403-000, Brazil.,Faculdadede Ciencias Farmaceuticas, Universidade de Sao Paulo, Av. Professor LineuPrestes 580, São Paulo, SP, 05508-000, Brazil
| | - Michelle S M Silva
- Laboratoriode Genetica e Cardiologia Molecular, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidadede Sao Paulo, Av Dr Eneasde Carvalho Aguiar, 44, São Paulo, SP, 05403-000, Brazil
| | - Rodrigo G Dias
- Laboratoriode Genetica e Cardiologia Molecular, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidadede Sao Paulo, Av Dr Eneasde Carvalho Aguiar, 44, São Paulo, SP, 05403-000, Brazil
| | - Fatima R Freitas
- Laboratoriode Metabolismo e Lipides, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Eneas de CarvalhoAguiar 44, São, Paulo, SP, 05403-000, Brazil
| | - Wladimir Bolani
- Laboratoriode Genetica e Cardiologia Molecular, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidadede Sao Paulo, Av Dr Eneasde Carvalho Aguiar, 44, São Paulo, SP, 05403-000, Brazil
| | - José R Lemos Junior
- Laboratoriode Genetica e Cardiologia Molecular, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidadede Sao Paulo, Av Dr Eneasde Carvalho Aguiar, 44, São Paulo, SP, 05403-000, Brazil.,Centro Escola de Educacao Fisica da Policia Militar do Estado de Sao Paulo, Av.Cruzeiro do Sul 548, São Paulo, SP, 01109-100, Brazil
| | - Cleber R Alves
- Departamento de Biodinamica do Movimento do Corpo Humano, Escola de Educacao Fisica eEsporte, Universidade de Sao Paulo, Av. Professor Mello Moraes 65, São Paulo, SP, 05508-030, Brazil
| | - Patrícia A Oliveira
- Unidadede Reabilitacao Cardiovascular e Fisiologia do Exercicio, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Eneas de Carvalho Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Guilherme B Alves
- Unidadede Reabilitacao Cardiovascular e Fisiologia do Exercicio, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Eneas de Carvalho Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Edilamar M Oliveira
- Departamento de Biodinamica do Movimento do Corpo Humano, Escola de Educacao Fisica eEsporte, Universidade de Sao Paulo, Av. Professor Mello Moraes 65, São Paulo, SP, 05508-030, Brazil
| | - Carlos Eduardo Negrao
- Departamento de Biodinamica do Movimento do Corpo Humano, Escola de Educacao Fisica eEsporte, Universidade de Sao Paulo, Av. Professor Mello Moraes 65, São Paulo, SP, 05508-030, Brazil.,Unidadede Reabilitacao Cardiovascular e Fisiologia do Exercicio, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Eneas de Carvalho Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - José Eduardo Krieger
- Laboratoriode Genetica e Cardiologia Molecular, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidadede Sao Paulo, Av Dr Eneasde Carvalho Aguiar, 44, São Paulo, SP, 05403-000, Brazil
| | - Alexandre C Pereira
- Laboratoriode Genetica e Cardiologia Molecular, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidadede Sao Paulo, Av Dr Eneasde Carvalho Aguiar, 44, São Paulo, SP, 05403-000, Brazil
| | - Gisele A Silva
- Laboratoriode Metabolismo e Lipides, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Eneas de CarvalhoAguiar 44, São, Paulo, SP, 05403-000, Brazil
| | - José P Souza
- Universidadede Santo Amaro, Rua Isabel, Schmidt 349,São Paulo, SP, 04743-030, Brazil
| | - Carmen G C Vinagre
- Laboratoriode Metabolismo e Lipides, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av Dr Eneas de CarvalhoAguiar 44, São, Paulo, SP, 05403-000, Brazil.,Universidadede Santo Amaro, Rua Isabel, Schmidt 349,São Paulo, SP, 04743-030, Brazil
| |
Collapse
|
31
|
Freeman LA, Shamburek RD, Sampson ML, Neufeld EB, Sato M, Karathanasis SK, Remaley AT. Plasma lipoprotein-X quantification on filipin-stained gels: monitoring recombinant LCAT treatment ex vivo. J Lipid Res 2019; 60:1050-1057. [PMID: 30808683 PMCID: PMC6495165 DOI: 10.1194/jlr.d090233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/13/2019] [Indexed: 01/07/2023] Open
Abstract
Familial LCAT deficiency (FLD) patients accumulate lipoprotein-X (LP-X), an abnormal nephrotoxic lipoprotein enriched in free cholesterol (FC). The low neutral lipid content of LP-X limits the ability to detect it after separation by lipoprotein electrophoresis and staining with Sudan Black or other neutral lipid stains. A sensitive and accurate method for quantitating LP-X would be useful to examine the relationship between plasma LP-X and renal disease progression in FLD patients and could also serve as a biomarker for monitoring recombinant human LCAT (rhLCAT) therapy. Plasma lipoproteins were separated by agarose gel electrophoresis and cathodal migrating bands corresponding to LP-X were quantified after staining with filipin, which fluoresces with FC, but not with neutral lipids. rhLCAT was incubated with FLD plasma and lipoproteins and LP-X changes were analyzed by agarose gel electrophoresis. Filipin detects synthetic LP-X quantitatively (linearity 20-200 mg/dl FC; coefficient of variation <20%) and sensitively (lower limit of quantitation <1 mg/ml FC), enabling LP-X detection in FLD, cholestatic, and even fish-eye disease patients. rhLCAT incubation with FLD plasma ex vivo reduced LP-X dose dependently, generated HDL, and decreased lipoprotein FC content. Filipin staining after agarose gel electrophoresis sensitively detects LP-X in human plasma and accurately quantifies LP-X reduction after rhLCAT incubation ex vivo.
Collapse
Affiliation(s)
- Lita A Freeman
- Translational Vascular Medicine Branch National Institutes of Health, Bethesda, MD.
| | - Robert D Shamburek
- Cardiovascular Branch National Heart, Lung, and Blood Institute National Institutes of Health, Bethesda, MD
| | | | - Edward B Neufeld
- Translational Vascular Medicine Branch National Institutes of Health, Bethesda, MD
| | - Masaki Sato
- Translational Vascular Medicine Branch National Institutes of Health, Bethesda, MD
| | | | - Alan T Remaley
- Translational Vascular Medicine Branch National Institutes of Health, Bethesda, MD; the NIH Clinical Center National Institutes of Health, Bethesda, MD
| |
Collapse
|
32
|
Zhang X, Huang Q, Wang X, Deng Z, Li J, Yan X, Jauhiainen M, Metso J, Libby P, Liu J, Shi GP. Dietary cholesterol is essential to mast cell activation and associated obesity and diabetes in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1690-1700. [PMID: 30978390 DOI: 10.1016/j.bbadis.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mast cell (MC) deficiency in KitW-sh/W-sh mice and inhibition with disodium chromoglycate (DSCG) or ketotifen reduced obesity and diabetes in mice on a high-cholesterol (1.25%) Western diet. Yet, Kit-independent MC-deficient mice and mice treated with DSCG disproved MC function in obesity and diabetes when mice are fed a high-fat diet (HFD) that contains no cholesterol. This study reproduced the obesity and diabetes inhibitory activities of DSCG and ketotifen from mice on a Western diet. Yet, such inhibitory effects were diminished in mice on the HFD. DSCG and ketotifen MC inhibitory activities were recovered from mice on the HFD supplemented with the same amount of cholesterol (1.25%) as that in the Western diet. DSCG and ketotifen effectively blunted the high-cholesterol diet-induced elevations of blood histamine and adipose tissue MC degranulation. Pearson's correlation test demonstrated significant and positive correlations between plasma histamine and total cholesterol or low-density lipoprotein-cholesterol (LDL). In cultured bone marrow-derived MCs, plasma from mice following a Western diet or a cholesterol-supplemented HFD, but not those from HFD-fed mice, induced MC degranulation and the release of β-hexosaminidase, histamine, and serotonin. IgE, LDL, very low-density lipoprotein, and high-density lipoprotein also induced MC activation, which can be inhibited by DSCG and ketotifen depending on the doses and types of MC inhibitors and cholesterol, and also the MC granule molecules of interest. DSCG or ketotifen lost their activities in inhibiting LDL-induced activation of MCs from LDL receptor-deficient mice. These results indicate that dietary cholesterol critically influences the function of mouse MCs.
Collapse
Affiliation(s)
- Xian Zhang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qin Huang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhiyong Deng
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiang Yan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jian Liu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Toh R. Assessment of HDL Cholesterol Removal Capacity: Toward Clinical Application. J Atheroscler Thromb 2019; 26:111-120. [PMID: 30542002 PMCID: PMC6365149 DOI: 10.5551/jat.rv17028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
While there is a controversy regarding the causal relationship between high-density lipoprotein cholesterol (HDL-C) and cardiovascular disease (CVD), recent studies have demonstrated that the cholesterol efflux capacity (CEC) of HDL is associated with the incidence of CVD. However, there are several limitations to current assays of CEC. First, CEC measurements are not instantly applicable in clinical settings, because CEC assay methods require radiolabeled cholesterol and cultured cells, and these procedures are time consuming. Second, techniques to measure CEC are not standardized. Third, the condition of endogenous cholesterol donors would not be accounted for in the CEC assays. Recently, we established a simple, high-throughput, cell-free assay system to evaluate the capacity of HDL to accept additional cholesterol, which is herein referred to as "cholesterol uptake capacity (CUC)". We demonstrated that CUC represents a residual cardiovascular risk in patients with optimal low-density lipoprotein cholesterol control independently of traditional risk factors, including HDL-C. Establishing reproducible approaches for the cholesterol removal capacity of HDL is required to validate the impact of dysfunctional HDL on cardiovascular risk stratification in the "real world".
Collapse
Affiliation(s)
- Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
34
|
Vasoprotective Functions of High-Density Lipoproteins Relevant to Alzheimer's Disease Are Partially Conserved in Apolipoprotein B-Depleted Plasma. Int J Mol Sci 2019; 20:ijms20030462. [PMID: 30678190 PMCID: PMC6387156 DOI: 10.3390/ijms20030462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDL) are known to have vasoprotective functions in peripheral arteries and many of these functions extend to brain-derived endothelial cells. Importantly, several novel brain-relevant HDL functions have been discovered using brain endothelial cells and in 3D bioengineered human arteries. The cerebrovascular benefits of HDL in healthy humans may partly explain epidemiological evidence suggesting a protective association of circulating HDL levels against Alzheimer’s Disease (AD) risk. As several methods exist to prepare HDL from plasma, here we compared cerebrovascular functions relevant to AD using HDL isolated by density gradient ultracentrifugation relative to apoB-depleted plasma prepared by polyethylene-glycol precipitation, a common high-throughput method to evaluate HDL cholesterol efflux capacity in clinical biospecimens. We found that apoB-depleted plasma was functionally equivalent to HDL isolated by ultracentrifugation in terms of its ability to reduce vascular Aβ accumulation, suppress TNFα-induced vascular inflammation and delay Aβ fibrillization. However, only HDL isolated by ultracentrifugation was able to suppress Aβ-induced vascular inflammation, improve Aβ clearance, and induce endothelial nitric oxide production.
Collapse
|
35
|
What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer. Biochim Biophys Acta Rev Cancer 2019; 1871:109-116. [DOI: 10.1016/j.bbcan.2018.11.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
|
36
|
Asymmetrical flow field-flow fractionation for improved characterization of human plasma lipoproteins. Anal Bioanal Chem 2018; 411:777-786. [PMID: 30470915 DOI: 10.1007/s00216-018-1499-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/03/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
High- and low-density lipoproteins (HDL and LDL) are attractive targets for biomarker discovery. However, ultracentrifugation (UC), the current methodology of choice for isolating HDL and LDL, is tedious, requires large sample volume, results in sample loss, and does not readily provide information on particle size. In this work, human plasma HDL and LDL are separated and collected using semi-preparative asymmetrical flow field-flow fractionation (SP-AF4) and UC. The SP-AF4 and UC separation conditions, sample throughput, and liquid chromatography/mass spectrometry (LC/MS) lipidomic results are compared. Over 600 μg of total proteins is recovered in a single SP-AF4 run, and Western blot results confirm apoA1 pure and apoB100 pure fractions, consistent with HDL and LDL, respectively. The SP-AF4 separation requires ~ 60 min per sample, thus providing a marked improvement over UC which can span hours to days. Lipidome analysis of SP-AF4-prepared HDL and LDL fractions is compared to UC-prepared HDL and LDL samples. Over 270 lipids in positive MS mode and over 140 lipids in negative MS mode are identified by both sample preparation techniques with over 98% overlap between the lipidome. Additionally, lipoprotein size distributions are determined using analytical scale AF4 coupled with multiangle light scattering (MALS) and dynamic light scattering (DLS) detectors. These developments position SP-AF4 as a sample preparation method of choice for lipoprotein biomarker characterization and identification. Graphical abstract ᅟ.
Collapse
|
37
|
Contreras-Duarte S, Santander N, Birner-Gruenberger R, Wadsack C, Rigotti A, Busso D. High density lipoprotein cholesterol and proteome in SR-B1 KO mice: lost in precipitation. J Transl Med 2018; 16:309. [PMID: 30419936 PMCID: PMC6233513 DOI: 10.1186/s12967-018-1683-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/06/2018] [Indexed: 11/10/2022] Open
Abstract
Scavenger receptor class B type 1 (SR-B1) plays an essential role in high density lipoprotein (HDL) metabolism. SR-B1 deficient (SR-B1 KO) mice are prone to atherosclerosis and exhibit abnormally large, cholesterol-rich, dysfunctional HDL. In a recent issue of J Transl Med, Cao et al. described results of proteomics analyses of HDL isolated from wild-type (WT) and SR-B1 KO mice using precipitation of large lipoproteins with polyethylene glycol (PEG). They report abnormalities in SR-B1 KO HDL protein components that correlate with HDL function. In this commentary, we describe and discuss the differences in the results published by Cao et al. and those obtained in a recent study from our laboratory using shotgun proteomics of HDL of SR-B1 KO mice isolated by ultracentrifugation. We propose that different HDL purification procedures used may account for the discrepancies observed. We show that SR-B1 KO HDL purification using either PEG or dextran sulfate precipitation results in enrichment of small HDL subclasses, and may therefore underestimate alterations in lipoprotein composition or function. Compared to HDL obtained by ultracentrifugation, HDL isolated by PEG precipitation show a lower ApoE/ApoA-I proportion and reduced cholesterol content. HDL protein components described by Cao et al. or our laboratory are mostly inconsistent: only 33 HDL proteins were detected in both datasets, whereas a significant number of proteins were only identified by Cao et al. (n = 43) or Contreras-Duarte et al. (n = 26) datasets. The relative abundance of HDL-associated peptide and protein levels in WT vs SR-B1 HDL were also highly different in both datasets. This study indicates that caution must be taken when interpreting results from HDL isolated by chemical precipitation.
Collapse
Affiliation(s)
- Susana Contreras-Duarte
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Santander
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ruth Birner-Gruenberger
- Institute of Pathology and Center of Medical Research, Medical University of Graz, Graz, Austria.,Austrian Center of Industrial Biotechnology, Medical University of Graz, Graz, Austria.,Omics Center, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Attilio Rigotti
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dolores Busso
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
38
|
Luo M, Zhang Z, Peng Y, Wang S, Peng D. The negative effect of ANGPTL8 on HDL-mediated cholesterol efflux capacity. Cardiovasc Diabetol 2018; 17:142. [PMID: 30409151 PMCID: PMC6223079 DOI: 10.1186/s12933-018-0785-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
Background It is well known that angiopoietin-like protein 8 (ANGPTL8) exerts its effects on lipid metabolism through the inhibition of lipoprotein lipase and subsequent elevation of plasma triglyceride. However, it is not clear whether ANGPTL8 could affect lipid metabolism via other pathways. The study was aimed to investigate the effects of ANGPTL8 on the function of high-density lipoprotein (HDL), which plays a protective role in atherosclerosis progression. Methods Two hundred and ten subjects were recruited. Plasma ANGPTL8 was measured by enzyme-linked immunosorbent assays. Cholesterol efflux capacity was chosen as the biomarker of HDL function and measured via H3-cholesterol loading THP-1 cell models. Results ANGPTL8 exhibited no significant difference between CAD group and nonCAD group, but ANGPTL8 in DM group was significantly higher than that in the nonDM group [568.3 (406.2–836.8) vs 458.2 (356.8–755.6), P = 0.023]. Compared to controls, subjects in CAD group and DM group exhibited significantly lower cholesterol efflux capacity [CAD: 14.58 ± 2.06 vs 12.51 ± 2.83%, P < 0.0001; DM: 13.62 ± 2.57 vs 12.34 ± 3.16%, P = 0.0099]. ANGPTL8 was inversely correlated with cholesterol efflux capacity (r = − 0.188, P < 0.01). Regression analysis revealed that plasma ANGPTL8 was an independent contributor to cholesterol efflux capacity (standardized β = − 0.143, P = 0.023). Conclusion ANGPTL8 presents a negative effect on HDL-mediated cholesterol efflux capacity. Electronic supplementary material The online version of this article (10.1186/s12933-018-0785-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengdie Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139, Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Ziyu Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139, Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yani Peng
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139, Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139, Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
39
|
Swertfeger DK, Rebholz S, Li H, Shah AS, Davidson WS, Lu LJ. Feasibility of a plasma bioassay to assess oxidative protection of low-density lipoproteins by high-density lipoproteins. J Clin Lipidol 2018; 12:1539-1548. [PMID: 30244943 PMCID: PMC6437770 DOI: 10.1016/j.jacl.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Traditionally, the impact of lipoproteins on vascular disease has been evaluated in light of their quantity, that is, cholesterol content, in plasma. However, recent studies of high-density lipoproteins (HDLs) have focused on functionality with regard to atheroprotection. For example, bioassays have emerged to assess the ability of HDL, in its near native plasma environment, to promote cholesterol removal (efflux) from cells. As a result, attention has focused on developing plasma-based assays for other putative HDL protective functions including protecting low-density lipoproteins (LDLs) from oxidative damage. OBJECTIVE To determine the feasibility of such an assay in a complex sample such as plasma, we evaluated the contribution of HDL vs other plasma factors in preventing LDL oxidation. METHODS We separated normolipidemic human plasma by gel filtration chromatography and assessed each fraction for its ability to prevent LDL modification by water soluble radical and copper-initiated oxidation mechanisms. RESULTS Using proteomics and selective precipitation methods, we identified major antioxidative contributions for fibrinogen, immunoglobulin G, albumin, and small soluble molecules like uric acid and ascorbate, with albumin being especially dominant in copper-initiated mechanisms. HDL particles were minor contributors (∼1%-2%) to the antioxidant capacity of plasma, irrespective of oxidation mechanism. CONCLUSIONS Given the overwhelming background of antioxidant capacity inherent to highly abundant plasma proteins, specific bioassays of HDL antioxidative function will likely require its complete separation from plasma.
Collapse
Affiliation(s)
- Debi K Swertfeger
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Sandra Rebholz
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA; Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH, USA
| | - Hailong Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Amy S Shah
- Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - William Sean Davidson
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH, USA.
| | - Long J Lu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| |
Collapse
|
40
|
Millar CL, Duclos Q, Garcia C, Norris GH, Lemos BS, DiMarco DM, Fernandez ML, Blesso CN. Effects of Freeze-Dried Grape Powder on High-Density Lipoprotein Function in Adults with Metabolic Syndrome: A Randomized Controlled Pilot Study. Metab Syndr Relat Disord 2018; 16:464-469. [DOI: 10.1089/met.2018.0052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Courtney L. Millar
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Quinn Duclos
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Gregory H. Norris
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Bruno S. Lemos
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Diana M. DiMarco
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | | |
Collapse
|
41
|
Gordon SM, Chung JH, Playford MP, Dey AK, Sviridov D, Seifuddin F, Chen YC, Pirooznia M, Chen MY, Mehta NN, Remaley AT. High density lipoprotein proteome is associated with cardiovascular risk factors and atherosclerosis burden as evaluated by coronary CT angiography. Atherosclerosis 2018; 278:278-285. [PMID: 30347343 PMCID: PMC6263790 DOI: 10.1016/j.atherosclerosis.2018.09.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/24/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS High density lipoprotein cholesterol (HDL-C) is associated with risk of cardiovascular disease (CVD); however, therapeutic manipulations of HDL-C have failed to reduce CVD events. This suggests that HDL-C and the atheroprotective capacity of HDL are not directly linked. The goal of this study was to evaluate the relationships between HDL-bound proteins and measures of atherosclerosis burden and HDL function. METHODS The HDL proteome was analyzed using mass spectrometry in 126 human subjects, who had undergone coronary computed tomography angiography (CCTA) to quantify calcified (CB) and non-calcified (NCB) atherosclerosis burden. Partial least squares regression analysis was used to evaluate associations between HDL-bound proteins and CB, NCB, or cholesterol efflux capacity (CEC). RESULTS Significant overlap was found among proteins associated with NCB and CEC. Proteins that were associated with NCB displayed an inverse relationship with CEC, supporting a link between this protective function of HDL and clinical plaque burden. CB was associated with a set of proteins mostly distinct from NCB and CEC. When CVD risk factors were evaluated, BMI had a stronger influence on important HDL proteins than gender, age, or HDL-C. Most HDL proteins associated with function or atherosclerosis burden were not significantly correlated with HDL-C. CONCLUSIONS These findings indicate that the HDL proteome contains information not captured by HDL- C and, therefore, has potential for future development as a biomarker for CVD risk. Additionally, the proteome effects detected in this study may provide HDL compositional goals for evaluating new and existing HDL-modification therapies.
Collapse
Affiliation(s)
- Scott M. Gordon
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jonathan H. Chung
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Amit K. Dey
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Denis Sviridov
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Marcus Y. Chen
- Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Moderate Beer Intake and Cardiovascular Health in Overweight Individuals. Nutrients 2018; 10:nu10091237. [PMID: 30189619 PMCID: PMC6164820 DOI: 10.3390/nu10091237] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
Consistent epidemiological evidence indicates that low-to-moderate alcohol consumption is inversely associated with cardiovascular event presentation, while high levels of alcohol intake are associated to increased cardiovascular risk. Little is known on the effects of moderate beer intake in the metabolic syndrome. The aim of this study is to investigate the effects of moderate and regular daily intake of beer with meals in overweight (body mass index (BMI) of 28–29.9 kg/m2) or obese class 1 (BMI of 30–35 kg/m2) individuals without other cardiovascular risk factors (dyslipidemia, type 2-diabetes, hypertension) focusing on the effects related to changes in weight, in lipoproteins and vascular endothelial function. We have performed an open, prospective two-arms longitudinal crossover study to investigate the effects associated with regular consumption (four week) of alcohol-free-beer (0 g alcohol/day) or traditional-beer (30 g alcohol/day in men and 15 g alcohol/day in women) on anthropometrical and biochemical parameters, liver and kidney function biomarkers, and vascular endothelial function. After four-week intervention with traditional and/or alcohol-free beer, BMI did not show any significant change and values for liver and kidney functions were within the normal levels. Moderate traditional beer intake did not affect lipid levels—however it significantly increased the antioxidant capacity of high density lipoprotein (HDL). In addition, apoB-depleted serum (after the four-week intervention period) showed a higher potential to promote cholesterol efflux from macrophages. Beer consumption did not induce vascular endothelial dysfunction or stiffness. In summary, our results based on a 12-week prospective study provide evidence that moderate intake of beer (traditional and alcohol-free) does not exert vascular detrimental effects nor increases body weight in obese healthy individuals. In contrast, moderate intake of beer increases the anti-oxidative properties of HDL and facilitates cholesterol efflux, which may prevent lipid deposition in the vessel wall.
Collapse
|
43
|
Anastasius M, Luquain-Costaz C, Kockx M, Jessup W, Kritharides L. A critical appraisal of the measurement of serum 'cholesterol efflux capacity' and its use as surrogate marker of risk of cardiovascular disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1257-1273. [PMID: 30305243 DOI: 10.1016/j.bbalip.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
The 'cholesterol efflux capacity (CEC)' assay is a simple in vitro measure of the capacities of individual sera to promote the first step of the reverse cholesterol transport pathway, the delivery of cellular cholesterol to plasma HDL. This review describes the cell biology of this model and critically assesses its application as a marker of cardiovascular risk. We describe the pathways for cell cholesterol export, current cell models used in the CEC assay with their limitations and consider the contribution that measurement of serum CEC provides to our understanding of HDL function in vivo.
Collapse
Affiliation(s)
- Malcolm Anastasius
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | | | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Wendy Jessup
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia; Cardiology Department, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The inverse association between HDL cholesterol (HDL-C) and cardiovascular disease (CVD) has been unequivocally proven in the past several decades. However, some interventions aiming to increase HDL-C failed to reduce CVD risk. HDL is structurally and functionally complex and HDL-associated metrics other than HDL-C, such as the concentration, composition, and functionality of HDL particles, have been considered as better determinants of CVD risk. A large body of recent research has addressed changes in HDL functions and HDL subpopulations in CVD with the goal of discovering novel and reliable biomarkers and targets for the treatment or prevention of CVD. RECENT FINDINGS We have reviewed recent findings on HDL composition, HDL particle concentrations, and cell-cholesterol efflux capacity that have lately contributed to our understanding of HDL's role in CVD. SUMMARY We point out that a major problem in HDL research is the lack of standardization of HDL assays that has led to discrepancies among studies. Therefore, there is a need for new standardized assays that capture the complexities of key HDL parameters.
Collapse
Affiliation(s)
- Katrin Niisuke
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | | | | |
Collapse
|
45
|
Luo M, Su X, Yi Y, Yang Y, Peng D. Apolipoprotein CIII may mediate the impacts of angiopoietin-like protein 8 on triglyceride metabolism. Lipids Health Dis 2018; 17:160. [PMID: 30021607 PMCID: PMC6052593 DOI: 10.1186/s12944-018-0777-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 05/15/2018] [Indexed: 11/25/2022] Open
Abstract
Background Angiopoietin-like protein 8(ANGPTL8) and apolipoprotein CIII (apoCIII) were found to inhibit the activity of lipoprotein lipase (LPL) and disrupt the clearance of triglyceride-rich lipoproteins (TRLs), leading to hypertriglyceridemia. Whether any relationship exists between these two important modulators of triglyceride metabolism has not been reported. Besides, whether ANGPTL8 concentration is altered in the patients with coronary artery disease (CAD) is still unclear. Methods A hospital-based case-control study was conducted. Sixty-eight CAD subjects and fifty-two nonCAD controls were recruited. Plasma apoCIII, ANGPTL8 was measured. Results ANGPTL8 and apoCIII concentration exhibited no significant difference between CAD group and nonCAD group. Both ANGPTL8 and apoCIII were significantly correlated with triglyceride level(r = − 0.243, P = 0.008; r = 0.335, P < 0.001, respectively). Regression analysis revealed that apoCIII was an independent contributor to triglyceride level independent of ANGPTL8 concentration (standardized β = 0.230, P < 0.01). Conclusion ApoCIII may mediate the effects of ANGPTL8 on triglyceride metabolism.
Collapse
Affiliation(s)
- Mengdie Luo
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuhong Yi
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yang Yang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
46
|
Talbot CPJ, Mensink RP, Smolders L, Bakeroot V, Plat J. Theobromine Does Not Affect Fasting and Postprandial HDL Cholesterol Efflux Capacity, While It Decreases Fasting miR-92a Levels in Humans. Mol Nutr Food Res 2018; 62:e1800027. [PMID: 29797695 PMCID: PMC6055688 DOI: 10.1002/mnfr.201800027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/22/2018] [Indexed: 12/24/2022]
Abstract
SCOPE Chocolate consumption lowers cardiovascular disease risk, which might be attributed to the methylxanthine theobromine. These effects may be mediated through effects on HDL-mediated cholesterol efflux, which may be affected by microRNA (miRNA) levels in the HDL particles. Therefore, the aim of this study is to investigate effects of theobromine consumption on fasting and postprandial cholesterol efflux and miRNAs levels. METHODS AND RESULTS Thirty overweight and 14 obese healthy men and women participated in this randomized, double-blind crossover study. Participants consumed 500 mg d-1 of theobromine or placebo for 4 weeks. ABCA1-mediated cholesterol efflux was measured using J774 macrophages. MiRNAs levels (miR-92a, miR-223, miR-135a*) were quantified in apolipoprotein B-depleted serum. Theobromine consumption did not affect fasting and postprandial cholesterol efflux. Fasting miR-223 and miR-135a levels were unchanged, while miR-92a levels were decreased (-0.21; p < 0.05). The high-fat meal increased postprandial cholesterol efflux capacity (+4.3 percentage points; p ≤ 0.001), miR-92a (+1.21; p < 0.001), and miR-223 (+1.79; p < 0.001) levels, while a trend was found for miR-135a (+1.08; p = 0.06). CONCLUSION Theobromine did not improve fasting and postprandial ABCA1-mediated cholesterol efflux capacity, but decreased fasting miR-92a levels. High-fat meal intake increased postprandial cholesterol efflux and the three selected miRNAs levels.
Collapse
Affiliation(s)
- Charlotte P J Talbot
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Lotte Smolders
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Virginie Bakeroot
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
47
|
Kjellmo CA, Karlsson H, Nestvold TK, Ljunggren S, Cederbrant K, Marcusson-Ståhl M, Mathisen M, Lappegård KT, Hovland A. Bariatric surgery improves lipoprotein profile in morbidly obese patients by reducing LDL cholesterol, apoB, and SAA/PON1 ratio, increasing HDL cholesterol, but has no effect on cholesterol efflux capacity. J Clin Lipidol 2018; 12:193-202. [DOI: 10.1016/j.jacl.2017.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/24/2017] [Accepted: 10/11/2017] [Indexed: 11/27/2022]
|
48
|
Talbot CP, Plat J, Ritsch A, Mensink RP. Determinants of cholesterol efflux capacity in humans. Prog Lipid Res 2018; 69:21-32. [PMID: 29269048 DOI: 10.1016/j.plipres.2017.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
|
49
|
Xu B, Gillard BK, Gotto AM, Rosales C, Pownall HJ. ABCA1-Derived Nascent High-Density Lipoprotein-Apolipoprotein AI and Lipids Metabolically Segregate. Arterioscler Thromb Vasc Biol 2017; 37:2260-2270. [PMID: 29074589 DOI: 10.1161/atvbaha.117.310290] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Reverse cholesterol transport comprises cholesterol efflux from ABCA1-expressing macrophages to apolipoprotein (apo) AI, giving nascent high-density lipoprotein (nHDL), esterification of nHDL-free cholesterol (FC), selective hepatic extraction of HDL lipids, and hepatic conversion of HDL cholesterol to bile salts, which are excreted. We tested this model by identifying the fates of nHDL-[3H]FC, [14C] phospholipid (PL), and [125I]apo AI in serum in vitro and in vivo. APPROACH AND RESULTS During in vitro incubation of human serum, nHDL-[3H]FC and [14C]PL rapidly transfer to HDL and low-density lipoproteins (t1/2=2-7 minutes), whereas nHDL-[125I]apo AI transfers solely to HDL (t1/2<10 minutes) and to the lipid-free form (t1/2>480 minutes). After injection into mice, nHDL-[3H]FC and [14C]PL rapidly transfer to liver (t1/2=≈2-3 minutes), whereas apo AI clears with t1/2=≈460 minutes. The plasma nHDL-[3H]FC esterification rate is slow (0.46%/h) compared with hepatic uptake. PL transfer protein enhances nHDL-[14C]PL but not nHDL-[3H]FC transfer to cultured Huh7 hepatocytes. CONCLUSIONS nHDL-FC, PL, and apo AI enter different pathways in vivo. Most nHDL-[3H]FC and [14C]PL are rapidly extracted by the liver via SR-B1 (scavenger receptor class B member 1) and spontaneous transfer; hepatic PL uptake is promoted by PL transfer protein. nHDL-[125I]apo AI transfers to HDL and to the lipid-free form that can be recycled to nHDL formation. Cholesterol esterification by lecithin:cholesterol acyltransferase is a minor process in nHDL metabolism. These findings could guide the design of therapies that better mobilize peripheral tissue-FC to hepatic disposal.
Collapse
Affiliation(s)
- Bingqing Xu
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Baiba K Gillard
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Antonio M Gotto
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Corina Rosales
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Henry J Pownall
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.).
| |
Collapse
|
50
|
Luo M, Liu A, Wang S, Wang T, Hu D, Wu S, Peng D. ApoCIII enrichment in HDL impairs HDL-mediated cholesterol efflux capacity. Sci Rep 2017; 7:2312. [PMID: 28539597 PMCID: PMC5443776 DOI: 10.1038/s41598-017-02601-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/13/2017] [Indexed: 12/30/2022] Open
Abstract
Apolipoprotein CIII (apoCIII) has been reported to be tightly associated with triglyceride metabolism and the susceptibility to coronary artery disease (CAD). Besides, apoCIII has also been found to affect the anti-apoptotic effects of HDL. However, the effect of apoCIII on HDL-mediated cholesterol efflux, the crucial function of HDL, has not been reported. A hospital-based case-control study was conducted to compare the apoCIII distribution in lipoproteins between CAD patients and nonCAD controls and to explore the relationship between HDL-associated apoCIII (apoCIIIHDL) and HDL-mediated cholesterol efflux. One hundred forty CAD patients and nighty nine nonCAD controls were included. Plasma apoCIII, apoCIIIHDL and cholesterol efflux capacity was measured. The apoCIIIHDL ratio (apoCIIIHDL over plasma apoCIII) was significantly higher in CAD patients than that in control group (0.52 ± 0.24 vs. 0.43 ± 0.22, P = 0.004). Both apoCIIIHDL and apoCIIIHDL ratio were inversely correlated with cholesterol efflux capacity (r = −0.241, P = 0.0002; r = −0.318, P < 0.0001, respectively). Stepwise multiple regression analysis revealed that the apoCIIIHDL ratio was an independent contributor to HDL-mediated cholesterol efflux capacity (standardized β = −0.325, P < 0.001). This study indicates that the presence of apoCIII in HDL may affect HDL-mediated cholesterol efflux capacity, implying the alternative role of apoCIII in the atherogenesis.
Collapse
Affiliation(s)
- Mengdie Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Aiying Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tianle Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sha Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|