1
|
Hankir MK, Le Foll C. Central nervous system pathways targeted by amylin in the regulation of food intake. Biochimie 2024:S0300-9084(24)00238-4. [PMID: 39426704 DOI: 10.1016/j.biochi.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Amylin is a peptide hormone co-released with insulin from pancreatic β-cells during a meal and primarily serves to promote satiation. While the caudal hindbrain was originally implicated as a major site of action in this regard, it is becoming increasingly clear that amylin recruits numerous central nervous system pathways to exert multifaceted effects on food intake. In this Review, we discuss the evidence derived from preclinical studies showing that amylin and the related peptide salmon calcitonin (sCT) directly or indirectly target genetically distinct neurons in the caudal hindbrain (nucleus tractus solitarius and area postrema), rostral hindbrain (lateral parabrachial nucleus), midbrain (lateral dorsal tegmentum and ventral tegmental area) and hypothalamus (arcuate nucleus and parasubthalamic nucleus) via activation of amylin and/or calcitonin receptors. Given that the stable amylin analogue cagrilintide is under clinical development for the treatment of obesity, it is important to determine whether this drug recruits overlapping or distinct central nervous system pathways to that of amylin and sCT with implications for minimising any aversive effects it potentially causes. Such insight will also be important to understand how amylin and sCT analogues synergize with other molecules as part of dual or triple agonist therapies for obesity, especially the glucagon-like peptide 1 receptor (GLP-1R) agonist semaglutide, which has been shown to synergistically lower body weight with cagrilintide (CagriSema) in clinical trials.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Veterinary Physiology, University of Zurich, Zurich, Switzerland; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| | - Christelle Le Foll
- Department of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Clarke GS, Page AJ, Eldeghaidy S. The gut-brain axis in appetite, satiety, food intake, and eating behavior: Insights from animal models and human studies. Pharmacol Res Perspect 2024; 12:e70027. [PMID: 39417406 PMCID: PMC11483575 DOI: 10.1002/prp2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The gut-brain axis plays a pivotal role in the finely tuned orchestration of food intake, where both homeostatic and hedonic processes collaboratively control our dietary decisions. This interplay involves the transmission of mechanical and chemical signals from the gastrointestinal tract to the appetite centers in the brain, conveying information on meal arrival, quantity, and chemical composition. These signals are processed in the brain eventually leading to the sensation of satiety and the termination of a meal. However, the regulation of food intake and appetite extends beyond the realms of pure physiological need. Hedonic mechanisms, including sensory perception (i.e., through sight, smell, and taste), habitual behaviors, and psychological factors, exert profound influences on food intake. Drawing from studies in animal models and human research, this comprehensive review summarizes the physiological mechanisms that underlie the gut-brain axis and its interplay with the reward network in the regulation of appetite and satiety. The recent advancements in neuroimaging techniques, with a focus on human studies that enable investigation of the neural mechanisms underpinning appetite regulation are discussed. Furthermore, this review explores therapeutic/pharmacological strategies that hold the potential for controlling food intake.
Collapse
Affiliation(s)
- Georgia S. Clarke
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes and Gut Health, Lifelong Health ThemeSouth Australian Health and Medical Research Institute, SAHMRIAdelaideSouth AustraliaAustralia
| | - Amanda J. Page
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes and Gut Health, Lifelong Health ThemeSouth Australian Health and Medical Research Institute, SAHMRIAdelaideSouth AustraliaAustralia
| | - Sally Eldeghaidy
- Division of Food, Nutrition and DieteticsSchool of Biosciences, University of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging CentreSchool of Physics and Astronomy, University of NottinghamNottinghamUK
| |
Collapse
|
3
|
Hoffman S, Adeli K. Glucagon-like peptide (GLP)-1 regulation of lipid and lipoprotein metabolism. MEDICAL REVIEW (2021) 2024; 4:301-311. [PMID: 39135603 PMCID: PMC11317082 DOI: 10.1515/mr-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 08/15/2024]
Abstract
Metabolic health is highly dependent on intestinal and hepatic handling of dietary and endogenous lipids and lipoproteins. Disorders of lipid and lipoprotein metabolism are commonly observed in patients with insulin resistant states such as obesity, metabolic syndrome, and type 2 diabetes. Evidence from both animal models and human studies indicates that a major underlying factor in metabolic or diabetic dyslipidemia is the overproduction of hepatic and intestinal apolipoprotein (apo)B-containing lipoprotein particles. These particles are catabolized down into highly proatherogenic remnants, which can be taken up into the arterial intima and promote plaque development. Several gut-derived peptides have been identified as key regulators of energy metabolism; one such peptide is the incretin hormone glucagon-like peptide (GLP)-1. Our laboratory has previously demonstrated that GLP-1 can signal both centrally and peripherally to reduce postprandial and fasting lipoprotein secretion. Moreover, we have demonstrated that GLP-1 receptor (GLP-1R) agonists can ameliorate diet-induced dyslipidemia. Recently, we published evidence for a novel vagal neuroendocrine signalling pathway by which native GLP-1 may exert its anti-lipemic effects. Furthermore, we demonstrated a novel role for other gut-derived peptides in regulating intestinal lipoprotein production. Overall, ample evidence supports a key role for GLP-1R on the portal vein afferent neurons and nodose ganglion in modulating intestinal fat absorption and lipoprotein production and identifies other gut-derived peptides as novel regulators of postprandial lipemia. Insights from these data may support identification of potential drug targets and the development of new therapeutics targeting treatment of diabetic dyslipidemia.
Collapse
Affiliation(s)
- Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Cardiovascular & Metabolic Disease, Merck Research Laboratories, South San Francisco, CA, USA
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Sahasrabudhe A, Rupprecht LE, Orguc S, Khudiyev T, Tanaka T, Sands J, Zhu W, Tabet A, Manthey M, Allen H, Loke G, Antonini MJ, Rosenfeld D, Park J, Garwood IC, Yan W, Niroui F, Fink Y, Chandrakasan A, Bohórquez DV, Anikeeva P. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat Biotechnol 2024; 42:892-904. [PMID: 37349522 PMCID: PMC11180606 DOI: 10.1038/s41587-023-01833-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Progress in understanding brain-viscera interoceptive signaling is hindered by a dearth of implantable devices suitable for probing both brain and peripheral organ neurophysiology during behavior. Here we describe multifunctional neural interfaces that combine the scalability and mechanical versatility of thermally drawn polymer-based fibers with the sophistication of microelectronic chips for organs as diverse as the brain and the gut. Our approach uses meters-long continuous fibers that can integrate light sources, electrodes, thermal sensors and microfluidic channels in a miniature footprint. Paired with custom-fabricated control modules, the fibers wirelessly deliver light for optogenetics and transfer data for physiological recording. We validate this technology by modulating the mesolimbic reward pathway in the mouse brain. We then apply the fibers in the anatomically challenging intestinal lumen and demonstrate wireless control of sensory epithelial cells that guide feeding behaviors. Finally, we show that optogenetic stimulation of vagal afferents from the intestinal lumen is sufficient to evoke a reward phenotype in untethered mice.
Collapse
Affiliation(s)
- Atharva Sahasrabudhe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura E Rupprecht
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Sirma Orguc
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tural Khudiyev
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tomo Tanaka
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Secure System Platform Research Laboratories, NEC Corporation, Kawasaki, Japan
| | - Joanna Sands
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weikun Zhu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony Tabet
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie Manthey
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harrison Allen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gabriel Loke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT Health Sciences and Technology Graduate Program, Cambridge, MA, USA
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jimin Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Indie C Garwood
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT Health Sciences and Technology Graduate Program, Cambridge, MA, USA
| | - Wei Yan
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Farnaz Niroui
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anantha Chandrakasan
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego V Bohórquez
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Gao J, Zhang S, Deng P, Wu Z, Lemaitre B, Zhai Z, Guo Z. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 2024; 15:3514. [PMID: 38664401 PMCID: PMC11045819 DOI: 10.1038/s41467-024-47465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.
Collapse
Affiliation(s)
- Junjun Gao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zongzhao Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China.
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Hamamah S, Hajnal A, Covasa M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024; 16:1071. [PMID: 38613104 PMCID: PMC11013759 DOI: 10.3390/nu16071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity remains a significant global health challenge, with bariatric surgery remaining as one of the most effective treatments for severe obesity and its related comorbidities. This review highlights the multifaceted impact of bariatric surgery beyond mere physical restriction or nutrient malabsorption, underscoring the importance of the gut microbiome and neurohormonal signals in mediating the profound effects on weight loss and behavior modification. The various bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), act through distinct mechanisms to alter the gut microbiome, subsequently impacting metabolic health, energy balance, and food reward behaviors. Emerging evidence has shown that bariatric surgery induces profound changes in the composition of the gut microbiome, notably altering the Firmicutes/Bacteroidetes ratio and enhancing populations of beneficial bacteria such as Akkermansia. These microbiota shifts have far-reaching effects beyond gut health, influencing dopamine-mediated reward pathways in the brain and modulating the secretion and action of key gut hormones including ghrelin, leptin, GLP-1, PYY, and CCK. The resultant changes in dopamine signaling and hormone levels contribute to reduced hedonic eating, enhanced satiety, and improved metabolic outcomes. Further, post-bariatric surgical effects on satiation targets are in part mediated by metabolic byproducts of gut microbiota like short-chain fatty acids (SCFAs) and bile acids, which play a pivotal role in modulating metabolism and energy expenditure and reducing obesity-associated inflammation, as well as influencing food reward pathways, potentially contributing to the regulation of body weight and reduction in hedonic eating behaviors. Overall, a better understanding of these mechanisms opens the door to developing non-surgical interventions that replicate the beneficial effects of bariatric surgery on the gut microbiome, dopamine signaling, and gut hormone regulation, offering new avenues for obesity treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
| |
Collapse
|
7
|
Alonso AM, Cork SC, Phuah P, Hansen B, Norton M, Cheng S, Xu X, Suba K, Ma Y, Dowsett GK, Tadross JA, Lam BY, Yeo GS, Herzog H, Bloom SR, Arnold M, Distaso W, Murphy KG, Salem V. The vagus nerve mediates the physiological but not pharmacological effects of PYY 3-36 on food intake. Mol Metab 2024; 81:101895. [PMID: 38340808 PMCID: PMC10877939 DOI: 10.1016/j.molmet.2024.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Peptide YY (PYY3-36) is a post-prandially released gut hormone with potent appetite-reducing activity, the mechanism of action of which is not fully understood. Unravelling how this system physiologically regulates food intake may help unlock its therapeutic potential, whilst minimising unwanted effects. Here we demonstrate that germline and post-natal targeted knockdown of the PYY3-36 preferring receptor (neuropeptide Y (NPY) Y2 receptor (Y2R)) in the afferent vagus nerve is required for the appetite inhibitory effects of physiologically-released PYY3-36, but not peripherally administered pharmacological doses. Post-natal knockdown of the Y2R results in a transient body weight phenotype that is not evident in the germline model. Loss of vagal Y2R signalling also results in altered meal patterning associated with accelerated gastric emptying. These results are important for the design of PYY-based anti-obesity agents.
Collapse
Affiliation(s)
- Aldara Martin Alonso
- Section of Investigative Medicine and Endocrinology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Simon C Cork
- Section of Investigative Medicine and Endocrinology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom; School of Medicine, Faculty of Health, Education, Medicine & Social Care, Anglia Ruskin University, Chelmsford, CM1 1SQ, United Kingdom
| | - Phyllis Phuah
- Section of Investigative Medicine and Endocrinology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Benjamin Hansen
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mariana Norton
- Section of Investigative Medicine and Endocrinology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Sijing Cheng
- Section of Investigative Medicine and Endocrinology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Xiang Xu
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Kinga Suba
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Yue Ma
- Section of Investigative Medicine and Endocrinology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Georgina Kc Dowsett
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, United Kingdom
| | - John A Tadross
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, United Kingdom
| | - Brian Yh Lam
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, United Kingdom
| | - Giles Sh Yeo
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, United Kingdom
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Stephen R Bloom
- Section of Investigative Medicine and Endocrinology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Myrtha Arnold
- Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Walter Distaso
- Imperial College Business School, Imperial College London, United Kingdom
| | - Kevin G Murphy
- Section of Investigative Medicine and Endocrinology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Victoria Salem
- Section of Investigative Medicine and Endocrinology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom; Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
8
|
NamKoong C, Kim B, Yu JH, Youn BS, Kim H, Kim E, Gil SY, Kang GM, Lee CH, Kim YB, Park KH, Kim MS, Kwon O. Stomach clusterin as a gut-derived feeding regulator. BMB Rep 2024; 57:149-154. [PMID: 37817436 PMCID: PMC10979347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis. [BMB Reports 2024; 57(3): 149-154].
Collapse
Affiliation(s)
- Cherl NamKoong
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Bohye Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Ji Hee Yu
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Byung Soo Youn
- Osteoneurogen, Inc., Seoul 08501, Korea, Chuncheon 24341, Korea
| | - Hanbin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Evonne Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - So Young Gil
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chan Hee Lee
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA, Chuncheon 24341, Korea
| | - Kyeong-Han Park
- Department of Anatomy and Cell Biology, Kangwon National University College of Medicine, Chuncheon 24341, Korea
| | - Min-Seon Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Obin Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
9
|
Shankar K, Ramborger J, Bonnet-Zahedi S, Carrette LLG, George O. Acute nicotine intake increases feeding behavior through decreasing glucagon signaling in dependent male and female rats. Horm Behav 2024; 159:105447. [PMID: 37926623 PMCID: PMC11384237 DOI: 10.1016/j.yhbeh.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Chronic use of nicotine is known to dysregulate metabolic signaling through altering circulating levels of feeding-related hormones, contributing to the onset of disorders like type 2 diabetes. However, little is known about the acute effects of nicotine on hormonal signaling. We previously identified an acute increase in food intake following acute nicotine, and we sought to determine whether this behavior was due to a change in hormone levels. We first identified that acute nicotine injection produces an increase in feeding behavior in dependent rats, but not nondependent rats. We confirmed that chronic nicotine use increases circulating levels of insulin, leptin, and ghrelin, and these correlate with rats' body weight and food intake. Acute nicotine injection in dependent animals decreased circulating GLP-1 and glucagon levels, and administration of glucagon prior to acute nicotine injection prevented the acute increase in feeding behavior. Thus, acute nicotine injection increases feeding behavior in dependent rats by decreasing glucagon signaling.
Collapse
Affiliation(s)
- Kokila Shankar
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jarryd Ramborger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sélène Bonnet-Zahedi
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille 13005, France
| | - Lieselot L G Carrette
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
11
|
Tang Y, Du J, Wu H, Wang M, Liu S, Tao F. Potential Therapeutic Effects of Short-Chain Fatty Acids on Chronic Pain. Curr Neuropharmacol 2024; 22:191-203. [PMID: 36173071 PMCID: PMC10788890 DOI: 10.2174/1570159x20666220927092016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/03/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
The intestinal homeostasis maintained by the gut microbiome and relevant metabolites is essential for health, and its disturbance leads to various intestinal or extraintestinal diseases. Recent studies suggest that gut microbiome-derived metabolites short-chain fatty acids (SCFAs) are involved in different neurological disorders (such as chronic pain). SCFAs are produced by bacterial fermentation of dietary fibers in the gut and contribute to multiple host processes, including gastrointestinal regulation, cardiovascular modulation, and neuroendocrine-immune homeostasis. Although SCFAs have been implicated in the modulation of chronic pain, the detailed mechanisms that underlie such roles of SCFAs remain to be further investigated. In this review, we summarize currently available research data regarding SCFAs as a potential therapeutic target for chronic pain treatment and discuss several possible mechanisms by which SCFAs modulate chronic pain.
Collapse
Affiliation(s)
- Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Key Laboratory for Molecular Neurology of Xinxiang, Xinxiang, Henan, China
| | - Juan Du
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongfeng Wu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mengyao Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University Dallas, Texas, USA
| | - Feng Tao
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University Dallas, Texas, USA
| |
Collapse
|
12
|
Takahashi K, Yamada T, Katagiri H. Inter-Organ Communication Involved in Brown Adipose Tissue Thermogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:161-175. [PMID: 39289280 DOI: 10.1007/978-981-97-4584-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Brown and beige adipocytes produce heat from substrates such as fatty acids and glucose. Such heat productions occur in response to various stimuli and are called adaptive non-shivering thermogenesis. This review introduces mechanisms known to regulate brown and beige adipocyte thermogenesis. Leptin and fibroblast growth factor 21 (FGF21) are examples of periphery-derived humoral factors that act on the central nervous system (CNS) and increase brown adipose tissue (BAT) thermogenesis. Additionally, neuronal signals such as those induced by intestinal cholecystokinin and hepatic peroxisome proliferator-activated receptor γ travel through vagal afferent-CNS-sympathetic efferent-BAT pathways and increase BAT thermogenesis. By contrast, some periphery-derived humoral factors (ghrelin, adiponectin, plasminogen activator inhibitor-1, and soluble leptin receptor) act also on CNS but inhibit BAT thermogenesis. Neuronal signals also reduce BAT sympathetic activities and BAT thermogenesis, one such example being signals derived by hepatic glucokinase activation. Beige adipocytes can be induced by myokines (interleukin 6, irisin, and β-aminoisobutyric acid), hepatokines (FGF21), and cardiac-secreted factors (brain natriuretic peptide). Cold temperature and leptin also stimulate beige adipocytes via sympathetic activation. Further investigation on inter-organ communication involving adipocyte thermogenesis may lead to the elucidation of how body temperature is regulated and, moreover, to the development of novel strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hideki Katagiri
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Yu M, Yu B, Chen D. The effects of gut microbiota on appetite regulation and the underlying mechanisms. Gut Microbes 2024; 16:2414796. [PMID: 39501848 PMCID: PMC11542600 DOI: 10.1080/19490976.2024.2414796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 11/09/2024] Open
Abstract
Appetite, a crucial aspect regulated by both the central nervous system and peripheral hormones, is influenced by the composition and dynamics of the intestinal microbiota, as evidenced by recent research. This review highlights the role of intestinal microbiota in appetite regulation, elucidating the involvement of various pathways. Notably, the metabolites generated by intestinal microorganisms, including short-chain fatty acids, bile acids, and amino acid derivatives, play a pivotal role in this intricate process. Furthermore, intestinal microorganisms contribute to appetite regulation by modulating nutritional perception, neural signal transmission, and hormone secretion within the digestive system. Consequently, manipulating and modulating the intestinal microbiota represent innovative strategies for ameliorating appetite-related disorders. This paper provides a comprehensive review of the effects of gut microbes and their metabolites on the central nervous system and host appetite. By exploring their potential regulatory pathways and mechanisms, this study aims to enhance our understanding of how gut microbes influence appetite regulation in the host.
Collapse
Affiliation(s)
- Miao Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- DadHank(Chengdu)Biotech Corp, Chengdu, Sichuan Province, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| |
Collapse
|
14
|
Lai TT, Liou CW, Tsai YH, Lin YY, Wu WL. Butterflies in the gut: the interplay between intestinal microbiota and stress. J Biomed Sci 2023; 30:92. [PMID: 38012609 PMCID: PMC10683179 DOI: 10.1186/s12929-023-00984-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Psychological stress is a global issue that affects at least one-third of the population worldwide and increases the risk of numerous psychiatric disorders. Accumulating evidence suggests that the gut and its inhabiting microbes may regulate stress and stress-associated behavioral abnormalities. Hence, the objective of this review is to explore the causal relationships between the gut microbiota, stress, and behavior. Dysbiosis of the microbiome after stress exposure indicated microbial adaption to stressors. Strikingly, the hyperactivated stress signaling found in microbiota-deficient rodents can be normalized by microbiota-based treatments, suggesting that gut microbiota can actively modify the stress response. Microbiota can regulate stress response via intestinal glucocorticoids or autonomic nervous system. Several studies suggest that gut bacteria are involved in the direct modulation of steroid synthesis and metabolism. This review provides recent discoveries on the pathways by which gut microbes affect stress signaling and brain circuits and ultimately impact the host's complex behavior.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yuan-Yuan Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Wei-Li Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
15
|
López-Méndez I, Maldonado-Rojas ADC, Uribe M, Juárez-Hernández E. Hunger & satiety signals: another key mechanism involved in the NAFLD pathway. Front Endocrinol (Lausanne) 2023; 14:1213372. [PMID: 37753211 PMCID: PMC10518611 DOI: 10.3389/fendo.2023.1213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disease, although prevalence could change according to region, nowadays is considered a public health problem whose real impact on the health system is unknown. NAFLD has a multifactorial and complex pathophysiology, due to this, developing a unique and effective pharmacological treatment has not been successful in reverting or avoiding the progression of this liver disease. Even though NAFLD pathophysiology is known, all actual treatments are focused on modifying or regulating the metabolic pathways, some of which interplay with obesity. It has been known that impairments in hunger and satiety signals are associated with obesity, however, abnormalities in these signals in patients with NAFLD and obesity are not fully elucidated. To describe these mechanisms opens an additional option as a therapeutic target sharing metabolic pathways with NAFLD, therefore, this review aims to describe the hormones and peptides implicated in both hunger-satiety in NAFLD. It has been established that NAFLD pharmacological treatment cannot be focused on a single purpose; hence, identifying interplays that lead to adding or modifying current treatment options could also have an impact on another related outcome such as hunger or satiety signals.
Collapse
Affiliation(s)
- Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
16
|
Li S, Liu M, Cao S, Liu B, Li D, Wang Z, Sun H, Cui Y, Shi Y. The Mechanism of the Gut-Brain Axis in Regulating Food Intake. Nutrients 2023; 15:3728. [PMID: 37686760 PMCID: PMC10490484 DOI: 10.3390/nu15173728] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
With the increasing prevalence of energy metabolism disorders such as diabetes, cardiovascular disease, obesity, and anorexia, the regulation of feeding has become the focus of global attention. The gastrointestinal tract is not only the site of food digestion and absorption but also contains a variety of appetite-regulating signals such as gut-brain peptides, short-chain fatty acids (SCFAs), bile acids (BAs), bacterial proteins, and cellular components produced by gut microbes. While the central nervous system (CNS), as the core of appetite regulation, can receive and integrate these appetite signals and send instructions to downstream effector organs to promote or inhibit the body's feeding behaviour. This review will focus on the gut-brain axis mechanism of feeding behaviour, discussing how the peripheral appetite signal is sensed by the CNS via the gut-brain axis and the role of the central "first order neural nuclei" in the process of appetite regulation. Here, elucidation of the gut-brain axis mechanism of feeding regulation may provide new strategies for future production practises and the treatment of diseases such as anorexia and obesity.
Collapse
Affiliation(s)
- Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
17
|
Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front Neurosci 2023; 17:1225875. [PMID: 37600019 PMCID: PMC10436500 DOI: 10.3389/fnins.2023.1225875] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Chang-qing Liu
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Qijie
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ka Li
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Roh E, Choi KM. Hormonal Gut-Brain Signaling for the Treatment of Obesity. Int J Mol Sci 2023; 24:ijms24043384. [PMID: 36834794 PMCID: PMC9959457 DOI: 10.3390/ijms24043384] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The brain, particularly the hypothalamus and brainstem, monitors and integrates circulating metabolic signals, including gut hormones. Gut-brain communication is also mediated by the vagus nerve, which transmits various gut-derived signals. Recent advances in our understanding of molecular gut-brain communication promote the development of next-generation anti-obesity medications that can safely achieve substantial and lasting weight loss comparable to metabolic surgery. Herein, we comprehensively review the current knowledge about the central regulation of energy homeostasis, gut hormones involved in the regulation of food intake, and clinical data on how these hormones have been applied to the development of anti-obesity drugs. Insight into and understanding of the gut-brain axis may provide new therapeutic perspectives for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Correspondence: or
| |
Collapse
|
19
|
Kosmalski M, Deska K, Bąk B, Różycka-Kosmalska M, Pietras T. Pharmacological Support for the Treatment of Obesity-Present and Future. Healthcare (Basel) 2023; 11:433. [PMID: 36767008 PMCID: PMC9914730 DOI: 10.3390/healthcare11030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Obesity is a growing civilization problem, associated with a number of negative health consequences affecting almost all tissues and organs. Currently, obesity treatment includes lifestyle modifications (including diet and exercise), pharmacologic therapies, and in some clinical situations, bariatric surgery. These treatments seem to be the most effective method supporting the treatment of obesity. However, they are many limitations to the options, both for the practitioners and patients. Often the comorbidities, cost, age of the patient, and even geographic locations may influence the choices. The pharmacotherapy of obesity is a fast-growing market. Currently, we have at our disposal drugs with various mechanisms of action (directly reducing the absorption of calories-orlistat, acting centrally-bupropion with naltrexone, phentermine with topiramate, or multidirectional-liraglutide, dulaglutide, semaglutide). The drugs whose weight-reducing effect is used in the course of the pharmacotherapy of other diseases (e.g., glucose-sodium cotransporter inhibitors, exenatide) are also worth mentioning. The obesity pharmacotherapy is focusing on novel therapeutic agents with improved safety and efficacy profiles. These trends also include an assessment of the usefulness of the weight-reducing properties of the drugs previously used for other diseases. The presented paper is an overview of the studies related to both drugs currently used in the pharmacotherapy of obesity and those undergoing clinical trials, taking into account the individual approach to the patient.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Łódź, Poland
| | - Kacper Deska
- Students’ Scientific Association Clinical Pharmacology, Medical University of Lodz, 90-153 Łódź, Poland
| | - Bartłomiej Bąk
- 2nd Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957 Warszawa, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Łódź, Poland
- 2nd Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957 Warszawa, Poland
| |
Collapse
|
20
|
Vigil P, Meléndez J, Petkovic G, Del Río JP. The importance of estradiol for body weight regulation in women. Front Endocrinol (Lausanne) 2022; 13:951186. [PMID: 36419765 PMCID: PMC9677105 DOI: 10.3389/fendo.2022.951186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity in women of reproductive age has a number of adverse metabolic effects, including Type II Diabetes (T2D), dyslipidemia, and cardiovascular disease. It is associated with increased menstrual irregularity, ovulatory dysfunction, development of insulin resistance and infertility. In women, estradiol is not only critical for reproductive function, but they also control food intake and energy expenditure. Food intake is known to change during the menstrual cycle in humans. This change in food intake is largely mediated by estradiol, which acts directly upon anorexigenic and orexigenic neurons, largely in the hypothalamus. Estradiol also acts indirectly with peripheral mediators such as glucagon like peptide-1 (GLP-1). Like estradiol, GLP-1 acts on receptors at the hypothalamus. This review describes the physiological and pathophysiological mechanisms governing the actions of estradiol during the menstrual cycle on food intake and energy expenditure and how estradiol acts with other weight-controlling molecules such as GLP-1. GLP-1 analogs have proven to be effective both to manage obesity and T2D in women. This review also highlights the relationship between steroid hormones and women's mental health. It explains how a decline or imbalance in estradiol levels affects insulin sensitivity in the brain. This can cause cerebral insulin resistance, which contributes to the development of conditions such as Parkinson's or Alzheimer's disease. The proper use of both estradiol and GLP-1 analogs can help to manage obesity and preserve an optimal mental health in women by reducing the mechanisms that trigger neurodegenerative disorders.
Collapse
Affiliation(s)
- Pilar Vigil
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Jaime Meléndez
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Grace Petkovic
- Arrowe Park Hospital, Department of Paediatrics, Wirral CH49 5PE, Merseyside, United Kingdom
| | - Juan Pablo Del Río
- Unidad de Psiquiatría Infantil y del Adolescente, Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago, Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Millennium Science Initiative, Santiago, Chile
| |
Collapse
|
21
|
Yin Y, Guo Q, Zhou X, Duan Y, Yang Y, Gong S, Han M, Liu Y, Yang Z, Chen Q, Li F. Role of brain-gut-muscle axis in human health and energy homeostasis. Front Nutr 2022; 9:947033. [PMID: 36276808 PMCID: PMC9582522 DOI: 10.3389/fnut.2022.947033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
The interrelationship between brain, gut and skeletal muscle plays a key role in energy homeostasis of the body, and is becoming a hot topic of research. Intestinal microbial metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites, communicate with the central nervous system (CNS) by binding to their receptors. In fact, there is a cross-talk between the CNS and the gut. The CNS, under the stimulation of pressure, will also affect the stability of the intestinal system, including the local intestinal transport, secretion and permeability of the intestinal system. After the gastrointestinal tract collects information about food absorption, it sends signals to the central system through vagus nerve and other channels to stimulate the secretion of brain-gut peptide and produce feeding behavior, which is also an important part of maintaining energy homeostasis. Skeletal muscle has receptors for SCFAs and BAs. Therefore, intestinal microbiota can participate in skeletal muscle energy metabolism and muscle fiber conversion through their metabolites. Skeletal muscles can also communicate with the gut system during exercise. Under the stimulation of exercise, myokines secreted by skeletal muscle causes the secretion of intestinal hormones, and these hormones can act on the central system and affect food intake. The idea of the brain-gut-muscle axis is gradually being confirmed, and at present it is important for regulating energy homeostasis, which also seems to be relevant to human health. This article focuses on the interaction of intestinal microbiota, central nervous, skeletal muscle energy metabolism, and feeding behavior regulation, which will provide new insight into the diagnostic and treatment strategies for obesity, diabetes, and other metabolic diseases.
Collapse
Affiliation(s)
- Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Xihong Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yating Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhikang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Zhang Y, Li X, Huang G, Wang H, Chen H, Su Y, Yu K, Zhu W. Propionate stimulates the secretion of satiety hormones and reduces acute appetite in a cecal fistula pig model. ANIMAL NUTRITION 2022; 10:390-398. [PMID: 35949198 PMCID: PMC9356018 DOI: 10.1016/j.aninu.2022.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 06/11/2022] [Indexed: 11/01/2022]
Abstract
Short-chain fatty acids (SCFA) can regulate appetite by stimulating the secretion of satiety hormones. However, the impact of short-chain fatty acid propionate on the release of gut satiety hormones and appetite regulation in pigs is not completely understood. In this study, 16 pigs were infused with saline or sodium propionate through a fistula in the caecum during a 28-day experimental period. We characterized the effects of propionate administration on peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) secretion from colonic tissue, and investigated the role of propionate infusion on the expression of appetite-related genes in the colon and hypothalamus. Further, the direct impact of propionate administration on the expression of orexigenic neuropeptide agouti-related protein (AgRP) in hypothalamic N38 cells was also examined. The results showed that intra-cecal infusion of propionate reduced the short-term feed intake (P < 0.05) but not the long-term feed intake in pigs (P > 0.05). Propionate administration stimulated PYY and GLP-1 release from colon tissue in vivo and ex vivo (P < 0.05). It also upregulated PYY expression in the colonic mucosa (P < 0.05). Meanwhile, the GLP-1 and PYY levels in the blood were increased after intra-cecal infusion of propionate at d 28 (P < 0.05). Additionally, intra-cecal infusion of propionate upregulated the mRNA and protein expression of free fatty acid receptor 2/3 (FFAR2/FFAR3) in the colonic mucosa (P < 0.05). Propionate infusion also downregulated the orexigenic AgRP mRNA expression (P < 0.05) and upregulated the anorexigenic cocaine-and amphetamine-regulated transcript (CART) mRNA expression (P = 0.09) in the hypothalamus. Moreover, propionate administration directly downregulated AgRP expression in hypothalamic N38 cells in a dose-dependent manner (P < 0.05). Collectively, these findings demonstrated that cecal propionate stimulated colonic secretion of satiety hormones and suppressed appetite to reduce the short-term feed intake in pigs. This study highlights that microbial-derived propionate exerts an important role in regulating the physical functions of the host.
Collapse
|
23
|
Peiris M, Aktar R, Reed D, Cibert-Goton V, Zdanaviciene A, Halder W, Robinow A, Corke S, Dogra H, Knowles CH, Blackshaw A. Decoy bypass for appetite suppression in obese adults: role of synergistic nutrient sensing receptors GPR84 and FFAR4 on colonic endocrine cells. Gut 2022; 71:928-937. [PMID: 34083384 PMCID: PMC8995825 DOI: 10.1136/gutjnl-2020-323219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/09/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Colonic enteroendocrine cells (EECs) store and release potent anorectic hormones that are key regulators of satiety. EECs express multiple nutrient sensing receptors, particularly for medium-chain fatty acids (MCFAs): GPR84 and FFAR4. Here we show a non-surgical approach with targeted colonic delivery of MCFA, which induces EEC and neuronal activation leading to anorectic effects. DESIGN A randomised, double-blind, placebo-controlled, cross-over study was performed in obese adults given combined GPR84 and FFAR4 agonists in colonic release capsules before meals. We measured serum hormones, energy intake and appetite perception. Cell type, activation by agonists and hormone/serotonin release were determined in human colonic explants. Mouse colonic afferent nerve responses to nutrients/mediators were recorded electrophysiologically. RESULTS Subjects receiving GPR84 and FFAR4 agonists had reduced overall calorific intake and increased postprandial levels of PYY versus placebo. Receptors including GPR84 and FFAR4 were coexpressed on human colonic EEC. Activation of GPR84 exclusively induced intracellular pERK, whereas FFAR4 selectively activated pCaMKII. Coactivation of GPR84 and FFAR4 induced both phosphoproteins, and superadditive release of GLP-1 and PYY. Nutrients and hormones convergently activated murine colonic afterent nerves via GLP-1, Y2 and 5-HT3 receptors. CONCLUSIONS Colonic GPR84 and FFAR4 agonists reduce energy intake and increase postprandial PYY in obese adults. Human colonic EECs coexpress these receptors, which activate cells via parallel intracellular pathways and synergistically evoke hormone release. Further synergism occurs in sensory nerve responses to MCFA and EEC mediators. Thus, synergistic activation of colonic endocrine cells via nutrient receptors is an important target for metabolic regulation. TRAIL REGISTRATION NUMBER NCT04292236.
Collapse
Affiliation(s)
- Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rubina Aktar
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Reed
- Gastrointestinal Diseases Research, Queen's University, Kingston, Queensland, Canada
| | - Vincent Cibert-Goton
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ausra Zdanaviciene
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Writaja Halder
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adam Robinow
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Simon Corke
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harween Dogra
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Charles H Knowles
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ashley Blackshaw
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
Li H, Page AJ. Altered Vagal Signaling and Its Pathophysiological Roles in Functional Dyspepsia. Front Neurosci 2022; 16:858612. [PMID: 35527812 PMCID: PMC9072791 DOI: 10.3389/fnins.2022.858612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
The vagus nerve is crucial in the bidirectional communication between the gut and the brain. It is involved in the modulation of a variety of gut and brain functions. Human studies indicate that the descending vagal signaling from the brain is impaired in functional dyspepsia. Growing evidence indicate that the vagal signaling from gut to brain may also be altered, due to the alteration of a variety of gut signals identified in this disorder. The pathophysiological roles of vagal signaling in functional dyspepsia is still largely unknown, although some studies suggested it may contribute to reduced food intake and gastric motility, increased psychological disorders and pain sensation, nausea and vomiting. Understanding the alteration in vagal signaling and its pathophysiological roles in functional dyspepsia may provide information for new potential therapeutic treatments of this disorder. In this review, we summarize and speculate possible alterations in vagal gut-to-brain and brain-to-gut signaling and the potential pathophysiological roles in functional dyspepsia.
Collapse
Affiliation(s)
- Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Hui Li,
| | - Amanda J. Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
25
|
Jais A, Brüning JC. Arcuate Nucleus-Dependent Regulation of Metabolism-Pathways to Obesity and Diabetes Mellitus. Endocr Rev 2022; 43:314-328. [PMID: 34490882 PMCID: PMC8905335 DOI: 10.1210/endrev/bnab025] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 01/12/2023]
Abstract
The central nervous system (CNS) receives information from afferent neurons, circulating hormones, and absorbed nutrients and integrates this information to orchestrate the actions of the neuroendocrine and autonomic nervous systems in maintaining systemic metabolic homeostasis. Particularly the arcuate nucleus of the hypothalamus (ARC) is of pivotal importance for primary sensing of adiposity signals, such as leptin and insulin, and circulating nutrients, such as glucose. Importantly, energy state-sensing neurons in the ARC not only regulate feeding but at the same time control multiple physiological functions, such as glucose homeostasis, blood pressure, and innate immune responses. These findings have defined them as master regulators, which adapt integrative physiology to the energy state of the organism. The disruption of this fine-tuned control leads to an imbalance between energy intake and expenditure as well as deregulation of peripheral metabolism. Improving our understanding of the cellular, molecular, and functional basis of this regulatory principle in the CNS could set the stage for developing novel therapeutic strategies for the treatment of obesity and metabolic syndrome. In this review, we summarize novel insights with a particular emphasis on ARC neurocircuitries regulating food intake and glucose homeostasis and sensing factors that inform the brain of the organismal energy status.
Collapse
Affiliation(s)
- Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,National Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
26
|
Woodward ORM, Gribble FM, Reimann F, Lewis JE. Gut peptide regulation of food intake - evidence for the modulation of hedonic feeding. J Physiol 2022; 600:1053-1078. [PMID: 34152020 DOI: 10.1113/jp280581] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
The number of people living with obesity has tripled worldwide since 1975 with serious implications for public health, as obesity is linked to a significantly higher chance of early death from associated comorbidities (metabolic syndrome, type 2 diabetes, cardiovascular disease and cancer). As obesity is a consequence of food intake exceeding the demands of energy expenditure, efforts are being made to better understand the homeostatic and hedonic mechanisms governing food intake. Gastrointestinal peptides are secreted from enteroendocrine cells in response to nutrient and energy intake, and modulate food intake either via afferent nerves, including the vagus nerve, or directly within the central nervous system, predominantly gaining access at circumventricular organs. Enteroendocrine hormones modulate homeostatic control centres at hypothalamic nuclei and the dorso-vagal complex. Additional roles of these peptides in modulating hedonic food intake and/or preference via the neural systems of reward are starting to be elucidated, with both peripheral and central peptide sources potentially contributing to central receptor activation. Pharmacological interventions and gastric bypass surgery for the treatment of type 2 diabetes and obesity elevate enteroendocrine hormone levels and also alter food preference. Hence, understanding of the hedonic mechanisms mediated by gut peptide action could advance development of potential therapeutic strategies for the treatment of obesity and its comorbidities.
Collapse
Affiliation(s)
- Orla R M Woodward
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jo E Lewis
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
27
|
Metformin: Expanding the Scope of Application-Starting Earlier than Yesterday, Canceling Later. Int J Mol Sci 2022; 23:ijms23042363. [PMID: 35216477 PMCID: PMC8875586 DOI: 10.3390/ijms23042363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Today the area of application of metformin is expanding, and a wealth of data point to its benefits in people without carbohydrate metabolism disorders. Already in the population of people leading an unhealthy lifestyle, before the formation of obesity and prediabetes metformin smooths out the adverse effects of a high-fat diet. Being prescribed at this stage, metformin will probably be able to, if not prevent, then significantly reduce the progression of all subsequent metabolic changes. To a large extent, this review will discuss the proofs of the evidence for this. Another recent important change is a removal of a number of restrictions on its use in patients with heart failure, acute coronary syndrome and chronic kidney disease. We will discuss the reasons for these changes and present a new perspective on the role of increasing lactate in metformin therapy.
Collapse
|
28
|
Sagkan Ozturk A, Aydin M, Bozkurt YA, Kuçukgul A, Ozturk A. Short term effects of experimental gastric outlet obstruction and truncal vagotomy on gut hormones. Biotech Histochem 2022; 97:90-98. [PMID: 33722110 DOI: 10.1080/10520295.2021.1896780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gastric outlet obstruction (GOO) is caused mainly by pyloric or duodenal blockage; gastric surgery and vagotomy are effective treatments. We investigated the short term effects of experimental GOO and truncal vagotomy (TV) on gut hormone levels. We used 8-week-old male Wistar rats divided randomly into four groups: control, GOO, TV, and GOO + TV. At the end of the experiment, blood and tissue samples of the pylorus and fundus were obtained for biochemical and immunohistochemical analysis. Gastric motility decreased in the TV group, but there was no difference in food intake compared to the control group; water consumption and urine output were increased. Feces excretion and food intake decreased due to loss of food movement from the stomach of GOO and GOO + TV rats. Levels of insulin and ghrelin were lower than for the control group, but levels of cholecystokinin were higher. Leptin and glucagon-like peptide 1 levels were increased in the GOO group, while somatostatin was decreased. Leptin immunostaining levels were decreased in the GOO + TV group. Gastrin and neuropeptide Y levels were lower in the GOO and GOO + TV groups compared to the other groups. We found that both gut hormone levels related to gastric motility and metabolism, and immunohistochemical staining of the stomach tissue were altered by TV and GOO. Measuring changes in gut hormones following gastric surgery could be useful for monitoring the effectiveness of treatment.
Collapse
Affiliation(s)
- Aliye Sagkan Ozturk
- Faculty of Veterinary Medicine, Department of Internal Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mehmet Aydin
- Sifa Bioresonance & Clinical Physiology Center, Kocaeli, Turkey
| | - Yesim Akaydın Bozkurt
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Altug Kuçukgul
- Faculty of Veterinary Medicine, Department of Biochemistry, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Atakan Ozturk
- Faculty of Medicine, Department of Physiology, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
29
|
Ishihara E, Sakurai Y. Opioids in the medial nucleus of the solitary tract are not involved in feeding disorder in activity-based anorexia in rats. CLINICAL NUTRITION OPEN SCIENCE 2022. [DOI: 10.1016/j.nutos.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
30
|
Abstract
The enteroendocrine system coordinates the physiological response to food intake by regulating rates of digestion, nutrient absorption, insulin secretion, satiation and satiety. Gut hormones with important anorexigenic and/or insulinotropic roles include glucagon-like peptide 1 (GLP-1), peptide YY (PYY3-36), cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP). High BMI or obesogenic diets do not markedly disrupt this enteroendocrine system, which represents a critical target for inducing weight loss and treating co-morbidities in individuals with obesity.
Collapse
|
31
|
Matsubara Y, Kiyohara H, Teratani T, Mikami Y, Kanai T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 2021; 205:108915. [PMID: 34919906 DOI: 10.1016/j.neuropharm.2021.108915] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The liver is the largest organ in the human body and is responsible for the metabolism and storage of the three principal nutrients: carbohydrates, fats, and proteins. In addition, the liver contributes to the breakdown and excretion of alcohol, medicinal agents, and toxic substances and the production and secretion of bile. In addition to its role as a metabolic centre, the liver has recently attracted attention for its function in the liver-brain axis, which interacts closely with the central nervous system via the autonomic nervous system, including the vagus nerve. The liver-brain axis influences the control of eating behaviour in the central nervous system through stimuli from the liver. Conversely, neural signals from the central nervous system influence glucose, lipid, and protein metabolism in the liver. The liver also receives a constant influx of nutrients and hormones from the intestinal tract and compounds of bacterial origin via the portal system. As a result, the intestinal tract and liver are involved in various immunological interactions. A good example is the co-occurrence of primary sclerosing cholangitis and ulcerative colitis. These heterogeneous roles of the liver-brain axis are mediated via the vagus nerve in an asymmetrical manner. In this review, we provide an overview of these interactions, mainly with the liver but also with the brain and gut.
Collapse
Affiliation(s)
- Yuta Matsubara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
32
|
Smith KR, Moran TH. Gastrointestinal peptides in eating-related disorders. Physiol Behav 2021; 238:113456. [PMID: 33989649 PMCID: PMC8462672 DOI: 10.1016/j.physbeh.2021.113456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Food intake is tightly controlled by homeostatic signals sensitive to metabolic need for the regulation of body weight. This review focuses on the peripherally-secreted gastrointestinal peptides (i.e., ghrelin, cholecystokinin, glucagon-like peptide 1, and peptide tyrosine tyrosine) that contribute to the control of appetite and discusses how these peptides or the signals arising from their release are disrupted in eating-related disorders across the weight spectrum, namely anorexia nervosa, bulimia nervosa, and obesity, and whether they are normalized following weight restoration or weight loss treatment. Further, the role of gut peptides in the pathogenesis and treatment response in human weight conditions as identified by rodent models are discussed. Lastly, we review the incretin- and hormone-based pharmacotherapies available for the treatment of obesity and eating-related disorders.
Collapse
Affiliation(s)
- Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
33
|
Zubareva OE, Melik-Kasumov TB. The Gut–Brain Axis and Peroxisome Proliferator-Activated Receptors in the Regulation of Epileptogenesis. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Fenton JM, King JA, Hoekstra SP, Willis SA, Ogawa T, Goosey-Tolfrey VL. Accentuated early postprandial satiety in people with SCI versus able-bodied controls. Appetite 2021; 167:105628. [PMID: 34389376 DOI: 10.1016/j.appet.2021.105628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
In persons with spinal cord injury (SCI), reduced fat-free mass and movement-related energy expenditure increase obesity risk. Although plausible mechanisms exist, it remains unknown whether impaired appetite regulation potentiates obesity risk in SCI. This study compared postprandial responses of appetite-related hormones, appetite perceptions and the sensitivity of appetite to covert preload energy manipulation in persons with SCI and able-bodied (AB) controls. In a counterbalanced order, 12 men with high-level SCI (≥T6 vertebrae) and 12 AB controls completed two trials, consuming covert high-energy (HE; 2513 kJ) and low-energy (LE; 1008 kJ) preloads on separate occasions. Subjective appetite perceptions were assessed at 30 min intervals following preload consumption (up to 150 min) and energy intake was determined from ad libitum test meals. Appetite-related hormone (total PYY, GLP-1 and acylated ghrelin) responses were measured in the HE trial only. Within the early postprandial phase (0-60 min), subjective ratings of fullness (d = 0.83) and satisfaction (d = 0.87) were higher (P ≤ 0.028) in the group with SCI. No group differences in PYY, GLP-1 or acylated ghrelin were detected in a fasted state or postprandially (d ≤ 0.64; p ≥ 0.053). Ad libitum energy intake was lower in the SCI group (1086 vs. 1713 kJ, respectively, d = 1.00; P = 0.020) but no effect of trial (preload) was found. These findings suggest that, following isocaloric preloads, postprandial satiety may be augmented, rather than attenuated, in people with SCI.
Collapse
Affiliation(s)
- Jordan M Fenton
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; Peter Harrison Centre for Disability Sport, Loughborough University, UK.
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, LE5 4PW, UK.
| | - Sven P Hoekstra
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; Peter Harrison Centre for Disability Sport, Loughborough University, UK.
| | - Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, LE5 4PW, UK.
| | - Takahiro Ogawa
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Victoria L Goosey-Tolfrey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, UK; Peter Harrison Centre for Disability Sport, Loughborough University, UK.
| |
Collapse
|
35
|
Sun EW, Iepsen EW, Pezos N, Lumsden AL, Martin AM, Schober G, Isaacs NJ, Rayner CK, Nguyen NQ, de Fontgalland D, Rabbitt P, Hollington P, Wattchow DA, Hansen T, Holm JC, Liou AP, Jackson VM, Torekov SS, Young RL, Keating DJ. A Gut-Intrinsic Melanocortin Signaling Complex Augments L-Cell Secretion in Humans. Gastroenterology 2021; 161:536-547.e2. [PMID: 33848536 DOI: 10.1053/j.gastro.2021.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Hypothalamic melanocortin 4 receptors (MC4R) are a key regulator of energy homeostasis. Brain-penetrant MC4R agonists have failed, as concentrations required to suppress food intake also increase blood pressure. However, peripherally located MC4R may also mediate metabolic benefits of MC4R activation. Mc4r transcript is enriched in mouse enteroendocrine L cells and peripheral administration of the endogenous MC4R agonist, α-melanocyte stimulating hormone (α-MSH), triggers the release of the anorectic hormones Glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) in mice. This study aimed to determine whether pathways linking MC4R and L-cell secretion exist in humans. DESIGN GLP-1 and PYY levels were assessed in body mass index-matched individuals with or without loss-of-function MC4R mutations following an oral glucose tolerance test. Immunohistochemistry was performed on human intestinal sections to characterize the mucosal MC4R system. Static incubations with MC4R agonists were carried out on human intestinal epithelia, GLP-1 and PYY contents of secretion supernatants were assayed. RESULTS Fasting PYY levels and oral glucose-induced GLP-1 secretion were reduced in humans carrying a total loss-of-function MC4R mutation. MC4R was localized to L cells and regulates GLP-1 and PYY secretion from ex vivo human intestine. α-MSH immunoreactivity in the human intestinal epithelia was predominantly localized to L cells. Glucose-sensitive mucosal pro-opiomelanocortin cells provide a local source of α-MSH that is essential for glucose-induced GLP-1 secretion in small intestine. CONCLUSION Our findings describe a previously unidentified signaling nexus in the human gastrointestinal tract involving α-MSH release and MC4R activation on L cells in an autocrine and paracrine fashion. Outcomes from this study have direct implications for targeting mucosal MC4R to treat human metabolic disorders.
Collapse
Affiliation(s)
- Emily W Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Eva W Iepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Nektaria Pezos
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia
| | - Amanda L Lumsden
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Gudrun Schober
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia
| | - Nichole J Isaacs
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Nam Q Nguyen
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | | | - Philippa Rabbitt
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
| | - Paul Hollington
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, Australia
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Christian Holm
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Holbæk University Hospital, Holbæk, Denmark
| | - Alice P Liou
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - V Margaret Jackson
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Richard L Young
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, Australia; Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Australia.
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
| |
Collapse
|
36
|
Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology 2021; 197:108721. [PMID: 34274348 DOI: 10.1016/j.neuropharm.2021.108721] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
For the last 20 years, researchers have focused their intention on the impact of gut microbiota in healthy and pathological conditions. This year (2021), more than 25,000 articles can be retrieved from PubMed with the keywords "gut microbiota and physiology", showing the constant progress and impact of gut microbes in scientific life. As a result, numerous therapeutic perspectives have been proposed to modulate the gut microbiota composition and/or bioactive factors released from microbes to restore our body functions. Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson's, Alzheimer's, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain pathologies. The objective of this review is to describe recent scientific elements that explore the communication between gut microbiota and the brain by focusing our interest on the enteric nervous system (ENS) as an intermediate partner. The ENS, which is known as the "second brain", could be under the direct or indirect influence of the gut microbiota and its released factors (short-chain fatty acids, neurotransmitters, gaseous factors, etc.). Thus, in addition to their actions on tissue (adipose tissue, liver, brain, etc.), microbes can have an impact on local ENS activity. This potential modification of ENS function has global repercussions in the whole body via the gut-brain axis and represents a new therapeutic strategy.
Collapse
|
37
|
Hansen HH, Grønlund RV, Baader-Pagler T, Haebel P, Tammen H, Larsen LK, Jelsing J, Vrang N, Klein T. Characterization of combined linagliptin and Y2R agonist treatment in diet-induced obese mice. Sci Rep 2021; 11:8060. [PMID: 33850212 PMCID: PMC8044192 DOI: 10.1038/s41598-021-87539-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 02/01/2023] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitors improve glycemic control by prolonging the action of glucagon-like peptide-1 (GLP-1). In contrast to GLP-1 analogues, DPP-IV inhibitors are weight-neutral. DPP-IV cleavage of PYY and NPY gives rise to PYY3-36 and NPY3-36 which exert potent anorectic action by stimulating Y2 receptor (Y2R) function. This invites the possibility that DPP-IV inhibitors could be weight-neutral by preventing conversion of PYY/NPY to Y2R-selective peptide agonists. We therefore investigated whether co-administration of an Y2R-selective agonist could unmask potential weight lowering effects of the DDP-IV inhibitor linagliptin. Male diet-induced obese (DIO) mice received once daily subcutaneous treatment with linagliptin (3 mg/kg), a Y2R-selective PYY3-36 analogue (3 or 30 nmol/kg) or combination therapy for 14 days. While linagliptin promoted marginal weight loss without influencing food intake, the PYY3-36 analogue induced significant weight loss and transient suppression of food intake. Both compounds significantly improved oral glucose tolerance. Because combination treatment did not further improve weight loss and glucose tolerance in DIO mice, this suggests that potential negative modulatory effects of DPP-IV inhibitors on endogenous Y2R peptide agonist activity is likely insufficient to influence weight homeostasis. Weight-neutrality of DPP-IV inhibitors may therefore not be explained by counter-regulatory effects on PYY/NPY responses.
Collapse
Affiliation(s)
| | | | - Tamara Baader-Pagler
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| | - Peter Haebel
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| | | | | | - Jacob Jelsing
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Niels Vrang
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| |
Collapse
|
38
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Moran GW, Thapaliya G. The Gut-Brain Axis and Its Role in Controlling Eating Behavior in Intestinal Inflammation. Nutrients 2021; 13:nu13030981. [PMID: 33803651 PMCID: PMC8003054 DOI: 10.3390/nu13030981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Malnutrition represents a major problem in the clinical management of the inflammatory bowel disease (IBD). Presently, our understanding of the cross-link between eating behavior and intestinal inflammation is still in its infancy. Crohn's disease patients with active disease exhibit strong hedonic desires for food and emotional eating patterns possibly to ameliorate feelings of low mood, anxiety, and depression. Impulsivity traits seen in IBD patients may predispose them to palatable food intake as an immediate reward rather than concerns for future health. The upregulation of enteroendocrine cells (EEC) peptide response to food intake has been described in ileal inflammation, which may lead to alterations in gut-brain signaling with implications for appetite and eating behavior. In summary, a complex interplay of gut peptides, psychological, cognitive factors, disease-related symptoms, and inflammatory burden may ultimately govern eating behavior in intestinal inflammation.
Collapse
Affiliation(s)
- Gordon William Moran
- National Institute of Health Research Nottingham Biomedical Research Centre, University of Nottingham, and Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
- Correspondence:
| | - Gita Thapaliya
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
40
|
van Son J, Koekkoek LL, La Fleur SE, Serlie MJ, Nieuwdorp M. The Role of the Gut Microbiota in the Gut-Brain Axis in Obesity: Mechanisms and Future Implications. Int J Mol Sci 2021; 22:ijms22062993. [PMID: 33804250 PMCID: PMC7999163 DOI: 10.3390/ijms22062993] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
Interaction between the gut and the brain is essential for energy homeostasis. In obesity, this homeostasis is disrupted, leading to a positive energy balance and weight gain. Obesity is a global epidemic that affects individual health and strains the socioeconomic system. Microbial dysbiosis has long been reported in obesity and obesity-related disorders. More recent literature has focused on the interaction of the gut microbiota and its metabolites on human brain and behavior. Developing strategies that target the gut microbiota could be a future approach for the treatment of obesity. Here, we review the microbiota–gut–brain axis and possible therapeutic options.
Collapse
Affiliation(s)
- Jamie van Son
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Laura L. Koekkoek
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
| | - Susanne E. La Fleur
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
| | - Mireille J. Serlie
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
41
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
42
|
Page AJ. Gastrointestinal Vagal Afferents and Food Intake: Relevance of Circadian Rhythms. Nutrients 2021; 13:nu13030844. [PMID: 33807524 PMCID: PMC7998414 DOI: 10.3390/nu13030844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/20/2023] Open
Abstract
Gastrointestinal vagal afferents (VAs) play an important role in food intake regulation, providing the brain with information on the amount and nutrient composition of a meal. This is processed, eventually leading to meal termination. The response of gastric VAs, to food-related stimuli, is under circadian control and fluctuates depending on the time of day. These rhythms are highly correlated with meal size, with a nadir in VA sensitivity and increase in meal size during the dark phase and a peak in sensitivity and decrease in meal size during the light phase in mice. These rhythms are disrupted in diet-induced obesity and simulated shift work conditions and associated with disrupted food intake patterns. In diet-induced obesity the dampened responses during the light phase are not simply reversed by reverting back to a normal diet. However, time restricted feeding prevents loss of diurnal rhythms in VA signalling in high fat diet-fed mice and, therefore, provides a potential strategy to reset diurnal rhythms in VA signalling to a pre-obese phenotype. This review discusses the role of the circadian system in the regulation of gastrointestinal VA signals and the impact of factors, such as diet-induced obesity and shift work, on these rhythms.
Collapse
Affiliation(s)
- Amanda J. Page
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; ; Tel.: +61-8-8128-4840
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institution (SAHMRI), Adelaide, SA 5000, Australia
| |
Collapse
|
43
|
McDougle M, Quinn D, Diepenbroek C, Singh A, de la Serre C, de Lartigue G. Intact vagal gut-brain signalling prevents hyperphagia and excessive weight gain in response to high-fat high-sugar diet. Acta Physiol (Oxf) 2021; 231:e13530. [PMID: 32603548 PMCID: PMC7772266 DOI: 10.1111/apha.13530] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023]
Abstract
Aim The tools that have been used to assess the function of the vagus nerve lack specificity. This could explain discrepancies about the role of vagal gut‐brain signalling in long‐term control of energy balance. Here we use a validated approach to selectively ablate sensory vagal neurones that innervate the gut to determine the role of vagal gut‐brain signalling in the control of food intake, energy expenditure and glucose homoeostasis in response to different diets. Methods Rat nodose ganglia were injected bilaterally with either the neurotoxin saporin conjugated to the gastrointestinal hormone cholecystokinin (CCK), or unconjugated saporin as a control. Food intake, body weight, glucose tolerance and energy expenditure were measured in both groups in response to chow or high‐fat high‐sugar (HFHS) diet. Willingness to work for fat or sugar was assessed by progressive ratio for orally administered solutions, while post‐ingestive feedback was tested by measuring food intake after an isocaloric lipid or sucrose pre‐load. Results Vagal deafferentation of the gut increases meal number in lean chow‐fed rats. Switching to a HFHS diet exacerbates overeating and body weight gain. The breakpoint for sugar or fat solution did not differ between groups, suggesting that increased palatability may not drive HFHS‐induced hyperphagia. Instead, decreased satiation in response to intra‐gastric infusion of fat, but not sugar, promotes hyperphagia in CCK‐Saporin‐treated rats fed with HFHS diet. Conclusions We conclude that intact sensory vagal neurones prevent hyperphagia and exacerbation of weight gain in response to a HFHS diet by promoting lipid‐mediated satiation.
Collapse
Affiliation(s)
- Molly McDougle
- Department of Pharmacodynamics University of Florida Gainesville FL USA
- Center for Integrative Cardiovascular and Metabolic Disease University of Florida Gainesville FL USA
- The John B. Pierce Laboratory New Haven CT USA
| | | | - Charlene Diepenbroek
- The John B. Pierce Laboratory New Haven CT USA
- Department of Cellular and Molecular Physiology Yale Medical School New Haven CT USA
| | - Arashdeep Singh
- Department of Pharmacodynamics University of Florida Gainesville FL USA
- Center for Integrative Cardiovascular and Metabolic Disease University of Florida Gainesville FL USA
| | | | - Guillaume de Lartigue
- Department of Pharmacodynamics University of Florida Gainesville FL USA
- Center for Integrative Cardiovascular and Metabolic Disease University of Florida Gainesville FL USA
- The John B. Pierce Laboratory New Haven CT USA
- Department of Cellular and Molecular Physiology Yale Medical School New Haven CT USA
| |
Collapse
|
44
|
Alhabeeb H, AlFaiz A, Kutbi E, AlShahrani D, Alsuhail A, AlRajhi S, Alotaibi N, Alotaibi K, AlAmri S, Alghamdi S, AlJohani N. Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids. Nutrients 2021; 13:nu13020481. [PMID: 33572661 PMCID: PMC7911102 DOI: 10.3390/nu13020481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
We are currently facing an obesity pandemic, with worldwide obesity rates having tripled since 1975. Obesity is one of the main risk factors for the development of non-communicable diseases, which are now the leading cause of death worldwide. This calls for urgent action towards understanding the underlying mechanisms behind the development of obesity as well as developing more effective treatments and interventions. Appetite is carefully regulated in humans via the interaction between the central nervous system and peripheral hormones. This involves a delicate balance in external stimuli, circulating satiating and appetite stimulating hormones, and correct functioning of neuronal signals. Any changes in this equilibrium can lead to an imbalance in energy intake versus expenditure, which often leads to overeating, and potentially weight gain resulting in overweight or obesity. Several lines of research have shown imbalances in gut hormones are found in those who are overweight or obese, which may be contributing to their condition. Therefore, this review examines the evidence for targeting gut hormones in the treatment of obesity by discussing how their dysregulation influences food intake, the potential possibility of altering the circulating levels of these hormones for treating obesity, as well as the role of short chain fatty acids and protein as novel treatments.
Collapse
Affiliation(s)
- Habeeb Alhabeeb
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
- Correspondence:
| | - Ali AlFaiz
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Emad Kutbi
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Dayel AlShahrani
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Abdullah Alsuhail
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Saleh AlRajhi
- Family Medicine, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia;
| | - Nemer Alotaibi
- College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia; (N.A.); (K.A.)
| | - Khalid Alotaibi
- College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia; (N.A.); (K.A.)
| | - Saad AlAmri
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Saleh Alghamdi
- Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; (A.A.); (E.K.); (D.A.); (A.A.); (S.A.); (S.A.)
| | - Naji AlJohani
- Obesity, Endocrine, and Metabolism Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia;
| |
Collapse
|
45
|
Milliken BT, Elfers C, Chepurny OG, Chichura KS, Sweet IR, Borner T, Hayes MR, De Jonghe BC, Holz GG, Roth CL, Doyle RP. Design and Evaluation of Peptide Dual-Agonists of GLP-1 and NPY2 Receptors for Glucoregulation and Weight Loss with Mitigated Nausea and Emesis. J Med Chem 2021; 64:1127-1138. [PMID: 33449689 PMCID: PMC7956155 DOI: 10.1021/acs.jmedchem.0c01783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
There is a critical unmet need for
therapeutics to treat the epidemic
of comorbidities associated with obesity and type 2 diabetes, ideally
devoid of nausea/emesis. This study developed monomeric peptide agonists
of glucagon-like peptide 1 receptor (GLP-1R) and neuropeptide Y2 receptor
(Y2-R) based on exendin-4 (Ex-4) and PYY3–36. A
novel peptide, GEP44, was obtained via in vitro receptor
screens, insulin secretion in islets, stability assays, and in vivo rat and shrew studies of glucoregulation, weight
loss, nausea, and emesis. GEP44 in lean and diet-induced obese rats
produced greater reduction in body weight compared to Ex-4 without
triggering nausea associated behavior. Studies in the shrew demonstrated
a near absence of emesis for GEP44 in contrast to Ex-4. Collectively,
these data demonstrate that targeting GLP-1R and Y2-R with chimeric
single peptides offers a route to new glucoregulatory treatments that
are well-tolerated and have improved weight loss when compared directly
to Ex-4.
Collapse
Affiliation(s)
- Brandon T Milliken
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Clinton Elfers
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington 98105, United States
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Kylie S Chichura
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Ian R Sweet
- Diabetes Research Institute, University of Washington, Seattle, Washington 98105, United States
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Christian L Roth
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington 98105, United States
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States.,Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
46
|
Blanco AM, Calo J, Soengas JL. The gut–brain axis in vertebrates: implications for food intake regulation. J Exp Biol 2021; 224:224/1/jeb231571. [DOI: 10.1242/jeb.231571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT
The gut and brain are constantly communicating and influencing each other through neural, endocrine and immune signals in an interaction referred to as the gut–brain axis. Within this communication system, the gastrointestinal tract, including the gut microbiota, sends information on energy status to the brain, which, after integrating these and other inputs, transmits feedback to the gastrointestinal tract. This allows the regulation of food intake and other physiological processes occurring in the gastrointestinal tract, including motility, secretion, digestion and absorption. Although extensive literature is available on the mechanisms governing the communication between the gut and the brain in mammals, studies on this axis in other vertebrates are scarce and often limited to a single species, which may not be representative for obtaining conclusions for an entire group. This Review aims to compile the available information on the gut–brain axis in birds, reptiles, amphibians and fish, with a special focus on its involvement in food intake regulation and, to a lesser extent, in digestive processes. Additionally, we will identify gaps of knowledge that need to be filled in order to better understand the functioning and physiological significance of such an axis in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Jessica Calo
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Pontevedra, Spain
| | - José Luis Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Pontevedra, Spain
| |
Collapse
|
47
|
Huang KP, Raybould HE. Estrogen and gut satiety hormones in vagus-hindbrain axis. Peptides 2020; 133:170389. [PMID: 32860834 PMCID: PMC8461656 DOI: 10.1016/j.peptides.2020.170389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
Estrogens modulate different physiological functions, including reproduction, inflammation, bone formation, energy expenditure, and food intake. In this review, we highlight the effect of estrogens on food intake regulation and the latest literature on intracellular estrogen signaling. In addition, gut satiety hormones, such as cholecystokinin, glucagon-like peptide 1 and leptin are essential to regulate ingestive behaviors in the postprandial period. These peripheral signals are sensed by vagal afferent terminals in the gut wall and transmitted to the hindbrain axis. Here we 1. review the role of the vagus-hindbrain axis in response to gut satiety signals and 2. consider the potential synergistic effects of estrogens on gut satiety signals at the level of vagal afferent neurons and nuclei located in the hindbrain. Understanding the action of estrogens in gut-brain axis provides a potential strategy to develop estrogen-based therapies for metabolic diseases and emphasizes the importance of sex difference in the treatment of obesity.
Collapse
Affiliation(s)
- Kuei-Pin Huang
- School of Veterinary Medicine, University of California Davis, CA, United States
| | - Helen E Raybould
- School of Veterinary Medicine, University of California Davis, CA, United States.
| |
Collapse
|
48
|
Zhang W, Waise TMZ, Toshinai K, Tsuchimochi W, Naznin F, Islam MN, Tanida R, Sakoda H, Nakazato M. Functional interaction between Ghrelin and GLP-1 regulates feeding through the vagal afferent system. Sci Rep 2020; 10:18415. [PMID: 33116243 PMCID: PMC7595212 DOI: 10.1038/s41598-020-75621-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract transmits feeding-regulatory signals to the brain via neuronal and hormonal pathways. Here we studied the interaction between the orexigenic gastric peptide, ghrelin, and the anorectic intestinal peptide, glucagon-like peptide 1 (GLP-1), in terms of feeding regulation via the vagal afferents. GLP-1 preadministration 30 min before ghrelin administration to rats and mice abolished ghrelin-induced food intake, while ghrelin preadministration abolished the anorectic effect of GLP-1. Ghrelin preadministration suppressed GLP-1-induced Fos expression in the nodose ganglia (NG). Electrophysiological assessment confirmed that the initially administered peptide abolished the vagal afferent electrical alteration induced by the subsequently administered peptide. Both the growth hormone secretagogue receptor (GHSR) and the GLP-1 receptor (GLP-1R) are co-localised in a major proportion of NG neurons that innervate the stomach. In these Ghsr+Glp1r+ neurons, ghrelin preadministration abolished the GLP-1-induced calcium response. Ghrelin generated a hyperpolarising current and GLP-1 generated a depolarising current in isolated NG neurons in a patch-clamp experiment. Ghrelin and GLP-1 potently influenced each other in terms of vagally mediated feeding regulation. This peptidergic interaction allows for fine control of the electrophysiological properties of NG neurons.
Collapse
Affiliation(s)
- Weidong Zhang
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - T M Zaved Waise
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
| | - Koji Toshinai
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Department of Sports and Fitness, Faculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu, 474-8651, Japan
| | - Wakaba Tsuchimochi
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Farhana Naznin
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Md Nurul Islam
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Ryota Tanida
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.,Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan. .,AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.
| |
Collapse
|
49
|
Effects of ethyl hexanoate on activities of sympathetic nerves innervating the brown and white adipose tissues, body temperature, and plasma fatty acids. Neurosci Lett 2020; 737:135319. [PMID: 32846220 DOI: 10.1016/j.neulet.2020.135319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 11/24/2022]
Abstract
The autonomic nervous system (ANS) is implicated in maintaining homeostasis of the internal environment in mammals. Therefore, changes occurring in the ANS can cause alterations of physiological phenomena. Ethyl hexanoate (EH) is known as the aroma component of apples. To study the action of ethyl hexanoate on physiological phenomena, we examined the effect of an intragastric (IG) injection of 1 mL/kg body weight of 0.1 ppm EH solution on sympathetic nerve activity innervating the brown adipose tissue (BAT) and white adipose tissue (WAT) in anesthetized rats. Consequently, IG administration of EH increased activity of the sympathetic nerves innervating both the BAT and WAT. In addition, the effects of the IG injection on body temperature above the interscapular BAT and plasma free fatty acid (FFA) concentration were also examined in conscious rats. In this attempt IG injection of EH elevated both the body temperature and plasma FFA levels. Furthermore, subdiaphragmatic vagotomy eliminated the effects of EH on sympathetic nerves innervating BAT and WAT. These findings suggest that EH causes excitations of sympathetic nerves innervating BAT and WAT, and enhances thermogenesis and lipolysis via the afferent vagus nerve. Thus, these present findings also suggest the possibility that EH might have anti-obesity effects.
Collapse
|
50
|
Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P. An Atlas of Vagal Sensory Neurons and Their Molecular Specialization. Cell Rep 2020; 27:2508-2523.e4. [PMID: 31116992 PMCID: PMC6533201 DOI: 10.1016/j.celrep.2019.04.096] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/25/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
Sensory functions of the vagus nerve are critical for conscious perceptions and for monitoring visceral functions in the cardio-pulmonary and gastrointestinal systems. Here, we present a comprehensive identification, classification, and validation of the neuron types in the neural crest (jugular) and placode (nodose) derived vagal ganglia by single-cell RNA sequencing (scRNA-seq) transcriptomic analysis. Our results reveal major differences between neurons derived from different embryonic origins. Jugular neurons exhibit fundamental similarities to the somatosensory spinal neurons, including major types, such as C-low threshold mechanoreceptors (C-LTMRs), A-LTMRs, Aδ-nociceptors, and cold-, and mechano-heat C-nociceptors. In contrast, the nodose ganglion contains 18 distinct types dedicated to surveying the physiological state of the internal body. Our results reveal a vast diversity of vagal neuron types, including many previously unanticipated types, as well as proposed types that are consistent with chemoreceptors, nutrient detectors, baroreceptors, and stretch and volume mechanoreceptors of the respiratory, gastrointestinal, and cardiovascular systems. A comprehensive molecular identification of neuronal types in vagal ganglion complex Prdm12+ jugular ganglion neurons share features with spinal somatosensory neurons Phox2b+ viscerosensory nodose neurons are molecularly versatile and highly specialized Nodose neuron types are consistent with chemo-, baro-, stretch-, tension-, and volume-sensors
Collapse
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Häring
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eneritz Agirre
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|