1
|
Islam MN, Nabekura H, Ueno H, Nishida T, Nanashima A, Sakoda H, Zhang W, Nakazato M. Liver-expressed antimicrobial peptide 2 is a hepatokine regulated by ghrelin, nutrients, and body weight. Sci Rep 2024; 14:24782. [PMID: 39433849 PMCID: PMC11494003 DOI: 10.1038/s41598-024-74048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is a peptide that counteracts the hunger hormone ghrelin-induced functions. Recently, we showed that vertical sleeve gastrectomy (VSG) did not alter the serum LEAP2 concentration in individuals with obesity. Here, we investigated the effects of VSG in both chow diet (CD)-fed and high-fat diet (HFD)-fed mice. In CD-fed mice, VSG increased plasma LEAP2 levels and hepatic Leap2 mRNA levels while decreasing body weight, blood glucose levels, and ghrelin levels. Intraperitoneal (ip) administration of ghrelin reversed these changes. These effects were found in both male and female mice. In contrast, VSG or weight loss in HFD-induced obese mice decreased LEAP2 levels. After fasting, the plasma LEAP2 concentration was in the following order: hepatic vein > abdominal aorta > portal vein. A high glucose concentration robustly increased the plasma LEAP2 concentration in the hepatic vein and abdominal aorta but not in the portal vein. In addition, corn oil or palmitate increased LEAP2 expression and secretion. The increase in LEAP2 levels after the meal tolerance test was delayed in the human subjects with diabetes. Our data suggest that various factors (metabolic, hormonal, and nutritional) regulate LEAP2, and the liver is the predominant site for the production and secretion of LEAP2. Furthermore, the interaction between ghrelin and LEAP2 is involved in the pathogenesis of obesity and diabetes.
Collapse
Affiliation(s)
- Md Nurul Islam
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hiroki Nabekura
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Haematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Ueno
- Division of Haematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takahiro Nishida
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Nanashima
- Division of Hepato-Biliary-Pancreas Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideyuki Sakoda
- Laboratory of Biomolecular Analysis, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Weidong Zhang
- Laboratory of Biomolecular Analysis, Institute for Protein Research, Osaka University, Osaka, Japan
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka-shi, Osaka, Japan.
| |
Collapse
|
2
|
Wang R, Mijiti S, Xu Q, Liu Y, Deng C, Huang J, Yasheng A, Tian Y, Cao Y, Su Y. The Potential Mechanism of Remission in Type 2 Diabetes Mellitus After Vertical Sleeve Gastrectomy. Obes Surg 2024; 34:3071-3083. [PMID: 38951388 DOI: 10.1007/s11695-024-07378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
In recent years, there has been a gradual increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM), with bariatric surgery remaining the most effective treatment strategy for these conditions. Vertical sleeve gastrectomy (VSG) has emerged as the most popular surgical procedure for bariatric/metabolic surgeries, effectively promoting weight loss and improving or curing T2DM. The alterations in the gastrointestinal tract following VSG may improve insulin secretion and resistance by increasing incretin secretion (especially GLP-1), modifying the gut microbiota composition, and through mechanisms dependent on weight loss. This review focuses on the potential mechanisms through which the enhanced action of incretin and metabolic changes in the digestive system after VSG may contribute to the remission of T2DM.
Collapse
Affiliation(s)
- Rongfei Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Salamu Mijiti
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Qilin Xu
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yile Liu
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Chaolun Deng
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Jiangtao Huang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Abudoukeyimu Yasheng
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yunping Tian
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yanlong Cao
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yonghui Su
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
3
|
Shishani R, Wang A, Lyo V, Nandakumar R, Cummings BP. Vertical Sleeve Gastrectomy Reduces Gut Luminal Deoxycholic Acid Concentrations in Mice. Obes Surg 2024; 34:2483-2491. [PMID: 38777944 PMCID: PMC11217124 DOI: 10.1007/s11695-024-07288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Bariatric surgery alters bile acid metabolism, which contributes to post-operative improvements in metabolic health. However, the mechanisms by which bariatric surgery alters bile acid metabolism are incompletely defined. In particular, the role of the gut microbiome in the effects of bariatric surgery on bile acid metabolism is incompletely understood. Therefore, we sought to define the changes in gut luminal bile acid composition after vertical sleeve gastrectomy (VSG). METHODS Bile acid profile was determined by UPLC-MS/MS in serum and gut luminal samples from VSG and sham-operated mice. Sham-operated mice were divided into two groups: one was fed ad libitum, while the other was food-restricted to match their body weight to the VSG-operated mice. RESULTS VSG decreased gut luminal secondary bile acids, which was driven by a decrease in gut luminal deoxycholic acid concentrations and abundance. However, gut luminal cholic acid (precursor for deoxycholic acid) concentration and abundance did not differ between groups. Therefore, the observed decrease in gut luminal deoxycholic acid abundance after VSG was not due to a reduction in substrate availability. CONCLUSION VSG decreased gut luminal deoxycholic acid abundance independently of body weight, which may be driven by a decrease in gut bacterial bile acid metabolism.
Collapse
Affiliation(s)
- Rahaf Shishani
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of CA - Davis, Davis, CA, 95616, USA
| | - Annie Wang
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
| | - Victoria Lyo
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
| | - Renu Nandakumar
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Bethany P Cummings
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA.
- Department of Molecular Biosciences, School of Veterinary Medicine, University of CA - Davis, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Pereira AM, Moura D, Pereira SS, Andrade S, Almeida RFD, Nora M, Monteiro MP, Guimarães M. Beyond Restrictive: Sleeve Gastrectomy to Single Anastomosis Duodeno-Ileal Bypass with Sleeve Gastrectomy as a Spectrum of One Single Procedure. Obes Facts 2024; 17:364-371. [PMID: 38801818 PMCID: PMC11299966 DOI: 10.1159/000539104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) is a restrictive/hypoabsorptive procedure recommended for patients with obesity class 3. For safety reasons, SADI-S can be split into a two-step procedure by performing a sleeve gastrectomy (SG) first. This stepwise approach also provides an unprecedented opportunity to disentangle the weight loss mechanisms triggered by each component. The objective was to compare weight trajectories and post-prandial endocrine and metabolic responses of patients with obesity class 3 submitted to SADI-S or SG as the first step of SADI-S. METHODS Subjects submitted to SADI-S (n = 7) or SG (n = 7) at a tertiary referral public academic hospital underwent anthropometric evaluation and a liquid mixed meal tolerance test (MMTT) pre-operatively and at 3, 6, and 12 months post-operatively. RESULTS Anthropometric parameters, as well as metabolic and micronutrient profiles, were not significantly different between groups, neither before nor after surgery. There were no significant differences in fasting or post-prandial glucose, insulin, C-peptide, ghrelin, insulin secretion rate, and insulin clearance during the MMTT between subjects submitted to SADI-S and SG. There was no lost to follow-up. CONCLUSIONS The restrictive component seems to be the main driver for weight loss and metabolic adaptations observed during the first 12 months after SADI-S, given that the weight trajectories and metabolic profiles do not differ from SG. These data provide support for surgeons' choice of a two-step SADI-S without jeopardizing the weight loss outcomes.
Collapse
Affiliation(s)
- Ana Marta Pereira
- Department of General Surgery, Unidade Local de Saúde de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Diogo Moura
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Sofia S Pereira
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal,
- ITR - Laboratory of Integrative and Translocation Research in Population Health, Porto, Portugal,
| | - Sara Andrade
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory of Integrative and Translocation Research in Population Health, Porto, Portugal
| | - Rui Ferreira de Almeida
- Department of General Surgery, Unidade Local de Saúde de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Mário Nora
- Department of General Surgery, Unidade Local de Saúde de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Mariana P Monteiro
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory of Integrative and Translocation Research in Population Health, Porto, Portugal
| | - Marta Guimarães
- Department of General Surgery, Unidade Local de Saúde de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory of Integrative and Translocation Research in Population Health, Porto, Portugal
| |
Collapse
|
5
|
Tang HH, Wang D, Tang CC. Effect of bariatric surgery on metabolism in diabetes and obesity comorbidity: Insight from recent research. World J Diabetes 2024; 15:586-590. [PMID: 38680688 PMCID: PMC11045418 DOI: 10.4239/wjd.v15.i4.586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024] Open
Abstract
Obesity is a prevalent cause of diabetes mellitus (DM) and is a serious danger to human health. Type 2 DM (T2DM) mostly occurs along with obesity. Foodborne obesity-induced DM is caused by an excessive long-term diet and surplus energy. Bariatric surgery can improve the symptoms of T2DM in some obese patients. But different types of bariatric surgery may have different effects. There are some models built by researchers to discuss the surgical procedures' effects on metabolism in diabetes animal models and diabetes patients. It is high time to conclude all this effects and recommend procedures that can better improve metabolism.
Collapse
Affiliation(s)
- Hui-Hong Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Cheng-Chun Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
6
|
Becerril S, Cienfuegos JA, Rodríguez A, Catalán V, Ramírez B, Valentí V, Moncada R, Unamuno X, Gómez-Ambrosi J, Frühbeck G. Single anastomosis duodeno-ileal bypass with sleeve gastrectomy generates sustained improvement of glycemic control compared with sleeve gastrectomy in the diet-induced obese rat model. J Physiol Biochem 2024; 80:149-160. [PMID: 37935948 PMCID: PMC10810039 DOI: 10.1007/s13105-023-00993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Bariatric surgery has become a recognized and effective procedure for treating obesity and type 2 diabetes (T2D). Our objective was to directly compare the caloric intake-independent effects of sleeve gastrectomy (SG) and single anastomosis duodenoileal bypass with SG (SADI-S) on glucose tolerance in rats with diet-induced obesity (DIO) and to elucidate the differences between bariatric surgery and caloric restriction.A total of 120 adult male Wistar rats with DIO and insulin resistance were randomly assigned to surgical (sham operation, SG, and SADI-S) and dietary (pair-feeding the amount of food eaten by animals undergoing the SG or SADI-S surgeries) interventions. Body weight and food intake were weekly monitored, and 6 weeks after interventions, fasting plasma glucose, oral glucose and insulin tolerance tests, plasma insulin, adiponectin, GIP, GLP-1, and ghrelin levels were determined.The body weight of SADI-S rats was significantly (p < 0.001) lower as compared to the sham-operated, SG, and pair-fed groups. Furthermore, SADI-S rats exhibited decreased whole body fat mass (p < 0.001), lower food efficiency rates (p < 0.001), and increased insulin sensitivity, as well as improved glucose and lipid metabolism compared to that of the SG and pair-fed rats.SADI-S was more effective than SG, or caloric restriction, in improving glycemic control and metabolic profile, with a higher remission of insulin resistance as well as long-term weight loss.
Collapse
Affiliation(s)
- Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| | - Javier A Cienfuegos
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Medical Engineering Laboratory, University of Navarra, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Avda. Pío XII, 36, Pamplona, Spain.
| |
Collapse
|
7
|
Liu FS, Wang S, Guo XS, Ye ZX, Zhang HY, Li Z. State of art on the mechanisms of laparoscopic sleeve gastrectomy in treating type 2 diabetes mellitus. World J Diabetes 2023; 14:632-655. [PMID: 37383590 PMCID: PMC10294061 DOI: 10.4239/wjd.v14.i6.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Obesity and type-2 diabetes mellitus (T2DM) are metabolic disorders. Obesity increases the risk of T2DM, and as obesity is becoming increasingly common, more individuals suffer from T2DM, which poses a considerable burden on health systems. Traditionally, pharmaceutical therapy together with lifestyle changes is used to treat obesity and T2DM to decrease the incidence of comorbidities and all-cause mortality and to increase life expectancy. Bariatric surgery is increasingly replacing other forms of treatment of morbid obesity, especially in patients with refractory obesity, owing to its many benefits including good long-term outcomes and almost no weight regain. The bariatric surgery options have markedly changed recently, and laparoscopic sleeve gastrectomy (LSG) is gradually gaining popularity. LSG has become an effective and safe treatment for type-2 diabetes and morbid obesity, with a high cost-benefit ratio. Here, we review the me-chanism associated with LSG treatment of T2DM, and we discuss clinical studies and animal experiments with regard to gastrointestinal hormones, gut microbiota, bile acids, and adipokines to clarify current treatment modalities for patients with obesity and T2DM.
Collapse
Affiliation(s)
- Fa-Shun Liu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Song Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xian-Shan Guo
- Department of Endocrinology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Zhen-Xiong Ye
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hong-Ya Zhang
- Central Laboratory, Yangpu District Control and Prevention Center, Shanghai 200090, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
8
|
Corsello J, Gerola R, Babatope M, Munie S, Nease DB. Do bariatric patient's in rural areas achieve comparative weight loss as national average? single center experience in appalachia west virginia. Surg Endosc 2022; 36:8515-8519. [PMID: 36042042 DOI: 10.1007/s00464-022-09541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/07/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Obesity is one of the leading public health concerns with over half a million Americans being classified as obese and almost two billion classified as overweight. This has an impact on overall health of the individual, with increased comorbidities and premature death, as well as increased economic cost. This study evaluates the weight loss of patients with limited societal support and resources cared for at a single bariatric center of excellence, The Center for Surgical Weight Control, in Cabell County, West Virginia. METHODS Retrospective review of patients that have undergone either a Vertical Sleeve Gastrectomy (VSG) or a Roux-en-Y gastric bypass (RNYGB) between the years of 2017 and 2018 At the Center for Surgical Weight Control. Weight loss was evaluated at 6 months, 1 year, and 2 years. RESULTS There were 290 patients between 2017 and 2018. On average, the VSG group lost 46% of excess body weight (EBW) at 6 months, 57% of EBW at 1 year, and 61% of EBW at 2 years. In the RNYGB group patients lost on average 54% of EBW at 6 months, 65% of EBW at 1 year, and 88% of EBW at 2 years. DISCUSSION A loss of 5-15% of EBW can improve obesity-related comorbidities. These comorbidities include diabetes, hypertension, hyperlipidemia, gastroesophageal reflux disease, and obstructive sleep apnea. Improvement in these comorbidities not only benefits each patient individually, but will also help improve the effects on society as a whole. CONCLUSION Obesity is a debilitating and deadly disease, thus makes it very important to address in order to reduce burden on both patients and society as a whole. There is an expected amount of weight loss a patient should have depending on the type of surgery they undergo. Our patients were successful at meeting and exceeding the expected percentage of EBW loss after both VSG and RNYGB.
Collapse
Affiliation(s)
- Jenalee Corsello
- Marshall University Joan C. Edwards School of Medicine, General Surgery Residency Program, 1600 Medical Center Drive Suite 2500, Huntington, WV, 25701, USA.
| | - Ruth Gerola
- Marshall University Joan C. Edwards School of Medicine, General Surgery Residency Program, 1600 Medical Center Drive Suite 2500, Huntington, WV, 25701, USA
| | - Mercy Babatope
- Marshall University Joan C. Edwards School of Medicine, General Surgery Residency Program, 1600 Medical Center Drive Suite 2500, Huntington, WV, 25701, USA
| | - Semeret Munie
- Marshall University Joan C. Edwards School of Medicine, General Surgery Residency Program, 1600 Medical Center Drive Suite 2500, Huntington, WV, 25701, USA
| | - D Blaine Nease
- Marshall University Joan C. Edwards School of Medicine, General Surgery Residency Program, 1600 Medical Center Drive Suite 2500, Huntington, WV, 25701, USA
| |
Collapse
|
9
|
Penney NC, Yeung DKT, Garcia-Perez I, Posma JM, Kopytek A, Garratt B, Ashrafian H, Frost G, Marchesi JR, Purkayastha S, Hoyles L, Darzi A, Holmes E. Multi-omic phenotyping reveals host-microbe responses to bariatric surgery, glycaemic control and obesity. COMMUNICATIONS MEDICINE 2022; 2:127. [PMID: 36217535 PMCID: PMC9546886 DOI: 10.1038/s43856-022-00185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Background Resolution of type 2 diabetes (T2D) is common following bariatric surgery, particularly Roux-en-Y gastric bypass. However, the underlying mechanisms have not been fully elucidated. Methods To address this we compare the integrated serum, urine and faecal metabolic profiles of participants with obesity ± T2D (n = 80, T2D = 42) with participants who underwent Roux-en-Y gastric bypass or sleeve gastrectomy (pre and 3-months post-surgery; n = 27), taking diet into account. We co-model these data with shotgun metagenomic profiles of the gut microbiota to provide a comprehensive atlas of host-gut microbe responses to bariatric surgery, weight-loss and glycaemic control at the systems level. Results Here we show that bariatric surgery reverses several disrupted pathways characteristic of T2D. The differential metabolite set representative of bariatric surgery overlaps with both diabetes (19.3% commonality) and body mass index (18.6% commonality). However, the percentage overlap between diabetes and body mass index is minimal (4.0% commonality), consistent with weight-independent mechanisms of T2D resolution. The gut microbiota is more strongly correlated to body mass index than T2D, although we identify some pathways such as amino acid metabolism that correlate with changes to the gut microbiota and which influence glycaemic control. Conclusion We identify multi-omic signatures associated with responses to surgery, body mass index, and glycaemic control. Improved understanding of gut microbiota - host co-metabolism may lead to novel therapies for weight-loss or diabetes. However, further experiments are required to provide mechanistic insight into the role of the gut microbiota in host metabolism and establish proof of causality.
Collapse
Affiliation(s)
- Nicholas C. Penney
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Derek K. T. Yeung
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Isabel Garcia-Perez
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Joram M. Posma
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Health Data Research UK, London, NW1 2BE UK
| | - Aleksandra Kopytek
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Bethany Garratt
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Hutan Ashrafian
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Gary Frost
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Julian R. Marchesi
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
| | - Lesley Hoyles
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS UK
| | - Ara Darzi
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1NY UK
- Institute of Global Health Innovation, Imperial College London, London, W2 1NY UK
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
- Centre for Computational & Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA 6150 Australia
| |
Collapse
|
10
|
Wang AN, Carlos J, Fraser GM, McGuire JJ. Zucker Diabetic Sprague Dawley rat (ZDSD): type 2 diabetes translational research model. Exp Physiol 2022; 107:265-282. [PMID: 35178802 PMCID: PMC9314054 DOI: 10.1113/ep089947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
New Findings What is the topic of this review? The Zucker Diabetic‐Sprague Dawley (ZDSD) rat is in the early adoption phase of use by researchers in the fields of diabetes, including prediabetes, obesity and metabolic syndrome. It is essential that physiology researchers choose preclinical models that model human type 2 diabetes appropriately and are aware of the limitations on experimental design. What advances does it highlight? Our review of the scientific literature finds that although sex, age and diets contribute to variability, the ZDSD phenotype and disease progression model the characteristics of humans who have prediabetes and diabetes, including co‐morbidities.
Abstract Type 2 diabetes (T2D) is a prevalent disease and a significant concern for global population health. For persons with T2D, clinical treatments target not only the characteristics of hyperglycaemia and insulin resistance, but also co‐morbidities, such as obesity, cardiovascular and renal disease, neuropathies and skeletal bone conditions. The Zucker Diabetic‐Sprague Dawley (ZDSD) rat is a rodent model developed for experimental studies of T2D. We reviewed the scientific literature to highlight the characteristics of T2D development and the associated phenotypes, such as metabolic syndrome, cardiovascular complications and bone and skeletal pathologies in ZDSD rats. We found that ZDSD phenotype characteristics are independent of leptin receptor signalling. The ZDSD rat develops prediabetes, then progresses to overt diabetes that is accelerated by introduction of a timed high‐fat diet. In male ZDSD rats, glycated haemoglobin (HbA1c) increases at a constant rate from 7 to >30 weeks of age. Diabetic ZDSD rats are moderately hypertensive compared with other rat strains. Diabetes in ZDSD rats leads to endothelial dysfunction in specific vasculatures, impaired wound healing, decreased systolic and diastolic cardiac function, neuropathy and nephropathy. Changes to bone composition and the skeleton increase the risk of bone fractures. Zucker Diabetic‐Sprague Dawley rats have not yet achieved widespread use by researchers. We highlight sex‐related differences in the ZDSD phenotype and gaps in knowledge for future studies. Overall, scientific data support the premise that the phenotype and disease progression in ZDSD rats models the characteristics in humans. We conclude that ZDSD rats are an advantageous model to advance understanding and discovery of treatments for T2D through preclinical research.
Collapse
Affiliation(s)
- Andrea N Wang
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Joselia Carlos
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Graham M Fraser
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - John J McGuire
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
11
|
Harlan B, Park HG, Spektor R, Cummings B, Brenna JT, Soloway PD. Single-cell chromatin accessibility and lipid profiling reveals SCD1-dependent metabolic shift in adipocytes induced by bariatric surgery. PLoS One 2021; 16:e0261783. [PMID: 34972124 PMCID: PMC8719700 DOI: 10.1371/journal.pone.0261783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Obesity promotes type 2 diabetes and cardiometabolic pathologies. Vertical sleeve gastrectomy (VSG) is used to treat obesity resulting in long-term weight loss and health improvements that precede weight loss; however, the mechanisms underlying the immediate benefits remain incompletely understood. Because adipose plays a crucial role in energy homeostasis and utilization, we hypothesized that VSG exerts its influences, in part, by modulating adipose functional states. We applied single-cell ATAC sequencing and lipid profiling to inguinal and epididymal adipose depots from mice that received sham surgery or VSG. We observed depot-specific cellular composition and chromatin accessibility patterns that were altered by VSG. Specifically, accessibility at Scd1, a fatty acid desaturase, was substantially reduced after VSG in mature adipocytes of inguinal but not epididymal depots. This was accompanied by reduced accumulation of SCD1-produced unsaturated fatty acids. Given these findings and reports that reductions in Scd1 attenuate obesity and insulin resistance our results suggest VSG exerts its beneficial effects through an inguinal depot-specific reduction of SCD1 activity.
Collapse
Affiliation(s)
- Blaine Harlan
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Department of Pediatrics, University of Texas at Austin, Austin, Texas, United States of America
| | - Roman Spektor
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Bethany Cummings
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - J. Thomas Brenna
- Dell Pediatric Research Institute, Department of Pediatrics, University of Texas at Austin, Austin, Texas, United States of America
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Paul D. Soloway
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
12
|
Yang C, Brecht J, Weiß C, Reissfelder C, Otto M, Buchwald JN, Vassilev G. Serum Glucagon, Bile Acids, and FGF-19: Metabolic Behavior Patterns After Roux-en-Y Gastric Bypass and Vertical Sleeve Gastrectomy. Obes Surg 2021; 31:4939-4946. [PMID: 34471996 DOI: 10.1007/s11695-021-05677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metabolic/bariatric surgery is a highly effective treatment for obesity and metabolic diseases. Serum glucagon, bile acids, and FGF-19 are key effectors of various metabolic processes and may play central roles in bariatric surgical outcomes. It is unclear whether these factors behave similarly after Roux-en-Y gastric bypass (RYGB) vs vertical sleeve gastrectomy (VSG). METHODS Serum glucagon, bile acids (cholic acid [CA], chenodeoxycholic acid [CDCA], deoxycholic acid [DCA]), and FGF-19 were analyzed in samples of fasting blood collected before bariatric surgery, on postoperative days 2 and 10, and at 3- and 6-month follow-up. RESULTS From September 2016 to July 2017, patients with obesity underwent RYGB or VSG; 42 patients (RYGB n = 21; VSG n = 21) were included in the analysis. In the RYGB group, glucagon, CA, and CDCA increased continuously after surgery (p = 0.0003, p = 0.0009, p = 0.0001, respectively); after an initial decrease (p = 0.04), DCA increased significantly (p = 0.0386). Serum FGF-19 was unchanged. In the VSG group, glucagon increased on day 2 (p = 0.0080), but decreased over the 6-month study course (p = 0.0025). Primary BAs (CA and CDCA) decreased immediately after surgery (p = 0.0016, p = 0.0091) and then rose (p = 0.0350, p = 0.0350); DCA followed the curve of the primary BAs until it fell off at 6 months (p = 0.0005). VSG group serum FGF-19 trended upward. CONCLUSION RYGB and VSG involve different surgical techniques and final anatomical configurations. Between postoperative day 2 and 6-month follow-up, RYGB and VSG resulted in divergent patterns of change in serum glucagon, bile acids, and FGF-19.
Collapse
Affiliation(s)
- Cui Yang
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Julia Brecht
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christel Weiß
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mirko Otto
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jane N Buchwald
- Division of Scientific Research Writing, Medwrite Medical Communications, Maiden Rock, WI, 54750, USA
| | - Georgi Vassilev
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
13
|
|
14
|
Berkovskaya MA, Sych YP, Gurova OY, Fadeev VV. Significance of intestinal microbiota in implementing metabolic effects of bariatric surgery. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bariatric surgery is among successful methods of obesity treatment, with effects going beyond weight reduction alone, but rather involving improved glucose tolerance, along with control or remission of the type 2 diabetes mellitus. The precise mechanisms causing metabolic effects of bariatric surgery are not fully elucidated, even though substantial evidence suggest that they include changes in the gut microbiota, bile acid homeostasis, and the close interactions of these factors.
Intestinal microflora is directly involved in the energy metabolism of a host human. Obesity and type 2 diabetes mellitus are associated with certain changes in the species composition and diversity of intestinal microflora, which are considered important factors in the development and progression of these ailments. Bariatric surgery leads to significant and persistent changes in the composition of the intestinal microbiota, often bringing it closer to the characteristics of the microbiota of an average person with a normal weight. An important role in implementing the metabolic effects of bariatric surgery, primarily in the improvement of glucose metabolism, belongs to postoperative changes in homeostasis of bile acids. These changes imply close metabolism. Moreover, changes in the bile acid metabolism after bariatric surgery affect the microbiota of the host. Further study of these relationships would clarify the mechanisms underlying metabolic surgery, make it more predictable, targeted and controlled, as well as open new therapeutic targets in the treatment of obesity and associated conditions.
Collapse
Affiliation(s)
| | - Yulia P. Sych
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - Olesya Yu. Gurova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - Valentin V. Fadeev
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
15
|
Waterman C, Graham JL, Arnold CD, Stanhope KL, Tong JH, Jaja-Chimedza A, Havel PJ. Moringa Isothiocyanate-rich Seed Extract Delays the Onset of Diabetes in UC Davis Type-2 Diabetes Mellitus Rats. Sci Rep 2020; 10:8861. [PMID: 32483245 PMCID: PMC7264139 DOI: 10.1038/s41598-020-65722-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Moringa seeds have been used traditionally in the management of type 2 diabetes mellitus (T2DM) and contain potent bioactive isothiocyanates. This study evaluated the efficacy of an isothiocyanate-rich moringa seed extract in delaying the onset of T2DM in UC Davis T2DM rats, a well validated model which closely mimics T2DM in humans. Rats were separated into three groups; control, moringa seed extract at 0.4%, and a weight matched group. Rats were fed respective diets for 8 months, during which energy intake, body weight, the onset of diabetes circulating hormones, metabolites and markers of inflammation and liver function, and were monitored. The MS group had a significantly slower rate of diabetes onset p = 0.027), lower plasma glucose (p = 0.043), and lower HbA1c (p = 0.008) compared with CON animals. There were no significant differences in food intake and body weight between all groups. This study demonstrated MS can delay the onset of diabetes in the UC Davis T2DM rat model to a greater extent than moderate caloric restriction (by comparison to the WM group). The results support its documented traditional uses and a bioactive role of moringa isothiocyanates and suggest the potential efficacy for moringa supplementation for diabetes management in populations at risk for T2DM.
Collapse
Affiliation(s)
- Carrie Waterman
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA.
| | - James L Graham
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA.,Department of Molecular Biosciences, School of Veterinary Medicine, UC, Davis, USA
| | - Charles D Arnold
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Kimber L Stanhope
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Jason H Tong
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Asha Jaja-Chimedza
- Department of Plant Biology, Rutgers University, 59 Dudley Rd, New Brunswick, NJ, 08901, USA
| | - Peter J Havel
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA.,Department of Molecular Biosciences, School of Veterinary Medicine, UC, Davis, USA
| |
Collapse
|
16
|
Harris DA, Mina A, Cabarkapa D, Heshmati K, Subramaniam R, Banks AS, Tavakkoli A, Sheu EG. Sleeve gastrectomy enhances glucose utilization and remodels adipose tissue independent of weight loss. Am J Physiol Endocrinol Metab 2020; 318:E678-E688. [PMID: 32069072 PMCID: PMC7395476 DOI: 10.1152/ajpendo.00441.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sleeve gastrectomy (SG) induces weight loss-independent improvements in glucose homeostasis by unknown mechanisms. We sought to identify the metabolic adaptations responsible for these improvements. Nonobese C57BL/6J mice on standard chow underwent SG or sham surgery. Functional testing and indirect calorimetry were used to capture metabolic phenotypes. Tissue-specific glucose uptake was assessed by 18-fluorodeoxyglucose (18-FDG) PET/computed tomography, and RNA sequencing was used for gene-expression analysis. In this model, SG induced durable improvements in glucose tolerance in the absence of changes in weight, body composition, or food intake. Indirect calorimetry revealed that SG increased the average respiratory exchange ratio toward 1.0, indicating a weight-independent, systemic shift to carbohydrate utilization. Following SG, orally administered 18-FDG preferentially localized to white adipose depots, showing tissue-specific increases in glucose utilization induced by surgery. Transcriptional analysis with RNA sequencing demonstrated that increased glucose uptake in the visceral adipose tissue was associated with upregulation in transcriptional pathways involved in energy metabolism, adipocyte maturation, and adaptive and innate immune cell chemotaxis and differentiation. SG induces a rapid, weight loss-independent shift toward glucose utilization and transcriptional remodeling of metabolic and immune pathways in visceral adipose tissue. Continued study of this early post-SG physiology may lead to a better understanding of the anti-diabetic mechanisms of bariatric surgery.
Collapse
Affiliation(s)
- David A Harris
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amir Mina
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Dimitrije Cabarkapa
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Keyvan Heshmati
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Renuka Subramaniam
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexander S Banks
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Mesenteric arterial dysfunction in the UC Davis Type 2 Diabetes Mellitus rat model is dependent on pre-diabetic versus diabetic status and is sexually dimorphic. Eur J Pharmacol 2020; 879:173089. [PMID: 32320701 DOI: 10.1016/j.ejphar.2020.173089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 01/27/2023]
Abstract
Previous reports suggest that diabetes may differentially affect the vascular beds of females and males. However, there is insufficient evidence to establish the timeline of the vascular dysfunction in diabetes, specifically in relation to sex. Here, we determined whether mesenteric arterial function is altered in UC Davis Type-2 Diabetes Mellitus (UCD-T2DM) rats and if this occurs as early as the pre-diabetic stage of the disease. Specifically, we investigated whether vascular dysfunction differs between pre-diabetic or diabetic status and if this varies by sex. We measured the responses to endothelium-dependent and -independent vasorelaxant as well as vasoconstrictor agents and explored the potential mechanisms involved in sex-specific development of arterial dysfunction in UCD-T2DM rats. In addition, indices of insulin sensitivity were assessed. We report the reduced insulin sensitivity in pre-diabetic males and diabetic females. Vascular relaxation to acetylcholine was impaired to a greater extent in mesenteric artery from males in the pre-diabetic stage than in their female counterparts. In contrast, the arteries from females with diabetes exhibited a greater impairment to acetylcholine compared with diabetic males. Additionally, the sensitivity of mesenteric artery to contractile agents in females, but not in males, after the onset of diabetes was increased. Our data suggest that the reduced insulin sensitivity through AKT may predispose vessels to injury in the pre-diabetic stage in males. On the other hand, reduced insulin sensitivity as well as enhanced responsiveness to contractile agents may predispose arteries to injury in the diabetic stage in females.
Collapse
|
18
|
Holter MM, Garibay D, Lee SA, Saikia M, McGavigan AK, Ngyuen L, Moore ES, Daugherity E, Cohen P, Kelly K, Weiss RS, Cummings BP. Hepatocyte p53 ablation induces metabolic dysregulation that is corrected by food restriction and vertical sleeve gastrectomy in mice. FASEB J 2019; 34:1846-1858. [PMID: 31914635 DOI: 10.1096/fj.201902214r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
P53 has been implicated in the pathogenesis of obesity and diabetes; however, the mechanisms and tissue sites of action are incompletely defined. Therefore, we investigated the role of hepatocyte p53 in metabolic homeostasis using a hepatocyte-specific p53 knockout mouse model. To gain further mechanistic insight, we studied mice under two complementary conditions of restricted weight gain: vertical sleeve gastrectomy (VSG) or food restriction. VSG or sham surgery was performed in high-fat diet-fed male hepatocyte-specific p53 wild-type and knockout littermates. Sham-operated mice were fed ad libitum or food restricted to match their body weight to VSG-operated mice. Hepatocyte-specific p53 ablation in sham-operated ad libitum-fed mice impaired glucose homeostasis, increased body weight, and decreased energy expenditure without changing food intake. The metabolic deficits induced by hepatocyte-specific p53 ablation were corrected, in part by food restriction, and completely by VSG. Unlike food restriction, VSG corrected the effect of hepatocyte p53 ablation to lower energy expenditure, resulting in a greater improvement in glucose homeostasis compared with food restricted mice. These data reveal an important new role for hepatocyte p53 in the regulation of energy expenditure and body weight and suggest that VSG can improve alterations in energetics associated with p53 dysregulation.
Collapse
Affiliation(s)
- Marlena M Holter
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Darline Garibay
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Seon A Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Mridusmita Saikia
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Anne K McGavigan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lily Ngyuen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Elizabeth S Moore
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Erin Daugherity
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Kathleen Kelly
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Robert S Weiss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Bethany P Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
Alvarez R, Sandoval DA, Seeley RJ. A rodent model of partial intestinal diversion: a novel metabolic operation. Surg Obes Relat Dis 2019; 16:270-281. [PMID: 31874737 DOI: 10.1016/j.soard.2019.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Metabolic surgery is safe and the most effective therapy for obesity and its co-morbidities. New procedures may allow for better tailoring of metabolic surgery to the individual patient. OBJECTIVE To evaluate the impact, comparative effectiveness, and mechanisms of the partial intestinal diversion (PID), vertical sleeve gastrectomy (VSG), and the combination of PID and VSG on weight and glucose regulation. SETTING University research facility, United States. METHODS Three cohorts of high-fat diet-induced obese male rats were randomized to distal PID (DPID), proximal PID (PPID), VSG, VSG and DPID (VSG/DPID), or sham operation (Sham). Animals were followed for 11 (cohort 1) or 10 (cohorts 2 and 3) weeks. Outcomes included weight and composition, food intake, glucose metabolism, lipids, bile acids, and energy balance. Statistical comparisons were performed using Tukey's multiple comparison test applied to analysis of variance. RESULTS DPID and not PPID resulted in significant weight and body fat reductions relative to Sham. Improved glucose tolerance was seen in all surgical groups though this reached statistical significance for only DPID and VSG compared with Sham. Improvements in baseline glucose and insulin, corresponding insulin resistance, and plasma lipids were noted in DPID compared with Sham. Though the magnitude of weight and body composition changes and metabolic benefit tended to be larger for VSG relative to DPID, it only reached statistical significance for lipids. VSG and VSG/DPID resulted in similar outcomes. Markedly reduced food intake occurred after VSG and more modestly after DPID. Stool caloric content was higher in DPID relative to all groups. CONCLUSIONS DPID is an effective metabolic operation resulting in notable weight and fat loss and metabolic improvement relative to sham-operated rodents. Interestingly, combining VSG with DPID added little additional benefit to the effects of VSG.
Collapse
Affiliation(s)
- Rafael Alvarez
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Douros JD, Tong J, D’Alessio DA. The Effects of Bariatric Surgery on Islet Function, Insulin Secretion, and Glucose Control. Endocr Rev 2019; 40:1394-1423. [PMID: 31241742 PMCID: PMC6749890 DOI: 10.1210/er.2018-00183] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
Although bariatric surgery was developed primarily to treat morbid obesity, evidence from the earliest clinical observations to the most recent clinical trials consistently demonstrates that these procedures have substantial effects on glucose metabolism. A large base of research indicates that bariatric surgeries such as Roux-en-Y gastric bypass (RYGB), vertical sleeve gastrectomy (VSG), and biliopancreatic diversion (BPD) improve diabetes in most patients, with effects frequently evident prior to substantial weight reduction. There is now unequivocal evidence from randomized controlled trials that the efficacy of surgery is superior to intensive life-style/medical management. Despite advances in the clinical understanding and application of bariatric surgery, there remains only limited knowledge of the mechanisms by which these procedures confer such large changes to metabolic physiology. The improvement of insulin sensitivity that occurs with weight loss (e.g., the result of diet, illness, physical training) also accompanies bariatric surgery. However, there is evidence to support specific effects of surgery on insulin clearance, hepatic glucose production, and islet function. Understanding the mechanisms by which surgery affects these parameters of glucose regulation has the potential to identify new targets for therapeutic discovery. Studies to distinguish among bariatric surgeries on key parameters of glucose metabolism are limited but would be of considerable value to assist clinicians in selecting specific procedures and investigators in delineating the resulting physiology. This review is based on literature related to factors governing glucose metabolism and insulin secretion after the commonly used RYGB and VSG, and the less frequently used BPD and adjustable gastric banding.
Collapse
Affiliation(s)
- Jonathan D Douros
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Jenny Tong
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - David A D’Alessio
- Division of Endocrinology, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| |
Collapse
|
21
|
Scott F, Elahi S, Adebibe M, Parampalli U, Mannur K, Góralczyk A, Sanger GJ. Farnesoid X receptor - a molecular predictor of weight loss after vertical sleeve gastrectomy? Obes Sci Pract 2019; 5:273-280. [PMID: 31275601 PMCID: PMC6587316 DOI: 10.1002/osp4.337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To determine the expression of the bile acid receptor, farnesoid X (FXR), in human gastric mucosa and investigate correlations between expression and body-mass index (BMI) and in patients with obesity, with changes in weight and BMI following vertical sleeve gastrectomy (VSG). METHODS Human gastric mucosa was obtained from normal/overweight individuals (macroscopically-normal tissue following surgery for malignancy) or from patients with obesity (VSG). The expression of FXR and its isoforms (FXRα, FXRβ) were examined by quantitative PCR and compared with the G protein-coupled bile acid receptor, GPBA. In patients with obesity, changes in BMI and weight loss were determined following VSG. RESULTS FXRα was the predominant isoform in normal/overweight individuals. FXR expression was higher in patients with obesity but GPBA receptor expression was unchanged. For those with obesity (n = 19), no correlation was found between FXR expression and change in Body-Mass Index (BMI)/month or weight loss/month, taken 3 ± 1 months after surgery, or in BMI or weight at surgery. CONCLUSIONS Obesity is associated with increased FXR expression in the gastric mucosa. The findings are preliminary but suggest that this increase in FXR expression is a consequence of obesity, rather than its cause.
Collapse
Affiliation(s)
- F. Scott
- Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of London
| | - S. Elahi
- Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of London
| | - M. Adebibe
- Bariatric Surgery DepartmentHomerton University HospitalLondon
| | - U. Parampalli
- Bariatric Surgery DepartmentHomerton University HospitalLondon
- Royal Sussex County HospitalBrighton
| | - K. Mannur
- Bariatric Surgery DepartmentHomerton University HospitalLondon
| | - A. Góralczyk
- Bariatric Surgery DepartmentHomerton University HospitalLondon
| | - G. J. Sanger
- Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of London
| |
Collapse
|
22
|
Wang W, Cheng Z, Wang Y, Dai Y, Zhang X, Hu S. Role of Bile Acids in Bariatric Surgery. Front Physiol 2019; 10:374. [PMID: 31001146 PMCID: PMC6454391 DOI: 10.3389/fphys.2019.00374] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Bariatric surgery has been proved to be effective and sustainable in the long-term weight-loss and remission of metabolic disorders. However, the underlying mechanisms are still far from fully elucidated. After bariatric surgery, the gastrointestinal tract is manipulated, either anatomically or functionally, leading to changed bile acid metabolism. Accumulating evidence has shown that bile acids play a role in metabolic regulation as signaling molecules other than digestive juice. And most of the metabolism-beneficial effects are mediated through nuclear receptor FXR and membrane receptor TGR5, as well as reciprocal influence on gut microbiota. Bile diversion procedure is also performed on animals to recapitulate the benefits of bariatric surgery. It appears that bile acid alteration is an important component of bariatric surgery, and represents a promising target for the management of metabolic disorders.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Jinan, China
| | - Zhiqiang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yong Dai
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
23
|
Li P, Rao Z, Laing B, Bunner WP, Landry T, Prete A, Yuan Y, Zhang ZT, Huang H. Vertical sleeve gastrectomy improves liver and hypothalamic functions in obese mice. J Endocrinol 2019; 241:JOE-18-0658.R2. [PMID: 30875680 DOI: 10.1530/joe-18-0658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/14/2019] [Indexed: 12/27/2022]
Abstract
Vertical sleeve gastrectomy (VSG) is an effective surgery to treat obesity and diabetes. However, the direct effect of VSG on metabolic functions is not fully understood. We aimed to investigate if alterations in hypothalamic neurons were linked with perturbations in liver metabolism after VSG in an energy intake-controlled obese mouse model. C57BL/6 and hrNPY-GFP reporter mice received HFD for 12 weeks and were then divided into three groups: Sham (ad lib), sham (pair-fed) with VSG, and VSG. Food intake was measured daily, and blood glucose levels were measured before and after the study. Energy expenditure and body composition were determined. Serum parameters, liver lipid and glycogen contents were measured, and gene/protein expression were analyzed. Hypothalamic POMC, AgRP/NPY, and tyrosine hydroxylase expressing neurons were counted. As results, we found that VSG reduced body weight gain and adiposity induced by HFD, increased energy expenditure independent of energy intake. Fed and fasted blood glucose levels were reduced in the VSG group. While serum active GLP-1 level was increased, the active ghrelin and triglycerides levels were decreased along with improved insulin resistance in VSG group. Liver lipid accumulation, glycogen content, and gluconeogenic gene expression were reduced in the VSG group. In the hypothalamus, TH expressing neuron population was decreased, and the POMC-expressing neuron population was increased in the VSG group. Our data suggests that VSG improves metabolic symptoms by increasing energy expenditure and lowering lipid and glycogen contents in the liver. These physiological alterations are possibly related to changes in hypothalamic neuron populations.
Collapse
Affiliation(s)
- Peixin Li
- P Li, Department of Comprehensive Surgery, Medical and Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China, Beijing, China
| | - Zhijian Rao
- Z Rao, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Brenton Laing
- B Laing, Department of Kinesiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, 27858, United States
| | - Wyatt Paul Bunner
- W Bunner, Department of Kinesiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, United States
| | - Taylor Landry
- T Landry, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, . East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Amber Prete
- A Prete, Department of Psychology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Yuan Yuan
- Y Yuan, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, . East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Zhong-Tao Zhang
- Z Zhang, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hu Huang
- H Huang, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, Human Performance Laboratory, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA, Greenville, United States
| |
Collapse
|
24
|
Ding L, Fang Z, Liu Y, Zhang E, Huang T, Yang L, Wang Z, Huang W. Targeting Bile Acid-Activated Receptors in Bariatric Surgery. Handb Exp Pharmacol 2019; 256:359-378. [PMID: 31144046 DOI: 10.1007/164_2019_229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bariatric surgical procedures, including Roux-en-Y gastric bypass and vertical sleeve gastrectomy, are currently the most effective clinical approaches to achieve a significant and sustainable weight loss. Bariatric surgery also concomitantly improves type 2 diabetes and other metabolic diseases such as nonalcoholic steatohepatitis, cardiovascular diseases, and hyperlipidemia. However, despite the recent exciting progress in the understanding how bariatric surgery works, the underlying molecular mechanisms of bariatric surgery remain largely unknown. Interestingly, bile acids are emerging as potential signaling molecules to mediate the beneficial effects of bariatric surgery. In this review, we summarize the recent findings on bile acids and their activated receptors in mediating the beneficial metabolic effects of bariatric surgery. We also discuss the potential to target bile acid-activated receptors in order to treat obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Lili Ding
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yanjun Liu
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tracy Huang
- Eugene and Roth Roberts Summer Student Academy, City of Hope, Duarte, CA, USA
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
25
|
Central Modulation of Energy Homeostasis and Cognitive Performance After Bariatric Surgery. ADVANCES IN NEUROBIOLOGY 2018; 19:213-236. [PMID: 28933067 DOI: 10.1007/978-3-319-63260-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In moderately or morbidly obese patients, bariatric surgery has been proven to be an effective therapeutic approach to control body weight and comorbidities. Surgery-mediated modulation of brain function via modified postoperative secretion of gut peptides and vagal nerve stimulation was identified as an underlying mechanism in weight loss and improvement of weight-related diseases. Increased basal and postprandial plasma levels of gastrointestinal hormones like glucagon-like peptide 1 and peptide YY that act on specific areas of the hypothalamus to reduce food intake, either directly or mediated by the vagus nerve, are observed after surgery while suppression of meal-induced ghrelin release is increased. Hormones released from the adipose tissue like leptin and adiponectin are also affected and leptin plasma levels are reduced in treated patients. Besides homeostatic control of body weight, surgery also changes hedonistic behavior in regard to food intake and cognitive performance involving the limbic system and prefrontal areas.
Collapse
|
26
|
A comparison of rodent models of vertical sleeve gastrectomy. Surg Obes Relat Dis 2018; 14:1471-1479. [PMID: 30093310 DOI: 10.1016/j.soard.2018.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/10/2018] [Accepted: 06/27/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Although vertical sleeve gastrectomy (VSG) is fashioned in humans by applying multiple staple loads, rodent VSG is generally created through a single-staple load application. OBJECTIVES To investigate the impact of a 2-staple load VSG rat model more closely resembling the multistaple load operation done in humans on weight, metabolic outcomes, and the microbiome and how these compare with those obtained with the standard one-staple load model. SETTING University research facility, United States. METHODS High-fat diet-induced obese male rats were randomized to single-staple load VSG (VSG1), 2-staple load VSG (VSG2), or sham operation (Sham). Outcomes included weight and composition, food intake, glucose metabolism, lipids, bile acids, and intestinal microbiome. Statistical comparisons were performed using analysis of variance. RESULTS Both procedures resulted in substantial weight and body fat loss compared with Sham-treated animals. Weight loss was modestly greater for VSG2 compared with VSG1. Food intake was reduced in both procedures and accounted for the observed weight reduction. Glucose tolerance and plasma and hepatic lipid profiles were improved comparably in VSG1 and VSG2 relative to Sham. Bile acids were higher for VSG2 compared with Sham but not significantly different between VSG1 and VSG2. Neither procedure impacted intestinal microbiome richness and diversity compared with Sham across multiple intestinal sections. Colonic Actinobacteria was more abundant in VSG2 than in Sham. Relative abundances of bacterial phyla did not differ among VSG1, VSG2, and Sham across the remaining intestinal sections. CONCLUSIONS Although VSG1 or VSG2 offer effective and overall comparable platforms for the study of obesity, VSG2 resulted in superior weight loss.
Collapse
|
27
|
Xu J, Wang Y, Yin J, Yin M, Wang M, Liu J. MAFB mediates the therapeutic effect of sleeve gastrectomy for obese diabetes mellitus by activation of FXR expression. ACTA ACUST UNITED AC 2018; 51:e7312. [PMID: 29846411 PMCID: PMC5995038 DOI: 10.1590/1414-431x20187312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022]
Abstract
Farnesoid X receptor (FXR) and related pathways are involved in the therapeutic effect of sleeve gastrectomy for overweight or obese patients with diabetes mellitus. This study aimed to investigate the mechanism of FXR expression regulation during the surgical treatment of obese diabetes mellitus by sleeve gastrectomy. Diabetic rats were established by combined streptozotocin and high-fat diet induction. Data collection included body weight, chemical indexes of glucose and lipid metabolism, liver function, and the expression levels of musculoaponeurotic fibrosarcoma oncogene family B (MAFB), FXR, and related genes induced by sleeve gastrectomy. Chang liver cells overexpressing MAFB gene were established to confirm the expression of related genes. The binding and activation of FXR gene by MAFB were tested by Chip and luciferase reporter gene assays. Vertical sleeve gastrectomy induced significant weight loss and decreased blood glucose and lipids in diabetic rat livers, as well as decreased lipid deposition and recovered lipid function. The expression of MAFB, FXR, and FXR-regulated genes in diabetic rat livers were also restored by sleeve gastrectomy. Overexpression of MAFB in Chang liver cells led to FXR gene expression activation and the alteration of multiple FXR-regulated genes. Chip assay showed that MAFB could directly bind with FXR promoter, and the activation of FXR expression was confirmed by luciferase reporter gene analysis. The therapeutic effect of sleeve gastrectomy for overweight or obese patients with diabetes mellitus was mediated by activation of FXR expression through the binding of MAFB transcription factor.
Collapse
Affiliation(s)
- Jian Xu
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, P.R., China
| | - Yong Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, P.R., China
| | - Jiajun Yin
- Department of General Surgery, Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province, P.R., China
| | - Min Yin
- Department of General Surgery, Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province, P.R., China
| | - Mofei Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, P.R., China
| | - Jingang Liu
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, P.R., China
| |
Collapse
|
28
|
Wang M, Wu Q, Xie H, Shao Y, Zhong M, Zhang X, Liu S, He X, Hu S, Zhang G. Effects of Sleeve Gastrectomy on Serum 12α-Hydroxylated Bile Acids in a Diabetic Rat Model. Obes Surg 2018; 27:2912-2918. [PMID: 28508276 DOI: 10.1007/s11695-017-2714-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Diabetes mellitus is a prevalent disease that endangers human health. Bariatric surgery can effectively relieve insulin resistance with elevated serum bile acids (BAs). 12α-Hydroxylated BAs were previously reported to be associated with insulin resistance. The aim of this study was to analyze changes in 12α-hydroxylated BA composition and possible associated mechanisms in diabetic rats following sleeve gastrectomy (SG). METHODS SG and sham operations were performed in diabetic rats induced by high-fat diet feeding and streptozotocin. Body weight, food intake, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), and serum BAs were analyzed at corresponding time points. Cholesterol 12α-hydroxylase (CYP8B1) and transcription factor V-Maf Avian Musculoaponeurotic Fibrosarcoma Oncogene Homolog G (MAFG) expression levels were assessed by RT-PCR and western blotting. RESULTS Compared with the SHAM group, the SG group displayed significant weight loss from 6 weeks postoperatively, accompanied by decreased food intake from 4 weeks after the operation. At 2 and 12 weeks postoperatively, the areas under the curve of OGTT and ITT were significantly decreased in the SG group. At 12 weeks post-operation, the SG group displayed elevated serum BAs, but the percentage of 12α-hydroxylated BAs was reduced. Furthermore, SG rats exhibited higher MAFG and lower CYP8B1 protein and mRNA levels in the liver (P < 0.05). CONCLUSION The percentage of 12α-hydroxylated bile acids was reduced after SG, which was relevant with the inhibition of CYP8B1 and overexpression of MAFG. These outcomes may play an important role in the improvement of insulin sensitivity following SG.
Collapse
Affiliation(s)
- Minggang Wang
- Department of Hernia and Abdominal Wall Surgery, Beijing Chao-Yang Hospital, Capital Medical University, 100043, Beijing, People's Republic of China
| | - Qunzheng Wu
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Haibin Xie
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yi Shao
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Mingwei Zhong
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xiao He
- Department of Cardiology, Affiliated Hospital of Taishan Medical University, Taian, 271000, Shandong, People's Republic of China
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
29
|
Wismann P, Pedersen SL, Hansen G, Mannerstedt K, Pedersen PJ, Jeppesen PB, Vrang N, Fosgerau K, Jelsing J. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol Behav 2018. [PMID: 29540315 DOI: 10.1016/j.physbeh.2018.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM Analogues of several gastrointestinal peptide hormones have been developed into effective medicines for treatment of diseases such as type 2 diabetes mellitus (T2DM), obesity and short bowel syndrome (SBS). In this study, we aimed to explore whether the combination of glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) into a potent co-agonist could provide additional benefits compared to existing monotherapies. METHODS A short-acting (GUB09-123) and a half-life extended (GUB09-145) GLP-1/GLP-2 co-agonist were generated using solid-phase peptide synthesis and tested for effects on food intake, body weight, glucose homeostasis, and gut proliferation in lean mice and in diabetic db/db mice. RESULTS Sub-chronic administration of GUB09-123 to lean mice significantly reduced food intake, improved glucose tolerance, and increased gut volume, superior to monotherapy with the GLP-2 analogue teduglutide. Chronic administration of GUB09-123 to diabetic mice significantly improved glycemic control and showed persistent effects on gastric emptying, superior to monotherapy with the GLP-1 analogue liraglutide. Due to the short-acting nature of the molecule, no effects on body weight were observed, whereas a marked and robust intestinotrophic effect on mainly the small intestine volume and surface area was obtained. In contrast to GUB09-123, sub-chronic administration of a half-life extended GUB09-145 to lean mice caused marked dose-dependent effects on body weight while maintaining its potent intestinotrophic effect. CONCLUSION Our data demonstrate that the GLP-1/GLP-2 co-agonists have effects on gut morphometry, showing a marked increase in intestinal volume and mucosal surface area. Furthermore, effects on glucose tolerance and long-term glycemic control are evident. Effects on body weight and gastric emptying are also observed depending on the pharmacokinetic properties of the molecule. We suggest that this novel co-agonistic approach could exemplify a novel concept for treatment of T2DM or SBS.
Collapse
Affiliation(s)
| | | | - Gitte Hansen
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| | | | | | - Palle B Jeppesen
- Rigshospitalet CA-2121, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Niels Vrang
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| | - Keld Fosgerau
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| | - Jacob Jelsing
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| |
Collapse
|
30
|
Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 2018; 14:140-162. [PMID: 29348476 DOI: 10.1038/nrendo.2017.161] [Citation(s) in RCA: 536] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Mary C Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Simone Renner
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Stephen C Woods
- University of Cincinnati College of Medicine, Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | - Peter Huypens
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, D-85354 Freising, Germany
- Institute for Food & Health, Technische Universität München, D-85354 Freising, Germany
| | - Mark Heiman
- MicroBiome Therapeutics, 1316 Jefferson Ave, New Orleans, Louisiana 70115, USA
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, CH-8603 Zurich-Schwerzenbach, Switzerland
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, 3135 Meyer Hall, University of California, Davis, California 95616-5270, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
31
|
Molinaro A, Wahlström A, Marschall HU. Role of Bile Acids in Metabolic Control. Trends Endocrinol Metab 2018; 29:31-41. [PMID: 29195686 DOI: 10.1016/j.tem.2017.11.002] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Bile acids are endocrine molecules that in addition to facilitating the absorption of fat-soluble nutrients regulate numerous metabolic processes, including glucose, lipid, and energy homeostasis. The signaling actions of bile acids are mediated through specific bile-acid-activated nuclear and membrane-bound receptors. These receptors are not only expressed by tissues within the enterohepatic circulation such as the liver and the intestine, but also in other organs where bile acids mediate their systemic actions. In this review, we discuss bile acid signaling and the interplay with the gut microbiota in the pathophysiology of obesity, type 2 diabetes, and non-alcoholic fatty liver disease, and the role of surgical and pharmacological interventions on bile acid profiles and metabolism.
Collapse
Affiliation(s)
- Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Annika Wahlström
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden.
| |
Collapse
|
32
|
Wu Q, Zhang X, Zhong M, Han H, Liu S, Liu T, Wei M, Guo W, Xie H, Hu S, Zhang G. Effects of Bariatric Surgery on Serum Bile Acid Composition and Conjugation in a Diabetic Rat Model. Obes Surg 2017; 26:2384-92. [PMID: 26843082 DOI: 10.1007/s11695-016-2087-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Serum bile acids (BAs) are elevated following bariatric surgery and have emerged as a potential glucose-lowering beneficial factor. The change of BA components and its underlying mechanisms may be of great significance during bariatric surgery. The aim of this study is to investigate the effects of different bariatric procedures on serum BA composition and explore the potential mechanisms using a diabetic rat model. METHODS Duodenal-jejunal bypass (DJB), sleeve gastrectomy (SG), and sham operation were performed in diabetic rats induced by high-fat diet (HFD) and streptozotocin (STZ). Body weight, food intake, oral glucose tolerance test (OGTT), and insulin tolerance test (ITT) were measured at indicated time points. Serum BAs composition and the expression of cholesterol 7α hydroxylase (CYP7A1), bile acid: CoA synthase (BACS) and bile acid-CoA: amino acid N-acyltransferase (BAAT) at both transcriptional and protein levels in the liver were evaluated at 12 weeks postoperatively. RESULTS Compared with sham group, DJB and SG both achieved rapid and sustained improvements in glucose tolerance and insulin sensitivity. They also resulted in increased serum BAs, especially the taurine-conjugated BAs by elevated conjugation. No obvious difference was detected between DJB and SG except that SG achieved decreased weight gain and food intake. CONCLUSIONS The preferentially elevated serum taurine-conjugated BAs were similar after different bariatric surgeries, and the enhanced conjugation of BAs in the liver might account for the changed serum BAs profiles.
Collapse
Affiliation(s)
- Qunzheng Wu
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Mingwei Zhong
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Haifeng Han
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Teng Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Wei Guo
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Haibin Xie
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW In recent years, the role of the gastrointestinal (GI) tract in energy homeostasis through modulation of the digestion and absorption of carbohydrates and the production of incretin hormones is well recognized. RECENT FINDINGS Bariatric surgery for obesity has been a very effective method in substantially improving weight, and numerous studies have focused on intestinal adaptation after bariatric procedures. A number of structural and functional changes in the GI tract have been reported postsurgery, which could be responsible for the altered hormonal responses. Furthermore, the change in food absorption rate and the intestinal regions exposed to carbohydrates may affect blood glucose response. This review hopes to give new insights into the direct role of gut hormones, by summarising the metabolic effects of bariatric surgery.
Collapse
Affiliation(s)
- Georgios K Dimitriadis
- Division of Translational and Experimental Medicine, Clinical Sciences Research Laboratories, University of Warwick Medical School, Coventry, CV2 2DX, UK.
- Academic Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Campus, London, W12 0NN, UK.
- Division of Translational and Experimental Medicine-Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| | - Manpal S Randeva
- Division of Translational and Experimental Medicine, Clinical Sciences Research Laboratories, University of Warwick Medical School, Coventry, CV2 2DX, UK
| | - Alexander D Miras
- Academic Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| |
Collapse
|
34
|
Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery. Mol Aspects Med 2017; 56:75-89. [PMID: 28390813 PMCID: PMC5603298 DOI: 10.1016/j.mam.2017.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
Bariatric surgery, specifically Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective and durable treatments for morbid obesity and potentially a viable treatment for type 2 diabetes (T2D). The resolution rate of T2D following these procedures is between 40 and 80% and far surpasses that achieved by medical management alone. The molecular basis for this improvement is not entirely understood, but has been attributed in part to the altered enterohepatic circulation of bile acids. In this review we highlight how bile acids potentially contribute to improved lipid and glucose homeostasis, insulin sensitivity and energy expenditure after these procedures. The impact of altered bile acid levels in enterohepatic circulation is also associated with changes in gut microflora, which may further contribute to some of these beneficial effects. We highlight the beneficial effects of experimental surgical procedures in rodents that alter bile secretory flow without gastric restriction or altering nutrient flow. This information suggests a role for bile acids beyond dietary fat emulsification in altering whole body glucose and lipid metabolism strongly, and also suggests emerging roles for the activation of the bile acid receptors farnesoid x receptor (FXR) and G-protein coupled bile acid receptor (TGR5) in these improvements. The limitations of rodent studies and the current state of our understanding is reviewed and the potential effects of bile acids mediating the short- and long-term metabolic improvements after bariatric surgery is critically examined.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/surgery
- Enterohepatic Circulation
- Gastrectomy
- Gastric Bypass
- Gastrointestinal Microbiome/physiology
- Gene Expression Regulation
- Glucose/metabolism
- Homeostasis/physiology
- Humans
- Insulin Resistance
- Obesity, Morbid/metabolism
- Obesity, Morbid/microbiology
- Obesity, Morbid/pathology
- Obesity, Morbid/surgery
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Rodentia
- Signal Transduction
Collapse
Affiliation(s)
- Vance L Albaugh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hana Ajouz
- American University of Beirut, Beirut, Lebanon
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
35
|
Wismann P, Barkholt P, Secher T, Vrang N, Hansen HB, Jeppesen PB, Baggio LL, Koehler JA, Drucker DJ, Sandoval DA, Jelsing J. The endogenous preproglucagon system is not essential for gut growth homeostasis in mice. Mol Metab 2017; 6:681-692. [PMID: 28702324 PMCID: PMC5485241 DOI: 10.1016/j.molmet.2017.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The prevalence of obesity and related co-morbidities is reaching pandemic proportions. Today, the most effective obesity treatments are glucagon-like peptide 1 (GLP-1) analogs and bariatric surgery. Interestingly, both intervention paradigms have been associated with adaptive growth responses in the gut; however, intestinotrophic mechanisms associated with or secondary to medical or surgical obesity therapies are poorly understood. Therefore, the objective of this study was to assess the local basal endogenous and pharmacological intestinotrophic effects of glucagon-like peptides and bariatric surgery in mice. METHODS We used in situ hybridization to provide a detailed and comparative anatomical map of the local distribution of GLP-1 receptor (Glp1r), GLP-2 receptor (Glp2r), and preproglucagon (Gcg) mRNA expression throughout the mouse gastrointestinal tract. Gut development in GLP-1R-, GLP-2R-, or GCG-deficient mice was compared to their corresponding wild-type controls, and intestinotrophic effects of GLP-1 and GLP-2 analogs were assessed in wild-type mice. Lastly, gut volume was determined in a mouse model of vertical sleeve gastrectomy (VSG). RESULTS Comparison of Glp1r, Glp2r, and Gcg mRNA expression indicated a widespread, but distinct, distribution of these three transcripts throughout all compartments of the mouse gastrointestinal tract. While mice null for Glp1r or Gcg showed normal intestinal morphology, Glp2r-/- mice exhibited a slight reduction in small intestinal mucosa volume. Pharmacological treatment with GLP-1 and GLP-2 analogs significantly increased gut volume. In contrast, VSG surgery had no effect on intestinal morphology. CONCLUSION The present study indicates that the endogenous preproglucagon system, exemplified by the entire GCG gene and the receptors for GLP-1 and GLP-2, does not play a major role in normal gut development in the mouse. Furthermore, elevation in local intestinal and circulating levels of GLP-1 and GLP-2 achieved after VSG has limited impact on intestinal morphometry. Hence, although exogenous treatment with GLP-1 and GLP-2 analogs enhances gut growth, the contributions of endogenously-secreted GLP-1 and GLP-2 to gut growth may be more modest and highly context-dependent.
Collapse
Affiliation(s)
| | | | - Thomas Secher
- Gubra Aps, Hørsholm Kongevej 11B, DK-2970 Hørsholm, Denmark
| | - Niels Vrang
- Gubra Aps, Hørsholm Kongevej 11B, DK-2970 Hørsholm, Denmark
| | | | | | - Laurie L. Baggio
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Jacqueline A. Koehler
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | | | - Jacob Jelsing
- Gubra Aps, Hørsholm Kongevej 11B, DK-2970 Hørsholm, Denmark
| |
Collapse
|
36
|
Cazzo E, Gestic MA, Utrini MP, Chaim FDM, Geloneze B, Pareja JC, Chaim EA, Magro DO. GLP-2: A POORLY UNDERSTOOD MEDIATOR ENROLLED IN VARIOUS BARIATRIC/METABOLIC SURGERY-RELATED PATHOPHYSIOLOGIC MECHANISMS. ABCD-ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA 2017; 29:272-275. [PMID: 28076485 PMCID: PMC5225870 DOI: 10.1590/0102-6720201600040014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/02/2016] [Indexed: 12/31/2022]
Abstract
Introduction: Glucagon-like peptide-2 (GLP-2) is a gastrointestinal hormone whose effects are predominantly trophic on the intestinal mucosa. Aim: Critically evaluate the current literature on the influence of bariatric/metabolic surgery on the levels of GLP-2 and its potential clinical implications. Method s: Narrative review through online research on the databases Medline and Lilacs. There were six prospective human studies, two cross-sectional human studies, and three experimental animal studies selected. Results: There is evidence demonstrating significant increase in the levels of GLP-2 following gastric bypass, Scopinaro operation, and sleeve gastrectomy. There are no differences between gastric bypass and sleeve gastrectomy in regards to the increase in the GLP-2 levels. There is no correlation between the postoperative levels of GLP-2 and the occurrence of adequate or insufficient postoperative weight loss. Conclusion: GLP-2 plays significant roles on the regulation of nutrient absorption, permeability of gut mucosa, control of bone resorption, and regulation of satiety. The overall impact of these effects potentially exerts a significant adaptive or compensatory effect within the context of varied bariatric surgical techniques.
Collapse
Affiliation(s)
| | | | | | | | - Bruno Geloneze
- Research Laboratory in Metabology and Diabetes (Limed), State University of Campinas - Unicamp, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
37
|
Abstract
Bile acids are potent signaling molecules that regulate glucose, lipid and energy homeostasis predominantly via the bile acid receptors farnesoid X receptor (FXR) and transmembrane G protein-coupled receptor 5 (TGR5). The sodium taurocholate cotransporting polypeptide (NTCP) and the apical sodium dependent bile acid transporter (ASBT) ensure an effective circulation of (conjugated) bile acids. The modulation of these transport proteins affects bile acid localization, dynamics and signaling. The NTCP-specific pharmacological inhibitor myrcludex B inhibits hepatic uptake of conjugated bile acids. Multiple ASBT-inhibitors are already in clinical trials to inhibit intestinal bile acid uptake. Here, we discuss current insights into the consequences of targeting bile acid uptake transporters on systemic and intestinal bile acid dynamics and discuss the possible therapeutic applications that evolve as a result.
Collapse
Affiliation(s)
- Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands,*Stan F.J. van de Graaf, Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, NL-1105 BK Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
38
|
McGavigan AK, Garibay D, Henseler ZM, Chen J, Bettaieb A, Haj FG, Ley RE, Chouinard ML, Cummings BP. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut 2017; 66:226-234. [PMID: 26511794 PMCID: PMC5512436 DOI: 10.1136/gutjnl-2015-309871] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Vertical sleeve gastrectomy (VSG) produces high rates of type 2 diabetes remission; however, the mechanisms responsible remain incompletely defined. VSG increases circulating bile acid concentrations and bile acid signalling through TGR5 improves glucose homeostasis. Therefore, we investigated the role of TGR5 signalling in mediating the glucoregulatory benefits of VSG. DESIGN VSG or sham surgery was performed in high-fat-fed male Tgr5+/+ (wild type) and Tgr5-/- (knockout) littermates. Sham-operated mice were fed ad libitum or food restricted to match their body weight to VSG-operated mice. Body weight, food intake, energy expenditure, insulin signalling and circulating bile acid profiles were measured and oral glucose tolerance testing, islet immunohistochemistry and gut microbial profiling were performed. RESULTS VSG decreased food intake and body weight, increased energy expenditure and circulating bile acid concentrations, improved fasting glycaemia, glucose tolerance and glucose-stimulated insulin secretion, enhanced nutrient-stimulated glucagon-like peptide 1 secretion and produced favourable shifts in gut microbial populations in both genotypes. However, the body weight-independent improvements in fasting glycaemia, glucose tolerance, hepatic insulin signalling, hepatic inflammation and islet morphology after VSG were attenuated in Tgr5-/- relative to Tgr5+/+ mice. Furthermore, VSG produced metabolically favourable alterations in circulating bile acid profiles that were blunted in Tgr5-/- relative to Tgr5+/+ mice. TGR5-dependent regulation of hepatic Cyp8b1 expression may have contributed to TGR5-mediated shifts in the circulating bile acid pool after VSG. CONCLUSIONS These results suggest that TGR5 contributes to the glucoregulatory benefits of VSG surgery by promoting metabolically favourable shifts in the circulating bile acid pool.
Collapse
Affiliation(s)
- Anne K McGavigan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Darline Garibay
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Zachariah M Henseler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Jack Chen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Ruth E Ley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Michael L Chouinard
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Bethany P Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
39
|
McGavigan AK, Henseler ZM, Garibay D, Butler SD, Jayasinghe S, Ley RE, Davisson RL, Cummings BP. Vertical sleeve gastrectomy reduces blood pressure and hypothalamic endoplasmic reticulum stress in mice. Dis Model Mech 2017; 10:235-243. [PMID: 28093508 PMCID: PMC5374323 DOI: 10.1242/dmm.027474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Bariatric surgery, such as vertical sleeve gastrectomy (VSG), causes remarkable improvements in cardiometabolic health, including hypertension remission. However, the mechanisms responsible remain undefined and poorly studied. Therefore, we developed and validated the first murine model of VSG that recapitulates the blood pressure-lowering effect of VSG using gold-standard radiotelemetry technology. We used this model to investigate several potential mechanisms, including body mass, brain endoplasmic reticulum (ER) stress signaling and brain inflammatory signaling, which are all critical contributors to the pathogenesis of obesity-associated hypertension. Mice fed on a high-fat diet underwent sham or VSG surgery and radiotelemeter implantation. Sham mice were fed ad libitum or were food restricted to match their body mass to VSG-operated mice to determine the role of body mass in the ability of VSG to lower blood pressure. Blood pressure was then measured in freely moving unstressed mice by radiotelemetry. VSG decreased energy intake, body mass and fat mass. Mean arterial blood pressure (MAP) was reduced in VSG-operated mice compared with both sham-operated groups. VSG-induced reductions in MAP were accompanied by a body mass-independent decrease in hypothalamic ER stress, hypothalamic inflammation and sympathetic nervous system tone. Assessment of gut microbial populations revealed VSG-induced increases in the relative abundance of Gammaproteobacteria and Enterococcus, and decreases in Adlercreutzia. These results suggest that VSG reduces blood pressure, but this is only partly due to the reduction in body weight. VSG-induced reductions in blood pressure may be driven by a decrease in hypothalamic ER stress and inflammatory signaling, and shifts in gut microbial populations. Summary: Vertical sleeve gastrectomy in mice decreases blood pressure independent of body mass, which may be due to a decrease in hypothalamic ER stress.
Collapse
Affiliation(s)
- Anne K McGavigan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Zachariah M Henseler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Darline Garibay
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Scott D Butler
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sisitha Jayasinghe
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Ley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Robin L Davisson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.,Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bethany P Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Frikke-Schmidt H, O'Rourke RW, Lumeng CN, Sandoval DA, Seeley RJ. Does bariatric surgery improve adipose tissue function? Obes Rev 2016; 17:795-809. [PMID: 27272117 PMCID: PMC5328428 DOI: 10.1111/obr.12429] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/19/2022]
Abstract
Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity.
Collapse
Affiliation(s)
| | - R W O'Rourke
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - C N Lumeng
- Department of Pediatrics, University of Michigan, Ann Arbor, USA
| | - D A Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - R J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
41
|
Fouladi F, Mitchell JE, Wonderlich JA, Steffen KJ. The Contributing Role of Bile Acids to Metabolic Improvements After Obesity and Metabolic Surgery. Obes Surg 2016; 26:2492-502. [DOI: 10.1007/s11695-016-2272-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Lipocalin-type prostaglandin D 2 synthase (L-PGDS) modulates beneficial metabolic effects of vertical sleeve gastrectomy. Surg Obes Relat Dis 2016; 12:1523-1531. [PMID: 27425837 DOI: 10.1016/j.soard.2016.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Vertical sleeve gastrectomy (VSG) ameliorates metabolic complications in obese and diabetic patients through unknown mechanisms. OBJECTIVE The objective of this study was to investigate the role of lipocalin-type prostaglandin D2 synthase (L-PGDS) in glucose regulation in response to VSG using L-PGDS knock-out (KO), knock-in (KI), and C57BL/6 (wild type) mice. SETTING Winthrop University Hospital Research Institute. METHODS Animals were divided into 6 groups: L-PGDS KO sham/VSG (n = 5), L-PGDS KI sham/VSG (n = 5), and C57BL/6 (wild type) sham/VSG (n = 5). Related parameters were measured in fasting animals after 10 weeks. RESULTS Our intraperitoneal glucose tolerance tests and homeostatic model assessment insulin resistance results showed significant glycemic improvement 10 weeks post-VSG in both C57BL/6 and KI groups compared with the sham group. In contrast, the KO group developed glucose intolerance and insulin resistance similar to or greater than the sham group 10 weeks post-VSG. Interestingly, weight gain was insignificant 10 weeks post-VSG in all the groups and even trended higher in the KO group compared with sham. Peptide YY levels in the KO group post-VSG were slightly increased but significantly less than other groups. Similarly, the KO group showed significantly less leptin sensitivity in response to VSG compared with the KI group. Total cholesterol level remained unchanged in all groups irrespective of sham or surgery but interestingly, the KO group had significantly higher cholesterol levels. In parallel, adipocyte size was also found to be significantly increased in the KO group post-VSG compared with the sham group. CONCLUSION Our findings propose that L-PGDS plays an important role in the beneficial metabolic effects observed after VSG.
Collapse
|
43
|
Green AJ, Graham JL, Gonzalez EA, La Frano MR, Petropoulou SSE, Park JS, Newman JW, Stanhope KL, Havel PJ, La Merrill MA. Perinatal triphenyl phosphate exposure accelerates type 2 diabetes onset and increases adipose accumulation in UCD-type 2 diabetes mellitus rats. Reprod Toxicol 2016; 68:119-129. [PMID: 27421578 DOI: 10.1016/j.reprotox.2016.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/21/2016] [Accepted: 07/09/2016] [Indexed: 01/01/2023]
Abstract
Triphenyl phosphate (TPhP) is a flame retardant additive frequently found in consumer products and household dust. We administered 170μg of TPhP in maternal food from gestational day 8.5 to weaning and evaluated metabolic phenotypes of 3.5 month old male and female rats, and weight-matched males up to 6 months, to assess the development of obesity and type 2 diabetes mellitus (T2DM), respectively. Perinatal TPhP exposure increased body and fat mass in 3.5 month old male and female rats, while leptin and cumulative energy intake were elevated in males and females, respectively. Independent of body mass, perinatal TPhP exposure accelerated T2DM onset in males and increased plasma non-esterified- fasting fatty acids. These observations suggest that perinatal exposure to TPhP exacerbates the development of obesity in male and female UCDavis-T2DM rats and accelerates T2DM onset in male UCD-T2DM rats.
Collapse
Affiliation(s)
- Adrian J Green
- Department of Environmental Toxicology, University of California at Davis, Davis, CA, USA
| | - James L Graham
- Department of Nutrition, University of California at Davis, Davis, CA, USA
| | - Eduardo A Gonzalez
- Department of Environmental Toxicology, University of California at Davis, Davis, CA, USA
| | - Michael R La Frano
- Department of Nutrition, University of California at Davis, Davis, CA, USA; West Coast Metabolomics Center, University of California at Davis, Davis, CA, USA
| | | | - June-Soo Park
- Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - John W Newman
- Department of Nutrition, University of California at Davis, Davis, CA, USA; West Coast Metabolomics Center, University of California at Davis, Davis, CA, USA; Obesity and Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Davis, CA, USA
| | - Kimber L Stanhope
- Department of Nutrition, University of California at Davis, Davis, CA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California at Davis, Davis, CA, USA
| | - Peter J Havel
- Department of Nutrition, University of California at Davis, Davis, CA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California at Davis, Davis, CA, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California at Davis, Davis, CA, USA.
| |
Collapse
|
44
|
Abegg K, Corteville C, Bueter M, Lutz TA. Alterations in energy expenditure in Roux-en-Y gastric bypass rats persist at thermoneutrality. Int J Obes (Lond) 2016; 40:1215-21. [PMID: 27102054 DOI: 10.1038/ijo.2016.55] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 01/08/2016] [Accepted: 02/11/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The compensatory decrease in energy expenditure (EE) in response to body weight loss is attenuated by Roux-en-Y gastric bypass (RYGB) surgery in rats. The thermoneutral zone (TNZ) is at higher temperatures in rodents than in humans. Consequently, rodents may be under moderate cold stress if EE is measured at room temperature, leading to increased EE due to adaptive thermogenesis. We speculated that the reported alterations in EE of RYGB rats at room temperature are caused by higher adaptive thermogenesis and are therefore not present at thermoneutrality. METHODS Male Wistar rats were randomized for RYGB or sham surgery. Some sham rats were body weight matched (BWM) to the RYGB rats by food restriction, the others received ad libitum access to food (AL). EE, body temperature, physical activity and food intake were measured at ambient temperatures between 22 and 32 °C to determine the TNZ. Adaptive thermogenesis requires β3-adrenergic receptor-mediated uncoupling protein-1 (UCP-1) expression in brown adipose tissue (BAT). The in vivo thermogenic capacity of BAT was determined by administering the β3-adrenergic agonist CL316,243, and UCP-1 protein expression was measured at room temperature. RESULTS The TNZ was between 28 and 30 °C for AL and RYGB and between 30 and 32 °C for BWM rats, respectively. In contrast to AL and BWM rats, EE was not significantly higher at room temperature than at thermoneutrality in RYGB rats, reflecting a lack of adaptive thermogenesis. Consistently, both the thermogenic capacity of BAT and UCP-1 expression were decreased in RYGB compared with AL rats at room temperature. CONCLUSIONS Our data confirm that the decrease in EE after body weight loss is attenuated by RYGB surgery and show that this effect persists at thermoneutrality. Contrary to our hypothesis, we found that adaptive thermogenesis at room temperature is reduced in RYGB rats.
Collapse
Affiliation(s)
- K Abegg
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - C Corteville
- Department of Surgery I, University of Wurzburg, Wurzburg, Germany
| | - M Bueter
- Division of Visceral and Transplantation Surgery, Department of Surgery, University Hospital Zurich, Zurich, Switzerland.,Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - T A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Mumphrey MB, Hao Z, Townsend RL, Patterson LM, Berthoud HR. Sleeve Gastrectomy Does Not Cause Hypertrophy and Reprogramming of Intestinal Glucose Metabolism in Rats. Obes Surg 2016; 25:1468-73. [PMID: 25566744 DOI: 10.1007/s11695-014-1547-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Clinical studies have shown similar rapid improvements in body mass and glycemic control after Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG). Evidence suggests that adaptive intestinal tissue growth and reprogramming of intestinal glucose disposal play a key role in the beneficial effects on glucose homeostasis after RYGB, but it is not known whether such adaptive changes also occur after sleeve gastrectomy. METHODS High-fat diet-induced obese rats were subjected to either VSG or RYGB, and intestinal growth and functional adaptations were assessed by using morphometric, immunohistochemical, and immuno-blot techniques, 3 months after surgery or sham surgery. RESULTS The cross-sectional areas of the Roux and common limbs are significantly increased after RYGB compared with sham surgery (Roux limb: 17.1 ± 4.0 vs. 5.5 ± 0.1 mm(2); common limb: 11.7 ± 0.6 vs. 5.1 ± 0.5 mm(2); p < 0.01), but the cross-sectional area of the corresponding jejunum is not different from controls after VSG. Similarly, mucosal thickness and the number of GLP-1 cells are not increased after VSG. Protein expression of hexokinase II is increased fourfold (p < 0.01) in the Roux limb after RYGB, but not in the jejunum after VSG. CONCLUSIONS Adaptive hypertrophy and reprogramming of glucose metabolism in the small intestine are not necessary for VSG to improve body composition and glycemic control. The similar beneficial effects of VSG and RYGB on glucose homeostasis might be mediated by different mechanisms.
Collapse
Affiliation(s)
- Michael B Mumphrey
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | | | | | | | | |
Collapse
|
46
|
Duodenal-jejunal bypass surgery suppresses hepatic de novo lipogenesis and alleviates liver fat accumulation in a diabetic rat model. Obes Surg 2015; 24:2152-60. [PMID: 24898720 DOI: 10.1007/s11695-014-1308-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Duodenal-jejunal bypass (DJB) surgery can induce rapid and durable remission of type 2 diabetes mellitus (T2DM), but the intrinsic mechanisms remain to be elucidated. Recent studies indicated that improved hepatic insulin resistance and insulin signaling transduction might contribute to the diabetic control after DJB. Given the important role of liver adiposity in hepatic insulin resistance, this study was aimed at investigating the effects of DJB on glucose homeostasis and liver fat accumulation in a T2DM rat model induced by high-fat diet (HFD) and small dose of streptozotocin (STZ). METHODS Forty adult male diabetic rats induced by HFD and small dose of STZ were randomly assigned to sham and DJB groups. Body weight, calorie intake, hormone levels, glucose, and lipid parameters were measured at indicated time points. Subsequently, hepatic triglycerides (TG) content and the protein levels of sterol regulatory element binding protein-1 (SREBP-1), carbohydrate response element binding protein (ChREBP), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) were evaluated at 2 and 8 weeks postoperatively. RESULTS Compared with sham group, DJB induced rapid and significant improvements in glucose homeostasis and insulin sensitivity independently of weight loss and calorie restriction. The DJB-operated rats exhibited lower liver TG content and decreased hepatic SREBP-1, ChREBP, ACC, and FAS at 8 weeks postoperatively. CONCLUSIONS DJB alleviated hepatic fat accumulation and downregulated the key transcriptional regulators and enzymes involved in hepatic de novo lipogenesis, which might contribute to improved hepatic insulin sensitivity and glucose homeostasis after DJB.
Collapse
|
47
|
Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun 2015. [PMID: 26197299 PMCID: PMC4518285 DOI: 10.1038/ncomms8715] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Roux-en-Y gastric bypass (RYGB) is highly effective in reversing obesity and associated diabetes. Recent observations in humans suggest a contributing role of increased circulating bile acids in mediating such effects. Here we use a diet-induced obesity (DIO) mouse model and compare metabolic remission when bile flow is diverted through a gallbladder anastomosis to jejunum, ileum or duodenum (sham control). We find that only bile diversion to the ileum results in physiologic changes similar to RYGB, including sustained improvements in weight, glucose tolerance and hepatic steatosis despite differential effects on hepatic gene expression. Circulating free fatty acids and triglycerides decrease while bile acids increase, particularly conjugated tauro-β-muricholic acid, an FXR antagonist. Activity of the hepatic FXR/FGF15 signalling axis is reduced and associated with altered gut microbiota. Thus bile diversion, independent of surgical rearrangement of the gastrointestinal tract, imparts significant weight loss accompanied by improved glucose and lipid homeostasis that are hallmarks of RYGB.
Collapse
|
48
|
Ishikawa T, Graham JL, Stanhope KL, Havel PJ, La Merrill MA. Effect of DDT exposure on lipids and energy balance in obese Sprague-Dawley rats before and after weight loss. Toxicol Rep 2015; 2:990-995. [PMID: 28962439 PMCID: PMC5598246 DOI: 10.1016/j.toxrep.2015.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 11/30/2022] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) and its metabolites accumulate in adipose tissue through dietary exposure, and have been proposed to contribute to the development of abdominal obesity, insulin resistance and dyslipidemia. Toxicity may also result when DDT and its metabolites are released from adipose tissue into the bloodstream as a result of rapid weight loss. We hypothesized that DDT-exposed rats fed a high fat diet (HFD) followed by 60% calorie restriction would have an adverse metabolic response to rapid weight loss. To test this, we exposed obese Sprague-Dawley (SD) rats to DDT and a HFD over one month followed by 60% calorie restricted diet for two weeks, and examined metabolic parameters throughout the study. During the HFD feeding period, DDT-exposed rats had significantly elevated postprandial non-esterified fatty acids (NEFAs) and decreased body temperature compared with control rats. During calorie restriction, DDT-exposed rats had lowered food efficiency (weight gained/calories consumed), body temperature, and circulating TSH. Our findings suggest that exposure to DDT may impairs metabolic substrate utilization in rats during dynamic periods of weight gain and weight loss.
Collapse
Key Words
- CR, caloric restriction
- CVD, cardiovascular disease
- DDE
- DDE, dichlorodiphenyldichloroethylene
- DDT
- DDT, dichlorodiphenyltrichloroethane
- Dyslipidemia
- Food efficiency
- HFD, high fat diet
- NEFA, non esterified fatty acid
- OLTT, oral lipid tolerance test
- SD, Sprague Dawley
- T2DM, type 2 diabetes mellitus
- T3, triiodothyronine
- T4, thyroxine
- TG, triglyceride
- TSH, thyroid-stimulating hormone
- Thermoregulation
- Thyroid hormone
Collapse
Affiliation(s)
- Tomoko Ishikawa
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - James L. Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
- Correspondence to: Department of Toxicology, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
49
|
Penney NC, Kinross J, Newton RC, Purkayastha S. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int J Obes (Lond) 2015; 39:1565-74. [PMID: 26081915 DOI: 10.1038/ijo.2015.115] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/05/2015] [Accepted: 05/31/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bariatric surgery is currently the most efficacious treatment for obesity and its associated metabolic co-morbidities, such as diabetes. The metabolic improvements occur through both weight-dependent and weight-independent mechanisms. Bile acids (BAs) have emerged as key signalling molecules that have a central role in modulating many of the physiological effects seen after bariatric surgery. This systematic review assesses the evidence from both human and animal studies for the role of BAs in reducing the metabolic complications of obesity following bariatric surgery. METHODS We conducted a systematic search of Medline and Embase databases to identify all articles investigating the role of BAs in mediating the metabolic changes observed following bariatric surgery in both animal and human studies. Boolean logic was used with relevant search terms, including the following MeSH terms: 'bile acids and salts', 'bariatric surgery', 'metabolic surgery', 'gastrointestinal tract/surgery' and 'obesity/surgery'. RESULTS Following database searches (n=1197), inclusion from bibliography searches (n=2) and de-duplication (n=197), 1002 search results were returned. Of these, 132 articles were selected for full-text review, of which 38 articles were deemed relevant and included in the review. The findings support the effects of BAs on satiety, lipid and cholesterol metabolism, incretins and glucose homoeostasis, energy metabolism, gut microbiota and endoplasmic reticulum stress following bariatric surgery. Many of these metabolic effects are modulated through the BA receptors FXR and TGR5. We also explore a possible link between BAs and carcinogenesis following bariatric surgery. CONCLUSIONS Overall there is good evidence to support the role of BAs in the metabolic effects of bariatric surgery through the above mechanisms. BAs could serve as a novel therapeutic pharmacological target for the treatment of obesity and its associated co-morbidities.
Collapse
Affiliation(s)
- N C Penney
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - J Kinross
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - R C Newton
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| | - S Purkayastha
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, London, UK
| |
Collapse
|
50
|
Baraboi ED, Li W, Labbé SM, Roy MC, Samson P, Hould FS, Lebel S, Marceau S, Biertho L, Richard D. Metabolic changes induced by the biliopancreatic diversion in diet-induced obesity in male rats: the contributions of sleeve gastrectomy and duodenal switch. Endocrinology 2015; 156:1316-29. [PMID: 25646712 DOI: 10.1210/en.2014-1785] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying the body weight and fat loss after the biliopancreatic diversion with duodenal switch (BPD/DS) remain to be fully delineated. The aim of this study was to examine the contributions of the two main components of BPD/DS, namely sleeve gastrectomy (SG) and duodenal switch (DS), on energy balance changes in rats rendered obese with a high-fat (HF) diet. Three different bariatric procedures (BPD/DS, SG, and DS) and three sham surgeries were performed in male Wistar rats. Sham-operated animals fed HF were either fed ad libitum (Sham HF) or pair weighed (Sham HF PW) by food restriction to the BPD/DS rats. A group of sham-operated rats was kept on standard chow and served as normal diet control (Sham Chow). All three bariatric surgeries resulted in a transient reduction in food intake. SG per se induced a delay in body weight gain. BPD/DS and DS led to a noticeable gut malabsorption and a reduction in body weight and fat gains along with significant elevations in plasma levels of glucagon-like peptide-1(7-36) and peptide YY. BPD/DS and DS elevated energy expenditure above that of Sham HF PW during the dark phase. However, they reduced the volume, oxidative metabolism, and expression of thermogenic genes in interscapular brown adipose tissue. Altogether the results of this study suggest that the DS component of the BPD/DS, which led to a reduction in digestible energy intake while sustaining energy expenditure, plays a key role in the improvement in the metabolic profile led by BPD/DS in rats fed a HF diet.
Collapse
Affiliation(s)
- Elena-Dana Baraboi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Chemin Sainte-Foy, Québec, Canada G1V 4G5
| | | | | | | | | | | | | | | | | | | |
Collapse
|