1
|
Zheng M, Wang C, Hu M, Li Q, Li J, Quan S, Zhang X, Gu L. Research progress on the association of insulin resistance with type 2 diabetes mellitus and Alzheimer's disease. Metab Brain Dis 2024; 40:35. [PMID: 39570454 DOI: 10.1007/s11011-024-01472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/09/2024] [Indexed: 11/22/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that is characterized by insulin resistance and hyperglycemia. It is also known to be a risk factor for Alzheimer's disease (AD). Insulin plays a crucial role in regulating the body's metabolism and is responsible for activating the Phosphoinotide-3-Kinase (PI3K)/Protein Kinase B (Akt) signaling pathway. This pathway is activated when insulin binds to the insulin receptor on nerve cells, and it helps regulate the metabolism of glucose and lipids. Dysfunction in the insulin signaling pathway can lead to a decrease in brain insulin levels and insulin sensitivity, thereby inducing disruptions in insulin signal transduction and leading to disorders in brain energy metabolism. Moreover, these dysfunctions also contribute to the accumulation of β-amyloid (Aβ) deposition and the hyperphosphorylation of Tau protein, both of which are characteristic features of AD. Therefore, this article focuses on insulin resistance to reveal the complex mechanism between brain insulin resistance and AD occurrence in T2DM. On this basis, this article further summarizes the biological effects and mechanisms of antidiabetic drugs on the two diseases, aiming to provide new ideas for the discovery of drugs for the treatment of T2DM combined with AD.
Collapse
Affiliation(s)
- Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Jinhua Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Shengli Quan
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy (Institute of Materia Medica), Hangzhou Medical College, No.182, Tianmushan road, Xihu District, Hangzhou, 310013, Zhejiang, P.R. China.
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, P.R. China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy (Institute of Materia Medica), Hangzhou Medical College, No.182, Tianmushan road, Xihu District, Hangzhou, 310013, Zhejiang, P.R. China.
| |
Collapse
|
2
|
Tabassum A, Badulescu S, Singh E, Asoro R, McIntyre RS, Teopiz KM, Llach CD, Shah H, Mansur RB. Central effects of acute intranasal insulin on neuroimaging, cognitive, and behavioural outcomes: A systematic review. Neurosci Biobehav Rev 2024; 167:105907. [PMID: 39332547 DOI: 10.1016/j.neubiorev.2024.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/10/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The distribution of insulin receptors throughout the brain implicates insulin in physiological functions and disease states, including cognition, appetite, mood, and metabolic disorders. Intranasally administered insulin offers a non-invasive approach for isolating and investigating brain insulin action. This systematic review synthesized the effects of acute intranasal insulin on neuroimaging, cognitive, and behavioural outcomes reported in 48 studies in adults. Age, sex, body mass index, and insulin resistance were found to moderate brain insulin action. Neuroimaging studies showed insulin affects brain activity, cerebral blood flow, and functional connectivity in regions like the hypothalamus, amygdala, and insula. Insulin also modified cognitive function, eating behaviour, and the stress response. Nonetheless, inconsistencies in study designs, dosages, and outcome measures necessitate standardized methodologies to better understand central insulin action. Taken together, insulin's ability to modify stress and fear, appetite and eating behaviour, and cognitive function in both healthy and diseased individuals highlight its potential in the therapeutic and mechanistic exploration of highly prevalent psychiatric, metabolic, and cognitive conditions like mood disorders, obesity, and Alzheimer's disease.
Collapse
Affiliation(s)
- Aniqa Tabassum
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Sebastian Badulescu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Evanka Singh
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Renee Asoro
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Roger S McIntyre
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Department of Psychiatry, University of Toronto, Canada.
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Canada.
| | - Cristian-Daniel Llach
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Hiya Shah
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Rodrigo B Mansur
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Wu S, Stogios N, Hahn M, Navagnanavel J, Emami Z, Chintoh A, Gerretsen P, Graff-Guerrero A, Rajji TK, Remington G, Agarwal SM. Outcomes and clinical implications of intranasal insulin on cognition in humans: A systematic review and meta-analysis. PLoS One 2023; 18:e0286887. [PMID: 37379265 DOI: 10.1371/journal.pone.0286887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Aberrant brain insulin signaling has been posited to lie at the crossroads of several metabolic and cognitive disorders. Intranasal insulin (INI) is a non-invasive approach that allows investigation and modulation of insulin signaling in the brain while limiting peripheral side effects. OBJECTIVES The objective of this systematic review and meta-analysis is to evaluate the effects of INI on cognition in diverse patient populations and healthy individuals. METHODS MEDLINE, EMBASE, PsycINFO, and Cochrane CENTRAL were systematically searched from 2000 to July 2021. Eligible studies were randomized controlled trials that studied the effects of INI on cognition. Two independent reviewers determined study eligibility and extracted relevant descriptive and outcome data. RESULTS Twenty-nine studies (pooled N = 1,726) in healthy individuals as well as those with Alzheimer's disease (AD)/mild cognitive impairment (MCI), mental health disorders, metabolic disorders, among others, were included in the quantitative meta-analysis. Patients with AD/MCI treated with INI were more likely to show an improvement in global cognition (SMD = 0.22, 95% CI: 0.05-0.38 p = <0.00001, N = 12 studies). Among studies with healthy individuals and other patient populations, no significant effects of INI were found for global cognition. CONCLUSIONS This review demonstrates that INI may be associated with pro-cognitive benefits for global cognition, specifically for individuals with AD/MCI. Further studies are required to better understand the neurobiological mechanisms and differences in etiology to dissect the intrinsic and extrinsic factors contributing to the treatment response of INI.
Collapse
Affiliation(s)
- Sally Wu
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | | | - Zahra Emami
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Araba Chintoh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Philip Gerretsen
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Tarek K Rajji
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Becerra LA, Gavrieli A, Khan F, Novak P, Lioutas V, Ngo LH, Novak V, Mantzoros CS. Daily intranasal insulin at 40IU does not affect food intake and body composition: A placebo-controlled trial in older adults over a 24-week period with 24-weeks of follow-up. Clin Nutr 2023; 42:825-834. [PMID: 37084469 PMCID: PMC10330069 DOI: 10.1016/j.clnu.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
Centrally administered insulin stimulates the reward system to reduce appetite in response to food intake in animal studies. In humans, studies have shown conflicting results, with some studies suggesting that intranasal insulin (INI) in relatively high doses may decrease appetite, body fat, and weight in various populations. These hypotheses have not been tested in a large longitudinal placebo-controlled study. Participants in the Memory Advancement with Intranasal Insulin in Type 2 Diabetes (MemAID) trial were enrolled in this study. This study on energy homeostasis enrolled 89 participants who completed baseline and at least 1 intervention visit (42 women; age 65 ± 9 years; 46 INI, 38 with type 2 diabetes) and 76 completed treatment (16 women, age 64 ± 9; 38 INI, 34 with type 2 diabetes). The primary outcome was the INI effect on food intake. Secondary outcomes included the effect of INI on appetite and anthropometric measures, including body weight and body composition. In exploratory analyses, we tested the interaction of treatment with gender, body mass index (BMI), and diagnosis of type 2 diabetes. There was no INI effect on food intake or any of the secondary outcomes. INI also showed no differential effect on primary and secondary outcomes when considering gender, BMI, and type 2 diabetes. INI did not alter appetite or hunger nor cause weight loss when used at 40 I.U. intranasally daily for 24 weeks in older adults with and without type 2 diabetes.
Collapse
Affiliation(s)
- Laura Aponte Becerra
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anna Gavrieli
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Faizan Khan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter Novak
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vasileios Lioutas
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Long H Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center and School of Public Health, Harvard Medical School, Boston, MA, USA
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
5
|
Schneider E, Spetter MS, Martin E, Sapey E, Yip KP, Manolopoulos KN, Tahrani AA, Thomas JM, Lee M, Hallschmid M, Rotshtein P, Dourish CT, Higgs S. The effect of intranasal insulin on appetite and mood in women with and without obesity: an experimental medicine study. Int J Obes (Lond) 2022; 46:1319-1327. [PMID: 35397638 PMCID: PMC9239904 DOI: 10.1038/s41366-022-01115-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Intranasal (IN) administration of insulin decreases appetite in humans, but the underlying mechanisms are unclear, and it is unknown whether IN insulin affects the food intake of women with obesity. SUBJECTS/METHODS In a double-blind, placebo-controlled, crossover design, participants (35 lean women and 17 women with obesity) were randomized to receive 160 IU/1.6 mL of IN insulin or placebo in a counterbalanced order in the post prandial state. The effects of IN insulin on cookie intake, appetite, mood, food reward, cognition and neural activity were assessed. RESULTS IN insulin in the post prandial state reduced cookie intake, appetite and food reward relative to placebo and these effects were more pronounced for women with obesity compared with lean women. IN insulin also improved mood in women with obesity. In both BMI groups, IN insulin increased neural activity in the insula when viewing food pictures. IN insulin did not affect cognitive function. CONCLUSIONS These results suggest that IN insulin decreases palatable food intake when satiated by reducing food reward and that women with obesity may be more sensitive to this effect than lean women. Further investigation of the therapeutic potential of IN insulin for weight management in women with obesity is warranted.
Collapse
Affiliation(s)
- Elizabeth Schneider
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maartje S Spetter
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Elizabeth Martin
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, UK
| | - Kay Por Yip
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, UK
- University of Birmingham Institute of Inflammation and Ageing, Birmingham, UK
| | - Konstantinos N Manolopoulos
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Abd A Tahrani
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | | | - Michelle Lee
- Department of Psychology, Swansea University, Swansea, UK
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen, Germany
| | - Pia Rotshtein
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Colin T Dourish
- P1vital Ltd., Wallingford, UK
- P1vital Products Ltd, Wallingford, UK
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Krug R, Beier L, Lämmerhofer M, Hallschmid M. Distinct and Convergent Beneficial Effects of Estrogen and Insulin on Cognitive Function in Healthy Young Men. J Clin Endocrinol Metab 2022; 107:e582-e593. [PMID: 34534317 PMCID: PMC8764344 DOI: 10.1210/clinem/dgab689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Systematic investigations into the cognitive impact of estradiol and insulin in male individuals are sparse, and it is unclear whether the 2 hormones interact to benefit specific cognitive functions in humans. OBJECTIVE We investigated the acute effect of estradiol and insulin and of their combined administration on divergent (creative) and convergent (arithmetical) thinking as well as short-term and working verbal memory in healthy young men. METHODS According to a 2 × 2 design, 2 groups of men (each n = 16) received a 3-day transdermal estradiol (100 µg/24 h) or placebo pretreatment and on 2 separate mornings were intranasally administered 160 IU regular human insulin and, respectively, placebo before completing a battery of cognitive tests; we also determined relevant blood parameters. RESULTS Estrogen compared with placebo treatment induced a 3.5-fold increase in serum estradiol and suppressed serum testosterone concentrations by 70%. Estrogen in comparison to placebo improved creative performance, that is, verbal fluency and flexibility, but not arithmetical thinking, as well as verbal short-term memory, but not visuospatial memory. The combination of estrogen and insulin enhanced recognition discriminability at delayed verbal memory recall; insulin alone remained without effect. CONCLUSION Estrogen specifically enhances core aspects of creativity and verbal memory in young male individuals; delayed recognition memory benefits from the combined administration of estradiol and insulin. Our results indicate that insulin's acute cognitive impact in young men is limited and not robustly potentiated by estradiol. Estradiol per se exerts a beneficial acute effect on creative and verbal performance in healthy young men.
Collapse
Affiliation(s)
- Rosemarie Krug
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Laura Beier
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, University of Tübingen, 72076 Tübingen, Germany
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), 72076 Tübingen, Germany
- Correspondence: Manfred Hallschmid, PhD, University of Tübingen, Institute of Medical Psychology and Behavioral Neurobiology, Otfried-Müller-Straße 25, 72076 Tübingen, Germany.
| |
Collapse
|
7
|
Scherer T, Sakamoto K, Buettner C. Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 2021; 17:468-483. [PMID: 34108679 DOI: 10.1038/s41574-021-00498-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Insulin signalling in the central nervous system regulates energy homeostasis by controlling metabolism in several organs and by coordinating organ crosstalk. Studies performed in rodents, non-human primates and humans over more than five decades using intracerebroventricular, direct hypothalamic or intranasal application of insulin provide evidence that brain insulin action might reduce food intake and, more importantly, regulates energy homeostasis by orchestrating nutrient partitioning. This Review discusses the metabolic pathways that are under the control of brain insulin action and explains how brain insulin resistance contributes to metabolic disease in obesity, the metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Kenichi Sakamoto
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
8
|
Wei Z, Koya J, Reznik SE. Insulin Resistance Exacerbates Alzheimer Disease via Multiple Mechanisms. Front Neurosci 2021; 15:687157. [PMID: 34349617 PMCID: PMC8326507 DOI: 10.3389/fnins.2021.687157] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is a chronic neurodegenerative disease that accounts for 60–70% of dementia and is the sixth leading cause of death in the United States. The pathogenesis of this debilitating disorder is still not completely understood. New insights into the pathogenesis of AD are needed in order to develop novel pharmacologic approaches. In recent years, numerous studies have shown that insulin resistance plays a significant role in the development of AD. Over 80% of patients with AD have type II diabetes (T2DM) or abnormal serum glucose, suggesting that the pathogenic mechanisms of insulin resistance and AD likely overlap. Insulin resistance increases neuroinflammation, which promotes both amyloid β-protein deposition and aberrant tau phosphorylation. By increasing production of reactive oxygen species, insulin resistance triggers amyloid β-protein accumulation. Oxidative stress associated with insulin resistance also dysregulates glycogen synthase kinase 3-β (GSK-3β), which leads to increased tau phosphorylation. Both insulin and amyloid β-protein are metabolized by insulin degrading enzyme (IDE). Defects in this enzyme are the basis for a strong association between T2DM and AD. This review highlights multiple pathogenic mechanisms induced by insulin resistance that are implicated in AD. Several pharmacologic approaches to AD associated with insulin resistance are presented.
Collapse
Affiliation(s)
- Zenghui Wei
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Sandra E Reznik
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States.,Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
9
|
Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021; 234:113370. [PMID: 33621561 PMCID: PMC8053680 DOI: 10.1016/j.physbeh.2021.113370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
The intranasal (IN) administration of neuropeptides, such as insulin and orexins, has been suggested as a treatment strategy for age-related cognitive decline (ARCD). Because dysfunctional neuropeptide signaling is an observed characteristic of ARCD, it has been suggested that IN delivery of insulin and/or orexins may restore endogenous peptide signaling and thereby preserve cognition. IN administration is particularly alluring as it is a relatively non-invasive method that directly targets peptides to the brain. Several laboratories have examined the behavioral effects of IN insulin in young, aged, and cognitively impaired rodents and humans. These studies demonstrated improved performance on various cognitive tasks following IN insulin administration. Fewer laboratories have assessed the effects of IN orexins; however, this peptide also holds promise as an effective treatment for ARCD through the activation of the cholinergic system and/or the reduction of neuroinflammation. Here, we provide a brief overview of the advantages of IN administration and the delivery pathway, then summarize the current literature on IN insulin and orexins. Additional preclinical studies will be useful to ultimately uncover the mechanisms underlying the pro-cognitive effects of IN insulin and orexins, whereas future clinical studies will aid in the determination of the most efficacious dose and dosing paradigm. Eventually, IN insulin and/or orexin administration may be a widely used treatment strategy in the clinic for ARCD.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States.
| | - Coleman B Calva
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC, 29208, United States
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| |
Collapse
|
10
|
Abstract
The intranasal (IN) route enables the delivery of insulin to the central nervous system in the relative absence of systemic uptake and related peripheral side effects. Intranasally administered insulin is assumed to travel along olfactory and adjacent pathways and has been shown to rapidly accumulate in cerebrospinal fluid, indicating efficient transport to the brain. Two decades of studies in healthy humans and patients have demonstrated that IN insulin exerts functional effects on metabolism, such as reductions in food intake and body weight and improvements of glucose homeostasis, as well as cognition, ie, enhancements of memory performance both in healthy individuals and patients with mild cognitive impairment or Alzheimer's disease; these studies moreover indicate a favourable safety profile of the acute and repeated use of IN insulin. Emerging findings suggest that IN insulin also modulates neuroendocrine activity, sleep-related mechanisms, sensory perception and mood. Some, but not all studies point to sex differences in the response to IN insulin that need to be further investigated along with the impact of age. "Brain insulin resistance" is an evolving concept that posits impairments in central nervous insulin signalling as a pathophysiological factor in metabolic and cognitive disorders such as obesity, type 2 diabetes and Alzheimer's disease, and, notably, a target of interventions that rely on IN insulin. Still, the negative outcomes of longer-term IN insulin trials in individuals with obesity or Alzheimer's disease highlight the need for conceptual as well as methodological advances to translate the promising results of proof-of-concept experiments and pilot clinical trials into the successful clinical application of IN insulin.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Ferreira ST. Brain insulin, insulin-like growth factor 1 and glucagon-like peptide 1 signalling in Alzheimer's disease. J Neuroendocrinol 2021; 33:e12959. [PMID: 33739563 DOI: 10.1111/jne.12959] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Although the brain was once considered an insulin-independent organ, insulin signalling is now recognised as being central to neuronal health and to the function of synapses and brain circuits. Defective brain insulin signalling, as well as related signalling by insulin-like growth factor 1 (IGF-1), is associated with neurological disorders, including Alzheimer's disease, suggesting that cognitive impairment could be related to a state of brain insulin resistance. Here, I briefly review key epidemiological/clinical evidence of the association between diabetes, cognitive decline and AD, as well as findings of reduced components of insulin signalling in AD brains, which led to the initial suggestion that AD could be a type of brain diabetes. Particular attention is given to recent studies illuminating mechanisms leading to neuronal insulin resistance as a key driver of cognitive impairment in AD. Evidence of impaired IGF-1 signalling in AD is also examined. Finally, we discuss potentials and possible limitations of recent and on-going therapeutic approaches based on our increased understanding of the roles of brain signalling by insulin, IGF-1 and glucagon-like peptide 1 in AD.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Domingues R, Pereira C, Cruz MT, Silva A. Therapies for Alzheimer's disease: a metabolic perspective. Mol Genet Metab 2021; 132:162-172. [PMID: 33549409 DOI: 10.1016/j.ymgme.2021.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia in the elderly. Currently, there are over 50 million cases of dementia worldwide and it is expected that it will reach 136 million by 2050. AD is described as a neurodegenerative disease that gradually compromises memory and learning capacity. Patients often exhibit brain glucose hypometabolism and are more susceptible to develop type 2 diabetes or insulin resistance in comparison with age-matched controls. This suggests that there is a link between both pathologies. Glucose metabolism and the tricarboxylic acid cycle are tightly related to mitochondrial performance and energy production. Impairment of both these pathways can evoke oxidative damage on mitochondria and key proteins linked to several hallmarks of AD. Glycation is also another type of post-translational modification often reported in AD, which might impair the function of proteins that participate in metabolic pathways thought to be involved in this illness. Despite needing further research, therapies based on insulin treatment, usage of anti-diabetes drugs or some form of dietary intervention, have shown to be promising therapeutic approaches for AD in its early stages of progression and will be unveiled in this paper.
Collapse
Affiliation(s)
- Raquel Domingues
- Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal
| | - Claúdia Pereira
- Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
13
|
Abstract
Brain insulin signaling contributes to memory function and might be a viable target in the prevention and treatment of memory impairments including Alzheimer's disease. This short narrative review explores the potential of central nervous system (CNS) insulin administration via the intranasal pathway to improve memory performance in health and disease, with a focus on the most recent results. Proof-of-concept studies and (pilot) clinical trials in individuals with mild cognitive impairment or Alzheimer's disease indicate that acute and prolonged intranasal insulin administration enhances memory performance, and suggest that brain insulin resistance is a pathophysiological factor in Alzheimer's disease with or without concomitant metabolic dysfunction. Intranasally administered insulin is assumed to trigger improvements in synaptic plasticity and regional glucose uptake as well as alleviations of Alzheimer's disease neuropathology; additional contributions of changes in hypothalamus-pituitary-adrenocortical axis activity and sleep-related mechanisms are discussed. While intranasal insulin delivery has been conclusively demonstrated to be effective and safe, the recent outcomes of large-scale clinical studies underline the need for further investigations, which might also yield new insights into sex differences in the response to intranasal insulin and contribute to the optimization of delivery devices to grasp the full potential of intranasal insulin for Alzheimer's disease.
Collapse
Affiliation(s)
- Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
| |
Collapse
|
14
|
Dai CL, Li H, Hu X, Zhang J, Liu F, Iqbal K, Gong CX. Neonatal Exposure to Anesthesia Leads to Cognitive Deficits in Old Age: Prevention with Intranasal Administration of Insulin in Mice. Neurotox Res 2020; 38:299-311. [PMID: 32458405 DOI: 10.1007/s12640-020-00223-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Recent pre-clinical and clinical studies suggest that general anesthesia in infants and children may increase the risk of learning disabilities. Currently, there is no treatment for preventing anesthesia-induced neurotoxicity and potential long-term functional impairment. Animal studies have shown that neonatal exposure to anesthesia can induce acute neurotoxicity and long-term behavioral changes that can be detected a few months later. It is currently unknown whether neonatal exposure, especially repeated exposures, to general anesthesia can induce or increase the risk for cognitive impairment during aging. Here, we report that repeated exposures of neonatal mice (P7-9 days old) to anesthesia with sevoflurane (3 h/day for 3 days) led to cognitive impairment that was detectable at the age of 18-19 months, as assessed by using novel object recognition, Morris water maze, and fear conditioning tests. The repeated neonatal exposures to anesthesia did not result in detectable alterations in neurobehavioral development, in tau phosphorylation, or in the levels of synaptic proteins in the aged mouse brains. Importantly, we found that treatment with intranasal insulin prior to anesthesia exposure can prevent mice from anesthesia-induced cognitive impairment. These results suggest that neonatal exposure to general anesthesia could increase the risk for cognitive impairment during aging. This study also supports pre-treatment with intranasal administration of insulin to be a simple, effective approach to prevent infants and children from the increased risk for age-related cognitive impairment induced by neonatal exposure to general anesthesia.
Collapse
Affiliation(s)
- Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Hengchang Li
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.,Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xin Hu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Jin Zhang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.,Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.
| |
Collapse
|
15
|
Bhattamisra SK, Shin LY, Saad HIBM, Rao V, Candasamy M, Pandey M, Choudhury H. Interlink Between Insulin Resistance and Neurodegeneration with an Update on Current Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:174-183. [PMID: 32418534 DOI: 10.2174/1871527319666200518102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
The interlink between diabetes mellitus and neurodegenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD) has been identified by several researchers. Patients with Type-2 Diabetes Mellitus (T2DM) are found to be affected with cognitive impairments leading to learning and memory deficit, while patients with Type-1 Diabetes Mellitus (T1DM) showed less severe levels of these impairments in the brain. This review aimed to discuss the connection between insulin with the pathophysiology of neurodegenerative diseases (AD and PD) and the current therapeutic approached mediated through insulin for management of neurodegenerative diseases. An extensive literature search was conducted using keywords "insulin"; "insulin resistance"; "Alzheimer's disease"; "Parkinson's disease" in public domains of Google scholar, PubMed, and ScienceDirect. Selected articles were used to construct this review. Studies have shown that impaired insulin signaling contributes to the accumulation of amyloid-β, neurofibrillary tangles, tau proteins and α-synuclein in the brain. Whereas, improvement in insulin signaling slows down the progression of cognitive decline. Various therapeutic approaches for altering the insulin function in the brain have been researched. Besides intranasal insulin, other therapeutics like PPAR-γ agonists, neurotrophins, stem cell therapy and insulin-like growth factor-1 are under investigation. Research has shown that insulin insensitivity in T2DM leads to neurodegeneration through mechanisms involving a variety of extracellular, membrane receptor, and intracellular signaling pathway disruptions. Some therapeutics, such as intranasal administration of insulin and neuroactive substances have shown promise but face problems related to genetic background, accessibility to the brain, and invasiveness of the procedures.
Collapse
Affiliation(s)
- Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Lee Yuen Shin
- School of Health Sciences, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | | | - Vikram Rao
- School of Postgraduate Studies, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Ferreira de Sá DS, Römer S, Brückner AH, Issler T, Hauck A, Michael T. Effects of intranasal insulin as an enhancer of fear extinction: a randomized, double-blind, placebo-controlled experimental study. Neuropsychopharmacology 2020; 45:753-760. [PMID: 31896118 PMCID: PMC7076012 DOI: 10.1038/s41386-019-0593-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 01/27/2023]
Abstract
Fear-extinction based psychotherapy (exposure) is the most effective method for treating anxiety disorders. Notwithstanding, since some patients show impairments in the unlearning of fear and insufficient fear remission, there is a growing interest in using cognitive enhancers as adjuvants to exposure. As insulin plays a critical role in stress processes and acts as a memory enhancer, this study aimed to assess the capacity of intranasal insulin to augment fear extinction. A double-blind, placebo-controlled differential fear-conditioning paradigm was conducted in 123 healthy participants (63 females). Pictures of faces with neutral expressions were used as conditioned stimuli and electric shocks as unconditioned stimuli. The paradigm consisted of four phases presented on three consecutive days: acquisition (day 1), extinction (day 2), reinstatement and re-extinction (day 3). A single intranasal dose of insulin (160 IU) or placebo was applied on day 2, 45 min before fear extinction. Skin conductance response (SCR), fear-potentiated startle (FPS) and expectancy ratings were assessed. During extinction, the insulin group (independent of sex) showed a significantly stronger decrease in differential FPS in comparison with the placebo group. Furthermore, a sex-specific effect was found for SCR, with women in the insulin group showing a greater decrease of differential SCR both at early extinction and at late re-extinction. Our results provide first evidence that intranasal insulin facilitates fear extinction processes and is therefore a promising adjuvant for extinction-based therapies in anxiety and related disorders. Sex-specific effects should be taken into consideration in future studies.
Collapse
Affiliation(s)
- Diana S. Ferreira de Sá
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Sonja Römer
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Alexandra H. Brückner
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Tobias Issler
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Alexander Hauck
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Tanja Michael
- 0000 0001 2167 7588grid.11749.3aDivision of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
17
|
Peters R, White DJ, Cornwell BR, Scholey A. Functional Connectivity of the Anterior and Posterior Hippocampus: Differential Effects of Glucose in Younger and Older Adults. Front Aging Neurosci 2020; 12:8. [PMID: 32082138 PMCID: PMC7004964 DOI: 10.3389/fnagi.2020.00008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/13/2020] [Indexed: 12/02/2022] Open
Abstract
The hippocampus features structurally and functionally distinct anterior and posterior segments. Relatively few studies have examined how these change during aging or in response to pharmacological interventions. Alterations in hippocampal connectivity and changes in glucose regulation have each been associated with cognitive decline in aging. A distinct line of research suggests that administration of glucose can lead to a transient improvement in hippocampus-dependent memory. Here, we probe age, glucose and human cognition with a special emphasis on resting-state functional connectivity (rsFC) of the hippocampus along its longitudinal axis to the rest of the brain. Using a randomized, placebo-controlled, double-blind, crossover design 32 healthy adults (16 young and 16 older) ingested a drink containing 25 g glucose or placebo across two counter balanced sessions. They then underwent resting-state functional magnetic resonance imaging (rs-fMRI) and cognitive testing. There was a clear dissociation in the effects of glucose by age. Magnitude change in rsFC from posterior hippocampus (pHPC) to medial frontal cortex (mPFC) was correlated with individual glucose regulation and gains in performance on a spatial navigation task. Our results demonstrate that glucose administration can attenuate cognitive performance deficits in older adults with impaired glucose regulation and suggest that increases in pHPC-mPFC rsFC are beneficial for navigation task performance in older participants.
Collapse
Affiliation(s)
- Riccarda Peters
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David J. White
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Brian R. Cornwell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Li H, Dai CL, Gu JH, Peng S, Li J, Yu Q, Iqbal K, Liu F, Gong CX. Intranasal Administration of Insulin Reduces Chronic Behavioral Abnormality and Neuronal Apoptosis Induced by General Anesthesia in Neonatal Mice. Front Neurosci 2019; 13:706. [PMID: 31354415 PMCID: PMC6637386 DOI: 10.3389/fnins.2019.00706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/24/2019] [Indexed: 01/23/2023] Open
Abstract
Children, after multiple exposures to general anesthesia, appear to be at an increased risk of developing learning disabilities. Almost all general anesthetics—including sevoflurane, which is commonly used for children—are potentially neurotoxic to the developing brain. Anesthesia exposure during development might also be associated with behavioral deficiencies later in life. To date, there is no treatment to prevent anesthesia-induced neurotoxicity and behavioral changes. In this study, we anesthetized 7-day-old neonatal mice with sevoflurane for 3 h per day for three consecutive days and found that the anesthesia led to mild behavioral abnormalities later in life that were detectable by using the novel object recognition test, Morris water maze, and fear conditioning test. Biochemical and immunohistochemical studies indicate that anesthesia induced a decrease in brain levels of postsynaptic density 95 (PSD95), a postsynaptic marker, and marked activation of neuronal apoptosis in neonatal mice. Importantly, insulin administered through intranasal delivery prior to anesthesia was found to prevent the anesthesia-induced long-term behavioral abnormalities, reduction of PSD95, and activation of neuronal apoptosis. These findings suggest that intranasal insulin administration could be an effective approach to prevent the increased risk of neurotoxicity and chronic damage caused by anesthesia in the developing brain.
Collapse
Affiliation(s)
- Hengchang Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chun-Ling Dai
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Jin-Hua Gu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Department of Clinical Pharmacy, Nantong Maternity and Child Health Hospital, Nantong University, Nantong, China
| | - Shengwei Peng
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Department of Internal Medicine, Hubei University of Science and Technology, Xianning, China
| | - Jian Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian Yu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Department of Orthopedic, Shandong Qianfoshan Hospital, Shandong University, Jinan, China
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| |
Collapse
|
19
|
Santiago JCP, Hallschmid M. Outcomes and clinical implications of intranasal insulin administration to the central nervous system. Exp Neurol 2019; 317:180-190. [PMID: 30885653 DOI: 10.1016/j.expneurol.2019.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Insulin signaling in the brain plays a critical role in metabolic control and cognitive function. Targeting insulinergic pathways in the central nervous system via peripheral insulin administration is feasible, but associated with systemic effects that necessitate tight supervision or countermeasures. The intranasal route of insulin administration, which largely bypasses the circulation and thereby greatly reduces these obstacles, has now been repeatedly tested in proof-of-concept studies in humans as well as animals. It is routinely used in experimental settings to investigate the impact on eating behavior, peripheral metabolism, memory function and brain activation of acute or long-term enhancements in central nervous system insulin signaling. Epidemiological and experimental evidence linking deteriorations in metabolic control such as diabetes with neurodegenerative diseases imply pathophysiological relevance of dysfunctional brain insulin signaling or brain insulin resistance, and suggest that targeting insulin in the brain holds some promise as a therapy or adjunct therapy. This short narrative review gives an overview over recent findings on brain insulin signaling as derived from human studies deploying intranasal insulin, and evaluates the potential of therapeutic interventions that target brain insulin resistance.
Collapse
Affiliation(s)
- João C P Santiago
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
| | - Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
20
|
Geijselaers SLC, Aalten P, Ramakers IHGB, De Deyn PP, Heijboer AC, Koek HL, OldeRikkert MGM, Papma JM, Reesink FE, Smits LL, Stehouwer CDA, Teunissen CE, Verhey FRJ, van der Flier WM, Biessels GJ. Association of Cerebrospinal Fluid (CSF) Insulin with Cognitive Performance and CSF Biomarkers of Alzheimer's Disease. J Alzheimers Dis 2018; 61:309-320. [PMID: 29154275 PMCID: PMC5734123 DOI: 10.3233/jad-170522] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Abnormal insulin signaling in the brain has been linked to Alzheimer’s disease (AD). Objective: To evaluate whether cerebrospinal fluid (CSF) insulin levels are associated with cognitive performance and CSF amyloid-β and Tau. Additionally, we explore whether any such association differs by sex or APOE ɛ4 genotype. Methods: From 258 individuals participating in the Parelsnoer Institute Neurodegenerative Diseases, a nationwide multicenter memory clinic population, we selected 138 individuals (mean age 66±9 years, 65.2% male) diagnosed with subjective cognitive impairment (n = 45), amnestic mild cognitive impairment (n = 44), or AD (n = 49), who completed a neuropsychological assessment, including tests of global cognition and memory performance, and who underwent lumbar puncture. We measured CSF levels of insulin, amyloid-β1-42, total (t-)Tau, and phosphorylated (p-)Tau. Results: CSF insulin levels did not differ between the diagnostic groups (p = 0.136). Across the whole study population, CSF insulin was unrelated to cognitive performance and CSF biomarkers of AD, after adjustment for age, sex, body mass index, diabetes status, and clinic site (all p≥0.131). Importantly, however, we observed effect modification by sex and APOE ɛ4 genotype. Specifically, among women, higher insulin levels in the CSF were associated with worse global cognition (standardized regression coefficient –0.483; p = 0.008) and higher p-Tau levels (0.353; p = 0.040). Among non-carriers of the APOE ɛ4 allele, higher CSF insulin was associated with higher t-Tau (0.287; p = 0.008) and p-Tau (0.246; p = 0.029). Conclusion: Our findings provide further evidence for a relationship between brain insulin signaling and AD pathology. It also highlights the need to consider sex and APOE ɛ4 genotype when assessing the role of insulin.
Collapse
Affiliation(s)
- Stefan L C Geijselaers
- Departments of Neurology and Geriatrics Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands.,Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Pauline Aalten
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Peter Paul De Deyn
- Department of Neurology and Alzheimer Research Centre, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Centre, Amsterdam, the Netherlands
| | - Huiberdina L Koek
- Departments of Neurology and Geriatrics Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Marcel G M OldeRikkert
- Radboudumc Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Janne M Papma
- Departments of Neurology and Radiology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Fransje E Reesink
- Department of Neurology and Alzheimer Research Centre, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Lieke L Smits
- Alzheimer Centre Amsterdam, VU University Medical Centre, Amsterdam, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory and Biobank, VU University Medical Centre, Amsterdam, the Netherlands
| | - Frans R J Verhey
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre +, Maastricht, the Netherlands
| | | | - Geert Jan Biessels
- Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | | |
Collapse
|
21
|
Schmid V, Kullmann S, Gfrörer W, Hund V, Hallschmid M, Lipp HP, Häring HU, Preissl H, Fritsche A, Heni M. Safety of intranasal human insulin: A review. Diabetes Obes Metab 2018; 20:1563-1577. [PMID: 29508509 DOI: 10.1111/dom.13279] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
AIMS To conduct a review in order to assess the safety of intranasal human insulin in clinical studies as well as the temporal stability of nasal insulin sprays. MATERIAL AND METHODS An electronic search was performed using MEDLINE. We selected original research on intranasal human insulin without further additives in humans. The studies included could be of any design as long as they used human intranasal insulin as their study product. All outcomes and adverse side effects were extracted. RESULTS A total of 38 studies in 1092 individuals receiving acute human intranasal insulin treatment and 18 studies in 832 individuals receiving human intranasal insulin treatment lasting between 21 days and 9.7 years were identified. No cases of symptomatic hypoglycaemia or severe adverse events (AEs) were reported. Transient local side effects in the nasal area were frequently experienced after intranasal insulin and placebo spray, while other AEs were less commonly reported. There were no reports of participants being excluded as a result of AEs. No instances of temporal stability of nasal insulin were reported in the literature. Tests on insulin that had been repacked into spray flasks showed that it had a chemical stability of up to 57 days. CONCLUSIONS Our retrospective review of published studies on intranasal insulin did not reveal any safety concerns; however, there were insufficient data to ensure the long-term safety of this method of chronic insulin administration. Improved insulin preparations that cause less nasal irritation would be desirable for future treatment.
Collapse
MESH Headings
- Administration, Intranasal
- Aerosols
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Drug Compounding
- Drug Stability
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemia/chemically induced
- Hypoglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/therapeutic use
- Insulin, Regular, Human/administration & dosage
- Insulin, Regular, Human/adverse effects
- Insulin, Regular, Human/chemistry
- Insulin, Regular, Human/therapeutic use
- Protein Stability
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/therapeutic use
Collapse
Affiliation(s)
- Vera Schmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
| | | | - Verena Hund
- University Pharmacy, University Hospital, Tübingen, Germany
| | - Manfred Hallschmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Centre at Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Krug R, Mohwinkel L, Drotleff B, Born J, Hallschmid M. Insulin and Estrogen Independently and Differentially Reduce Macronutrient Intake in Healthy Men. J Clin Endocrinol Metab 2018; 103:1393-1401. [PMID: 29342258 DOI: 10.1210/jc.2017-01835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
Abstract
CONTEXT Insulin administration to the central nervous system inhibits food intake, but this effect has been found to be less pronounced in female compared with male organisms. This sex-specific pattern has been suggested to arise from a modulating influence of estrogen signaling on the insulin effect. OBJECTIVE We assessed in healthy young men whether pretreatment with transdermal estradiol interacts with the hypophagic effect of central nervous insulin administration via the intranasal pathway. DESIGN, SETTING, PARTICIPANTS, AND INTERVENTION According to a 2×2 design, two groups of men (n = 16 in each group) received a 3-day transdermal estradiol (100 µg/24 h) or placebo pretreatment and on two separate mornings were intranasally administered 160 IU regular human insulin or placebo. MAIN OUTCOME MEASURES We assessed free-choice ad libitum calorie intake from a rich breakfast buffet and relevant blood parameters in samples collected before and after breakfast. RESULTS Estrogen treatment induced a 3.5-fold increase in serum estradiol concentrations and suppressed serum testosterone concentrations by 70%. Independent of estradiol administration, intranasal insulin reduced the intake of carbohydrates during breakfast, attenuating in particular the consumption of sweet, palatable foods. Estradiol treatment per se decreased protein consumption. We did not find indicators of eating-related interactions between both hormones. CONCLUSIONS Results indicate that, in an acute setting, estrogen does not interact with central nervous insulin signaling in the control of eating behavior in healthy men. Insulin and estradiol rather exert independent inhibiting effects on macronutrient intake.
Collapse
Affiliation(s)
- Rosemarie Krug
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Linda Mohwinkel
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
| | - Bernhard Drotleff
- Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen, Germany
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen, Germany
| |
Collapse
|
23
|
Mechanism of intranasal drug delivery directly to the brain. Life Sci 2018; 195:44-52. [DOI: 10.1016/j.lfs.2017.12.025] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
|
24
|
Gault VA, Hölscher C. GLP-1 receptor agonists show neuroprotective effects in animal models of diabetes. Peptides 2018; 100:101-107. [PMID: 29412810 DOI: 10.1016/j.peptides.2017.11.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Enzyme-resistant receptor agonists of the incretin hormone glucagon-like peptide-1 (GLP-1) have shown positive therapeutic effects in people with type 2 diabetes mellitus (T2DM). T2DM has detrimental effects on brain function and impairment of cognition and memory formation has been described. One of the underlying mechanisms is most likely insulin de-sensitization in the brain, as insulin improves cognitive impairments and enhances learning. Treatment with GLP-1 receptor agonists improves memory formation and impairment of synaptic plasticity observed in animal models of diabetes-obesity. Furthermore, it has been shown that diabetes impairs growth factor signalling in the brain and reduces energy utilization in the cortex. Inflammation and apoptotic signalling was also increased. Treatment with GLP-1 receptor agonists improved neuronal growth and repair and reduced inflammation and apoptosis as well as oxidative stress. In comparison with the diabetes drug metformin, GLP-1 receptor agonists were able to improve glycemic control and reverse brain impairments, whereas metformin only normalized blood glucose levels. Clinical studies in non-diabetic patients with neurodegenerative disorders showed neuroprotective effects following administration with GLP-1 receptor agonists, demonstrating that neuroprotective effects are independent of blood glucose levels.
Collapse
Affiliation(s)
- Victor A Gault
- School of Biomedical Sciences, University of University, Coleraine, BT52 1SA, UK
| | - Christian Hölscher
- Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
25
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
26
|
Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 2018; 14:168-181. [PMID: 29377010 DOI: 10.1038/nrneurol.2017.185] [Citation(s) in RCA: 955] [Impact Index Per Article: 136.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable overlap has been identified in the risk factors, comorbidities and putative pathophysiological mechanisms of Alzheimer disease and related dementias (ADRDs) and type 2 diabetes mellitus (T2DM), two of the most pressing epidemics of our time. Much is known about the biology of each condition, but whether T2DM and ADRDs are parallel phenomena arising from coincidental roots in ageing or synergistic diseases linked by vicious pathophysiological cycles remains unclear. Insulin resistance is a core feature of T2DM and is emerging as a potentially important feature of ADRDs. Here, we review key observations and experimental data on insulin signalling in the brain, highlighting its actions in neurons and glia. In addition, we define the concept of 'brain insulin resistance' and review the growing, although still inconsistent, literature concerning cognitive impairment and neuropathological abnormalities in T2DM, obesity and insulin resistance. Lastly, we review evidence of intrinsic brain insulin resistance in ADRDs. By expanding our understanding of the overlapping mechanisms of these conditions, we hope to accelerate the rational development of preventive, disease-modifying and symptomatic treatments for cognitive dysfunction in T2DM and ADRDs alike.
Collapse
|
27
|
Griffith CM, Eid T, Rose GM, Patrylo PR. Evidence for altered insulin receptor signaling in Alzheimer's disease. Neuropharmacology 2018; 136:202-215. [PMID: 29353052 DOI: 10.1016/j.neuropharm.2018.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022]
Abstract
Epidemiological data have shown that metabolic disease can increase the propensity for developing cognitive decline and dementia, particularly Alzheimer's disease (AD). While this interaction is not completely understood, clinical studies suggest that both hyper- and hypoinsulinemia are associated with an increased risk for developing AD. Indeed, insulin signaling is altered in post-mortem brain tissue from AD patients and treatments known to enhance insulin signaling can improve cognitive function. Further, clinical evidence has shown that AD patients and mouse models of AD often display alterations in peripheral metabolism. Since insulin is primarily derived from the periphery, it is likely that changes in peripheral insulin levels lead to alterations in central nervous system (CNS) insulin signaling and could contribute to cognitive decline and pathogenesis. Developing a better understanding of the relationship between alterations in peripheral metabolism and cognitive function might provide a foundation for the development of better treatment options for patients with AD. In this article we will begin to piece together the present data defining this relationship by briefly discussing insulin signaling in the periphery and CNS, its role in cognitive function, insulin's relationship to AD, peripheral metabolic alterations in mouse models of AD and how information from these models helps understand the mechanisms through which these changes potentially lead to impairments in insulin signaling in the CNS, and potential ways to target insulin signaling that could improve cognitive function in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Chelsea M Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, IL 62901, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gregory M Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, IL 62901, USA
| | - Peter R Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, IL 62901, USA.
| |
Collapse
|
28
|
Ryan JP, Karim HT, Aizenstein HJ, Helbling NL, Toledo FGS. Insulin sensitivity predicts brain network connectivity following a meal. Neuroimage 2018; 171:268-276. [PMID: 29339315 DOI: 10.1016/j.neuroimage.2018.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 11/19/2022] Open
Abstract
There is converging evidence that insulin plays a role in food-reward signaling in the brain and has effects on enhancing cognition. Little is known about how these effects are altered in individuals with insulin resistance. The present study was designed to identify the relationships between insulin resistance and functional brain connectivity following a meal. Eighteen healthy adults (7 male, 11 female, age: 41-57 years-old) completed a frequently-sampled intravenous glucose tolerance test to quantify insulin resistance. On separate days at least one week apart, a resting state functional magnetic resonance imaging scan was performed: once after a mixed-meal and once after a 12-h fast. Seed-based resting state connectivity of the caudate nucleus and eigenvector centrality were used to identify relationships between insulin resistance and functional brain connectivity. Individuals with greater insulin resistance displayed stronger connectivity within reward networks following a meal suggesting insulin was less able to suppress reward. Insulin resistance was negatively associated with eigenvector centrality in the dorsal anterior cingulate cortex following a meal. These data suggest that individuals with less sensitivity to insulin may fail to shift brain networks away from reward and toward cognitive control following a meal. This altered feedback loop could promote overeating and obesity.
Collapse
Affiliation(s)
- John P Ryan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Helmet T Karim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Nicole L Helbling
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Leeners B, Geary N, Tobler PN, Asarian L. Ovarian hormones and obesity. Hum Reprod Update 2017; 23:300-321. [PMID: 28333235 DOI: 10.1093/humupd/dmw045] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Obesity is caused by an imbalance between energy intake, i.e. eating and energy expenditure (EE). Severe obesity is more prevalent in women than men worldwide, and obesity pathophysiology and the resultant obesity-related disease risks differ in women and men. The underlying mechanisms are largely unknown. Pre-clinical and clinical research indicate that ovarian hormones may play a major role. OBJECTIVE AND RATIONALE We systematically reviewed the clinical and pre-clinical literature on the effects of ovarian hormones on the physiology of adipose tissue (AT) and the regulation of AT mass by energy intake and EE. SEARCH METHODS Articles in English indexed in PubMed through January 2016 were searched using keywords related to: (i) reproductive hormones, (ii) weight regulation and (iii) central nervous system. We sought to identify emerging research foci with clinical translational potential rather than to provide a comprehensive review. OUTCOMES We find that estrogens play a leading role in the causes and consequences of female obesity. With respect to adiposity, estrogens synergize with AT genes to increase gluteofemoral subcutaneous AT mass and decrease central AT mass in reproductive-age women, which leads to protective cardiometabolic effects. Loss of estrogens after menopause, independent of aging, increases total AT mass and decreases lean body mass, so that there is little net effect on body weight. Menopause also partially reverses women's protective AT distribution. These effects can be counteracted by estrogen treatment. With respect to eating, increasing estrogen levels progressively decrease eating during the follicular and peri-ovulatory phases of the menstrual cycle. Progestin levels are associated with eating during the luteal phase, but there does not appear to be a causal relationship. Progestins may increase binge eating and eating stimulated by negative emotional states during the luteal phase. Pre-clinical research indicates that one mechanism for the pre-ovulatory decrease in eating is a central action of estrogens to increase the satiating potency of the gastrointestinal hormone cholecystokinin. Another mechanism involves a decrease in the preference for sweet foods during the follicular phase. Genetic defects in brain α-melanocycte-stimulating hormone-melanocortin receptor (melanocortin 4 receptor, MC4R) signaling lead to a syndrome of overeating and obesity that is particularly pronounced in women and in female animals. The syndrome appears around puberty in mice with genetic deletions of MC4R, suggesting a role of ovarian hormones. Emerging functional brain-imaging data indicates that fluctuations in ovarian hormones affect eating by influencing striatal dopaminergic processing of flavor hedonics and lateral prefrontal cortex processing of cognitive inhibitory controls of eating. There is a dearth of research on the neuroendocrine control of eating after menopause. There is also comparatively little research on the effects of ovarian hormones on EE, although changes in ovarian hormone levels during the menstrual cycle do affect resting EE. WIDER IMPLICATIONS The markedly greater obesity burden in women makes understanding the diverse effects of ovarian hormones on eating, EE and body adiposity urgent research challenges. A variety of research modalities can be used to investigate these effects in women, and most of the mechanisms reviewed are accessible in animal models. Therefore, human and translational research on the roles of ovarian hormones in women's obesity and its causes should be intensified to gain further mechanistic insights that may ultimately be translated into novel anti-obesity therapies and thereby improve women's health.
Collapse
Affiliation(s)
- Brigitte Leeners
- Division of Reproductive Endocrinology, University Hospital Zurich, Frauenklinikstr. 10, CH 8091 Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Nori Geary
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Philippe N Tobler
- Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland.,Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Lori Asarian
- Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland.,Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
30
|
Nameni G, Farhangi MA, Hajiluian G, Shahabi P, Abbasi MM. Insulin deficiency: A possible link between obesity and cognitive function. Int J Dev Neurosci 2017; 59:15-20. [PMID: 28274759 DOI: 10.1016/j.ijdevneu.2017.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Epidemiological studies proposed a linear connection between developing dementia including Alzheimer's disease (AD) and obesity. Adiposity, insulin resistance and dementia indicated probable mechanistic links in this process. Indeed, it has been known that optimum insulin action in the brain plays critical role in cognitive function; whereas, insulin resistance in obese individuals finally leads to insulin deficiency in central nervous system (CNS) and down regulation of the efficiency of insulin uptake from periphery into CSF. In the current study, we aimed to assess correlation between increased body weight and insulin resistance with CSF to serum ratio of insulin and to evaluate the correlation between CSF to serum ratio of insulin with cognitive function in high fat diet induced obese rats. METHODS AND MATERIAL Twelve male Wister rats were randomly divided into two groups receiving Diet 1 (D1, 10% fat) and Diet 2 (D2, 59% fat) for 16 weeks. Weight was recorded weekly to assure body weight gain. Morris Water Maze (MWM) task was designed to assess spatial learning memory function. Finally, blood samples were collected for determining fasting serum glucose using enzymatic spectrophotometric method, insulin levels by ELISA kit and homeostasis model assessment of insulin resistance (HOMA-IR) were calculated. Fasting Cerebrospinal Fluid (CSF) insulin was also measured by ELISA kit. RESULT D1 and D 2 groups both experienced weight gain but weight gain in D2 group were significantly higher. A significant correlation between CSF to serum ratio of insulin with weight (r=0.882, p=0.001) and HOMA-IR index (r=0.798, p=0.002) was reported. Moreover, the present study indicated significant correlations between CSF to serum ratio of insulin and escape latency time in first (r=0.631, p=0.028), second (r=0.716, p=0.009) and third (r=0.609, p=0.036) day of MWM test and probe time of MWM test (r=0.762, p=0.004). CONCLUSION Increased body weight induced by high fat diet and insulin resistance in rats led to down regulation of CSF to serum ratio of insulin in the current research. Brain insulin deficiency may be responsible for possible decline of cognitive function in obesity. More researches are needed to better clarify the underlying mechanisms and also to confirm the similar findings in human studies.
Collapse
Affiliation(s)
- Ghazaleh Nameni
- Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ghazaleh Hajiluian
- Student Research Committee, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Neuroscience Research Center, Department of Physiology, School of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
31
|
Brünner YF, Rodriguez-Raecke R, Mutic S, Benedict C, Freiherr J. Neural correlates of olfactory and visual memory performance in 3D-simulated mazes after intranasal insulin application. Neurobiol Learn Mem 2016; 134 Pt B:256-63. [DOI: 10.1016/j.nlm.2016.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 11/30/2022]
|
32
|
Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol Rev 2016; 96:1169-209. [PMID: 27489306 DOI: 10.1152/physrev.00032.2015] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Lee SH, Zabolotny JM, Huang H, Lee H, Kim YB. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood. Mol Metab 2016; 5:589-601. [PMID: 27656397 PMCID: PMC5021669 DOI: 10.1016/j.molmet.2016.06.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Insulin, a pleotrophic hormone, has diverse effects in the body. Recent work has highlighted the important role of insulin's action in the nervous system on glucose and energy homeostasis, memory, and mood. SCOPE OF REVIEW Here we review experimental and clinical work that has broadened the understanding of insulin's diverse functions in the central and peripheral nervous systems, including glucose and body weight homeostasis, memory and mood, with particular emphasis on intranasal insulin. MAJOR CONCLUSIONS Implications for the treatment of obesity, type 2 diabetes, dementia, and mood disorders are discussed in the context of brain insulin action. Intranasal insulin may have potential in the treatment of central nervous system-related metabolic disorders.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, South Korea.
| | - Janice M Zabolotny
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA.
| | - Hu Huang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA; Human Performance Laboratory, Department of Kinesiology and Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Dr., Greenville, NC 27858, USA.
| | - Hyon Lee
- Department of Neurology, Neuroscience Research Institute, Gachon University Gil Medical Center, 21 Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, South Korea.
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA.
| |
Collapse
|
34
|
Ribarič S. The Rationale for Insulin Therapy in Alzheimer's Disease. Molecules 2016; 21:molecules21060689. [PMID: 27240327 PMCID: PMC6273626 DOI: 10.3390/molecules21060689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with a prevalence that increases with age. By 2050, the worldwide number of patients with AD is projected to reach more than 140 million. The prominent signs of AD are progressive memory loss, accompanied by a gradual decline in cognitive function and premature death. AD is the clinical manifestation of altered proteostasis. The initiating step of altered proteostasis in most AD patients is not known. The progression of AD is accelerated by several chronic disorders, among which the contribution of diabetes to AD is well understood at the cell biology level. The pathological mechanisms of AD and diabetes interact and tend to reinforce each other, thus accelerating cognitive impairment. At present, only symptomatic interventions are available for treating AD. To optimise symptomatic treatment, a personalised therapy approach has been suggested. Intranasal insulin administration seems to open the possibility for a safe, and at least in the short term, effective symptomatic intervention that delays loss of cognition in AD patients. This review summarizes the interactions of AD and diabetes from the cell biology to the patient level and the clinical results of intranasal insulin treatment of cognitive decline in AD.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
35
|
May AA, Bedel ND, Shen L, Woods SC, Liu M. Estrogen and insulin transport through the blood-brain barrier. Physiol Behav 2016; 163:312-321. [PMID: 27182046 DOI: 10.1016/j.physbeh.2016.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/19/2023]
Abstract
Obesity is associated with insulin resistance and reduced transport of insulin through the blood-brain barrier (BBB). Reversal of high-fat diet-induced obesity (HFD-DIO) by dietary intervention improves the transport of insulin through the BBB and the sensitivity of insulin in the brain. Although both insulin and estrogen (E2), when given alone, reduce food intake and body weight via the brain, E2 actually renders the brain relatively insensitive to insulin's catabolic action. The objective of these studies was to determine if E2 influences the ability of insulin to be transported into the brain, since the receptors for both E2 and insulin are found in BBB endothelial cells. E2 (acute or chronic) was systemically administered to ovariectomized (OVX) female rats and male rats fed a chow or a high-fat diet. Food intake, body weight and other metabolic parameters were assessed along with insulin entry into the cerebrospinal fluid (CSF). Acute E2 treatment in OVX female and male rats reduced body weight and food intake, and chronic E2 treatment prevented or partially reversed high-fat diet-induced obesity. However, none of these conditions increased insulin transport into the CNS; rather, chronic E2 treatment was associated less-effective insulin transport into the CNS relative to weight-matched controls. Thus, the reduction of brain insulin sensitivity by E2 is unlikely to be mediated by increasing the amount of insulin entering the CNS.
Collapse
Affiliation(s)
- Aaron A May
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH, USA
| | - Nicholas D Bedel
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH, USA
| | - Ling Shen
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH, USA
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH, USA
| | - Min Liu
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH, USA.
| |
Collapse
|
36
|
Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation. Neuropsychopharmacology 2016; 41:1540-50. [PMID: 26448203 PMCID: PMC4832015 DOI: 10.1038/npp.2015.312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/16/2015] [Accepted: 10/03/2015] [Indexed: 01/30/2023]
Abstract
The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18-30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information.
Collapse
|
37
|
Jiang Y, Li Y, Liu X. Intranasal delivery: circumventing the iron curtain to treat neurological disorders. Expert Opin Drug Deliv 2015. [PMID: 26206202 DOI: 10.1517/17425247.2015.1065812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is like an iron curtain that prevents exogenous substances, including most drugs, from entering the CNS. Intranasal delivery has been demonstrated to circumvent the BBB due to the special anatomy of the olfactory and trigeminal neural pathways that connect the nasal mucosa with the brain and the perivascular pathway within the CNS. In the last two decades, the concepts, mechanisms and pathways of intranasal delivery to the CNS have led to great success both in preclinical and clinical studies. More researchers have translated results from bench to bedside, and a number of publications have reported the clinical application of intranasal delivery. AREAS COVERED This review summarizes results from recent clinical trials utilizing intranasal delivery of therapeutics to explore its pharmacokinetics and application to treating neurological disorders. Moreover, existing problems with the methods and possible solutions have also been discussed. The promising results from clinical trials have demonstrated that intranasal delivery provides an extraordinary approach for circumventing the BBB. Many drugs, including high-molecular-weight molecules, could potentially improve the treatment of neurological disorders via intranasal administration. EXPERT OPINION Intranasal delivery is a novel method with great potential for delivering and targeting therapeutics to the CNS to treat neurological disorders.
Collapse
Affiliation(s)
- Yongjun Jiang
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| | - Yun Li
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| | - Xinfeng Liu
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| |
Collapse
|
38
|
Bedse G, Di Domenico F, Serviddio G, Cassano T. Aberrant insulin signaling in Alzheimer's disease: current knowledge. Front Neurosci 2015; 9:204. [PMID: 26136647 PMCID: PMC4468388 DOI: 10.3389/fnins.2015.00204] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/22/2015] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting elderly people. AD is a multifaceted pathology characterized by accumulation of extracellular neuritic plaques, intracellular neurofibrillary tangles (NFTs) and neuronal loss mainly in the cortex and hippocampus. AD etiology appears to be linked to a multitude of mechanisms that have not been yet completely elucidated. For long time, it was considered that insulin signaling has only peripheral actions but now it is widely accepted that insulin has neuromodulatory actions in the brain. Insulin signaling is involved in numerous brain functions including cognition and memory that are impaired in AD. Recent studies suggest that AD may be linked to brain insulin resistance and patients with diabetes have an increased risk of developing AD compared to healthy individuals. Indeed insulin resistance, increased inflammation and impaired metabolism are key pathological features of both AD and diabetes. However, the precise mechanisms involved in the development of AD in patients with diabetes are not yet fully understood. In this review we will discuss the role played by aberrant brain insulin signaling in AD. In detail, we will focus on the role of insulin signaling in the deposition of neuritic plaques and intracellular NFTs. Considering that insulin mitigates beta-amyloid deposition and phosphorylation of tau, pharmacological strategies restoring brain insulin signaling, such as intranasal delivery of insulin, could have significant therapeutic potential in AD treatment.
Collapse
Affiliation(s)
- Gaurav Bedse
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome Rome, Italy ; Department of Biochemical Sciences, Sapienza University of Rome Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome Rome, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia Foggia, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
39
|
Spetter MS, Hallschmid M. Intranasal Neuropeptide Administration To Target the Human Brain in Health and Disease. Mol Pharm 2015; 12:2767-80. [PMID: 25880274 DOI: 10.1021/acs.molpharmaceut.5b00047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Central nervous system control of metabolic function relies on the input of endocrine messengers from the periphery, including the pancreatic hormone insulin and the adipokine leptin. This concept primarily derives from experiments in animals where substances can be directly applied to the brain. A feasible approach to study the impact of peptidergic messengers on brain function in humans is the intranasal (IN) route of administration, which bypasses the blood-brain barrier and delivers neuropeptides to the brain compartment, but induces considerably less, if any, peripheral uptake than other administration modes. Experimental IN insulin administration has been extensively used to delineate the role of brain insulin signaling in the control of energy homeostasis, but also cognitive function in healthy humans. Clinical pilot studies have found beneficial effects of IN insulin in patients with memory deficits, suggesting that the IN delivery of this and other peptides bears some promise for new, selectively brain-targeted pharmaceutical approaches in the treatment of metabolic and cognitive disorders. More recently, experiments relying on the IN delivery of the hypothalamic hormone oxytocin, which is primarily known for its involvement in psychosocial processes, have provided evidence that oxytocin influences metabolic control in humans. The IN administration of leptin has been successfully tested in animal models but remains to be investigated in the human setting. We briefly summarize the literature on the IN administration of insulin, leptin, and oxytocin, with a particular focus on metabolic effects, and address limitations and perspectives of IN neuropeptide administration.
Collapse
Affiliation(s)
- Maartje S Spetter
- †Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Manfred Hallschmid
- †Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,‡German Center for Diabetes Research (DZD), 72076 Tübingen, Germany.,§Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), 72076 Tübingen, Germany
| |
Collapse
|
40
|
Affiliation(s)
- Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
41
|
Calvo-Ochoa E, Arias C. Cellular and metabolic alterations in the hippocampus caused by insulin signalling dysfunction and its association with cognitive impairment during aging and Alzheimer's disease: studies in animal models. Diabetes Metab Res Rev 2015; 31:1-13. [PMID: 24464982 DOI: 10.1002/dmrr.2531] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 01/09/2023]
Abstract
A growing body of animal and epidemiological studies suggest that metabolic diseases such as obesity, insulin resistance, metabolic syndrome and type 2 diabetes mellitus are associated with the development of cognitive impairment, dementia and Alzheimer's disease, particularly in aging. Several lines of evidence suggest that insulin signalling dysfunction produces these metabolic alterations and underlie the development of these neurodegenerative diseases. In this article, we address normal insulin function in the synapse; we review and discuss the physiopathological hallmarks of synaptic insulin signalling dysfunction associated with metabolic alterations. Additionally, we describe and review the major animal models of obesity, insulin resistance, metabolic syndrome and type 2 diabetes mellitus. The comprehensive knowledge of the molecular mechanisms behind the association of metabolic alterations and cognitive impairment could facilitate the early detection of neurodegenerative diseases in patients with metabolic alterations, with treatment that focus on neuroprotection. It could also help in the development of metabolic-based therapies and drugs for using in dementia and Alzheimer's disease patients to alleviate their symptoms in a more efficient and comprehensive way.
Collapse
Affiliation(s)
- Erika Calvo-Ochoa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, Mexico
| | | |
Collapse
|
42
|
Brooks VL, Shi Z, Holwerda SW, Fadel PJ. Obesity-induced increases in sympathetic nerve activity: sex matters. Auton Neurosci 2014; 187:18-26. [PMID: 25435000 DOI: 10.1016/j.autneu.2014.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/02/2014] [Accepted: 11/08/2014] [Indexed: 01/18/2023]
Abstract
Abundant evidence obtained largely from male human and animal subjects indicates that obesity increases sympathetic nerve activity (SNA), which contributes to hypertension development. However, recent studies that included women reported that the strong relationships between muscle SNA and waist circumference or body mass index (BMI) found in men are not present in overweight and obese women. A similar sex difference in the association between adiposity and hypertension development has been identified in animal models of obesity. In this brief review, we consider two possible mechanisms for this sex difference. First, visceral adiposity, leptin, insulin, and angiotensin II have been identified as potential culprits in obesity-induced sympathoexcitation in males. We explore if these factors wield the same impact in females. Second, we consider if sex differences in vascular reactivity to sympathetic activation contribute. Our survey of the literature suggests that premenopausal females may be able to resist obesity-induced sympathoexcitation and hypertension in part due to differences in adipose disposition as well as its muted inflammatory response and reduced production of pressor versus depressor components of the renin-angiotensin system. In addition, vascular responsiveness to increased SNA may be reduced. However, more importantly, we identify the urgent need for further study, not only of sex differences per se, but also of the mechanisms that may mediate these differences. This information is required not only to refine treatment options for obese premenopausal women but also to potentially reveal new therapeutic avenues in obese men and women.
Collapse
Affiliation(s)
- Virginia L Brooks
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, United States.
| | - Zhigang Shi
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Seth W Holwerda
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, United States
| | - Paul J Fadel
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
43
|
Van den Heuvel ER, Zwanenburg RJ, Van Ravenswaaij-Arts CM. A stepped wedge design for testing an effect of intranasal insulin on cognitive development of children with Phelan-McDermid syndrome: A comparison of different designs. Stat Methods Med Res 2014; 26:766-775. [PMID: 25411323 DOI: 10.1177/0962280214558864] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper compares the power of the parallel group design, the matched-pairs design, and several options for the stepped wedge and delayed start designs for testing a possible effect of intranasal insulin with respect to placebo on developmental growth of children with a rare disorder like Phelan-McDermid syndrome. A subject-specific linear mixed effects model for the primary outcome developmental age in a longitudinal setting with five time points was assumed. Monte Carlo simulation studies with small sample sizes were applied since the rare disorder prohibits large trials. The stepped wedge designs, which were initially preferred for ethical reasons, appear to be competitive in power to other designs and were in some settings even the best. The assumed statistical model also demonstrates that all of the designs can be viewed as a stepped wedge or delayed treatment design. Our results show that the stepped wedge design is an appropriate alternative for randomized controlled trials on developmental growth with small numbers of participants under the formulated statistical conditions.
Collapse
Affiliation(s)
- Edwin R Van den Heuvel
- 1 Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands.,2 Department of Epidemiology, University Medical Center Groningen, University of Groningen, Eindhoven, The Netherlands
| | - Renée J Zwanenburg
- 3 Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
44
|
Hölscher C. First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer's disease. Alzheimers Dement 2014; 10:S33-7. [PMID: 24529523 DOI: 10.1016/j.jalz.2013.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 01/27/2023]
Abstract
Previous reviews have outlined the important role of insulin in the brain, and the observation that insulin signaling is desensitized in patients with Alzheimer's disease (AD). Because insulin is used to treat diabetes and insulin desensitization in the periphery, this motivated the design and execution of clinical pilot trials in patients with AD and mild cognitive impairment. Because insulin has powerful effects on blood sugar levels, a new technique was used by which insulin is applied as a spray. This method avoids high levels of insulin in the periphery and makes use of the transport system, via the nasal epithelium, into the brain. First trials in healthy subjects showed improvement in attention and memory tasks, and confirmed the concept that insulin signaling plays an important role in neuronal function and cognition. In a series of small clinical trials in patients with mild cognitive impairment/AD, nasal application of insulin or long-lasting insulin analogs showed improvements in memory tasks, cerebrospinal fluid biomarkers, and in a fluorodeoxyglucose positron emission tomographic study. In a more recent trial, two patient subgroups were identified, in which the insulin-resistant group improved after drug treatment whereas a subgroup that did not show insulin desensitization deteriorated. This highlights the need to conduct additional studies and demonstrates clearly that the hypothesis that insulin signaling plays in important role in cognition and AD has merit, and that this is a worthwhile target that shows great promise for future drug developments that improve insulin signaling. Insulin itself may not be the best choice, and other drugs that have been developed to treat diabetes that do not enhance insulin desensitization may be a better choice.
Collapse
Affiliation(s)
- Christian Hölscher
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK.
| |
Collapse
|
45
|
Chen Y, Deng Y, Zhang B, Gong CX. Deregulation of brain insulin signaling in Alzheimer's disease. Neurosci Bull 2014; 30:282-94. [PMID: 24652456 PMCID: PMC5562654 DOI: 10.1007/s12264-013-1408-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/03/2014] [Indexed: 01/09/2023] Open
Abstract
Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Yanqiu Deng
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314 USA
| |
Collapse
|
46
|
Abstract
Research in animals and humans has associated Alzheimer's disease (AD) with decreased cerebrospinal fluid levels of insulin in combination with decreased insulin sensitivity (insulin resistance) in the brain. This phenomenon is accompanied by attenuated receptor expression of insulin and insulin-like growth factor, enhanced serine phosphorylation of insulin receptor substrate-1, and impaired transport of insulin across the blood-brain barrier. Moreover, clinical trials have demonstrated that intranasal insulin improves both memory performance and metabolic integrity of the brain in patients suffering from AD or its prodrome, mild cognitive impairment. These results, in conjunction with the finding that insulin mitigates hippocampal synapse vulnerability to beta amyloid, a peptide thought to be causative in the development of AD, provide a strong rationale for hypothesizing that pharmacological strategies bolstering brain insulin signaling, such as intranasal administration of insulin, could have significant potential in the treatment and prevention of AD. With this view in mind, the review at hand will present molecular mechanisms potentially underlying the memory-enhancing and neuroprotective effects of intranasal insulin. Then, we will discuss the results of intranasal insulin studies that have demonstrated that enhancing brain insulin signaling improves memory and learning processes in both cognitively healthy and impaired humans. Finally, we will provide an overview of neuroimaging studies indicating that disturbances in insulin metabolism--such as insulin resistance in obesity, type 2 diabetes and AD--and altered brain responses to insulin are linked to decreased cerebral volume and especially to hippocampal atrophy.
Collapse
|
47
|
Claxton A, Baker LD, Wilkinson CW, Trittschuh EH, Chapman D, Watson GS, Cholerton B, Plymate SR, Arbuckle M, Craft S. Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer's disease. J Alzheimers Dis 2013; 35:789-97. [PMID: 23507773 DOI: 10.3233/jad-122308] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A previous clinical trial demonstrated that four months of treatment with intranasal insulin improves cognition and function for patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI), but prior studies suggest that response to insulin treatment may differ by sex and ApoE ε4 carriage. Thus, responder analyses using repeated measures analysis of covariance were completed on the trial's 104 participants with MCI or AD who received either placebo or 20 or 40 IU of insulin for 4 months, administered by a nasal delivery device. Results indicate that men and women with memory impairment responded differently to intranasal insulin treatment. On delayed story memory, men and women showed cognitive improvement when taking 20 IU of intranasal insulin, but only men showed cognitive improvement for the 40 IU dose. The sex difference was most apparent for ApoE ε4 negative individuals. For the 40 IU dose, ApoE ε4 negative men improved while ApoE ε4 negative women worsened. Their ApoE ε4 positive counterparts remained cognitively stable. This sex effect was not detected in functional measures. However, functional abilities were relatively preserved for women on either dose of intranasal insulin compared with men. Unlike previous studies with young adults, neither men nor women taking intranasal insulin exhibited a significant change in weight over 4 months of treatment.
Collapse
Affiliation(s)
- Amy Claxton
- Geriatric Research, Education, & Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
de la Monte SM. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv 2013; 10:1699-709. [PMID: 24215447 PMCID: PMC4551402 DOI: 10.1517/17425247.2013.856877] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Growing evidence supports the concept that insulin resistance plays an important role in the pathogenesis of cognitive impairment and neurodegeneration, including in Alzheimer's disease (AD). The metabolic hypothesis has led to the development and utilization of insulin- and insulin agonist-based treatments. Therapeutic challenges faced include the ability to provide effective treatments that do not require repeated injections and also the ability to minimize the potentially hazardous off-target effects. AREAS COVERED This review covers the role of intranasal insulin therapy for cognitive impairment and neurodegeneration, particularly AD. The literature reviewed focuses on data published within the past 5 years as this field is evolving rapidly. The review provides evidence that brain insulin resistance is an important and early abnormality in AD, and that increasing brain supply and utilization of insulin improves cognition and memory. Emphasis was placed on discussing outcomes of clinical trials and interpreting discordant results to clarify the benefits and limitations of intranasal insulin therapy. EXPERT OPINION Intranasal insulin therapy can efficiently and directly target the brain to support energy metabolism, myelin maintenance, cell survival and neuronal plasticity, which begin to fail in the early stages of neurodegeneration. Efforts must continue toward increasing the safety, efficacy and specificity of intranasal insulin therapy.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Departments of Pathology (Neuropathology), Neurology, and Neurosurgery , Pierre Galletti Research Building, Claverick Street, Room 419, Providence, RI 02903 , USA +1 401 444 7364 ; +1 401 444 2939 ;
| |
Collapse
|
49
|
Chen Z, Zhong C. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013; 108:21-43. [PMID: 23850509 DOI: 10.1016/j.pneurobio.2013.06.004] [Citation(s) in RCA: 462] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding ideal diagnostic biomarker and disease-modifying therapy.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
50
|
Bove RM, Brick DJ, Healy BC, Mancuso SM, Gerweck AV, Bredella MA, Sherman JC, Miller KK. Metabolic and endocrine correlates of cognitive function in healthy young women. Obesity (Silver Spring) 2013; 21:1343-9. [PMID: 23671055 PMCID: PMC3742554 DOI: 10.1002/oby.20212] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 11/16/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Obesity has been associated with cognitive decline in longitudinal studies of older individuals. We hypothesized that the cognitive sequelae of obesity may be detectable in the reproductive years. In addition, we explored the hypothesis that these associations may be mediated by the hormonal milieu. DESIGN AND METHODS Of 49 young healthy lean and overweight women aged 20-45, we investigated the association between performance on a battery of cognitive tests, body composition parameters [body mass index, total fat, abdominal (visceral, subcutaneous, and total) adipose tissue, and muscle], and hormone levels (insulin, adiponectin, leptin, insulin-like growth factor 1 (IGF-1), estrogen, testosterone, and vitamin D). RESULTS We found a significant negative association between both visceral adiposity and muscle, and performance in the domain of verbal learning and memory, after controlling for age and education. Other body composition parameters showed similar trends (0.05 < P < 0.10). Additionally, the degree of insulin resistance was negatively associated with executive function domain. None of the associations between the other hormones examined (adipokines, IGF-1, gonadal hormones, and vitamin D) and cognitive function were significant. CONCLUSION These preliminary findings suggest a possible association between obesity and cognitive function in healthy young women of reproductive age. More research is warranted into the potential modulatory effect of insulin resistance on this association.
Collapse
Affiliation(s)
- R M Bove
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|