1
|
Yang HR, Han MR, Oh EY, Choi JY, Choi JY, Kim Y, Kim YT, Kang H, Kim JG. Role of cold-inducible RNA-binding protein in hypothalamic regulation of feeding behavior during fasting and cold exposure. Biochem Biophys Res Commun 2025; 757:151616. [PMID: 40112768 DOI: 10.1016/j.bbrc.2025.151616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Appetite regulation is a complex process that is critical for maintaining energy balance and is governed by intricate molecular and cellular mechanisms in the hypothalamus. RNA-binding proteins play vital roles in the post-transcriptional regulation of mRNA and influence feeding behavior and energy metabolism. This study explored the role of cold-inducible RNA-binding protein (Cirbp) in hypothalamic neurons under metabolic stress conditions, such as fasting and cold exposure. Next-generation sequencing (NGS) of the hypothalami from fasted mice identified 67 differentially expressed RNA-binding proteins, with Cirbp and RNA-binding motif protein 3 (Rbm3) being significantly upregulated. Immunohistochemical analysis confirmed increased Cirbp expression in the arcuate nucleus (ARC) and dorsomedial hypothalamus during fasting, indicating responsiveness to metabolic cues. Ribo-Tag analysis of agouti-related protein (AgRP) neurons demonstrated elevated Cirbp expression levels in response to fasting, linking it to hunger-regulating pathways. Intracerebroventricular injection of Cirbp antisense oligodeoxynucleotides (AS ODN) reduced Cirbp expression, leading to a decrease in food intake and a reduction in body weight, highlighting the functional role of Cirbp in appetite regulation. Cold exposure also induced Cirbp expression in the ARC, which correlated with an increase in food intake. Blockade of Cirbp by AS ODN treatment attenuated cold-induced food intake, indicating that Cirbp plays a specific role in regulating feeding behavior during cold stress. This suggests that Cirbp is a key mediator in hypothalamic responses to metabolic stress, influencing feeding behavior through its regulatory functions in AgRP neurons. Further exploration of Cirbp mechanisms may offer insights into therapeutic strategies for energy balance disorders, such as obesity and anorexia.
Collapse
Affiliation(s)
- Hye Rim Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eun-Young Oh
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ja Yeon Choi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jae Yeon Choi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yuhyun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yang Tae Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon, 22012, Republic of Korea.
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Research Center of Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
2
|
Yang J, Zhou Y, Zhang J, Zheng Y, He J. Identification of genes related to fatty acid metabolism in type 2 diabetes mellitus. Biochem Biophys Rep 2024; 40:101849. [PMID: 39498440 PMCID: PMC11532806 DOI: 10.1016/j.bbrep.2024.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Aim Fatty acid metabolism is pivotal for lipid synthesis, cellular signaling, and maintaining cell membrane integrity. However, its diagnostic significance in type 2 diabetes mellitus (T2DM) remains unclear. Materials and methods Three datasets and fatty acid metabolism-related genes were retrieved. Differential expression analysis, WGCNA, machine learning algorithms, diagnostic analysis, and validation were employed to identify key feature genes. Functional analysis, ceRNA network construction, immune microenvironment assessment, and drug prediction were conducted to explore the underlying molecular mechanisms. Results Six feature genes were identified with strong diagnostic performance and were involved in processes such as ribosome function and fatty acid metabolism. Immune cells, including dendritic cells, eosinophils, and neutrophils, may play a role in the progression of T2DM. ceRNA and drug-target network analysis revealed potential interactions, such as RP11-miR-29a-YTHDF3 and BPA-MSANTD1. The expression patterns of the feature genes, except for YTHDF3, were consistently upregulated in T2DM, aligning with trends observed in the training set. Conclusion This study investigated the potential molecular mechanisms of six fatty acid metabolism-related genes in T2DM, offering valuable insights that may guide future research and therapeutic development.
Collapse
Affiliation(s)
- Ji Yang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yikun Zhou
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiarui Zhang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongqin Zheng
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jundong He
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Macášek J, Staňková B, Žák A, Růžičková M, Brůha R, Kutová S, Vecka M, Zeman M. Associations of plasma phospholipid cis-vaccenic acid with insulin resistance markers in non-diabetic men with hyperlipidemia. Nutr Diabetes 2024; 14:73. [PMID: 39261487 PMCID: PMC11390737 DOI: 10.1038/s41387-024-00332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The role of fatty acids (FA) in the pathogenesis of insulin resistance and hyperlipidemia is a subject of intensive research. Several recent works have suggested cis-vaccenic acid (cVA) in plasma lipid compartments, especially in plasma phospholipids (PL) or erythrocyte membranes, could be associated with markers of insulin sensitivity and cardiovascular health. Nevertheless, not all the results of research work testify to these beneficial effects of cVA. Therefore, we decided to investigate the relations of proportion of cVA in plasma PL to markers of insulin resistance in hyperlipidemic men. SUBJECTS In 231 men (median age 50) with newly diagnosed hyperlipidemia, we analyzed basic clinical parameters together with FA composition of plasma PL and stratified them according to the content of cVA into upper quartile (Q4) and lower quartile (Q1) groups. We examined also small control group of 50 healthy men. RESULTS The individuals in Q4 differed from Q1 by lower plasma insulin (p < 0.05), HOMA-IR values (p < 0.01), and apolipoprotein B concentrations (p < 0.001), but by the higher total level of nonesterified FA (p < 0.01). Both groups had similar age, anthropometrical, and other lipid parameters. In plasma PL, the Q4 group had lower content of the sum of n-6 polyunsaturated FA, due to decrease of γ-linolenic and dihomo-γ-linolenic acids, whereas the content of monounsaturated FA (mainly oleic and palmitoleic) was in Q4 higher. CONCLUSIONS Our results support hypothesis that plasma PL cVA could be associated with insulin sensitivity in men with hyperlipidemia.
Collapse
Grants
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- NU23-01-00288 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
Collapse
Affiliation(s)
- Jaroslav Macášek
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Barbora Staňková
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
- Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Na Bojišti 3, 121 08, Prague, Czech Republic
| | - Aleš Žák
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Markéta Růžičková
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Radan Brůha
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Simona Kutová
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Marek Vecka
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic.
- Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Na Bojišti 3, 121 08, Prague, Czech Republic.
| | - Miroslav Zeman
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| |
Collapse
|
4
|
Minato-Inokawa S, Honda M, Tsuboi-Kaji A, Takeuchi M, Kitaoka K, Kurata M, Wu B, Kazumi T, Fukuo K. Associations of adipose insulin resistance index with pancreatic β cell function (inverse) and glucose excursion (positive) in young Japanese women. Sci Rep 2024; 14:18590. [PMID: 39127728 PMCID: PMC11316777 DOI: 10.1038/s41598-024-69181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The relationship of adipose tissue insulin resistance (AT-IR, a product of fasting insulin and free fatty acids) and homeostasis-model assessment-insulin resistance (HOMA-IR) to β-cell function was studied cross-sectionally in the setting of subtle glucose dysregulation. Associations of AT-IR and HOMA-IR with fasting and post-glucose glycemia and β-cell function inferred from serum insulin kinetics during a 75 g oral glucose tolerance test were studied in 168 young female Japanese students. β-cell function was evaluated by disposition index calculated as a product of the insulinogenic index (IGI) and Matsuda index. AT-IR, not HOMA-IR, showed positive associations with post-glucose glycemia and area under the glucose response curve although both indices were associated with fasting glycemia. HOMA-IR, not AT-IR, was associated positively with log IGI whereas both indices were inversely associated with Matsuda index. AT-IR, not HOMA-IR, showed inverse associations with log disposition index. Associations of adipose tissue insulin resistance with β-cell function (inverse) and glucose excursion in young Japanese women may suggest that lipotoxicity to pancreatic β-cells for decades may be associated with β cell dysfunction found in Japanese patients with type 2 diabetes. Positive association of HOMA-IR with insulinogenic index may be associated with compensatory increased insulin secretion.
Collapse
Affiliation(s)
- Satomi Minato-Inokawa
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Laboratory of Community Health and Nutrition, Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Mari Honda
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, Kobe, Hyogo, Japan
| | - Ayaka Tsuboi-Kaji
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Nutrition, Osaka City Juso Hospital, Osaka, Japan
| | - Mika Takeuchi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
| | - Kaori Kitaoka
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Advanced Epidemiology, Noncommunicable Disease (NCD) Epidemiology Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Miki Kurata
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Bin Wu
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tsutomu Kazumi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan.
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.
- Department of Medicine, Kohan Kakogawa Hospital, Kakogawa, Hyogo, Japan.
| | - Keisuke Fukuo
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
5
|
Nicholas DA, Mbongue JC, Garcia-Pérez D, Sorensen D, Ferguson Bennit H, De Leon M, Langridge WHR. Exploring the Interplay between Fatty Acids, Inflammation, and Type 2 Diabetes. IMMUNO 2024; 4:91-107. [PMID: 39606781 PMCID: PMC11600342 DOI: 10.3390/immuno4010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Around 285 million people worldwide currently have type 2 diabetes and it is projected that this number will be surpassed by 2030. Therefore, it is of the utmost importance to enhance our comprehension of the disease's development. The regulation of diet, obesity, and inflammation in type 2 diabetes is believed to play a crucial role in enhancing insulin sensitivity and reducing the risk of onset diabetes. Obesity leads to an increase in visceral adipose tissue, which is a prominent site of inflammation in type 2 diabetes. Dyslipidemia, on the other hand, plays a significant role in attracting activated immune cells such as macrophages, dendritic cells, T cells, NK cells, and B cells to visceral adipose tissue. These immune cells are a primary source of pro-inflammatory cytokines that are believed to promote insulin resistance. This review delves into the influence of elevated dietary free saturated fatty acids and examines the cellular and molecular factors associated with insulin resistance in the initiation of inflammation induced by obesity. Furthermore, it explores novel concepts related to diet-induced inflammation and its relationship with type 2 diabetes.
Collapse
Affiliation(s)
- Dequina A. Nicholas
- School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Jacques C. Mbongue
- Department of Biological Sciences, School of Arts and Sciences, Oakwood University, Huntsville, AL 35896, USA
| | - Darysbel Garcia-Pérez
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
- Division of Molecular Genetics and Microbiology, School of Medicine Alumni Hall, Loma Linda University, Rm 102, 11021 Campus Street, Loma Linda, CA 92350, USA
| | - Dane Sorensen
- Center for Perinatal Biology, Division of Physiology, Loma Linda School of Medicine, Rm A572, 11234 Anderson Street, Loma Linda, CA 92350, USA
| | - Heather Ferguson Bennit
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA
| |
Collapse
|
6
|
Tajima T, Kaga H, Someya Y, Tabata H, Naito H, Kakehi S, Ito N, Yamasaki N, Sato M, Kadowaki S, Sugimoto D, Nishida Y, Kawamori R, Watada H, Tamura Y. Low Handgrip Strength (Possible Sarcopenia) With Insulin Resistance Is Associated With Type 2 Diabetes Mellitus. J Endocr Soc 2024; 8:bvae016. [PMID: 38370441 PMCID: PMC10872678 DOI: 10.1210/jendso/bvae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 02/20/2024] Open
Abstract
Context Older adults with sarcopenic obesity are at high risk for type 2 diabetes mellitus (T2DM). However, few East Asians have sarcopenic obesity. Since many East Asians have insulin resistance (IR) without obesity, it is possible that older East Asians with sarcopenia and IR might be at high risk for T2DM. However, this relationship has not been studied. Methods This cross-sectional study included 1629 older adults aged 65 to 84 years registered in the Bunkyo Health Study. All underwent a 75-g oral glucose tolerance test and handgrip strength measurement. Participants were classified into 4 groups by possible sarcopenia (handgrip strength <28 kg in men and <18 kg in women) and IR status (triglyceride glucose [TyG] index ≥8.79 for men and ≥8.62 for women [third quartile]). Modified Poisson regression was used to estimate relative risk (RR) and 95% CIs for T2DM with adjustment for confounding factors. Results The mean age was 73.1 ± 5.4 years. T2DM was diagnosed in 212 (13.0%) participants. After adjusting for age, sex, body mass index, use of lipid-lowering medications, hypertension, and cardiovascular disease, possible sarcopenia and IR were associated with T2DM, with their coexistence showing a notably stronger association (control: RR, 1.00 [Reference]; possible sarcopenia: RR, 1.55 [95% CI, 1.04-2.30]; IR: RR, 2.69 [95% CI, 1.99-3.65]; and IR possible sarcopenia: RR, 4.76 [95% CI, 3.34-6.79]). Conclusion Possible sarcopenia based on low handgrip strength and IR based on the TyG index are independently associated with T2DM in older Japanese individuals. Their coexistence shows a particularly strong association with T2DM.
Collapse
Affiliation(s)
- Tsubasa Tajima
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
| | - Hideyoshi Kaga
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University, Tokyo, 113-8421, Japan
| | - Hiroki Tabata
- Sportology Center, Juntendo University, Tokyo, 113-8421, Japan
| | - Hitoshi Naito
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
| | - Saori Kakehi
- Sportology Center, Juntendo University, Tokyo, 113-8421, Japan
- Sports Medicine & Sportology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Naoaki Ito
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
| | - Nozomu Yamasaki
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
| | - Motonori Sato
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
| | - Satoshi Kadowaki
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
| | - Daisuke Sugimoto
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
| | - Yuya Nishida
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University, Tokyo, 113-8421, Japan
- Sports Medicine & Sportology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University, Tokyo, 113-8421, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University, Tokyo, 113-8421, Japan
- Sports Medicine & Sportology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
7
|
Naito H, Kaga H, Someya Y, Tabata H, Kakehi S, Tajima T, Ito N, Yamasaki N, Sato M, Kadowaki S, Sugimoto D, Nishida Y, Kawamori R, Watada H, Tamura Y. Fat Accumulation and Elevated Free Fatty Acid Are Associated With Age-Related Glucose Intolerance: Bunkyo Health Study. J Endocr Soc 2024; 8:bvad164. [PMID: 38188453 PMCID: PMC10768880 DOI: 10.1210/jendso/bvad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 01/09/2024] Open
Abstract
Context Older adults have a high prevalence of new-onset diabetes, often attributed to age-related decreases in insulin sensitivity and secretion. It remains unclear whether both insulin sensitivity and secretion continue to deteriorate after age 65. Objective To investigate the effects of aging on glucose metabolism after age 65 and to identify its determinants. Methods This cross-sectional study involved 1438 Japanese older adults without diabetes. All participants underwent a 75-g oral glucose tolerance test (OGTT). Body composition and fat distribution were measured with dual-energy X-ray absorptiometry and magnetic resonance imaging. Participants were divided into 4 groups by age (65-69, 70-74, 75-79, and 80-84 years) to compare differences in metabolic parameters. Results Mean age and body mass index were 73.0 ± 5.4 years and 22.7 ± 3.0 kg/m2. The prevalence of newly diagnosed diabetes increased with age. Fasting glucose, fasting insulin, the area under the curve (AUC)-insulin/AUC-glucose and insulinogenic index were comparable between groups. AUC-glucose and AUC-insulin during OGTT were significantly higher and Matsuda index and disposition index (Matsuda index · AUC-insulin/AUC-glucose) were significantly lower in the age 80-84 group than in the age 65-69 group. Age-related fat accumulation, particularly increased visceral fat area (VFA), and elevated free fatty acid (FFA) levels were observed. Multiple regression revealed strong correlations of both Matsuda index and disposition index with VFA and FFA. Conclusion Glucose tolerance declined with age in Japanese older adults, possibly due to age-related insulin resistance and β-cell deterioration associated with fat accumulation and elevated FFA levels.
Collapse
Affiliation(s)
- Hitoshi Naito
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hideyoshi Kaga
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hiroki Tabata
- Sportology Center, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Saori Kakehi
- Sportology Center, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Tsubasa Tajima
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Naoaki Ito
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Nozomu Yamasaki
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Motonori Sato
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Satoshi Kadowaki
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Daisuke Sugimoto
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yuya Nishida
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
8
|
Thomas P, Gallagher MT, Da Silva Xavier G. Beta cell lipotoxicity in the development of type 2 diabetes: the need for species-specific understanding. Front Endocrinol (Lausanne) 2023; 14:1275835. [PMID: 38144558 PMCID: PMC10739424 DOI: 10.3389/fendo.2023.1275835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
The propensity to develop type 2 diabetes (T2D) is known to have both environmental and hereditary components. In those with a genetic predisposition to T2D, it is widely believed that elevated concentrations of circulatory long-chain fatty acids (LC-FFA) significantly contribute towards the demise of insulin-producing pancreatic β-cells - the fundamental feature of the development of T2D. Over 25 years of research support that LC-FFA are deleterious to β-cells, through a process termed lipotoxicity. However, the work underpinning the theory of β-cell lipotoxicity is mostly based on rodent studies. Doubts have been raised as to whether lipotoxicity also occurs in humans. In this review, we examine the evidence, both in vivo and in vitro, for the pathogenic effects of LC-FFA on β-cell viability and function in humans, highlighting key species differences. In this way, we aim to uncover the role of lipotoxicity in the human pathogenesis of T2D and motivate the need for species-specific understanding.
Collapse
Affiliation(s)
- Patricia Thomas
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Gabriela Da Silva Xavier
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Liu Y, Wang D, Liu YP. Metabolite profiles of diabetes mellitus and response to intervention in anti-hyperglycemic drugs. Front Endocrinol (Lausanne) 2023; 14:1237934. [PMID: 38027178 PMCID: PMC10644798 DOI: 10.3389/fendo.2023.1237934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a major health problem, threatening the quality of life of nearly 500 million patients worldwide. As a typical multifactorial metabolic disease, T2DM involves the changes and interactions of various metabolic pathways such as carbohydrates, amino acid, and lipids. It has been suggested that metabolites are not only the endpoints of upstream biochemical processes, but also play a critical role as regulators of disease progression. For example, excess free fatty acids can lead to reduced glucose utilization in skeletal muscle and induce insulin resistance; metabolism disorder of branched-chain amino acids contributes to the accumulation of toxic metabolic intermediates, and promotes the dysfunction of β-cell mitochondria, stress signal transduction, and apoptosis. In this paper, we discuss the role of metabolites in the pathogenesis of T2DM and their potential as biomarkers. Finally, we list the effects of anti-hyperglycemic drugs on serum/plasma metabolic profiles.
Collapse
Affiliation(s)
| | | | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
10
|
Chaaba R, Bouaziz A, Ben Amor A, Mnif W, Hammami M, Mehri S. Fatty Acid Profile and Genetic Variants of Proteins Involved in Fatty Acid Metabolism Could Be Considered as Disease Predictor. Diagnostics (Basel) 2023; 13:979. [PMID: 36900123 PMCID: PMC10001328 DOI: 10.3390/diagnostics13050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Circulating fatty acids (FA) have an endogenous or exogenous origin and are metabolized under the effect of many enzymes. They play crucial roles in many mechanisms: cell signaling, modulation of gene expression, etc., which leads to the hypothesis that their perturbation could be the cause of disease development. FA in erythrocytes and plasma rather than dietary FA could be used as a biomarker for many diseases. Cardiovascular disease was associated with elevated trans FA and decreased DHA and EPA. Increased arachidonic acid and decreased Docosahexaenoic Acids (DHA) were associated with Alzheimer's disease. Low Arachidonic acid and DHA are associated with neonatal morbidities and mortality. Decreased saturated fatty acids (SFA), increased monounsaturated FA (MUFA) and polyunsaturated FA (PUFA) (C18:2 n-6 and C20:3 n-6) are associated with cancer. Additionally, genetic polymorphisms in genes coding for enzymes implicated in FA metabolism are associated with disease development. FA desaturase (FADS1 and FADS2) polymorphisms are associated with Alzheimer's disease, Acute Coronary Syndrome, Autism spectrum disorder and obesity. Polymorphisms in FA elongase (ELOVL2) are associated with Alzheimer's disease, Autism spectrum disorder and obesity. FA-binding protein polymorphism is associated with dyslipidemia, type 2 diabetes, metabolic syndrome, obesity, hypertension, non-alcoholic fatty liver disease, peripheral atherosclerosis combined with type 2 diabetes and polycystic ovary syndrome. Acetyl-coenzyme A carboxylase polymorphisms are associated with diabetes, obesity and diabetic nephropathy. FA profile and genetic variants of proteins implicated in FA metabolism could be considered as disease biomarkers and may help with the prevention and management of diseases.
Collapse
Affiliation(s)
- Raja Chaaba
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
| | - Aicha Bouaziz
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Bio-Resources, Integrative Biology & Valorization (BIOLIVAL, LR14ES06), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Asma Ben Amor
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Faculty of Medicine, “Ibn El Jazzar” University of Sousse, Sousse 4054, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Mohamed Hammami
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| | - Sounira Mehri
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| |
Collapse
|
11
|
von Hanstein AS, Tsikas D, Lenzen S, Jörns A, Plötz T. Potentiation of Lipotoxicity in Human EndoC-βH1 β-Cells by Glucose is Dependent on the Structure of Free Fatty Acids. Mol Nutr Food Res 2023; 67:e2200582. [PMID: 36629272 DOI: 10.1002/mnfr.202200582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Indexed: 01/12/2023]
Abstract
SCOPE Lipotoxicity is a significant element in the development of type 2 diabetes mellitus (T2DM). Since pro-diabetic nutritional patterns are associated with hyperglycemia as well as hyperlipidemia, the study analyzes the effects of combining these lipid and carbohydrate components with a special focus on the structural fatty acid properties such as increasing chain length (C16-C20) and degree of saturation with regard to the role of glucolipotoxicity in human EndoC-βH1 β-cells. METHODS AND RESULTS β-cell death induced by saturated FFAs is potentiated by high concentrations of glucose in a chain length-dependent manner starting with stearic acid (C18:0), whereas toxicity remains unchanged in the case of monounsaturated FFAs. Interference with FFA desaturation by overexpression and inhibition of stearoyl-CoA-desaturase, which catalyzes the rate-limiting step in the conversion of long-chain saturated into corresponding monounsaturated FFAs, does not affect the potentiating effect of glucose, but FFA desaturation reduces lipotoxicity and plays an important role in the formation of lipid droplets. Crucial elements underlying glucolipotoxicity are ER stress induction and cardiolipin peroxidation in the mitochondria. CONCLUSION In the context of nutrition, the data emphasize the importance of the lipid component in glucolipotoxicity related to the development of β-cell dysfunction and death in the manifestation of T2DM.
Collapse
Affiliation(s)
- Anna-Sophie von Hanstein
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany.,Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany.,Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Plötz
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
12
|
Wei C, Zhang Z, Fu Q, He Y, Yang T, Sun M. The reversible effects of free fatty acids on sulfonylurea-stimulated insulin secretion are related to the expression and dynamin-mediated endocytosis of KATP channels in pancreatic β cells. Endocr Connect 2023; 12:e220221. [PMID: 36398885 PMCID: PMC9782416 DOI: 10.1530/ec-22-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Objective Lipotoxicity-induced pancreatic β cell-dysfunction results in decreased insulin secretion in response to multiple stimulus. In this study, we investigated the reversible effects of palmitate (PA) or oleate (OA) on insulin secretion and the relationship with pancreatic β-cell ATP-sensitive potassium (KATP) channels. Methods MIN6 cells were treated with PA and OA for 48 h and then washed out for 24 h to determine the changes in expression and endocytosis of the KATP channels and glucose-stimulated insulin secretion (GSIS) and sulfonylurea-stimulated insulin secretion (SU-SIS). Results MIN6 cells exposed to PA or OA showed both impaired GSIS and SU-SIS; the former was not restorable, while the latter was reversible with washout of PA or OA. Decreased expressions of both total and surface Kir6.2 and SUR1 and endocytosis of KATP channels were observed, which were also recoverable after washout. When MIN6 cells exposed to free fatty acids (FFAs) were cotreated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or dynasore, we found that endocytosis of KATP channels did not change significantly by AICAR but was almost completely blocked by dynasore. Meanwhile, the inhibition of endocytosis of KATP channels after washout could be activated by PIP2. The recovery of SU-SIS after washout was significantly weakened by PIP2, but the decrease of SU-SIS induced by FFAs was not alleviated by dynasore. Conclusions FFAs can cause reversible impairment of SU-SIS on pancreatic β cells. The reversibility of the effects is partial because of the changes of expression and endocytosis of Kir6.2 and SUR1 which was mediated by dynamin.
Collapse
Affiliation(s)
- Chenmin Wei
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zichen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunqiang He
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Sun
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Al-Harthi S, Chandra K, Jaremko Ł. Lipoic Acid Restores Binding of Zinc Ions to Human Serum Albumin. Front Chem 2022; 10:942585. [PMID: 35898971 PMCID: PMC9309503 DOI: 10.3389/fchem.2022.942585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Human serum albumin (HSA) is the main zinc(II) carrier in blood plasma. The HSA site with the strongest affinity for zinc(II), multi-metal binding site A, is disrupted by the presence of fatty acids (FAs). Therefore, the FA concentration in the blood influences zinc distribution, which may affect both normal physiological processes and a range of diseases. Based on the current knowledge of HSA’s structure and its coordination chemistry with zinc(II), we investigated zinc interactions and the effect of various FAs, including lipoic acid (LA), on the protein structure, stability, and zinc(II) binding. We combined NMR experiments and isothermal titration calorimetry to examine zinc(II) binding to HSA at a sub-atomic level in a quantitative manner as well as the effect of FAs. Free HSA results indicate the existence of one high-affinity zinc(II) binding site and multiple low-affinity sites. Upon the binding of FAs to HSA, we observed a range of behaviors in terms of zinc(II) affinity, depending on the type of FA. With FAs that disrupt zinc binding, the addition of LA restores HSA’s affinity for zinc ions to the levels seen with free defatted HSA, indicating the possible mechanism of LA, which is effective in the treatment of diabetes and cardiovascular diseases.
Collapse
|
14
|
Shitole SG, Biggs ML, Ix JH, Fretts AM, Tracy RP, Siscovick DS, Djoussé L, Mukamal KJ, Kizer JR. Fasting and Postload Nonesterified Fatty Acids and Glucose Dysregulation in Older Adults. Am J Epidemiol 2022; 191:1235-1247. [PMID: 35247051 PMCID: PMC9989335 DOI: 10.1093/aje/kwac044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
To evaluate the association of nonesterified fatty acids (NEFA) with dysglycemia in older adults, NEFA levels were measured among participants in the Cardiovascular Health Study (United States; enrolled 1989-1993). Associations with insulin sensitivity and pancreatic β-cell function, and with incident type 2 diabetes mellitus (DM), were examined. The sample comprised 2,144 participants (aged 77.9 (standard deviation, 4.5) years). Participant data from the Cardiovascular Health Study visit in 1996-1997 was used with prospective follow-up through 2010. Fasting and postload NEFA showed significant associations with lower insulin sensitivity and pancreatic β-cell function, individually and on concurrent adjustment. Over median follow-up of 9.7 years, 236 cases of DM occurred. Postload NEFA were associated with risk of DM (per standard deviation, hazard ratio = 1.18, 95% confidence interval: 1.08, 1.29), but fasting NEFA were not (hazard ratio = 1.12, 95% confidence interval: 0.97, 1.29). The association for postload NEFA persisted after adjustment for putative intermediates, and after adjustment for fasting NEFA. Sex and body mass index modified these associations, which were stronger for fasting NEFA with DM in men but were accentuated for postload NEFA in women and among leaner individuals. Fasting and postload NEFA were related to lower insulin sensitivity and pancreatic β-cell function, but only postload NEFA were associated with increased DM. Additional study into NEFA metabolism could uncover novel potential targets for diabetes prevention in elders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jorge R Kizer
- Correspondence to Dr. Jorge R. Kizer, 4150 Clement Street, San Francisco, CA 94121 (e-mail: )
| |
Collapse
|
15
|
Kim YJ, Kang D, Yang HR, Park BS, Tu TH, Jeong B, Lee BJ, Kim JK, Kim JG. Metabolic Profiling of the Hypothalamus of Mice during Short-Term Food Deprivation. Metabolites 2022; 12:metabo12050407. [PMID: 35629911 PMCID: PMC9144291 DOI: 10.3390/metabo12050407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Nutrient availability and utilization in hypothalamic cells are directly associated with the regulation of whole-body energy homeostasis. Thus, establishing metabolic profiling in the hypothalamus in response to metabolic shift is valuable to better understand the underlying mechanism of appetite regulation. In the present study, we evaluate the alteration of lipophilic and hydrophilic metabolites in both the hypothalamus and serum of fasted mice. Fasted mice displayed an elevated ketone body and decreased lactate levels in the hypothalamus. In support of the metabolite data, we further confirmed that short-term food deprivation resulted in the altered expression of genes involved in cellular metabolic processes, including the shuttling of fuel sources and the production of monocarboxylates in hypothalamic astrocytes. Overall, the current study provides useful information to close the gap in our understanding of the molecular and cellular mechanisms underlying hypothalamic control of whole-body energy metabolism.
Collapse
Affiliation(s)
- Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.J.K.); (H.R.Y.); (B.S.P.); (T.H.T.)
| | - Dasol Kang
- Department of Biological Science, University of Ulsan, Ulsan 44610, Korea; (D.K.); (B.J.); (B.J.L.)
| | - Hye Rim Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.J.K.); (H.R.Y.); (B.S.P.); (T.H.T.)
| | - Byong Seo Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.J.K.); (H.R.Y.); (B.S.P.); (T.H.T.)
| | - Thai Hien Tu
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.J.K.); (H.R.Y.); (B.S.P.); (T.H.T.)
| | - Bora Jeong
- Department of Biological Science, University of Ulsan, Ulsan 44610, Korea; (D.K.); (B.J.); (B.J.L.)
| | - Byung Ju Lee
- Department of Biological Science, University of Ulsan, Ulsan 44610, Korea; (D.K.); (B.J.); (B.J.L.)
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.J.K.); (H.R.Y.); (B.S.P.); (T.H.T.)
- Correspondence: (J.K.K.); (J.G.K.); Tel.: +82-32-835-8241 (J.K.K.); +82-32-835-8256 (J.G.K.)
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (Y.J.K.); (H.R.Y.); (B.S.P.); (T.H.T.)
- Correspondence: (J.K.K.); (J.G.K.); Tel.: +82-32-835-8241 (J.K.K.); +82-32-835-8256 (J.G.K.)
| |
Collapse
|
16
|
Petry SF, Römer A, Rawat D, Brunner L, Lerch N, Zhou M, Grewal R, Sharifpanah F, Sauer H, Eckert GP, Linn T. Loss and Recovery of Glutaredoxin 5 Is Inducible by Diet in a Murine Model of Diabesity and Mediated by Free Fatty Acids In Vitro. Antioxidants (Basel) 2022; 11:antiox11040788. [PMID: 35453472 PMCID: PMC9025089 DOI: 10.3390/antiox11040788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Free fatty acids (FFA), hyperglycemia, and inflammatory cytokines are major mediators of β-cell toxicity in type 2 diabetes mellitus, impairing mitochondrial metabolism. Glutaredoxin 5 (Glrx5) is a mitochondrial protein involved in the assembly of iron–sulfur clusters required for complexes of the respiratory chain. We have provided evidence that islet cells are deprived of Glrx5, correlating with impaired insulin secretion during diabetes in genetically obese mice. In this study, we induced diabesity in C57BL/6J mice in vivo by feeding the mice a high-fat diet (HFD) and modelled the diabetic metabolism in MIN6 cells through exposure to FFA, glucose, or inflammatory cytokines in vitro. qRT-PCR, ELISA, immunohisto-/cytochemistry, bioluminescence, and respirometry were employed to study Glrx5, insulin secretion, and mitochondrial biomarkers. The HFD induced a depletion of islet Glrx5 concomitant with an obese phenotype, elevated FFA in serum and reactive oxygen species in islets, and impaired glucose tolerance. Exposure of MIN6 cells to FFA led to a loss of Glrx5 in vitro. The FFA-induced depletion of Glrx5 coincided with significantly altered mitochondrial biomarkers. In summary, we provide evidence that Glrx5 is regulated by FFA in type 2 diabetes mellitus and is linked to mitochondrial dysfunction and blunted insulin secretion.
Collapse
Affiliation(s)
- Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
- Correspondence: ; Tel.: +49-641-985-57010
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Divya Rawat
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Lara Brunner
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Nina Lerch
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Rekha Grewal
- Laboratory for Nutrition in Prevention & Therapy, Department of Nutritional Sciences, Justus Liebig University, 35392 Giessen, Germany; (R.G.); (G.P.E.)
| | - Fatemeh Sharifpanah
- Faculty of Medicine, Philipps University, 35037 Marburg, Germany;
- Cyntegrity Germany GmbH, 60438 Frankfurt, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Gunter Peter Eckert
- Laboratory for Nutrition in Prevention & Therapy, Department of Nutritional Sciences, Justus Liebig University, 35392 Giessen, Germany; (R.G.); (G.P.E.)
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| |
Collapse
|
17
|
Vilas-Boas EA, Almeida DC, Roma LP, Ortis F, Carpinelli AR. Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress. Cells 2021; 10:cells10123328. [PMID: 34943836 PMCID: PMC8699655 DOI: 10.3390/cells10123328] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
A high caloric intake, rich in saturated fats, greatly contributes to the development of obesity, which is the leading risk factor for type 2 diabetes (T2D). A persistent caloric surplus increases plasma levels of fatty acids (FAs), especially saturated ones, which were shown to negatively impact pancreatic β-cell function and survival in a process called lipotoxicity. Lipotoxicity in β-cells activates different stress pathways, culminating in β-cells dysfunction and death. Among all stresses, endoplasmic reticulum (ER) stress and oxidative stress have been shown to be strongly correlated. One main source of oxidative stress in pancreatic β-cells appears to be the reactive oxygen species producer NADPH oxidase (NOX) enzyme, which has a role in the glucose-stimulated insulin secretion and in the β-cell demise during both T1 and T2D. In this review, we focus on the acute and chronic effects of FAs and the lipotoxicity-induced β-cell failure during T2D development, with special emphasis on the oxidative stress induced by NOX, the ER stress, and the crosstalk between NOX and ER stress.
Collapse
Affiliation(s)
- Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-900, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| | - Davidson Correa Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Leticia Prates Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany;
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| |
Collapse
|
18
|
Corkey BE, Deeney JT, Merrins MJ. What Regulates Basal Insulin Secretion and Causes Hyperinsulinemia? Diabetes 2021; 70:2174-2182. [PMID: 34593535 PMCID: PMC8576498 DOI: 10.2337/dbi21-0009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
We hypothesize that basal hyperinsulinemia is synergistically mediated by an interplay between increased oxidative stress and excess lipid in the form of reactive oxygen species (ROS) and long-chain acyl-CoA esters (LC-CoA). In addition, ROS production may increase in response to inflammatory cytokines and certain exogenous environmental toxins that mislead β-cells into perceiving nutrient excess when none exists. Thus, basal hyperinsulinemia is envisioned as an adaptation to sustained real or perceived nutrient excess that only manifests as a disease when the excess demand can no longer be met by an overworked β-cell. In this article we will present a testable hypothetical mechanism to explain the role of lipids and ROS in basal hyperinsulinemia and how they differ from glucose-stimulated insulin secretion (GSIS). The model centers on redox regulation, via ROS, and S-acylation-mediated trafficking via LC-CoA. These pathways are well established in neural systems but not β-cells. During GSIS, these signals rise and fall in an oscillatory pattern, together with the other well-established signals derived from glucose metabolism; however, their precise roles have not been defined. We propose that failure to either increase or decrease ROS or LC-CoA appropriately will disturb β-cell function.
Collapse
Affiliation(s)
- Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Jude T Deeney
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Matthew J Merrins
- Department of Biomolecular Chemistry and Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| |
Collapse
|
19
|
Association Analysis of LEP Signaling Pathway with Type 2 Diabetes Mellitus in Chinese Han Population from South China. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5517364. [PMID: 34589546 PMCID: PMC8476258 DOI: 10.1155/2021/5517364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/03/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Objective This study is aimed at analyzing the relationship between leptin (LEP) signaling pathway and type 2 diabetes mellitus (T2DM) and at providing support for molecular genetic research on the pathogenesis of T2DM in Chinese Han population. Methods A case-control study was designed, including 1092 cases with T2DM and 1092 healthy controls of Chinese Han origin recruited from ten hospitals in Guangdong Province, Southern China. Twenty-three single nucleotide polymorphisms (SNPs) of 15 genes in LEP signaling pathway were genotyped by SNPscan™ kit. The Pearson chi-square test, Cochran-Armitage trend test, MAX3, and logistic regression were applied to analyze the association between single nucleotide polymorphism (SNP) and T2DM; unconditional logistic regression was used to analyze haplotype in LD block; and SNP set analysis based on logistic kernel machine regression was used to analyze pathway. All statistical analysis was performed by SPSS25.0, R2.14, Haploview4.2, SNPStats, and other statistical software packages. Results In association analysis based on SNP, rs2167270 had statistical significance both in the adjusted and unadjusted covariate dominant model and in the unadjusted covariate overdominant model while it had no significant difference in the adjusted covariate overdominant model. Compared to GG genotype, rs2167270 of AG genotype had statistical significance in both the adjusted and unadjusted covariate codominant models. And rs16147 had statistical significance in robust test, stealth model and overdominant model, and adjusting and unadjusting covariate. This study found linkage disequilibrium existed between rs2167270 and rs4731426 of LEP, rs10889502 and rs17127107 of JAK1, rs2970847 and rs6821591 of PPARGC1A, rs249429 and rs3805486 of PRKAA1, rs1342382 and rs6588640 of PRKAA2, rs3766522 and rs6937 of PRKAB2, rs2970847 and rs6821591 of PRKAG2, and rs6436094 and rs645163 of PRKAG3. There was no positive finding with statistical significance from the unconditional logistic regression of the mentioned genes' haplotype of LD block. Conclusions LEP signaling pathway association with T2DM remained to be confirmed in Chinese Han population, although rs2167270 and rs16147 were significantly associated with T2DM.
Collapse
|
20
|
Hierons SJ, Marsh JS, Wu D, Blindauer CA, Stewart AJ. The Interplay between Non-Esterified Fatty Acids and Plasma Zinc and Its Influence on Thrombotic Risk in Obesity and Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms221810140. [PMID: 34576303 PMCID: PMC8471329 DOI: 10.3390/ijms221810140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
Thrombosis is a major comorbidity of obesity and type-2 diabetes mellitus (T2DM). Despite the development of numerous effective treatments and preventative strategies to address thrombotic disease in such individuals, the incidence of thrombotic complications remains high. This suggests that not all the pathophysiological mechanisms underlying these events have been identified or targeted. Non-esterified fatty acids (NEFAs) are increasingly regarded as a nexus between obesity, insulin resistance, and vascular disease. Notably, plasma NEFA levels are consistently elevated in obesity and T2DM and may impact hemostasis in several ways. A potentially unrecognized route of NEFA-mediated thrombotic activity is their ability to disturb Zn2+ speciation in the plasma. Zn2+ is a potent regulator of coagulation and its availability in the plasma is monitored carefully through buffering by human serum albumin (HSA). The binding of long-chain NEFAs such as palmitate and stearate, however, trigger a conformational change in HSA that reduces its ability to bind Zn2+, thus increasing the ion’s availability to bind and activate coagulation proteins. NEFA-mediated perturbation of HSA-Zn2+ binding is thus predicted to contribute to the prothrombotic milieu in obesity and T2DM, representing a novel targetable disease mechanism in these disorders.
Collapse
Affiliation(s)
- Stephen J. Hierons
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | - Jordan S. Marsh
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | - Dongmei Wu
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | | | - Alan J. Stewart
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
- Correspondence: ; Tel.: +44-(0)-1334-463546; Fax: +44-(0)-1334-463482
| |
Collapse
|
21
|
Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr Connect 2021; 10:R213-R228. [PMID: 34289444 PMCID: PMC8428079 DOI: 10.1530/ec-21-0260] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The most distinctive pathological characteristics of diabetes mellitus induced by various stressors or immune-mediated injuries are reductions of pancreatic islet β-cell populations and activity. Existing treatment strategies cannot slow disease progression; consequently, research to genetically engineer β-cell mimetics through bi-directional plasticity is ongoing. The current consensus implicates β-cell dedifferentiation as the primary etiology of reduced β-cell mass and activity. This review aims to summarize the etiology and proposed mechanisms of β-cell dedifferentiation and to explore the possibility that there might be a time interval from the onset of β-cell dysfunction caused by dedifferentiation to the development of diabetes, which may offer a therapeutic window to reduce β-cell injury and to stabilize functionality. In addition, to investigate β-cell plasticity, we review strategies for β-cell regeneration utilizing genetic programming, small molecules, cytokines, and bioengineering to transdifferentiate other cell types into β-cells; the development of biomimetic acellular constructs to generate fully functional β-cell-mimetics. However, the maturation of regenerated β-cells is currently limited. Further studies are needed to develop simple and efficient reprogramming methods for assembling perfectly functional β-cells. Future investigations are necessary to transform diabetes into a potentially curable disease.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chuan Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence should be addressed to C Zhang:
| |
Collapse
|
22
|
Ye J, Ye X, Jiang W, Lu C, Geng X, Zhao C, Ma Y, Yang P, Man Lam S, Shui G, Yang T, Zhong Li J, Gong Y, Fu Z, Zhou H. Targeted lipidomics reveals associations between serum sphingolipids and insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. Diabetes Res Clin Pract 2021; 173:108699. [PMID: 33592213 DOI: 10.1016/j.diabres.2021.108699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
AIMS Sphingolipids(SPs) and their substrates and constituents, fatty acids (FAs), are implicated in the pathogenesis of various metabolic diseases associated. This study aimed to systematically investigate the associations between serum sphingolipids and insulin sensitivity as well as insulin secretion. METHODS We conducted a lipidomics evaluation of molecularly distinct SPs in the serum of 86 consecutive Chinese adults using LC/MS. The glucose infusion rate over 30 min (GIR30) was measured under steady conditions to assess insulin sensitivity by the gold standard hyperinsulinemic-euglycemic clamp. We created the ROC curves to detect the serum SMs diagnostic value. RESULTS Total and subspecies of serum SMs and globotriaosyl ceramides (Gb3s) were positively related to GIR30, free FAs (FFA 16:1, FFA20:4), some long chain GM3 and complex ceramide GluCers showed strong negative correlations with GIR30. Notably, ROC curves showed that SM/Cer and SM d18:0/26:0 may be good serum lipid predictors of diagnostic indicators of insulin sensitivity close to conventional clinical indexes such as 1/HOMA-IR (areas under the curve > 0.80) based on GIR30 as standard diagnostic criteria, and (SM/Cer)/(BMI*LDLc) areas under the curve = 0.93) is the best. CONCLUSIONS These results provide novel associations between serum sphingolipid between insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp and identify two specific SPs that may represent prognostic biomarkers for insulin sensitivity.
Collapse
Affiliation(s)
- Jingya Ye
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Xuan Ye
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Wanzi Jiang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Chenyan Lu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Xiaomei Geng
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Chenxi Zhao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Yizhe Ma
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Panpan Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Sin Man Lam
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - John Zhong Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingyun Gong
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China.
| | - Zhenzhen Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China.
| | - Hongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Al-Mrabeh A. β-Cell Dysfunction, Hepatic Lipid Metabolism, and Cardiovascular Health in Type 2 Diabetes: New Directions of Research and Novel Therapeutic Strategies. Biomedicines 2021; 9:226. [PMID: 33672162 PMCID: PMC7927138 DOI: 10.3390/biomedicines9020226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains a major problem for people with type 2 diabetes mellitus (T2DM), and dyslipidemia is one of the main drivers for both metabolic diseases. In this review, the major pathophysiological and molecular mechanisms of β-cell dysfunction and recovery in T2DM are discussed in the context of abnormal hepatic lipid metabolism and cardiovascular health. (i) In normal health, continuous exposure of the pancreas to nutrient stimulus increases the demand on β-cells. In the long term, this will not only stress β-cells and decrease their insulin secretory capacity, but also will blunt the cellular response to insulin. (ii) At the pre-diabetes stage, β-cells compensate for insulin resistance through hypersecretion of insulin. This increases the metabolic burden on the stressed β-cells and changes hepatic lipoprotein metabolism and adipose tissue function. (iii) If this lipotoxic hyperinsulinemic environment is not removed, β-cells start to lose function, and CVD risk rises due to lower lipoprotein clearance. (iv) Once developed, T2DM can be reversed by weight loss, a process described recently as remission. However, the precise mechanism(s) by which calorie restriction causes normalization of lipoprotein metabolism and restores β-cell function are not fully established. Understanding the pathophysiological and molecular basis of β-cell failure and recovery during remission is critical to reduce β-cell burden and loss of function. The aim of this review is to highlight the link between lipoprotein export and lipid-driven β-cell dysfunction in T2DM and how this is related to cardiovascular health. A second aim is to understand the mechanisms of β-cell recovery after weight loss, and to explore new areas of research for developing more targeted future therapies to prevent T2DM and the associated CVD events.
Collapse
Affiliation(s)
- Ahmad Al-Mrabeh
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
24
|
Lipotoxic Impairment of Mitochondrial Function in β-Cells: A Review. Antioxidants (Basel) 2021; 10:antiox10020293. [PMID: 33672062 PMCID: PMC7919463 DOI: 10.3390/antiox10020293] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Lipotoxicity is a major contributor to type 2 diabetes mainly promoting mitochondrial dysfunction. Lipotoxic stress is mediated by elevated levels of free fatty acids through various mechanisms and pathways. Impaired peroxisome proliferator-activated receptor (PPAR) signaling, enhanced oxidative stress levels, and uncoupling of the respiratory chain result in ATP deficiency, while β-cell viability can be severely impaired by lipotoxic modulation of PI3K/Akt and mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathways. However, fatty acids are physiologically required for an unimpaired β-cell function. Thus, preparation, concentration, and treatment duration determine whether the outcome is beneficial or detrimental when fatty acids are employed in experimental setups. Further, ageing is a crucial contributor to β-cell decay. Cellular senescence is connected to loss of function in β-cells and can further be promoted by lipotoxicity. The potential benefit of nutrients has been broadly investigated, and particularly polyphenols were shown to be protective against both lipotoxicity and cellular senescence, maintaining the physiology of β-cells. Positive effects on blood glucose regulation, mitigation of oxidative stress by radical scavenging properties or regulation of antioxidative enzymes, and modulation of apoptotic factors were reported. This review summarizes the significance of lipotoxicity and cellular senescence for mitochondrial dysfunction in the pancreatic β-cell and outlines potential beneficial effects of plant-based nutrients by the example of polyphenols.
Collapse
|
25
|
Li Q, Zhao M, Wang Y, Zhong F, Liu J, Gao L, Zhao J. Associations Between Serum Free Fatty Acid Levels and Incident Diabetes in a 3-Year Cohort Study. Diabetes Metab Syndr Obes 2021; 14:2743-2751. [PMID: 34168474 PMCID: PMC8216696 DOI: 10.2147/dmso.s302681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE High circulating free fatty acid (FFA) is associated with the development of diabetes. This study was designed to evaluate longitudinal associations between FFA levels, changes in FFA levels, and mean FFA levels and incident diabetes. PARTICIPANTS AND METHODS This 3-year cohort study was conducted in Ningyang between 2011 and 2014. Serum FFA, fasting blood glucose (FPG), 2-hour postprandial blood glucose (2hPG), and glycosylated hemoglobin (HbA1c) levels were measured at baseline and at the end of follow-up. A multivariate stepwise logistic regression model was used to evaluate associations between serum FFA levels in various groups and the risk of incident diabetes. RESULTS Of the 2905 individuals without baseline diabetes, 290 developed diabetes by the 3-year follow-up. With increasing baseline FFA levels, the mean FPG, 2hPG, and HbA1c levels, and the prevalence of diabetes at the end of follow-up increased. The trend of FPG and HbA1c increase was not statistically significant. Higher baseline FFA levels were not significantly associated with greater risk of incident diabetes. However, longitudinal changes in serum FFA levels showed that individuals with serum FFA levels from normal to high (OR = 2.956, 95% CI: 2.089-4.184) or from high to high (OR = 3.343, 95% CI: 2.300-4.857) had greater risk of incident diabetes compared with those with normal to normal FFA levels. Similarly, individuals with ΔFFA ≥ 0 mmol/L (OR = 1.762, 95% CI: 1.373-2.262) or high mean serum FFA levels (OR = 2.120, 95% CI: 1.620-2.775) were at higher risk of incident diabetes than those with ΔFFA < 0 mmol/L or normal mean serum FFA levels. CONCLUSION The longitudinal status of serum FFA levels, including chronic increases and sustained high levels, was more closely associated with high risk of incident diabetes than was high baseline FFA levels.
Collapse
Affiliation(s)
- Qihang Li
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Meng Zhao
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Yupeng Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Fang Zhong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Liu
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Jiajun Zhao Tel +86 15168889899 Email
| |
Collapse
|
26
|
Nakatani S, Mori K, Sonoda M, Nishide K, Uedono H, Tsuda A, Emoto M, Shoji T. Association between Serum Zinc and Calcification Propensity (T 50) in Patients with Type 2 Diabetes Mellitus and In Vitro Effect of Exogenous Zinc on T 50. Biomedicines 2020; 8:biomedicines8090337. [PMID: 32916995 PMCID: PMC7555216 DOI: 10.3390/biomedicines8090337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Zinc inhibits vascular calcification in vivo and in vitro. Patients with type 2 diabetes mellitus show hypozincemia and are at an elevated risk of cardiovascular events. Recently, an in vitro test (T50-test) was developed for determination of serum calcification propensity and a shorter T50 means a higher calcification propensity. This cross-sectional study investigated the association between serum zinc and T50 in 132 type 2 diabetes mellitus patients with various kidney functions. Furthermore, the effect of exogenous zinc on T50 was also investigated in vitro using separately pooled serum samples obtained from healthy volunteers and patients with hemodialysis. We measured T50 levels using the established nephelometric method. The median (interquartile range) levels of T50 and serum zinc were 306 (269 to 332) min, and 80.0 (70.1 to 89.8) µg/dL, respectively. Serum zinc level showed a weak, but positive correlation with T50 (rs = 0.219, p = 0.012). This association remained significant in multivariable-adjusted analysis, and was independent of known factors including phosphate, calcium, and magnesium. Kidney function and glycemic control were not significantly associated with T50. Finally, in vitro experiments showed that addition of a physiological concentration of exogenous zinc chloride significantly increased serum T50. Our results indicate that serum zinc is an independent factor with a potential role in suppressing calcification propensity in serum.
Collapse
Affiliation(s)
- Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
- Correspondence: ; Tel.: +81-6-6645-3806; Fax: +81-6-6645-3808
| | - Mika Sonoda
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
- Division of Internal Medicine, Inoue Hospital, 16-17 enoki-machi, Osaka 564-0053, Japan
| | - Kozo Nishide
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
| | - Hideki Uedono
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.N.); (M.S.); (K.N.); (H.U.); (A.T.); (M.E.)
- Department of Nephrology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Osaka 545-8585, Japan;
- Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
27
|
Her TK, Lagakos WS, Brown MR, LeBrasseur NK, Rakshit K, Matveyenko AV. Dietary carbohydrates modulate metabolic and β-cell adaptation to high-fat diet-induced obesity. Am J Physiol Endocrinol Metab 2020; 318:E856-E865. [PMID: 32315211 PMCID: PMC7311673 DOI: 10.1152/ajpendo.00539.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is associated with several chronic comorbidities, one of which is type 2 diabetes mellitus (T2DM). The pathogenesis of obesity and T2DM is influenced by alterations in diet macronutrient composition, which regulate energy expenditure, metabolic function, glucose homeostasis, and pancreatic islet cell biology. Recent studies suggest that increased intake of dietary carbohydrates plays a previously underappreciated role in the promotion of obesity and consequent metabolic dysfunction. Thus, in this study, we utilized mouse models to test the hypothesis that dietary carbohydrates modulate energetic, metabolic, and islet adaptions to high-fat diets. To address this, we exposed C57BL/6J mice to 12 wk of 3 eucaloric high-fat diets (>60% calories from fat) with varying total carbohydrate (1-20%) and sucrose (0-20%) content. Our results show that severe restriction of dietary carbohydrates characteristic of ketogenic diets reduces body fat accumulation, enhances energy expenditure, and reduces prevailing glycemia and insulin resistance compared with carbohydrate-rich, high-fat diets. Moreover, severe restriction of dietary carbohydrates also results in functional, morphological, and molecular changes in pancreatic islets highlighted by restricted capacity for β-cell mass expansion and alterations in insulin secretory response. These studies support the hypothesis that low-carbohydrate/high-fat diets provide antiobesogenic benefits and suggest further evaluation of the effects of these diets on β-cell biology in humans.
Collapse
Affiliation(s)
- Tracy K Her
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, Minnesota
| | - William S Lagakos
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, Minnesota
| | - Matthew R Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, Minnesota
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota
| | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, Minnesota
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Rochester, Minnesota
- Department of Medicine, Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Mayo Clinic School of Medicine, Rochester, Minnesota
| |
Collapse
|
28
|
Lv W, Wang L, Xuan Q, Zhao X, Liu X, Shi X, Xu G. Pseudotargeted Method Based on Parallel Column Two-Dimensional Liquid Chromatography-Mass Spectrometry for Broad Coverage of Metabolome and Lipidome. Anal Chem 2020; 92:6043-6050. [DOI: 10.1021/acs.analchem.0c00372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wangjie Lv
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuhui Xuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
29
|
Prentki M, Peyot ML, Masiello P, Madiraju SRM. Nutrient-Induced Metabolic Stress, Adaptation, Detoxification, and Toxicity in the Pancreatic β-Cell. Diabetes 2020; 69:279-290. [PMID: 32079704 DOI: 10.2337/dbi19-0014] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022]
Abstract
Paraphrasing the Swiss physician and father of toxicology Paracelsus (1493-1541) on chemical agents used as therapeutics, "the dose makes the poison," it is now realized that this aptly applies to the calorigenic nutrients. The case here is the pancreatic islet β-cell presented with excessive levels of nutrients such as glucose, lipids, and amino acids. The short-term effects these nutrients exert on the β-cell are enhanced insulin biosynthesis and secretion and changes in glucose sensitivity. However, chronic fuel surfeit triggers additional compensatory and adaptive mechanisms by β-cells to cope with the increased insulin demand or to protect itself. When these mechanisms fail, toxicity due to the nutrient surplus ensues, leading to β-cell dysfunction, dedifferentiation, and apoptosis. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity have been widely used, but there is some confusion as to what they mean precisely and which is most appropriate for a given situation. Here we address the gluco-, lipo-, and glucolipo-toxicities in β-cells by assessing the evidence both for and against each of them. We also discuss potential mechanisms and defend the view that many of the identified "toxic" effects of nutrient excess, which may also include amino acids, are in fact beneficial adaptive processes. In addition, candidate fuel-excess detoxification pathways are evaluated. Finally, we propose that a more general term should be used for the in vivo situation of overweight-associated type 2 diabetes reflecting both the adaptive and toxic processes to mixed calorigenic nutrients excess: "nutrient-induced metabolic stress" or, in brief, "nutri-stress."
Collapse
Affiliation(s)
- Marc Prentki
- Departments of Nutrition and Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Marie-Line Peyot
- Departments of Nutrition and Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - S R Murthy Madiraju
- Departments of Nutrition and Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| |
Collapse
|
30
|
Lv W, Wang X, Xu Q, Lu W. Mechanisms and Characteristics of Sulfonylureas and Glinides. Curr Top Med Chem 2020; 20:37-56. [PMID: 31884929 DOI: 10.2174/1568026620666191224141617] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/22/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus is a complex progressive endocrine disease characterized by hyperglycemia and life-threatening complications. It is the most common disorder of pancreatic cell function that causes insulin deficiency. Sulfonylurea is a class of oral hypoglycemic drugs. Over the past half century, these drugs, together with the subsequent non-sulfonylureas (glinides), have been the main oral drugs for insulin secretion. OBJECTIVE Through in-depth study, the medical profession considers it as an important drug for improving blood sugar control. METHODS The mechanism, characteristics, efficacy and side effects of sulfonylureas and glinides were reviewed in detail. RESULTS Sulfonylureas and glinides not only stimulated the release of insulin from pancreatic cells, but also had many extrapanular hypoglycemic effect, such as reducing the clearance rate of insulin in liver, reducing the secretion of glucagon, and enhancing the sensitivity of peripheral tissues to insulin in type 2 diabetes mellitus. CONCLUSION Sulfonylureas and glinides are effective first-line drugs for the treatment of diabetes mellitus. Although they have the risk of hypoglycemia, weight gain and cardiovascular disease, their clinical practicability and safety can be guaranteed as long as they are reasonably used.
Collapse
Affiliation(s)
- Wei Lv
- School of Materials Science and Engineering, Shanghai University, Shanghai, China.,Shanghai Huayi Resins Co., Ltd., Shanghai, China
| | - Xianqing Wang
- Charles Institute of Dermatology, University College Dublin, Dublin D04 V1W8, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, University College Dublin, Dublin D04 V1W8, Ireland
| | - Wencong Lu
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
31
|
Ly LD, Ly DD, Nguyen NT, Kim JH, Yoo H, Chung J, Lee MS, Cha SK, Park KS. Mitochondrial Ca 2+ Uptake Relieves Palmitate-Induced Cytosolic Ca 2+ Overload in MIN6 Cells. Mol Cells 2020; 43:66-75. [PMID: 31931552 PMCID: PMC6999716 DOI: 10.14348/molcells.2019.0223] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 11/27/2022] Open
Abstract
Saturated fatty acids contribute to β-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca2+ depletion followed by notable store-operated Ca2+ entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca2+ uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal β-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca2+ concentration ([Ca2+]i) and reduced depolarization-triggered Ca2+ influx likely due to the inactivation of voltage-gated Ca2+ channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca2+]i overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca2+]i elevation and defective [Ca2+]i transients. Extracellular Ca2+ chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca2+ uptake via MCU upregulation is a mechanism by which pancreatic β-cells are able to alleviate cytosolic Ca2+ overload and its detrimental consequences.
Collapse
Affiliation(s)
- Luong Dai Ly
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| | - Dat Da Ly
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| | - Nhung Thi Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| | - Ji-Hee Kim
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| | - Heesuk Yoo
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826,
Korea
| | - Jongkyeong Chung
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826,
Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722,
Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Seung-Kuy Cha
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426,
Korea
| |
Collapse
|
32
|
Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients 2019; 11:nu11092022. [PMID: 31466350 PMCID: PMC6770316 DOI: 10.3390/nu11092022] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased total plasma free fatty acid (FFA) concentrations and an elevated risk of cardiovascular disease. The exact mechanisms by which the plasma FFA profile of subjects with T2DM changes is unclear, but it is thought that dietary fats and changes to lipid metabolism are likely to contribute. Therefore, establishing the changes in concentrations of specific FFAs in an individual’s plasma is important. Each type of FFA has different effects on physiological processes, including the regulation of lipolysis and lipogenesis in adipose tissue, inflammation, endocrine signalling and the composition and properties of cellular membranes. Alterations in such processes due to altered plasma FFA concentrations/profiles can potentially result in the development of insulin resistance and coagulatory defects. Finally, fibrates and statins, lipid-regulating drugs prescribed to subjects with T2DM, are also thought to exert part of their beneficial effects by impacting on plasma FFA concentrations. Thus, it is also interesting to consider their effects on the concentration of FFAs in plasma. Collectively, we review how FFAs are altered in T2DM and explore the likely downstream physiological and pathological implications of such changes.
Collapse
|
33
|
Gerst F, Singer C, Noack K, Graf D, Kaiser G, Panse M, Kovarova M, Schleicher E, Häring HU, Drews G, Ullrich S. Glucose Responsiveness of β-Cells Depends on Fatty Acids. Exp Clin Endocrinol Diabetes 2019; 128:644-653. [PMID: 30986881 DOI: 10.1055/a-0884-2919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glucose-stimulated insulin secretion (GSIS) is the gold standard for β-cell function. Both experimental and clinical diabetology, i. e., preceding transplantation of isolated human islets, depend on functional testing. However, multiple factors influence GSIS rendering the comparison of different in vitro tests of glucose responsiveness difficult. This study examined the influence of bovine serum albumin (BSA)-coupled fatty acids on GSIS. Isolated islet preparations of human donors and of 12-months old mice displayed impaired GSIS in the presence of 0.5% FFA-free BSA compared to 0.5% BSA (fraction V, not deprived from fatty acids). In aged INS-1E cells, i. e. at a high passage number, GSIS became highly sensitive to FFA-free BSA. Readdition of 30 µM palmitate or 30 µM oleate to FFA-free BSA did not rescue GSIS, while the addition of 100 µM palmitate and the raise of extracellular Ca2+from 1.3 to 2.6 mM improved glucose responsiveness. A high concentration of palmitate (600 µM), which fully activates FFA1, largely restored insulin secretion. The FFA1-agonist TUG-469 also increased insulin secretion but to a lesser extent than palmitate. Glucose- and TUG-induced Ca2+oscillations were impaired in glucose-unresponsive, i. e., aged INS-1E cells. These results suggest that fatty acid deprivation (FFA-free BSA) impairs GSIS mainly through an effect on Ca2+sensitivity.
Collapse
Affiliation(s)
- Felicia Gerst
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.)
| | - Christine Singer
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany
| | - Katja Noack
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Dunia Graf
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Gabriele Kaiser
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.)
| | - Madhura Panse
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany
| | - Marketa Kovarova
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany
| | - Erwin Schleicher
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.)
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.)
| | - Gisela Drews
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Susanne Ullrich
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.)
| |
Collapse
|
34
|
Associations between circulating fatty acid levels and metabolic risk factors. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
35
|
Amior L, Srivastava R, Nano R, Bertuzzi F, Melloul D. The role of Cox-2 and prostaglandin E 2 receptor EP3 in pancreatic β-cell death. FASEB J 2019; 33:4975-4986. [PMID: 30629897 DOI: 10.1096/fj.201801823r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevated levels of lipids, in particular saturated fatty acids, are known to be associated with type 2 diabetes (T2D) and to have a negative effect on β-cell function and survival. We bring new evidence indicating that palmitate up-regulates cyclooxygenase-2 (COX-2) expression levels in human islets and in MIN6 β cells, and that it is elevated in islets isolated from T2D donors. Both small interfering specific cyclooxygenase-2 small interfering RNA (siRNA) or the COX-2 inhibitor celecoxib significantly inhibited apoptosis induced by palmitate. Prostaglandin E2 (PGE2), the predominant product of COX-2 enzymatic activity, activates membrane receptors, which are members of the GPCR-family (EP1-EP4). In the present study, elevated expression of the PGE2 receptor subtype 3 (EP3) receptor was observed in β cells exposed to palmitate and in islets from individuals with T2D. Down-regulation of the pathway using EP3 siRNA or the specific L-798,106 antagonist markedly decreased the levels of palmitate-induced apoptosis. Altogether, our data put forward the COX-2-PGE2-EP3 pathway as one of the mediators of palmitate-induced apoptosis in β-cells.-Amior, L., Srivastava, R., Nano, R., Bertuzzi, F., Melloul, D. The role of Cox-2 and prostaglandin E2 receptor EP3 in pancreatic β-cell death.
Collapse
Affiliation(s)
- Livnat Amior
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel; and
| | - Rohit Srivastava
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel; and
| | - Rita Nano
- Diabetes Research Institute, Instituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Federico Bertuzzi
- Diabetes Research Institute, Instituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Danielle Melloul
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel; and
| |
Collapse
|
36
|
Takeuchi M, Minato S, Kitaoka K, Tsuboi A, Kurata M, Kazumi T, Fukuo K. Higher Fasting and Postprandial Free Fatty Acid Levels Are Associated With Higher Muscle Insulin Resistance and Lower Insulin Secretion in Young Non-Obese Women. J Clin Med Res 2018; 10:822-829. [PMID: 30344817 PMCID: PMC6188023 DOI: 10.14740/jocmr3534w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/20/2018] [Indexed: 12/02/2022] Open
Abstract
Background To assess the relationship of the shape of glucose concentration curve during a standardized meal test to serum free fatty acid (FFA) concentrations, insulin resistance and insulin secretion in young non-obese women. Methods Thirty-five young women had a standardized meal for breakfast with measurement of glucose, insulin and FFA concentrations at 0 (fasting), 30, 60 and 120 min; the areas under the concentration curves were calculated (AUCg, AUCi and AUCffa, respectively). Meal-induced insulin response (MIR) was calculated as the ratio between the incremental insulin and glucose concentrations during the first 30 min of meal tests. In two women (group A), post-breakfast glucose (PBG) returned to levels below fasting plasma glucose (FPG) at 30 min; in 15 and 11 women, PBG returned to levels below FPG at 60 and 120 min (groups B and C, respectively). In the remaining seven women (group D), PBG never fell below FPG. Results Despite no difference in fasting insulin and AUCi, fasting FFA, AUCg and AUCffa were the lowest in group A, increased linearly from group B to C and plateaued in group D, whereas MIR might be the highest in group A, decreased from group B to C and plateaued in group D. Conclusion Young women whose PBG returned to FPG more slowly had higher muscle insulin resistance and lower MIR associated with higher fasting and postprandial FFA levels compared with young women whose PBG returned to baseline more quickly.
Collapse
Affiliation(s)
- Mika Takeuchi
- Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Satomi Minato
- Research Institute for Nutrition Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.,Graduate School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
| | - Kaori Kitaoka
- Research Institute for Nutrition Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.,Department of Welfare and Nutrition, Faculty of Health Welfare, Kansai University of Welfare Sciences, Kashiwara, Osaka, Japan
| | - Ayaka Tsuboi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.,Department of Nutrition, Osaka City Juso Hospital, Osaka, Japan
| | - Miki Kurata
- Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.,Research Institute for Nutrition Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Tsutomu Kazumi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.,Diabetes Division, Kohnan Kakogawa Hospital, Kakogawa, Hyogo, Japan
| | - Keisuke Fukuo
- Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.,Research Institute for Nutrition Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
37
|
Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk between zinc and free fatty acids in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:532-542. [PMID: 30266430 PMCID: PMC6372834 DOI: 10.1016/j.bbalip.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
In mammalian blood plasma, serum albumin acts as a transport protein for free fatty acids, other lipids and hydrophobic molecules including neurodegenerative peptides, and essential metal ions such as zinc to allow their systemic distribution. Importantly, binding of these chemically extremely diverse entities is not independent, but linked allosterically. One particularly intriguing allosteric link exists between free fatty acid and zinc binding. Albumin thus mediates crosstalk between energy status/metabolism and organismal zinc handling. In recognition of the fact that even small changes in extracellular zinc concentration and speciation modulate the function of many cell types, the albumin-mediated impact of free fatty acid concentration on zinc distribution may be significant for both normal physiological processes including energy metabolism, insulin activity, heparin neutralisation, blood coagulation, and zinc signalling, and a range of disease states, including metabolic syndrome, cardiovascular disease, myocardial ischemia, diabetes, and thrombosis. Serum albumin binds and transports both free fatty acids and Zn2+ ions Elevated plasma free fatty acids impair Zn2+ binding by albumin through an allosteric mechanism The resulting changes in plasma zinc speciation are thought to impact blood coagulation and may promote thrombosis Increased free Zn2+ may lead to enhanced zinc export from plasma and dysregulation of zinc homeostasis in multiple tissues
Collapse
Affiliation(s)
| | | | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The goal of the present paper is to review current literature supporting the occurrence of fundamental changes in brain energy metabolism during the transition from wakefulness to sleep. RECENT FINDINGS Latest research in the field indicates that glucose utilization and the concentrations of several brain metabolites consistently change across the sleep-wake cycle. Lactate, a product of glycolysis that is involved in synaptic plasticity, has emerged as a good biomarker of brain state. Sleep-induced changes in cerebral metabolite levels result from a shift in oxidative metabolism, which alters the reliance of brain metabolism upon carbohydrates. We found wide support for the notion that brain energetics is state dependent. In particular, fatty acids and ketone bodies partly replace glucose as cerebral energy source during sleep. This mechanism plausibly accounts for increases in biosynthetic pathways and functional alterations in neuronal activity associated with sleep. A better account of brain energy metabolism during sleep might help elucidate the long mysterious restorative effects of sleep for the whole organism.
Collapse
Affiliation(s)
- Nadia Nielsen Aalling
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, 14640, USA
| | - Mauro DiNuzzo
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.
| |
Collapse
|
39
|
Johnston LW, Harris SB, Retnakaran R, Giacca A, Liu Z, Bazinet RP, Hanley AJ. Association of NEFA composition with insulin sensitivity and beta cell function in the Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort. Diabetologia 2018; 61:821-830. [PMID: 29275428 DOI: 10.1007/s00125-017-4534-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Our aim was to determine the longitudinal associations of individual NEFA with the pathogenesis of diabetes, specifically with differences in insulin sensitivity and beta cell function over 6 years in a cohort of individuals who are at risk for diabetes. METHODS In the Prospective Metabolism and Islet Cell Evaluation (PROMISE) longitudinal cohort, 477 participants had serum NEFA measured at the baseline visit and completed an OGTT at three time points over 6 years. Outcome variables were calculated using the OGTT values. At each visit, insulin sensitivity was assessed using the HOMA2 of insulin sensitivity (HOMA2-%S) and the Matsuda index, while beta cell function was assessed using the insulinogenic index over HOMA-IR (IGI/IR) and the insulin secretion-sensitivity index-2 (ISSI-2). Generalised estimating equations were used, adjusting for time, waist, sex, ethnicity, baseline age, alanine aminotransferase (ALT) and physical activity. NEFA were analysed as both concentrations (nmol/ml) and proportions (mol%) of the total fraction. RESULTS Participants' (73% female, 70% with European ancestry) insulin sensitivity and beta cell function declined by 14-21% over 6 years of follow-up. In unadjusted models, several NEFA (e.g. 18:1 n-7, 22:4 n-6) were associated with lower insulin sensitivity, however, nearly all of these associations were attenuated in fully adjusted models. In adjusted models, total NEFA, 16:0, 18:1 n-9 and 18:2 n-6 (as concentrations) were associated with 3.7-8.0% lower IGI/IR and ISSI-2, while only 20:5 n-3 (as mol%) was associated with 7.7% higher HOMA2-%S. CONCLUSIONS/INTERPRETATION Total NEFA concentration was a strong predictor of lower beta cell function over 6 years. Our results suggest that the association with beta cell function is due to the absolute size of the serum NEFA fraction, rather than the specific fatty acid composition.
Collapse
Affiliation(s)
- Luke W Johnston
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Stewart B Harris
- Centre for Studies in Family Medicine, University of Western Ontario, London, ON, Canada
| | - Ravi Retnakaran
- Division of Endocrinology, University of Toronto, Toronto, ON, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhen Liu
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada
| | - Anthony J Hanley
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, M5S 3E2, Canada.
- Division of Endocrinology, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Aristizabal JC, González-Zapata LI, Estrada-Restrepo A, Monsalve-Alvarez J, Restrepo-Mesa SL, Gaitán D. Concentrations of Plasma Free Palmitoleic and Dihomo-Gamma Linoleic Fatty Acids Are Higher in Children with Abdominal Obesity. Nutrients 2018; 10:nu10010031. [PMID: 29301242 PMCID: PMC5793259 DOI: 10.3390/nu10010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Increased plasma free fatty acids (FFAs) are associated with cardiometabolic risk factors in adults with abdominal obesity (AO). However, this association remains controversial in children. This study analyzed plasma FFA concentration in children with and without AO. Twenty-nine children classified with AO were matched by age and sex with 29 non-obese individuals. Blood samples were collected after fasting for 10–12 h. Plasma concentration of glucose, insulin, triglycerides, total cholesterol, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were determined by automatized methods. FFAs were analyzed by gas chromatography. Children with and without AO had similar age (7.1 ± 2.6 vs. 7.2 ± 2.7 years; p > 0.05) but obese children showed higher (p < 0.05) body mass index (BMI) (+4.3 kg/m2), systolic blood pressure (+5.1 mmHg), and insulin (+27.8 pmol/L). There were no significant differences in plasma total FFA concentration between groups (1.02 ± 0.61 vs. 0.89 ± 0.37 mmol/L; p > 0.05). However, children with AO had higher palmitoleic acid (0.94 vs. 0.70 wt %; p < 0.05) and dihomo-gamma linoleic acid (DHGL) (2.76 vs. 2.07 wt %; p < 0.05). Palmitoleic and DHGL acids correlated (p < 0.05) with BMI (r = 0.397; r = 0.296, respectively) and with waist circumference (r = 0.380; r = 0.276, respectively). Palmitoleic acid correlated positively with systolic blood pressure (r = 0.386; p < 0.05) and negatively with HDL-C (−0.572; p < 0.01). In summary, children with AO have higher plasmatic concentrations of free palmitoleic and DHGL fatty acids, which correlate with cardiometabolic risk factors.
Collapse
Affiliation(s)
- Juan C Aristizabal
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Universidad de Antioquia, Medellín 050010, Colombia.
- Escuela de Nutrición y Dietética, Universidad de Antioquia, Medellín 050025, Colombia.
| | - Laura I González-Zapata
- Escuela de Nutrición y Dietética, Universidad de Antioquia, Medellín 050025, Colombia.
- Grupo de Investigación en Determinantes Sociales y Económicos de la Salud y la Nutrición, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alejandro Estrada-Restrepo
- Escuela de Nutrición y Dietética, Universidad de Antioquia, Medellín 050025, Colombia.
- Grupo de Investigación en Demografía y Salud, Universidad de Antioquia, Medellín 050010, Colombia.
| | | | - Sandra L Restrepo-Mesa
- Grupo de Investigación Alimentación y Nutrición Humana, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Diego Gaitán
- Grupo de Investigación Alimentación y Nutrición Humana, Universidad de Antioquia, Medellín 050010, Colombia.
| |
Collapse
|
41
|
Kirchberg FF, Brandt S, Moß A, Peissner W, Koenig W, Rothenbacher D, Brenner H, Koletzko B, Hellmuth C, Wabitsch M. Metabolomics reveals an entanglement of fasting leptin concentrations with fatty acid oxidation and gluconeogenesis in healthy children. PLoS One 2017; 12:e0183185. [PMID: 28817652 PMCID: PMC5560563 DOI: 10.1371/journal.pone.0183185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
Background Leptin and adiponectin communicate with organ systems in order to regulate energetic and metabolic homeostasis. Their different points of action have been well characterized; however, no study has investigated their interrelationship with the metabolism at the molecular level in vivo. Objective To examine the associations of leptin and adiponectin with the metabolic profile reflecting the intercellular and interorgan communication as well as activated metabolic pathways. Patients/Methods We measured plasma concentrations of leptin, adiponectin, and insulin along with concentrations of 196 metabolites in 400 healthy, fasting 8-years old German children who participated in the German Ulm Birth Cohort Study (UBCS). Using multiple linear mixed models, we evaluated the associations between hormones and metabolites. Results Leptin levels increased exponentially with increasing BMI. Leptin was furthermore strongly associated with alanine and aspartate (Bonferroni corrected P[PBF] = 5.7×10−8 and 1.7×10−6, respectively), and negatively associated to the sum of the non-esterified fatty acids (NEFA) and the sum of the long-chain acylcarnitines C12–C18 (PBF = 0.009 and 0.0001, respectively). Insulin showed a similar association pattern, although the associations were less strong than for leptin. Adiponectin was neither related to BMI nor to any metabolite. Conclusion Although children were presumably metabolically similar, we found strong associations of insulin and leptin with the metabolite profile. High alanine concentrations and the lower concentrations of NEFA in children with high fasting leptin concentrations might arise from an increased gluconeogenesis and from the disinhibiting effect of leptin on the carnitine-palmitoyltransferase-1, respectively. As insulin had the same trend towards these associations, both hormones seem to be related to processes that provide the body with energy in fasting state.
Collapse
Affiliation(s)
- Franca Fabiana Kirchberg
- Ludwig-Maximilians-Universität München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University of Munich Medical Center, Munich, Germany
| | - Stephanie Brandt
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - Anja Moß
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - Wolfgang Peissner
- Ludwig-Maximilians-Universität München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University of Munich Medical Center, Munich, Germany
| | - Wolfgang Koenig
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | | | - Hermann Brenner
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
| | - Berthold Koletzko
- Ludwig-Maximilians-Universität München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University of Munich Medical Center, Munich, Germany
- * E-mail:
| | - Christian Hellmuth
- Ludwig-Maximilians-Universität München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University of Munich Medical Center, Munich, Germany
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
42
|
Seghieri M, Tricò D, Natali A. The impact of triglycerides on glucose tolerance: Lipotoxicity revisited. DIABETES & METABOLISM 2017; 43:314-322. [PMID: 28693962 DOI: 10.1016/j.diabet.2017.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Elevated plasma triglycerides (TGs) are early key features of conditions associated with a dysregulation in glucose metabolism and may predict the development of type 2 diabetes (T2D) over time. Although the acute ingestion of lipid, either mixed with or shortly before the meal, is neutral or slightly beneficial on glucose tolerance, a short-term increase in plasma TGs induced by either an i.v. lipid infusion or a high-fat diet produces a deterioration of glucose control. Accordingly, chronic lowering of plasma TGs by fibrates improves glucose homeostasis and may also prevent T2D. The chronic effects of the elevation of dietary lipid intake are less clear, particularly in humans, being the quality of fat probably more important than total fat intake. Although on the bases of the available experimental and clinical evidence it cannot be easily disentangled, with respect to elevated non-esterified fatty acids (NEFA) the relative contribution of elevated TGs to glucose homeostasis disregulation seems to be greater and also more plausible. In conclusion, although the association between elevated plasma TGs and impaired glucose tolerance is commonly considered not causative or merely a consequence of NEFA-mediated lipotoxicity, the available data suggest that TGs per se may directly contribute to disorders of glucose metabolism.
Collapse
Affiliation(s)
- M Seghieri
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy
| | - D Tricò
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy
| | - A Natali
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy.
| |
Collapse
|
43
|
Fadini GP, Tura A, Pacini G, Avogaro A, Vigili de Kreutzenberg S. Reduced circulating stem cells associate with excess fasting and post-load NEFA exposure in healthy adults with normal glucose tolerance. Atherosclerosis 2017; 261:117-123. [DOI: 10.1016/j.atherosclerosis.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 12/27/2022]
|
44
|
Barre DE, Mizier-Barre KA, Griscti O, Hafez K. Flaxseed oil supplementation manipulates correlations between serum individual mol % free fatty acid levels and insulin resistance in type 2 diabetics. Insulin resistance and percent remaining pancreatic β-cell function are unaffected. Endocr Regul 2016; 50:183-193. [DOI: 10.1515/enr-2016-0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Objectives. Elevated total serum free fatty acids (FFAs) concentrations have been suggested, controversially, to enhance insulin resistance and decrease percent remaining β-cell function. However, concentrations of individual serum FFAs have never been published in terms of their relationship (correlation) to homeostatic model assessment-insulin resistance (HOMA-IR) and percent remaining β-cell function (HOMA-%β) in the type 2 diabetics (T2Ds). Alpha-linolenic acid consumption has a negative correlation with the insulin resistance, which in turn is negatively correlated with the remaining β-cell function. The primary objective was to test the hypothesis that there would be different relationship (correlation) between the blood serum individual free FFA mol % levels and HOMA-IR and/or HOMA-%β in T2D. The secondary objective was to test the hypothesis that flaxseed oil, previously being shown to be ineffective in the glycemic control in T2Ds, may alter these correlations in a statistically significant manner as well as HOMA-IR and/or HOMA-%β.
Methods. Patients were recruited via a newspaper advertisement and two physicians have been employed. All the patients came to visit one and three months later for a second visit. At the second visit, the subjects were randomly assigned (double blind) to flaxseed or safflower oil treatment for three months, until the third visit.
Results. Different statistically significant correlations or trends towards among some serum individual free FFA mol % levels and HOMA-IR and HOMA-%β, pre- and post-flaxseed and safflower oil supplementation were found. However, flaxseed oil had no impact on HOMA-IR or HOMA-%β despite statistically significant alterations in correlations compared to baseline HOMA-IR.
Conclusions. The obtained data indicate that high doses of flaxseed oil have no statistically significant effect on HOMA-IR or HOMA-%β in T2Ds, probably due to the additive effects of negative and positive correlations.
Collapse
Affiliation(s)
- DE Barre
- Department of Health Sciences and Emergency Management, Cape Breton University, Sydney, Nova Scotia, Canada
| | - KA Mizier-Barre
- Department of Biology, Cape Breton University, Sydney, Nova Scotia, Canada
| | - O Griscti
- School of Nursing, Cape Breton University, Sydney, Nova Scotia, Canada
| | - K Hafez
- Dr Soliman Faqeeh Hospital/King Abdulla University of Science and Technology, Jeddah, Saudi Arabia
| |
Collapse
|
45
|
Hershkop K, Besor O, Santoro N, Pierpont B, Caprio S, Weiss R. Adipose Insulin Resistance in Obese Adolescents Across the Spectrum of Glucose Tolerance. J Clin Endocrinol Metab 2016; 101:2423-31. [PMID: 27054297 PMCID: PMC4891802 DOI: 10.1210/jc.2016-1376] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT Adipocytes represent an important insulin-responsive tissue taking an active part in glucose metabolism. OBJECTIVE This study sought to assess adipose tissue insulin resistance (IR) across the spectrum of glucose tolerance and to test its relation with free fatty acid (FFA) suppression during an oral glucose tolerance test (OGTT). DESIGN AND SETTING A cross-sectional analysis of a pediatric clinic-derived cohort of obese adolescents. PATIENTS OR OTHER PARTICIPANTS Participants age 7-20 y with a body mass index that exceeded the 95th percentile for their age and sex. INTERVENTION(S) A standard oral glucose tolerance test. MAIN OUTCOME MEASURES The adipose tissue insulin resistance index (calculated as the product of fasting insulin and FFA concentrations) (Adipose IR) and the area under curve of FFAs during the OGTT were compared between glucose tolerance categories. RESULTS A total of 962 obese children and adolescents participated in this study. Adipose IR significantly increased across glucose tolerance categories (P for trend < .001). Within the normal glucose tolerance participants, an increase in adipose IR was observed related to an increase in 2-hr glucose levels. In a subsample of participants who underwent abdominal imaging for determination of lipid partitioning (n = 115), a tight relation of visceral fat (r = 0.34; P < .001) and the visceral/sc fat ratio (r = 0.55; P < .001) with the Adipose IR index was evident. Greater area under the curve FFAs (lower FFA suppression) during the OGTT was evident with worsening glucose tolerance (P for trend < .001). Glucose tolerance category, degree of obesity (body mass index-z score), IL-6, and low adiponectin emerged as significant predictors of the Adipose IR. CONCLUSIONS Adipose IR is associated with reduced suppression of FFAs during the OGTT and with an altered adipocytokine profile. The negative relation with insulin secretion deserves further longitudinal investigation in the context of deteriorating glucose tolerance.
Collapse
Affiliation(s)
- Karen Hershkop
- Department of Human Metabolism and Nutrition (K.H., O.B., R.W.), Braun School of Public Health, Hebrew University, Jerusalem 91120, Israel; and the Department of Pediatrics (N.S., B.P., S.C.), Yale School of Medicine, New Haven, Connecticut 06510
| | - Omri Besor
- Department of Human Metabolism and Nutrition (K.H., O.B., R.W.), Braun School of Public Health, Hebrew University, Jerusalem 91120, Israel; and the Department of Pediatrics (N.S., B.P., S.C.), Yale School of Medicine, New Haven, Connecticut 06510
| | - Nicola Santoro
- Department of Human Metabolism and Nutrition (K.H., O.B., R.W.), Braun School of Public Health, Hebrew University, Jerusalem 91120, Israel; and the Department of Pediatrics (N.S., B.P., S.C.), Yale School of Medicine, New Haven, Connecticut 06510
| | - Bridget Pierpont
- Department of Human Metabolism and Nutrition (K.H., O.B., R.W.), Braun School of Public Health, Hebrew University, Jerusalem 91120, Israel; and the Department of Pediatrics (N.S., B.P., S.C.), Yale School of Medicine, New Haven, Connecticut 06510
| | - Sonia Caprio
- Department of Human Metabolism and Nutrition (K.H., O.B., R.W.), Braun School of Public Health, Hebrew University, Jerusalem 91120, Israel; and the Department of Pediatrics (N.S., B.P., S.C.), Yale School of Medicine, New Haven, Connecticut 06510
| | - Ram Weiss
- Department of Human Metabolism and Nutrition (K.H., O.B., R.W.), Braun School of Public Health, Hebrew University, Jerusalem 91120, Israel; and the Department of Pediatrics (N.S., B.P., S.C.), Yale School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
46
|
Thomas J, Garg ML. Dietary Long Chain Omega-3 Polyunsaturated Fatty Acids and Inflammatory Gene Expression in Type 2 Diabetes. MOLECULAR NUTRITION AND DIABETES 2016:291-299. [DOI: 10.1016/b978-0-12-801585-8.00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
47
|
Tabara Y, Takahashi Y, Setoh K, Kawaguchi T, Gotoh N, Terao C, Yamada R, Kosugi S, Sekine A, Nakayama T, Matsuda F. Synergistic association of elevated serum free fatty acid and glucose levels with large arterial stiffness in a general population: The Nagahama Study. Metabolism 2016; 65:66-72. [PMID: 26683797 DOI: 10.1016/j.metabol.2015.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/14/2015] [Accepted: 10/03/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous studies have reported that artificial increases in circulating free fatty acid (FFA) levels might have adverse effects on the vasculature. However, whether or not this effect can be extrapolated to physiological variations in FFA levels has not been clarified. Given that FFAs exert a lipotoxic effect on pancreatic β-cells and might directly damage the arterial endothelium, we hypothesized that these adverse effects might synergize with hyperglycemia. METHODS A total of 9396 Japanese subjects were included in the study. Serum FFA levels were measured at baseline examination. Brachial-to-ankle pulse wave velocity (baPWV) was measured as an index of arterial stiffness. RESULTS As serum levels of FFA were markedly lower in subjects with higher insulin level, a significant association between FFA levels and baPWV was observed only in subjects with blood samples taken under fasting (≥12 h, P<0.001) or near-fasting (5-11 h, P<0.001) conditions, and not in those taken under non-fasting (<5 h, P=0.307) conditions. Although type 2 diabetes and HbA1c showed a strong association with baPWV, the association between FFA level and baPWV remained significant (β=0.052, P<0.001) after adjustment for glycemic levels. In addition to their direct relationship, FFA and glucose levels were synergistically associated with baPWV (FFA(⁎)glucose; β=0.036, P<0.001). Differences in baPWV between the lowest and highest subgroups divided by a combination of FFA and glucose reached approximately 300 cm/s. CONCLUSIONS Physiological variations in FFA concentrations might be a risk factor for large arterial stiffness. FFA and hyperglycemia exert a synergistic adverse effect on the vasculature.
Collapse
Affiliation(s)
- Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Yoshimitsu Takahashi
- Department of Health Informatics, Kyoto University School of Public Health, Kyoto, Japan
| | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norimoto Gotoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chikashi Terao
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryo Yamada
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinji Kosugi
- Department of Medical Ethics and Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Akihiro Sekine
- Center for Preventive Medical Science, Chiba University, Chiba Japan
| | - Takeo Nakayama
- Department of Health Informatics, Kyoto University School of Public Health, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
48
|
Selective elimination of the free fatty acid fraction from esterified fatty acids in rat plasma through chemical derivatization and immobilization on amino functionalized silica nano-particles. J Chromatogr A 2016; 1431:197-204. [DOI: 10.1016/j.chroma.2015.12.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 11/19/2022]
|
49
|
Emmett PM, Jones LR. Diet, growth, and obesity development throughout childhood in the Avon Longitudinal Study of Parents and Children. Nutr Rev 2015; 73 Suppl 3:175-206. [PMID: 26395342 PMCID: PMC4586450 DOI: 10.1093/nutrit/nuv054] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Publications from the Avon Longitudinal Study of Parents and Children covering diet, growth, and obesity development during childhood are reviewed. Diet was assessed by food frequency questionnaires and food records. Growth data were collected by routine measurements, and in standardized clinics, body fatness was assessed by bioelectrical impedance and DXA (dual-energy X-ray absorptiometry) scans. Diets changed dramatically during the preschool period with an increase in the intake of free (added) sugars (12.3% rising to 16.4% of energy) that remained similar until adolescence. This was due to increased intake of energy-dense, nutrient-poor foods. Two periods of rapid growth were identified; infancy and mid-childhood (ages 7-11 y) and both were associated with obesity development. Diets with high energy density were associated with increasing fat mass from mid-childhood until adolescence. Genetic and dietary factors showed independent associations with increasing adiposity. At all ages studied, there were dietary inequalities related to maternal educational attainment that may influence inequalities found in obesity development. The Avon Longitudinal Study of Parents and Children has provided valuable insights into how disparities in diet and growth may affect the development of ill health in adulthood.
Collapse
Affiliation(s)
- Pauline M Emmett
- P.M. Emmett is with the Centre for Child and Adolescent Health, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom.L.R. Jones is with the School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom.
| | - Louise R Jones
- P.M. Emmett is with the Centre for Child and Adolescent Health, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom.L.R. Jones is with the School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
50
|
Rebelos E, Seghieri M, Natali A, Balkau B, Golay A, Piatti PM, Lalic NM, Laakso M, Mari A, Ferrannini E. Influence of endogenous NEFA on beta cell function in humans. Diabetologia 2015; 58:2344-51. [PMID: 26160433 DOI: 10.1007/s00125-015-3685-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS It is a commonly held view that chronically elevated NEFA levels adversely affect insulin secretion and insulin action (lipotoxicity). However, the effect of NEFA on beta cell function has only been explored using acute NEFA elevations. Our aim was to analyse the relationship between endogenous NEFA levels and beta cell function. METHODS In 1,267 individuals followed-up for 3 years, we measured insulin sensitivity (by clamp) and beta cell function (by C-peptide modelling during OGTT and as the acute insulin response [AIR] to IVGTT). RESULTS At baseline, both fasting and insulin-suppressed NEFA levels were higher across glucose tolerance groups, while insulin sensitivity was lower, insulin output was higher, and beta cell glucose sensitivity and AIR were lower (all p < 0.0001). In multiple logistic analyses adjusting for age, BMI, WHR and glucose tolerance, both fasting and insulin-suppressed NEFA levels were inversely related to insulin sensitivity, as expected (both p < 0.0001). Furthermore, after adjusting for insulin sensitivity, insulin-suppressed NEFA were positively associated with total insulin output (p = 0.0042). In contrast, neither fasting nor insulin-suppressed NEFA were related to beta cell glucose sensitivity or AIR. At follow-up, worsening of glucose tolerance (n = 126) was predicted by lower insulin and beta cell glucose sensitivity. In this model, baseline NEFA were not significant predictors of progression. CONCLUSIONS/INTERPRETATION In the non-diabetic state and in subjects with impaired glucose tolerance, circulating endogenous NEFA are not independently associated measures of beta cell function, and do not predict deterioration of glucose tolerance. Thus, in the Relationship Between Insulin Sensitivity and Cardiovascular Disease (RISC) cohort there is no evidence for beta cell lipotoxicity of endogenous total NEFA concentrations.
Collapse
Affiliation(s)
- Eleni Rebelos
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Marta Seghieri
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Andrea Natali
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | | | - Alain Golay
- Division of Therapeutical Teaching for Chronic Diseases, University Hospital, Geneva, Switzerland
| | - Pier Marco Piatti
- Cardio-Metabolism and Clinical Trials Unit, Department of Internal Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nebojsa M Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, CCS, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Andrea Mari
- CNR Institute of Neuroscience, Padova, Italy
| | - Ele Ferrannini
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.
- CNR Institute of Clinical Physiology, Pisa, Italy.
| |
Collapse
|