1
|
Felker J, Bjornard K, Close A, Chavez J, Chow EJ, Meacham LR, Burns K. Fertility preservation in pediatric central nervous system tumors: A report from the Children's Oncology Group. Pediatr Blood Cancer 2024; 71:e31246. [PMID: 39126374 PMCID: PMC11464169 DOI: 10.1002/pbc.31246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The Oncofertility Consortium Pediatric Initiative Network has published recommendations about the risks of infertility due to gonadotoxic therapy. We abstracted gonadotoxic therapies from central nervous system (CNS) Children's Oncology Group (COG) protocols between 2000 and 2022. We assigned them as unknown, minimal, significant, or high levels of increased risk for gonadal dysfunction/infertility. Seven of 11 CNS protocols placed patients at a high level of risk in at least one treatment arm. Males (7/11) were most commonly at a high level of risk, followed by pubertal females (6/11) and prepubertal females (5/11), highlighting the importance of pre-treatment counseling regarding fertility preservation interventions in this population.
Collapse
Affiliation(s)
- James Felker
- Department of Pediatrics, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kari Bjornard
- Department of Pediatrics, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA; Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA
| | - Allison Close
- Helen DeVos Children’s Hospital, Division of Hematology/Oncology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Josuah Chavez
- Helen DeVos Children’s Hospital, Division of Hematology/Oncology, Grand Rapids, MI, USA
| | - Eric J. Chow
- Fred Hutchinson Cancer Center, Seattle Children’s Hospital, Seattle, WA, USA
| | - Lillian R. Meacham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Pediatric Hematology/Oncology/BMT, Emory University Atlanta, GA USA
| | - Karen Burns
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| |
Collapse
|
2
|
Wilson LJ, Davey A, Vasquez Osorio E, Faught AM, Green A, Bulbeck H, Thomson A, Goddard J, McCabe MG, Merchant TE, van Herk M, Aznar MC. CT- and MR-based image-based data mining are consistent in the brain. Phys Med 2024; 125:104503. [PMID: 39197263 DOI: 10.1016/j.ejmp.2024.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE Image-based data mining (IBDM) is a voxel-based analysis technique to investigate dose-response. Most often, IBDM uses radiotherapy planning CTs because of their broad accessibility, however, it was unknown whether CT provided sufficient soft tissue contrast for brain IBDM. This study evaluates whether MR-based IBDM improves upon CT-based IBDM for studies of children with brain tumours. METHODS We compared IBDM pipelines using either CT- or MRI-based spatial normalisation in 128 children (ages 3.3-19.7 years) who received photon radiotherapy for primary brain tumours at a single institution. We quantified spatial-normalisation accuracy using contour comparison measures (centre-of-mass separation, average contour distance-to-agreement (DTavg), and Hausdorff distance) at multiple anatomic loci. We performed an end-to-end test of CT- and MRI-IBDM using modified clinical dose distributions and simulated effect labels to detect associations in pre-defined anatomic loci. Accuracy was assessed via sensitivity and specificity. RESULTS Spatial normalisation accuracy was comparable for both modalities, with a significant but small improvement for MRI compared to CT in all structures except the brainstem. The median (range) difference between the DTavg for the two pipelines was 0.37 (0.00-2.91) mm. The end-to-end test revealed no significant difference in sensitivity of the IBDM-identified regions for the two pipelines. Specificity slightly improved for MR-IBDM at the 99% significance level. CONCLUSION CT-based IBDM was comparable to MR-based IBDM, despite a small advantage in spatial normalisation accuracy with MRI. The use of CT-IBDM over MR-IBDM is useful for multi-institutional retrospective IBDM studies, where the availability of standardised MRI data can be limited.
Collapse
Affiliation(s)
- Lydia J Wilson
- St Jude Children's Research Hospital, Department of Radiation Oncology, Memphis, TN, USA
| | - Angela Davey
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK.
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Austin M Faught
- St Jude Children's Research Hospital, Department of Radiation Oncology, Memphis, TN, USA
| | - Andrew Green
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Adam Thomson
- Brainstrust - The Brain Cancer People, Cowes, UK
| | - Josh Goddard
- Brainstrust - The Brain Cancer People, Cowes, UK
| | - Martin G McCabe
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK
| | - Thomas E Merchant
- St Jude Children's Research Hospital, Department of Radiation Oncology, Memphis, TN, USA
| | - Marcel van Herk
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Winter SF, Gardner MM, Karschnia P, Vaios EJ, Grassberger C, Bussière MR, Nikolic K, Pongpitakmetha T, Ehret F, Kaul D, Boehmerle W, Endres M, Shih HA, Parsons MW, Dietrich J. Unique brain injury patterns after proton vs photon radiotherapy for WHO grade 2-3 gliomas. Oncologist 2024:oyae195. [PMID: 39126664 DOI: 10.1093/oncolo/oyae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury following brain-directed radiotherapy remains a major challenge. Proton radiotherapy (PRT) minimizes radiation to healthy brain, potentially limiting sequelae. We characterized CNS radiotoxicity, including radiation-induced leukoencephalopathy (RIL), brain tissue necrosis (TN), and cerebral microbleeds (CMB), in glioma patients treated with PRT or photons (XRT). PATIENTS AND METHODS Thirty-four patients (19 male; median age 39.6 years) with WHO grade 2-3 gliomas treated with partial cranial radiotherapy (XRT [n = 17] vs PRT[n = 17]) were identified and matched by demographic/clinical criteria. Radiotoxicity was assessed longitudinally for 3 years post-radiotherapy via serial analysis of T2/FLAIR- (for RIL), contrast-enhanced T1- (for TN), and susceptibility (for CMB)-weighted MRI sequences. RIL was rated at whole-brain and hemispheric levels using a novel Fazekas scale-informed scoring system. RESULTS The scoring system proved reliable (ICC > 0.85). Both groups developed moderate-to-severe RIL (62%[XRT]; 71%[PRT]) within 3 years; however, XRT was associated with persistent RIL increases in the contralesional hemisphere, whereas contralesional hemispheric RIL plateaued with PRT at 1-year post-radiotherapy (t = 2.180; P = .037). TN rates were greater with PRT (6%[XRT] vs 18%[PRT]; P = ns). CMB prevalence (76%[XRT]; 71%[PRT]) and burden (mean #CMB: 4.0[XRT]; 4.2[PRT]) were similar; however, XRT correlated with greater contralesional hemispheric CMB burden (27%[XRT]; 17%[PRT]; X2 = 4.986; P = .026), whereas PRT-specific CMB clustered at the radiation field margin (X2 = 14.7; P = .002). CONCLUSIONS CNS radiotoxicity is common and progressive in glioma patients. Injury patterns suggest radiation modality-specificity as RIL, TN, and CMB exhibit unique spatiotemporal differences following XRT vs PRT, likely reflecting underlying dosimetric and radiobiological differences. Familiarity with such injury patterns is essential to improve patient management. Prospective studies are needed to validate these findings and assess their impacts on neurocognitive function.
Collapse
Affiliation(s)
- Sebastian F Winter
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117 Berlin, Germany
| | - Melissa M Gardner
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Philipp Karschnia
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke Cancer Institute, Durham, NC 27710, United States
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Marc R Bussière
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Katarina Nikolic
- Department of Neurology, Universitätsklinikum St. Pölten, 3100 Sankt Pölten, Austria
| | - Thanakit Pongpitakmetha
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, 10330 Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, 10330 Bangkok, Thailand
| | - Felix Ehret
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - David Kaul
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Wolfgang Boehmerle
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Center for Stroke Research Berlin, 10117 Berlin, Germany
- ExcellenceCluster NeuroCure, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, 10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany
- German Centre for Mental Health (DZPH), Partner Site Berlin, 10117 Berlin, Germany
| | - Helen A Shih
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Michael W Parsons
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Jorg Dietrich
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
4
|
Tsang DS, Tsui G, Santiago AT, Keller H, Purdie T, Mcintosh C, Bauman G, La Macchia N, Parent A, Dama H, Ahmed S, Laperriere N, Millar BA, Liu V, Hodgson DC. A Prospective Study of Machine Learning-Assisted Radiation Therapy Planning for Patients Receiving 54 Gy to the Brain. Int J Radiat Oncol Biol Phys 2024; 119:1429-1436. [PMID: 38432285 DOI: 10.1016/j.ijrobp.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/11/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE The capacity for machine learning (ML) to facilitate radiation therapy (RT) planning for primary brain tumors has not been described. We evaluated ML-assisted RT planning with regard to clinical acceptability, dosimetric outcomes, and planning efficiency for adults and children with primary brain tumors. METHODS AND MATERIALS In this prospective study, children and adults receiving 54 Gy fractionated RT for a primary brain tumor were enrolled. For each patient, one ML-assisted RT plan was created and compared with 1 or 2 plans created using standard ("manual") planning procedures. Plans were evaluated by the treating oncologist, who was blinded to the method of plan creation. The primary endpoint was the proportion of ML plans that were clinically acceptable for treatment. Secondary endpoints included the frequency with which ML plans were selected as preferable for treatment, and dosimetric differences between ML and manual plans. RESULTS A total of 116 manual plans and 61 ML plans were evaluated across 61 patients. Ninety-four percent of ML plans and 93% of manual plans were judged to be clinically acceptable (P = 1.0). Overall, the quality of ML plans was similar to manual plans. ML plans comprised 34.5% of all plans evaluated and were selected for treatment in 36.1% of cases (P = .82). Similar tumor target coverage was achieved between both planning methods. Normal brain (brain minus planning target volume) received an average of 1 Gy less mean dose with ML plans (compared with manual plans, P < .001). ML plans required an average of 45.8 minutes less time to create, compared with manual plans (P < .001). CONCLUSIONS ML-assisted automated planning creates high-quality plans for patients with brain tumors, including children. Plans created with ML assistance delivered slightly less dose to normal brain tissues and can be designed in less time.
Collapse
Affiliation(s)
- Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Grace Tsui
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anna T Santiago
- Department of Biostatistics, University Health Network, Toronto, Ontario, Canada
| | - Harald Keller
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Thomas Purdie
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Chris Mcintosh
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Glenn Bauman
- London Regional Cancer Program, London, Ontario, Canada
| | - Nancy La Macchia
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Amy Parent
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hitesh Dama
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sameera Ahmed
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Normand Laperriere
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Barbara-Ann Millar
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Valerie Liu
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David C Hodgson
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Drabek-Maunder ER, Mankad K, Aquilina K, Dean JA, Nisbet A, Clark CA. Using diffusion MRI to understand white matter damage and the link between brain microstructure and cognitive deficits in paediatric medulloblastoma patients. Eur J Radiol 2024; 177:111562. [PMID: 38901074 DOI: 10.1016/j.ejrad.2024.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Survivors of medulloblastoma face a range of challenges after treatment, involving behavioural, cognitive, language and motor skills. Post-treatment outcomes are associated with structural changes within the brain resulting from both the tumour and the treatment. Diffusion magnetic resonance imaging (MRI) has been used to investigate the microstructure of the brain. In this review, we aim to summarise the literature on diffusion MRI in patients treated for medulloblastoma and discuss future directions on how diffusion imaging can be used to improve patient quality. METHOD This review summarises the current literature on medulloblastoma in children, focusing on the impact of both the tumour and its treatment on brain microstructure. We review studies where diffusion MRI has been correlated with either treatment characteristics or cognitive outcomes. We discuss the role diffusion MRI has taken in understanding the relationship between microstructural damage and cognitive and behavioural deficits. RESULTS We identified 35 studies that analysed diffusion MRI changes in patients treated for medulloblastoma. The majority of these studies found significant group differences in measures of brain microstructure between patients and controls, and some of these studies showed associations between microstructure and neurocognitive outcomes, which could be influenced by patient characteristics (e.g. age), treatment, radiation dose and treatment type. CONCLUSIONS In future, studies would benefit from being able to separate microstructural white matter damage caused by the tumour, tumour-related complications and treatment. Additionally, advanced diffusion modelling methods can be explored to understand and describe microstructural changes to white matter.
Collapse
Affiliation(s)
- Emily R Drabek-Maunder
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; UCL Dept of Medical Physics and Biomedical Engineering, Malet Place, Gower St, London WC1E 6BT, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK.
| | - Kshitij Mankad
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK
| | - Kristian Aquilina
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK
| | - Jamie A Dean
- UCL Dept of Medical Physics and Biomedical Engineering, Malet Place, Gower St, London WC1E 6BT, UK
| | - Andrew Nisbet
- UCL Dept of Medical Physics and Biomedical Engineering, Malet Place, Gower St, London WC1E 6BT, UK
| | - Chris A Clark
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK; Great Ormond Street Hospital for Children, Great Ormond St, London WC1N 3JH, UK
| |
Collapse
|
6
|
Gorenstein L, Shrot S, Ben-Ami M, Stern E, Yalon M, Hoffmann C, Caspi S, Lurye M, Toren A, Abebe-Campino G, Modan-Moses D. Predictive factors for radiation-induced pituitary damage in pediatric patients with brain tumors. Radiother Oncol 2024; 196:110268. [PMID: 38641261 DOI: 10.1016/j.radonc.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND AND PURPOSE Multiple studies demonstrated hypothalamic-pituitary dysfunction in survivors of pediatric brain tumors. However, few studies investigated the trajectories of pituitary height in these patients and their associations with pituitary function. We aimed to evaluate longitudinal changes of pituitary height in children and adolescents with brain tumors, and their association with endocrine deficiencies. MATERIALS AND METHODS We conducted a retrospective analysis of 193 pediatric patients (54.9% male) diagnosed with brain tumors from 2002 to 2018, with a minimum of two years of radiological follow-up. Pituitary height was measured using MRI scans at diagnosis and at 2, 5, and 10 years post-diagnosis, with clinical data sourced from patient charts. RESULTS Average age at diagnosis was 7.6 ± 4.5 years, with a follow-up of 6.1 ± 3.4 years. 52.8% underwent radiotherapy and 37.8% experienced pituitary hormone deficiency. Radiation treatment was a significant predictor of decreased pituitary height at all observed time points (p = 0.016, p < 0.001, p = 0.008, respectively). Additionally, chemotherapy (p = 0.004) or radiotherapy (p = 0.022) history and pituitary height at 10 years (p = 0.047) were predictors of endocrine deficiencies. ANOVA revealed an expected increase in pituitary height over time in pediatric patients, but this growth was significantly impacted by radiation treatment and gender (p for interaction = 0.005 and 0.025, respectively). CONCLUSION Cranial irradiation in pediatric patients is associated with impairment of the physiologic increase in pituitary size; in turn, decreased pituitary height is associated with endocrine dysfunction. We suggest that pituitary gland should be evaluated on surveillance imaging of pediatric brain tumor survivors, and if small for age, clinical endocrine evaluation should be pursued.
Collapse
Affiliation(s)
- Larisa Gorenstein
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shrot
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Michal Ben-Ami
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Eve Stern
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Michal Yalon
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology-Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Chen Hoffmann
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shani Caspi
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology-Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Michal Lurye
- Division of Pediatric Hematology-Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Amos Toren
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology-Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Gadi Abebe-Campino
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology-Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Dalit Modan-Moses
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
7
|
柴 晓, 孙 子, 李 海, 朱 靓, 刘 小, 刘 延, 裴 斐, 常 青. [Clinicopathological characteristics of the CD8 + T lymphocytes infiltration and its mechanism in distinct molecular subtype of medulloblastoma]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:512-518. [PMID: 38864138 PMCID: PMC11167556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To investigate the characteristics of the CD8+ T cells infiltration from the 4 subtypes in medulloblastoma (MB), to analyze the relationship between CD8+ T cells infiltration and prognosis, to study the function of C-X-C motif chemokine ligand 11 (CXCL11) and its receptor in CD8+ T cells infiltration into tumors and to explore the potential mechanism, and to provide the necessary clinicopathological basis for exploring the immunotherapy of MB. METHODS In the study, 48 clinical MB samples (12 cases in each of 4 subtypes) were selected from the multiple medical center from 2012 to 2019. The transcriptomics analysis for the tumor of 48 clinical samples was conducted on the NanoString PanCancer IO360TM Panel (NanoString Technologies). Immunohistochemistry (IHC) staining of formalin-fixed, paraffin-embedded sections from MB was carried out using CD8 primary antibody to analyze diffe-rential quantities of CD8+ T cells in the MB four subtypes. Through bioinformatics analysis, the relationship between CD8+T cells infiltration and prognosis of the patients and the expression differences of various chemokines in the different subtypes of MB were investigated. The expression of CXCR3 receptor on the surface of CD8+T cells in MB was verified by double immunofluorescence staining, and the underlying molecular mechanism of CD8+T cells infiltration into the tumor was explored. RESULTS The characteristic index of CD8+T cells in the WNT subtype of MB was relatively high, suggesting that the number of CD8+T cells in the WNT subtype was significantly higher than that in the other three subtypes, which was confirmed by CD8 immunohistochemical staining and Gene Expression Omnibus (GEO) database analysis by using R2 online data analysis platform. And the increase of CD8+T cells infiltration was positively correlated with the patient survival. The expression level of CXCL11 in the WNT subtype MB was significantly higher than that of the other three subtypes. Immunofluorescence staining showed the presence of CXCL11 receptor, CXCR3, on the surface of CD8+T cells, suggesting that the CD8+T cells might be attracted to the MB microenvironment by CXCL11 through CXCR3. CONCLUSION The CD8+T cells infiltrate more in the WNT subtype MB than other subtypes. The mechanism may be related to the activation of CXCL11-CXCR3 chemokine system, and the patients with more infiltration of CD8+T cells in tumor have better prognosis. This finding may provide the necessary clinicopathological basis for the regulatory mechanism of CD8+T cells infiltration in MB, and give a new potential therapeutic target for the future immunotherapy of MB.
Collapse
Affiliation(s)
- 晓东 柴
- 北京大学第三医院病理科, 北京 100191Department of Pathology, Peking University Third Hospital, Beijing 100191, China
- 北京大学基础医学院病理学系, 北京 100191Department of Pathology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 子文 孙
- 北京大学第三医院病理科, 北京 100191Department of Pathology, Peking University Third Hospital, Beijing 100191, China
| | - 海爽 李
- 北京大学第三医院病理科, 北京 100191Department of Pathology, Peking University Third Hospital, Beijing 100191, China
| | - 靓怡 朱
- 北京大学第三医院病理科, 北京 100191Department of Pathology, Peking University Third Hospital, Beijing 100191, China
| | - 小旦 刘
- 北京大学第三医院病理科, 北京 100191Department of Pathology, Peking University Third Hospital, Beijing 100191, China
- 北京大学基础医学院病理学系, 北京 100191Department of Pathology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 延涛 刘
- 北京大学第三医院病理科, 北京 100191Department of Pathology, Peking University Third Hospital, Beijing 100191, China
| | - 斐 裴
- 北京大学第三医院病理科, 北京 100191Department of Pathology, Peking University Third Hospital, Beijing 100191, China
- 北京大学基础医学院病理学系, 北京 100191Department of Pathology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 青 常
- 北京市神经外科研究所神经病理中心, 北京 100070Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing 100070, China
| |
Collapse
|
8
|
Wheeler G, Grassberger C, Samers J, Dwyer M, Wiltshire K, Daly P, Alvarez B, Campbell BA, Kerr AJ, Kron T, Duane FK, Zacharin M, Downie P, Kyriakou E, Ronckers CM, Constine LS, Hiniker SM. Central Endocrine Complications Among Childhood Cancer Survivors Treated With Radiation Therapy: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:457-466. [PMID: 37269265 DOI: 10.1016/j.ijrobp.2023.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE Children who receive cranial radiation therapy (RT) as a component of treatment for malignancy are often at risk of long-term central endocrine toxicity secondary to radiation to the hypothalamic-pituitary axis (HPA). A comprehensive analysis was performed of central endocrine late effects in survivors of childhood cancer treated with RT as part of the Pediatric Normal Tissue Effects in the Clinic (PENTEC) consortium. METHODS AND MATERIALS A systematic review of the risk of RT-related central endocrine effects was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A total of 4629 publications were identified, of which 16 met criteria for inclusion in dose modeling analysis, with a total of 570 patients in 19 cohorts. Eighteen cohorts reported outcomes for growth hormone deficiency (GHD), 7 reported outcomes for central hypothyroidism (HT), and 6 reported outcomes for adrenocorticotropic hormone (ACTH) deficiency. RESULTS Normal tissue complication probability modeling for GHD (18 cohorts, 545 patients) yielded D50 = 24.9 Gy (95% CI, 20.9-28.0) and γ50 = 0.5 (95% CI, 0.27-0.78). The normal tissue complication probability model fit for whole brain irradiation in children with a median age of >5 years indicated a 20% risk of GHD for patients who receive a mean dose of 21 Gy in 2-Gy fractions to the HPA. For HT, among 7 cohorts (250 patients), D50 = 39 Gy (95% CI, 34.1-53.2) and γ50 = 0.81 (95% CI, 0.46-1.35), with a 20% risk of HT in children who receive a mean dose of 22 Gy in 2-Gy fractions to the HPA. For ACTH deficiency (6 cohorts, 230 patients), D50 = 61 Gy (95% CI, 44.7-119.4) and γ50 = 0.76 (95% CI, 0.5-1.19); there is a 20% risk of ACTH deficiency in children who receive a mean dose of 34 Gy in 2-Gy fractions to the HPA. CONCLUSIONS RT dose to the HPA increases the risk of central endocrine toxicity, including GHD, HT, and ACTH deficiency. In some clinical situations, these toxicities may be difficult to avoid, and counseling of patients and families with respect to anticipated outcomes is important.
Collapse
Affiliation(s)
- Greg Wheeler
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Josephine Samers
- Alfred Health, GP Liaison Late Effects Service, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Mary Dwyer
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Kirsty Wiltshire
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Patricia Daly
- St. Luke's Radiation Oncology Network, Dublin, Ireland
| | - Beatriz Alvarez
- Department of Radiation Oncology, Hospital Universitario HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Belinda A Campbell
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia; Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| | - Amanda J Kerr
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, England
| | - Tomas Kron
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia; Department of Physical Sciences, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Frances K Duane
- Department of Radiation Oncology, Hospital Universitario HM Sanchinarro, HM Hospitales, Madrid, Spain; Trinity St. James Cancer Institute, Dublin, Ireland
| | - Margaret Zacharin
- Department of Endocrinology, Murdoch Children's Research Unit, University of Melbourne, Victoria, Australia
| | - Peter Downie
- Department of Paediatric Haematology-Oncology, Monash Children's Hospital, Clayton, Victoria, Australia; Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Elizabeth Kyriakou
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Cecile M Ronckers
- Division of Organizational Health Services Research, Department of Health Services Research, University of Oldenburg, Oldenburg, Germany
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.
| | - Susan M Hiniker
- Department of Radiation Oncology, Stanford University, Stanford, California.
| |
Collapse
|
9
|
Milano MT, Marks LB, Olch AJ, Yorke ED, Jackson A, Bentzen SM, Constine LS. Comparison of Risks of Late Effects From Radiation Therapy in Children Versus Adults: Insights From the QUANTEC, HyTEC, and PENTEC Efforts. Int J Radiat Oncol Biol Phys 2024; 119:387-400. [PMID: 38069917 DOI: 10.1016/j.ijrobp.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 05/19/2024]
Abstract
Pediatric Normal Tissue Effects in the Clinic (PENTEC) seeks to refine quantitative radiation dose-volume relationships for normal-tissue complication probabilities (NTCPs) in survivors of pediatric cancer. This article summarizes the evolution of PENTEC and compares it with similar adult-focused efforts (eg, Quantitative Analysis of Normal Tissue Effects in the Clinic [QUANTEC] and Hypofractionated Treatment Effects in the Clinic [HyTEC]) with respect to content, oversight, support, scope, and methodology of literature review. It then summarizes key organ-specific findings from PENTEC in an attempt to compare NTCP estimates in children versus adults. In brief, select normal-tissue risks within developing organs and tissues (eg, maldevelopment of musculoskeletal tissue, teeth, breasts, and reproductive organs) are primarily relevant only in children. For some organs and tissues, children appear to have similar (eg, brain for necrosis, optic apparatus, parotid gland, liver), greater (eg, brain for neurocognition, cerebrovascular, breast for lactation), less (ovary), or perhaps slightly less (eg, lung) risks of toxicity versus adults. Similarly, even within the broad pediatric age range (including adolescence), for some endpoints, younger children have greater (eg, hearing and brain for neurocognition) or lesser (eg, ovary, thyroid) risks of radiation-associated toxicities. NTCP comparisons in adults versus children are often confounded by marked differences in treatment paradigms that expose normal tissues to radiation (ie, cancer types, prescribed radiation therapy dose and fields, and chemotherapy agents used). To add to the complexity, it is unclear if age is best analyzed as a continuous variable versus with age groupings (eg, infants, young children, adolescents, young adults, middle-aged adults, older adults). Further work is needed to better understand the complex manner in which age and developmental status affect risk.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Arthur J Olch
- Radiation Oncology Program, Children's Hospital Los Angeles/Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ellen D Yorke
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Søren M Bentzen
- Greenebaum Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
10
|
Baliga S, Patel S, Naqa IE, Li XA, Cohen LE, Howell RM, Hoppe BS, Constine LS, Palmer JD, Hamstra D, Olch AJ. Testicular Dysfunction in Male Childhood Cancer Survivors Treated With Radiation Therapy: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:610-624. [PMID: 37791936 DOI: 10.1016/j.ijrobp.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE The male reproductive task force of the Pediatric Normal Tissue Effects in the Clinic (PENTEC) initiative performed a comprehensive review that included a meta-analysis of publications reporting radiation dose-volume effects for risk of impaired fertility and hormonal function after radiation therapy for pediatric malignancies. METHODS AND MATERIALS The PENTEC task force conducted a comprehensive literature search to identify published data evaluating the effect of testicular radiation dose on reproductive complications in male childhood cancer survivors. Thirty-one studies were analyzed, of which 4 had testicular dose data to generate descriptive scatter plots. Two cohorts were identified. Cohort 1 consisted of pediatric and young adult patients with cancer who received scatter radiation therapy to the testes. Cohort 2 consisted of pediatric and young adult patients with cancer who received direct testicular radiation therapy as part of their cancer therapy. Descriptive scatter plots were used to delineate the relationship between the effect of mean testicular dose on sperm count reduction, testosterone, follicle stimulating hormone (FSH), and luteinizing hormone (LH) levels. RESULTS Descriptive scatter plots demonstrated a 44% to 80% risk of oligospermia when the mean testicular dose was <1 Gy, but this was recovered by >12 months in 75% to 100% of patients. At doses >1 Gy, the rate of oligospermia increased to >90% at 12 months. Testosterone levels were generally not affected when the mean testicular dose was <0.2 Gy but were abnormal in up to 25% of patients receiving between 0.2 and 12 Gy. Doses between 12 and 19 Gy may be associated with abnormal testosterone in 40% of patients, whereas doses >20 Gy to the testes were associated with a steep increase in abnormal testosterone in at least 68% of patients. FSH levels were unaffected by a mean testicular dose <0.2 Gy, whereas at doses >0.5 Gy, the risk was between 40% and 100%. LH levels were affected at doses >0.5 Gy in 33% to 75% of patients between 10 and 24 months after radiation. Although dose modeling could not be performed in cohort 2, the risk of reproductive toxicities was escalated with doses >10 Gy. CONCLUSIONS This PENTEC comprehensive review demonstrates important relationships between scatter or direct radiation dose on male reproductive endpoints including semen analysis and levels of FSH, LH, and testosterone.
Collapse
Affiliation(s)
- Sujith Baliga
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Samir Patel
- Department of Radiation Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Issam El Naqa
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Laurie E Cohen
- Division of Endocrinology, Children's Hospital at Montefiore, Bronx, New York
| | - Rebecca M Howell
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradford S Hoppe
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Joshua D Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Daniel Hamstra
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas
| | - Arthur J Olch
- Department of Radiation Oncology, Keck School of Medicine of USC, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
11
|
Prezado Y, Grams M, Jouglar E, Martínez-Rovira I, Ortiz R, Seco J, Chang S. Spatially fractionated radiation therapy: a critical review on current status of clinical and preclinical studies and knowledge gaps. Phys Med Biol 2024; 69:10TR02. [PMID: 38648789 DOI: 10.1088/1361-6560/ad4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Spatially fractionated radiation therapy (SFRT) is a therapeutic approach with the potential to disrupt the classical paradigms of conventional radiation therapy. The high spatial dose modulation in SFRT activates distinct radiobiological mechanisms which lead to a remarkable increase in normal tissue tolerances. Several decades of clinical use and numerous preclinical experiments suggest that SFRT has the potential to increase the therapeutic index, especially in bulky and radioresistant tumors. To unleash the full potential of SFRT a deeper understanding of the underlying biology and its relationship with the complex dosimetry of SFRT is needed. This review provides a critical analysis of the field, discussing not only the main clinical and preclinical findings but also analyzing the main knowledge gaps in a holistic way.
Collapse
Affiliation(s)
- Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, E-15706, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America
| | - Emmanuel Jouglar
- Institut Curie, PSL Research University, Department of Radiation Oncology, F-75005, Paris and Orsay Protontherapy Center, F-91400, Orsay, France
| | - Immaculada Martínez-Rovira
- Physics Department, Universitat Auto`noma de Barcelona, E-08193, Cerdanyola del Valle`s (Barcelona), Spain
| | - Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology, 1600 Divisadero Street, San Francisco, CA 94143, United States of America
| | - Joao Seco
- Division of Biomedical physics in Radiation Oncology, DKFZ-German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Sha Chang
- Dept of Radiation Oncology and Department of Biomedical Engineering, University of North Carolina School of Medicine, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolin State University, United States of America
| |
Collapse
|
12
|
Yoshida T, Delaney A. Impact of Childhood Cancer on Growth. J Clin Endocrinol Metab 2024; 109:e892-e900. [PMID: 37539847 DOI: 10.1210/clinem/dgad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Along with improvements in cancer treatment over time, the number of childhood cancer survivors has been growing. Survivors are at risk for serious medical complications, and growth impairment is among the most common. There are multiple factors that may cause impaired growth among survivors. In this article, we review the impact of cancer on growth in children and adolescents. We first provide an overview of growth disturbance among childhood cancer patients and survivors due to nonhormonal causes, including a recent understanding of the effect of targeted cancer therapies (eg, tyrosine kinase inhibitors and immune checkpoint inhibitors) on growth. Then we describe the hormonal causes of growth impairment among survivors, focusing on growth hormone deficiency, including the prevalence, risk factors, and treatment. Lastly, we briefly summarize overgrowth and tall stature in childhood cancer. It is critical to assess the linear growth of children and adolescents, especially in cancer survivors who are at risk for growth disturbance, since growth is an important measure of their health.
Collapse
Affiliation(s)
- Tomoko Yoshida
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Angela Delaney
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
13
|
Journy N, Bolle S, Brualla L, Dumas A, Fresneau B, Haddy N, Haghdoost S, Haustermans K, Jackson A, Karabegovic S, Lassen-Ramshad Y, Thariat J, Wette MR, Botzenhardt S, De Wit I, Demoor-Goldschmidt C, Christiaens M, Høyer M, Isebaert S, Jacobs S, Henriksen LT, Maduro JH, Ronckers C, Steinmeier T, Uyttebroeck A, Van Beek K, Walsh L, Thierry-Chef I, Timmermann B. Assessing late outcomes of advances in radiotherapy for paediatric cancers: Study protocol of the "HARMONIC-RT" European registry (NCT 04746729). Radiother Oncol 2024; 190:109972. [PMID: 37922994 DOI: 10.1016/j.radonc.2023.109972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Neige Journy
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Stéphanie Bolle
- Department of Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Agnès Dumas
- Inserm, Aix Marseille University, IRD, ISSPAM, SESSTIM (Economic and Social Sciences of Health and Medical Information Processing), Marseille, France
| | - Brice Fresneau
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France; Department of Paediatric Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nadia Haddy
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Siamak Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; University of Caen Normandy, Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| | - Karin Haustermans
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Angela Jackson
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Paris-Saclay University, Villejuif, France; National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sanja Karabegovic
- Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Yasmin Lassen-Ramshad
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Juliette Thariat
- Centre Régional Francois Baclesse, Avenue Du General Harris 3, Caen Cedex 5 14076, France; Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France
| | - Martina Roxanne Wette
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Suzan Botzenhardt
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany
| | - Inge De Wit
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Charlotte Demoor-Goldschmidt
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France; Centre Régional Francois Baclesse, Avenue Du General Harris 3, Caen Cedex 5 14076, France; Centre Hospitalier Universitaire d'Angers, Rue Larrey 4, Angers 49 000, France
| | - Melissa Christiaens
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Morten Høyer
- Aarhus University (AU), Nordre Ringgade 1, Aarhus C 8000, Denmark
| | - Sofie Isebaert
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Sandra Jacobs
- Department of Paediatric Oncology, UZ Leuven, Leuven 3000, Belgium; Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Louise Tram Henriksen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - John H Maduro
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Cecile Ronckers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Theresa Steinmeier
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Anne Uyttebroeck
- Department of Paediatric Oncology, UZ Leuven, Leuven 3000, Belgium
| | - Karen Van Beek
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Linda Walsh
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | - Beate Timmermann
- University Hospital Essen (UK Essen), Hufelandstrasse 55, Essen 45147, Germany; Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| |
Collapse
|
14
|
Malik JR, Podany AT, Khan P, Shaffer CL, Siddiqui JA, Baranowska‐Kortylewicz J, Le J, Fletcher CV, Ether SA, Avedissian SN. Chemotherapy in pediatric brain tumor and the challenge of the blood-brain barrier. Cancer Med 2023; 12:21075-21096. [PMID: 37997517 PMCID: PMC10726873 DOI: 10.1002/cam4.6647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pediatric brain tumors (PBT) stand as the leading cause of cancer-related deaths in children. Chemoradiation protocols have improved survival rates, even for non-resectable tumors. Nonetheless, radiation therapy carries the risk of numerous adverse effects that can have long-lasting, detrimental effects on the quality of life for survivors. The pursuit of chemotherapeutics that could obviate the need for radiotherapy remains ongoing. Several anti-tumor agents, including sunitinib, valproic acid, carboplatin, and panobinostat, have shown effectiveness in various malignancies but have not proven effective in treating PBT. The presence of the blood-brain barrier (BBB) plays a pivotal role in maintaining suboptimal concentrations of anti-cancer drugs in the central nervous system (CNS). Ongoing research aims to modulate the integrity of the BBB to attain clinically effective drug concentrations in the CNS. However, current findings on the interaction of exogenous chemical agents with the BBB remain limited and do not provide a comprehensive explanation for the ineffectiveness of established anti-cancer drugs in PBT. METHODS We conducted our search for chemotherapeutic agents associated with the blood-brain barrier (BBB) using the following keywords: Chemotherapy in Cancer, Chemotherapy in Brain Cancer, Chemotherapy in PBT, BBB Inhibition of Drugs into CNS, Suboptimal Concentration of CNS Drugs, PBT Drugs and BBB, and Potential PBT Drugs. We reviewed each relevant article before compiling the information in our manuscript. For the generation of figures, we utilized BioRender software. FOCUS We focused our article search on chemical agents for PBT and subsequently investigated the role of the BBB in this context. Our search criteria included clinical trials, both randomized and non-randomized studies, preclinical research, review articles, and research papers. FINDING Our research suggests that, despite the availability of potent chemotherapeutic agents for several types of cancer, the effectiveness of these chemical agents in treating PBT has not been comprehensively explored. Additionally, there is a scarcity of studies examining the role of the BBB in the suboptimal outcomes of PBT treatment, despite the effectiveness of these drugs for other types of tumors.
Collapse
Affiliation(s)
- Johid Reza Malik
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Anthony T. Podany
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Parvez Khan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Christopher L. Shaffer
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jawed A. Siddiqui
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Jennifer Le
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical SciencesSan DiegoCaliforniaUSA
| | - Courtney V. Fletcher
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sadia Afruz Ether
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sean N. Avedissian
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
15
|
Winter SF, Vaios EJ, Shih HA, Grassberger C, Parsons MW, Gardner MM, Ehret F, Kaul D, Boehmerle W, Endres M, Dietrich J. Mitigating Radiotoxicity in the Central Nervous System: Role of Proton Therapy. Curr Treat Options Oncol 2023; 24:1524-1549. [PMID: 37728819 DOI: 10.1007/s11864-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OPINION STATEMENT Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.
Collapse
Affiliation(s)
- Sebastian F Winter
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany.
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melissa M Gardner
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Ehret
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Boehmerle
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jorg Dietrich
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Gubbi S, Al-Jundi M, Auh S, Jha A, Zou J, Shamis I, Meuter L, Knue M, Turkbey B, Lindenberg L, Mena E, Carrasquillo JA, Teng Y, Pacak K, Klubo-Gwiezdzinska J, Del Rivero J, Lin FI. Early short-term effects on catecholamine levels and pituitary function in patients with pheochromocytoma or paraganglioma treated with [ 177Lu]Lu-DOTA-TATE therapy. Front Endocrinol (Lausanne) 2023; 14:1275813. [PMID: 37886645 PMCID: PMC10598842 DOI: 10.3389/fendo.2023.1275813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Purpose While there are reports of treatment-related endocrine disruptions and catecholamine surges in pheochromocytoma/paraganglioma (PPGL) patients treated with [177Lu]Lu-DOTA-TATE therapy, the spectrum of these abnormalities in the immediate post-treatment period (within 48 hours) has not been previously evaluated and is likely underestimated. Methods The study population included patients (≥18 years) enrolled in a phase 2 trial for treatment of somatostatin receptor (SSTR)-2+ inoperable/metastatic pheochromocytoma/paraganglioma with [177Lu]Lu-DOTA-TATE (7.4 GBq per cycle for 1 - 4 cycles). Hormonal measurements [adrenocorticotropic hormone (ACTH), cortisol, thyroid stimulating hormone (TSH), free thyroxine (FT4), follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone, estradiol, growth hormone, prolactin], catecholamines, and metanephrines were obtained on days-1, 2, 3, 30, and 60 per cycle as per trial protocol, and were retrospectively analyzed. Results Among the 27 patients (age: 54 ± 12.7 years, 48.1% females) who underwent hormonal evaluation, hypoprolactinemia (14.1%), elevated FSH (13.1%), and elevated LH (12.5%) were the most frequent hormonal abnormalities across all 4 cycles combined. On longitudinal follow-up, significant reductions were noted in i. ACTH without corresponding changes in cortisol, ii. TSH, and FT4, and iii. prolactin at or before day-30 of [177Lu]Lu-DOTA-TATE. No significant changes were observed in the gonadotropic axis and GH levels. Levels of all hormones on day-60 were not significantly different from day-1 values, suggesting the transient nature of these changes. However, two patients developed clinical, persistent endocrinopathies (primary hypothyroidism: n=1 male; early menopause: n=1 female). Compared to day-1, a significant % increase in norepinephrine, dopamine, and normetanephrine levels were noted at 24 hours following [177Lu]Lu-DOTA-TATE dose and peaked within 48 hours. Conclusions [177Lu]Lu-DOTA-TATE therapy is associated with alterations in endocrine function likely from radiation exposure to SSTR2+ endocrine tissues. However, these changes may sometimes manifest as clinically significant endocrinopathies. It is therefore important to periodically assess endocrine function during [177Lu]Lu-DOTA-TATE therapy, especially among symptomatic patients. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT03206060?term=NCT03206060&draw=2&rank=1, identifier NCT03206060.
Collapse
Affiliation(s)
- Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Mohammad Al-Jundi
- Department of Endocrinology, Eunice Kennedy Shriver National Institute of Child and Human Development, Bethesda, MD, United States
| | - Sungyoung Auh
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Abhishek Jha
- Department of Endocrinology, Eunice Kennedy Shriver National Institute of Child and Human Development, Bethesda, MD, United States
| | - Joy Zou
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, United States
| | - Inna Shamis
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, United States
| | - Leah Meuter
- Department of Endocrinology, Eunice Kennedy Shriver National Institute of Child and Human Development, Bethesda, MD, United States
| | - Marianne Knue
- Department of Endocrinology, Eunice Kennedy Shriver National Institute of Child and Human Development, Bethesda, MD, United States
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, United States
| | - Liza Lindenberg
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, United States
| | - Esther Mena
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, United States
| | - Jorge A. Carrasquillo
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Yating Teng
- Center for Health Professions Education, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Karel Pacak
- Department of Endocrinology, Eunice Kennedy Shriver National Institute of Child and Human Development, Bethesda, MD, United States
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, United States
| | - Frank I. Lin
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
17
|
Onishi S, Yamasaki F, Kinoshita Y, Amatya VJ, Takayasu T, Yonezawa U, Taguchi A, Go Y, Takeshima Y, Horie N. Characteristics and therapeutic strategies of brain and cranial radiation-induced sarcoma: analysis of 165 cases from our case experience and comprehensive review. Jpn J Clin Oncol 2023; 53:905-911. [PMID: 37461193 DOI: 10.1093/jjco/hyad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Radiation-induced sarcoma (RIS) is among the neoplasms potentially caused by radiation therapy (RT) for brain tumors. However, the clinical characteristics of and ideal treatment for RIS are unclear. We analysed our case experience and conducted a comprehensive literature review to reveal the characteristics of brain and cranial RIS. METHODS We analysed 165 cases of RIS from the literature together with the RIS case treated at our institution. In each case, the latency period from irradiation to the development of each RIS and the median overall survival (OS) of the patients was analysed by Kaplan-Meier analysis. Spearman's correlation test was used to determine the relationship between the latency period and radiation dose or age at irradiation. RESULTS The mean age at the development of RIS was 39.63 ± 17.84 years. The mean latency period was 11.79 ± 8.09 years. No factors associated with early development of RIS were detected. The median OS was 11 months, with fibrosarcoma showing significantly shorter OS compared with osteosarcoma and other sarcomas (p = 0.0021), and intracranial RIS showing a worse prognosis than extracranial RIS (p < 0.0001). Patients treated with surgery (p < 0.0001) and postoperative chemotherapy (p = 0.0157) for RIS presented significantly longer OS, whereas RT for RIS was not associated with a survival benefit. CONCLUSIONS Although prognosis for RIS is universally poor, pathological characteristics and locations are associated with worse prognosis. Surgery and chemotherapy may be the ideal treatment strategies for RIS.
Collapse
Affiliation(s)
- Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yasuyuki Kinoshita
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Vishwa J Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takeshi Takayasu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yukari Go
- Medical Division Technical Center, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
18
|
Yang W, Ma W, Huang J, Cai Y, Peng X, Zhao F, Zhang D, Zou Z, Sun H, Qi X, Ge M. Beijing Children's Hospital guidelines on the design and conduction of the first standardized database for medulloblastoma. Metab Brain Dis 2023; 38:2393-2400. [PMID: 37261631 DOI: 10.1007/s11011-023-01233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Medulloblastoma (MB) is one of the most common malignant childhood brain tumors (WHO grade IV). Its high degree of malignancy leads to an unsatisfactory prognosis, requiring more precise and personalized treatment in the near future. Multi-omics and artificial intelligence have been playing a significant role in precise medical research, but their implementation needs a large amount of clinical information and biomaterials. For these reasons, it is urgent for current MB researchers to establish a large sample-size database of MB that contains complete clinical data and sufficient biomaterials such as blood, cerebrospinal fluid (CSF), cancer tissue, and urine. Unfortunately, there are few biobanks of pediatric central nervous system (CNS) tumors throughout the world for limited specimens, scarce funds, different standards collecting methods and et cl. Even though, China falls behind western countries in this area. The present research set up a standard workflow to construct the Beijing Children's Hospital Medulloblastoma (BCH-MB) biobank. Clinical data from children with MB and for collecting and storing biomaterials, along with regular follow-up has been collected and recorded in this database. In the future, the BCH-MB biobank could make it possible to validate the promising biomarkers already identified, discover unrevealed MB biomarkers, develop novel therapies, and establish personalized prognostic models for children with MB upon the support of its sufficient data and biomaterials, laying the foundation for individualized therapies of children with MB.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenping Ma
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jiansong Huang
- Department of Neurosurgery, Peking University International Hospital, Peking University Health Science Center, Peking University, Beijing, 102200, China
| | - Yingjie Cai
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaojiao Peng
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Fengmao Zhao
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Di Zhang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhewei Zou
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hailang Sun
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Xiang Qi
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
19
|
García-Marqueta M, Vázquez M, Krcek R, Kliebsch UL, Baust K, Leiser D, van Heerden M, Pica A, Calaminus G, Weber DC. Quality of Life, Clinical, and Patient-Reported Outcomes after Pencil Beam Scanning Proton Therapy Delivered for Intracranial Grade WHO 1-2 Meningioma in Children and Adolescents. Cancers (Basel) 2023; 15:4447. [PMID: 37760417 PMCID: PMC10526222 DOI: 10.3390/cancers15184447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE The purpose of this study was to report the clinical and patient-reported outcomes of children and adolescents with intracranial meningioma treated with pencil beam scanning proton therapy (PBS-PT). MATERIAL AND METHODS Out of a total cohort of 207 intracranial meningioma patients treated with PBS-PT between 1999 and 2022, 10 (4.8%) were children or adolescents aged < 18 years. Median age was 13.9 years (range, 3.2-17.2). Six (60%) children were treated as primary treatment (postoperative PT, n = 4; exclusive PT, n = 2) and four (40%) at the time of tumor recurrence. Acute and late toxicities were registered according to Common Terminology Criteria of Adverse Events (CTCAE). Quality of life (QoL) before PBS-PT was assessed using PEDQOL questionnaires. Educational, functional, and social aspects after PT were assessed through our in-house developed follow-up surveys. Median follow-up time was 71.1 months (range, 2.5-249.7), and median time to last questionnaire available was 37.6 months (range, 5.75-112.6). RESULTS Five (50%) children developed local failure (LF) at a median time of 32.4 months (range, 17.7-55.4) after PBS-PT and four (80%) were considered in-field. One patient died of T-cell lymphoma 127.1 months after PBS-PT. Estimated 5-year local control (LC) and overall survival (OS) rates were 19.4% and 100.0%, respectively. Except for one patient who developed a cataract requiring surgery, no grade ≥3 late toxicities were reported. Before PT, patients rated their QoL lower than their parents in most domains. During the first year after PT, one child required educational support, one needed to attend to a special school, one had social problems and another three children required assistance for daily basic activities (DBA). Three years after PT, only one child required assistance for DBA. CONCLUSIONS The outcome of children with intracranial meningioma treated with PBS-PT is in line with other centers who have reported results of radiation therapy delivered to this particular patient group. This therapy provides acceptable functional status profiles with no high-grade adverse radiation-induced events.
Collapse
Affiliation(s)
- Marta García-Marqueta
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland; (M.G.-M.)
| | - Miriam Vázquez
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland; (M.G.-M.)
| | - Reinhardt Krcek
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland; (M.G.-M.)
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Ulrike L. Kliebsch
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland; (M.G.-M.)
| | - Katja Baust
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Dominic Leiser
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland; (M.G.-M.)
| | - Michelle van Heerden
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland; (M.G.-M.)
| | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland; (M.G.-M.)
| | - Gabriele Calaminus
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Damien C. Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland; (M.G.-M.)
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department of Radiation Oncology, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
20
|
Burns K, Phillips C, Brannigan R, Franklin A, Howell J, Schmidt D, Sopfe J, Appiah LC, Anazodo A. Male pediatric, adolescent, and young adult reproductive survivorship. Pediatr Blood Cancer 2023; 70 Suppl 5:e28823. [PMID: 37381156 DOI: 10.1002/pbc.28823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 06/30/2023]
Abstract
As pediatric, adolescent, and young adult cancer survival rates increase, emphasis is placed on reducing late effects, including reproductive complications and potential impact to fertility. Male survivors are at risk of abnormalities in sperm, hormone deficiencies, and sexual dysfunction. This can impact one's progression into puberty and ability to have a biological child and impacts quality of life following treatment. Access to reproductive care is important and requires patient assessment and appropriate referral to reproductive specialists. This review addresses reproductive complications associated with therapy, standard-of-care testing, and therapeutic interventions. The psychologic impact on psychosexual functioning is also addressed.
Collapse
Affiliation(s)
- Karen Burns
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Christine Phillips
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Robert Brannigan
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Anna Franklin
- Center for Cancer and Blood Disorders, Children's Hospital of Colorado, Aurora, Colorado
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Jonathan Howell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Deb Schmidt
- Division of Oncology, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Jenna Sopfe
- Center for Cancer and Blood Disorders, Children's Hospital of Colorado, Aurora, Colorado
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Leslie Coker Appiah
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Denver, Colorado
- Department of Surgery, Pediatric and Adolescent Gynecology, Children's Hospital Colorado, Denver, Colorado
| | - Antoinette Anazodo
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
- Nelune Comprehensive Cancer Centre, Randwick, New South Wales, Australia
- School of Women's and Children's, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Ahmed SK, Keole SR. Proton Therapy in the Adolescent and Young Adult Population. Cancers (Basel) 2023; 15:4269. [PMID: 37686545 PMCID: PMC10487250 DOI: 10.3390/cancers15174269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Adolescent and young adult cancer patients are at high risk of developing radiation-associated side effects after treatment. Proton beam radiation therapy might reduce the risk of these side effects for this population without compromising treatment efficacy. METHODS We review the current literature describing the utility of proton beam radiation therapy in the treatment of central nervous system tumors, sarcomas, breast cancer and Hodgkin lymphoma for the adolescent and young adult cancer population. RESULTS Proton beam radiation therapy has utility for the treatment of certain cancers in the young adult population. Preliminary data suggest reduced radiation dose to normal tissues, which might reduce radiation-associated toxicities. Research is ongoing to further establish the role of proton therapy in this population. CONCLUSION This report highlights the potential utility of proton beam radiation for certain adolescent young adult cancers, especially with reducing radiation doses to organs at risk and thereby potentially lowering risks of certain treatment-associated toxicities.
Collapse
Affiliation(s)
- Safia K. Ahmed
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ 85054, USA;
| | | |
Collapse
|
22
|
Herndon J, Hallemeier C, Jethwa K, Shariff A, Bancos I. Radiation of bilateral adrenal metastases is associated with a high risk of primary adrenal insufficiency. Clin Endocrinol (Oxf) 2023; 99:35-42. [PMID: 36905107 PMCID: PMC10247529 DOI: 10.1111/cen.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Adrenal metastasis is the most common adrenal malignancy and can be bilateral in up to 43% of patients. Radiotherapy (RT) is one option available to treat adrenal metastases. The risk of primary adrenal insufficiency (PAI) after adrenal RT is unclear. OBJECTIVE Determine the incidence and the timeline of PAI in patients undergoing adrenal RT. DESIGN, SETTING AND PARTICIPANTS Single-centre longitudinal retrospective cohort study of adult patients with adrenal metastases treated with RT between 2010 and 2021. RESULTS Of 56 patients with adrenal metastases treated with adrenal RT, eight (14.3%) patients developed PAI at a median of 6.1 months (interquartile range [IQR]: 3.9-13.8) after RT All patients developing PAI had either unilateral RT in the setting of contralateral adrenalectomy or bilateral adrenal RT. Patients who developed PAI received a median RT dose of 50 Gy (IQR: 44-50 Gy), administered in a median of five fractions (IQR: 5-6). Treated metastases decreased in size and/or metabolic activity on positron emission tomography in seven patients (87.5%). Patients were initiated on hydrocortisone (median daily dose of 20 mg, IQR: 18-40) and fludrocortisone (median daily dose of 0.05 mg, IQR: 0.05-0.05 mg). At the end of the study period, five patients died, all due to extra-adrenal malignancy, at a median time of 19.7 months (IQR: 16-21.1 months) since RT and median time of 7.7 months (IQR: 2.9-12.5 months) since the diagnosis of PAI. CONCLUSION Patients receiving unilateral adrenal RT with two intact adrenal glands have a low risk of PAI. Patients receiving bilateral adrenal RT have a high risk of PAI and require close monitoring.
Collapse
Affiliation(s)
- Justine Herndon
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Krishan Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Afreen Shariff
- Division of Endocrinology, Duke Health, Durham, North Carolina, USA
| | - Irina Bancos
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Yao B, Delaidelli A, Vogel H, Sorensen PH. Pediatric Brain Tumours: Lessons from the Immune Microenvironment. Curr Oncol 2023; 30:5024-5046. [PMID: 37232837 PMCID: PMC10217418 DOI: 10.3390/curroncol30050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
In spite of recent advances in tumour molecular subtyping, pediatric brain tumours (PBTs) remain the leading cause of cancer-related deaths in children. While some PBTs are treatable with favourable outcomes, recurrent and metastatic disease for certain types of PBTs remains challenging and is often fatal. Tumour immunotherapy has emerged as a hopeful avenue for the treatment of childhood tumours, and recent immunotherapy efforts have been directed towards PBTs. This strategy has the potential to combat otherwise incurable PBTs, while minimizing off-target effects and long-term sequelae. As the infiltration and activation states of immune cells, including tumour-infiltrating lymphocytes and tumour-associated macrophages, are key to shaping responses towards immunotherapy, this review explores the immune landscape of the developing brain and discusses the tumour immune microenvironments of common PBTs, with hopes of conferring insights that may inform future treatment design.
Collapse
Affiliation(s)
- Betty Yao
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannes Vogel
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
24
|
Apps JR, Muller HL, Hankinson TC, Yock TI, Martinez-Barbera JP. Contemporary Biological Insights and Clinical Management of Craniopharyngioma. Endocr Rev 2023; 44:518-538. [PMID: 36574377 DOI: 10.1210/endrev/bnac035] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Craniopharyngiomas (CPs) are clinically aggressive tumors because of their invasive behavior and recalcitrant tendency to recur after therapy. There are 2 types based on their distinct histology and molecular features: the papillary craniopharyngioma (PCP), which is associated with BRAF-V600E mutations and the adamantinomatous craniopharyngioma (ACP), characterized by mutations in CTNNB1 (encoding β-catenin). Patients with craniopharyngioma show symptoms linked to the location of the tumor close to the optic pathways, hypothalamus, and pituitary gland, such as increased intracranial pressure, endocrine deficiencies, and visual defects. Treatment is not specific and mostly noncurative, and frequently includes surgery, which may achieve gross total or partial resection, followed by radiotherapy. In cystic tumors, frequent drainage is often required and intracystic instillation of drugs has been used to help manage cyst refilling. More recently targeted therapies have been used, particularly in PCP, but also now in ACP and clinical trials are underway or in development. Although patient survival is high, the consequences of the tumor and its treatment can lead to severe comorbidities resulting in poor quality of life, in particular for those patients who bear tumors with hypothalamic involvement. Accordingly, in these patients at risk for the development of a hypothalamic syndrome, hypothalamus-sparing treatment strategies such as limited resection followed by irradiation are recommended. In this review, we provide an update on various aspects of CP, with emphasis on recent advances in the understanding of tumor pathogenesis, clinical consequences, management, and therapies.
Collapse
Affiliation(s)
- John Richard Apps
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Developmental Biology and Cancer, Birth Defects Research Centre, GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
- Oncology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Hermann Lothar Muller
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children's Hospital, Carl von Ossietzky University, Klinikum Oldenburg AöR, 26133 Oldenburg, Germany
| | - Todd Cameron Hankinson
- Department of Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado, Aurora, Colorado 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Program, Aurora, Colorado, USA
| | - Torunn Ingrid Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer, Birth Defects Research Centre, GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
25
|
Kanamori M, Shimoda Y, Umezawa R, Iizuka O, Mugikura S, Suzuki K, Ariga H, Jingu K, Saito R, Sonoda Y, Kumabe T, Tominaga T. Salvage craniospinal irradiation for recurrent intracranial germinoma: a single institution analysis. JOURNAL OF RADIATION RESEARCH 2023; 64:428-437. [PMID: 36610798 PMCID: PMC10036106 DOI: 10.1093/jrr/rrac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effectiveness and safety of low-dose salvage craniospinal irradiation (CSI) for recurrent germinoma. We retrospectively reviewed long-term tumor control and late adverse effects in 15 recurrent germinoma patients treated at our hospital between 1983 and 2019. Following the first recurrence of germinoma, seven were treated with 24-30 Gy of salvage CSI, three underwent non-CSI, and five were treated with only chemotherapy. CSI achieved a significantly better recurrence-free survival rate after the first recurrence compared to other strategies (100% vs 33%, p < 0.001: log-rank test). To evaluate the safety of salvage CSI, we assessed the outcomes at the final follow-up of seven patients who received salvage CSI at first recurrence and three patients who received salvage CSI at second recurrence. The median follow-up period was 220 months after initial treatment. Five patients who received 40-50 Gy of radiation therapy or underwent multiple radiation therapy before salvage CSI were classified into Group A, whereas five patients treated with platinum-based chemotherapy and 24-32 Gy of radiation therapy to the primary site, whole ventricle, or whole brain were classified into Group B. In Group A, one had endocrine dysfunction and the other had visual dysfunction. None were socially independent. Meanwhile, in Group B, no endocrine or visual dysfunction was found, and three patients were socially independent. Salvage CSI achieved excellent tumor control in recurrent germinoma and was safe in patients initially treated with low-dose radiation therapy and chemotherapy.
Collapse
Affiliation(s)
- Masayuki Kanamori
- Corresponding author. Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan. Telephone: +81-22-717-7230; Fax: +81-22817-7233; E-mail:
| | - Yoshiteru Shimoda
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Rei Umezawa
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Osamu Iizuka
- Department of Behavioral and Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kyoko Suzuki
- Department of Behavioral and Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hisanori Ariga
- Department of Radiology, Iwate Medical University School of Medicine, Iwate 028-3694, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Sendai 466-8550, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
26
|
Maeda Y, Onishi S, Yamasaki F, Takayasu T, Yonezawa U, Taguchi A, Horie N. Secondary meningioma after cranial irradiation: case series and comprehensive literature review. Jpn J Clin Oncol 2023; 53:212-220. [PMID: 36524362 DOI: 10.1093/jjco/hyac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Secondary meningioma after cranial irradiation, so-called radiation-induced meningioma, is one of the important late effects after cranial radiation therapy. In this report, we analyzed our case series of secondary meningioma after cranial irradiation and conducted a critical review of literature to reveal the characteristics of secondary meningioma. MATERIALS AND METHODS We performed a comprehensive literature review by using Pubmed, MEDLINE and Google scholar databases and investigated pathologically confirmed individual cases. In our institute, we found pathologically diagnosed seven cases with secondary meningioma between 2000 and 2018. Totally, 364 cases were analyzed based on gender, WHO grade, radiation dose, chemotherapy. The latency years from irradiation to development of secondary meningioma were analyzed with Kaplan-Meier analysis. Spearman's correlation test was used to determine the relationship between age at irradiation and the latency years. RESULTS The mean age at secondary meningioma development was 35.6 ± 15.7 years and the mean latency periods were 22.6 ± 12.1 years. The latency periods from irradiation to the development of secondary meningioma are significantly shorter in higher WHO grade group (P = 0.0026, generalized Wilcoxon test), higher radiation dose group (P < 0.0001) and concomitant systemic chemotherapy group (P = 0.0003). Age at irradiation was negatively associated with the latency periods (r = -0.23231, P < 0.0001, Spearman's correlation test). CONCLUSION Cranial irradiation at older ages, at higher doses and concomitant chemotherapy was associated with a shorter latency period to develop secondary meningiomas. However, even low-dose irradiation can cause secondary meningiomas after a long latency period. Long-term follow-up is necessary to minimize the morbidity and mortality caused by secondary meningioma after cranial irradiation.
Collapse
Affiliation(s)
- Yugo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Neurosurgery, Miyoshi Municipal Central Hospital, Hiroshima, Japan
| | - Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Takayasu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
27
|
Vázquez M, Bachmann N, Pica A, Bolsi A, De Angelis C, Lomax AJ, Weber DC. Early outcome after craniospinal irradiation with pencil beam scanning proton therapy for children, adolescents and young adults with brain tumors. Pediatr Blood Cancer 2023; 70:e30087. [PMID: 36377685 DOI: 10.1002/pbc.30087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Central nervous system (CNS) tumors are the most common solid malignancies in children and adolescents and young adults (C-AYAs). Craniospinal irradiation (CSI) is an essential treatment component for some malignancies, but it can also lead to important toxicity. Pencil beam scanning proton therapy (PBSPT) allows for a minimization of dose delivered to organs at risk and, thus, potentially reduced acute and late toxicity. This study aims to report the clinical outcomes and toxicity rates after CSI for C-AYAs treated with PBSPT. Seventy-one C-AYAs (median age: 7.4 years) with CNS tumors were treated with CSI between 2004 and 2021. Medulloblastoma (n = 42: 59%) and ependymoma (n = 8; 11%) were the most common histologies. Median prescribed total PBSPT dose was 54 GyRBE (range: 18-60.4), and median prescribed craniospinal dose was 24 GyRBE (range: 18-36.8). Acute and late toxicities were coded according to Common Terminology Criteria for Adverse Events. After a median follow-up of 24.5 months, the estimated 2-year local control, distant control, and overall survival were 86.3%, 80.5%, and 84.7%, respectively. Late grade ≥3 toxicity-free rate was 92.6% at 2 years. Recurrent and metastatic tumors were associated with worse outcome. In conclusion, excellent tumor control with low toxicity rates was observed in C-AYAs with brain tumors treated with CSI using PBSPT.
Collapse
Affiliation(s)
- Miriam Vázquez
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Nicolas Bachmann
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Claudio De Angelis
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Radiation Oncology, University Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
28
|
Liu K, Liao X, Chen Y, Jiang S. Adjuvant Chemoradiation Therapy Versus Chemotherapy Alone for Resected Oligodendroglioma: A Surveillance, Epidemiology and End Results (SEER) Analysis. World Neurosurg 2023; 170:e37-e44. [PMID: 36273731 DOI: 10.1016/j.wneu.2022.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The benefit of postoperative adjuvant therapy for survival of oligodendrocyte glioma remains unclear. In this study, we compared the effect of chemoradiation therapy (CRT) and chemotherapy (CT) alone in patients who underwent resection. We aim to identify which adjuvant therapy provides more survival benefits. METHODS We identified patients who underwent oligodendroglioma resection in the Surveillance, Epidemiology and End Results (SEER) database. A multivariate Cox regression analysis was used to evaluate the factors affecting survival rates. We used a propensity matching analysis to minimize selection bias in each group. We performed subgroup analyses based on patients' clinical characteristics. RESULTS This study identified 1826 patients who received adjuvant CT (n = 503) or adjuvant CRT (n = 1323). On multivariate analysis, elderly, white and other race, and temporal lobe and parietal lobe tumor site were independent risk factors for improved overall survival (OS). After 1:1 propensity match, we included 501 patients who received CT and 501 with CRT. Patients in the CT group showed improved overall survival rate compared with those who received CRT (median OS: 146 months vs. 111 months). Subgroup analysis showed that improved overall survival in CT group was more significant in patients who were younger or older, male or female, white race, frontal lobe and parietal lobe tumor site, smaller tumor size (≤4 cm), and with gross total resection (GTR) (P < 0.05). CONCLUSIONS In patients with resected oligodendroglioma, adjuvant CT is associated with better survival compared to adjuvant CRT. The benefit was more significant in patients who were younger and older, male and female, white race, frontal lobe and parietal lobe tumor site, smaller tumor size (≤4 cm), and with GTR.
Collapse
Affiliation(s)
- Kepeng Liu
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China
| | - Xiaozu Liao
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China
| | - Yong Chen
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China
| | - Shengjie Jiang
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China.
| |
Collapse
|
29
|
Marie Baunsgaard M, Sophie Lind Helligsoe A, Tram Henriksen L, Stamm Mikkelsen T, Callesen M, Weber B, Hasle H, Birkebæk N. Growth hormone deficiency in adult survivors of childhood brain tumors treated with radiation. Endocr Connect 2023; 12:e220365. [PMID: 36507776 PMCID: PMC9874963 DOI: 10.1530/ec-22-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Objective Growth hormone deficiency (GHD) is the most common endocrine late effect in irradiated survivors of childhood brain tumors. This study aimed to determine the prevalence of GHD in adults treated with proton or photon irradiation for a brain tumor in childhood and to detect undiagnosed GHD. Design This study is a cross-sectional study. Methods We investigated GHD in 5-year survivors from two health regions in Denmark treated for childhood brain tumors with cranial or craniospinal irradiation in the period 1997-2015. Medical charts were reviewed for endocrinological and other health data. Survivors without a growth hormone (GH) test at final height were invited to a GH stimulation test. Results Totally 41 (22 females) survivors with a median age of 21.7 years (range: 15.1-33.8 years) at follow-up and 14.8 years (range: 5.1-23.4 years) since diagnosis were included; 11 were treated with proton and 30 with photon irradiation; 18 of 21 survivors were previously found to have GHD; 16 of 20 survivors with no GH test at final height were tested, 8 (50 %) had GHD. In total, 26 of 41 patients (63%) had GHD. Insulin-like growth factor-1 (IGF-1) is associated poorly with the insulin tolerance test (ITT). Conclusion This study identified a high prevalence of undiagnosed GHD in survivors with no GH test at final height. The results stress the importance of screening for GHD at final height in survivors of childhood brain tumors with prior exposure to cranial irradiation, irrespective of radiation modality and IGF-1. Significance statement This cross-sectional study reports a prevalence of 63% of GHD in irradiated childhood brain tumor survivors. Furthermore, the study identified a considerable number of long-term survivors without a GH test at final height, of whom, 50% subsequently were shown to have undiagnosed GHD. Additionally, this study confirmed that a normal serum IGF-1 measurement cannot exclude the diagnosis of GHD in irradiated survivors. This illustrates the need for improvements in the diagnostic approach to GHD after reaching final height in childhood brain tumor survivors at risk of GHD. In summary, our study stresses the need for GHD testing in all adult survivors treated with cranial irradiation for a brain tumor in childhood irrespective of radiation modality.
Collapse
Affiliation(s)
- Mette Marie Baunsgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Sophie Lind Helligsoe
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Louise Tram Henriksen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Stamm Mikkelsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Callesen
- Department of Paediatrics, Odense University Hospital, Odense, Funen, Denmark
| | - Britta Weber
- The Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Hasle
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Birkebæk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
30
|
Role of Nutrition in Pediatric Patients with Cancer. Nutrients 2023; 15:nu15030710. [PMID: 36771416 PMCID: PMC9920596 DOI: 10.3390/nu15030710] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Children with cancer are at high risk for developing short-term and long-term nutritional problems related to their underlying disease and side effects of multimodal treatments. Nutritional status (NS) can influence several clinical outcomes, such as overall survival (OS) and event-free survival (EFS), treatment tolerance, risk of developing infections and quality of life (QoL). However, the importance of nutrition in children with cancer is still underestimated. This review focuses on alterations of NS that occurs in children during cancer treatment. In particular, we reviewed the pathogenesis of undernutrition in oncological children, as well as how NS affects treatment tolerance and response, the immune system and the risk of infections of children with cancer. Thanks to recent advances in all types of supportive therapy and to the progress of knowledge on this topic, it has been realized that NS is a modifiable prognostic factor that can be intervened upon to improve the outcome of these patients. Currently, there is a lack of a systematic approach and standard recommendations for nutritional care in the pediatric cancer population. Literature analysis showed that it is essential to define the NS and treat any alterations in a timely manner ensuring proper growth and development. Nutritional follow-up should become an integral part of the care pathway. Regular nutritional monitoring should be performed at diagnosis, during treatment and during follow-up. A close collaboration and sharing of expertise between pediatric oncologists and nutrition specialists, combined with careful and participatory sharing of the feeding experience with the family and the child (after age 6 years), is strongly required.
Collapse
|
31
|
Eichkorn T, Lischalk JW, Hörner-Rieber J, Deng M, Meixner E, Krämer A, Hoegen P, Sandrini E, Regnery S, Held T, Harrabi S, Jungk C, Herfarth K, Debus J, König L. Analysis of safety and efficacy of proton radiotherapy for IDH-mutated glioma WHO grade 2 and 3. J Neurooncol 2023; 162:489-501. [PMID: 36598613 DOI: 10.1007/s11060-022-04217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Proton beam radiotherapy (PRT) has been demonstrated to improve neurocognitive sequelae particularly. Nevertheless, following PRT, increased rates of radiation-induced contrast enhancements (RICE) are feared. How safe and effective is PRT for IDH-mutated glioma WHO grade 2 and 3? METHODS We analyzed 194 patients diagnosed with IDH-mutated WHO grade 2 (n = 128) and WHO grade 3 (n = 66) glioma who were treated with PRT from 2010 to 2020. Serial clinical and imaging follow-up was performed for a median of 5.1 years. RESULTS For WHO grade 2, 61% were astrocytoma and 39% oligodendroglioma while for WHO grade 3, 55% were astrocytoma and 45% oligodendroglioma. Median dose for IDH-mutated glioma was 54 Gy(RBE) [range 50.4-60 Gy(RBE)] for WHO grade 2 and 60 Gy(RBE) [range 54-60 Gy(RBE)] for WHO grade 3. Five year overall survival was 85% in patients with WHO grade 2 and 67% in patients with WHO grade 3 tumors. Overall RICE risk was 25%, being higher in patients with WHO grade 2 (29%) versus in patients with WHO grade 3 (17%, p = 0.13). RICE risk increased independent of tumor characteristics with older age (p = 0.017). Overall RICE was symptomatic in 31% of patients with corresponding CTCAE grades as follows: 80% grade 1, 7% grade 2, 13% grade 3, and 0% grade 3 + . Overall need for RICE-directed therapy was 35%. CONCLUSION These data demonstrate the effectiveness of PRT for IDH-mutated glioma WHO grade 2 and 3. The RICE risk differs with WHO grading and is higher in older patients with IDH-mutated Glioma WHO grade 2 and 3.
Collapse
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Jonathan W Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York, University Langone Health at Long Island, New York, NY, USA
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site, Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Krämer
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
32
|
Endocrinopathy After Treatment for Medulloblastoma: Results From the SJMB03 Trial of Risk-Adapted Radiation Therapy. Int J Radiat Oncol Biol Phys 2022:S0360-3016(22)03635-5. [PMID: 36563909 DOI: 10.1016/j.ijrobp.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE The objective of this study was to estimate the cumulative incidence of endocrinopathy in pediatric patients treated for medulloblastoma with surgery, risk-adapted photon craniospinal irradiation, and dose-intensive chemotherapy. METHODS AND MATERIALS Children and adolescents (n = 156) treated between 2003 and 2013 were evaluated for evidence of endocrinopathy. Clinical information and mean radiation dose to hypothalamus and thyroid were calculated and used to estimate cumulative incidence of growth hormone deficiency, hypothyroidism, adrenal insufficiency, hypogonadism, and precocious puberty. RESULTS The 5-year cumulative incidences were estimated for growth hormone deficiency, 68.9% (60.9%, 75.6%); hypothyroidism, 48.4% (95% confidence interval (CI), 40.2%-56.1%); adrenal insufficiency, 13.0% (95% CI, 8.3%-18.9%); hypogonadism, 33.9% (95% CI, 25.2%-42.7%); and precocious puberty, 2.0% (95% CI, 0.6%-5.4%). Growth hormone deficiency was associated with increased hypothalamus dose (hazard ratio [HR], 1.035; 95% CI, 1.010-1.061; P = .0055) in average-risk patients and cerebrospinal fluid shunt (HR, 2.532; 95% CI, 1.325-4.838; P = .0049) in high-risk patients. In average-risk patients, hypothyroidism was associated with younger age (HR, 0.902; 95% CI, 0.842-0.973; P = .0070), hypothalamus dose (HR, 1.039; 95% CI, 1.004-1.075; P = .0273), and thyroid dose (HR, 1.070; 95% CI, 1.008-1.136; P = .0263). In high-risk patients, hypothyroidism was associated with increased hypothalamus dose (HR, 1.068; 95% CI, 0.995-1.147; P = .0671) and thyroid dose (HR, 1.050; 95% CI, 1.000-1.104; P = .0515). Adrenal insufficiency was associated with increased hypothalamus dose (HR, 1.112; 95% CI, 1.058-1.170; P < .0001). Growth hormone deficiency incidence was higher when comparing patients treated with cerebrospinal fluid shunt versus those not having a shunt/extraventricular drain placed during initial surgery (HR, 1.712; 95% CI, 1.109-2.643). CONCLUSIONS Incidence and time to onset of clinically significant endocrinopathy after photon craniospinal irradiation for pediatric medulloblastoma is influenced by radiation dose to target organs and patient age at time of treatment. Advanced radiation therapy methods and dose-reduction strategies are needed to reduce the incidence of endocrinopathy.
Collapse
|
33
|
Lövgren I, Abravan A, Bryce-Atkinson A, van Herk M. The late effects of cranial irradiation in childhood on the hypothalamic-pituitary axis: a radiotherapist's perspective. Endocr Connect 2022; 11:e220298. [PMID: 36269600 PMCID: PMC9716369 DOI: 10.1530/ec-22-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
Brain tumours make up nearly one-third of paediatric malignancies. Over time, advancements in oncological treatments like radiotherapy have helped reduce normal-tissue toxicity when treating cancers in the brain. However, clinicians are still facing a trade-off between treatment efficacy and potential side effects. The aim of this review is to address the late effects of cranial irradiation on the neuroendocrine system and to identify factors that make patients more vulnerable to radiation-induced endocrine sequelae. Radiation damage to the hypothalamic-pituitary axis, which orchestrates hormone release, can lead to endocrinopathy; up to 48.8% of children who have undergone cranial irradiation develop a hormone deficiency. This may lead to further health complications that can appear up to decades after the last treatment, lowering the patients' quality of life and increasing long-term costs as lifelong hormone replacement therapy may be required. Growth hormone deficiency is the most common sequelae, followed by either thyroid or gonadotropic hormone deficiency. Adrenocorticotropic hormone deficiency tends to be the least common. Identified factors that increase the risk of late endocrine deficiency include total radiation dose, age at treatment, and time since last treatment. However, as there are various other factors that may potentiate the damage, a universal solution proven to be most effective in sparing the endocrine tissues is yet to be identified. Until then, accounting for the identified risk factors during treatment planning may in some cases help reduce the development of endocrine sequelae in childhood cancer survivors.
Collapse
Affiliation(s)
- Izabelle Lövgren
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Azadeh Abravan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK
| | - Abigail Bryce-Atkinson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
34
|
Welch JJG, Ames B, Cohen LE, Gaufberg E, Hudson MM, Nathan PC, Nekhlyudov L, Yock TI, Chemaitilly W, Kenney LB. Management of childhood cancer survivors at risk for thyroid function abnormalities: A Delphi study. Pediatr Blood Cancer 2022; 69:e29942. [PMID: 36069601 DOI: 10.1002/pbc.29942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Thyroid function abnormalities can occur after treatment for childhood cancer. Evidence for the management of thyroid dysfunction among asymptomatic childhood cancer survivors (CCS) is lacking. We used a Delphi consensus methodology to expand guidelines for screening asymptomatic CCS at risk for thyroid dysfunction and explore recommendations for the clinical management of abnormal results. PROCEDURE A Delphi panel of 40 expert physicians representing oncology, endocrinology, and primary care participated in three rounds of anonymous, iterative questionnaires formatted as clinical scenarios. Consensus is defined as ≥ 90% of panelists agree with recommendation and disagreement as < 70% agree. RESULTS Panelists reached consensus that CCS treated with radiation including neck, total body, whole brain, brain including the hypothalamic-pituitary axis (HPA), and therapeutic meta-iodobenzylguanidine (MIBG) should have annual, lifelong screening using serum thyroid-stimulating hormone (TSH) and free T4 starting within one year off-treatment (98%). Panelists disagreed on continuing to screen CCS for thyroid dysfunction after immunotherapy associated with acute thyroid injury (31%-50%). There was also disagreement on indications for brain (17%-43%) or thyroid (50%-65%) imaging, laboratory tests to assess the HPA (29%-75%), and TSH threshold to initiate treatment of subclinical hypothyroidism. Lack of evidence was the most frequent rationale panelists offered for not recommending additional testing or medications. Panelists' recommendations did not vary by geography, specialty, or survivorship clinical experience. CONCLUSIONS Consensus was reached on most recommendations for screening and management of cancer treatment-related thyroid dysfunction. Screening after completion of thyroid-toxic immunotherapy, indications for imaging, and treatment of subclinical hypothyroidism are areas of disagreement for further investigation.
Collapse
Affiliation(s)
- Jennifer J G Welch
- Division of Pediatric Hematology/Oncology, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Bethany Ames
- General Academic Pediatrics, Dartmouth-Hitchcock Medical Center, New Hampshire, Lebanon
| | - Laurie E Cohen
- Division of Pediatric Endocrinology and Diabetes, Children's Hospital at Montefiore, Bronx, New York
| | - Eva Gaufberg
- Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Melissa M Hudson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Paul C Nathan
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Larissa Nekhlyudov
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wassim Chemaitilly
- Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa B Kenney
- Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| |
Collapse
|
35
|
Wickert R, Tessonnier T, Deng M, Adeberg S, Seidensaal K, Hoeltgen L, Debus J, Herfarth K, Harrabi SB. Radiotherapy with Helium Ions Has the Potential to Improve Both Endocrine and Neurocognitive Outcome in Pediatric Patients with Ependymoma. Cancers (Basel) 2022; 14:cancers14235865. [PMID: 36497348 PMCID: PMC9736041 DOI: 10.3390/cancers14235865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Ependymomas are the third most-frequent pediatric brain tumors. To prevent local recurrence, the resection site should be irradiated. Compared to photon radiation treatment, proton therapy often achieves even better results regarding target coverage and organ-sparing. Due to their physical properties, helium ions could further reduce side effects, providing better protection of healthy tissue despite similar target coverage. In our in silico study, 15 pediatric ependymoma patients were considered. All patients underwent adjuvant radiotherapeutic treatment with active-scanned protons at Heidelberg Ion Beam Therapy Center (HIT). Both helium ion and highly conformal IMRT plans were calculated to evaluate the potential dosimetric advantage of ion beam therapy compared to the current state-of-the-art photon-based treatments. To estimate the potential clinical benefit of helium ions, normal tissue complication probabilities (NTCP) were calculated. Target coverage was comparable in all three modalities. As expected, the integral dose absorbed by healthy brain tissue could be significantly reduced with protons by up to -48% vs. IMRT. Even compared to actively scanned protons, relative dose reductions for critical neuronal structures of up to another -39% were achieved when using helium ions. The dose distribution of helium ions is significantly superior when compared to proton therapy and IMRT due to the improved sparing of OAR. In fact, previous studies could clearly demonstrate that the dosimetric advantage of protons translates into a measurable clinical benefit for pediatric patients with brain tumors. Given the dose-response relationship of critical organs at risk combined with NTCP calculation, the results of our study provide a strong rationale that the use of helium ions has the potential to even further reduce the risk for treatment related sequelae.
Collapse
Affiliation(s)
- Ricarda Wickert
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Tessonnier
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Line Hoeltgen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Semi B. Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
36
|
Fraser O, Crowne E, Tacey M, Cramer R, Cameron A. Correlating measured radiotherapy dose with patterns of endocrinopathy: The importance of minimizing pituitary dose. Pediatr Blood Cancer 2022; 69:e29847. [PMID: 35713216 DOI: 10.1002/pbc.29847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pituitary insufficiency is a common toxicity of cranial radiotherapy received in childhood for central nervous system, head and neck, and hematological malignancies. There is a recognized deficiency pattern and correlation with prescribed radiotherapy dose; however, correlation with measured pituitary dose (which can be minimized with modern radiotherapy techniques) has not previously been assessed. PROCEDURE Retrospective analysis was carried out of measured pituitary dose and endocrine outcomes of patients receiving cranial, total body, or head and neck photon beam radiotherapy at a tertiary center from July 2008 to October 2019. RESULTS Complete data for 102 patients were available. Median (IQR) age at radiotherapy was 9.0 (6.0-12.0) and follow-up 5.7 years (3.5-9.1). Most patients received focal brain radiotherapy (36.3%) or total body irradiation (32.4%); most frequent diagnoses were acute lymphoblastic leukemia (25.5%) and medulloblastoma (17.6%). The majority developed pituitary insufficiency (64; 62.7%); 41% had one and 38% had two hormone deficiencies. Growth hormone deficiency (GHD) (58; 56.9%) and thyroid-stimulating hormone deficiency (TSHD) (32; 31.4%) were most common. Patients who developed pituitary insufficiency received higher maximum pituitary dose-median (IQR) Gy, 44.0 (20.4-54.0) vs 18.2 (14.4-52.6); P = 0.008. Doses of 40-49 Gy or >50 Gy led to a higher cumulative incident rate than <20 Gy (HR 4.07, P < 0.001 and HR 3.04, P < 0.001, respectively). However, even at lower dose bands, levels of pituitary insufficiency were significant with a five-year cumulative incidence of GHD for <20 Gy and TSHD for 20-29 Gy reaching >30%. CONCLUSIONS Our findings confirm a correlation between measured pituitary dose and risk of insufficiency even at lower doses, despite modern radiotherapy techniques. These data highlight the importance of minimizing pituitary dose and early specialist endocrine follow-up.
Collapse
Affiliation(s)
- Olivia Fraser
- Olivia Newton-John Cancer Centre, Heidelberg, Victoria, Australia
| | - Elizabeth Crowne
- Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Mark Tacey
- The Northern Hospital, Epping, Victoria, Australia.,Melbourne School of Population and Global Health, University of Melbourne, Carlton, Victoria, Australia
| | - Rebecca Cramer
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Alison Cameron
- Bristol Haematology and Oncology Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
37
|
Claude F, Ubertini G, Szinnai G. Endocrine Disorders in Children with Brain Tumors: At Diagnosis, after Surgery, Radiotherapy and Chemotherapy. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1617. [PMID: 36360345 PMCID: PMC9688119 DOI: 10.3390/children9111617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Brain tumors are the second most frequent type of all pediatric malignancies. Depending on their localization, patients with brain tumors may present neurological or ophthalmological symptoms, but also weight anomalies and endocrine disorders ranging from growth hormone deficiency, anomalies of puberty, diabetes insipidus to panhypopituitarism. Immediately at diagnosis, all patients with brain tumors require a complete assessment of the hypothalamic-pituitary function in order to address eventual endocrine disorders. Moreover, children and adolescents undergoing brain surgery must receive peri- and postoperative hydrocortisone stress therapy. Post-operative disorders of water homeostasis are frequent, ranging from transient diabetes insipidus, as well as syndrome of inappropriate antidiuretic hormone secretion to persistent diabetes insipidus. Late endocrine disorders may result from surgery near or within the hypothalamic-pituitary region. Pituitary deficits are frequent after radiotherapy, especially growth hormone deficiency. Thyroid nodules or secondary thyroid cancers may arise years after radiotherapy. Gonadal dysfunction is frequent after chemotherapy especially with alkylating agents. CONCLUSION Early detection and treatment of specific endocrine disorders at diagnosis, perioperatively, and during long-term follow-up result in improved general and metabolic health and quality of life.
Collapse
Affiliation(s)
- Fabien Claude
- Department of Pediatric Endocrinology and Diabetology, University Children’s Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | - Graziamaria Ubertini
- Department of Pediatric Endocrinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gabor Szinnai
- Department of Pediatric Endocrinology and Diabetology, University Children’s Hospital Basel, University of Basel, 4056 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
38
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
39
|
Onishi S, Yamasaki F, Amatya VJ, Takayasu T, Yonezawa U, Taguchi A, Ohba S, Takeshima Y, Horie N, Sugiyama K. Characteristics and therapeutic strategies of radiation-induced glioma: case series and comprehensive literature review. J Neurooncol 2022; 159:531-538. [PMID: 35922583 DOI: 10.1007/s11060-022-04090-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The so-called radiation-induced glioma (RIG, a secondary glioma after cranial irradiation), is a serious late effect after cranial radiation therapy. The clinical characteristics of and ideal treatment for these tumors are unclear. We analyzed our case series and conducted a comprehensive literature review to reveal the precise characteristics of RIGs. METHODS We analyzed the cases of six patients with RIGs treated at our institution and 354 patients with RIGs from the literature. The latency period from irradiation to the development of each RIG and the median overall survival of the patients were subjected to Kaplan-Meier analyses. Spearman's correlation test was used to determine the relationship between age at irradiation and the latency period. RESULTS The mean age of the 360 patients at the development of RIG was 27.42 ± 17.87 years. The mean latency period was 11.35 ± 8.58 years. Multiple gliomas were observed in 28.4%. WHO grade 3 and 4 RIGs accounted for 93.3%. The latency periods were significant shorter in the higher WHO grade group (p = 0.0366) and the concomitant systemic chemotherapy group (p < 0.0001). Age at irradiation was negatively associated with the latency period (r =- 0.2287, p = 0.0219). The patients treated with radiotherapy achieved significantly longer survival compared to those treated without radiotherapy (p = 0.0011). CONCLUSIONS Development in younger age, multiplicity, and high incidence of grade 3 and 4 are the clinical characteristics of RIGs. Cranial irradiation at older ages and concomitant chemotherapy were associated with shorter latency for the development of RIG. Radiation therapy may be the feasible treatment option despite radiation-induced gliomas.
Collapse
Affiliation(s)
- Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.
- Department of Neurosurgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-cho, Kure City, Hiroshima, 737-0023, Japan.
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Takeshi Takayasu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Shinji Ohba
- Department of Neurosurgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-cho, Kure City, Hiroshima, 737-0023, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology and Neuro-oncology Program, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| |
Collapse
|
40
|
Les essais qui changent les pratiques : le point en 2022. Cancer Radiother 2022; 26:823-833. [DOI: 10.1016/j.canrad.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
|
41
|
Ruggi A, Melchionda F, Sardi I, Pavone R, Meneghello L, Kitanovski L, Zaletel LZ, Farace P, Zucchelli M, Scagnet M, Toni F, Righetto R, Cianchetti M, Prete A, Greto D, Cammelli S, Morganti AG, Rombi B. Toxicity and Clinical Results after Proton Therapy for Pediatric Medulloblastoma: A Multi-Centric Retrospective Study. Cancers (Basel) 2022; 14:2747. [PMID: 35681727 PMCID: PMC9179586 DOI: 10.3390/cancers14112747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Even if current treatment dramatically improves the prognosis, survivors often develop long-term treatment-related sequelae. The current radiotherapy standard for medulloblastoma is craniospinal irradiation with a boost to the primary tumor site and to any metastatic sites. Proton therapy (PT) has similar efficacy compared to traditional photon-based radiotherapy but might achieve lower toxicity rates. We report on our multi-centric experience with 43 children with medulloblastoma (median age at diagnosis 8.7 years, IQR 6.6, M/F 23/20; 26 high-risk, 14 standard-risk, 3 ex-infant), who received active scanning PT between 2015 and 2021, with a focus on PT-related acute-subacute toxicity, as well as some preliminary data on late toxicity. Most acute toxicities were mild and manageable with supportive therapy. Hematological toxicity was limited, even among HR patients who underwent hematopoietic stem-cell transplantation before PT. Preliminary data on late sequelae were also encouraging, although a longer follow-up is needed.
Collapse
Affiliation(s)
- Alessandro Ruggi
- Specialty School of Paediatrics-Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy;
| | - Fraia Melchionda
- Pediatric Onco-Hematology, IRCCS Sant’Orsola SSD, University Hospital of Bologna, 40138 Bologna, Italy; (F.M.); (A.P.)
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (I.S.); (R.P.)
| | - Rossana Pavone
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (I.S.); (R.P.)
| | - Linda Meneghello
- Pediatric Onco-Hematology Service, Pediatric Unit, Santa Chiara Hospital, 38123 Trento, Italy;
| | - Lidija Kitanovski
- Department of Oncology and Haematology, University Children’s Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | | | - Paolo Farace
- Proton Therapy Unit, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), 38123 Trento, Italy; (P.F.); (R.R.); (M.C.)
| | - Mino Zucchelli
- Pediatric Neurosurgery, Institute of Neurological Science, IRCCS Bellaria Hospital, 40139 Bologna, Italy;
| | - Mirko Scagnet
- Department of Neurosurgery, Meyer Children’s Hospital, 50139 Florence, Italy;
| | - Francesco Toni
- Neuroradiology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Roberto Righetto
- Proton Therapy Unit, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), 38123 Trento, Italy; (P.F.); (R.R.); (M.C.)
| | - Marco Cianchetti
- Proton Therapy Unit, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), 38123 Trento, Italy; (P.F.); (R.R.); (M.C.)
| | - Arcangelo Prete
- Pediatric Onco-Hematology, IRCCS Sant’Orsola SSD, University Hospital of Bologna, 40138 Bologna, Italy; (F.M.); (A.P.)
| | - Daniela Greto
- Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy;
| | - Silvia Cammelli
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (A.G.M.)
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Alessio Giuseppe Morganti
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.C.); (A.G.M.)
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Barbara Rombi
- Proton Therapy Unit, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), 38123 Trento, Italy; (P.F.); (R.R.); (M.C.)
| |
Collapse
|
42
|
Radiation-induced contrast enhancement following proton radiotherapy for low-grade glioma depends on tumor characteristics and is rarer in children than adults. Radiother Oncol 2022; 172:54-64. [PMID: 35568281 DOI: 10.1016/j.radonc.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Proton beam radiotherapy (PRT) is used in the treatment of low-grade glioma (LGG) to mitigate long-term sequelae. Following PRT, increased rates of radiation-induced contrast enhancements (RICE) are suspected but poorly understood. MATERIALS AND METHODS We analyzed consecutive 227 patients (42 children and 185 adults) treated with PRT (54Gy RBE) for LGG from 2010 to 2020 and followed with serial clinical exams and magnetic resonance imaging for in median 5.6 years. RESULTS Tumors were graded WHO 1 in a minority (n = 22, 12%) of adults, but a majority of children (n = 29, 69%). In contrast, tumors were graded WHO 2 in the majority (n = 160, 87%) of adults and a minority of children (n = 10, 24%). Five-year overall survival following PRT was 81% in adults and 91% in children. The risk of RICE was 5-fold more frequent in adults (25%) versus children (5%) (p = 0.0043). In children and adults, RICE were symptomatic in 50% and 55% (n=1 and 26) of cases with CTCAE grade 0 in 47% (n=23), grade 1 in 25% (n=12), 0% grade 2 (n=0) and 29% grade 3 (n=14), respectively. In adults, RICE risk was associated to WHO grading (8% in WHO grade 1 vs. 24% in WHO grade 2, p = 0.026), independent of age (p=0.44) and irradiation dose (p=0.005), but not independent of IDH mutational status. CONCLUSIONS These data demonstrate effectiveness of PRT for LGG in both children and adults. The RICE risk is lower in children which are a main target group for PRT and differs with WHO grading.
Collapse
|
43
|
González Briceño LG, Kariyawasam D, Samara-Boustani D, Giani E, Beltrand J, Bolle S, Fresneau B, Puget S, Sainte-Rose C, Alapetite C, Pinto G, Piketty ML, Brabant S, Abbou S, Aerts I, Beccaria K, Bourgeois M, Roujeau T, Blauwblomme T, Di Rocco F, Thalassinos C, Pauwels C, Rigaud C, James S, Busiah K, Simon A, Bourdeaut F, Lemelle L, Guerrini-Rousseau L, Orbach D, Touraine P, Doz F, Dufour C, Grill J, Polak M. High Prevalence of Early Endocrine Disorders After Childhood Brain Tumors in a Large Cohort. J Clin Endocrinol Metab 2022; 107:e2156-e2166. [PMID: 34918112 DOI: 10.1210/clinem/dgab893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Endocrine complications are common in pediatric brain tumor patients. OBJECTIVE We aimed to describe the endocrine follow-up of patients with primary brain tumors. METHODS This is a noninterventional observational study based on data collection from medical records of 221 patients followed at a Pediatric Endocrinology Department. RESULTS Median age at diagnosis was 6.7 years (range, 0-15.9), median follow-up 6.7 years (0.3-26.6), 48.9% female. Main tumor types were medulloblastoma (37.6%), craniopharyngioma (29.0%), and glioma (20.4%). By anatomic location, 48% were suprasellar (SS) and 52% non-suprasellar (NSS). Growth hormone deficiency (GHD) prevalence was similar in both groups (SS: 83.0%, NSS: 76.5%; P = 0.338), appearing at median 1.8 years (-0.8 to 12.4) after diagnosis; postradiotherapy GHD appeared median 1.6 years after radiotherapy (0.2-10.7). Hypothyroidism was more prevalent in SS (76.4%), than NSS (33.9%) (P < 0.001), as well as ACTH deficiency (SS: 69.8%, NSS: 6.1%; P < 0.001). Early puberty was similar in SS (16%) and NSS (12.2%). Hypogonadotropic hypogonadism was predominant in SS (63.1%) vs NSS (1.3%), P < 0.001, and postchemotherapy gonadal toxicity in NSS (29.6%) vs SS (2.8%), P < 0.001. Adult height was lower for NSS compared to target height (-1.0 SD, P < 0.0001) and to SS patients (P < 0.0001). Thyroid nodules were found in 13/45 patients (28.8%), including 4 cancers (4.8-11.5 years after radiotherapy). Last follow-up visit BMI was higher in both groups (P = 0.0001), and obesity incidence was higher for SS (46.2%) than NSS (17.4%). CONCLUSION We found a high incidence of early-onset endocrine disorders. An endocrine consultation and nutritional evaluation should be mandatory for all patients with a brain tumor, especially when the tumor is suprasellar or after hypothalamus/pituitary irradiation.
Collapse
Affiliation(s)
- Laura Gabriela González Briceño
- Hôpital Universitaire Necker-Enfants Malades - Assistance Publique Hôpitaux de Paris (APHP), Service d'Endocrinologie, gynécologie et diabétologie pédiatrique, Institut IMAGINE (affiliate), 75015 Paris, France
- ESPE Fellowship - European Society for Paediatric Endocrinology
| | - Dulanjalee Kariyawasam
- Hôpital Universitaire Necker-Enfants Malades - Assistance Publique Hôpitaux de Paris (APHP), Service d'Endocrinologie, gynécologie et diabétologie pédiatrique, Institut IMAGINE (affiliate), 75015 Paris, France
| | - Dinane Samara-Boustani
- Hôpital Universitaire Necker-Enfants Malades - Assistance Publique Hôpitaux de Paris (APHP), Service d'Endocrinologie, gynécologie et diabétologie pédiatrique, Institut IMAGINE (affiliate), 75015 Paris, France
| | - Elisa Giani
- Hôpital Universitaire Necker-Enfants Malades - Assistance Publique Hôpitaux de Paris (APHP), Service d'Endocrinologie, gynécologie et diabétologie pédiatrique, Institut IMAGINE (affiliate), 75015 Paris, France
| | - Jacques Beltrand
- Hôpital Universitaire Necker-Enfants Malades - Assistance Publique Hôpitaux de Paris (APHP), Service d'Endocrinologie, gynécologie et diabétologie pédiatrique, Institut IMAGINE (affiliate), 75015 Paris, France
- Université de Paris, 75006 Paris, France
| | - Stéphanie Bolle
- Institut Gustave Roussy, Département de radiothérapie-oncologie, 94805 Villejuif, France
| | - Brice Fresneau
- Gustave Roussy, Université Paris-Saclay, Department of Pediatric and Adolescent Oncology, 94805 Villejuif, France
| | - Stéphanie Puget
- Université de Paris, 75006 Paris, France
- Hôpital Universitaire Necker-Enfants Malades - APHP, Service Neurochirurgie, 75015 Paris, France
| | - Christian Sainte-Rose
- Hôpital Universitaire Necker-Enfants Malades - APHP, Service Neurochirurgie, 75015 Paris, France
| | - Claire Alapetite
- Institut Curie, Radiation Oncology Department and Proton Center, 75005 Paris, France
| | - Graziella Pinto
- Hôpital Universitaire Necker-Enfants Malades - Assistance Publique Hôpitaux de Paris (APHP), Service d'Endocrinologie, gynécologie et diabétologie pédiatrique, Institut IMAGINE (affiliate), 75015 Paris, France
| | - Marie-Liesse Piketty
- Hôpital Necker-Enfants Malades, Explorations Fonctionnelles, 75015 Paris, France
| | - Séverine Brabant
- Hôpital Necker-Enfants Malades, Explorations Fonctionnelles, 75015 Paris, France
| | - Samuel Abbou
- Gustave Roussy, Université Paris-Saclay, Department of Pediatric and Adolescent Oncology, 94805 Villejuif, France
| | - Isabelle Aerts
- Institut Curie, SIREDO Oncology Center (Care, Innovation and research for children and AYA with cancer), 75005 Paris, France
| | - Kevin Beccaria
- Hôpital Universitaire Necker-Enfants Malades - APHP, Service Neurochirurgie, 75015 Paris, France
| | - Marie Bourgeois
- Hôpital Universitaire Necker-Enfants Malades - APHP, Service Neurochirurgie, 75015 Paris, France
| | - Thomas Roujeau
- Hôpital Montpellier, Hôpital Gui de Chauliac, Unité de Neurochirurgie pédiatrique, 34295 Montpellier, France
| | - Thomas Blauwblomme
- Hôpital Universitaire Necker-Enfants Malades - APHP, Service Neurochirurgie, 75015 Paris, France
| | | | - Caroline Thalassinos
- Hôpital Universitaire Necker-Enfants Malades - Assistance Publique Hôpitaux de Paris (APHP), Service d'Endocrinologie, gynécologie et diabétologie pédiatrique, Institut IMAGINE (affiliate), 75015 Paris, France
| | - Christian Pauwels
- Hôpital Universitaire Necker-Enfants Malades - Assistance Publique Hôpitaux de Paris (APHP), Service d'Endocrinologie, gynécologie et diabétologie pédiatrique, Institut IMAGINE (affiliate), 75015 Paris, France
| | - Charlotte Rigaud
- Gustave Roussy, Université Paris-Saclay, Department of Pediatric and Adolescent Oncology, 94805 Villejuif, France
| | - Syril James
- Hôpital Universitaire Necker-Enfants Malades - APHP, Service Neurochirurgie, 75015 Paris, France
| | - Kanetee Busiah
- Lausanne University Hospital, Pediatric Endocrinology, Diabetology and Obesity Unit, Lausanne University, 1011 Lausanne, Switzerland
| | - Albane Simon
- Hôpital André Mignot - Centre Hospitalier de Versailles, Endocrinologie Pédiatrique, 78157 Le Chesnay, France
| | - Franck Bourdeaut
- Institut Curie, SIREDO Oncology Center (Care, Innovation and research for children and AYA with cancer), 75005 Paris, France
| | - Lauriane Lemelle
- Institut Curie, SIREDO Oncology Center (Care, Innovation and research for children and AYA with cancer), 75005 Paris, France
| | - Léa Guerrini-Rousseau
- Gustave Roussy, Université Paris-Saclay, Department of Pediatric and Adolescent Oncology, 94805 Villejuif, France
- Team "Genomics and Oncogenesis of Pediatric Brain Tumors", INSERM U981, Gustave Roussy, University Paris Saclay, 94805 Villejuif, France
| | - Daniel Orbach
- Institut Curie, SIREDO Oncology Center (Care, Innovation and research for children and AYA with cancer), 75005 Paris, France
- PSL Research University, 75006 Paris, France
| | - Philippe Touraine
- Hôpital Universitaire La Pitié-Salpêtrière - APHP, Service Endocrinologie et médecine de la reproduction, Sorbonne Université Médecine, 75013 Paris, France
| | - François Doz
- Université de Paris, 75006 Paris, France
- Institut Curie, SIREDO Oncology Center (Care, Innovation and research for children and AYA with cancer), 75005 Paris, France
| | - Christelle Dufour
- Gustave Roussy, Université Paris-Saclay, Department of Pediatric and Adolescent Oncology, 94805 Villejuif, France
- Team "Genomics and Oncogenesis of Pediatric Brain Tumors", INSERM U981, Gustave Roussy, University Paris Saclay, 94805 Villejuif, France
| | - Jacques Grill
- Gustave Roussy, Université Paris-Saclay, Department of Pediatric and Adolescent Oncology, 94805 Villejuif, France
- Team "Genomics and Oncogenesis of Pediatric Brain Tumors", INSERM U981, Gustave Roussy, University Paris Saclay, 94805 Villejuif, France
| | - Michel Polak
- Hôpital Universitaire Necker-Enfants Malades - Assistance Publique Hôpitaux de Paris (APHP), Service d'Endocrinologie, gynécologie et diabétologie pédiatrique, Institut IMAGINE (affiliate), 75015 Paris, France
- Université de Paris, 75006 Paris, France
| |
Collapse
|
44
|
Sodero G, Agresti P, Triarico S, Romano A, Mastrangelo S, Attinà G, Maurizi P, Cipolla C, Ruggiero A. Growth Hormone replacement therapy in pediatric brain tumor survivors. Minerva Pediatr (Torino) 2022; 74:340-348. [PMID: 35142454 DOI: 10.23736/s2724-5276.22.06799-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brain tumors are the most frequent type of solid neoplasms in children with a recognized 5-year survival rate between 57 and 65%. The survival rate progressively increased in the last few years, due to the improvements in their treatment based on chemotherapy, radiotherapy, and surgery. At the same time, at long term follow-up, clinicians should carefully evaluate comorbidities and long term sequelae secondary to the disease and its treatment. Growth Hormone Deficiency (GHD) is an endocrinopathy commonly found among pediatric cancer survivors, with a negative effect on the child's final height and entire metabolism. GH replacement therapy (GHRT), with a synthetic hormone analog, may improve the growth rate and finally adult height, ameliorating the quality of life after cancer treatment. However, in clinical practice, GHRT is adopted with caution for fear of cancer recurrence or the onset of second malignancies. In our review, we perform a focus on the GH structure and function, comparing benefits and risks of GHRT, derived from the analysis of the data currently available in the literature.
Collapse
Affiliation(s)
- Giorgio Sodero
- Istituto di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy -
| | - Pierpaolo Agresti
- Istituto di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Alberto Romano
- Istituto di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy.,Università Cattolica del Sacro Cuore Sede di Roma, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Clelia Cipolla
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy.,Università Cattolica del Sacro Cuore Sede di Roma, Italy
| |
Collapse
|
45
|
Abstract
Patient survival following childhood cancer has increased with contemporary radiation and chemotherapy techniques. However, gonadotoxicity associated with treatments means that infertility is a common consequence in survivors. Novel fertility preservation options are emerging, but knowledge about these options amongst urologists and other medical professionals is lacking. Pre-pubertal boys generally do not produce haploid germ cells. Thus, strategies for fertility preservation require cryopreservation of tissue containing spermatogonial stem cells (SSCs). Few centres worldwide routinely offer this option and fertility restoration (including testicular tissue engraftment, autotransplantation of SSCs and in vitro maturation of SSCs to spermatozoa) post-thaw is experimental. In pubertal boys, the main option for fertility preservation is masturbation and cryopreservation of the ejaculate. Assisted ejaculation using penile vibratory stimulation or electroejaculation and surgical sperm retrieval can be used in a sequential manner after failed masturbation. Physicians should inform boys and parents about the gonadotoxic effects of cancer treatment and offer fertility preservation. Preclinical experience has identified challenges in pre-pubertal fertility preservation, but available options are expected to be successful when today's pre-pubertal boys with cancer become adults. By contrast, fertility preservation in pubertal boys is clinically proven and should be offered to all patients undergoing cancer treatment.
Collapse
|
46
|
Yip AT, Yu J, Huynh-Le MP, Salans M, Unnikrishnan S, Qian A, Xu R, Kaner R, MacEwan I, Crawford JR, Hattangadi-Gluth JA. Post-treatment Neuroendocrine Outcomes Among Pediatric Brain Tumor Patients: Is there a difference between proton and photon therapy? Clin Transl Radiat Oncol 2022; 34:37-41. [PMID: 35345865 PMCID: PMC8956840 DOI: 10.1016/j.ctro.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Endocrinopathies were common among pediatric brain tumor survivors. Proton craniospinal irradiation had a lower risk of hypothyroidism. Non-medulloblastoma patients were less likely to develop endocrinopathies. Non-medulloblastoma patients were less likely to need hormone replacement therapy. Sex hormone deficiency was not observed in the proton cohort.
Purpose Pediatric brain tumor patients are vulnerable to radiotherapy (RT) sequelae including endocrinopathies. We compared post-RT neuroendocrine outcomes between pediatric brain tumor patients receiving photons (XRT) versus protons (PRT). Methods Using a prospectively maintained single-institution database, we analyzed 112 pediatric primary brain tumor patients (80 XRT, 32 PRT) from 1996 to 2019. Patient/treatment characteristics and endocrinopathy diagnoses (growth hormone deficiency [GHD], sex hormone deficiency [SHD], hypothyroidism, and requirement of hormone replacement [HRT]) were obtained via chart review. Univariable/multivariable logistic regression identified neuroendocrine outcome predictors. Time-adjusted propensity score models accounted for treatment type. Craniospinal irradiation (CSI) patients were evaluated as a sub-cohort. Results Median follow-up was 6.3 and 4.4 years for XRT and PRT patients respectively. Medulloblastoma was the most common histology (38%). Half of patients (44% in XRT, 60% in PRT) received CSI. Common endocrinopathies were GHD (26% XRT, 38% PRT) and hypothyroidism (29% XRT, 19% PRT). CSI cohort PRT patients had lower odds of hypothyroidism (OR 0.16, 95% CI[0.02–0.87], p = 0.045) on multivariable regression and propensity score analyses. There were no significant differences in endocrinopathies in the overall cohort and in the odds of GHD or HRT within the CSI cohort. SHD developed in 17.1% of the XRT CSI group but did not occur in the PRT CSI group. Conclusion Endocrinopathies were common among pediatric brain tumor survivors. Among CSI patients, PRT was associated with lower risk of hypothyroidism, and potentially associated with lower incidence of SHD. Future studies should involve collaborative registries to explore the survivorship benefits of PRT.
Collapse
|
47
|
Adolescent and young adult brain tumors: current topics and review. Int J Clin Oncol 2022; 27:457-464. [PMID: 35064353 PMCID: PMC8782686 DOI: 10.1007/s10147-021-02084-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/10/2021] [Indexed: 11/05/2022]
Abstract
The management of brain tumors developed in adolescents and young adults (AYAs) is challenging because of their histological heterogeneity and low incidence. The brain tumor and its treatment interventions can negatively affect neurological, neurocognitive, and endocrinological function, and dramatically affect the circumstances of AYA patients progressing to further education, employment, and marriage. Specific support is thus necessary to maintain the quality of life (QOL) of AYA brain tumor patients. AYA patients and survivors require active intervention and support for returning to school or work, progressing to further education, finding employment, and preserving fertility. Recent cancer genome profiling revealed that AYA gliomas include pediatric- and adult-type genetic alteration. Insights into the biology underlying the distribution of tumors in AYAs may influence the development of prospective trials. A more individualized view of brain tumors may influence stratification of patients' in future clinical studies as well as selection for molecular targeted therapy. Here I review strategies for achieving a better outcome to decrease late effects and improve QOL.
Collapse
|
48
|
The Alliance AMBUSH Trial: Rationale and Design. Cancers (Basel) 2022; 14:cancers14020414. [PMID: 35053576 PMCID: PMC8773887 DOI: 10.3390/cancers14020414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Medulloblastoma, the most common embryonal tumor in children, can also arise in older patients. Clinical studies in children with medulloblastoma have increased our understanding of molecular pathways and improved treatment strategies. We now know that medulloblastoma has at least four subtypes and each maybe best suited to specific therapies. The sonic hedgehog (SHH) pathway is altered in a significant proportion of older patients with medulloblastoma. The Alliance for Clinical Trials in Oncology cooperative group is developing the AMBUSH trial: Comprehensive Management of Adolescent and Young Adult (AYA) and Adult Patients with Medulloblastoma or Pineal Embryonal Tumors With A Randomized Placebo Controlled Phase II Focusing on Sonic Hedgehog Pathway Inhibition in SHH Subgroup Patients (Adult & Adolescent MedulloBlastoma Using Sonic Hedgehog Trial). The trial gives treatment directions for all patients and randomizes patients with average risk SHH-activated medulloblastoma to maintenance sonidegib, a hedgehog signaling pathway inhibitor, or placebo. This trial will establish a baseline for future trial comparison and investigate the benefit of a novel targeted agent. Abstract Unlike medulloblastoma (MB) in children, robust prospective trials have not taken place for older patients due to the low incidence of MB in adults and adolescent and young adults (AYA). Current MB treatment paradigms for older patients have been extrapolated from the pediatric experience even though questions exist about the applicability of these approaches. Clinical and molecular classification of MB now provides better prognostication and is being incorporated in pediatric therapeutic trials. It has been established that genomic alterations leading to activation of the sonic hedgehog (SHH) pathway occur in approximately 60% of MB in patients over the age of 16 years. Within this cohort, protein patched homolog (PTCH) and smoothened (SMO) mutations are commonly found. Among patients whose tumors harbor the SHH molecular signature, it is estimated that over 80% of patients could respond to SHH pathway inhibitors. Given the advances in the understanding of molecular subgroups and the lack of robust clinical data for adult/AYA MB, the Alliance for Clinical Trial in Oncology group developed the AMBUSH trial: Comprehensive Management of AYA and Adult Patients with Medulloblastoma or Pineal Embryonal Tumors with a Randomized Placebo Controlled Phase II Focusing on Sonic Hedgehog Pathway Inhibition in SHH Subgroup Patients (Adult & Adolescent MedulloBlastoma Using Sonic Hedgehog Trial). This trial will enroll patients 18 years of age or older with MB (any molecular subgroup and risk stratification) or pineal embryonal tumor. Patients will be assigned to one of three cohorts: (1) average risk non-SHH-MB, (2) average risk SHH-MB, and (3) high risk MB or pineal embryonal tumors. All patients will receive protocol-directed comprehensive treatment with radiation therapy and chemotherapy. Patients with SHH-MB in cohort 1 will be randomized to a smoothened inhibitor or placebo as maintenance therapy for one year.
Collapse
|
49
|
Normal Tissue Complication Probability Modelling for Toxicity Prediction and Patient Selection in Proton Beam Therapy to the Central Nervous System: A Literature Review. Clin Oncol (R Coll Radiol) 2022; 34:e225-e237. [DOI: 10.1016/j.clon.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
|
50
|
Di Iorgi N, Morana G, Cappa M, D’Incerti L, Garrè ML, Grossi A, Iughetti L, Matarazzo P, Parpagnoli M, Pozzobon G, Salerno M, Sardi I, Wasniewska MG, Zucchini S, Rossi A, Maghnie M. Expert Opinion on the Management of Growth Hormone Deficiency in Brain Tumor Survivors: Results From an Italian Survey. Front Endocrinol (Lausanne) 2022; 13:920482. [PMID: 35909559 PMCID: PMC9331278 DOI: 10.3389/fendo.2022.920482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Growth hormone deficiency (GHD) is the first and most common endocrine complication in pediatric brain tumor survivors (BTS). GHD can occur due to the presence of the tumor itself, surgery, or cranial radiotherapy (CRT). AIMS This study aimed to evaluate management and adherence to current guidelines of the Italian centers engaged in the diagnosis and follow-up of GHD patients with BTS. METHODS A multidisciplinary scientific board of pediatric endocrinologists, oncologists and radiologists with neuroimaging expertise discussed and reviewed the main issues relating to the management of GHD in pediatric BTS and developed a survey. The survey included questions relating to organizational aspects, risk factors, diagnosis, definition of stable disease, and treatment. The online survey was sent to an expanded panel of specialists dedicated to the care of pediatric BTS, distributed among the three specialty areas and throughout the country (23 Italian cities and 37 Centers). RESULTS The online questionnaire was completed by 86.5% (32 out of 37) of the Centers involved. Most had experience in treating these patients, reporting that they follow more than 50 BTS patients per year. Responses were analyzed descriptively and aggregated by physician specialty. Overall, the results of the survey showed some important controversies in real life adherence to the current guidelines, with discrepancies between endocrinologists and oncologists in the definition of risk factors, diagnostic work-up, decision-making processes and safety. Furthermore, there was no agreement on the neuroimaging definition of stable oncological disease and how to manage growth hormone therapy in patients with residual tumor and GHD. CONCLUSIONS The results of the first Italian national survey on the management of GHD in BTS highlighted the difference in management on some important issues. The time to start and stop rhGH treatment represent areas of major uncertainty. The definition of stable disease remains critical and represents a gap in knowledge that must be addressed within the international guidelines in order to increase height and to improve metabolic and quality of life outcomes in cancer survivors with GHD.
Collapse
Affiliation(s)
- Natascia Di Iorgi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Endo-European Reference Networks (ERN) Center for Rare Endocrine Conditions, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
- *Correspondence: Natascia Di Iorgi,
| | - Giovanni Morana
- Department of Neurosciences, Neuroradiology Unit, University of Turin, Turin, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ludovico D’Incerti
- Department of Pediatric Radiology, Meyer Children’s Hospital, Florence, Italy
| | | | - Armando Grossi
- Unit of Endocrine Pathology of Post-Tumoral and Chronic Diseases, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Matarazzo
- Department of Pediatric Endocrinology, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Maria Parpagnoli
- Health Sciences Department, Children With Clinical Complex Needs Meyer Children’s Hospital, Florence, Italy
| | - Gabriella Pozzobon
- Pediatric Unit, IRCCS San Raffaele Scientific Institute, Vita Salute San Raffaele University, Endo-European Reference Networks (ERN) Center for Rare Endocrine Conditions, Milan, Italy
| | - Mariacarolina Salerno
- Pediatric Unit, Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, Florence, Italy
| | | | - Stefano Zucchini
- Pediatric Endocrine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Endo-European Reference Networks (ERN) Center for Rare Endocrine Conditions, Bologna, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Endo-European Reference Networks (ERN) Center for Rare Endocrine Conditions, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| |
Collapse
|