1
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
2
|
Ferreira-Martins D, Walton E, Karlstrom RO, Sheridan MA, McCormick SD. The GH/IGF axis in the sea lamprey during metamorphosis and seawater acclimation. Mol Cell Endocrinol 2023; 571:111937. [PMID: 37086859 DOI: 10.1016/j.mce.2023.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/24/2023]
Abstract
How the growth hormone (GH)/insulin-like growth factor (IGF) system affects osmoregulation in basal vertebrates remains unknown. We examined changes in the expression of components of the GH/IGF axis and gill ion transporters during metamorphosis and following seawater (SW) exposure of sea lamprey. During metamorphosis, increases in gill nka and nkcc1 and salinity tolerance were accompanied by increases in pituitary gh, liver igf1, gill ghr and igf1, but not liver ghr. SW exposure of fully metamorphosed sea lamprey resulted in slight increases in plasma chloride concentrations after SW exposure, indicating a high level of SW tolerance, but no major changes in mRNA levels of gill ion transporters or components of the GH/IGF axis. Our results indicate that metamorphosis is a critical point in the lifecycle of sea lamprey for stimulation of the GH/IGF axis and is temporally associated with and likely promotes metamorphosis and SW tolerance.
Collapse
Affiliation(s)
- Diogo Ferreira-Martins
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Emily Walton
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Rolf O Karlstrom
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Mark A Sheridan
- Department of Biological Sciences, 2901 Main St, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Stephen D McCormick
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
3
|
Seale LA, Gilman CL, Zavacki AM, Larsen PR, Inokuchi M, Breves JP, Seale AP. Regulation of thyroid hormones and branchial iodothyronine deiodinases during freshwater acclimation in tilapia. Mol Cell Endocrinol 2021; 538:111450. [PMID: 34506867 PMCID: PMC8551029 DOI: 10.1016/j.mce.2021.111450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Euryhaline fishes are capable of maintaining osmotic homeostasis in a wide range of environmental salinities. Several pleiotropic hormones, including prolactin, growth hormone, and thyroid hormones (THs) are mediators of salinity acclimation. It is unclear, however, the extent to which THs and the pituitary-thyroid axis promote the adaptive responses of key osmoregulatory organs to freshwater (FW) environments. In the current study, we characterized circulating thyroxine (T4) and 3-3'-5-triiodothyronine (T3) levels in parallel with the outer ring deiodination (ORD) activities of deiodinases (dios) and mRNA expression of dio1, dio2, and dio3 in gill during the acclimation of Mozambique tilapia (Oreochromis mossambicus) to FW. Tilapia transferred from seawater (SW) to FW exhibited reduced plasma T4 and T3 levels at 6 h. These reductions coincided with an increase in branchial dio2-like activity and decreased branchial dio1 gene expression. To assess whether dios respond to osmotic conditions and/or systemic signals, gill filaments were exposed to osmolalities ranging from 280 to 450 mOsm/kg in an in vitro incubation system. Gene expression of branchial dio1, dio2, and dio3 was not directly affected by extracellular osmotic conditions. Lastly, we observed that dio1 and dio2 expression was stimulated by thyroid-stimulating hormone in hypophysectomized tilapia, suggesting that branchial TH metabolism is regulated by systemic signals. Our collective findings suggest that THs are involved in the FW acclimation of Mozambique tilapia through their interactions with branchial deiodinases that modulate their activities in a key osmoregulatory organ.
Collapse
Affiliation(s)
- Lucia A Seale
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1933 East-West Road, Honolulu, HI, 96822, USA
| | - Christy L Gilman
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Ann Marie Zavacki
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - P Reed Larsen
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mayu Inokuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
4
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
5
|
Vargas-Chacoff L, Regish AM, Weinstock A, Björnsson BT, McCormick SD. Effects of long-term cortisol treatment on growth and osmoregulation of Atlantic salmon and brook trout. Gen Comp Endocrinol 2021; 308:113769. [PMID: 33794274 DOI: 10.1016/j.ygcen.2021.113769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
Cortisol is the final product of the hypothalamic-pituitary-interrenal (HPI) axis and acts as a gluco- and mineralo-corticoid in fish. Long-term elevations of cortisol have been linked to reduced growth in fishes, but the mechanism(s) and relative sensitivities of species are still unclear. We carried out experiments to examine the relative effects of cortisol on growth and gill NKA activity in two salmonids: Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis). Treatment with intraperitoneal cortisol implants for 30 days resulted in reduced growth in both species, but with greater sensitivity to cortisol in brook trout. Gill NKA activity was strongly upregulated by cortisol in Atlantic salmon, and weakly upregulated in brook trout but with no statistically significant effect. Cortisol treatment resulted in reduced plasma levels of insulin-like growth factor I and increased plasma growth hormone levels in Atlantic salmon. Our results demonstrate that there are species differences in the sensitivity of growth and osmoregulation to cortisol, even among species in the same family (Salmonidae).
Collapse
Affiliation(s)
- L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA; Fondap-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| | - A M Regish
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA
| | - A Weinstock
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA
| | - B Th Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - S D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA, USA; Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Barany A, Shaughnessy CA, McCormick SD. Corticosteroid control of Na +/K +-ATPase in the intestine of the sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2021; 307:113756. [PMID: 33741310 DOI: 10.1016/j.ygcen.2021.113756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 01/15/2023]
Abstract
Anadromous sea lamprey (Petromyzon marinus) larvae undergo a months-long true metamorphosis during which they develop seawater (SW) tolerance prior to downstream migration and SW entry. We have previously shown that intestinal Na+/K+-ATPase (NKA) activity increases during metamorphosis and is critical to the osmoregulatory function of the intestine in SW. The present study investigated the role of 11-deoxycortisol (S) in controlling NKA in the anterior (AI) and posterior (PI) intestine during sea lamprey metamorphosis. In a tissue profile, nka mRNA and protein were most abundant in the gill, kidney, and AI. During metamorphosis, AI nka mRNA increased 10-fold, whereas PI nka mRNA did not change. Specific corticosteroid receptors were found in the AI, which had a higher binding affinity for S compared to 11-deoxycorticosterone (DOC). In vivo administration of S in mid-metamorphic lamprey upregulated NKA activity 3-fold in the AI and PI, whereas administration of DOC did not affect intestinal NKA activity. During a 24 h SW challenge test, dehydration of white muscle moisture was rescued by prior treatment with S, which was associated with increased intestinal nka mRNA and NKA activity. These results indicate that intestinal osmoregulation in sea lamprey is a target for control by S during metamorphosis and the development of SW tolerance.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Spain; U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA.
| | - Ciaran A Shaughnessy
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA; U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA; Department of Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
7
|
Nisembaum LG, Martin P, Lecomte F, Falcón J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J Neuroendocrinol 2021; 33:e12955. [PMID: 33769643 DOI: 10.1111/jne.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
Part of the life cycle of several fish species includes important salinity changes, as is the case for the sea bass (Dicentrarchus labrax) or the Atlantic salmon (Salmo salar). Salmo salar juveniles migrate downstream from their spawning sites to reach seawater, where they grow and become sexually mature. The process of preparation enabling juveniles to migrate downstream and physiologically adapt to seawater is called smoltification. Daily and seasonal variations of photoperiod and temperature play a role in defining the timing of smoltification, which may take weeks to months, depending on the river length and latitude. Smoltification is characterised by a series of biochemical, physiological and behavioural changes within the neuroendocrine axis. This review discusses the current knowledge and gaps related to the neuroendocrine mechanisms that mediate the effects of light and temperature on smoltification. Studies performed in S. salar and other salmonids, as well as in other species undergoing important salinity changes, are reviewed, and a particular emphasis is given to the pineal hormone melatonin and its possible role in osmoregulation. The daily and annual variations of plasma melatonin levels reflect corresponding changes in external photoperiod and temperature, which suggests that the hormonal time-keeper melatonin might contribute to controlling smoltification. Here, we review studies on (i) the impact of pinealectomy and/or melatonin administration on smoltification; (ii) melatonin interactions with hormones involved in osmoregulation (e.g., prolactin, growth hormone and cortisol); (iii) the presence of melatonin receptors in tissues involved in osmoregulation; and (iv) the impacts of salinity changes on melatonin receptors and circulating melatonin levels. Altogether, these studies show evidence indicating that melatonin interacts with the neuroendocrine pathways controlling smoltification, although more information is needed to clearly decipher its mechanisms of action.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Frédéric Lecomte
- Ministère des Forêts, de la Faune et des Parcs, Direction de l'expertise sur la faune aquatique, Québec, Canada
| | - Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 7208, SU, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
8
|
Romano N, Renukdas N, Fischer H, Shrivastava J, Baruah K, Egnew N, Sinha AK. Differential modulation of oxidative stress, antioxidant defense, histomorphology, ion-regulation and growth marker gene expression in goldfish (Carassius auratus) following exposure to different dose of virgin microplastics. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108862. [PMID: 32781290 DOI: 10.1016/j.cbpc.2020.108862] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 01/03/2023]
Abstract
Goldfish (Carassius auratus) juveniles were exposed to virgin polyvinyl chloride microplastics (PVC-MPs) in triplicate at 0, 0.1 or 0.5 mg/L for four days. Afterwards, the histopathology of the gills, liver and intestines were examined, along with various antioxidant enzymes and indicators of oxidative damage (malondialdehyde (MDA) and hydrogen peroxide (H2O2)), in the brain, liver and gills. In addition, we also studied the expression of hepatic insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein 1 (IGFBP-1) and growth hormone (GH) receptor, while cortisol receptor (CR) and cytochrome P450 1A (CYP1A) gene expression were assayed in both the liver and gills. Histological analysis revealed PVC-MPs in the intestines at 0.1 and 0.5 mg/L, along with substantially shorter villi. The gills appeared undamaged by PVC-MPs exposure and had limited or no effect to antioxidant activity, Na+/K+-ATPase and H+-ATPase activity or plasma ion levels, but there was a prominent upsurge of the detoxification enzymes glutatione S-transferase (GST) activity and CYP1A expression. Livers showed inflammation and some occurrences of hemorrhaging and necrosis at 0.5 mg/L. While the brain showed some evidence of oxidative damage, the liver was the most susceptible to oxidative damage, based on increased MDA, H2O2 and various antioxidant enzymes. Hepatic expression of IGFBP-1 and GH receptor were significantly downregulated at 0.5 mg/L while CR was upregulated. Results indicate that exposure to environmentally relevant PVC-MP can cause oxidative damage in the brain and liver, adverse histomorphological changes to the intestine and liver and alter the gene expression in goldfish.
Collapse
Affiliation(s)
- Nicholas Romano
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA.
| | - Nilima Renukdas
- Fish Disease Diagnostic Laboratory, University of Arkansas at Pine Bluff, Lonoke, 72086, AR, USA
| | - Hayden Fischer
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Jyotsna Shrivastava
- Fish Disease Diagnostic Laboratory, University of Arkansas at Pine Bluff, Lonoke, 72086, AR, USA
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Nathan Egnew
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA.
| |
Collapse
|
9
|
Shaughnessy CA, Barany A, McCormick SD. 11-Deoxycortisol controls hydromineral balance in the most basal osmoregulating vertebrate, sea lamprey (Petromyzon marinus). Sci Rep 2020; 10:12148. [PMID: 32699304 PMCID: PMC7376053 DOI: 10.1038/s41598-020-69061-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
It is unknown whether and how osmoregulation is controlled by corticosteroid signaling in the phylogenetically basal vertebrate group Agnatha, including lampreys and hagfishes. It is known that a truncated steroid biosynthetic pathway in lampreys produces two predominant circulating corticosteroids, 11-deoxycortisol (S) and 11-deoxycorticosterone (DOC). Furthermore, lampreys express only a single, ancestral corticosteroid receptor (CR). Whether S and/or DOC interact with the CR to control osmoregulation in lampreys is still unknown. We examined the role of the endogenous corticosteroids in vivo and ex vivo in sea lamprey (Petromyzon marinus) during the critical metamorphic period during which sea lamprey increase osmoregulatory capacity and acquire seawater (SW) tolerance. We demonstrate in vivo that increases in circulating [S] and gill CR abundance are associated with increases in osmoregulatory capacity during metamorphosis. We further show that in vivo and ex vivo treatment with S increases activity and expression of gill active ion transporters and improves SW tolerance, and that only S (and not DOC) has regulatory control over active ion transport in the gills. Lastly, we show that the lamprey CR expresses an ancestral, spironolactone-as-agonist structural motif and that spironolactone treatment in vivo increases osmoregulatory capacity. Together, these results demonstrate that S is an osmoregulatory hormone in lamprey and that receptor-mediated discriminative corticosteroid regulation of hydromineral balance is an evolutionarily basal trait among vertebrates.
Collapse
Affiliation(s)
- Ciaran A Shaughnessy
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA.
| | - Andre Barany
- Departamento de Biología, Universidad de Cádiz, Cádiz, Spain
| | - Stephen D McCormick
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA
- Department of Biology, University of Massachusetts, Amherst, MA, USA
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Center, Turners Falls, MA, USA
| |
Collapse
|
10
|
Magnadóttir B, Hayes P, Hristova M, Bragason BT, Nicholas AP, Dodds AW, Guðmundsdóttir S, Lange S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny novel roles in tissue remodelling and mucosal immune defences? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:157-170. [PMID: 29908202 DOI: 10.1016/j.dci.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Peptidylarginine deiminases (PADs) are calcium dependent enzymes with physiological and pathophysiological roles conserved throughout phylogeny. PADs promote post-translational deimination of protein arginine to citrulline, altering the structure and function of target proteins. Deiminated proteins were detected in the early developmental stages of cod from 11 days post fertilisation to 70 days post hatching. Deiminated proteins were present in mucosal surfaces and in liver, pancreas, spleen, gut, muscle, brain and eye during early cod larval development. Deiminated protein targets identified in skin mucosa included nuclear histones; cytoskeletal proteins such as tubulin and beta-actin; metabolic and immune related proteins such as galectin, mannan-binding lectin, toll-like receptor, kininogen, Beta2-microglobulin, aldehyde dehydrogenase, bloodthirsty and preproapolipoprotein A-I. Deiminated histone H3, a marker for anti-pathogenic neutrophil extracellular traps, was particularly elevated in mucosal tissues in immunostimulated cod larvae. PAD-mediated protein deimination may facilitate protein moonlighting, allowing the same protein to exhibit a range of biological functions, in tissue remodelling and mucosal immune defences in teleost ontogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Polly Hayes
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX, London, UK.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
11
|
Masouleh FF, Amiri BM, Mirvaghefi A, Ghafoori H, Madsen SS. Silver nanoparticles cause osmoregulatory impairment and oxidative stress in Caspian kutum (Rutilus kutum, Kamensky 1901). ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:448. [PMID: 28799136 DOI: 10.1007/s10661-017-6156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (AgNPs) are increasingly used in several industrial and household products because of their antibacterial and antifungal properties. Hence, there is an inevitable risk that these chemicals may end up in aquatic biotopes and have adverse effects on the fauna. In order to assess potential health effects on aquatic organisms, this study evaluated the effects of waterborne AgNP exposure for 7 days on a set of critical stress parameters in juvenile Caspian kutum (Rutilus kutum), an economically important fish in the Caspian Sea. The applied level 11 μg/l of AgNP is high compared to reported water concentrations and corresponds to 40% of the 96 h LC50 value, initially determined to be 28 μg/l. Gill heat shock protein 70 (hsp70) mRNA expression, Na+/K+-ATPase activity and enzymatic activities of liver superoxide dismutase (SOD), glutathione peroxidase (Gpx), lactate dehyrogenase (LDH) and alkaline phosphatase (ALP), and whole-body cortisol and thyroid hormones (T3 and T4) were measured as endpoints. Gill hsp70 mRNA expression increased and gill Na+/K+-ATPase activity decreased in AgNP-exposed fish compared to controls. The specific activities of all liver enzymes decreased significantly compared to controls. Whole-body cortisol and thyroid hormones decreased compared to controls. In conclusion, the study demonstrates that AgNPs cause oxidative stress and gill osmoregulatory disruption in Caspian kutum juveniles.
Collapse
Affiliation(s)
- Fatemeh F Masouleh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karadj, 31585-4314, Iran
| | - Bagher M Amiri
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karadj, 31585-4314, Iran
| | - Alireza Mirvaghefi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karadj, 31585-4314, Iran
| | - Hossein Ghafoori
- Department of Biology, Faculty of Science, University of Guilan, Rasht, 41335-19141, Iran
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
12
|
Lawrence MJ, Eliason EJ, Brownscombe JW, Gilmour KM, Mandelman JW, Cooke SJ. An experimental evaluation of the role of the stress axis in mediating predator-prey interactions in wild marine fish. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:21-29. [DOI: 10.1016/j.cbpa.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 02/03/2023]
|
13
|
Li Z, Liu Z, Wang YN, Kang YJ, Wang JF, Shi HN, Huang JQ, Jiang L. Effects of heat stress on serum Cortisol, alkaline phosphatase activity and heat shock protein 40 and 90β mRNA expression in rainbow trout Oncorhynchus mykiss. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Gerber L, Madsen SS, Jensen FB. Cortisol regulates nitric oxide synthase in freshwater and seawater acclimated rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2016; 204:1-8. [PMID: 27838356 DOI: 10.1016/j.cbpa.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Cortisol and nitric oxide (NO) are regulators of ion transport and metabolic functions in fish. In the gill, they show opposite effects on Na+/K+-ATPase (NKA) activity: cortisol stimulates NKA activity while NO inhibits NKA activity. We hypothesized that cortisol may impact NO production in osmoregulatory tissues by regulating NO synthase (NOS) expression. We evaluated the influence of cortisol treatment on mRNA expression of Nos1 and Nos2 in gill, kidney and middle intestine of both freshwater (FW) and seawater (SW) acclimated rainbow trout and found both tissue- and salinity-dependent effects. Nos2 expression was down-regulated in the gill by cortisol injection in both FW and SW trout. This was substantiated by incubating gill tissue with cortisol ex vivo. Similarly, cortisol injection significantly down-regulated Nos2 expression in kidney of SW fish but not in FW fish. In the middle intestine, Nos2 expression was up-regulated by cortisol injection in FW but unchanged in SW fish. Nos1 expression was up-regulated by cortisol injection in FW kidney and down-regulated in SW kidney, whereas it was unaffected in gill and middle intestine of FW and SW fish. Our data provide the first evidence that cortisol may influence NO production in fish by regulating Nos expression. Indeed, the down-regulation of Nos2 expression by cortisol in the gill may prevent the inhibitory effect of NO on NKA activity thereby furthering the stimulatory effect of cortisol on ion-transport.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
15
|
Thompson WA, Rodela TM, Richards JG. Hardness does not affect the physiological responses of wild and domestic strains of diploid and triploid rainbow trout Oncorhynchus mykiss to short-term exposure to pH 9.5. JOURNAL OF FISH BIOLOGY 2016; 89:1345-1358. [PMID: 27325291 DOI: 10.1111/jfb.13045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
This study examined the effects of water hardness on the physiological responses associated with high pH exposure in multiple strains of diploid and triploid rainbow trout Oncorhynchus mykiss. To accomplish this, three wild strains and one domesticated strain of diploid and triploid O. mykiss were abruptly transferred from control soft water (City of Vancouver dechlorinated tap water; pH 6·7; [CaCO3 ] < 17·9 mg l(-1) ) to control soft water (handling control), high pH soft water (pH 9·5; [CaCO3 ] < 17·9 mg l(-1) ), or high pH hard water (pH 9·5; [CaCO3 ] = 320 mg l(-1) ) followed by sampling at 24 h for physiological measurements. There was a significant effect of ploidy on loss of equilibrium (LOE) over the 24 h exposure, with only triploid O. mykiss losing equilibrium at high pH in both soft and hard water. Furthermore, exposure to pH 9·5 resulted in significant decreases in plasma sodium and chloride, and increases in plasma and brain ammonia with no differences between soft and hard water. There was no significant effect of strain on LOE, but there were significant differences between strains in brain ammonia and plasma cortisol. Overall, there were no clear protective effects of hardness on high pH exposure in these strains of O. mykiss.
Collapse
Affiliation(s)
- W A Thompson
- The University of Calgary, 507 Campus Drive NW, Calgary, AB, T2N 4V8, Canada
| | - T M Rodela
- Department of Zoology, The University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada
| | - J G Richards
- Department of Zoology, The University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada
| |
Collapse
|
16
|
Alzaid A, Hori TS, Hall JR, Rise ML, Gamperl AK. Cold-induced changes in stress hormone and steroidogenic transcript levels in cunner (Tautogolabrus adspersus), a fish capable of metabolic depression. Gen Comp Endocrinol 2015; 224:126-35. [PMID: 26188716 DOI: 10.1016/j.ygcen.2015.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
Abstract
The cunner (Tautogolabrus adspersus) is a fish with a wide latitudinal distribution that is capable of going into metabolic depression during the winter months, and thus, represents a unique model to investigate the impacts of cold temperatures on the stress response. In this study, we measured resting (pre-stress) plasma cortisol levels in 10 °C and 0 °C acclimated cunner from Newfoundland, and both catecholamine and cortisol levels after they were given a standardized handling stress (i.e. 1 min air exposure). In addition, we cloned and characterized cDNAs for several key genes of the cortisol-axis [cytochrome P450scc, steroidogenic acute regulatory protein (StAR) and a glucocorticoid receptor (GR) most likely to be an ortholog of the teleost GR2], determined the tissue distribution of their transcripts, and measured their constitutive (i.e. pre-stress) transcript levels in individuals acclimated to both temperatures. In cunner acclimated to 0 °C, post-stress epinephrine and norepinephrine levels were much lower (by approximately 9- and 5-fold, respectively) compared to 10 °C acclimated fish, and these fish had relatively low resting cortisol levels (~15 ngml(-1)) and showed a typical post-stress response. In contrast, those acclimated to 10 °C had quite high resting cortisol levels (~75 ngml(-1)) that actually decreased (to ~20 ngml(-1)) post-stress before returning to pre-stress levels. Finally, fish acclimated to 10 °C had higher P450scc transcript levels in the head kidney and lower levels of GR transcript in both the head kidney and liver. Taken together, these results suggest that: (1) temperature has a profound effect on the stress response of this species; and (2) although the ancestors of this species inhabited warm waters (i.e. they are members of the family Labridae), populations of cunner from colder regions may show signs of stress at temperatures as low as 10 °C.
Collapse
Affiliation(s)
- Abdullah Alzaid
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Tiago S Hori
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
17
|
Liew HJ, Fazio A, Faggio C, Blust R, De Boeck G. Cortisol affects metabolic and ionoregulatory responses to a different extent depending on feeding ration in common carp, Cyprinus carpio. Comp Biochem Physiol A Mol Integr Physiol 2015. [DOI: 10.1016/j.cbpa.2015.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Li ZH, Chen L, Wu YH, Li P, Li YF, Ni ZH. Effects of mercury on oxidative stress and gene expression of potential biomarkers in larvae of the Chinese rare minnow Gobiocypris rarus. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:245-251. [PMID: 24846661 DOI: 10.1007/s00244-014-0034-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Mercury levels have increased in aquatic food webs throughout the world and can be found at toxic levels in some biota. However, the molecular mechanisms and effects of mercuric chloride (Hg(2+)) remain poorly understood. In the present study, antioxidant parameters (superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde)-as well as a series of gene expressions, including cortisol receptor (cr), Na(+)/K(+)-ATPase (aptase), and prolactin (prl) genes involved in ion-regulatory process, insulin-like growth factor I (igf1) and growth hormone (gh) related to growth rate, as well as heat shock protein70 (hsp70) and metallothionein (mt) used as physiological stress identification-were measured in whole body of Chinese rare minnow larvae (Gobiocypris rarus) after exposure to Hg(2+) (0, 0.1, and 0.3 mg/L) for 4 days. Results show that oxidative stress was generated in fish exposed to Hg(2+) and that the transcription levels of cr, atpase, gh, hsp70, and mt genes increased in a dose-dependent manner, but expression levels of prl and igf1 genes were showed to be decreased in the treated groups. Based on principal component analysis, the correlation between gh and igf1 genes and cr and prl genes was negative. In conclusion, exposure to Hg(2+) could alter multiple physiological and molecular indices in fish; however, before those parameters are used as special biomarkers for monitoring Hg(2+) in aquatic environment, more detailed experiments in laboratory must be performed in the future.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Key Field Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China,
| | | | | | | | | | | |
Collapse
|
19
|
Nakajima T, Shimura H, Yamazaki M, Fujioka Y, Ura K, Hara A, Shimizu M. Lack of hormonal stimulation prevents the landlocked Biwa salmon (Oncorhynchus masou subspecies) from adapting to seawater. Am J Physiol Regul Integr Comp Physiol 2014; 307:R414-25. [PMID: 24944245 DOI: 10.1152/ajpregu.00474.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Landlocking of salmon relaxes selective pressures on hypoosmoregulatory ability (seawater adaptability) and may lead to the abandonment of its physiological system. However, little is known about the mechanism and consequence of the process. Biwa salmon is a strain/subspecies of Oncorhynchus masou that has been landlocked in Lake Biwa for an exceptionally long period (about 500,000 years) and has low ability to adapt to seawater. We compared activity of gill Na(+),K(+)-ATPase (NKA) of Biwa salmon with those of anadromous strains of the same species (masu and amago salmon) during downstream migration periods and after exogenous hormone treatment. Gill NKA activity in anadromous strains increased during their migration periods, while that in Biwa salmon remained low. However, treatments of Biwa salmon with growth hormone (GH) and cortisol increased gill NKA activity. Cortisol treatment also improved the whole body seawater adaptability of Biwa salmon. Receptors for GH and cortisol responded to hormonal treatments, whereas their mRNA levels during downstream migration period were essentially unchanged in Biwa salmon. Circulating levels of cortisol in masu salmon showed a peak during downstream migration period, while no such increase was seen in Biwa salmon. The present results indicate that Biwa salmon can improve its seawater adaptability by exogenous hormonal treatment, and hormone receptors are capable of responding to the signals. However, secretion of the endogenous hormone (cortisol) was not activated during the downstream migration period, which explains, at least in part, their low ability to adapt to seawater.
Collapse
Affiliation(s)
- Takuro Nakajima
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Haruka Shimura
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Miyuki Yamazaki
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | | | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Akihiko Hara
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan;
| |
Collapse
|
20
|
Trayer V, Hwang PP, Prunet P, Thermes V. Assessment of the role of cortisol and corticosteroid receptors in epidermal ionocyte development in the medaka (Oryzias latipes) embryos. Gen Comp Endocrinol 2013; 194:152-61. [PMID: 24084592 DOI: 10.1016/j.ygcen.2013.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 12/28/2022]
Abstract
Cortisol is a pleiotropic glucocorticoid hormone that acts through the intracellular glucocorticoid receptors (GR). Cortisol affects many important biological functions in mammals, including immune function, behavior, stress, metabolism, growth and organogenesis. In fishes, cortisol has an additional function in the osmoregulatory activity of ionocytes (ICs). Although much progress has been made toward understanding cortisol action at the levels of adult osmoregulatory tissues, the developmental functions of cortisol and its receptors in ICs remain to be clarified. We first analyzed the total contents of both cortisol and corticosteroid receptor mRNAs (GR1, GR2 and MR) during medaka development. Although low levels of cortisol were detected during development of the medaka embryo, maternal GR1, GR2 and MR transcripts were detected at higher levels than zygotic transcripts. We investigated the effect of exogenous cortisol on IC number during medaka embryogenesis. We observed that cortisol treatment induced an earlier expansion of the IC population but did not modify the final IC number. Using functional genomic approaches, we also tested the involvement of GR1, GR2 and mineralocorticoid receptor (MR) in IC development by systematic knock-down with translation-blocking morpholinos. Only GR2 knock-down led to a reduction of the total number of ICs in the epidermis. In addition, a GR2 splice-blocking morpholino did not have any effect on the biogenesis of ICs, underscoring the importance of maternally inherited GR2 mRNAs. We propose that maternal GR2, but not GR1 or MR, is a major pathway in the IC biogenesis in medaka most likely through cortisol activation, and that cortisol exposition fine-tunes their developmental timing. These findings provide a framework for future research on the regulatory functions of corticosteroids in euryhaline fishes and provide medaka as an advantageous model to further elucidate the underlying molecular regulatory mechanisms of IC development.
Collapse
|
21
|
Cruz SA, Lin CH, Chao PL, Hwang PP. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (danio rerio). PLoS One 2013; 8:e77997. [PMID: 24205060 PMCID: PMC3812134 DOI: 10.1371/journal.pone.0077997] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/08/2013] [Indexed: 12/25/2022] Open
Abstract
Cortisol is the major endogenous glucocorticoid (GC) both in human and fish, mediated by corticosteroid receptors. Due to the absence of aldosterone production in teleost fish, cortisol is also traditionally accepted to function as mineralocorticoid (MC); but whether it acts through the glucocorticoid receptor (GR) or the mineralocorticoid receptor (MR) remains a subject of debate. Here, we used loss-of-function and rescue assays to determine whether cortisol affects zebrafish epidermal ionocyte development and function via the GR and/or the MR. GR knockdown morphants displayed a significant decrease in the major ionocytes, namely Na(+)-K(+)-ATPase-rich cells (NaRCs) and H(+)-ATPase-rich cells (HRCs), as well as other cells, including epidermal stem cells (ESCs), keratinocytes, and mucus cells; conversely, cell numbers were unaffected in MR knockdown morphants. In agreement, GR morphants, but not MR morphants, exhibited decreased NaRC-mediated Ca(2+) uptake and HRC-mediated H(+) secretion. Rescue via GR capped mRNA injection or exogenous cortisol incubation normalized the number of epidermal ionocytes in GR morphants. We also provide evidence for GR localization in epidermal cells. At the transcript level, GR mRNA is ubiquitously expressed in gill sections and present in both NaRCs and HRCs, supporting the knockdown and functional assay results in embryo. Altogether, we have provided solid molecular evidence that GR is indeed present on ionocytes, where it mediates the effects of cortisol on ionocyte development and function. Hence, cortisol-GR axis performs the roles of both GC and MC in zebrafish skin and gills.
Collapse
Affiliation(s)
- Shelly Abad Cruz
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, R. O. C
| | - Chia-Hao Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, R. O. C
| | - Pei-Lin Chao
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, R. O. C
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, R. O. C
| |
Collapse
|
22
|
Diricx M, Sinha AK, Liew HJ, Mauro N, Blust R, De Boeck G. Compensatory responses in common carp (Cyprinus carpio) under ammonia exposure: additional effects of feeding and exercise. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:123-137. [PMID: 24001429 DOI: 10.1016/j.aquatox.2013.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Ammonia is an environmental pollutant that is toxic to all aquatic animals. The toxic effects of ammonia can be modulated by other physiological processes such as feeding and swimming. In this study, we wanted to examine these modulating effects in common carp (Cyprinus carpio). Fish were either fed (2% body weight) or starved (unfed for seven days prior to the sampling), and swimming at a sustainable, routine swimming speed or swum to exhaustion, while being exposed chronically (up to 28 days) to high environmental ammonia (HEA, 1 mg/L ~58.8 μmol/L as NH4Cl at pH 7.9). Swimming performance (critical swimming speed, Ucrit) and metabolic responses such as oxygen consumption rate (MO2), ammonia excretion rate (Jamm), ammonia quotient, liver and muscle energy budget (glycogen, lipid and protein), plasma ammonia and lactate, as well as plasma ion concentrations (Na(+), Cl(-), K(+) and Ca(2+)) were investigated in order to understand metabolic and iono-regulatory consequences of the experimental conditions. Cortisol plays an important role in stress and in both the regulation of energy and the ion homeostasis; therefore plasma cortisol was measured. Results show that during HEA, Jamm was elevated to a larger extent in fed fish and they were able to excrete much more efficiently than the starved fish. Consequently, the build-up of ammonia in plasma of HEA exposed fed fish was much slower. MO2 increased considerably in fed fish after exposure to HEA and was further intensified during exercise. During exposure to HEA, the level of cortisol in plasma augmented in both the feeding regimes, but the effect of HEA was more pronounced in starved fish. Energy stores dropped for both fed and the starved fish with the progression of the exposure period and further declined when swimming to exhaustion. Overall, fed fish were less affected by HEA than starved fish, and although exercise exacerbated the toxic effect in both feeding treatments, this was more pronounced in starved fish. This suggests that fish become more vulnerable to external ammonia during exercise, and feeding protects the fish against the adverse effects of high ammonia and exercise.
Collapse
Affiliation(s)
- Marjan Diricx
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Martins DA, Rocha F, Castanheira F, Mendes A, Pousão-Ferreira P, Bandarra N, Coutinho J, Morais S, Yúfera M, Conceição LEC, Martínez-Rodríguez G. Effects of dietary arachidonic acid on cortisol production and gene expression in stress response in Senegalese sole (Solea senegalensis) post-larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1223-1238. [PMID: 23443720 DOI: 10.1007/s10695-013-9778-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
Dietary fatty acids, particularly arachidonic acid (ARA), affect cortisol and may influence the expression of genes involved in stress response in fish. The involvement of ARA on stress, lipid, and eicosanoid metabolism genes, in Senegalese sole, was tested. Post-larvae were fed Artemia presenting graded ARA levels (0.1, 0.4, 0.8, 1.7, and 2.3%, dry matter basis), from 22 to 35 days after hatch. Whole-body cortisol levels were determined, before and 3 h after a 2 min air exposure, as well as the expression of phospholipase A2 (PLA 2 ), cyclooxygenase-2 (COX-2), steroidogenic acute regulatory protein (StAR), glucocorticoid receptors (GRs), phosphoenolpyruvate carboxykinase (PEPCK), and peroxisome proliferator-activated receptor alpha (PPARα). Relative growth rate (6.0-7.8% day(-1)) and survival at the end of the experiment (91-96%) and after stress (100%) were unaffected. Fish reflected dietary ARA content and post-stress cortisol increased with ARA supply up to 1.7%, whereas 2.3% ARA seemed to enhance basal cortisol slightly and alter the response to stress. Results suggested that elevating StAR transcription might not be necessary for a short-term response to acute stress. Basal cortisol and PLA 2 expression were strongly correlated, indicating a potential role for this enzyme in steroidogenesis. Under basal conditions, larval ARA was associated with GR1 expression, whereas the glucocorticoid responsive gene PEPCK was strongly related with cortisol but not GR1 mRNA levels, suggesting the latter might not reflect the amount of GR1 protein in sole. Furthermore, a possible role for PPARα in the expression of PEPCK following acute stress is proposed.
Collapse
Affiliation(s)
- Dulce Alves Martins
- Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Feeding and swimming modulate iono-and-hormonal regulation differently in goldfish, Carassius auratus and common carp, Cyprinus carpio. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:13-21. [DOI: 10.1016/j.cbpa.2013.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 01/01/2023]
|
25
|
Sinha AK, Diricx M, Chan LP, Liew HJ, Kumar V, Blust R, De Boeck G. Expression pattern of potential biomarker genes related to growth, ion regulation and stress in response to ammonia exposure, food deprivation and exercise in common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 122-123:93-105. [PMID: 22750116 DOI: 10.1016/j.aquatox.2012.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Waterborne ammonia has become a persistent pollutant of aquatic habitats. During certain periods (e.g. winter), food deprivation may occur simultaneously in natural water. Additionally, under such stressful circumstances, fish may be enforced to swim at a high speed in order to catch prey, avoid predators and so on. Consequently, fish need to cope with all these stressors by altering physiological processes which in turn are controlled by their genes. In this present study, toxicogenomic analyses using real time PCR was used to characterize expression patterns of potential biomarker genes controlling growth, ion regulation and stress responses in common carp subjected to elevated ammonia (1 mg/L; Flemish water quality guideline for surface water) following periods of feeding (2% body weight) and fasting (unfed for 7 days prior to sampling). Both feeding groups of fish were exposed to high environment ammonia (HEA) for 0 h (control), 3h, 12h, 1 day, 4 days, 10 days, 21 days and 28 days, and were sampled after performing swimming at different speeds (routine versus exhaustive). Results show that the activity and expression of Na(+)/K(+)-ATPase, an important branchial ion regulatory enzyme, was increased after 4-10 days of exposure. Effect of HEA was also evident on expression patterns of other ion-regulatory hormone and receptor genes; prolactin and cortisol receptor mRNA level(s) were down-regulated and up-regulated respectively after 4, 10 and 21 days. Starvation and exhaustive swimming, the additional challenges in present study significantly further enhanced the HEA effect on the expression of these two genes. mRNA transcript of growth regulating hormone and receptor genes such as Insulin-like growth factor I, growth hormone receptor, and the thyroid hormone receptor were reduced in response to HEA and the effect of ammonia was exacerbated in starved fish, with levels that were remarkably reduced compared to fed exposed fish. However, the expression of the growth hormone gene itself was up-regulated under the same conditions. Expression of somatolactin remained unaltered. Stress representative genes, cytochrome oxidase subunit 1 showed an up-regulation in response to HEA and starvation while the mRNA level of heat shock protein 70 was increased in response to all the three stressors. The expression kinetics of the studied genes could permit to develop a "molecular biomarker system" to identify the underlying physiological processes and impact of these stressors before effects at population level occur.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
26
|
Cruz SA, Chao PL, Hwang PP. Cortisol promotes differentiation of epidermal ionocytes through Foxi3 transcription factors in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2012; 164:249-57. [PMID: 23010242 DOI: 10.1016/j.cbpa.2012.09.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 01/30/2023]
Abstract
Glucocorticoid regulates epidermal cell proliferation, and is used to treat certain skin disorders. Cortisol, a glucocorticoid, is also linked to skin development in teleost fish. Cortisol increases the number of epithelial ionocytes during environmental acclimation in euryhaline fishes, but it is unclear whether this is due to increased differentiation or proliferation. To investigate, we treated zebrafish embryos with exogenous cortisol (20mg/L). The densities of the ionocytes Na(+)-K(+)-ATPase rich cells (NaRCs) and H(+)-ATPase rich cells (HRCs) were significantly increased by cortisol, and this was accompanied by an increase in the respective marker genes. Expression of the glucocorticoid receptor (GR) gene was decreased. Cortisol treatment also increased ionocytes in cultured adult zebrafish gills, and up-regulated expression of genes encoding forkhead box I3 (foxi3a and foxi3b) transcription factors, which regulate ionocyte progenitor development. GR expression was up-regulated by cortisol in vitro; as such, the observed decrease in vivo reflects a regulatory systemic-negative feedback. Notably, in situ hybridization revealed that foxi3a/b mRNA expression was increased by cortisol at 24-48h post-fertilization. Cortisol also decreased keratinocytes, but did not affect epidermal stem cells or mucus cells. We conclude that foxi3a/b transactivation by cortisol-GR favors differentiation of ionocyte progenitors, thereby facilitating proliferation of mature ionocytes.
Collapse
Affiliation(s)
- Shelly Abad Cruz
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
27
|
Sinha AK, Liew HJ, Diricx M, Kumar V, Darras VM, Blust R, De Boeck G. Combined effects of high environmental ammonia, starvation and exercise on hormonal and ion-regulatory response in goldfish (Carassius auratus L.). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:153-164. [PMID: 22446827 DOI: 10.1016/j.aquatox.2012.02.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 05/31/2023]
Abstract
Due to eutrophication, high environmental ammonia (HEA) has become a frequent problem in aquatic environments, especially in agricultural or densely populated areas. During certain periods, e.g. winter, feed deprivation may occur simultaneously in natural waters. Additionally, under such stressful circumstances, fish may be enforced to swim at a high speed in order to catch prey, avoid predators and so on. Consequently, fish need to cope with all these stressors by altering physiological processes which in turn are controlled by genes expression. Therefore, in the present study, ammonia toxicity was tested in function of nutrient status (fed versus starved) and swimming performance activity (routine versus exhaustive). Goldfish, a relatively tolerant cyprinid, were exposed to HEA (1 mg/L; Flemish water quality guideline for surface water) for a period of 3 h, 12 h, 1 day, 4 days, 10 days, 21 days and 28 days and were either fed (2% body weight) or starved (kept unfed for 7 days prior to sampling). Results showed that the activity of Na⁺/K⁺-ATPase in the gills was stimulated by HEA and disturbance in ion balance was obvious with increases in plasma [Na⁺], [Cl⁻] and [Ca²⁺] after prolonged exposure. Additionally, osmoregulation and metabolism controlling hormones like cortisol and thyroid hormones (T3 and T4) were investigated to understand adaptive responses. The expression kinetics of growth, stress and osmo-regulatory representative genes such as Insulin-like growth factor 1 (IGF-I), growth hormone receptor (GHR), thyroid hormone receptor β (THRβ), prolactin receptor (PRLR), cortisol receptor (CR) and Na⁺/K⁺-ATPase α(3) were examined. Overall effect of HEA was evident since Na⁺/K⁺-ATPase activity, plasma cortisol, Na⁺ and Ca²⁺ concentration, expression level of CR and Na⁺/K⁺-ATPase α₃ mRNA in fed and starved fish were increased. On the contrary, transcript level of PRLR was reduced after 4 days of HEA; additionally T3 level and expression of GHR, IGF-I and THRβ genes were decreased following 10-21 days of HEA. Starvation, the additional challenge in the present study, significantly increased plasma cortisol level and CR transcript level under HEA compared to the fed exposed and control fish. Furthermore, a remarkable reduction in T3 and mRNA levels of THRβ, IGF-I and GHR genes was observed under starvation. The toxic effects in both feeding treatments were exacerbated when imposed to exhaustive swimming with more pronounced effects in starved fish. This confirms that starvation makes fish more vulnerable to external ammonia, especially during exercise.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
28
|
Nascimento CRB, Souza MM, Martinez CBR. Copper and the herbicide atrazine impair the stress response of the freshwater fish Prochilodus lineatus. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:456-61. [PMID: 22202473 DOI: 10.1016/j.cbpc.2011.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 11/28/2022]
Abstract
In order to evaluate the effects of copper and atrazine on the stress response of the freshwater fish Prochilodus lineatus, juvenile fish were pre-exposed to copper (20 μg L(-1)) or atrazine (10 μg L(-1)) for 24 h and then submitted to air exposure for 3 min. Simultaneously fish kept in dechlorinated water for 24 h were subjected to air exposure and a non-stress group was not subjected to air stress or any contaminants. Animals were sampled immediately (t0) and after 1, 3 and 6 h of air exposure (t1, t3 and t6 respectively) for the analysis of plasma cortisol, glucose and Na(+), hepatic glycogen, branchial Na(+)/K(+)-ATPase (NKA), number of red blood cells per cubic millimeter of blood (RBC), hematocrit (Hct) and hemoglobin content (Hb). In fish pre-exposed to copper the stress response was inhibited, and at t1 and t3 both cortisol and glucose remained significantly lower compared to fish subjected to air stress only. In fish pre-exposed to atrazine there was no rise in cortisol, but there was an increase in plasma glucose, RBC, Hct and Hb at t0 and a return of these parameters to basal levels at t1, as they did not differ significantly in relation to non-stressed fish. Animals pre-exposed to either Cu or atrazine showed a significant reduction in NKA activity at t1 and t3, in relation to air stressed fish. These results clearly indicate that copper and atrazine impair cortisol stress response of P. lineatus and that fish subjected to a contaminant-induced stress, either by copper or atrazine, may not be able to respond to any additional stressors.
Collapse
Affiliation(s)
- Cássia R B Nascimento
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, CP 6001, 86051-990 Londrina, PR, Brazil
| | | | | |
Collapse
|
29
|
Ellis T, Yildiz HY, López-Olmeda J, Spedicato MT, Tort L, Øverli Ø, Martins CIM. Cortisol and finfish welfare. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:163-188. [PMID: 22113503 DOI: 10.1007/s10695-011-9568-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
Previous reviews of stress, and the stress hormone cortisol, in fish have focussed on physiology, due to interest in impacts on aquaculture production. Here, we discuss cortisol in relation to fish welfare. Cortisol is a readily measured component of the primary (neuroendocrine) stress response and is relevant to fish welfare as it affects physiological and brain functions and modifies behaviour. However, we argue that cortisol has little value if welfare is viewed purely from a functional (or behavioural) perspective-the cortisol response itself is a natural, adaptive response and is not predictive of coping as downstream impacts on function and behaviour are dose-, time- and context-dependent and not predictable. Nevertheless, we argue that welfare should be considered in terms of mental health and feelings, and that stress in relation to welfare should be viewed as psychological, rather than physiological. We contend that cortisol can be used (with caution) as a tractable indicator of how fish perceive (and feel about) their environment, psychological stress and feelings in fish. Cortisol responses are directly triggered by the brain and fish studies do indicate cortisol responses to psychological stressors, i.e., those with no direct physicochemical action. We discuss the practicalities of using cortisol to ask the fish themselves how they feel about husbandry practices and the culture environment. Single time point measurements of cortisol are of little value in assessing the stress level of fish as studies need to account for diurnal and seasonal variations, and environmental and genetic factors. Areas in need of greater clarity for the use of cortisol as an indicator of fish feelings are the separation of (physiological) stress from (psychological) distress, the separation of chronic stress from acclimation, and the interactions between feelings, cortisol, mood and behaviour.
Collapse
Affiliation(s)
- Tim Ellis
- Cefas Weymouth Laboratory, Weymouth, Dorset, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
Hori TS, Rise ML, Johnson SC, Afonso LOB, Gamperl AK. The mRNA expression of cortisol axis related genes differs in Atlantic cod (Gadus morhua) categorized as high or low responders. Gen Comp Endocrinol 2012; 175:311-20. [PMID: 22146795 DOI: 10.1016/j.ygcen.2011.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 01/06/2023]
Abstract
Cortisol is a major stress hormone in fish and is known, under normal or stressful conditions, to affect several physiological processes including growth and immunity. Thus, efforts have been made for several cultured finfish species, including the Atlantic cod, to determine whether fish with a high or low cortisol response to stress can be identified and selected. However, we have a limited understanding of the mechanisms that determine these two phenotypes. Thus, we measured total and free plasma cortisol levels in high and low responding cod when subjected to a 30 s handling stress, and the mRNA expression of four key genes in the glucocorticoid (i.e. cortisol) stress axis both pre- and post-stress. The cortisol data is consistent with our previous findings for cod, with high responding (HR) fish having ∼3-fold higher total and free plasma cortisol levels when compared to low responding (LR) fish. Three of the transcripts studied encode key proteins involved in steroidogenesis (StAR, P450scc and 3βHSD), and the constitutive mRNA expression of all three genes was significantly higher (∼2-fold) in the head kidney of HR fish when compared to LR cod. The other gene of interest was the glucocorticoid receptor (GR). We partly cloned and characterized a cDNA from Atlantic cod likely to be this fish's ortholog of the teleost GR1, and showed that while there was no difference in hepatic constitutive GR mRNA expression between groups, HR fish had liver GR mRNA levels that were significantly (1.8-fold) higher at 3 h post-stress as compared to LR fish. Our results suggest that the different magnitude of cortisol response between LR and HR fish is at least partially determined by the capacity of the interrenal tissue to produce steroids.
Collapse
Affiliation(s)
- Tiago S Hori
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada A1C 5S7.
| | | | | | | | | |
Collapse
|
31
|
Flores AM, Mark Shrimpton J. Differential physiological and endocrine responses of rainbow trout, Oncorhynchus mykiss, transferred from fresh water to ion-poor or salt water. Gen Comp Endocrinol 2012; 175:244-50. [PMID: 22137911 DOI: 10.1016/j.ygcen.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 08/02/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
Abstract
To understand the physiological and molecular endocrine changes that occur in response to a salinity challenge, we transferred rainbow trout from fresh water to an ion-poor or 24‰ saltwater treatment for 14 days. An increase in gill Na(+), K(+)-ATPase (NKA) activity in salt water was associated with higher mRNA expression for the NKA α1b subunit. In contrast, there was little change in gill NKA activity following transfer to ion-poor water, but the mRNA expression of NKA α1a was significantly elevated. Endocrine signals were assessed by measuring plasma cortisol concentrations and by quantifying changes in mRNA extracted from the gill for glucocorticoid receptors 1 and 2 (GR1 and GR2), mineralocorticoid receptor (MR), growth hormone receptor (GHR1), and prolactin receptor (PrlR). Cortisol increased after transfer to ion-poor and salt water, but both GR and MR mRNA in the gill showed little change. PrlR mRNA was significantly higher when fish were transferred to the ion-poor water and GHR1 mRNA was elevated during the saltwater challenge. This study demonstrated an increase in gill PrlR mRNA that parallels the changes in gill NKA α1a when rainbow trout were transferred to a lower salinity level. Furthermore, the increase in gill GHR1 mRNA supports the importance of GH for seawater acclimation as there is a corresponding increase in the expression of gill NKA α1b, the saltwater isoform. GH and Prl, therefore, may differentially determine the function of cortisol in both fresh- and saltwater ionoregulation.
Collapse
MESH Headings
- Animals
- Endocrine System/physiology
- Fresh Water/chemistry
- Gills/metabolism
- Hydrocortisone/metabolism
- Oncorhynchus mykiss/metabolism
- Oncorhynchus mykiss/physiology
- RNA, Messenger
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Receptors, Somatotropin/genetics
- Receptors, Somatotropin/metabolism
- Seawater/chemistry
- Sodium Chloride/metabolism
- Sodium-Potassium-Exchanging ATPase/genetics
- Sodium-Potassium-Exchanging ATPase/metabolism
- Stress, Physiological
Collapse
Affiliation(s)
- Anne-Marie Flores
- Ecosystem Science and Management (Biology) Program, University of Northern British Columbia, Prince George, Canada V2N 4Z9.
| | | |
Collapse
|
32
|
Flores AM, Shrimpton JM, Patterson DA, Hills JA, Cooke SJ, Yada T, Moriyama S, Hinch SG, Farrell AP. Physiological and molecular endocrine changes in maturing wild sockeye salmon, Oncorhynchus nerka, during ocean and river migration. J Comp Physiol B 2011; 182:77-90. [DOI: 10.1007/s00360-011-0600-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/12/2011] [Accepted: 06/16/2011] [Indexed: 11/24/2022]
|
33
|
Yang L, Zha J, Li W, Li Z, Wang Z. Vinclozolin affects the interrenal system of the rare minnow (Gobiocypris rarus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 104:153-159. [PMID: 21570938 DOI: 10.1016/j.aquatox.2011.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 04/02/2011] [Accepted: 04/09/2011] [Indexed: 05/30/2023]
Abstract
Vinclozolin, a widely used fungicide, has been characterized as a potent androgen antagonist. In this study, the effects of vinclozolin on the interrenal system of the rare minnow (Gobiocypris rarus) were evaluated. The results revealed a decline of the renal somatic index (RSI) and the presence of histopathological effects, including shrinkage of the glomerulus and expansion of the Bowman's space in the kidneys, in rare minnows exposed to vinclozolin. Elevated plasma cortisol concentrations in females exposed to ≥ 2 μg/L vinclozolin and males exposed to ≥ 10 μg/L vinclozolin (p<0.05) suggested that endocrine stress was evoked by vinclozolin exposure. Significant decreases in mRNA levels of interrenal crf, pomc, gr, and nka in females and gr and nka in males were observed after exposure to ≥ 0.5 μg/L and 2 μg/L vinclozolin (p<0.05), respectively; however, no changes in expression of these genes were observed in the brain of males (p ≥ 0.159) or females (p ≥ 0.053) compared with the control. The results indicated that female rare minnows were more sensitive than males to vinclozolin exposure. In conclusion, vinclozolin exposure evoked endocrine stress on the hypothalamic-pituitary-interrenal axis in the rare minnow, and the interrenal tissue was more sensitive than the brain tissue to stress caused by vinclozolin exposure. These results provide additional data about the modes of toxicological action of vinclozolin.
Collapse
Affiliation(s)
- Lihua Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | | | | | | | | |
Collapse
|
34
|
Peter MCS. The role of thyroid hormones in stress response of fish. Gen Comp Endocrinol 2011; 172:198-210. [PMID: 21362420 DOI: 10.1016/j.ygcen.2011.02.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/07/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
Abstract
Thyroxine (T(4)) and triiodothyronine (T(3)), the principal thyroid hormones (THs) secreted from the hypothalamic-pituitary-thyroid (HPT) axis, produce a plethora of physiologic actions in fish. The diverse actions of THs in fishes are primarily due to the sensitivity of thyroid axis to many physical, chemical and biological factors of both intrinsic and extrinsic origins. The regulation of THs homeostasis becomes more complex due to extrathyroidal deiodination pathways by which the delivery of biologically active T(3) to target cells has been controlled. As primary stress hormones and the end products of hypothalamic-pituitary-interrenal (HPI) and brain-sympathetic-chromaffin (BSC) axes, cortisol and adrenaline exert its actions on its target tissues where it promote and integrate osmotic and metabolic competence. Despite possessing specific osmoregulatory and metabolic actions at cellular and whole-body levels, THs may fine-tune these processes in accordance with the actions of hormones like cortisol and adrenaline. Evidences are presented that THs can modify the pattern and magnitude of stress response in fishes as it modifies either its own actions or the actions of stress hormones. In addition, multiple lines of evidence indicate that hypothalamic and pituitary hormones of thyroid and interrenal axes can interact with each other which in turn may regulate THs/cortisol-mediated actions. Even though it is hard to define these interactions, the magnitude of stress response in fish has been shown to be modified by the changes in the status of THs, pointing to its functional relationship with endocrine stress axes particularly with the interrenal axis. The fine-tuned mechanism that operates in fish during stressor-challenge drives the THs to play both fundamental and modulator roles in stress response by controlling osmoregulation and metabolic regulation. A major role of THs in stress response is thus evident in fish.
Collapse
Affiliation(s)
- M C Subhash Peter
- Department of Zoology, University of Kerala, Kariavattom, Kerala, India.
| |
Collapse
|
35
|
Le Bras Y, Dechamp N, Krieg F, Filangi O, Guyomard R, Boussaha M, Bovenhuis H, Pottinger TG, Prunet P, Le Roy P, Quillet E. Detection of QTL with effects on osmoregulation capacities in the rainbow trout (Oncorhynchus mykiss). BMC Genet 2011; 12:46. [PMID: 21569550 PMCID: PMC3120726 DOI: 10.1186/1471-2156-12-46] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 05/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background There is increasing evidence that the ability to adapt to seawater in teleost fish is modulated by genetic factors. Most studies have involved the comparison of species or strains and little is known about the genetic architecture of the trait. To address this question, we searched for QTL affecting osmoregulation capacities after transfer to saline water in a nonmigratory captive-bred population of rainbow trout. Results A QTL design (5 full-sib families, about 200 F2 progeny each) was produced from a cross between F0 grand-parents previously selected during two generations for a high or a low cortisol response after a standardized confinement stress. When fish were about 18 months old (near 204 g body weight), individual progeny were submitted to two successive hyper-osmotic challenges (30 ppt salinity) 14 days apart. Plasma chloride and sodium concentrations were recorded 24 h after each transfer. After the second challenge, fish were sacrificed and a gill index (weight of total gill arches corrected for body weight) was recorded. The genome scan was performed with 196 microsatellites and 85 SNP markers. Unitrait and multiple-trait QTL analyses were carried out on the whole dataset (5 families) through interval mapping methods with the QTLMap software. For post-challenge plasma ion concentrations, significant QTL (P < 0.05) were found on six different linkage groups and highly suggestive ones (P < 0.10) on two additional linkage groups. Most QTL affected concentrations of both chloride and sodium during both challenges, but some were specific to either chloride (2 QTL) or sodium (1 QTL) concentrations. Six QTL (4 significant, 2 suggestive) affecting gill index were discovered. Two were specific to the trait, while the others were also identified as QTL for post-challenge ion concentrations. Altogether, allelic effects were consistent for QTL affecting chloride and sodium concentrations but inconsistent for QTL affecting ion concentrations and gill morphology. There was no systematic lineage effect (grand-parental origin of QTL alleles) on the recorded traits. Conclusions For the first time, genomic loci associated with effects on major physiological components of osmotic adaptation to seawater in a nonmigratory fish were revealed. The results pave the way for further deciphering of the complex regulatory mechanisms underlying seawater adaptation and genes involved in osmoregulatory physiology in rainbow trout and other euryhaline fishes.
Collapse
|
36
|
Kiilerich P, Pedersen SH, Kristiansen K, Madsen SS. Corticosteroid regulation of Na(+),K(+)-ATPase α1-isoform expression in Atlantic salmon gill during smolt development. Gen Comp Endocrinol 2011; 170:283-9. [PMID: 20171217 DOI: 10.1016/j.ygcen.2010.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 02/10/2010] [Accepted: 02/12/2010] [Indexed: 11/25/2022]
Abstract
The proposed mineralocorticoid-like signalling axis in teleost fish, consisting of the hormone 11-deoxycorticosterone (DOC) and a mineralocorticoid receptor (MR), has recently challenged our conception of cortisol being the only osmoregulatory corticosteroid in teleost fish. This paper aimed at comparing the osmoregulatory role of DOC with that of cortisol during the pre-adaptive development of SW-tolerance, smoltification, in Atlantic salmon. Using an in vitro gill block incubation system, the effect of DOC and cortisol in the gill was investigated from January to September, using Na(+),K(+)-ATPase α-subunit isoforms α-1a and α-1b mRNA levels as targets for regulation by the hormones. Cortisol and DOC both conferred significant up-regulation of α-1a and α-1b mRNA levels at specific time-points during smoltification. However, the effect of cortisol and DOC on α-subunit isoforms varied seasonally between isoforms and hormones. The maximum induction of α-1a was 3- to 4-fold compared to controls whereas a 2-fold induction was observed for α-1b. The pattern and capacity of stimulation of α-1a through smoltification were similar for cortisol and DOC, whereas cortisol had an enhanced capacity to stimulate α-1b as compared to DOC. Even though there was no demonstrable change in cortisol or DOC sensitivity in the gill, the magnitude of the hormonal effects were seasonally dependent. This is the first report of DOC-induced effects on osmoregulatory targets in fish, thus indicating a role for DOC and MR signalling in osmoregulation.
Collapse
Affiliation(s)
- Pia Kiilerich
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
37
|
Yang W, Xiang F, Sun H, Chen Y, Minter E, Yang Z. Changes in the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
The physiological stress response and oxidative stress biomarkers in rainbow trout and brook trout from selenium-impacted streams in a coal mining region. J Appl Toxicol 2009; 29:681-8. [DOI: 10.1002/jat.1458] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Miller LL, Rasmussen JB, Palace VP, Hontela A. Physiological stress response in white suckers from agricultural drain waters containing pesticides and selenium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1249-56. [PMID: 19019433 DOI: 10.1016/j.ecoenv.2008.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 09/15/2008] [Accepted: 09/23/2008] [Indexed: 05/02/2023]
Abstract
To assess the effect of agriculture drain water, a complex mixture containing pesticides and selenium (Se), on the physiological stress response, white suckers were collected from irrigation return flows in the summer and the fall and subjected to a stress challenge. Water (0.40-26.71microg/L) and muscle Se (0.37-1.52microg/g ww) levels were elevated at two sites and plasma acetylcholinesterase (AChE) activity (a marker of pesticide exposure) was lower in the fall (5.97+/-0.45micromol/min/mL) than the summer (10.73+/-0.73micromol/min/mL). Fish raised plasma cortisol levels in response to the stress challenge 11.8 times above basal levels (12.8+/-4.9ng/mL). Multivariate statistics linked Se exposure to elevated plasma glucose levels, and pesticide exposure to elevated liver glycogen levels generating hypotheses for further testing. This study showed that white suckers accumulated Se from agricultural drain water and the complex mixtures present in the drain water influenced the physiological stress response.
Collapse
Affiliation(s)
- L L Miller
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4.
| | | | | | | |
Collapse
|
40
|
Gravel A, Wilson JM, Pedro DFN, Vijayan MM. Non-steroidal anti-inflammatory drugs disturb the osmoregulatory, metabolic and cortisol responses associated with seawater exposure in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:481-90. [PMID: 19049905 DOI: 10.1016/j.cbpc.2008.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
While detectable levels of non-steroidal anti-inflammatory drugs (NSAIDs) have been reported in various aquatic habitats, little is known about the mechanism of action of these pharmaceutical drugs on organisms. Recently we demonstrated that NSAIDs disrupt corticosteroidogenesis in rainbow trout (Oncorhynchus mykiss). As cortisol is a seawater adapting hormone, we hypothesized that exposure to NSAIDs will impair the hyposmoregulatory capacity of this species in seawater. Trout were exposed to either waterborne salicylate or ibuprofen in fresh water for four days and the salinity switched to 50% seawater for two days, followed by 100% seawater and sampled two days later. NSAIDs disturbed the seawater-induced elevation in plasma osmolality and concentrations of Cl(-) and K(+), but not Na(+) in rainbow trout. This was accompanied by enhanced gill glycolytic capacity and reduced liver glycogen content in seawater with NSAIDs, suggesting enhanced metabolic demand to fuel ion pumps. While salicylate did not affect gill Na(+)/K(+)-ATPase activity, ibuprofen inhibited the seawater-induced elevation in gill Na(+)/K(+)-ATPase activity. The drugs also further enhanced the seawater-induced elevation in plasma cortisol concentration; this response was greater with salicylate compared to ibuprofen. There were no changes in the transcript levels of key proteins involved in steroidogenesis with NSAIDs, whereas gill and brain GR protein expression expression was reduced with salicylate. Altogether, salicylate and ibuprofen exposures impaired the hyposmoregulatory capacity of rainbow trout in seawater, but the mode of action of the two drugs in bringing about these changes appears distinct in trout.
Collapse
Affiliation(s)
- Amélie Gravel
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
41
|
Chapter 6 Regulation And Contribution Of The Corticotropic, Melanotropic And Thyrotropic Axes To The Stress Response In Fishes. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28006-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Kiilerich P, Kristiansen K, Madsen SS. Hormone receptors in gills of smolting Atlantic salmon, Salmo salar: expression of growth hormone, prolactin, mineralocorticoid and glucocorticoid receptors and 11beta-hydroxysteroid dehydrogenase type 2. Gen Comp Endocrinol 2007; 152:295-303. [PMID: 17289045 DOI: 10.1016/j.ygcen.2006.12.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/29/2006] [Accepted: 12/26/2006] [Indexed: 11/17/2022]
Abstract
This is the first study to report concurrent dynamics in mRNA expression of growth hormone receptor (GHR), prolactin receptor (PRLR), gluco- and mineralocorticoid receptor (GR and MR) and the 11beta-hydroxysteroid dehydrogenase type-2 enzyme (11beta-HSD2) in Atlantic salmon (Salmo salar) gill during smoltification. Transcript levels were analysed by quantitative PCR in fresh water (FW) fish and after a 24-h salt water (SW) challenge. GHR transcript levels increased concurrent with gill Na(+),K(+)-ATPase activity in FW fish consistent with the SW-adaptive role of GH. SW-transfer induced an increased GHR expression levels in the early stages of smoltification but a decrease in expression at the peak of smoltification. PRLR transcript levels decreased steadily during smoltification in agreement with the recognized hyper-osmoregulatory role of PRL. Surprisingly, PRLR levels increased after SW transfer during the course of smoltification. GR mRNA levels were low early on during smoltification but increased at the peak of smoltification and remained high during de-smoltification, indicative of increased cortisol signalling at this point. Coherently, SW transfer increased GR levels to smolt levels prior to the smoltification peak. 11beta-HSD2 levels increased at the smoltification peak and MR levels increased during de-smoltification, suggesting a need for protection of MR from cortisol signalling during smoltification. This is supported by the fact that SW-transfer results in a profound up-regulation of 11beta-HSD2, whereas SW transfer down-regulates MR levels. The study concludes that GR and MR may have distinctive roles in developing hypo- and hyper-osmoregulatory mechanisms during smoltification and de-smoltification, respectively.
Collapse
Affiliation(s)
- Pia Kiilerich
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
43
|
Mastorakos G, Karoutsou EI, Mizamtsidi M, Creatsas G. The menace of endocrine disruptors on thyroid hormone physiology and their impact on intrauterine development. Endocrine 2007; 31:219-37. [PMID: 17906368 DOI: 10.1007/s12020-007-0030-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 04/19/2007] [Accepted: 05/01/2007] [Indexed: 10/22/2022]
Abstract
The delivery of the appropriate thyroid hormones quantity to target tissues in euthyroidism is the result of unopposed synthesis, transport, metabolism, and excretion of these hormones. Thyroid hormones homeostasis depends on the maintenance of the circulating 'free' thyroid hormone reserves and on the development of a dynamic balance between the 'free' hormones reserves and those of the 'bound' hormones with the transport proteins. Disturbance of this hormone system, which is in constant interaction with other hormone systems, leads to an adaptational counter-response targeting to re-establish a new homeostatic equilibrium. An excessive disturbance is likely to result, however, in hypo- or hyper- thyroid clinical states. Endocrine disruptors are chemical substances forming part of 'natural' contaminating agents found in most ecosystems. There is abundant evidence that several key components of the thyroid hormones homeostasis are susceptible to the action of endocrine disruptors. These chemicals include some chlorinated organic compounds, polycyclic aromatic hydrocarbons, herbicides, and pharmaceutical agents. Intrauterine exposure to endocrine disruptors that either mimic or antagonize thyroid hormones can produce permanent developmental disorders in the structure and functioning of the brain, leading to behavioral changes. Steroid receptors are important determinants of the consequences of endocrine disruptors. Their interaction with thyroid hormones complicates the effect of endocrine disruptors. The aim of this review is to present the effect of endocrine disruptors on thyroid hormones physiology and their potential impact on intrauterine development.
Collapse
Affiliation(s)
- George Mastorakos
- Endocrine Unit, Second Department of Obstretics and Gynecology, Aretaieion Hospital, Athens University Medical School, Athens 10674, Greece.
| | | | | | | |
Collapse
|
44
|
Singer TD, Raptis S, Sathiyaa R, Nichols JW, Playle RC, Vijayan MM. Tissue-specific modulation of glucocorticoid receptor expression in response to salinity acclimation in rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 2006; 146:271-8. [PMID: 17215158 DOI: 10.1016/j.cbpb.2006.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/03/2006] [Accepted: 11/04/2006] [Indexed: 11/25/2022]
Abstract
While studies clearly point to a role for cortisol signaling in seawater adaptation, very little is known about salinity impact on glucocorticoid receptor (GR) expression in fish. To this end, we investigated the temporal GR expression in the gill and liver of rainbow trout (Oncorhynchus mykiss) to salinity exposure. Trout were subjected to gradual salinity increases (11 ppt for 1 d, 17 ppt for 2 d and 23 ppt for 2 d) over a five day period. Gill Na(+), K(+)-ATPase alpha-subunit mRNA showed a transient elevation with salinity exposure, while gill cystic fibrosis transmembrane conductance regulator mRNA was not significantly affected by salinity. Liver PEPCK transcript levels showed a transient increase at day 1, but not at day 3 or day 5 of salinity exposure, while the activity of this enzyme was significantly depressed at all time points. Liver glycogen content was also significantly reduced by salinity exposure compared to the freshwater group. Gill GR transcript levels were 3-fold greater upon salinity exposure and this level was maintained over the 5 day period, while gill GR protein content remained unchanged except for a significant drop at day 1 of salinity exposure. Liver GR transcript levels showed no significant change with salinity exposure, while GR protein content was transiently elevated at day 3, but not at day 1 or day 5 of salinity exposure. The tissue-specific GR transcript response in the gill leads us to hypothesize a role for osmosensory signal transduction pathway in the regulation of GR expression in fish. Collectively, salinity exposure modulates GR expression and glucocorticoid signaling in rainbow trout.
Collapse
Affiliation(s)
- Thomas D Singer
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Sangiao-Alvarellos S, Polakof S, Arjona FJ, Kleszczynska A, Martín Del Río MP, Míguez JM, Soengas JL, Mancera JM. Osmoregulatory and metabolic changes in the gilthead sea bream Sparus auratus after arginine vasotocin (AVT) treatment. Gen Comp Endocrinol 2006; 148:348-58. [PMID: 16737699 DOI: 10.1016/j.ygcen.2006.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 04/11/2006] [Accepted: 04/17/2006] [Indexed: 11/22/2022]
Abstract
The influence of arginine vasotocin (AVT) on osmoregulation and metabolism in gilthead sea bream Sparus auratus was evaluated by two experimental approaches. In the first, seawater (SW, 36 ppt)-acclimatized fish were injected intraperitoneally with vehicle (vegetable oil) or two doses of AVT (0.5 and 1 microg/g body weight). Twenty-four hours later, eight fish from each group were sampled; the remaining fish were transferred to low saline water (LSW, 6 ppt, hypoosmotic test), SW (transfer control), and hypersaline water (HSW, 55 ppt, hyperosmotic test). After another 24h (48-h post-injection), fish were sampled. The only significant effect observed was the increase of sodium levels in AVT-treated fish transferred to HSW. In the second experiment, fish were injected intraperitoneally with slow-release vegetable oil implants (mixture 1:1 of coconut oil and seeds oil) alone or containing AVT (1 microg/g body weight). After 3 days, eight fish from each group were sampled; the remaining fish were transferred to LSW, SW, and HSW as above, and sampled 3 days later (i.e. 6 days post-injection). In the AVT-treated group transferred from SW to SW, a significant increase vs. control was observed in gill Na(+),K(+)-ATPase activity. Kidney Na(+),K(+)-ATPase activity decreased in the AVT-treated group transferred to LSW and no changes were observed in the other groups. These osmoregulatory changes suggest a role for AVT during hyperosmotic acclimation based on changes displayed by gill Na(+),K(+)-ATPase activity. AVT treatment increased plasma cortisol levels in fish transferred to LSW and HSW. In addition, AVT treatment affected parameters of carbohydrate, lipid, amino acid, and lactate metabolism in plasma and tissues (gills, kidney, liver, and brain). The most relevant effects were the increased potential of liver for glycogen mobilization and glucose release resulting in increased plasma levels of glucose in AVT-treated fish transferred to LSW and HSW. These changes may be related to the energy repartitioning process occurring during osmotic adaptation of S. auratus to extreme environmental salinities and could be mediated by increased levels of cortisol in plasma.
Collapse
Affiliation(s)
- Susana Sangiao-Alvarellos
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Prunet P, Sturm A, Milla S. Multiple corticosteroid receptors in fish: from old ideas to new concepts. Gen Comp Endocrinol 2006; 147:17-23. [PMID: 16545810 DOI: 10.1016/j.ygcen.2006.01.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/23/2005] [Accepted: 01/05/2006] [Indexed: 10/24/2022]
Abstract
The effect of corticosteroid hormones in fish are mediated through intracellular receptors that act as ligand-binding transcription factors. Many studies have been devoted to cortisol binding using radiolabeled ligand in fish and allowed characterization of a single class of high affinity binding sites in various tissues. Molecular characterization of cortisol receptors has only been initiated recently by cloning the different receptor forms: Following a isolation of a first glucocorticoid receptor (GR), a mineralocorticoid receptor (MR) was described and the presence of various GR isoforms was recently reported. Sequence comparison and phylogenetic analysis of these sequences confirm that fish possess both GR and MR and that GR gene is duplicated. The importance of these various corticosteroid receptor forms is also illustrated by analysis of their transcriptional activity. When tested in human cell lines, these receptors showed functionally distinct actions on GR-sensitive promotors, thus suggesting a more complicated corticosteroid signaling system than initially anticipated from binding studies. These results also suggest that, whereas cortisol is certainly the physiological ligand for GR, this may not be the case for MR which showed high sensitivity for deoxycorticosterone (DOC) and aldosterone. As this last hormone is probably absent in fish, these results raise the question as to whether DOC could be a physiological ligand for MR in fish. Information on DOC effect in fish is very scarce and clarification of the differential osmoregulatory roles of cortisol and DOC in fish needs ellucidation. This will require analysis of all actors of the corticosteroid signaling system at pre-receptor, receptor, and post-receptor levels.
Collapse
Affiliation(s)
- P Prunet
- INRA SCRIBE, IFR 140, Campus de Beaulieu, 35042 Rennes Cedex, France.
| | | | | |
Collapse
|
47
|
Takahashi H, Sakamoto T, Hyodo S, Shepherd BS, Kaneko T, Grau EG. Expression of glucocorticoid receptor in the intestine of a euryhaline teleost, the Mozambique tilapia (Oreochromis mossambicus): Effect of seawater exposure and cortisol treatment. Life Sci 2006; 78:2329-35. [PMID: 16376384 DOI: 10.1016/j.lfs.2005.09.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 09/20/2005] [Indexed: 11/21/2022]
Abstract
Cortisol plays an important role in controlling intestinal water and ion transport in teleosts possibly through glucocorticoid receptor (GR) and/or mineralocorticoid receptor. To better understand the role of GR in the teleost intestine, in a euryhaline tilapia, Oreochromis mossambicus, we examined (1) the intestinal localizations of GR; (2) the effects of environmental salinity challenge and cortisol treatment on GR mRNA expression. The mRNA abundance of GR in the posterior intestinal region of tilapia was found to be higher than that in the anterior and middle intestine. In the posterior intestine, GR appears to be localized in the mucosal layer. GR mRNA levels in the posterior intestine were elevated after exposure of freshwater fish to seawater for 7 days following an increase in plasma cortisol. Similarly, cortisol implantation in freshwater tilapia for 7 days elevated the intestinal GR mRNA. These results indicate that seawater acclimation is accompanied by upregulation of GR mRNA abundance in intestinal tissue, possibly as a consequence of the elevation of cortisol levels. In contrast, a single intraperitoneal injection of cortisol into freshwater tilapia decreased intestinal GR mRNA. This downregulation of the GR mRNA by cortisol suggests a dual mode of autoregulation of GR expression by cortisol.
Collapse
Affiliation(s)
- Hideya Takahashi
- Ushimado Marine Laboratory, Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama, 701-4303, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Scott GR, Keir KR, Schulte PM. Effects of spironolactone and RU486 on gene expression and cell proliferation after freshwater transfer in the euryhaline killifish. J Comp Physiol B 2005; 175:499-510. [PMID: 16088394 DOI: 10.1007/s00360-005-0014-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/20/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
We have explored the possible mechanisms by which mineralocorticoid (MR) and glucocorticoid (GR) receptors regulate the response to freshwater transfer in the gills of the euryhaline killifish Fundulus heteroclitus. Killifish were implanted with RU486 (GR antagonist) or spironolactone (MR antagonist) at doses of 0.1-1.0 mg g(-1), and subsequently transferred from 10 per thousand brackish water to freshwater. Compared to brackish water sham fish, mRNA expression of CFTR and NKCC1 decreased in the gills of sham fish transferred to freshwater, whereas Na(+), K(+)-ATPase alpha(1a) mRNA expression and alpha protein abundance, as well as cell proliferation (detected using BrdU) increased. Spironolactone inhibited the normal increase in cell proliferation and Na(+), K(+)-ATPase expression after freshwater transfer. RU486 increased plasma cortisol levels and may have slightly inhibited Na(+), K(+)-ATPase activity, but did not change alpha(1a ) expression. RU486 had no effect on cell proliferation in the non-lamellar region of the gills, but increased proliferation in the lamellar region. Neither antagonist inhibited the suppression of CFTR or NKCC1 expression after freshwater transfer. Glucocorticoid receptor expression was reduced in all sham and antagonist treatments compared to untreated controls, but no other consistent differences were observed. The effects of spironolactone suggest that MR is important for regulating ion transport in killifish gills after freshwater transfer.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | |
Collapse
|
49
|
Monteiro SM, Mancera JM, Fontaínhas-Fernandes A, Sousa M. Copper induced alterations of biochemical parameters in the gill and plasma of Oreochromis niloticus. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:375-83. [PMID: 16185936 DOI: 10.1016/j.cbpc.2005.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 08/09/2005] [Accepted: 08/10/2005] [Indexed: 01/08/2023]
Abstract
The main objective of this study was to determine the effects of copper exposure on copper accumulated in branchial tissue, gill Na+/K+-ATPase activity and plasma Na+, Cl-, osmolality, protein, glucose and cortisol, in Oreochromis niloticus. Fish were experimentally exposed to 40 and 400 microg L(-1) of waterborne copper and sacrified after 0, 3, 7, 14 and 21 days. Copper accumulation and Na+/K+-ATPase activity were determined in branchial tissue, whereas osmolality, Na+, Cl-, protein, glucose and cortisol concentrations were measured in plasma samples. Gill copper accumulation increased linearly with exposure time and concentration, whereas gill Na+/K+-ATPase activity was maximally inhibited after 3 days of exposure and showed a significant negative correlation with copper tissue levels. Plasma Cl- values decreased with time of exposure but only at 400 microg L(-1) of copper. Plasma Na+, protein and osmolality decreased with exposure time at the highest copper concentration tested, whereas at 40 microg L(-1) of copper this effect was only observed after 21 days of exposure. Plasma glucose and cortisol levels increased in a dose and time dependent manner, while showing complex fluctuations during the intermediate exposure times. In conclusion, copper induces an early maximum inhibition of gill Na+/K+-ATPase activity in O. niloticus. The subsequent slow decrease in ion plasma levels was related to compensatory mechanisms involving a non-specific stress response that appeared overcome at long-term exposures.
Collapse
Affiliation(s)
- Sandra M Monteiro
- University of Trás-os-Montes and Alto Douro (UTAD) and Center for Technological Studies of Environmental and Life Sciences (CETAV), Vila Real, Portugal.
| | | | | | | |
Collapse
|
50
|
Sangiao-Alvarellos S, Míguez JM, Soengas JL. Actions of growth hormone on carbohydrate metabolism and osmoregulation of rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2005; 141:214-25. [PMID: 15804508 DOI: 10.1016/j.ygcen.2005.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 01/07/2005] [Accepted: 01/11/2005] [Indexed: 11/30/2022]
Abstract
Rainbow trout Oncorhynchus mykiss were injected intraperitoneally with slow-release implants of vegetable oil alone or containing ovine growth hormone (oGH) (2 and 5 microgg(-1) body weight), and sampled after 5 days to assess the simultaneous effects of GH on both osmoregulation and carbohydrate metabolism. An enhanced hypoosmoregulatory capacity of oGH-implanted fish is suggested by the increase observed in gill Na+,K+-ATPase activity, and the decrease observed in plasma ion concentration (Na+ and Cl-) and osmolality. GH treatment also elicited increased plasma glucose levels and metabolic changes in liver, gills, kidney, and brain. Major metabolic changes elicited by GH treatment included (1) decreased glycolytic potential and capacity for exporting glucose in liver, (2) enhanced glycogenolytic potential and capacity for use of exogenous glucose in gills and kidney, as well as increased glycolytic capacity in the later tissue, and (3) enhanced glycogenolytic and glycolytic capacities in brain. These metabolic changes elicited by GH treatment support a role for GH in the control of carbohydrate metabolism in salmonids that could be related either to the metabolic changes occurring during osmotic acclimation in nature (a process in which changes in GH levels and carbohydrate metabolism have both been reported) or to metabolic changes associated with growth.
Collapse
Affiliation(s)
- Susana Sangiao-Alvarellos
- Laboratorio de Fisioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, E-36200 Vigo, Spain
| | | | | |
Collapse
|