1
|
Zhang X, van der Vorst EPC. High-Density Lipoprotein Modifications: Causes and Functional Consequences in Type 2 Diabetes Mellitus. Cells 2024; 13:1113. [PMID: 38994965 PMCID: PMC11240616 DOI: 10.3390/cells13131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
High-density lipoprotein (HDL) is a group of small, dense, and protein-rich lipoproteins that play a role in cholesterol metabolism and various cellular processes. Decreased levels of HDL and HDL dysfunction are commonly observed in individuals with type 2 diabetes mellitus (T2DM), which is also associated with an increased risk for cardiovascular disease (CVD). Due to hyperglycemia, oxidative stress, and inflammation that develop in T2DM, HDL undergoes several post-translational modifications such as glycation, oxidation, and carbamylation, as well as other alterations in its lipid and protein composition. It is increasingly recognized that the generation of HDL modifications in T2DM seems to be the main cause of HDL dysfunction and may in turn influence the development and progression of T2DM and its related cardiovascular complications. This review provides a general introduction to HDL structure and function and summarizes the main modifications of HDL that occur in T2DM. Furthermore, the potential impact of HDL modifications on the pathogenesis of T2DM and CVD, based on the altered interactions between modified HDL and various cell types that are involved in glucose homeostasis and atherosclerotic plaque generation, will be discussed. In addition, some perspectives for future research regarding the T2DM-related HDL modifications are addressed.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
2
|
McQueen P, Molina D, Pinos I, Krug S, Taylor AJ, LaFrano MR, Kane MA, Amengual J. Finasteride delays atherosclerosis progression in mice and is associated with a reduction in plasma cholesterol in men. J Lipid Res 2024; 65:100507. [PMID: 38272355 PMCID: PMC10899056 DOI: 10.1016/j.jlr.2024.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Finasteride is commonly prescribed to treat benign prostate hyperplasia and male-pattern baldness in cis men and, more recently, trans individuals. However, the effect of finasteride on cardiovascular disease remains elusive. We evaluated the role of finasteride on atherosclerosis using low-density lipoprotein (LDL) receptor-deficient (Ldlr-/-) mice. Next, we examined the relevance to humans by analyzing the data deposited between 2009 and 2016 in the National Health and Nutrition Examination Survey. We show that finasteride reduces total plasma cholesterol and delays the development of atherosclerosis in Ldlr-/- mice. Finasteride reduced monocytosis, monocyte recruitment to the lesion, macrophage lesion content, and necrotic core area, the latter of which is an indicator of plaque vulnerability in humans. RNA sequencing analysis revealed a downregulation of inflammatory pathways and an upregulation of bile acid metabolism, oxidative phosphorylation, and cholesterol pathways in the liver of mice taking finasteride. Men reporting the use of finasteride showed lower plasma levels of cholesterol and LDL-cholesterol than those not taking the drug. Our data unveil finasteride as a potential treatment to delay cardiovascular disease in people by improving the plasma lipid profile.
Collapse
Affiliation(s)
- Patrick McQueen
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Donald Molina
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Samuel Krug
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Anna J Taylor
- Carver Metabolomics Core, Roy J. Carver Biotechnology Center, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Michael R LaFrano
- Carver Metabolomics Core, Roy J. Carver Biotechnology Center, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr Atheroscler Rep 2023; 25:155-166. [PMID: 36881278 PMCID: PMC10027838 DOI: 10.1007/s11883-023-01087-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Cholesteryl ester transfer proteins (CETP) regulate plasma cholesterol levels by transferring cholesteryl esters (CEs) among lipoproteins. Lipoprotein cholesterol levels correlate with the risk factors for atherosclerotic cardiovascular disease (ASCVD). This article reviews recent research on CETP structure, lipid transfer mechanism, and its inhibition. RECENT FINDINGS Genetic deficiency in CETP is associated with a low plasma level of low-density lipoprotein cholesterol (LDL-C) and a profoundly elevated plasma level of high-density lipoprotein cholesterol (HDL-C), which correlates with a lower risk of atherosclerotic cardiovascular disease (ASCVD). However, a very high concentration of HDL-C also correlates with increased ASCVD mortality. Considering that the elevated CETP activity is a major determinant of the atherogenic dyslipidemia, i.e., pro-atherogenic reductions in HDL and LDL particle size, inhibition of CETP emerged as a promising pharmacological target during the past two decades. CETP inhibitors, including torcetrapib, dalcetrapib, evacetrapib, anacetrapib and obicetrapib, were designed and evaluated in phase III clinical trials for the treatment of ASCVD or dyslipidemia. Although these inhibitors increase in plasma HDL-C levels and/or reduce LDL-C levels, the poor efficacy against ASCVD ended interest in CETP as an anti-ASCVD target. Nevertheless, interest in CETP and the molecular mechanism by which it inhibits CE transfer among lipoproteins persisted. Insights into the structural-based CETP-lipoprotein interactions can unravel CETP inhibition machinery, which can hopefully guide the design of more effective CETP inhibitors that combat ASCVD. Individual-molecule 3D structures of CETP bound to lipoproteins provide a model for understanding the mechanism by which CETP mediates lipid transfer and which in turn, guide the rational design of new anti-ASCVD therapeutics.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
4
|
Environmental and Lifestyle Risk Factors in the Carcinogenesis of Gallbladder Cancer. J Pers Med 2022; 12:jpm12020234. [PMID: 35207722 PMCID: PMC8877116 DOI: 10.3390/jpm12020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/08/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Gallbladder cancer (GBC) is an aggressive neoplasm that in an early stage is generally asymptomatic and, in most cases, is diagnosed in advanced stages with a very low life expectancy because there is no curative treatment. Therefore, understanding the early carcinogenic mechanisms of this pathology is crucial to proposing preventive strategies for this cancer. The main risk factor is the presence of gallstones, which are associated with some environmental factors such as a sedentary lifestyle and a high-fat diet. Other risk factors such as autoimmune disorders and bacterial, parasitic and fungal infections have also been described. All these factors can generate a long-term inflammatory state characterized by the persistent activation of the immune system, the frequent release of pro-inflammatory cytokines, and the constant production of reactive oxygen species that result in a chronic damage/repair cycle, subsequently inducing the loss of the normal architecture of the gallbladder mucosa that leads to the development of GBC. This review addresses how the different risk factors could promote a chronic inflammatory state essential to the development of gallbladder carcinogenesis, which will make it possible to define some strategies such as anti-inflammatory drugs or public health proposals in the prevention of GBC.
Collapse
|
5
|
Gautier T, Deckert V, Nguyen M, Desrumaux C, Masson D, Lagrost L. New therapeutic horizons for plasma phospholipid transfer protein (PLTP): Targeting endotoxemia, infection and sepsis. Pharmacol Ther 2021; 236:108105. [PMID: 34974028 DOI: 10.1016/j.pharmthera.2021.108105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Phospholipid Transfer Protein (PLTP) transfers amphiphilic lipids between circulating lipoproteins and between lipoproteins, cells and tissues. Indeed, PLTP is a major determinant of the plasma levels, turnover and functionality of the main lipoprotein classes: very low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). To date, most attention has been focused on the role of PLTP in the context of cardiometabolic diseases, with additional insights in neurodegenerative diseases and immunity. Importantly, beyond its influence on plasma triglyceride and cholesterol transport, PLTP plays a key role in the modulation of the immune response, with immediate relevance to a wide range of inflammatory diseases including bacterial infection and sepsis. Indeed, emerging evidence supports the role of PLTP, in the context of its association with lipoproteins, in the neutralization and clearance of bacterial lipopolysaccharides (LPS) or endotoxins. LPS are amphipathic molecules originating from Gram-negative bacteria which harbor major pathogen-associated patterns, triggering an innate immune response in the host. Although the early inflammatory reaction constitutes a key step in the anti-microbial defense of the organism, it can lead to a dysregulated inflammatory response and to hemodynamic disorders, organ failure and eventually death. Moreover, and in addition to endotoxemia and acute inflammation, small amounts of LPS in the circulation can induce chronic, low-grade inflammation with long-term consequences in several metabolic disorders such as atherosclerosis, obesity and diabetes. After an updated overview of the role of PLTP in lipid transfer, lipoprotein metabolism and related diseases, current knowledge of its impact on inflammation, infection and sepsis is critically appraised. Finally, the relevance of PLTP as a new player and novel therapeutic target in the fight against inflammatory diseases is considered.
Collapse
Affiliation(s)
- Thomas Gautier
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.
| | - Valérie Deckert
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Maxime Nguyen
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service Anesthésie-Réanimation Chirurgicale, Dijon University Hospital, Dijon, France
| | - Catherine Desrumaux
- INSERM, U1198, Montpellier, France; Faculty of Sciences, Université Montpellier, Montpellier, France
| | - David Masson
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Plateau Automatisé de Biochimie, Dijon University Hospital, Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service de la Recherche, Dijon University Hospital, Dijon, France.
| |
Collapse
|
6
|
Nguyen M, Pallot G, Jalil A, Tavernier A, Dusuel A, Le Guern N, Lagrost L, Pais de Barros JP, Choubley H, Bergas V, Guinot PG, Masson D, Bouhemad B, Gautier T. Intra-Abdominal Lipopolysaccharide Clearance and Inactivation in Peritonitis: Key Roles for Lipoproteins and the Phospholipid Transfer Protein. Front Immunol 2021; 12:622935. [PMID: 34054798 PMCID: PMC8149805 DOI: 10.3389/fimmu.2021.622935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/21/2021] [Indexed: 01/22/2023] Open
Abstract
Introduction During peritonitis, lipopolysaccharides (LPS) cross the peritoneum and pass through the liver before reaching the central compartment. The aim of the present study was to investigate the role of lipoproteins and phospholipid transfer protein (PLTP) in the early stages of LPS detoxification. Material and Methods Peritonitis was induced by intra-peritoneal injection of LPS in mice. We analyzed peritoneal fluid, portal and central blood. Lipoprotein fractions were obtained by ultracentrifugation and fast protein liquid chromatography. LPS concentration and activity were measured by liquid chromatography coupled with mass spectrometry and limulus amoebocyte lysate. Wild-type mice were compared to mice knocked out for PLTP. Results In mice expressing PLTP, LPS was able to bind to HDL in the peritoneal compartment, and this was maintained in plasma from portal and central blood. A hepatic first-pass effect of HDL-bound LPS was observed in wild-type mice. LPS binding to HDL resulted in an early arrival of inactive LPS in the central blood of wild-type mice. Conclusion PLTP promotes LPS peritoneal clearance and neutralization in a model of peritonitis. This mechanism involves the early binding of LPS to lipoproteins inside the peritoneal cavity, which promotes LPS translocation through the peritoneum and its uptake by the liver.
Collapse
Affiliation(s)
- Maxime Nguyen
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France
- Université Bourgogne Franche-Comté / Agrosup, Lipids Nutrition Cancer (LNC) UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Gaëtan Pallot
- INSERM, LNC UMR1231, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Antoine Jalil
- INSERM, LNC UMR1231, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Annabelle Tavernier
- INSERM, LNC UMR1231, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Aloïs Dusuel
- INSERM, LNC UMR1231, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Naig Le Guern
- INSERM, LNC UMR1231, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Laurent Lagrost
- Université Bourgogne Franche-Comté / Agrosup, Lipids Nutrition Cancer (LNC) UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Jean-Paul Pais de Barros
- INSERM, LNC UMR1231, Dijon, France
- Lipidomic Analytical Platform, Université Bourgogne Franche-Comté (UBFC), Dijon, France
| | - Hélène Choubley
- INSERM, LNC UMR1231, Dijon, France
- Lipidomic Analytical Platform, Université Bourgogne Franche-Comté (UBFC), Dijon, France
| | - Victoria Bergas
- INSERM, LNC UMR1231, Dijon, France
- Lipidomic Analytical Platform, Université Bourgogne Franche-Comté (UBFC), Dijon, France
| | - Pierre-Grégoire Guinot
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France
- Université Bourgogne Franche-Comté / Agrosup, Lipids Nutrition Cancer (LNC) UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - David Masson
- Université Bourgogne Franche-Comté / Agrosup, Lipids Nutrition Cancer (LNC) UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- Laboratory of Clinical Chemistry, François Mitterrand University Hospital, Dijon, France
| | - Belaid Bouhemad
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France
- Université Bourgogne Franche-Comté / Agrosup, Lipids Nutrition Cancer (LNC) UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Thomas Gautier
- Université Bourgogne Franche-Comté / Agrosup, Lipids Nutrition Cancer (LNC) UMR1231, Dijon, France
- INSERM, LNC UMR1231, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| |
Collapse
|
7
|
Bahbah EI, Shehata MSA, Alnahrawi SI, Sayed A, Menshawey A, Fisal A, Morsi M, Gabr ME, Elbasit MSA. Safety and Efficacy of Evacetrapib in Patients with Inadequately-controlled Hypercholesterolemia and High Cardiovascular Risk; A meta-analysis of Randomized Placebo-controlled Trials. Prostaglandins Leukot Essent Fatty Acids 2021; 168:102282. [PMID: 33882411 DOI: 10.1016/j.plefa.2021.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Low-density lipoprotein cholesterol (LDL-C) is causally related to cardiovascular disease. Inhibition of cholesteryl ester transfer protein with Evacetrapib may provide an additional treatment option for patients who do not reach their LDL-C goal with statins or patients who cannot tolerate statins. We aimed to evaluate the safety and efficacy of Evacetrapib in patients with inadequately-controlled hypercholesterolemia and high cardiovascular risk. METHOD A computer literature search for PubMed, Scopus, and Science Direct was carried out from inception to 2019 and was updated from January 2019 till March 2021. We included only RCTs. Data were pooled as a mean difference in a random-effect model using the Mantel-Haenzel (M-H) method. We used Open Meta [Analyst] software (by the center of evidence-based medicine, Oxford University, UK). RESULTS Five studies (n = 12,937 patients) reported in five articles were included in this meta-analysis. The overall pooled estimate showed that LDL-C was significantly lower in the evacetrapib group than the placebo group (MD -34.07 mg/dL, 95% CI [-40.66, -27.49], p<0.0001). The pooled estimate showed that Apo-B was significantly lower in the evacetrapib130 mg group than the placebo group (MD -22.64 mg/dL, 95% CI [-30.70, -14.58], p<0.0001). HDL-C was significantly higher in the evacetrapib group over the placebo group (MD 93.31 mg/dL, 95% CI [56.07, 130.56], p<0.0001). CONCLUSION Current evidence from five RCTs (12,539 participants) suggests that evacetrapib has favorable outcomes in patients with inadequately-controlled Hypercholesterolemia and high cardiovascular risks. Evacetrapib could significantly increase the HDL and Apo-A1 levels and lower the LDL cholesterol and Apo-B levels with an acceptable safety profile.
Collapse
Affiliation(s)
- Eshak I Bahbah
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| | - Mohamed S A Shehata
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Safwat Ibrahim Alnahrawi
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Department of Cardiology, National Heart Institute, Egypt
| | - Ahmed Sayed
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr Menshawey
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Fisal
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mahmoud Morsi
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Menofia University, Menofia, Egypt
| | - Mohamed Essam Gabr
- Montefiore medical center, Albert Einstien college of medicine (Wakefield Division), Bronx, NY
| | - Mohamed Salah Abd Elbasit
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Department of Cardiology, National Heart Institute, Egypt
| |
Collapse
|
8
|
Multi-platform omics analysis reveals molecular signature for COVID-19 pathogenesis, prognosis and drug target discovery. Signal Transduct Target Ther 2021; 6:155. [PMID: 33859163 PMCID: PMC8047575 DOI: 10.1038/s41392-021-00508-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Disease progression prediction and therapeutic drug target discovery for Coronavirus disease 2019 (COVID-19) are particularly important, as there is still no effective strategy for severe COVID-19 patient treatment. Herein, we performed multi-platform omics analysis of serial plasma and urine samples collected from patients during the course of COVID-19. Integrative analyses of these omics data revealed several potential therapeutic targets, such as ANXA1 and CLEC3B. Molecular changes in plasma indicated dysregulation of macrophage and suppression of T cell functions in severe patients compared to those in non-severe patients. Further, we chose 25 important molecular signatures as potential biomarkers for the prediction of disease severity. The prediction power was validated using corresponding urine samples and plasma samples from new COVID-19 patient cohort, with AUC reached to 0.904 and 0.988, respectively. In conclusion, our omics data proposed not only potential therapeutic targets, but also biomarkers for understanding the pathogenesis of severe COVID-19.
Collapse
|
9
|
Liu W, Song H, Li X, Ren D, Ding S, Li Y. Lipid Metabolism in Tumor-Associated Myeloid-Derived Suppressor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:103-115. [PMID: 33740246 DOI: 10.1007/978-981-33-6785-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of myeloid cells with immature phenotypes and immunosuppressive functions. This population of cells has been extensively studied over the past decade owing to an increasing recognition of their pivotal role in pathological conditions including cancers, infectious diseases, sepsis, and autoimmune diseases. Various treatments targeting MDSCs are currently under development or in clinical trials with the aim to restore functional immunity against tumors or pathogens. Recent advances in immune metabolism demonstrate the role of metabolic pathways, especially lipid metabolism, in the differentiation and function of MDSCs in tumor environments. Therefore, a comprehensive understanding of lipid metabolism in MDSCs would facilitate the development of novel therapies against tumors through metabolic reprograming of MDSCs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Hua Song
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaojing Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Deshan Ren
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Shuai Ding
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Yan Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China. .,Chemistry and Biomedicine Innovation Center, Nanjing, China. .,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China. .,Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Xu T, Yang Y, Huang X, Ren J, Xu T, Xie W. Lipidomic Perturbations in Cynomolgus Monkeys are Regulated by Thyroid Stimulating Hormone. Front Mol Biosci 2021; 8:640387. [PMID: 33791338 PMCID: PMC8006939 DOI: 10.3389/fmolb.2021.640387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 11/15/2022] Open
Abstract
Thyroid disease affects an estimated 200 million people worldwide, and is commonly associated with increased blood lipid levels. However, the mechanism by which thyroid-stimulating hormone (TSH) affects lipid profiles is not clear. Twenty-four cynomolgus monkeys were treated with a novel exogenous recombinant human TSH (rhTSH) (SNA001) at 9 μg kg−1, 22 μg kg−1, or 54 μg kg−1, and reference rhTSH (Thyrogen®) at 22 μg kg−1. The primary TSH (SNA001) pharmacokinetic (PK) parameters increased in a dose-dependent manner across the dose range of 9 μg kg−1, 22 μg kg−1, or 54 μg kg−1. Peak triiodothyronine (T3) and thyroxine (T4) levels were reached within 24 h after rhTSH administration, which was delayed by approximately 20 h. In total, 420 lipid species were detected and quantified by ultra-performance liquid chromatography high resolution spectrometry (UPLC-HR-MS)-based lipidomics. Notably, peak levels of lipid accumulation, particularly sphingomyelin (SM) and triglycerides (TG), appeared at 4 and 24 h, which was consistent with the pattern of TSH and T3/T4 levels, respectively. According to weighted correlation network analysis (WGCNA), perturbations of many lipid species were strongly correlated with TSH and T3/T4 levels. TSH and the stimulated T3/T4 levels and lipid profiles following SNA001 administration were comparable to those after administration of the reference rhTSH (Thyrogen®). The plasma lipidome and changes in lipid levels after rhTSH stimulation were associated with TSH and T3/T4 concentrations. T3/T4 and lipid profiles were delayed after TSH stimulation. Such phenomena require further exploration.
Collapse
Affiliation(s)
- Tao Xu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China.,The Therapeutic Antibody Research Center of SEU-Alphamab, Southeast University, Nanjing, China
| | - Yanling Yang
- School of Pharmacy, Yantai University, Yantai, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhong Ren
- Suzhou Bionovogene Metabolomics Platform, Jiangsu, China
| | - Ting Xu
- The Therapeutic Antibody Research Center of SEU-Alphamab, Southeast University, Nanjing, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China.,The Therapeutic Antibody Research Center of SEU-Alphamab, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Ma F, Darabi M, Lhomme M, Tubeuf E, Canicio A, Brerault J, Medadje N, Rached F, Lebreton S, Frisdal E, Brites F, Serrano C, Santos R, Gautier E, Huby T, El Khoury P, Carrié A, Abifadel M, Bruckert E, Guerin M, Couvert P, Giral P, Lesnik P, Le Goff W, Guillas I, Kontush A. Phospholipid transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis is directly correlated with HDL-cholesterol levels and is not associated with cardiovascular risk. Atherosclerosis 2021; 324:1-8. [PMID: 33798922 DOI: 10.1016/j.atherosclerosis.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS While low concentrations of high-density lipoprotein-cholesterol (HDL-C) represent a well-established cardiovascular risk factor, extremely high HDL-C is paradoxically associated with elevated cardiovascular risk, resulting in the U-shape relationship with cardiovascular disease. Free cholesterol transfer to HDL upon lipolysis of triglyceride-rich lipoproteins (TGRL) was recently reported to underlie this relationship, linking HDL-C to triglyceride metabolism and atherosclerosis. In addition to free cholesterol, other surface components of TGRL, primarily phospholipids, are transferred to HDL during lipolysis. It remains indeterminate as to whether such transfer is linked to HDL-C and cardiovascular disease. METHODS AND RESULTS When TGRL was labelled with fluorescent phospholipid 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), time- and dose-dependent transfer of DiI to HDL was observed upon incubations with lipoprotein lipase (LPL). The capacity of HDL to acquire DiI was decreased by -36% (p<0.001) in low HDL-C patients with acute myocardial infarction (n = 22) and by -95% (p<0.001) in low HDL-C subjects with Tangier disease (n = 7), unchanged in low HDL-C patients with Type 2 diabetes (n = 17) and in subjects with high HDL-C (n = 20), and elevated in subjects with extremely high HDL-C (+11%, p<0.05) relative to healthy normolipidemic controls. Across all the populations combined, HDL capacity to acquire DiI was directly correlated with HDL-C (r = 0.58, p<0.001). No relationship of HDL capacity to acquire DiI with both overall and cardiovascular mortality obtained from epidemiological studies for the mean HDL-C levels observed in the studied populations was obtained. CONCLUSIONS These data indicate that the capacity of HDL to acquire phospholipid from TGRL upon LPL-mediated lipolysis is proportional to HDL-C and does not reflect cardiovascular risk in subjects widely differing in HDL-C levels.
Collapse
Affiliation(s)
- Feng Ma
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France.
| | - Maryam Darabi
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Marie Lhomme
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, F-75013, France
| | - Emilie Tubeuf
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Aurélie Canicio
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Jean Brerault
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Narcisse Medadje
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Fabiana Rached
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France; Heart Institute-InCor, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Eric Frisdal
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Fernando Brites
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires, CONICET. Buenos Aires, Argentina
| | - Carlos Serrano
- Heart Institute-InCor, University of Sao Paulo, Sao Paulo, Brazil
| | - Raul Santos
- Heart Institute-InCor, University of Sao Paulo, Sao Paulo, Brazil
| | - Emmanuel Gautier
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Thierry Huby
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Petra El Khoury
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon; INSERM LVTS U1148, Hôpital Bichat-Claude Bernard, Paris, France
| | - Alain Carrié
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon; INSERM LVTS U1148, Hôpital Bichat-Claude Bernard, Paris, France
| | - Eric Bruckert
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, F-75013, France; AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, F-75013, France
| | - Maryse Guerin
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Philippe Couvert
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Philippe Giral
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, F-75013, France; AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, F-75013, France
| | - Philippe Lesnik
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Wilfried Le Goff
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Isabelle Guillas
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| |
Collapse
|
12
|
Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, van der Vorst EP. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev 2020; 159:94-119. [PMID: 33080259 DOI: 10.1016/j.addr.2020.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune-modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed.
Collapse
|
13
|
Abstract
There is a great debate regarding the association of cholesterol intake from egg consumption and the incidence of cardiovascular disease (CVD). Most studies show that moderate egg consumption is not associated with a significant increase in CVD, stroke, heart failure, and type 2 diabetes mellitus (T2DM), whereas others dispute this fact and state that there is an association with increased egg consumption, especially if they are consumed with saturated fats. In addition, the recent relaxation of cholesterol intake to greater than 300 mg/d by the American College of Cardiology/American Heart Association Nutritional Guidelines has fueled this debate. In order to get a current perspective on the significance of moderate egg consumption with the primary incidence of CVD, a focused Medline search of the English language literature was conducted between 2010 and March 2020 using the terms, cholesterol intake, egg consumption, coronary artery disease, CVD, and T2DM. Nineteen pertinent articles were retrieved, and these, together with collateral literature, will be discussed in this review article. The analysis of data from the articles retrieved indicated that several studies showed that moderate egg consumption (1 egg/d) is not associated with adverse cardiovascular effects in subjects free of CVD or T2DM, whereas other studies showed a positive association, especially in patients with preexisting CVD or T2DM. Therefore, at present, there is no unanimous agreement on this subject, and the controversy will continue until new confirmatory evidence becomes available.
Collapse
|
14
|
Blauw LL, Wang Y, Willems van Dijk K, Rensen PCN. A Novel Role for CETP as Immunological Gatekeeper: Raising HDL to Cure Sepsis? Trends Endocrinol Metab 2020; 31:334-343. [PMID: 32033866 DOI: 10.1016/j.tem.2020.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/11/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Raising HDL using cholesteryl ester transfer protein (CETP) inhibitors failed to show a clinically relevant risk reduction of cardiovascular disease in clinical trials, inviting reconsideration of the role of CETP and HDL in human physiology. Based on solid evidence from studies with isolated macrophages, rodents, and humans, we propose that a major function of CETP may be to modulate HDL in order to help resolve bacterial infections. When gram-negative bacteria invade the blood, as occurs in sepsis, Kupffer cells lose their expression of CETP to increase HDL levels. This rise in HDL prevents systemic endotoxemia by binding lipopolysaccharide and induces a systemic proinflammatory response in macrophages to mediate bacterial clearance. This raises the interesting possibility to repurpose CETP inhibitors for the treatment of sepsis.
Collapse
Affiliation(s)
- Lisanne L Blauw
- Department of Internal Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Yanan Wang
- Department of Internal Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Internal Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Dupas S, Neiers F, Granon E, Rougeux E, Dupont S, Beney L, Bousquet F, Shaik HA, Briand L, Wojtasek H, Charles JP. Collisional mechanism of ligand release by Bombyxmori JHBP, a member of the TULIP / Takeout family of lipid transporters. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103293. [PMID: 31809784 DOI: 10.1016/j.ibmb.2019.103293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Juvenile hormones (JHs) regulate important processes in insects, such as postembryonic development and reproduction. In the hemolymph of Lepidoptera, these lipophilic sesquiterpenic hormones are transported from their site of synthesis to target tissues by high affinity carriers, the juvenile hormone binding proteins (JHBPs). Lepidopteran JHBPs belong to a recently uncovered, yet very ancient family of proteins sharing a common lipid fold (TULIP domain) and involved in shuttling various lipid ligands. One important, but poorly understood aspect of JHs action, is the mechanism of hormone transfer to or through the plasma membranes of target cells. Since many membrane-active peptides and proteins, such as the pore-forming bacterial toxins, are activated by low pH or interaction with phospholipid membranes, we have examined the effect of these factors on JH binding by JHBPs. The affinity of Bombyx mori and Manduca sexta JHBPs for JH III was determined by the DCC assay, equilibrium dialysis, and isothermal titration calorimetry, and found to be greatly reduced at low pH, in agreement with previous observations. Loss of binding was accompanied by changes in fluorescence and near-UV CD spectra, indicating significant changes in protein structure in the environment of aromatic residues. The apparent dissociation rate constant (koff) of the JHBP-JH III complex was greater at acidic pH, suggesting that low pH favors ligand release by opening of the binding pocket. The affinity of recombinant B. mori JHBP (rBmJHBP) was also decreased in the presence of anionic phospholipid vesicles. Measurements of steady-state fluorescence anisotropy with the lipophilic probe TMA-DPH demonstrated that rBmJHBP specifically interacts with anionic membranes. These results suggest the existence of a collisional mechanism for ligand release that may be important for delivery of JHs to the target cells, and could be relevant to the function of related members of this emerging family of lipid-transport proteins.
Collapse
Affiliation(s)
- Stéphane Dupas
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Fabrice Neiers
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Emma Granon
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Erwan Rougeux
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Sébastien Dupont
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Laurent Beney
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - François Bousquet
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Haq Abdul Shaik
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Loic Briand
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Hubert Wojtasek
- Institute of Chemistry, Opole University, Ul. Oleska 48, 45-052, Opole, Poland.
| | - Jean-Philippe Charles
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France.
| |
Collapse
|
16
|
Abstract
High-density lipoprotein (HDL) and its main protein component apolipoprotein (apo)A-I, play an important role in cholesterol homeostasis. It has been demonstrated that HDLs comprise of a very heterogeneous group of particles, not only regarding size but also composition. HDL's best described function is its role in the reverse cholesterol transport, where lipid-free apoA-I or small HDLs can accept and take up cholesterol from peripheral cells and subsequently transport this to the liver for excretion. However, several other functions have also been described, like anti-oxidant, anti-inflammatory and anti-thrombotic effects. In this article, the general features, synthesis and metabolism of apoA-I and HDLs will be discussed. Additionally, an overview of HDL functions will be given, especially in the context of some major pathologies like cardiovascular disease, cancer and diabetes mellitus. Finally, the therapeutic potential of raising HDL will be discussed, focussing on the difficulties of the past and the promises of the future.
Collapse
|
17
|
Jalil A, Bourgeois T, Ménégaut L, Lagrost L, Thomas C, Masson D. Revisiting the Role of LXRs in PUFA Metabolism and Phospholipid Homeostasis. Int J Mol Sci 2019; 20:ijms20153787. [PMID: 31382500 PMCID: PMC6696407 DOI: 10.3390/ijms20153787] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/19/2023] Open
Abstract
Liver X receptors (LXRs) play a pivotal role in fatty acid (FA) metabolism. So far, the lipogenic consequences of in vivo LXR activation, as characterized by a major hepatic steatosis, has constituted a limitation to the clinical development of pharmacological LXR agonists. However, recent studies provided a different perspective. Beyond the quantitative accumulation of FA, it appears that LXRs induce qualitative changes in the FA profile and in the distribution of FAs among cellular lipid species. Thus, LXRs activate the production of polyunsaturated fatty acids (PUFAs) and their distribution into phospholipids via the control of FA desaturases, FA elongases, lysophosphatidylcholine acyltransferase (LPCAT3), and phospholipid transfer protein (PLTP). Therefore, LXRs control, in a dynamic manner, the PUFA composition and the physicochemical properties of cell membranes as well as the release of PUFA-derived lipid mediators. Recent studies suggest that modulation of PUFA and phospholipid metabolism by LXRs are involved in the control of lipogenesis and lipoprotein secretion by the liver. In myeloid cells, the interplay between LXR and PUFA metabolism affects the inflammatory response. Revisiting the complex role of LXRs in FA metabolism may open new opportunities for the development of LXR modulators in the field of cardiometabolic diseases.
Collapse
Affiliation(s)
- Antoine Jalil
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Thibaut Bourgeois
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Louise Ménégaut
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Laurent Lagrost
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - Charles Thomas
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France
- INSERM, LNC UMR 1231, F-21000 Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France
| | - David Masson
- Université Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France.
- INSERM, LNC UMR 1231, F-21000 Dijon, France.
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000 Dijon, France.
| |
Collapse
|
18
|
Rämö JT, Ripatti P, Tabassum R, Söderlund S, Matikainen N, Gerl MJ, Klose C, Surma MA, Stitziel NO, Havulinna AS, Pirinen M, Salomaa V, Freimer NB, Jauhiainen M, Palotie A, Taskinen MR, Simons K, Ripatti S. Coronary Artery Disease Risk and Lipidomic Profiles Are Similar in Hyperlipidemias With Family History and Population-Ascertained Hyperlipidemias. J Am Heart Assoc 2019; 8:e012415. [PMID: 31256696 PMCID: PMC6662358 DOI: 10.1161/jaha.119.012415] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background We asked whether, after excluding familial hypercholesterolemia, individuals with high low‐density lipoprotein cholesterol (LDL‐C) or triacylglyceride levels and a family history of the same hyperlipidemia have greater coronary artery disease risk or different lipidomic profiles compared with population‐based hyperlipidemias. Methods and Results We determined incident coronary artery disease risk for 755 members of 66 hyperlipidemic families (≥2 first‐degree relatives with similar hyperlipidemia) and 19 644 Finnish FINRISK population study participants. We quantified 151 circulating lipid species from 550 members of 73 hyperlipidemic families and 897 FINRISK participants using mass spectrometric shotgun lipidomics. Familial hypercholesterolemia was excluded using functional LDL receptor testing and genotyping. Hyperlipidemias (LDL‐C or triacylglycerides >90th population percentile) associated with increased coronary artery disease risk in meta‐analysis of the hyperlipidemic families and the population cohort (high LDL‐C: hazard ratio, 1.74 [95% CI, 1.48–2.04]; high triacylglycerides: hazard ratio, 1.38 [95% CI, 1.09–1.74]). Risk estimates were similar in the family and population cohorts also after adjusting for lipid‐lowering medication. In lipidomic profiling, high LDL‐C associated with 108 lipid species, and high triacylglycerides associated with 131 lipid species in either cohort (at 5% false discovery rate; P‐value range 0.038–2.3×10−56). Lipidomic profiles were highly similar for hyperlipidemic individuals in the families and the population (LDL‐C: r=0.80; triacylglycerides: r=0.96; no lipid species deviated between the cohorts). Conclusions Hyperlipidemias with family history conferred similar coronary artery disease risk as population‐based hyperlipidemias. We identified distinct lipidomic profiles associated with high LDL‐C and triacylglycerides. Lipidomic profiles were similar between hyperlipidemias with family history and population‐ascertained hyperlipidemias, providing evidence of similar and overlapping underlying mechanisms.
Collapse
Affiliation(s)
- Joel T Rämö
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland
| | - Pietari Ripatti
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland
| | - Rubina Tabassum
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland
| | - Sanni Söderlund
- 2 Research Programs Unit Clinical and Molecular Metabolism University of Helsinki Finland.,3 Endocrinology Abdominal Center Helsinki University Hospital Helsinki Finland
| | - Niina Matikainen
- 2 Research Programs Unit Clinical and Molecular Metabolism University of Helsinki Finland.,3 Endocrinology Abdominal Center Helsinki University Hospital Helsinki Finland
| | | | | | - Michal A Surma
- 4 Lipotype GmbH Dresden Germany.,5 Łukasiewicz Research Network-PORT Polish Center for Technology Development Wroclaw Poland
| | - Nathan O Stitziel
- 6 Cardiovascular Division Department of Medicine Washington University School of Medicine St. Louis MO.,7 Department of Genetics Washington University School of Medicine St. Louis MO.,8 McDonnell Genome Institute Washington University School of Medicine St. Louis MO
| | - Aki S Havulinna
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland.,9 National Institute for Health and Welfare Helsinki Finland
| | - Matti Pirinen
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland.,10 Department of Mathematics and Statistics Faculty of Science University of Helsinki Finland.,16 Department of Public Health Clinicum Faculty of Medicine University of Helsinki Finland
| | - Veikko Salomaa
- 9 National Institute for Health and Welfare Helsinki Finland
| | - Nelson B Freimer
- 11 Center for Neurobehavioral Genetics Semel Institute for Neuroscience and Human Behavior University of California Los Angeles CA
| | - Matti Jauhiainen
- 9 National Institute for Health and Welfare Helsinki Finland.,12 Minerva Foundation Institute for Medical Research Biomedicum Helsinki Finland
| | - Aarno Palotie
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland.,13 Program in Medical and Population Genetics and The Stanley Center for Psychiatric Research The Broad Institute of MIT and Harvard Cambridge MA.,14 Psychiatric and Neurodevelopmental Genetics Unit Department of Psychiatry, Analytic and Translational Genetics Unit Department of Medicine, and the Department of Neurology Massachusetts General Hospital Boston MA
| | - Marja-Riitta Taskinen
- 2 Research Programs Unit Clinical and Molecular Metabolism University of Helsinki Finland
| | - Kai Simons
- 4 Lipotype GmbH Dresden Germany.,15 Max Planck Institute of Cell Biology and Genetics Dresden Germany
| | - Samuli Ripatti
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland.,13 Program in Medical and Population Genetics and The Stanley Center for Psychiatric Research The Broad Institute of MIT and Harvard Cambridge MA.,16 Department of Public Health Clinicum Faculty of Medicine University of Helsinki Finland
| |
Collapse
|
19
|
Fu XG, Huang Z, Zhou SJ, Yang J, Peng YJ, Cao LY, Guo H, Wu GH, Lin YH, Huang BY. Novel heterozygous BPIFC variant in a Chinese pedigree with hereditary trichilemmal cysts. Mol Genet Genomic Med 2019; 7:e697. [PMID: 31033252 PMCID: PMC6565563 DOI: 10.1002/mgg3.697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
Background Trichilemmal cysts (TCs) are common intradermal or subcutaneous cysts, which are commonly sporadic and rarely autosomal dominantly inherited. However, little is known about the disease‐determining genes in families with TCs exhibiting Mendelian inheritance. Objective The aim of this study was to identify the causative gene in a family with TCs. Methods Whole‐exome sequencing was performed on a TCs family to identify the candidate gene. Sanger sequencing was conducted to validate the candidate variants and familial segregation. Results We identified the heterozygous variant c.3G>C (p.Met1?) within the BPIFC gene. Sanger sequencing confirmed the cosegregation of this variant with the TCs phenotype in the family by demonstrating the presence of the heterozygous variant in all the 12 affected and absence in all the seven unaffected individuals. This variant was found to be absent in dbSNP141, 1,000 Genomes database and 500 ethnicity matched controls. Conclusion Our results imply that BPIFC is a causative gene in this Chinese family with hereditary TCs. Further studies should be performed to validate the role of BPIFC in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Xian-Guo Fu
- Department of Central Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China.,Department of Clinical Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Zhao Huang
- Department of Pathology, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Su-Juan Zhou
- Department of Pathology, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Jing Yang
- Department of Central Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Yun-Juan Peng
- Department of Clinical Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Luo-Yuan Cao
- Department of Central Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Hua Guo
- Department of Pathology, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Guang-Hui Wu
- Department of Neurosurgery, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Ying-Hua Lin
- Department of Central Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| | - Bao-Ying Huang
- Department of Central Laboratory, Ningde Municipal Hospital, Fujian Medical University, Ningde, Fujian, China
| |
Collapse
|
20
|
Zhang M, Zhai X, Li J, Albers JJ, Vuletic S, Ren G. Structural basis of the lipid transfer mechanism of phospholipid transfer protein (PLTP). Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1082-1094. [PMID: 29883800 PMCID: PMC6114099 DOI: 10.1016/j.bbalip.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
Abstract
Human phospholipid transfer protein (PLTP) mediates the transfer of phospholipids among atheroprotective high-density lipoproteins (HDL) and atherogenic low-density lipoproteins (LDL) by an unknown mechanism. Delineating this mechanism would represent the first step towards understanding PLTP-mediated lipid transfers, which may be important for treating lipoprotein abnormalities and cardiovascular disease. Here, using various electron microscopy techniques, PLTP is revealed to have a banana-shaped structure similar to cholesteryl ester transfer protein (CETP). We provide evidence that PLTP penetrates into the HDL and LDL surfaces, respectively, and then forms a ternary complex with HDL and LDL. Insights into the interaction of PLTP with lipoproteins at the molecular level provide a basis to understand the PLTP-dependent lipid transfer mechanisms for dyslipidemia treatment.
Collapse
Affiliation(s)
- Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Xiaobo Zhai
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, United States
| | - John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA 98109, United States
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA 98109, United States.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
| |
Collapse
|
21
|
Afonso MS, Machado RM, Lavrador MS, Quintao ECR, Moore KJ, Lottenberg AM. Molecular Pathways Underlying Cholesterol Homeostasis. Nutrients 2018; 10:E760. [PMID: 29899250 PMCID: PMC6024674 DOI: 10.3390/nu10060760] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023] Open
Abstract
Cholesterol is an essential molecule that exerts pleiotropic actions. Although its presence is vital to the cell, its excess can be harmful and, therefore, sustaining cholesterol homeostasis is crucial to maintaining proper cellular functioning. It is well documented that high plasma cholesterol concentration increases the risk of atherosclerotic heart disease. In the last decades, several studies have investigated the association of plasma cholesterol concentrations and the risk of cardiovascular diseases as well as the signaling pathways involved in cholesterol homeostasis. Here, we present an overview of several mechanisms involved in intestinal cholesterol absorption, the regulation of cholesterol synthesis and uptake. We also discuss the importance of reverse cholesterol transport and transintestinal cholesterol transport to maintain cholesterol homeostasis and prevent atherosclerosis development. Additionally, we discuss the influence of dietary cholesterol on plasma cholesterol concentration and the new recommendations for cholesterol intake in a context of a healthy dietary pattern.
Collapse
Affiliation(s)
- Milessa Silva Afonso
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | - Roberta Marcondes Machado
- Laboratorio de Lipides (LIM 10), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 05403-000, Brazil.
| | - Maria Silvia Lavrador
- Laboratorio de Lipides (LIM 10), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 05403-000, Brazil.
| | - Eder Carlos Rocha Quintao
- Laboratorio de Lipides (LIM 10), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 05403-000, Brazil.
| | - Kathryn J Moore
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | - Ana Maria Lottenberg
- Laboratorio de Lipides (LIM 10), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 05403-000, Brazil.
- Faculdade Israelita de Ciências da Saúde, Albert Einstein, São Paulo, SP 05403-000, Brazil.
| |
Collapse
|
22
|
Yu DD, Ren QQ, Dong B, Zhao DD, Sun YH. Effect of Cholesteryl Ester Transfer Protein Gene TaqIB Polymorphism on the Risk of Ischemic Stroke: A Meta-Analysis. J Stroke Cerebrovasc Dis 2017. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
23
|
Yang J, Fritsche LG, Zhou X, Abecasis G. A Scalable Bayesian Method for Integrating Functional Information in Genome-wide Association Studies. Am J Hum Genet 2017; 101:404-416. [PMID: 28844487 PMCID: PMC5590971 DOI: 10.1016/j.ajhg.2017.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/03/2017] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified many complex loci. However, most loci reside in noncoding regions and have unknown biological functions. Integrative analysis that incorporates known functional information into GWASs can help elucidate the underlying biological mechanisms and prioritize important functional variants. Hence, we develop a flexible Bayesian variable selection model with efficient computational techniques for such integrative analysis. Different from previous approaches, our method models the effect-size distribution and probability of causality for variants with different annotations and jointly models genome-wide variants to account for linkage disequilibrium (LD), thus prioritizing associations based on the quantification of the annotations and allowing for multiple associated variants per locus. Our method dramatically improves both computational speed and posterior sampling convergence by taking advantage of the block-wise LD structures in human genomes. In simulations, our method accurately quantifies the functional enrichment and performs more powerfully for prioritizing the true associations than alternative methods, where the power gain is especially apparent when multiple associated variants in LD reside in the same locus. We applied our method to an in-depth GWAS of age-related macular degeneration with 33,976 individuals and 9,857,286 variants. We find the strongest enrichment for causality among non-synonymous variants (54× more likely to be causal, 1.4× larger effect sizes) and variants in transcription, repressed Polycomb, and enhancer regions, as well as identify five additional candidate loci beyond the 32 known AMD risk loci. In conclusion, our method is shown to efficiently integrate functional information in GWASs, helping identify functional associated-variants and underlying biology.
Collapse
Affiliation(s)
- Jingjing Yang
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Lars G Fritsche
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Xiang Zhou
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Gonçalo Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Javandoost A, Afshari A, Nikbakht-Jam I, Khademi M, Eslami S, Nosrati M, Foroutan-Tanha M, Sahebkar A, Tavalaie S, Ghayour-Mobarhan M, Ferns G, Hadizadeh F, Tabassi A, Mohajeri A. Effect of crocin, a carotenoid from saffron, on plasma cholesteryl ester transfer protein and lipid profile in subjects with metabolic syndrome: A double blind randomized clinical trial. ARYA ATHEROSCLEROSIS 2017; 13:245-252. [PMID: 29371871 PMCID: PMC5774797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Metabolic syndrome is defined by insulin resistance and a clustering of other cardiovascular risk factors. Crocin is a carotenoid derived from the stigmas of the saffron flower and had previously been shown to affect lipid profile. However, the mechanism for this function is not well understood. The present trial aimed to investigate the possible effect of crocin on plasma levels of cholesteryl ester transfer protein and lipid profile in individuals with metabolic syndrome. METHODS This was a randomized, double-blind, placebo-controlled, clinical trial consisting of an 8-week treatment with crocin, or placebo tablets between April and June 2014, in the Nutrition Clinic of Ghaem Teaching Hospital, Mashhad, Iran. Participants were randomly assigned to take a 30 mg/day crocin (n = 22) in the intervention group or placebo (n = 22) in the control group. Anthropometric, hematological and biochemical parameters were measured and recorded during pre and post-treatment periods. RESULTS Whilst plasma cholesteryl ester transfer protein was increased in the group taking the crocin tablet by 27.81% during the trial period (P = 0.013), the difference between the crocin and placebo groups was not significant (P = 0.116). Moreover, the percent changes in cholesterol (P = 0.702), triglyceride (P = 0.080), low-density lipoprotein (LDL) (P = 0.986), high-density lipoprotein (HDL) (P = 0.687) and fasting blood glucose (P = 0.614) did not differ significantly between intervention and control groups. CONCLUSION Although crocin supplements increased the serum cholesteryl ester transfer protein in patients with metabolic syndrome, this change was not significant between treatment and placebo groups.
Collapse
Affiliation(s)
- Ali Javandoost
- Metabolic Syndrome Research Center AND School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Afshari
- Assistant Professor, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Irandokht Nikbakht-Jam
- Metabolic Syndrome Research Center AND School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Khademi
- PhD Candidate, Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saied Eslami
- Professor, Pharmaceutical Research Center AND School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Nosrati
- Metabolic Syndrome Research Center AND School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Foroutan-Tanha
- Metabolic Syndrome Research Center AND Cardiovascular Research Center AND School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Associate Professor, Department of Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavalaie
- Metabolic Syndrome Research Center AND School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Professor, Cardiovascular Research Center AND Metabolic Syndrome Research Center AND School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Correspondence to: Majid Ghayour-Mobarhan,
| | - Gordon Ferns
- School of Brighton and Sussex Medical, Division of Medical Education, Mayfield House, University of Brighton, Brighton, UK
| | - Farzin Hadizadeh
- Professor, Biotechnology Research Center AND School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Tabassi
- Pharmacological Research Center of Medicinal Plants AND School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Mohajeri
- Associate Professor, Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Bpifcl modulates kiss2 expression under the influence of 11-ketotestosterone in female zebrafish. Sci Rep 2017; 7:7926. [PMID: 28801581 PMCID: PMC5554142 DOI: 10.1038/s41598-017-08248-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/10/2017] [Indexed: 11/21/2022] Open
Abstract
The bactericidal/permeability-increasing (BPI) fold-containing (BPIF) superfamily of genes expressed in the brain are purportedly involved in modulating brain function in response to stress, such as inflammation. Kisspeptin, encoded by kiss, is affected by inflammation in the brain; therefore, BPIF family genes might be involved in the modulation of kisspeptin in the brain. In this study, we investigated the expression of BPIF family C, like (bpifcl) in zebrafish brain and its involvement in kiss2 regulation. The identified, full-length sequence of a bpifcl isoform expressed in the zebrafish brain contained the BPI fold shared by BPIF family members. bpifcl mRNA expression in female zebrafish brains was significantly higher than that in males. Exposure of female zebrafish to 11-ketotestosterone decreased bpifcl and kiss2 mRNA expression. bpifcl knockdown by bpifcl-specific small interfering RNA administration to female zebrafish brain decreased kiss2 mRNA expression. bpifcl expression was widely distributed in the brain, including in the dorsal zone of the periventricular hypothalamus (Hd). Furthermore, bpifcl was also expressed in KISS2 neurons in the Hd. These results suggest that the Bpifcl modulates kiss2 mRNA expression under the influence of testosterone in the Hd of female zebrafish.
Collapse
|
26
|
|
27
|
Associations of Cholesteryl Ester Transfer Protein TaqIB Polymorphism with the Composite Ischemic Cardiovascular Disease Risk and HDL-C Concentrations: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090882. [PMID: 27608031 PMCID: PMC5036715 DOI: 10.3390/ijerph13090882] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Previous studies have evaluated the associations between the cholesteryl ester transfer protein (CETP) TaqIB polymorphism (rs708272), the risk of developing composite ischemic cardiovascular disease (CVD) and the concentration of high-density lipoprotein cholesterol (HDL-C), but results remain controversial. The objective of this study was to investigate whether a relationship exists between these factors. METHODS We conducted a meta-analysis of available studies to clarify the associations of the CETP TaqIB polymorphism with HDL-C concentration and the composite ischemic CVD risk in both Asians and Caucasians. All statistical analyses were done with Stata 12.0. RESULTS Through utilization of the Cochrane Library, Embase, PubMed, Web of Science, Springer, China Science and Technology Journal Database, China National Knowledge Infrastructure, Google Scholar, and Baidu Library, a total of 45 studies from 44 papers with 20,866 cases and 21,298 controls were combined showing a significant association between the CETP TaqIB variant and composite ischemic CVD risk. Carriers of allele TaqIB-B1 were found to have a higher risk of composite ischemic CVD than non-carriers: OR = 1.15, 95% CI = 1.09-1.21, p < 0.001. Meanwhile, 28 studies with 23,959 subjects were included in the association between the CETP TaqIB polymorphism and the concentration of HDL-C. RESULTS suggested that carriers of the B1B1 genotype had lower concentrations of HDL-C than those of the B2B2 genotype: SMD = 0.50, 95% CI = 0.36-0.65, p < 0.001. CONCLUSIONS The synthesis of available evidence demonstrates that the CETP TaqIB polymorphism protects against composite ischemic CVD risk and is associated with a higher HDL-C concentration in both Asians and Caucasians.
Collapse
|
28
|
Skoczyńska A, Wojakowska A, Turczyn B, Zatońska K, Wołyniec M, Szuba A. Serum CETP and PLTP activity in middle-aged men living in urban or rural area of the Lower Silesia region. PURE Poland sub-study. Arch Med Sci 2016; 12:704-14. [PMID: 27478449 PMCID: PMC4947617 DOI: 10.5114/aoms.2016.60950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/09/2015] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The dependence of lipid transfer proteins on significant pro-atherogenic factors is unclear. The aim of the study was to evaluate serum cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) activity in relation to lipid disturbances in men living in an urban or rural area. MATERIAL AND METHODS A group of 427 men, volunteers for the Prospective Urban Rural Epidemiology (PURE) sub-study - 263 urban inhabitants (aged 51.9 ±6.0) and 164 residents of villages (aged 51.1 ±5.9) - were examined. In the multivariable linear regression model, the following factors were included as potential confounders: age, body mass index (BMI), smoking, alcohol consumption, hs-C-reactive protein reaction (hs-CRP) and co-existence of chronic diseases. RESULTS In multiple linear regression models, site of residence (urban or rural area) was the most important independent and consistent predictor of CETP and PLTP activity; β coefficients (95% CI) for CETP (0.18) and PLTP (-0.29) were significant at levels of p < 0.001. Three-way analysis of variance showed no effect of smoking or moderate alcohol consumption on lipid transfer proteins; however, CETP activity showed an interaction effect between these risk factors. In the group of all men, CETP activity was significantly and positively correlated with total cholesterol (r = 0.24), low-density lipoprotein cholesterol (r = 0.18), and non-high density lipoprotein cholesterol (r = 0.21), whereas PLTP activity was correlated with BMI (r = 0.12). Body mass index in rural men was higher than in the urban male population. CONCLUSIONS Increased PLTP activity, recognized as a pro-atherogenic factor, and decreased CETP activity, known as a protective factor, both observed in men living in rural areas, are probably conditioned by nutritional and/or genetic factors.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Wojakowska
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Barbara Turczyn
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Zatońska
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Maria Wołyniec
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Szuba
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
29
|
Ahn N, Kim K. High-density lipoprotein cholesterol (HDL-C) in cardiovascular disease: effect of exercise training. Integr Med Res 2016; 5:212-215. [PMID: 28462120 PMCID: PMC5390423 DOI: 10.1016/j.imr.2016.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Decreases in high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of coronary artery disease (CAD), whereas increased HDL-C levels are related to a decreased risk of CAD and myocardial infarction. Although HDL prevents the oxidation of low-density lipoprotein under normal conditions, it triggers a structural change, inhibiting antiarteriosclerotic and anti-inflammatory functions, under pathological conditions such as oxidative stress, inflammation, and diabetes. HDL can transform into various structures based on the quantitative reduction and deformation of apolipoprotein A1 and is the primary cause of increased levels of dysfunctional HDL, which can lead to an increased risk of CAD. Therefore, analyzing the structure and components of HDL rather than HDL-C after the application of an exercise training program may be useful for understanding the effects of HDL.
Collapse
Affiliation(s)
- Nayoung Ahn
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Korea
| | - Kijin Kim
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Korea
| |
Collapse
|
30
|
Wang HY, Quan C, Hu C, Xie B, Du Y, Chen L, Yang W, Yang L, Chen Q, Shen B, Hu B, Zheng Z, Zhu H, Huang X, Xu G, Chen S. A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model. Biol Open 2016; 5:979-86. [PMID: 27378433 PMCID: PMC4958281 DOI: 10.1242/bio.019802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) plays a critical role in the liver for the clearance of plasma low-density lipoprotein (LDL). Its deficiency causes hypercholesterolemia in many models. To facilitate the usage of rats as animal models for the discovery of cholesterol-lowering drugs, we took a genetic approach to delete the LDLR in rats aiming to increase plasma LDL cholesterol (LDL-C). An LDLR knockout rat was generated via zinc-finger nuclease technology, which harbors a 19-basepair deletion in the seventh exon of the ldlr gene. As expected, deletion of the LDLR elevated total cholesterol and total triglyceride in the plasma, and caused a tenfold increase of plasma LDL-C and a fourfold increase of plasma very low-density lipoprotein (VLDL-C). A lipidomics analysis revealed that deletion of the LDLR affected hepatic lipid metabolism, particularly lysophosphatidylcholines, free fatty acids and sphingolipids in the liver. Cholesterol ester (CE) 20:4 also displayed a significant increase in the LDLR knockout rats. Taken together, the LDLR knockout rat offers a new model of hypercholesterolemia, and the lipidomics analysis reveals hepatic lipid signatures associating with deficiency of the LDL receptor. Summary: An LDL receptor knockout rat model was generated which offers a new hypercholesterolemia model. A lipidomics analysis reveals hepatic lipid signatures associating with LDLR deficiency in rats.
Collapse
Affiliation(s)
- Hong Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| | - Chao Quan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Bingxian Xie
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Yinan Du
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Liang Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Wei Yang
- Laboratory Animal Center, China Medical University, Shenyang 110001, China
| | - Liu Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Bin Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Bian Hu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Zhihong Zheng
- Laboratory Animal Center, China Medical University, Shenyang 110001, China
| | - Haibo Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xingxu Huang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| |
Collapse
|
31
|
Abstract
Since their introduction, statin (HMG-CoA reductase inhibitor) drugs have advanced the practice of cardiology to unparalleled levels. Even so, coronary heart disease (CHD) still remains the leading cause of death in developed countries, and is predicted to soon dominate the causes of global mortality and disability as well. The currently available non-statin drugs have had limited success in reversing the burden of heart disease, but new information suggests they have roles in sizeable subpopulations of those affected. In this review, the status of approved non-statin drugs and the significant potential of newer drugs are discussed. Several different ways to raise plasma high-density lipoprotein (HDL) cholesterol (HDL-C) levels have been proposed, but disappointments are now in large part attributed to a preoccupation with HDL quantity, rather than quality, which is more important in cardiovascular (CV) protection. Niacin, an old drug with many antiatherogenic properties, was re-evaluated in two imperfect randomized controlled trials (RCTs), and failed to demonstrate clear effectiveness or safety. Fibrates, also with an attractive antiatherosclerotic profile and classically used for hypertriglyceridemia, lacks evidence-based proof of efficacy, save for a subgroup of diabetic patients with atherogenic dyslipidemia. Omega-3 fatty acids fall into this category as well, even with an impressive epidemiological evidence base. Omega-3 research has been plagued with methodological difficulties yielding tepid, uncertain, and conflicting results; well-designed studies over longer periods of time are needed. Addition of ezetimibe to statin therapy has now been shown to decrease levels of low-density lipoprotein (LDL) cholesterol (LDL-C), accompanied by a modest decrease in the number of CV events, though without any improvement in CV mortality. Importantly, the latest data provide crucial evidence that LDL lowering is central to the management of CV disease. Of drugs that inhibit cholesteryl ester transfer protein (CETP) tested thus far, two have failed and two remain under investigation and may yet prove to be valuable therapeutic agents. Monoclonal antibodies to proprotein convertase subtilisin/kexin type 9, now in phase III trials, lower LDL-C by over 50 % and are most promising. These drugs offer new ability to lower LDL-C in patients in whom statin drug use is, for one reason or another, limited or insufficient. Mipomersen and lomitapide have been approved for use in patients with familial hypercholesterolemia, a more common disease than appreciated. Anti-inflammatory drugs are finally receiving due attention in trials to elucidate potential clinical usefulness. All told, even though statins remain the standard of care, non-statin drugs are poised to assume a new, vital role in managing dyslipidemia.
Collapse
|
32
|
Baron OL, Deleury E, Reichhart JM, Coustau C. The LBP/BPI multigenic family in invertebrates: Evolutionary history and evidences of specialization in mollusks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:20-30. [PMID: 26608112 DOI: 10.1016/j.dci.2015.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
LBPs (lipopolysaccharide binding proteins) and BPIs (bactericidal permeability increasing proteins) are important proteins involved in defense against bacterial pathogens. We recently discovered a novel biocidal activity of a LBP/BPI from the gastropod Biomphalaria glabrata and demonstrated its role in parental immune protection of eggs, highlighting the importance of LBP/BPIs in invertebrate immunity. Here we characterize four additional LBP/BPI from B. glabrata, presenting conserved sequence architecture and exon-intron structure. Searches of invertebrate genomes revealed that existence of LBP/BPIs is not a conserved feature since they are absent from phyla such as arthropods and platyhelminths. Analyses of LBP/BPI transcripts from selected mollusk species showed recent parallel duplications in some species, including B. glabrata. In this snail species, LBP/BPI members vary in their expression tissue localization as well as their change in expression levels after immune challenges (Gram-negative bacterium; Gram-positive bacterium or yeast). These results, together with the predicted protein features provide evidences of functional specialization of LBP/BPI family members in molluscs.
Collapse
Affiliation(s)
- Olga Lucia Baron
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 400 Route des Chappes, 06 900 Sophia Antipolis, France; Institut de Biologie Moléculaire et Cellulaire, UPR9022 CNRS, 15 rue René Descartes, 67084 Strasbourg Cedex, France.
| | - Emeline Deleury
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 400 Route des Chappes, 06 900 Sophia Antipolis, France.
| | - Jean-Marc Reichhart
- Institut de Biologie Moléculaire et Cellulaire, UPR9022 CNRS, 15 rue René Descartes, 67084 Strasbourg Cedex, France.
| | - Christine Coustau
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 400 Route des Chappes, 06 900 Sophia Antipolis, France.
| |
Collapse
|
33
|
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:566-83. [PMID: 26968096 DOI: 10.1016/j.bbalip.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.
Collapse
|
34
|
McGowan A, Widdowson WM, O'Regan A, Young IS, Boran G, McEneny J, Gibney J. Postprandial Studies Uncover Differing Effects on HDL Particles of Overt and Subclinical Hypothyroidism. Thyroid 2016; 26:356-64. [PMID: 26800752 DOI: 10.1089/thy.2015.0443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Overt hypothyroidism (OH) is associated with abnormal lipid metabolism and endothelial dysfunction under fasting conditions. The balance of evidence suggests similar but less marked abnormalities in subclinical hypothyroidism (SCH). There are few data regarding the metabolic and vascular effects of OH or SCH under postprandial conditions. METHODS This was a cross-sectional study, carried out in a teaching hospital. Subjects with OH (n = 21), SCH (n = 28), and controls (n = 44) matched for age, sex, and body mass index (BMI) were studied under fasting and postprandial conditions. Postprandial lipid metabolism with particular emphasis on intestinally derived lipoproteins, HDL cholesterol (HDL), and endothelial function were compared in subjects with OH and SCH who were matched for age, sex, and BMI. Apolipoprotein B48 (Apo B48), a measure of intestinally derived lipoprotein, was measured by enzyme-linked immunosorbent assay. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Functional aspects of HDL were determined by monitoring the activities of cholesteryl-ester-transfer-protein (CETP) and lecithin-cholesterol-acyl-transferase (LCAT). Systemic and HDL-associated inflammation was assessed by measuring serum-amyloid-A (SAA) levels. Endothelial function was assessed by flow-mediated dilatation (FMD) of the brachial artery in response to hyperemia of the forearm. RESULTS There were no significant between-group differences in LDL cholesterol or triglyceride concentration. Peak Apo B48 levels were greater in OH (p < 0.001) and SCH (p < 0.05) compared with control subjects. HDL area under the curve (AUC) was lower postprandially in SCH (p < 0.001) but not OH compared with control subjects. HDL2- and HDL3-associated CETP AUC was lower only in OH (p < 0.005) compared with controls. FMD was reduced in OH (p < 0.05) compared with SCH and controls postprandially. CONCLUSION Postprandial lipoprotein and vascular abnormalities differ between OH and SCH. Although both are characterized by increased intestinally derived lipoprotein particles, HDL is reduced only in SCH. Maintained HDL in OH probably reflects reduced CETP activity, which was not observed in SCH. Postprandial endothelial dysfunction is abnormal only in OH, and this effect does not appear to reflect increased inflammation.
Collapse
Affiliation(s)
- Anne McGowan
- 1 Department of Endocrinology, Tallaght Hospital , Dublin, Ireland
| | | | - Anna O'Regan
- 2 Centre for Public Health, Queen's University Belfast , Belfast, United Kingdom
| | - Ian S Young
- 2 Centre for Public Health, Queen's University Belfast , Belfast, United Kingdom
| | - Gerard Boran
- 3 Department of Chemical Pathology, Tallaght Hospital , Dublin, Ireland
| | - Jane McEneny
- 2 Centre for Public Health, Queen's University Belfast , Belfast, United Kingdom
| | - James Gibney
- 1 Department of Endocrinology, Tallaght Hospital , Dublin, Ireland
| |
Collapse
|
35
|
The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:913-923. [PMID: 26825693 DOI: 10.1016/j.bbalip.2016.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/16/2016] [Accepted: 01/25/2016] [Indexed: 01/28/2023]
Abstract
The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on lipids endogenous to the cell, and the BPI-like proteins (including the Takeout-like proteins of arthropods), which act on exogenous lipids. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
36
|
Cohen E, Aviram M, Khatib S, Volkova N, Vaya J. Human carotid atherosclerotic plaque protein(s) change HDL protein(s) composition and impair HDL anti-oxidant activity. Biofactors 2016; 42:115-28. [PMID: 26662883 DOI: 10.1002/biof.1254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 11/09/2022]
Abstract
High density lipoprotein (HDL) anti-atherogenic functions are closely associated with cardiovascular disease risk factor, and are dictated by its composition, which is often affected by environmental factors. The present study investigates the effects of the human carotid plaque constituents on HDL composition and biological functions. To this end, human carotid plaques were homogenized and incubated with HDL. Results showed that after incubation, most of the apolipoprotein A1 (Apo A1) protein was released from the HDL, and HDL diameter increased by an average of approximately 2 nm. In parallel, HDL antioxidant activity was impaired. In response to homogenate treatment HDL could not prevent the accelerated oxidation of LDL caused by the homogenate. Boiling of the homogenate prior to its incubation with HDL abolished its effects on HDL composition changes. Moreover, tryptophan fluorescence quenching assay revealed an interaction between plaque component(s) and HDL, an interaction that was reduced by 50% upon using pre-boiled homogenate. These results led to hypothesize that plaque protein(s) interacted with HDL-associated Apo A1 and altered the HDL composition. Immuno-precipitation of Apo A1 that was released from the HDL after its incubation with the homogenate revealed a co-precipitation of three isomers of actin. However, beta-actin alone did not significantly affect the HDL composition, and yet the active protein within the plaque was elusive. In conclusion then, protein(s) in the homogenate interact with HDL protein(s), leading to release of Apo A1 from the HDL particle, a process that was associated with an increase in HDL diameter and with impaired HDL anti-oxidant activity.
Collapse
Affiliation(s)
- Elad Cohen
- Department of Oxidative Stress and Human Diseases, MIGAL - Galilee Research Institute, , P.O. Box 831, Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 12210, Israel
- Lipid Research Laboratory Technion Rappaport Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, and Rambam Medical Center, Haifa, 31096, Israel
| | - Michael Aviram
- Lipid Research Laboratory Technion Rappaport Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, and Rambam Medical Center, Haifa, 31096, Israel
| | - Soliman Khatib
- Department of Oxidative Stress and Human Diseases, MIGAL - Galilee Research Institute, , P.O. Box 831, Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 12210, Israel
| | - Nina Volkova
- Lipid Research Laboratory Technion Rappaport Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, and Rambam Medical Center, Haifa, 31096, Israel
| | - Jacob Vaya
- Department of Oxidative Stress and Human Diseases, MIGAL - Galilee Research Institute, , P.O. Box 831, Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 12210, Israel
| |
Collapse
|
37
|
Chiapparino A, Maeda K, Turei D, Saez-Rodriguez J, Gavin AC. The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling. Prog Lipid Res 2015; 61:30-9. [PMID: 26658141 DOI: 10.1016/j.plipres.2015.10.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 01/12/2023]
Abstract
Within the eukaryotic cell, more than 1000 species of lipids define a series of membranes essential for cell function. Tightly controlled systems of lipid transport underlie the proper spatiotemporal distribution of membrane lipids, the coordination of spatially separated lipid metabolic pathways, and lipid signaling mediated by soluble proteins that may be localized some distance away from membranes. Alongside the well-established vesicular transport of lipids, non-vesicular transport mediated by a group of proteins referred to as lipid-transfer proteins (LTPs) is emerging as a key mechanism of lipid transport in a broad range of biological processes. More than a hundred LTPs exist in humans and these can be divided into at least ten protein families. LTPs are widely distributed in tissues, organelles and membrane contact sites (MCSs), as well as in the extracellular space. They all possess a soluble and globular domain that encapsulates a lipid monomer and they specifically bind and transport a wide range of lipids. Here, we present the most recent discoveries in the functions and physiological roles of LTPs, which have expanded the playground of lipids into the aqueous spaces of cells.
Collapse
Affiliation(s)
- Antonella Chiapparino
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Kenji Maeda
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Denes Turei
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge CB10 1SD, UK
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge CB10 1SD, UK
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Molecular Medicine Partnership Unit (MMPU), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
38
|
Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 2015; 242:29-36. [PMID: 26164157 PMCID: PMC4546914 DOI: 10.1016/j.atherosclerosis.2015.06.042] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen D Lee
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Gautier T, Masson D, Lagrost L. The potential of cholesteryl ester transfer protein as a therapeutic target. Expert Opin Ther Targets 2015. [PMID: 26212254 DOI: 10.1517/14728222.2015.1073713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Over recent decades, attempts to ascertain the pro-atherogenic nature of plasma cholesteryl ester transfer protein (CETP) and to establish the relevance of its pharmacological blockade as a promising high density lipoproteins-raising and anti-atherogenic therapy have been disappointing. AREAS COVERED The current review focuses on CETP as a multifaceted protein, on genetic variations at the CETP gene and on their possible consequences for cardiovascular risk in human populations. Specific attention is given to physiological modulation of endogenous CETP activity by the apoC1 inhibitor. Finally, the rationale behind the need for selection of patients to treat is discussed in the light of recent studies. EXPERT OPINION At this stage one can only speculate on the clinical outcome of pharmacological CETP inhibitors in high-risk populations, but recent advances give cause to adjust the expectations from now on. The CETP effect is probably largely influenced by the overall metabolic state, and whether CETP blockade may be relevant or not in promoting cholesterol disposal is still questioned. The possible need for a careful stratification of patients to treat with CETP inhibitors is outlined. Finally, manipulation of CETP activity should be considered with caution in the context of sepsis and infectious diseases.
Collapse
Affiliation(s)
- Thomas Gautier
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France
| | - David Masson
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France.,d 4 University Hospital of Dijon , F-21000 Dijon, France
| | - Laurent Lagrost
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France.,d 4 University Hospital of Dijon , F-21000 Dijon, France.,e 5 UMR866, UFR Sciences de Santé, 7 boulevard Jeanne d'Arc , F-21000 Dijon, France
| |
Collapse
|
40
|
Underappreciated Opportunities for High-Density Lipoprotein Particles in Risk Stratification and Potential Targets of Therapy. Cardiovasc Drugs Ther 2015; 29:41-50. [DOI: 10.1007/s10557-014-6567-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Niu W, Qi Y. Circulating cholesteryl ester transfer protein and coronary heart disease: mendelian randomization meta-analysis. ACTA ACUST UNITED AC 2015; 8:114-21. [PMID: 25561046 DOI: 10.1161/circgenetics.114.000748] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The cholesteryl ester transfer protein (CETP) plays a central role in reverse cholesterol transport. Currently, it remains unresolved whether circulating CETP is causally associated with coronary heart disease (CHD). We aimed to investigate this causal association using CETP gene rs708272 polymorphism as an instrument in a Mendelian randomization meta-analysis. METHODS AND RESULTS We searched PubMed and EMBASE before May 2014. Data and study quality were assessed in duplicate. Thirty-four articles (17 813 CHD patients and 22 203 controls) were qualified. Overall analyses revealed a significant association of rs708272-B1 allele with a reduced CHD risk compared with B2 allele under allelic (odds ratio and 95% confidence interval: 0.87 and 0.82-0.92; P<0.001), homozygous genotypic (0.74 and 0.66-0.83; P<0.001), and dominant (0.87 and 0.80-0.94; P<0.001) models. Carriers of rs708272-B1B1 genotype (weighted mean difference and 95% confidence interval: -0.21 and -0.41 to 0.00 μg/dL; P=0.052) or B1 allele (-0.15 and -0.30 to 0.00 μg/dL; P=0.056) had a marginally lower circulating CETP level compared with B2B2 genotype carriers. In Mendelian randomization analysis, there was a 25% (odds ratio and 95% confidence interval: 0.75 and 0.19-0.91) and a 17% (0.83 and 0.41-0.96) significantly reduced risk of CHD by a reduction of 0.2 μg/mL in circulating CETP for the comparison of B1B1 genotype and B1 allele with B2B2 genotype, respectively. There were low probabilities of publication bias. CONCLUSIONS Our findings demonstrate that the long-term genetically reduced circulating CETP might be causally associated with the low risk of CHD.
Collapse
Affiliation(s)
- Wenquan Niu
- From the State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (W.N.); and Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China (Y.Q.).
| | - Yue Qi
- From the State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (W.N.); and Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China (Y.Q.).
| |
Collapse
|
42
|
Breevoort SR, Angdisen J, Schulman IG. Macrophage-independent regulation of reverse cholesterol transport by liver X receptors. Arterioscler Thromb Vasc Biol 2014; 34:1650-60. [PMID: 24947527 DOI: 10.1161/atvbaha.114.303383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The ability of high-density lipoprotein (HDL) particles to accept cholesterol from peripheral cells, such as lipid-laden macrophages, and to transport cholesterol to the liver for catabolism and excretion in a process termed reverse cholesterol transport (RCT) is thought to underlie the beneficial cardiovascular effects of elevated HDL. The liver X receptors (LXRs; LXRα and LXRβ) regulate RCT by controlling the efflux of cholesterol from macrophages to HDL and the excretion, catabolism, and absorption of cholesterol in the liver and intestine. Importantly, treatment with LXR agonists increases RCT and decreases atherosclerosis in animal models. Nevertheless, LXRs are expressed in multiple tissues involved in RCT, and their tissue-specific contributions to RCT are still not well defined. APPROACH AND RESULTS Using tissue-specific LXR deletions together with in vitro and in vivo assays of cholesterol efflux and fecal cholesterol excretion, we demonstrate that macrophage LXR activity is neither necessary nor sufficient for LXR agonist-stimulated RCT. In contrast, the ability of LXR agonists primarily acting in the intestine to increase HDL mass and HDL function seems to underlie the ability of LXR agonists to stimulate RCT in vivo. CONCLUSIONS We demonstrate that activation of LXR in macrophages makes little or no contribution to LXR agonist-stimulated RCT. Unexpectedly, our studies suggest that the ability of macrophages to efflux cholesterol to HDL in vivo is not regulated by macrophage activity but is primarily determined by the quantity and functional activity of HDL.
Collapse
Affiliation(s)
- Sarah R Breevoort
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Jerry Angdisen
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Ira G Schulman
- From the Department of Pharmacology, University of Virginia, Charlottesville.
| |
Collapse
|
43
|
Sallam T, Ito A, Rong X, Kim J, van Stijn C, Chamberlain BT, Jung ME, Chao LC, Jones M, Gilliland T, Wu X, Su GL, Tangirala RK, Tontonoz P, Hong C. The macrophage LBP gene is an LXR target that promotes macrophage survival and atherosclerosis. J Lipid Res 2014; 55:1120-30. [PMID: 24671012 PMCID: PMC4031943 DOI: 10.1194/jlr.m047548] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/22/2014] [Indexed: 01/25/2023] Open
Abstract
The liver X receptors (LXRs) are members of the nuclear receptor superfamily that regulate sterol metabolism and inflammation. We sought to identify previously unknown genes regulated by LXRs in macrophages and to determine their contribution to atherogenesis. Here we characterize a novel LXR target gene, the lipopolysaccharide binding protein (LBP) gene. Surprisingly, the ability of LXRs to control LBP expression is cell-type specific, occurring in macrophages but not liver. Treatment of macrophages with oxysterols or loading with modified LDL induces LBP in an LXR-dependent manner, suggesting a potential role for LBP in the cellular response to cholesterol overload. To investigate this further, we performed bone marrow transplant studies. After 18 weeks of Western diet feeding, atherosclerotic lesion burden was assessed revealing markedly smaller lesions in the LBP(-/-) recipients. Furthermore, loss of bone marrow LBP expression increased apoptosis in atherosclerotic lesions as determined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Supporting in vitro studies with isolated macrophages showed that LBP expression does not affect cholesterol efflux but promotes the survival of macrophages in the setting of cholesterol loading. The LBP gene is a macrophage-specific LXR target that promotes foam cell survival and atherogenesis.
Collapse
Affiliation(s)
- Tamer Sallam
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - Ayaka Ito
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - Jason Kim
- Department of Medicine, Division of Endocrinology, University of California, Los Angeles, Los Angeles, CA
| | - Caroline van Stijn
- Department of Medicine, Division of Endocrinology, University of California, Los Angeles, Los Angeles, CA
| | - Brian T Chamberlain
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA
| | - Lily C Chao
- Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Marius Jones
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - Thomas Gilliland
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - XiaoHui Wu
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Grace L Su
- Medical Service, Department of Veterans Affairs Medical Center, Ann Arbor, MI Department of Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Rajendra K Tangirala
- Department of Medicine, Division of Endocrinology, University of California, Los Angeles, Los Angeles, CA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
44
|
Gidwani S, Phelan N, McGill J, McGowan A, O'Connor A, Young IS, Gibney J, McEneny J. Polycystic ovary syndrome influences the level of serum amyloid A and activity of phospholipid transfer protein in HDL2 and HDL3. Hum Reprod 2014; 29:1518-25. [DOI: 10.1093/humrep/deu115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Plasma Lipids, Lipoprotein Metabolism and HDL Lipid Transfers are Equally Altered in Metabolic Syndrome and in Type 2 Diabetes. Lipids 2014; 49:677-84. [DOI: 10.1007/s11745-014-3899-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
46
|
Abstract
Cerebrovascular dysfunction significantly contributes to the clinical presentation and pathoetiology of Alzheimer's disease (AD). Deposition and aggregation of β-amyloid (Aβ) within vascular smooth muscle cells leads to inflammation, oxidative stress, impaired vasorelaxation, and disruption of blood-brain barrier integrity. Midlife vascular risk factors, such as hypertension, cardiovascular disease, diabetes, and dyslipidemia, increase the relative risk for AD. These comorbidities are all characterized by low and/or dysfunctional high-density lipoproteins (HDL), which itself is a risk factor for AD. HDL performs a wide variety of critical functions in the periphery and CNS. In addition to lipid transport, HDL regulates vascular health via mediating vasorelaxation, inflammation, and oxidative stress and promotes endothelial cell survival and integrity. Here, we summarize clinical and preclinical data examining the involvement of HDL, originating from the circulation and from within the CNS, on AD and hypothesize potential synergistic actions between the two lipoprotein pools.
Collapse
|
47
|
Seven functional polymorphisms in the CETP gene and myocardial infarction risk: a meta-analysis and meta-regression. PLoS One 2014; 9:e88118. [PMID: 24533069 PMCID: PMC3922770 DOI: 10.1371/journal.pone.0088118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 01/04/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE This meta-analysis aims to evaluate the relationships between seven functional polymorphisms in the CETP gene and myocardial infarction (MI) risk. METHOD The PubMed, CISCOM, CINAHL, Web of Science, Google Scholar, EBSCO, Cochrane Library, and CBM databases were searched for relevant articles published before March 1st, 2013 without any language restrictions. Meta-analysis was conducted using the STATA 12.0 software. RESULTS Nine case-control studies with a total 8,623 MI cases and 8,564 healthy subjects met the inclusion criteria. The results of our meta-analysis suggested that CETP rs708272 (C>T) polymorphism might be correlated with an increased risk of MI, especially among Caucasians. Furthermore, we observed that CETP rs1800775 (C>A) polymorphism might increase the risk of MI. Nevertheless, no similar findings were found for CETP rs5882 (A>G), rs2303790 (A>G), rs1800776 (C>A), rs12149545 (G>A), and rs4783961 (G>A) polymorphisms. CONCLUSION The current meta-analysis suggests that CETP rs708272 (C>T) and rs1800775 (C>A) polymorphisms may contribute to MI susceptibility, especially among Caucasians. Thus, CETP rs708272 and rs1800775 polymorphisms may be promising and potential biomarkers for early diagnosis of MI.
Collapse
|
48
|
Mohammadpour AH, Akhlaghi F. Future of cholesteryl ester transfer protein (CETP) inhibitors: a pharmacological perspective. Clin Pharmacokinet 2014; 52:615-26. [PMID: 23658137 DOI: 10.1007/s40262-013-0071-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In almost 30 years since the introduction of HMG-CoA reductase inhibitors (statins), no other class of lipid modulators has entered the market. Elevation of high-density lipoprotein-cholesterol (HDL-C) via inhibiting cholesteryl ester transfer protein (CETP) is an attractive strategy for reducing the risk of cardiovascular events in high-risk patients. Transfer of triglyceride and cholesteryl ester (CE) between lipoproteins is mediated by CETP; thus inhibition of this pathway can increase the concentration of HDL-C. Torcetrapib was the first CETP inhibitor evaluated in phase III clinical trials. Because of off-target effects, torcetrapib raised blood pressure and increased the concentration of serum aldosterone, leading to higher cardiovascular events and mortality. Torcetrapib showed positive effects on cardiovascular risk especially in patients with a greater increase in HDL-C and apolipoprotein A-1 (apoA-1) levels. The phase III clinical trial of dalcetrapib, the second CETP inhibitor that has entered clinical development, was terminated because of ineffectiveness. Dalcetrapib is a CETP modulator that elevated HDL-C levels but did not reduce the concentration of low-density lipoprotein cholesterol (LDL-C). Both heterotypic and homotypic CE transfer between lipoproteins are mediated by some CETP inhibitors, including torcetrapib, anacetrapib, and evacetrapib, while dalcetrapib only affects the heterotypic CE transfer. Dalcetrapib has a chemical structure that is distinct from other CETP inhibitors, with a smaller molecular weight and a lack of trifluoride moieties. Moreover, dalcetrapib is a pro-drug that must be hydrolyzed to a pharmacologically active thiol form. Two other CETP inhibitors, anacetrapib and evacetrapib, are currently undergoing evaluation in phase III clinical trials. Both molecules have shown beneficial effects by increasing HDL-C and decreasing LDL-C concentration. The success of anacetrapib and evacetrapib remains to be confirmed upon the completion of phase III clinical trials in 2017 and 2015, respectively. Generally, the concentration of HDL-C has been considered a biomarker for the activity of CETP inhibitors. However, it is not clear whether a fundamental relationship exists between HDL-C levels and the risk of coronary artery diseases. The most crucial role for HDL is cholesterol efflux capacity in which HDL can reverse transport cholesterol from foam cells in atherosclerotic plaques. In view of the heterogeneity in HDL particle size, charge, and composition, the mere concentration of HDL-C may not be a good surrogate marker for HDL functionality. Recent clinical studies have reported that increased HDL functionality inversely correlates with the development of atherosclerotic plaque. Future development of CETP inhibitors may therefore benefit from the use of biomarkers of HDL functionality.
Collapse
|
49
|
Wang L, Mei X, Atkinson D, Small DM. Surface behavior of apolipoprotein A-I and its deletion mutants at model lipoprotein interfaces. J Lipid Res 2013; 55:478-92. [PMID: 24308948 DOI: 10.1194/jlr.m044743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) has a great conformational flexibility to exist in lipid-free, lipid-poor, and lipid-bound states during lipid metabolism. To address the lipid binding and the dynamic desorption behavior of apoA-I at lipoprotein surfaces, apoA-I, Δ(185-243)apoA-I, and Δ(1-59)(185-243)apoA-I were studied at triolein/water and phosphatidylcholine/triolein/water interfaces with special attention to surface pressure. All three proteins are surface active to both interfaces lowering the interfacial tension and thus increasing the surface pressure to modify the interfaces. Δ(185-243)apoA-I adsorbs much more slowly and lowers the interfacial tension less than full-length apoA-I, confirming that the C-terminal domain (residues 185-243) initiates the lipid binding. Δ(1-59)(185-243)apoA-I binds more rapidly and lowers the interfacial tension more than Δ(185-243)apoA-I, suggesting that destabilizing the N-terminal α-helical bundle (residues 1-185) restores lipid binding. The three proteins desorb from both interfaces at different surface pressures revealing that different domains of apoA-I possess different lipid affinity. Δ(1-59)(185-243)apoA-I desorbs at lower pressures compared with apoA-I and Δ(185-243)apoA-I indicating that it is missing a strong lipid association motif. We propose that during lipoprotein remodeling, surface pressure mediates the adsorption and partial or full desorption of apoA-I allowing it to exchange among different lipoproteins and adopt various conformations to facilitate its multiple functions.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | | | | | | |
Collapse
|
50
|
Apolipoprotein A-II is a key regulatory factor of HDL metabolism as appears from studies with transgenic animals and clinical outcomes. Biochimie 2013; 96:56-66. [PMID: 24012775 DOI: 10.1016/j.biochi.2013.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/28/2013] [Indexed: 01/26/2023]
Abstract
The structure and metabolism of HDL are linked to their major apolipoproteins (apo) A-I and A-II. HDL metabolism is very dynamic and depends on the constant remodeling by lipases, lipid transfer proteins and receptors. HDL exert several cardioprotective effects, through their antioxidant and antiinflammatory capacities and through the stimulation of reverse cholesterol transport from extrahepatic tissues to the liver for excretion into bile. HDL also serve as plasma reservoir for C and E apolipoproteins, as transport vehicles for a great variety of proteins, and may have more physiological functions than previously recognized. In this review we will develop several aspects of HDL metabolism with emphasis on the structure/function of apo A-I and apo A-II. An important contribution to our understanding of the respective roles of apo A-I and apo A-II comes from studies using transgenic animal models that highlighted the stabilizatory role of apo A-II on HDL through inhibition of their remodeling by lipases. Clinical studies coupled with proteomic analyses revealed the presence of dysfunctional HDL in patients with cardiovascular disease. Beyond HDL cholesterol, a new notion is the functionality of HDL particles. In spite of abundant literature on HDL metabolic properties, a major question remains unanswered: which HDL particle(s) confer(s) protection against cardiovascular risk?
Collapse
|