1
|
Sheikh S, Stefanovski D, Kilberg MJ, Hadjiliadis D, Rubenstein RC, Rickels MR, Kelly A. Early-phase insulin secretion during mixed-meal tolerance testing predicts β-cell function and secretory capacity in cystic fibrosis. Front Endocrinol (Lausanne) 2024; 15:1340346. [PMID: 38444582 PMCID: PMC10912512 DOI: 10.3389/fendo.2024.1340346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Insulin secretion within 30 minutes of nutrient ingestion is reduced in people with cystic fibrosis (PwCF) and pancreatic insufficiency and declines with worsening glucose tolerance. The glucose potentiated arginine (GPA) test is validated for quantifying β-cell secretory capacity as an estimate of functional β-cell mass but requires technical expertise and is burdensome. This study sought to compare insulin secretion during mixed-meal tolerance testing (MMTT) to GPA-derived parameters in PwCF. Methods Secondary data analysis of CF-focused prospective studies was performed in PwCF categorized as 1) pancreatic insufficient [PI-CF] or 2) pancreatic sufficient [PS-CF] and in 3) non-CF controls. MMTT: insulin secretory rates (ISR) were derived by parametric deconvolution using 2-compartment model of C-peptide kinetics, and incremental area under the curve (AUC) was calculated for 30, 60 and 180-minutes. GPA: acute insulin (AIR) and C-peptide responses (ACR) were calculated as average post-arginine insulin or C-peptide response minus pre-arginine insulin or C-peptide under fasting (AIRarg and ACRarg), ~230 mg/dL (AIRpot and ACRpot), and ~340 mg/dL (AIRmax and ACRmax) hyperglycemic clamp conditions. Relationships of MMTT to GPA parameters were derived using Pearson's correlation coefficient. Predicted values were generated for MMTT ISR and compared to GPA parameters using Bland Altman analysis to assess degree of concordance. Results 85 PwCF (45 female; 75 PI-CF and 10 PS-CF) median (range) age 23 (6-56) years with BMI 23 (13-34) kg/m2, HbA1c 5.5 (3.8-10.2)%, and FEV1%-predicted 88 (26-125) and 4 non-CF controls of similar age and BMI were included. ISR AUC30min positively correlated with AIRarg (r=0.55), AIRpot (r=0.62), and AIRmax (r=0.46) and with ACRarg (r=0.59), ACRpot (r=0.60), and ACRmax (r=0.51) (all P<0.001). ISR AUC30min strongly predicted AIRarg (concordance=0.86), AIRpot (concordance=0.89), and AIRmax (concordance=0.76) at lower mean GPA values, but underestimated AIRarg, AIRpot, and AIRmax at higher GPA-defined β-cell secretory capacity. Between test agreement was unaltered by adjustment for study group, OGTT glucose category, and BMI. Conclusion Early-phase insulin secretion during MMTT can accurately predict GPA-derived measures of β-cell function and secretory capacity when functional β-cell mass is reduced. These data can inform future multicenter studies requiring reliable, standardized, and technically feasible testing mechanisms to quantify β-cell function and secretory capacity.
Collapse
Affiliation(s)
- Saba Sheikh
- Division of Pulmonary and Sleep Medicine, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
| | - Marissa J. Kilberg
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ronald C. Rubenstein
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
2
|
Baidal DA, Ballou CM, Rickels MR, Berney T, Pattou F, Payne EH, Barton FB, Alejandro R. Predictive Value of C-Peptide Measures for Clinical Outcomes of β-Cell Replacement Therapy in Type 1 Diabetes: Report From the Collaborative Islet Transplant Registry (CITR). Diabetes Care 2023; 46:697-703. [PMID: 36657975 PMCID: PMC10148684 DOI: 10.2337/dc22-1155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To determine C-peptide measures and levels associated with positive glycemic control outcomes following islet transplant (ITx) in type 1 diabetes. RESEARCH DESIGN AND METHODS We evaluated Collaborative Islet Transplant Registry (CITR) islet-alone recipients with pretransplant C-peptide <0.1 nmol/L and mean follow-up of 4.6 ± 1.1 years (n = 677). Receiver operating characteristic area under the curve (ROC-AUC) was used to evaluate the predictive value of fasting and stimulated glucose and C-peptide measures for seven primary outcomes: 1) absence of severe hypoglycemic events (ASHEs); 2) HbA1c <7.0%; 3) HbA1c <7.0% and ASHEs; 4) HbA1c ≤6.5%; 5) HbA1c ≤6.5% and ASHEs; 6) insulin independence; and 7) ASHEs, HbA1c ≤6.5%, and insulin independence (the optimal outcome). Measures with the highest ROC-AUC were selected for determination of optimal cut points. RESULTS Fasting C-peptide was highly predictive for ASHE (ROC-AUC 0.906; optimal cut point 0.070 nmol/L) and the optimal outcome (ROC-AUC 0.845; optimal cut point 0.33 nmol/L). Mixed-meal tolerance test (MMTT)-stimulated C-peptide-to-glucose ratio (CPGR) outperformed both fasting and stimulated C-peptide for all outcomes except ASHE. The optimal cut point for the optimal outcome was 0.12 nmol/mmol for MMTT-stimulated CPGR and 0.97 nmol/L for MMTT-stimulated C-peptide. CONCLUSIONS Fasting C-peptide reliably predicts ITx primary outcomes. MMTT-stimulated CPGR provides marginally better prediction for composite ITx outcomes, including insulin independence. In the absence of an MMTT, a fasting C-peptide ≥0.33 nmol/L is a reassuring measure of optimal islet graft function. C-peptide targets represent excellent and easily determinable means to predict glycemic control outcomes after ITx and should be considered as potential goals of β-cell replacement.
Collapse
Affiliation(s)
- David A. Baidal
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Cassandra M. Ballou
- Collaborative Islet Transplant Registry Coordinating Center, The EMMES Company, LLC, Rockville, MD
| | - Michael R. Rickels
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Thierry Berney
- Division of Transplantation, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Francois Pattou
- Department of General and Endocrine Surgery, Centre Hospitalier Universitaire de Lille, Translational Research for Diabetes, INSERM, Université de Lille, Lille, France
| | - Elizabeth H. Payne
- Collaborative Islet Transplant Registry Coordinating Center, The EMMES Company, LLC, Rockville, MD
| | - Franca B. Barton
- Collaborative Islet Transplant Registry Coordinating Center, The EMMES Company, LLC, Rockville, MD
| | - Rodolfo Alejandro
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | | |
Collapse
|
3
|
Abstract
CONTEXT Though posttransplant diabetes mellitus (PTDM, occurring > 45 days after transplantation) and its complications are well described, early post-renal transplant hyperglycemia (EPTH) (< 45 days) similarly puts kidney transplant recipients at risk of infections, rehospitalizations, and graft failure and is not emphasized much in the literature. Proactive screening and management of EPTH is required given these consequences. OBJECTIVE The aim of this article is to promote recognition of early post-renal transplant hyperglycemia, and to summarize available information on its pathophysiology, adverse effects, and management. METHODS A PubMed search was conducted for "early post-renal transplant hyperglycemia," "immediate posttransplant hyperglycemia," "post-renal transplant diabetes," "renal transplant," "diabetes," and combinations of these terms. EPTH is associated with significant complications including acute graft failure, rehospitalizations, cardiovascular events, PTDM, and infections. CONCLUSION Patients with diabetes experience better glycemic control in end-stage renal disease (ESRD), with resurgence of hyperglycemia after kidney transplant. Patients with and without known diabetes are at risk of EPTH. Risk factors include elevated pretransplant fasting glucose, diabetes, glucocorticoids, chronic infections, and posttransplant infections. We find that EPTH increases risk of re-hospitalizations from infections (cytomegalovirus, possibly COVID-19), acute graft rejections, cardiovascular events, and PTDM. It is essential, therefore, to provide diabetes education to patients before discharge. Insulin remains the standard of care while inpatient. Close follow-up after discharge is recommended for insulin adjustment. Some agents like dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 receptor agonists have shown promise. The tenuous kidney function in the early posttransplant period and lack of data limit the use of sodium-glucose cotransporter 2 inhibitors. There is a need for studies assessing noninsulin agents for EPTH to decrease risk of hypoglycemia associated with insulin and long-term complications of EPTH.
Collapse
Affiliation(s)
- Anira Iqbal
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Keren Zhou
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Sangeeta R Kashyap
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - M Cecilia Lansang
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
- Corresponding author: M. Cecilia Lansang, MD, MPH, Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, 9500 Euclid Avenue, F-20, Cleveland, Ohio 44195 Phone: 216-445-5246 x 4, Fax: (216) 445-1656,
| |
Collapse
|
4
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
5
|
Flatt AJS, Greenbaum CJ, Shaw JAM, Rickels MR. Pancreatic islet reserve in type 1 diabetes. Ann N Y Acad Sci 2021; 1495:40-54. [PMID: 33550589 DOI: 10.1111/nyas.14572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet β cell loss and dysfunction resulting in insulin deficiency and hyperglycemia. During a presymptomatic phase of established β cell autoimmunity, β cell loss may first be evident through assessment of β cell secretory capacity, a measure of functional β cell mass. Reduction in pancreatic islet β cell reserve eventually manifests as impaired first-phase insulin response to glucose and abnormal glucose tolerance, which progresses until the functional capacity for β cell secretion can no longer meet the demand for insulin to control glycemia. A functional β cell mass of ∼25% of normal may be required to avoid symptomatic T1D but is already associated with dysregulated glucagon secretion. With symptomatic T1D, stimulated C-peptide levels >0.60 ng/mL (0.200 pmol/mL) indicate the presence of clinically meaningful residual β cell function for contributing to glycemic control, although even higher residual C-peptide appears necessary for evidencing glucose-dependent islet β and α cell function that may contribute to maintaining (near)normal glycemia. β cell replacement by islet transplantation can restore a physiologic reserve capacity for insulin secretion, confirming thresholds for functional β cell mass required for independence from insulin therapy.
Collapse
Affiliation(s)
- Anneliese J S Flatt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Carla J Greenbaum
- Diabetes Program and Center for Interventional Immunology, Benaroya Research Institute, Seattle, Washington
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Michael R Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Kilberg MJ, Harris C, Sheikh S, Stefanovski D, Cuchel M, Kubrak C, Hadjiliadis D, Rubenstein RC, Rickels MR, Kelly A. Hypoglycemia and Islet Dysfunction Following Oral Glucose Tolerance Testing in Pancreatic-Insufficient Cystic Fibrosis. J Clin Endocrinol Metab 2020; 105:5872086. [PMID: 32668452 PMCID: PMC7755140 DOI: 10.1210/clinem/dgaa448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023]
Abstract
CONTEXT Oral glucose tolerance test (OGTT)-related hypoglycemia is common in pancreatic-insufficient cystic fibrosis (PI-CF), but its mechanistic underpinnings are yet to be established. OBJECTIVE To delineate the mechanism(s) underlying OGTT-related hypoglycemia. DESIGN AND SETTING We performed 180-minute OGTTs with frequent blood sampling in adolescents and young adults with PI-CF and compared results with those from a historical healthy control group. Hypoglycemia (Hypo[+]) was defined as plasma glucose <65 mg/dL. We hypothesized that CF-Hypo[+] would demonstrate impaired early phase insulin secretion and persistent late insulin effect compared with control-Hypo[+], and explored the contextual counterregulatory response. MAIN OUTCOME MEASURE OGTT 1-hour and nadir glucose, insulin, C-peptide, and insulin secretory rate (ISR) incremental areas under the curve (AUC) between 0 and 30 minutes (early) and between 120 and 180 minutes (late), and Δglucagon120-180min and Δfree fatty acids (FFAs)120-180min were compared between individuals with CF and control participants with Hypo[+]. RESULTS Hypoglycemia occurred in 15/23 (65%) patients with CF (43% female, aged 24.8 [14.6-30.6] years) and 8/15 (55%) control participants (33% female, aged 26 [21-38] years). The CF-Hypo[+] group versus the control-Hypo[+] group had higher 1-hour glucose (197 ± 49 vs 139 ± 53 mg/dL; P = 0.05) and lower nadir glucose levels (48 ± 7 vs 59 ± 4 mg/dL; P < 0.01), while insulin, C-peptide, and ISR-AUC0-30 min results were lower and insulin and C-peptide, and AUC120-180min results were higher (P < 0.05). Individuals with CF-Hypo[+] had lower Δglucagon120-180min and ΔFFA120-180min compared with the control-Hypo[+] group (P < 0.01). CONCLUSIONS OGTT-related hypoglycemia in PI-CF is associated with elevated 1-hour glucose, impaired early phase insulin secretion, higher late insulin exposure, and less increase in glucagon and FFAs. These data suggest that hypoglycemia in CF is a manifestation of islet dysfunction including an impaired counterregulatory response.
Collapse
Affiliation(s)
- Marissa J Kilberg
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Correspondence and Reprint Requests: Marissa Kilberg, MD, Division of Endocrinology and Diabetes, 3500 Civic Center Blvd, Philadelphia, PA 19104, USA. E-mail:
| | - Clea Harris
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saba Sheikh
- Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Darko Stefanovski
- Department of Clinical Studies—New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christina Kubrak
- Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald C Rubenstein
- Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael R Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania PA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Senior P, Lam A, Farnsworth K, Perkins B, Rabasa-Lhoret R. Assessment of Risks and Benefits of Beta Cell Replacement Versus Automated Insulin Delivery Systems for Type 1 Diabetes. Curr Diab Rep 2020; 20:52. [PMID: 32865637 DOI: 10.1007/s11892-020-01339-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Current approaches to insulin replacement in type 1 diabetes are unable to achieve optimal levels of glycemic control without substantial risk of hypoglycemia and substantial burden of self-management. Advances in biology and technology present beta cell replacement and automated insulin delivery as two alternative approaches. Here we discuss current and future prospects for the relative risks and benefits for biological and psychosocial outcomes from the perspective of researchers, clinicians, and persons living with diabetes. RECENT FINDINGS Beta cell replacement using pancreas or islet transplant can achieve insulin independence but requires immunosuppression. Although insulin independence may not be sustained, time in range of 80-90%, minimal glycemic variability and abolition of hypoglycemia is routine after islet transplantation. Clinical trials of potentially unlimited supply of stem cell-derived beta cells are showing promise. Automated insulin delivery (AID) systems can achieve 70-75% time in range, with reduced glycemic variability. Impatient with the pace of commercially available AID, users have developed their own algorithms which appear to be at least equivalent to systems developed within conventional regulatory frameworks. The importance of psychosocial factors and the preferences and values of persons living with diabetes are emerging as key elements on which therapies should be evaluated beyond their impact of biological outcomes. Biology or technology to deliver glucose dependent insulin secretion is associated with substantial improvements in glycemia and prevention of hypoglycemia while relieving much of the substantial burden of diabetes. Automated insulin delivery, currently, represents a more accessible bridge to a biologic cure that we expect future cellular therapies to deliver.
Collapse
Affiliation(s)
- Peter Senior
- Division of Endocrinology and Metabolism, University of Alberta, 9.114 CSB, Edmonton, AB, Canada.
- Innovations in Type 1 Diabetes, Diabetes Action Canada, Toronto, Canada.
| | - Anna Lam
- Division of Endocrinology and Metabolism, University of Alberta, 9.114 CSB, Edmonton, AB, Canada
| | - Kate Farnsworth
- Innovations in Type 1 Diabetes, Diabetes Action Canada, Toronto, Canada
| | - Bruce Perkins
- Innovations in Type 1 Diabetes, Diabetes Action Canada, Toronto, Canada
- Leadership Sinai Centre for Diabetes, University of Toronto, Toronto, ON, Canada
| | - Remi Rabasa-Lhoret
- Innovations in Type 1 Diabetes, Diabetes Action Canada, Toronto, Canada
- Institutes de Recherche Cliniques de Montreal, Montreal, QC, Canada
| |
Collapse
|
8
|
Gudipaty L, Rosenfeld NK, Fuller CS, Cuchel M, Rickels MR. Different β-cell secretory phenotype in non-obese compared to obese early type 2 diabetes. Diabetes Metab Res Rev 2020; 36:e3295. [PMID: 32017362 PMCID: PMC7864552 DOI: 10.1002/dmrr.3295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Type 2 diabetes (T2D) is characterized by impaired tissue sensitivity to insulin action (ie, insulin resistance) and impaired β-cell insulin secretion. Because obesity contributes importantly to the development of insulin resistance, we sought to determine whether insulin secretory defects would predominate in non-obese compared to obese T2D. METHODS We measured β-cell function and secretory capacity using the glucose-potentiated arginine test in T2D subjects early in the disease course classified as non-obese (BMI <30; n = 12) or obese (BMI ≥30 kg/m2 ; n = 28) and additionally compared responses from non-obese T2D with a non-diabetic control group (n = 12). RESULTS The acute insulin response to glucose potentiation of arginine-induced insulin release was less in non-obese T2D than in controls and associated with impaired β-cell sensitivity to glucose (PG50 ). Proinsulin secretory ratios were increased in non-obese T2D when compared to obese T2D. Obese T2D subjects had reduced insulin sensitivity (M/I) while non-obese T2D subjects had insulin sensitivity that was comparable to controls. CONCLUSIONS In non-obese T2D, insulin secretory defects predominate with impaired β-cell sensitivity to glucose and proinsulin processing in the absence of insulin resistance. Future studies should consider whether different β-cell secretory phenotypes and tissue sensitivity to insulin explain the varying responsiveness to T2D interventions.
Collapse
Affiliation(s)
- Lalitha Gudipaty
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nora K. Rosenfeld
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Carissa S. Fuller
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Rickels MR, Evans-Molina C, Bahnson HT, Ylescupidez A, Nadeau KJ, Hao W, Clements MA, Sherr JL, Pratley RE, Hannon TS, Shah VN, Miller KM, Greenbaum CJ. High residual C-peptide likely contributes to glycemic control in type 1 diabetes. J Clin Invest 2020; 130:1850-1862. [PMID: 31895699 PMCID: PMC7108933 DOI: 10.1172/jci134057] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/26/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUNDResidual C-peptide is detected in many people for years following the diagnosis of type 1 diabetes; however, the physiologic significance of low levels of detectable C-peptide is not known.METHODSWe studied 63 adults with type 1 diabetes classified by peak mixed-meal tolerance test (MMTT) C-peptide as negative (<0.007 pmol/mL; n = 15), low (0.017-0.200; n = 16), intermediate (>0.200-0.400; n = 15), or high (>0.400; n = 17). We compared the groups' glycemia from continuous glucose monitoring (CGM), β cell secretory responses from a glucose-potentiated arginine (GPA) test, insulin sensitivity from a hyperinsulinemic-euglycemic (EU) clamp, and glucose counterregulatory responses from a subsequent hypoglycemic (HYPO) clamp.RESULTSLow and intermediate MMTT C-peptide groups did not exhibit β cell secretory responses to hyperglycemia, whereas the high C-peptide group showed increases in both C-peptide and proinsulin (P ≤ 0.01). All groups with detectable MMTT C-peptide demonstrated acute C-peptide and proinsulin responses to arginine that were positively correlated with peak MMTT C-peptide (P < 0.0001 for both analytes). During the EU-HYPO clamp, C-peptide levels were proportionately suppressed in the low, intermediate, and high C-peptide compared with the negative group (P ≤ 0.0001), whereas glucagon increased from EU to HYPO only in the high C-peptide group compared with negative (P = 0.01). CGM demonstrated lower mean glucose and more time in range for the high C-peptide group.CONCLUSIONThese results indicate that in adults with type 1 diabetes, β cell responsiveness to hyperglycemia and α cell responsiveness to hypoglycemia are observed only at high levels of residual C-peptide that likely contribute to glycemic control.FUNDINGFunding for this work was provided by the Leona M. and Harry B. Helmsley Charitable Trust, the National Center for Advancing Translational Sciences, and the National Institute of Diabetes and Digestive and Kidney Diseases.
Collapse
Affiliation(s)
- Michael R. Rickels
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - Kristen J. Nadeau
- Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Wei Hao
- Benaroya Research Institute, Seattle, Washington, USA
| | | | | | - Richard E. Pratley
- AdventHealth Translational Research Institute for Metabolism and Diabetes, Orlando, Florida, USA
| | - Tamara S. Hannon
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Viral N. Shah
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
10
|
Yardley JE. The Athlete with Type 1 Diabetes: Transition from Case Reports to General Therapy Recommendations. Open Access J Sports Med 2019; 10:199-207. [PMID: 31827338 PMCID: PMC6902845 DOI: 10.2147/oajsm.s149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 12/03/2022] Open
Abstract
Fear of hypoglycemia is a common barrier to exercise and physical activity for individuals with type 1 diabetes. While some of the earliest studies in this area involved only one or two participants, the link between exercise, exogenous insulin, and hypoglycemia was already clear, with the only suggested management strategies being to decrease insulin dosage and/or consume carbohydrates before and after exercise. Over the past 50 years, a great deal of knowledge has been developed around the impact of different types and intensities of exercise on blood glucose levels in this population. Recent decades have also seen the development of technologies such as continuous glucose monitors, faster-acting insulins and commercially available insulin pumps to allow for the real-time observation of interstitial glucose levels, and more precise adjustments to insulin dosage before, during and after activity. As such, there are now evidence-based exercise and physical activity guidelines for individuals with type 1 diabetes. While the risk of hypoglycemia has not been completely eliminated, therapy recommendations have evolved considerably. This review discusses the evolution of the knowledge and the technology related to type 1 diabetes and exercise that have allowed this evolution to take place.
Collapse
Affiliation(s)
- Jane E Yardley
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada.,Alberta Diabetes Institute, Edmonton, Canada.,Augustana Faculty, University of Alberta, Camrose, Canada.,Women's and Children's Research Institute, Edmonton, Canada
| |
Collapse
|
11
|
Rickels MR. Hypoglycemia-associated autonomic failure, counterregulatory responses, and therapeutic options in type 1 diabetes. Ann N Y Acad Sci 2019; 1454:68-79. [PMID: 31389033 DOI: 10.1111/nyas.14214] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/06/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Hypoglycemia remains a major barrier to the achievement of target levels of glycemic control for most individuals with insulin-dependent type 1 diabetes (T1D). Both the loss of β cells and an accompanying defect in the α cell response to hypoglycemia predispose patients with T1D to the development of low blood glucose. Increased glucose variability, exposure to hypoglycemia, and impaired awareness of hypoglycemia all contribute to increased risk of experiencing severe hypoglycemia, which is explained by progressive impairment in epinephrine secretion and autonomic symptom generation in response to hypoglycemia leading to defective glucose counterregulation and hypoglycemia unawareness that characterize hypoglycemia-associated autonomic failure (HAAF). Interruption of HAAF requires interfering with the mechanisms of brain adaptation to low blood glucose that affect central glucose sensing and the autonomic response to hypoglycemia, or avoidance of hypoglycemia that may allow for eventual recovery of counterregulatory and autonomic symptom responses. Strategies for hypoglycemia avoidance that include continuous glucose monitoring may reduce, but do not eliminate, clinically significant hypoglycemia, with ongoing counterregulatory defects and impaired awareness of hypoglycemia. Complete avoidance of hypoglycemia can be achieved following pancreatic islet transplantation and allows for the restoration of counterregulatory and autonomic symptom responses that evidences the potential for reversing HAAF in T1D.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Diabetes, Obesity and Metabolism, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Rickels MR, Robertson RP. Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocr Rev 2019; 40:631-668. [PMID: 30541144 PMCID: PMC6424003 DOI: 10.1210/er.2018-00154] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic islet transplantation has become an established approach to β-cell replacement therapy for the treatment of insulin-deficient diabetes. Recent progress in techniques for islet isolation, islet culture, and peritransplant management of the islet transplant recipient has resulted in substantial improvements in metabolic and safety outcomes for patients. For patients requiring total or subtotal pancreatectomy for benign disease of the pancreas, isolation of islets from the diseased pancreas with intrahepatic transplantation of autologous islets can prevent or ameliorate postsurgical diabetes, and for patients previously experiencing painful recurrent acute or chronic pancreatitis, quality of life is substantially improved. For patients with type 1 diabetes or insulin-deficient forms of pancreatogenic (type 3c) diabetes, isolation of islets from a deceased donor pancreas with intrahepatic transplantation of allogeneic islets can ameliorate problematic hypoglycemia, stabilize glycemic lability, and maintain on-target glycemic control, consequently with improved quality of life, and often without the requirement for insulin therapy. Because the metabolic benefits are dependent on the numbers of islets transplanted that survive engraftment, recipients of autoislets are limited to receive the number of islets isolated from their own pancreas, whereas recipients of alloislets may receive islets isolated from more than one donor pancreas. The development of alternative sources of islet cells for transplantation, whether from autologous, allogeneic, or xenogeneic tissues, is an active area of investigation that promises to expand access and indications for islet transplantation in the future treatment of diabetes.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - R Paul Robertson
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Pacific Northwest Diabetes Research Institute, Seattle, Washington
| |
Collapse
|
13
|
Yardley JE, Rees JL, Funk DR, Toghi-Eshghi SR, Boulé NG, Senior PA. Effects of Moderate Cycling Exercise on Blood Glucose Regulation Following Successful Clinical Islet Transplantation. J Clin Endocrinol Metab 2019; 104:493-502. [PMID: 30403817 DOI: 10.1210/jc.2018-01498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022]
Abstract
CONTEXT Islet transplantation is effective in preventing hypoglycemia in patients with type 1 diabetes (T1D). However, it is unknown whether transplanted islets regulate plasma glucose concentrations appropriately during and after exercise in human islet transplant recipient (ITxs). OBJECTIVE To determine the effect of exercise on plasma glucose, insulin, and glucagon concentrations in ITxs compared with control subjects (CONs) without diabetes. INTERVENTION Participants completed two conditions in random order: 45 minutes of aerobic exercise (60% VO2peak) and 45 minutes of seated rest. Blood samples were drawn at baseline, immediately after exercise or rest, and every 15 minutes throughout a 60-minute recovery period. Postexercise (24 hours) interstitial glucose was monitored with continuous glucose monitoring (CGM). RESULTS Twenty-four participants (12 ITxs, 12 CONs) completed the protocol. Plasma glucose decreased more over time with exercise in ITxs compared with CONs [main effects of treatment (P = 0.019), time (P = 0.001), and group (P = 0.012)]. Plasma glucose was lower during exercise vs rest in ITxs but not CONs [treatment by group interaction (P = 0.028)]. Plasma glucose decreased more during exercise than during rest [treatment by time interaction (P = 0.001)]. One ITx and one CON experienced plasma glucose concentrations <3.5 mmol/L at the end of exercise, both of whom returned above that threshold within 15 minutes. Nocturnal CGM glucose <3.5 mmol/L was detected in two CONs but no ITxs. CONCLUSION Despite a greater plasma glucose decline during exercise in ITxs, hypoglycemia risk was similar during and after exercise in ITxs compared with CONs.
Collapse
Affiliation(s)
- Jane E Yardley
- Augustana Faculty, University of Alberta, Camrose, Alberta, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan L Rees
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Deanna R Funk
- Augustana Faculty, University of Alberta, Camrose, Alberta, Canada
| | - Saeed Reza Toghi-Eshghi
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Normand G Boulé
- Alberta Diabetes Institute, Edmonton, Alberta, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A Senior
- Alberta Diabetes Institute, Edmonton, Alberta, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Abstract
β cell replacement with either pancreas or islet transplantation has progressed immensely over the last decades with current 1- and 5-year insulin independence rates of approximately 85% and 50%, respectively. Recent advances are largely attributed to improvements in immunosuppressive regimen, donor selection, and surgical technique. However, both strategies are compromised by a scarce donor source. Xenotransplantation offers a potential solution by providing a theoretically unlimited supply of islets, but clinical application has been limited by concerns for a potent immune response against xenogeneic tissue. β cell clusters derived from embryonic or induced pluripotent stem cells represent another promising unlimited source of insulin producing cells, but clinical application is pending further advances in the function of the β cell like clusters. Exciting developments and rapid progress in all areas of β cell replacement prompted a lively debate by members of the young investigator committee of the International Pancreas and Islet Transplant Association at the 15th International Pancreas and Islet Transplant Association Congress in Melbourne and at the 26th international congress of The Transplant Society in Hong Kong. This international group of young investigators debated which modality of β cell replacement would predominate the landscape in 10 years, and their arguments are summarized here.
Collapse
|
15
|
Anderson SJ, White MG, Armour SL, Maheshwari R, Tiniakos D, Muller YD, Berishvili E, Berney T, Shaw JAM. Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation. Am J Transplant 2018; 18:750-755. [PMID: 28949067 DOI: 10.1111/ajt.14521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 01/25/2023]
Abstract
Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin+ /urocortin-3- cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained.
Collapse
Affiliation(s)
- S J Anderson
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - M G White
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - S L Armour
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - R Maheshwari
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - D Tiniakos
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK.,Department of Pathology, Aretaieion Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Y D Muller
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - E Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| | - T Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - J A M Shaw
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
16
|
Hannon TS, Kahn SE, Utzschneider KM, Buchanan TA, Nadeau KJ, Zeitler PS, Ehrmann DA, Arslanian SA, Caprio S, Edelstein SL, Savage PJ, Mather KJ. Review of methods for measuring β-cell function: Design considerations from the Restoring Insulin Secretion (RISE) Consortium. Diabetes Obes Metab 2018; 20:14-24. [PMID: 28493515 PMCID: PMC6095472 DOI: 10.1111/dom.13005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 01/09/2023]
Abstract
The Restoring Insulin Secretion (RISE) study was initiated to evaluate interventions to slow or reverse the progression of β-cell failure in type 2 diabetes (T2D). To design the RISE study, we undertook an evaluation of methods for measurement of β-cell function and changes in β-cell function in response to interventions. In the present paper, we review approaches for measurement of β-cell function, focusing on methodologic and feasibility considerations. Methodologic considerations included: (1) the utility of each technique for evaluating key aspects of β-cell function (first- and second-phase insulin secretion, maximum insulin secretion, glucose sensitivity, incretin effects) and (2) tactics for incorporating a measurement of insulin sensitivity in order to adjust insulin secretion measures for insulin sensitivity appropriately. Of particular concern were the capacity to measure β-cell function accurately in those with poor function, as is seen in established T2D, and the capacity of each method for demonstrating treatment-induced changes in β-cell function. Feasibility considerations included: staff burden, including time and required methodological expertise; participant burden, including time and number of study visits; and ease of standardizing methods across a multicentre consortium. After this evaluation, we selected a 2-day measurement procedure, combining a 3-hour 75-g oral glucose tolerance test and a 2-stage hyperglycaemic clamp procedure, augmented with arginine.
Collapse
Affiliation(s)
- Tamara S Hannon
- Departments of Pediatrics (T. S. H.) and Medicine (K. J. M.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven E Kahn
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, Washington
| | - Kristina M Utzschneider
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, Washington
| | - Thomas A Buchanan
- University of Southern California Keck School of Medicine/Kaiser Permanente Southern California, Department of Medicine, Los Angeles, California
| | - Kristen J Nadeau
- University of Colorado Denver/Children's Hospital Colorado, Department of Pediatrics, Denver, Colorado
| | - Philip S Zeitler
- University of Colorado Denver/Children's Hospital Colorado, Department of Pediatrics, Denver, Colorado
| | | | - Silva A Arslanian
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Department of Pediatrics, Pittsburgh, Pennsylvania
| | - Sonia Caprio
- Department of Pediatrics, Yale University, New Haven, Connecticut
| | - Sharon L Edelstein
- George Washington University Biostatistics Center (RISE Coordinating Center), Rockville, Maryland
| | - Peter J Savage
- National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland
| | - Kieren J Mather
- Departments of Pediatrics (T. S. H.) and Medicine (K. J. M.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
17
|
Courtade JA, Klimek-Abercrombie AM, Chen YC, Patel N, Lu PYT, Speake C, Orban PC, Najafian B, Meneilly G, Greenbaum CJ, Warnock GL, Panagiotopoulos C, Verchere CB. Measurement of Pro-Islet Amyloid Polypeptide (1-48) in Diabetes and Islet Transplants. J Clin Endocrinol Metab 2017; 102:2595-2603. [PMID: 28368485 DOI: 10.1210/jc.2016-2773] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
Abstract
CONTEXT Islet amyloid is a feature of β-cell failure in type 2 diabetes (T2D) and type 1 diabetes (T1D) recipients of islet transplants. Islet amyloid contains islet amyloid polypeptide (IAPP; amylin), a circulating peptide that is produced in β cells by processing of its precursor, proIAPP1-67, via an intermediate form, proIAPP1-48. Elevated proinsulin to C-peptide ratios in the plasma of persons with diabetes suggest defects in β-cell prohormone processing. OBJECTIVE Determine whether plasma levels of precursor forms of IAPP are elevated in diabetes. DESIGN, SETTING, AND PATIENTS We developed an immunoassay to detect proIAPP1-48 in human plasma, and we determined the ratio of proIAPP1-48 to mature IAPP in subjects with T1D, T2D, recipients of islet transplants, and healthy controls. RESULTS The proIAPP1-48 immunoassay had a limit of detection of 0.18 ± 0.06 pM and cross-reactivity with intact proIAPP1-67 <15%. Healthy individuals had plasma concentrations of proIAPP1-48 immunoreactivity of 1.5 ± 0.2 pM and a proIAPP1-48 to total IAPP ratio of 0.28 ± 0.03. Plasma concentrations of proIAPP1-48 immunoreactivity were not significantly different in subjects with T2D but were markedly increased in T1D recipients of islet transplants. Children and adults with T1D had reduced mature IAPP levels relative to age-matched controls but an elevated ratio of proIAPP1-48 to total IAPP. CONCLUSION The β cells in T1D and islet transplants have impaired processing of the proIAPP1-48 intermediate. The ratio of proIAPP1-48-to-IAPP immunoreactivity may have value as a biomarker of β-cell stress and dysfunction.
Collapse
Affiliation(s)
- Jaques A Courtade
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
| | - Agnieszka M Klimek-Abercrombie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
| | - Yi-Chun Chen
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Nirja Patel
- American Laboratory Products Company, Salem, New Hampshire 03079
| | - Phoebe Y T Lu
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington 98101
| | - Paul C Orban
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
| | - Behzad Najafian
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Graydon Meneilly
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington 98101
| | - Garth L Warnock
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Constadina Panagiotopoulos
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - C Bruce Verchere
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
18
|
|
19
|
Halden TAS, Egeland EJ, Åsberg A, Hartmann A, Midtvedt K, Khiabani HZ, Holst JJ, Knop FK, Hornum M, Feldt-Rasmussen B, Jenssen T. GLP-1 Restores Altered Insulin and Glucagon Secretion in Posttransplantation Diabetes. Diabetes Care 2016; 39:617-24. [PMID: 26908914 DOI: 10.2337/dc15-2383] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/04/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Development of posttransplantation diabetes (PTDM) is characterized by reduced insulin secretion and sensitivity. We aimed to investigate whether hyperglucagonemia could play a role in PTDM and to examine the insulinotropic and glucagonostatic effects of the incretin hormone glucagon-like peptide 1 (GLP-1) during fasting and hyperglycemic conditions, respectively. RESEARCH DESIGN AND METHODS Renal transplant recipients with (n = 12) and without (n = 12) PTDM underwent two separate experimental days with 3-h intravenous infusions of GLP-1 (0.8 pmol/kg/min) and saline, respectively. After 1 h of infusion, a 2-h hyperglycemic clamp (fasting plasma glucose + 5 mmol/L) was established. Five grams of arginine was given as an intravenous bolus 10 min before termination of the clamp. RESULTS Fasting concentrations of glucagon (P = 0.92) and insulin (P = 0.23) were similar between the groups. In PTDM patients, glucose-induced glucagon suppression was significantly less pronounced (maximal suppression from baseline: 43 ± 12 vs. 65 ± 12%, P < 0.001), while first- and second-phase insulin secretion were significantly lower. The PTDM group also exhibited a significantly lower insulin response to arginine (P = 0.01) but similar glucagon and proinsulin responses compared with control subjects. In the preclamp phase, GLP-1 lowered fasting plasma glucose to the same extent in both groups but reduced glucagon only in PTDM patients. During hyperglycemic clamp, GLP-1 reduced glucagon concentrations and increased first- and second-phase insulin secretion in both groups. CONCLUSIONS PTDM is characterized by reduced glucose-induced insulin secretion and attenuated glucagon suppression during a hyperglycemic clamp. Similar to the case in type 2 diabetes, GLP-1 infusion seems to improve (insulin) or even normalize (glucagon) these pathophysiological defects.
Collapse
Affiliation(s)
- Thea A S Halden
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erlend J Egeland
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway Norwegian Renal Registry, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anders Hartmann
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karsten Midtvedt
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Hassan Z Khiabani
- Department of Pharmacology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mads Hornum
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bo Feldt-Rasmussen
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Trond Jenssen
- Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
20
|
Redfield RR, Rickels MR, Naji A, Odorico JS. Pancreas Transplantation in the Modern Era. Gastroenterol Clin North Am 2016; 45:145-66. [PMID: 26895686 DOI: 10.1016/j.gtc.2015.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of pancreas transplantation has evolved from an experimental procedure in the 1980s to become a routine transplant in the modern era. With short- and long-term outcomes continuing to improve and the significant mortality, quality-of-life, and end-organ disease benefits, pancreas transplantation should be offered to more patients. In this article, we review current indications, patient selection, surgical considerations, complications, and outcomes in the modern era of pancreas transplantation.
Collapse
Affiliation(s)
- Robert R Redfield
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Clinical Science Cntr-H4/772, Madison, WI 53792, USA.
| | - Michael R Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, 2-134 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Ali Naji
- Division of Transplantation, Department of Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104-4283, USA
| | - Jon S Odorico
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Clinical Science Cntr-H4/772, Madison, WI 53792, USA
| |
Collapse
|
21
|
Shivaswamy V, Boerner B, Larsen J. Post-Transplant Diabetes Mellitus: Causes, Treatment, and Impact on Outcomes. Endocr Rev 2016; 37:37-61. [PMID: 26650437 PMCID: PMC4740345 DOI: 10.1210/er.2015-1084] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Post-transplant diabetes mellitus (PTDM) is a frequent consequence of solid organ transplantation. PTDM has been associated with greater mortality and increased infections in different transplant groups using different diagnostic criteria. An international consensus panel recommended a consistent set of guidelines in 2003 based on American Diabetes Association glucose criteria but did not exclude the immediate post-transplant hospitalization when many patients receive large doses of corticosteroids. Greater glucose monitoring during all hospitalizations has revealed significant glucose intolerance in the majority of recipients immediately after transplant. As a result, the international consensus panel reviewed its earlier guidelines and recommended delaying screening and diagnosis of PTDM until the recipient is on stable doses of immunosuppression after discharge from initial transplant hospitalization. The group cautioned that whereas hemoglobin A1C has been adopted as a diagnostic criterion by many, it is not reliable as the sole diabetes screening method during the first year after transplant. Risk factors for PTDM include many of the immunosuppressant medications themselves as well as those for type 2 diabetes. The provider managing diabetes and associated dyslipidemia and hypertension after transplant must be careful of the greater risk for drug-drug interactions and infections with immunosuppressant medications. Treatment goals and therapies must consider the greater risk for fluctuating and reduced kidney function, which can cause hypoglycemia. Research is actively focused on strategies to prevent PTDM, but until strategies are found, it is imperative that immunosuppression regimens are chosen based on their evidence to prolong graft survival, not to avoid PTDM.
Collapse
Affiliation(s)
- Vijay Shivaswamy
- Division of Diabetes, Endocrinology, and Metabolism (V.S., B.B., J.L.), Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198; and VA Nebraska-Western Iowa Health Care System (V.S.), Omaha, Nebraska 68105
| | - Brian Boerner
- Division of Diabetes, Endocrinology, and Metabolism (V.S., B.B., J.L.), Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198; and VA Nebraska-Western Iowa Health Care System (V.S.), Omaha, Nebraska 68105
| | - Jennifer Larsen
- Division of Diabetes, Endocrinology, and Metabolism (V.S., B.B., J.L.), Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198; and VA Nebraska-Western Iowa Health Care System (V.S.), Omaha, Nebraska 68105
| |
Collapse
|
22
|
Bottino R, Trucco M. Clinical implementation of islet transplantation: A current assessment. Pediatr Diabetes 2015; 16:393-401. [PMID: 26084669 DOI: 10.1111/pedi.12287] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 01/03/2023] Open
Abstract
Beta-cell replacement is the only physiologically relevant alternative to insulin injections in patients with type 1 diabetes (T1D). Pancreas and islet transplantation from deceased organ donors can provide a new beta-cell pool to produce insulin, help blood glucose management, and delay secondary diabetes complications. For children and adolescents with T1D, whole pancreas transplantation is not a viable option because of surgical complications, whereas islet transplantation, even if it is procedurally simpler, must still overcome the burden of immunosuppression to become a routine therapy for children in the future.
Collapse
Affiliation(s)
- Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Choudhary P, Rickels MR, Senior PA, Vantyghem MC, Maffi P, Kay TW, Keymeulen B, Inagaki N, Saudek F, Lehmann R, Hering BJ. Evidence-informed clinical practice recommendations for treatment of type 1 diabetes complicated by problematic hypoglycemia. Diabetes Care 2015; 38:1016-29. [PMID: 25998294 PMCID: PMC4439532 DOI: 10.2337/dc15-0090] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Problematic hypoglycemia, defined as two or more episodes per year of severe hypoglycemia or as one episode associated with impaired awareness of hypoglycemia, extreme glycemic lability, or major fear and maladaptive behavior, is a challenge, especially for patients with long-standing type 1 diabetes. Individualized therapy for such patients should include a composite target: optimal glucose control without problematic hypoglycemia. Therefore, we propose a tiered, four-stage algorithm based on evidence of efficacy given the limitations of educational, technological, and transplant interventions. All patients with problematic hypoglycemia should undergo structured or hypoglycemia-specific education programs (stage 1). Glycemic and hypoglycemia treatment targets should be individualized and reassessed every 3-6 months. If targets are not met, one diabetes technology-continuous subcutaneous insulin infusion or continuous glucose monitoring-should be added (stage 2). For patients with continued problematic hypoglycemia despite education (stage 1) and one diabetes technology (stage 2), sensor-augmented insulin pumps preferably with an automated low-glucose suspend feature and/or very frequent contact with a specialized hypoglycemia service can reduce hypoglycemia (stage 3). For patients whose problematic hypoglycemia persists, islet or pancreas transplant should be considered (stage 4). This algorithm provides an evidence-informed approach to resolving problematic hypoglycemia; it should be used as a guide, with individual patient circumstances directing suitability and acceptability to ensure the prudent use of technology and scarce transplant resources. Standardized reporting of hypoglycemia outcomes and inclusion of patients with problematic hypoglycemia in studies of new interventions may help to guide future therapeutic strategies.
Collapse
Affiliation(s)
| | - Michael R Rickels
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Peter A Senior
- Department of Medicine, Division of Endocrinology, University of Alberta, Edmonton, Canada
| | - Marie-Christine Vantyghem
- Endocrinology and Metabolism Department, INSERM U1190, European Genomics Institute for Diabetes, Lille University Hospital, Lille Cedex, France
| | - Paola Maffi
- Diabetes Research Institute, Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Thomas W Kay
- Immunology and Diabetes Unit, St. Vincent's Institute, University of Melbourne, Melbourne, Australia
| | - Bart Keymeulen
- Diabetes Clinic and Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nobuya Inagaki
- Department of Diabetes and Clinical Nutrition, Kyoto University, Kyoto, Japan
| | - Frantisek Saudek
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Roger Lehmann
- Department of Endocrinology and Diabetology, University of Zurich, Zurich, Switzerland
| | - Bernhard J Hering
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota, Minneapolis, MN
| |
Collapse
|
24
|
Abstract
A workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases focused on research gaps and opportunities in total pancreatectomy with islet autotransplantation (TPIAT) for the management of chronic pancreatitis. The session was held on July 23, 2014 and structured into 5 sessions: (1) patient selection, indications, and timing; (2) technical aspects of TPIAT; (3) improving success of islet autotransplantation; (4) improving outcomes after total pancreatectomy; and (5) registry considerations for TPIAT. The current state of knowledge was reviewed; knowledge gaps and research needs were specifically highlighted. Common themes included the need to identify which patients best benefit from and when to intervene with TPIAT, current limitations of the surgical procedure, diabetes remission and the potential for improvement, opportunities to better address pain remission, GI complications in this population, and unique features of children with chronic pancreatitis considered for TPIAT. The need for a multicenter patient registry that specifically addresses the complexities of chronic pancreatitis and total pancreatectomy outcomes and postsurgical diabetes outcomes was repeatedly emphasized.
Collapse
|
25
|
Robertson RP, Bogachus LD, Oseid E, Parazzoli S, Patti ME, Rickels MR, Schuetz C, Dunn T, Pruett T, Balamurugan AN, Sutherland DER, Beilman G, Bellin MD. Assessment of β-cell mass and α- and β-cell survival and function by arginine stimulation in human autologous islet recipients. Diabetes 2015; 64:565-72. [PMID: 25187365 PMCID: PMC4303963 DOI: 10.2337/db14-0690] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We used intravenous arginine with measurements of insulin, C-peptide, and glucagon to examine β-cell and α-cell survival and function in a group of 10 chronic pancreatitis recipients 1-8 years after total pancreatectomy and autoislet transplantation. Insulin and C-peptide responses correlated robustly with the number of islets transplanted (correlation coefficients range 0.81-0.91; P < 0.01-0.001). Since a wide range of islets were transplanted, we normalized the insulin and C-peptide responses to the number of islets transplanted in each recipient for comparison with responses in normal subjects. No significant differences were observed in terms of magnitude and timing of hormone release in the two groups. Three recipients had a portion of the autoislets placed within their peritoneal cavities, which appeared to be functioning normally up to 7 years posttransplant. Glucagon responses to arginine were normally timed and normally suppressed by intravenous glucose infusion. These findings indicate that arginine stimulation testing may be a means of assessing the numbers of native islets available in autologous islet transplant candidates and is a means of following posttransplant α- and β-cell function and survival.
Collapse
Affiliation(s)
- R Paul Robertson
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA Departments of Pediatrics and Surgery, University of Minnesota, Minneapolis, MN Pacific Northwest Diabetes Research Institute, Seattle, WA
| | - Lindsey D Bogachus
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA Pacific Northwest Diabetes Research Institute, Seattle, WA
| | | | | | | | - Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Ty Dunn
- Departments of Pediatrics and Surgery, University of Minnesota, Minneapolis, MN
| | - Timothy Pruett
- Departments of Pediatrics and Surgery, University of Minnesota, Minneapolis, MN
| | - A N Balamurugan
- Departments of Pediatrics and Surgery, University of Minnesota, Minneapolis, MN
| | | | - Gregory Beilman
- Departments of Pediatrics and Surgery, University of Minnesota, Minneapolis, MN
| | - Melena D Bellin
- Departments of Pediatrics and Surgery, University of Minnesota, Minneapolis, MN
| |
Collapse
|
26
|
Total pancreatectomy with islet autotransplantation: summary of a National Institute of Diabetes and Digestive and Kidney diseases workshop. Pancreas 2014; 43:1163-71. [PMID: 25333399 PMCID: PMC4205476 DOI: 10.1097/mpa.0000000000000236] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases focused on research gaps and opportunities in total pancreatectomy with islet autotransplantation (TPIAT) for the management of chronic pancreatitis (CP). The session was held on July 23, 2014, and structured into 5 sessions: (1) patient selection, indications, and timing; (2) technical aspects of TPIAT; (3) improving success of islet autotransplantation; (4) improving outcomes after total pancreatectomy; and (5) registry considerations for TPIAT. The current state of knowledge was reviewed; knowledge gaps and research needs were specifically highlighted. Common themes included the need to identify which patients best benefit from and when to intervene with TPIAT, current limitations of the surgical procedure, diabetes remission and the potential for improvement, opportunities to better address pain remission, gastrointestinal complications in this population, and unique features of children with CP considered for TPIAT. The need for a multicenter patient registry that specifically addresses the complexities of CP and total pancreatectomy outcomes as well as postsurgical diabetes outcomes was repeatedly emphasized.
Collapse
|
27
|
Total pancreatectomy with islet autotransplantation: summary of a National Institute of Diabetes and Digestive and Kidney diseases workshop. Pancreas 2014. [PMID: 25333399 DOI: 10.1097/mpa.000000000000 0236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases focused on research gaps and opportunities in total pancreatectomy with islet autotransplantation (TPIAT) for the management of chronic pancreatitis (CP). The session was held on July 23, 2014, and structured into 5 sessions: (1) patient selection, indications, and timing; (2) technical aspects of TPIAT; (3) improving success of islet autotransplantation; (4) improving outcomes after total pancreatectomy; and (5) registry considerations for TPIAT. The current state of knowledge was reviewed; knowledge gaps and research needs were specifically highlighted. Common themes included the need to identify which patients best benefit from and when to intervene with TPIAT, current limitations of the surgical procedure, diabetes remission and the potential for improvement, opportunities to better address pain remission, gastrointestinal complications in this population, and unique features of children with CP considered for TPIAT. The need for a multicenter patient registry that specifically addresses the complexities of CP and total pancreatectomy outcomes as well as postsurgical diabetes outcomes was repeatedly emphasized.
Collapse
|
28
|
Engraftment versus immunosuppression: cost-benefit analysis of immunosuppression after intrahepatic murine islet transplantation. Transplantation 2014; 97:1019-26. [PMID: 24770621 DOI: 10.1097/tp.0000000000000104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Immunosuppression (IS) in islet transplantation (Tx) is a double-edged sword: it prevents immunoreaction but has the potential to impair islet engraftment. The aim of this study was to identify in murine animal models the IS platform with the best balance between these two opposite effects. METHODS To study the impact of IS on islet engraftment diabetic C57BL/6 mice were transplanted with 350 syngeneic islets through the portal vein and treated once-daily with either rapamycin (RAPA; 0.1-0.5-1 mg/kg ip), tacrolimus (FK506; 0.1-0.5-1 mg/kg ip), mycophenolate mofetil (MMF; 60-120-300 mg/kg oral) or vehicle for 14 days. Islet function was evaluated by measuring not-fasting glycemia and by performing an IVGTT on days 15 and 30 post-Tx. RESULTS RAPA ≥0.5 mg/Kg, FK506 ≥0.5 mg/Kg, and MMF ≥120 mg/kg had detrimental effects on islet engraftment but not on the function of islets already engrafted in the liver. The effect on engraftment was irreversible and persisted even after IS withdrawal. The lower dose of IS that did not affect engraftment was tested for preventing rejection in the full mismatch allogeneic Tx BALB/c to C57BL/6 model. RAPA and/or FK506 were inefficient in preventing rejection, even when anti-IL2R mAb was added to the IS regimen. On the other hand, MMF alone or in association with FK506 significantly prolonged the time to islet rejection. CONCLUSION IS showed profound dose-dependent deleterious effects on islet cell engraftment. The MMF/FK506 combination proved the best balance with less toxicity at the time of engraftment and more efficacy in controlling graft rejection.
Collapse
|
29
|
Potter KJ, Westwell-Roper CY, Klimek-Abercrombie AM, Warnock GL, Verchere CB. Death and dysfunction of transplanted β-cells: lessons learned from type 2 diabetes? Diabetes 2014; 63:12-9. [PMID: 24357689 DOI: 10.2337/db12-0364] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
β-Cell replacement by islet transplantation is a potential curative therapy for type 1 diabetes. Despite advancements in islet procurement and immune suppression that have increased islet transplant survival, graft function progressively declines, and many recipients return to insulin dependence within a few years posttransplant. The progressive loss of β-cell function in islet transplants seems unlikely to be explained by allo- and autoimmune-mediated mechanisms alone and in a number of ways resembles β-cell failure in type 2 diabetes. That is, both following transplantation and in type 2 diabetes, islets exhibit decreased first-phase glucose-stimulated insulin secretion, impaired proinsulin processing, inflammation, formation of islet amyloid, signs of oxidative and endoplasmic reticulum stress, and β-cell death. These similarities suggest common mechanisms may underlie loss of insulin production in both type 2 diabetes and islet transplantation and point to the potential for therapeutic approaches used in type 2 diabetes that target the β-cell, such as incretin-based therapies, as adjuncts for immunosuppression in islet transplantation.
Collapse
Affiliation(s)
- Kathryn J Potter
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
30
|
Rickels MR, Liu C, Shlansky-Goldberg RD, Soleimanpour SA, Vivek K, Kamoun M, Min Z, Markmann E, Palangian M, Dalton-Bakes C, Fuller C, Chiou AJ, Barker CF, Luning Prak ET, Naji A. Improvement in β-cell secretory capacity after human islet transplantation according to the CIT07 protocol. Diabetes 2013; 62:2890-7. [PMID: 23630300 PMCID: PMC3717864 DOI: 10.2337/db12-1802] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/24/2013] [Indexed: 12/15/2022]
Abstract
The Clinical Islet Transplantation 07 (CIT07) protocol uses antithymocyte globulin and etanercept induction, islet culture, heparinization, and intensive insulin therapy with the same low-dose tacrolimus and sirolimus maintenance immunosuppression as in the Edmonton protocol. To determine whether CIT07 improves engrafted islet β-cell mass, our center measured β-cell secretory capacity from glucose-potentiated arginine tests at days 75 and 365 after transplantation and compared those results with the results previously achieved by our group using the Edmonton protocol and normal subjects. All subjects were insulin free, with CIT07 subjects receiving fewer islet equivalents from a median of one donor compared with two donors for Edmonton protocol subjects. The acute insulin response to glucose-potentiated arginine (AIRpot) was greater in the CIT07 protocol than in the Edmonton protocol and was less in both cohorts than in normal subjects, with similar findings for C-peptide. The CIT07 subjects who completed reassessment at day 365 exhibited increasing AIRpot by trend relative to that of day 75. These data indicate that engrafted islet β-cell mass is markedly improved with the CIT07 protocol, especially given more frequent use of single islet donors. Although several peritransplant differences may have each contributed to this improvement, the lack of deterioration in β-cell secretory capacity over time in the CIT07 protocol suggests that low-dose tacrolimus and sirolimus are not toxic to islets.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mayson SE, Parker VER, Schutta MH, Semple RK, Rickels MR. Severe insulin resistance and hypertriglyceridemia after childhood total body irradiation. Endocr Pract 2013; 19:51-8. [PMID: 23186952 PMCID: PMC4569090 DOI: 10.4158/ep12115.or] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To characterize the metabolic phenotype of 2 cases of normal weight young women who developed type 2 diabetes (T2D), severe insulin resistance (insulin requirement >200 units/day), marked hypertriglyceridemia (>2000 mg/dL), and hepatic steatosis beginning 9 years after undergoing total body irradiation (TBI) and bone marrow transplantation for childhood cancer. METHODS Fasting plasma glucose, insulin, free fatty acids (FFAs), leptin, adiponectin, resistin, TNFα, and IL-6 were measured in each case and in 8 healthy women; Case 1 was also assessed after initiating pioglitazone. Coding regions and splice junctions of PPARG, LMNA, and AKT2 were sequenced in Case 1 and of PPARG in Case 2 to evaluate for familial partial lipodystrophies. Genotyping of APOE was performed in Case 1 to rule out type III hyperlipoproteinemia. RESULTS Both cases had elevated plasma levels of insulin, leptin, resistin, and IL-6, high-normal to elevated TNFα, and low to low-normal adiponectin in keeping with post-receptor insulin resistance and adipose tissue inflammation. Case 1 experienced a biochemical response to pioglitazone. No causative mutations for partial lipodystrophies or type III hyperlipoproteinemia were identified. CONCLUSION Though metabolic derangements have previously been reported in association with TBI, few cases have described insulin resistance and hypertriglyceridemia as severe as that seen in our patients. We speculate that early childhood TBI may impede adipose tissue development leading to metabolic complications from an attenuated ability of adipose tissue to accommodate caloric excess, and propose that this extreme metabolic syndrome be evaluated for as a late complication of TBI.
Collapse
Affiliation(s)
- Sarah E Mayson
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
32
|
Ozbay LA, Møller N, Juhl C, Bjerre M, Carstens J, Rungby J, Jørgensen KA. The impact of calcineurin inhibitors on insulin sensitivity and insulin secretion: a randomized crossover trial in uraemic patients. Diabet Med 2012; 29:e440-4. [PMID: 23003106 DOI: 10.1111/dme.12028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS The calcineurin inhibitors cyclosporine and tacrolimus are implicated in post-transplant complications such as new-onset diabetes after transplantation. The relative contribution of each calcineurin inhibitor to new-onset diabetes after transplantation remains unclear. We sought to compare the impact of cyclosporine and tacrolimus on glucose metabolism in humans. METHODS Eight haemodialysis patients received 8-10 days of oral treatment followed by 5-h infusions with cyclosporine, tacrolimus and saline in a randomized, investigator-blind, crossover study. Glucose metabolism and β-cell function was investigated through: a hyperinsulinaemic-euglycaemic clamp, an intravenous glucose tolerance test and insulin concentration time series. RESULTS Cyclosporine and tacrolimus decreased insulin sensitivity by 22% (P = 0.02) and 13% (P = 0.048), respectively. The acute insulin response and pulsatile insulin secretion were not significantly affected by the drugs. CONCLUSION In conclusion, 8-10 days of treatment with cyclosporine and tacrolimus impairs insulin sensitivity to a similar degree in haemodialysis patients, while acute insulin responses and pulsatile insulin secretion remain unaffected.
Collapse
Affiliation(s)
- L A Ozbay
- Department of Nephrology, Aarhus University Hospital, Skejby, Denmark.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Long-standing type 1 diabetes (T1D) is associated with an absolute loss of endogenous insulin secretion (circulating C-peptide is undetectable) and a related defect in glucose counter-regulation that is often complicated by hypoglycemia unawareness, markedly increasing the risk for severe hypoglycemia. Both the transplantation of isolated islets and a whole pancreas can restore β-cell secretory capacity, improve glucose counter-regulation, and return hypoglycemia awareness, thus alleviating severe hypoglycemia. The transplantation of islets may require more than one donor pancreas, and the recovery of endocrine function for now appears more durable with a whole pancreas; however, islet transplantation outcomes are steadily improving. Because not all patients with T1D experiencing severe hypoglycemia are candidates to receive a whole pancreas, and since not all pancreata are technically suitable for whole organ transplantation, islet and pancreas transplantation are evolving as complementary approaches for the recovery of endocrine function in patients with the most problematic T1D.
Collapse
Affiliation(s)
- Michael R Rickels
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Institute for Diabetes, Obesity, and Metabolism, 12-134 Translational Research Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, Oberholzer J, Odorico JS, Garfinkel MR, Levy M, Pattou F, Berney T, Secchi A, Messinger S, Senior PA, Maffi P, Posselt A, Stock PG, Kaufman DB, Luo X, Kandeel F, Cagliero E, Turgeon NA, Witkowski P, Naji A, O'Connell PJ, Greenbaum C, Kudva YC, Brayman KL, Aull MJ, Larsen C, Kay TWH, Fernandez LA, Vantyghem MC, Bellin M, Shapiro AMJ. Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care 2012; 35:1436-45. [PMID: 22723582 PMCID: PMC3379615 DOI: 10.2337/dc12-0063] [Citation(s) in RCA: 510] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To describe trends of primary efficacy and safety outcomes of islet transplantation in type 1 diabetes recipients with severe hypoglycemia from the Collaborative Islet Transplant Registry (CITR) from 1999 to 2010. RESEARCH DESIGN AND METHODS A total of 677 islet transplant-alone or islet-after-kidney recipients with type 1 diabetes in the CITR were analyzed for five primary efficacy outcomes and overall safety to identify any differences by early (1999-2002), mid (2003-2006), or recent (2007-2010) transplant era based on annual follow-up to 5 years. RESULTS Insulin independence at 3 years after transplant improved from 27% in the early era (1999-2002, n = 214) to 37% in the mid (2003-2006, n = 255) and to 44% in the most recent era (2007-2010, n = 208; P = 0.006 for years-by-era; P = 0.01 for era alone). C-peptide ≥0.3 ng/mL, indicative of islet graft function, was retained longer in the most recent era (P < 0.001). Reduction of HbA(1c) and resolution of severe hypoglycemia exhibited enduring long-term effects. Fasting blood glucose stabilization also showed improvements in the most recent era. There were also modest reductions in the occurrence of adverse events. The islet reinfusion rate was lower: 48% by 1 year in 2007-2010 vs. 60-65% in 1999-2006 (P < 0.01). Recipients that ever achieved insulin-independence experienced longer duration of islet graft function (P < 0.001). CONCLUSIONS The CITR shows improvement in primary efficacy and safety outcomes of islet transplantation in recipients who received transplants in 2007-2010 compared with those in 1999-2006, with fewer islet infusions and adverse events per recipient.
Collapse
|
35
|
Dong M, Parsaik AK, Eberhardt NL, Basu A, Cosio FG, Kudva YC. Cellular and physiological mechanisms of new-onset diabetes mellitus after solid organ transplantation. Diabet Med 2012; 29:e1-12. [PMID: 22364599 DOI: 10.1111/j.1464-5491.2012.03617.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New-onset diabetes after transplantation is recognized as one of the metabolic consequences which may increase the risk of morbidity and mortality after solid organ transplantation. The pathophysiology of new-onset diabetes after transplantation has not been clearly defined and may resemble that of Type 2 diabetes, characterized by predominantly insulin resistance or defective insulin secretion, or both. This review aims to summarize the current state of knowledge regarding the prevalence, consequences, pathogenesis, and management of new-onset diabetes after transplantation, with a major focus on the possible mechanisms involved in the pathogenesis of the disorder. The aetiology of new-onset diabetes after transplantation is multifactorial, with diabetogenic immunosuppressive drugs playing a major role. Multiple cellular and physiologic mechanisms are involved in the process. Selection of an appropriate maintenance immunosuppressive regimen should involve balancing the risk of patient and graft survival vs. the potential for new-onset diabetes after transplantation.
Collapse
Affiliation(s)
- M Dong
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55902, USA
| | | | | | | | | | | |
Collapse
|
36
|
Øzbay LA, Møller N, Juhl C, Bjerre M, Carstens J, Rungby J, Jørgensen KA. Calcineurin inhibitors acutely improve insulin sensitivity without affecting insulin secretion in healthy human volunteers. Br J Clin Pharmacol 2012; 73:536-45. [PMID: 21988494 DOI: 10.1111/j.1365-2125.2011.04118.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT New onset diabetes after transplantation is related to treatment with immunosuppressive medications. Clinical studies have shown that risk of new onset diabetes is greater with tacrolimus compared with ciclosporin. The diabetogenicity of ciclosporin and tacrolimus has been attributed to both beta cell dysfunction and impaired insulin sensitivity. WHAT THIS STUDY ADDS This is the first trial to investigate beta cell function and insulin sensitivity using gold standard methodology in healthy human volunteers treated with clinically relevant doses of ciclosporin and tacrolimus. We document that both drugs acutely increase insulin sensitivity, while first phase and pulsatile insulin secretion remain unaffected. This study demonstrates that ciclosporin and tacrolimus have similar acute effects on glucose metabolism in healthy humans. AIM The introduction of calcineurin inhibitors (CNIs) ciclosporin (CsA) and tacrolimus (Tac) has improved the outcome of organ transplants, but complications such as new onset diabetes mellitus after transplantation (NODAT) cause impairment of survival rates. The relative contribution of each CNI to the pathogenesis and development of NODAT remains unclear. We sought to compare the impact of CsA and Tac on glucose metabolism in human subjects. METHODS Ten healthy men underwent 5 h infusions of CsA, Tac and saline in a randomized, double-blind, crossover study. During infusion glucose metabolism was investigated using following methods: a hyperinsulinaemic-euglycemic clamp, an intravenous glucose tolerance test (i.v.GTT), glucose-stimulated insulin concentration-time series and indirect calorimetry. RESULTS Clamp derived insulin sensitivity was increased by 25% during CsA (P < 0.0001) and 13% during Tac administration (P = 0.047), whereas first phase and pulsatile insulin secretion were unaffected. Coinciding with the CNI induced improved insulin sensitivity, glucose oxidation rates increased, while insulin clearance rates decreased, only non-significantly. Tac singularly lowered hsCRP concentrations, otherwise no changes were observed in circulating glucagon, FFA or adiponectin concentrations. Mean blood concentrations of CNIs were 486.9 ± 23.5 µg l(-1) for CsA and 12.8 ± 0.5 µg l(-1) for Tac. CONCLUSIONS Acute effects of i.v. CsA, and to a lesser degree Tac infusions, in healthy volunteers include increased insulin sensitivity, without any effect on first phase or pulsatile insulin secretion.
Collapse
Affiliation(s)
- Lara Aygen Øzbay
- Department of Nephrology, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
37
|
|