1
|
Perego Junior JE, Tomazi Silva K, Balani Rando AL, Sousa Lima M, Garcia RF, Pedrosa MMD. Glucose metabolism in the perfused liver did not improve with resistance training in male Swiss mice under caloric restriction. Arch Physiol Biochem 2024:1-10. [PMID: 39392336 DOI: 10.1080/13813455.2024.2413626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT Energy homeostasis is a primary factor for the survival of mammals. Many tissues and organs, among which is the liver, keep this homeostasis in varied circumstances, including caloric restriction (CR) and physical activity. OBJECTIVE This study investigated glucose metabolism using the following groups of eight-week-old male Swiss mice: CS, sedentary and fed freely; RS, sedentary and RT, trained, both under 30% CR (n = 20-23 per group). RESULTS Organs and fat depots of groups RS and RT were similar to CS, although body weight was lower. CR did not impair training performance nor affected systemic or hepatic glucose metabolism. Training combined with CR (group RT) improved in vivo glucose tolerance and did not affect liver gluconeogenesis. CONCLUSIONS The mice tolerated the prolonged moderate CR without impairment of their well-being, glucose homeostasis, and resistance training performance. But the higher liver gluconeogenic efficiency previously demonstrated using this training protocol in mice was not evidenced under CR.
Collapse
Affiliation(s)
| | - Kauane Tomazi Silva
- Program of Graduate Studies in Physiological Sciences, State University of Maringá, Maringá, PR, Brazil
| | | | - Mateus Sousa Lima
- Department of Biology, State University of Maringá, Maringá, PR, Brazil
| | | | | |
Collapse
|
2
|
Shaulson ED, Cohen AA, Picard M. The brain-body energy conservation model of aging. NATURE AGING 2024; 4:1354-1371. [PMID: 39379694 DOI: 10.1038/s43587-024-00716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Aging involves seemingly paradoxical changes in energy metabolism. Molecular damage accumulation increases cellular energy expenditure, yet whole-body energy expenditure remains stable or decreases with age. We resolve this apparent contradiction by positioning the brain as the mediator and broker in the organismal energy economy. As somatic tissues accumulate damage over time, costly intracellular stress responses are activated, causing aging or senescent cells to secrete cytokines that convey increased cellular energy demand (hypermetabolism) to the brain. To conserve energy in the face of a shrinking energy budget, the brain deploys energy conservation responses, which suppress low-priority processes, producing fatigue, physical inactivity, blunted sensory capacities, immune alterations and endocrine 'deficits'. We term this cascade the brain-body energy conservation (BEC) model of aging. The BEC outlines (1) the energetic cost of cellular aging, (2) how brain perception of senescence-associated hypermetabolism may drive the phenotypic manifestations of aging and (3) energetic principles underlying the modifiability of aging trajectories by stressors and geroscience interventions.
Collapse
Affiliation(s)
- Evan D Shaulson
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan A Cohen
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
3
|
Prado-Nóvoa O, Howard KR, Laskaridou E, Zorrilla-Revilla G, Reid GR, Marinik EL, Davy BM, Stamatiou M, Hambly C, Speakman JR, Davy KP. Validity of predictive equations for total energy expenditure against doubly labeled water. Sci Rep 2024; 14:15754. [PMID: 38977928 PMCID: PMC11231257 DOI: 10.1038/s41598-024-66767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
Variations in physical activity energy expenditure can make accurate prediction of total energy expenditure (TEE) challenging. The purpose of the present study was to determine the accuracy of available equations to predict TEE in individuals varying in physical activity (PA) levels. TEE was measured by DLW in 56 adults varying in PA levels which were monitored by accelerometry. Ten different models were used to predict TEE and their accuracy and precision were evaluated, considering the effect of sex and PA. The models generally underestimated the TEE in this population. An equation published by Plucker was the most accurate in predicting the TEE in our entire sample. The Pontzer and Vinken models were the most accurate for those with lower PA levels. Despite the levels of accuracy of some equations, there were sizable errors (low precision) at an individual level. Future studies are needed to develop and validate these equations.
Collapse
Affiliation(s)
- Olalla Prado-Nóvoa
- Department of Human Nutrition, Foods, and Exercise, Human Integrative Physiology Laboratory, Virginia Tech, Blacksburg, VA, USA.
| | - Kristen R Howard
- Department of Human Nutrition, Foods, and Exercise, Human Integrative Physiology Laboratory, Virginia Tech, Blacksburg, VA, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Eleni Laskaridou
- Department of Human Nutrition, Foods, and Exercise, Human Integrative Physiology Laboratory, Virginia Tech, Blacksburg, VA, USA
| | - Guillermo Zorrilla-Revilla
- Department of Human Nutrition, Foods, and Exercise, Human Integrative Physiology Laboratory, Virginia Tech, Blacksburg, VA, USA
- Laboratorio de Evolución Humana, Departamento de Historia, Geografía y Comunicación, Universidad de Burgos, Burgos, Spain
- CIAS-Research Centre for Anthropology and Health, University of Coimbra, 3020, Coimbra, Portugal
| | - Glen R Reid
- Department of Human Nutrition, Foods, and Exercise, Human Integrative Physiology Laboratory, Virginia Tech, Blacksburg, VA, USA
| | - Elaina L Marinik
- Department of Human Nutrition, Foods, and Exercise, Human Integrative Physiology Laboratory, Virginia Tech, Blacksburg, VA, USA
| | - Brenda M Davy
- Department of Human Nutrition, Foods, and Exercise, Human Integrative Physiology Laboratory, Virginia Tech, Blacksburg, VA, USA
| | - Marina Stamatiou
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kevin P Davy
- Department of Human Nutrition, Foods, and Exercise, Human Integrative Physiology Laboratory, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Flanagan E, Sanchez-Delgado G, Martin C, Ravussin E, Pontzer H, Redman L. No evidence for metabolic adaptation during exercise-related energy compensation. iScience 2024; 27:109842. [PMID: 38947494 PMCID: PMC11214370 DOI: 10.1016/j.isci.2024.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/08/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024] Open
Abstract
The constrained energy model posits that the increased total daily energy expenditure (TDEE) in response to exercise is often less than the energy cost of the exercise prescribed. The mechanisms behind this phenomenon, coined "exercise-related energy compensation" (ExEC), are poorly understood, and it is unknown if ExEC is coupled with metabolic adaptation. Using a randomized controlled 24-week exercise intervention, individuals who demonstrated ExEC were identified. Changes to all components of TDEE and metabolic adaptation were assessed using doubly labeled water over 14 days and room calorimetry over 24-h 48% of individuals exhibited ExEC (-308 ± 158 kcals/day). There were no statistically significant differences in sex, age, or BMI between ExEC and non-ExEC. ExEC was associated with baseline TDEE (r = -0.50, p = 0.006). There were no statistically significant differences in metabolic adaptations for 24 h, sleep, or resting expenditures. These findings reveal that ExEC occurs independent of metabolic adaptation in sedentary components of EE.
Collapse
Affiliation(s)
- E.W. Flanagan
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - G. Sanchez-Delgado
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, 12e Avenue N Porte 6, Sherbrooke, QC J1H 5N4, Canada
- University of Granada, Institute of Nutrition and Food Technology “José Mataix” and Sport and Health University Research Institute, Cuesta del Hospicio Viejo s/n, 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - C.K. Martin
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - E. Ravussin
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - H. Pontzer
- Department of Evolutionary Anthropology, Duke University, 211 Biological Sciences, Durham, NC 27708, USA
| | - L.M. Redman
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
5
|
Niclou A, Sarma MS. The now and future of human biology at the extremes: An introduction to the special issue. Am J Hum Biol 2024; 36:e24006. [PMID: 37885124 PMCID: PMC10939965 DOI: 10.1002/ajhb.24006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVES A hallmark of the human species is our adaptability to a wide range of different ecologies and ecosystems, including some of the most extreme settings. Human biologists have long studied how humans have successfully (and sometimes unsuccessfully) adapted to such extremes, particularly ecological extremes like environments at lower limits of temperature and high altitude. In this special issue, we revisit traditional definitions and explore new conceptions of work in extreme environments. We argue that our definitions of extremes should change with our changing world, and account for extremes unique to the Anthropocene, including environments of inequality and precarity, pandemic landscapes, climate-impacted settings, obesogenic environments, and the environments of human spaceflight. We also explore the future of work at the extremes and provide some suggested guidelines on how human biologists can continue to build and expand on foundational work in this area. CONCLUSION While human biologists have done critical work on groups living in extreme environments, our definitions of humans at the limits continue to change as the world around us also changes. Scholars in this area have a responsibility to re-examine the parameters of extremes to stay at the forefront of scientific exploration and collaboration so human biology, as a discipline, can continue to shape our understanding of adaptability, and thus contribute to the continued thriving of all humans as we endure new climatic, environmental, and societal extremes.
Collapse
Affiliation(s)
- Alexandra Niclou
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Mallika S. Sarma
- Johns Hopkins Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
6
|
Stoner L, Higgins S, Paterson C. The 24-h activity cycle and cardiovascular outcomes: establishing biological plausibility using arterial stiffness as an intermediate outcome. Am J Physiol Heart Circ Physiol 2023; 325:H1243-H1263. [PMID: 37737729 DOI: 10.1152/ajpheart.00258.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
This review proposes a biologically plausible working model for the relationship between the 24-h activity cycle (24-HAC) and cardiovascular disease. The 24-HAC encompasses moderate-to-vigorous physical activity (MVPA), light physical activity, sedentary behavior (SB), and sleep. MVPA confers the greatest relative cardioprotective effect, when considering MVPA represents just 2% of the day if physical activity guidelines (30 min/day) are met. While we have well-established guidelines for MVPA, those for the remaining activity behaviors are vague. The vague guidelines are attributable to our limited mechanistic understanding of the independent and additive effects of these behaviors on the cardiovascular system. Our proposed biological model places arterial stiffness, a measure of vascular aging, as the key intermediate outcome. Starting with prolonged exposure to SB or static standing, we propose that the reported transient increases in arterial stiffness are driven by a cascade of negative hemodynamic effects following venous pooling. The subsequent autonomic, metabolic, and hormonal changes further impair vascular function. Vascular dysfunction can be offset by using mechanistic-informed interruption strategies and by engaging in protective behaviors throughout the day. Physical activity, especially MVPA, can confer protection by chronically improving endothelial function and associated protective mechanisms. Conversely, poor sleep, especially in duration and quality, negatively affects hormonal, metabolic, autonomic, and hemodynamic variables that can confound the physiological responses to next-day activity behaviors. Our hope is that the proposed biologically plausible working model will assist in furthering our understanding of the effects of these complex, interrelated activity behaviors on the cardiovascular system.
Collapse
Affiliation(s)
- Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Epidemiology, The Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Center for Health Promotion and Disease Prevention, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Simon Higgins
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Craig Paterson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
7
|
Minasandra P, Jensen FH, Gersick AS, Holekamp KE, Strauss ED, Strandburg-Peshkin A. Accelerometer-based predictions of behaviour elucidate factors affecting the daily activity patterns of spotted hyenas. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230750. [PMID: 38026018 PMCID: PMC10645113 DOI: 10.1098/rsos.230750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Animal activity patterns are highly variable and influenced by internal and external factors, including social processes. Quantifying activity patterns in natural settings can be challenging, as it is difficult to monitor animals over long time periods. Here, we developed and validated a machine-learning-based classifier to identify behavioural states from accelerometer data of wild spotted hyenas (Crocuta crocuta), social carnivores that live in large fission-fusion societies. By combining this classifier with continuous collar-based accelerometer data from five hyenas, we generated a complete record of activity patterns over more than one month. We used these continuous behavioural sequences to investigate how past activity, individual idiosyncrasies, and social synchronization influence hyena activity patterns. We found that hyenas exhibit characteristic crepuscular-nocturnal daily activity patterns. Time spent active was independent of activity level on previous days, suggesting that hyenas do not show activity compensation. We also found limited evidence for an effect of individual identity on activity, and showed that pairs of hyenas who synchronized their activity patterns must have spent more time together. This study sheds light on the patterns and drivers of activity in spotted hyena societies, and also provides a useful tool for quantifying behavioural sequences from accelerometer data.
Collapse
Affiliation(s)
- Pranav Minasandra
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Biology Department, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- International Max Planck Research School for Organismal Biology, Konstanz, Germany
| | - Frants H. Jensen
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - Andrew S. Gersick
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Computer Science, San Diego State University, San Diego, CA, USA
| | - Kay E. Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
| | - Eli D. Strauss
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Biology Department, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Ariana Strandburg-Peshkin
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Biology Department, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
8
|
Dolan E, Sale C, Hedrick MS. Athletes of the animal kingdom: Exercise insights from comparative and evolutionary biology. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111509. [PMID: 37633487 DOI: 10.1016/j.cbpa.2023.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Affiliation(s)
- Eimear Dolan
- Applied Physiology and Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Brazil.
| | - Craig Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| |
Collapse
|
9
|
Dolan E, Koehler K, Areta J, Longman DP, Pontzer H. Energy constraint and compensation: Insights from endurance athletes. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111500. [PMID: 37557979 DOI: 10.1016/j.cbpa.2023.111500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
The Constrained Model of Total Energy Expenditure predicts that increased physical activity may not influence total energy expenditure, but instead, induces compensatory energetic savings in other processes. Much remains unknown, however, about concepts of energy expenditure, constraint and compensation in different populations, and it is unclear whether this model applies to endurance athletes, who expend very large amounts of energy during training and competition. Furthermore, it is well-established that some endurance athletes consciously or unconsciously fail to meet their energy requirements via adequate food intake, thus exacerbating the extent of energetic stress that they experience. Within this review we A) Describe unique characteristics of endurance athletes that render them a useful model to investigate energy constraints and compensations, B) Consider the factors that may combine to constrain activity and total energy expenditure, and C) Describe compensations that occur when activity energy expenditure is high and unmet by adequate energy intake. Our main conclusions are as follows: A) Higher activity levels, as observed in endurance athletes, may indeed increase total energy expenditure, albeit to a lesser degree than may be predicted by an additive model, given that some compensation is likely to occur; B) That while a range of factors may combine to constrain sustained high activity levels, the ability to ingest, digest, absorb and deliver sufficient calories from food to the working muscle is likely the primary determinant in most situations and C) That energetic compensation that occurs in the face of high activity expenditure may be primarily driven by low energy availability i.e., the amount of energy available for all biological processes after the demands of exercise have been met, and not by activity expenditure per se.
Collapse
Affiliation(s)
- Eimear Dolan
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, Brazil.
| | - Karsten Koehler
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Jose Areta
- Research Institute of Sport and Exercise Sciences, School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK. https://twitter.com/jlAreta
| | - Daniel P Longman
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK. https://twitter.com/danny_longman
| | - Herman Pontzer
- Global Health Institute, Duke University, Durham, NC, USA. https://twitter.com/HermanPontzer
| |
Collapse
|
10
|
Trumble BC, Pontzer H, Stieglitz J, Cummings DK, Wood B, Emery Thompson M, Raichlen D, Beheim B, Yetish G, Kaplan H, Gurven M. Energetic costs of testosterone in two subsistence populations. Am J Hum Biol 2023; 35:e23949. [PMID: 37365845 PMCID: PMC10749987 DOI: 10.1002/ajhb.23949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVE Testosterone plays a role in mediating energetic trade-offs between growth, maintenance, and reproduction. Investments in a high testosterone phenotype trade-off against other functions, particularly survival-enhancing immune function and cellular repair; thus only individuals in good condition can maintain both a high testosterone phenotype and somatic maintenance. While these effects are observed in experimental manipulations, they are difficult to demonstrate in free-living animals, particularly in humans. We hypothesize that individuals with higher testosterone will have higher energetic expenditures than those with lower testosterone. METHODS Total energetic expenditure (TEE) was quantified using doubly labeled water in n = 40 Tsimane forager-horticulturalists (50% male, 18-87 years) and n = 11 Hadza hunter-gatherers (100% male, 18-65 years), two populations living subsistence lifestyles, high levels of physical activity, and high infectious burden. Urinary testosterone, TEE, body composition, and physical activity were measured to assess potential physical and behavioral costs associated with a high testosterone phenotype. RESULTS Endogenous male testosterone was significantly associated with energetic expenditure, controlling for fat free mass; a one standard deviation increase in testosterone is associated with the expenditure of an additional 96-240 calories per day. DISCUSSION These results suggest that a high testosterone phenotype, while beneficial for male reproduction, is also energetically expensive and likely only possible to maintain in healthy males in robust condition.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | | | - Daniel K Cummings
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, California, USA
| | - Brian Wood
- Department of Anthropology, University of California Los Angeles, Los Angeles, California, USA
| | | | - David Raichlen
- Department of Anthropology, University of Southern California, Los Angeles, California, USA
- Department of Biology, University of Southern California, Los Angeles, California, USA
| | - Bret Beheim
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Gandhi Yetish
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
| | - Hillard Kaplan
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, California, USA
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
11
|
Podestá D I, Blannin AK, Wallis GA. Post-exercise dietary macronutrient composition modulates components of energy balance in young, physically active adults. Physiol Behav 2023; 270:114320. [PMID: 37558044 DOI: 10.1016/j.physbeh.2023.114320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
The effectiveness of exercise to reduce body mass is typically modest, partially due to energy compensation responses which may be linked to energy substrate availability around exercise. The present study aimed to investigate the effect of manipulating post-exercise energy substrate availability (high carbohydrate/low fat [HCLF] or low carbohydrate/high fat [LCHF] energy replacement) on energy balance components in the short-term (i.e., appetite, energy intake (EI) and energy expenditure (EE)). METHODS Appetite, EI, activity- and total- EE were measured in twelve healthy, young (21.0 ± 2.3 years) physically active participants (10 men, 2 women) on two occasions across 4 days after a 75-min run and an isocaloric energy replacement drink (HCLF and LCHF). Appetite was measured daily by visual analogue scales, EI was calculated by subtracting the energy content of food leftovers from a provided food package, activity- and total- EE determined by heart-rate accelerometery. RESULTS Composite appetite ratings between days were lower in HCLF (62.4 ± 12) compared to LCHF (68.3 ± 8.9 mm; p = 0.048). No differences between conditions were detected for EI. Cumulative activity-EE (HCLF= 20.9 ± 3.7, LCHF= 16.9 ± 3.1 MJ; p = 0.037), but not total-EE (HCLF= 44.6 ± 7.7, LCHF= 39.9 ± 4.7 MJ; p = 0.060), was higher for the HCLF condition than the LCHF across the measurement period. CONCLUSION Compared with low carbohydrate/high fat, immediate post-exercise energy replacement with a high carbohydrate/low fat drink resulted in higher short-term activity energy expenditure and lower appetite ratings.
Collapse
Affiliation(s)
- I Podestá D
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, United Kingdom of Great Britain and Northern Ireland, UK
| | - A K Blannin
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, United Kingdom of Great Britain and Northern Ireland, UK
| | - G A Wallis
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, United Kingdom of Great Britain and Northern Ireland, UK.
| |
Collapse
|
12
|
Halsey LG, Areta JL, Koehler K. Does eating less or exercising more to reduce energy availability produce distinct metabolic responses? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220217. [PMID: 37482781 PMCID: PMC10363695 DOI: 10.1098/rstb.2022.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 07/25/2023] Open
Abstract
When less energy is available to consume, people often lose weight, which reduces their overall metabolic rate. Their cellular metabolic rate may also decrease (metabolic adaptation), possibly reflected in physiological and/or endocrinological changes. Reduced energy availability can result from calorie restriction or increased activity energy expenditure, raising the following question that our review explores: do the body's metabolic and physiological responses to this reduction differ or not depending on whether they are induced by dietary restriction or increased activity? First, human studies offer indirect, contentious evidence that the body metabolically adapts to reduced energy availability, both in response to either a calorie intake deficit or increased activity (exercise; without a concomitant increase in food intake). Considering individual aspects of the body's physiology as constituents of whole-body metabolic rate, similar responses to reduced energy availability are observed in terms of reproductive capacity, somatic maintenance and hormone levels. By contrast, tissue phenotypic responses differ, most evidently for skeletal tissue, which is preserved in response to exercise but not calorie restriction. Thus, while in many ways 'a calorie deficit is a calorie deficit', certain tissues respond differently depending on the energy deficit intervention. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
| | - José L. Areta
- Liverpool John Moores University, Liverpool, L3 3AF, UK
| | | |
Collapse
|
13
|
Burke LM, Ackerman KE, Heikura IA, Hackney AC, Stellingwerff T. Mapping the complexities of Relative Energy Deficiency in Sport (REDs): development of a physiological model by a subgroup of the International Olympic Committee (IOC) Consensus on REDs. Br J Sports Med 2023; 57:1098-1108. [PMID: 37752007 DOI: 10.1136/bjsports-2023-107335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
The 2023 International Olympic Committee (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs) notes that exposure to low energy availability (LEA) exists on a continuum between adaptable and problematic LEA, with a range of potential effects on both health and performance. However, there is variability in the outcomes of LEA exposure between and among individuals as well as the specific manifestations of REDs. We outline a framework for a 'systems biology' examination of the effect of LEA on individual body systems, with the eventual goal of creating an integrated map of body system interactions. We provide a template that systematically identifies characteristics of LEA exposure (eg, magnitude, duration, origin) and a variety of moderating factors (eg, medical history, diet and training characteristics) that could exacerbate or attenuate the type and severity of impairments to health and performance faced by an individual athlete. The REDs Physiological Model may assist the diagnosis of underlying causes of problems associated with LEA, with a personalised and nuanced treatment plan promoting compliance and treatment efficacy. It could also be used in the strategic prevention of REDs by drawing attention to scenarios of LEA in which impairments of health and performance are most likely, based on knowledge of the characteristics of the LEA exposure or moderating factors that may increase the risk of harmful outcomes. We challenge researchers and practitioners to create a unifying and dynamic physiological model for each body system that can be continuously updated and mapped as knowledge is gained.
Collapse
Affiliation(s)
- Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ida A Heikura
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Trent Stellingwerff
- Canadian Sport Institute Pacific, Victoria, British Columbia, Canada
- Exercise Science, Physical & Health Education, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
14
|
Longman DP, Wells JCK, Stock JT. Human energetic stress associated with upregulation of spatial cognition. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:32-44. [PMID: 37494592 DOI: 10.1002/ajpa.24820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES Evolutionary life history theory has a unique potential to shed light on human adaptive capabilities. Ultra-endurance challenges are a valuable experimental model allowing the direct testing of phenotypic plasticity via physiological trade-offs in resource allocation. This enhances our understanding of how the body prioritizes different functions when energetically stressed. However, despite the central role played by the brain in both hominin evolution and metabolic budgeting, cognitive plasticity during energetic deficit remains unstudied. MATERIALS We considered human cognitive plasticity under conditions of energetic deficit by evaluating variability in performance in three key cognitive domains. To achieve this, cognitive performance in a sample of 48 athletes (m = 29, f = 19) was assessed before and after competing in multiday ultramarathons. RESULTS We demonstrate that under conditions of energetic deficit, performance in tasks of spatial working memory (which assessed ability to store location information, promoting landscape navigation and facilitating resource location and calorie acquisition) increased. In contrast, psychomotor speed (reaction time) remained unchanged and episodic memory performance (ability to recall information about specific events) decreased. DISCUSSION We propose that prioritization of spatial working memory performance during conditions of negative energy balance represents an adaptive response due to its role in facilitating calorie acquisition. We discuss these results with reference to a human evolutionary trajectory centred around encephalisation. Encephalisation affords great plasticity, facilitating rapid responses tailored to specific environmental conditions, and allowing humans to increase their capabilities as a phenotypically plastic species.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough, UK
- ISSUL, Institute of Sport Science, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London, UK
| | - Jay T Stock
- Department of Anthropology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Stensel DJ. How can physical activity facilitate a sustainable future? Reducing obesity and chronic disease. Proc Nutr Soc 2023; 82:286-297. [PMID: 36892103 DOI: 10.1017/s0029665123002203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
This review examines the ways in which physical activity can contribute to a sustainable future by addressing significant public health issues. The review begins by identifying obesity and ageing as two major challenges facing societies around the world due to the association of both with the risk of chronic disease. Recent developments in the understanding and treatment of obesity are examined followed by an appraisal of the role of exercise alone and in combination with other therapies in preventing and managing obesity. The review then addresses the interaction between exercise and appetite due to the central role appetite plays in the development of overweight and obesity. The final section of the review examines the potential of physical activity to combat age-related chronic disease risk including CVD, cancer and dementia. It is concluded that while bariatric surgery and pharmacotherapy are the most effective treatments for severe obesity, physical activity has a role to play facilitating and enhancing weight loss in combination with other methods. Where weight/fat reduction via exercise is less than expected this is likely due to metabolic adaptation induced by physiological changes facilitating increased energy intake and decreased energy expenditure. Physical activity has many health benefits independent of weight control including reducing the risk of developing CVD, cancer and dementia and enhancing cognitive function in older adults. Physical activity may also provide resilience for future generations by protecting against the more severe effects of global pandemics and reducing greenhouse gas emissions via active commuting.
Collapse
Affiliation(s)
- David J Stensel
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- National Institute for Health and Care Research (NIHR), Leicester Biomedical Research Centre, University Hospitals of Leicester, National Health Service (NHS) Trust and the University of Leicester, Leicester, UK
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| |
Collapse
|
16
|
Konner M, Eaton SB. Hunter-gatherer diets and activity as a model for health promotion: Challenges, responses, and confirmations. Evol Anthropol 2023; 32:206-222. [PMID: 37417918 DOI: 10.1002/evan.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 07/27/2022] [Accepted: 04/17/2023] [Indexed: 07/08/2023]
Abstract
Beginning in 1985, we and others presented estimates of hunter-gatherer (and ultimately ancestral) diet and physical activity, hoping to provide a model for health promotion. The Hunter-Gatherer Model was designed to offset the apparent mismatch between our genes and the current Western-type lifestyle, a mismatch that arguably affects prevalence of many chronic degenerative diseases. The effort has always been controversial and subject to both scientific and popular critiques. The present article (1) addresses eight such challenges, presenting for each how the model has been modified in response, or how the criticism can be rebutted; (2) reviews new epidemiological and experimental evidence (including especially randomized controlled clinical trials); and (3) shows how official recommendations put forth by governments and health authorities have converged toward the model. Such convergence suggests that evolutionary anthropology can make significant contributions to human health.
Collapse
Affiliation(s)
- Melvin Konner
- Department of Anthropology, Program in Anthropology and Human Biology, Emory University, Atlanta, Georgia, USA
| | - S Boyd Eaton
- Department of Radiology, Emory University School of Medicine (Emeritus), Adjunct Lecturer, Department of Anthropology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Speakman JR, Pontzer H. Quantifying physical activity energy expenditure based on doubly labelled water and basal metabolism calorimetry: what are we actually measuring? Curr Opin Clin Nutr Metab Care 2023:00075197-990000000-00101. [PMID: 37522801 DOI: 10.1097/mco.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE OF REVIEW Physical activity impacts energy balance because of its contribution to total energy expenditure. Measuring physical activity energy expenditure (PAEE) is often performed by subtracting the estimated 24 h expenditure on basal metabolism (called basal energy expenditure or BEE) from the total energy expenditure (TEE) measured by doubly labelled water minus an estimate of the thermic effect of food (TEF). Alternatively it can be measured as the ratio of TEE/BEE, which is commonly called the physical activity level (PAL). RECENT FINDINGS PAEE and PAL are widely used in the literature but their shortcomings are seldom addressed. In this review, we outline some of the issues with their use. SUMMARY TEE and BEE are both measured with error. The estimate of PAEE by difference magnifies these errors and consequently the precision of estimated PAEE is about 3× worse than TEE and 25-35× worse than BEE. A second problem is that the component called PAEE is actually any component of TEE that is not BEE. We highlight how the diurnal variation of BEE, thermoregulatory expenditure and elevations of RMR because of stress will all be part of what is called PAEE and will contribute to a disconnect between what is measured and what energy expenditure is a consequence of physical activity. We emphasize caution should be exerted when interpreting these measurements of PAEE and PAL.
Collapse
Affiliation(s)
- John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for energy metabolism and reproduction, Shenzhen Institutes of Advanced technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- State key laboratory of molecular developmental biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing
- CAS Center of Excellence in animal evolution and genetics, Kunming, China
| | - Herman Pontzer
- Department of Evolutionary Anthropology
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
18
|
Flack KD, Stults-Kolehmainen MA, Creasy SA, Khullar S, Boullosa D, Catenacci VA, King N. Altered motivation states for physical activity and 'appetite' for movement as compensatory mechanisms limiting the efficacy of exercise training for weight loss. Front Psychol 2023; 14:1098394. [PMID: 37187558 PMCID: PMC10176969 DOI: 10.3389/fpsyg.2023.1098394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/23/2023] [Indexed: 05/17/2023] Open
Abstract
Weight loss is a major motive for engaging in exercise, despite substantial evidence that exercise training results in compensatory responses that inhibit significant weight loss. According to the Laws of Thermodynamics and the CICO (Calories in, Calories out) model, increased exercise-induced energy expenditure (EE), in the absence of any compensatory increase in energy intake, should result in an energy deficit leading to reductions of body mass. However, the expected negative energy balance is met with both volitional and non-volitional (metabolic and behavioral) compensatory responses. A commonly reported compensatory response to exercise is increased food intake (i.e., Calories in) due to increased hunger, increased desire for certain foods, and/or changes in health beliefs. On the other side of the CICO model, exercise training can instigate compensatory reductions in EE that resist the maintenance of an energy deficit. This may be due to decreases in non-exercise activity thermogenesis (NEAT), increases in sedentary behavior, or alterations in sleep. Related to this EE compensation, the motivational states associated with the desire to be active tend to be overlooked when considering compensatory changes in non-exercise activity. For example, exercise-induced alterations in the wanting of physical activity could be a mechanism promoting compensatory reductions in EE. Thus, one's desires, urges or cravings for movement-also known as "motivation states" or "appetence for activity"-are thought to be proximal instigators of movement. Motivation states for activity may be influenced by genetic, metabolic, and psychological drives for activity (and inactivity), and such states are susceptible to fatigue-or reward-induced responses, which may account for reductions in NEAT in response to exercise training. Further, although the current data are limited, recent investigations have demonstrated that motivation states for physical activity are dampened by exercise and increase after periods of sedentarism. Collectively, this evidence points to additional compensatory mechanisms, associated with motivational states, by which impositions in exercise-induced changes in energy balance may be met with resistance, thus resulting in attenuated weight loss.
Collapse
Affiliation(s)
- Kyle D. Flack
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, KY, United States
| | - Matthew A. Stults-Kolehmainen
- Division of Digestive Health, Yale New Haven Hospital, New Haven, CT, United States
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, United States
| | - Seth A. Creasy
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Saumya Khullar
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Daniel Boullosa
- Faculty of Physical Activity and Sports Sciences, Universidad de León, León, Spain
- College of Healthcare Sciences, James Cook University, Townsville, QLD, Australia
- Graduate Program in Movement Sciences, Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Victoria A. Catenacci
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Neil King
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Longman DP, Dolan E, Wells JCK, Stock JT. Patterns of energy allocation during energetic scarcity; evolutionary insights from ultra-endurance events. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111422. [PMID: 37031854 DOI: 10.1016/j.cbpa.2023.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Exercise physiologists and evolutionary biologists share a research interest in determining patterns of energy allocation during times of acute or chronic energetic scarcity.. Within sport and exercise science, this information has important implications for athlete health and performance. For evolutionary biologists, this would shed new light on our adaptive capabilities as a phenotypically plastic species. In recent years, evolutionary biologists have begun recruiting athletes as study participants and using contemporary sports as a model for studying evolution. This approach, known as human athletic palaeobiology, has identified ultra-endurance events as a valuable experimental model to investigate patterns of energy allocation during conditions of elevated energy demand, which are generally accompanied by an energy deficit. This energetic stress provokes detectable functional trade-offs in energy allocation between physiological processes. Early results from this modelsuggest thatlimited resources are preferentially allocated to processes which could be considered to confer the greatest immediate survival advantage (including immune and cognitive function). This aligns with evolutionary perspectives regarding energetic trade-offs during periods of acute and chronic energetic scarcity. Here, we discuss energy allocation patterns during periods of energetic stress as an area of shared interest between exercise physiology and evolutionary biology. We propose that, by addressing the ultimate "why" questions, namely why certain traits were selected for during the human evolutionary journey, an evolutionary perspective can complement the exercise physiology literature and provide a deeper insight of the reasons underpinning the body's physiological response to conditions of energetic stress.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Jay T Stock
- Department of Archaeology, University of Cambridge, Cambridge CB2 3QG, United Kingdom; Department of Anthropology, University of Western Ontario, Ontario, Canada
| |
Collapse
|
20
|
Urlacher SS. The energetics of childhood: Current knowledge and insights into human variation, evolution, and health. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 36866969 DOI: 10.1002/ajpa.24719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
How organisms capture and ultimately use metabolic energy-a limiting resource of life-has profound implications for understanding evolutionary legacies and current patterns of phenotypic variation, adaptation, and health. Energetics research among humans has a rich history in biological anthropology and beyond. The energetics of childhood, however, remains relatively underexplored. This shortcoming is notable given the accepted importance of childhood in the evolution of the unique human life history pattern as well as the known sensitivity of childhood development to local environments and lived experiences. In this review, I have three objectives: (1) To overview current knowledge regarding how children acquire and use energy, highlighting work among diverse human populations and pointing to recent advances and remaining areas of uncertainty; (2) To discuss key applications of this knowledge for understanding human variation, evolution, and health; (3) To recommend future avenues for research. A growing body of evidence supports a model of trade-offs and constraint in childhood energy expenditure. This model, combined with advancements on topics such as the energetics of immune activity, the brain, and the gut, provides insights into the evolution of extended human subadulthood and the nature of variation in childhood development, lifetime phenotype, and health.
Collapse
Affiliation(s)
- Samuel S Urlacher
- Department of Anthropology, Baylor University, Waco, Texas, USA
- Child and Brain Development Program, CIFAR, Toronto, Canada
| |
Collapse
|
21
|
McGrosky A, Pontzer H. The fire of evolution: energy expenditure and ecology in primates and other endotherms. J Exp Biol 2023; 226:297166. [PMID: 36916459 DOI: 10.1242/jeb.245272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Total energy expenditure (TEE) represents the total energy allocated to growth, reproduction and body maintenance, as well as the energy expended on physical activity. Early experimental work in animal energetics focused on the costs of specific tasks (basal metabolic rate, locomotion, reproduction), while determination of TEE was limited to estimates from activity budgets or measurements of subjects confined to metabolic chambers. Advances in recent decades have enabled measures of TEE in free-living animals, challenging traditional additive approaches to understanding animal energy budgets. Variation in lifestyle and activity level can impact individuals' TEE on short time scales, but interspecific differences in TEE are largely shaped by evolution. Here, we review work on energy expenditure across the animal kingdom, with a particular focus on endotherms, and examine recent advances in primate energetics. Relative to other placental mammals, primates have low TEE, which may drive their slow pace of life and be an evolved response to the challenges presented by their ecologies and environments. TEE variation among hominoid primates appears to reflect adaptive shifts in energy throughput and allocation in response to ecological pressures. As the taxonomic breadth and depth of TEE data expand, we will be able to test additional hypotheses about how energy budgets are shaped by environmental pressures and explore the more proximal mechanisms that drive intra-specific variation in energy expenditure.
Collapse
Affiliation(s)
- Amanda McGrosky
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Global Health Institute, Durham, NC 27708, USA
| |
Collapse
|
22
|
Sadhir S, Pontzer H. Impact of energy availability and physical activity on variation in fertility across human populations. J Physiol Anthropol 2023; 42:1. [PMID: 36829218 PMCID: PMC9951524 DOI: 10.1186/s40101-023-00318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Human reproduction is energetically costly, even more so than other primates. In this review, we consider how the energy cost of physical activity impacts reproductive tasks. Daily energy expenditure appears to be constrained, leading to trade-offs between activity and reproduction expenditures in physically active populations. High workloads can lead to suppression of basal metabolic rate and low gestational weight gain during pregnancy and longer interbirth intervals. These responses lead to variation in fertility, including age at first reproduction and interbirth interval. The influence of energetics is evident even in industrialized populations, where cultural and economic factors predominate. With the decoupling of skills acquisition from food procurement, extrasomatic resources and investment in individual offspring becomes very costly. The result is greater investment in fewer offspring. We present a summary of age at first reproduction and interbirth interval trends across a diverse, global sample representing 44 countries and two natural fertility populations. While economic factors impact fertility, women in energy-rich, industrialized populations are capable of greater reproductive output than women in energy-stressed populations. Thus, energetic factors can be disentangled from cultural and economic impacts on fertility. Future research should focus on objective measurements of energy intake, energy expenditure, and physical activity in a broader sample of populations to elucidate the role of energetics in shaping reproductive outcomes and health.
Collapse
Affiliation(s)
- Srishti Sadhir
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
| | - Herman Pontzer
- grid.26009.3d0000 0004 1936 7961Department of Evolutionary Anthropology, Duke University, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Duke Global Health Institute, Duke University, Durham, NC USA
| |
Collapse
|
23
|
Gonzalez JT, Batterham AM, Atkinson G, Thompson D. Perspective: Is the Response of Human Energy Expenditure to Increased Physical Activity Additive or Constrained? Adv Nutr 2023; 14:406-419. [PMID: 36828336 DOI: 10.1016/j.advnut.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The idea that increasing physical activity directly adds to TEE in humans (additive model) has been challenged by the energy constrained hypothesis (constrained model). This model proposes that increased physical activity decreases other components of metabolism to constrain TEE. There is a logical evolutionary argument for trade-offs in metabolism, but, to date, evidence supporting constraint is subject to several limitations, including cross-sectional and correlational studies with potential methodological issues from extreme differences in body size/composition and lifestyle, potential statistical issues such as regression dilution and spurious correlations, and conclusions drawn from deductive inference rather than direct observation of compensation. Addressing these limitations in future studies, ideally, randomized controlled trials should improve the accuracy of models of human energy expenditure. The available evidence indicates that in many scenarios, the effect of increasing physical activity on TEE will be mostly additive although some energy appears to "go missing" and is currently unaccounted for. The degree of energy balance could moderate this effect even further. Adv Nutr 2023;x:xx-xx.
Collapse
Affiliation(s)
- Javier T Gonzalez
- Department for Health, University of Bath, Bath, United Kingdom; Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, United Kingdom.
| | - Alan M Batterham
- Professor Emeritus, School of Health and Life Sciences, Teesside University, Middlesborough, United Kingdom
| | - Greg Atkinson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom; Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, United Kingdom
| |
Collapse
|
24
|
Exercise is essential for health but a poor tool for weight loss: a reply to Allison and colleagues. Int J Obes (Lond) 2023; 47:98-99. [PMID: 36526732 DOI: 10.1038/s41366-022-01248-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
|
25
|
Bourdier P, Simon C, Bessesen DH, Blanc S, Bergouignan A. The role of physical activity in the regulation of body weight: The overlooked contribution of light physical activity and sedentary behaviors. Obes Rev 2023; 24:e13528. [PMID: 36394185 PMCID: PMC10910694 DOI: 10.1111/obr.13528] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/31/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
The role of physical activity (PA) in the regulation of body weight is still a major topic of debate. This may be because studies have essentially focused on the effects of moderate/vigorous PA (MVPA) on body weight while overlooking the other components of PA, namely, light-intensity PA (LPA, daily life activities) and sedentary behaviors (SB, too much sitting). In this review, we will (i) describe the history of changes in PA behaviors that occurred with modernization; (ii) review data from cross-sectional and longitudinal studies that examined the associations between PA, SB, and measures of obesity; (iii) review interventional studies that investigated the effects of changes in PA and SB on body weight and adiposity; and (iv) discuss experimental studies that addressed potential biological mechanisms underlying the effects of PA and SB on weight regulation. Overall recent findings support the importance of considering all components of PA to better understand the regulation of energy balance and suggest an important role for LPA and SB in addition to MVPA on body weight regulation. Longitudinal large-scale rigorous studies are needed to advance our knowledge of the role of PA/SB in combating the obesity epidemic.
Collapse
Affiliation(s)
- Pierre Bourdier
- CNRS IPHC UMR 7178 Université de Strasbourg, Strasbourg, France
| | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRAE 1397, University of Lyon, Oullins, France
- Human Nutrition Research Centre of Rhône-Alpes, Hospices Civils de Lyon, Lyon, France
| | - Daniel H. Bessesen
- Anschutz Health and Wellness Center, Division of Endocrinology, University of Colorado, Aurora, Colorado, USA
| | - Stéphane Blanc
- CNRS IPHC UMR 7178 Université de Strasbourg, Strasbourg, France
| | - Audrey Bergouignan
- CNRS IPHC UMR 7178 Université de Strasbourg, Strasbourg, France
- Anschutz Health and Wellness Center, Division of Endocrinology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
26
|
Women carry the weight of deprivation on physical inactivity: Moderated mediation analyses in a European sample of adults over 50 Years of age. SSM Popul Health 2022; 20:101272. [PMID: 36387017 PMCID: PMC9641026 DOI: 10.1016/j.ssmph.2022.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Deprived people are less physically active than privileged individuals. However, pathways underlying the association between deprivation and physical activity remain overlooked. We examined whether the association between deprivation and physical activity was mediated by body mass index (BMI). Consistent with an intersectional perspective (how the combination of belongingness to vulnerable social categories widens inequalities), we tested whether gender moderated this mediating pathway and hypothesized that the mediating effect of BMI would be stronger among women (vs men). Large-scale longitudinal data from 20,961 adults 50 years of age or older (57% women) from the Survey of Health, Ageing and Retirement in Europe were used. Social and material deprivation were measured by questionnaire, BMI and physical activity were reported from two to six years later. Simple mediation models showed that BMI partly mediated the association of material (total effect c = -0.14, proportion of mediated effect = 8%) and of social deprivation (c = -0.24, proportion of mediated effect = 4%) with physical activity. Moderated mediation models revealed that this mediating pathway was moderated by gender. The effect of deprivation on BMI was stronger among women (vs men), with BMI mediating 18% and 7% of the association of material and social deprivation with physical activity among women (vs 4% and 2% among men). Lower levels of physical activity observed among deprived older adults could be partly attributed to a higher BMI. Critically, this mechanism was exacerbated among women, reinforcing the need to understand how deprivation and gender interact to predict health behaviors. Body mass index mediates the association of material and social deprivation with physical activity. This mediating pattern is more pronounced among women, relative to men. The association between deprivation and a higher body mass index is exacerbated among women, compared to men.
Collapse
|
27
|
Macena ML, Hoffman DJ, Clemente AP, Ferriolli E, Pfrimer K, Florêncio TMT, Bueno NB. The relationship between total energy expenditure and physical activity level in women living in an impoverished Brazilian urban area. Am J Hum Biol 2022; 34:e23780. [PMID: 35809076 DOI: 10.1002/ajhb.23780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE This study aimed to describe how strong is the relationship between TEE and PAL in women living in an impoverished Brazilian urban area. METHODS Anthropometric, hormonal (insulin, TSH, FT4 , and FT3 ), body composition (deuterium), TEE (doubly labeled water) and PAL (metabolic equivalent task [MET]-7-day triaxial accelerometer, ActivPAL®) data were collected from 55 women (mean age: 31y, mean BMI: 27.4 kg/m2 ). Adjusted-TEE models were calculated incorporating the residuals of anthropometric, hormonal, and body composition variables in the TEE, to assess the relation between MET and adjusted-TEE, through three different analyzes: linear regression, nonlinear regression and change-point regression. RESULTS Most participants (89.1%, n = 49) were classified as low-active. There was no association between crude TEE and MET.h/d (R2 = 0.05; p = 0.09). There was a positive, although weak, linear relationship between adjusted-TEE and MET.h/d (β = 2705.26 kcal; 95% CI: 436.25; 4974.27; adj-R2 = 0.08). A change point of this relationship was identified in the MET.h/d value of 1.53 (SD = 0.02; adj-R2 = 0.13). The association between adjusted-TEE and MET.h/d before the change point (β = 5101.46 kcal; 95%CI: 978.84; 9224.08; adj-R2 = 0.11) was stronger than the association in the full linear model, nevertheless, it was still weak. This association stop existing when it is assessed in individuals after the change point (β = -6609.92 kcal; 95%CI: -16773.24; 3553.40; adj-R2 = 0.08). CONCLUSIONS These results suggest that the relationship between TEE and PAL is weak and it is not completely linear in women living in an impoverished Brazilian urban area.
Collapse
Affiliation(s)
- Mateus L Macena
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and the New Jersey Institute for Food, Nutrition, and Health, Center for Childhood Nutrition Education and Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Ana Paula Clemente
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Eduardo Ferriolli
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Karina Pfrimer
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.,Curso de Nutrição, Universidade de Ribeirão Preto, São Paulo, Brazil
| | | | - Nassib B Bueno
- Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
28
|
Klasson CL, Sadhir S, Pontzer H. Daily physical activity is negatively associated with thyroid hormone levels, inflammation, and immune system markers among men and women in the NHANES dataset. PLoS One 2022; 17:e0270221. [PMID: 35793317 PMCID: PMC9258892 DOI: 10.1371/journal.pone.0270221] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/06/2022] [Indexed: 12/18/2022] Open
Abstract
The acute effects of exercise on metabolic energy expenditure and inflammation are well studied, but the long-term effects of regular daily physical activity on metabolic and endocrine effects are less clear. Further, prior studies investigating the impact of daily physical activity in large cohorts have generally relied on self-reported activity. Here, we used the U.S. National Health and Nutrition Examination Survey (NHANES) to investigate the relationship between daily physical activity and both thyroid and immune activity. Daily physical activity was assessed through accelerometry or accelerometry-validated survey responses. Thyroid activity was assessed from circulating levels of thyroid stimulating hormone (TSH) and thyroxine (T4). Immune function was assessed from circulating cytokines (C-reactive protein [CRP], immunoglobulin E [IgE], fibrinogen) and blood cell counts. In general linear models including body mass index, age, gender, activity and TSH as factors, active adults had a lower levels of T4 and reduced slope of the TSH:T4 relationship. Similarly, greater physical activity was associated with lower CRP and fibrinogen levels (but not IgE) and lower white blood cell, basophil, monocyte, neutrophil, and eosinophil (but not lymphocyte) counts. Daily physical activity was also associated with lower prevalence of clinically elevated CRP, WBC, and lymphocytes in a dose-response manner. These results underscore the long-term impact of daily physical activity on both systemic metabolic activity (thyroid) and on specific physiological tasks (immune). The regulatory effects of physical activity on other bodily systems are clinically relevant and should be incorporated into public health strategies promoting exercise.
Collapse
Affiliation(s)
- Christopher L. Klasson
- Trinity College, Duke University, Durham, North Carolina, United States of America
- * E-mail: (CLK); (HP)
| | - Srishti Sadhir
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- * E-mail: (CLK); (HP)
| |
Collapse
|
29
|
Lamboglia CG, Mccurdy AP, Kim YB, Lindeman C, Mangan AJ, Sivak A, Mager D, Spence JC. Investigation of movement-related behaviors and energy compensation in people living with liver disease: A scoping review. J Sports Sci 2022; 40:1299-1307. [PMID: 35766978 DOI: 10.1080/02640414.2022.2065087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The importance of integrated movement behaviours (MB, i.e., physical activity [PA], sedentary behaviour, and sleep) and their interdependence for health has been recently discussed in the literature. The proposition that the amount of time spent in any one of these behaviours may impact the amount of time spent in another is supported by the ActivityStat hypothesis. The aim of this review is to (1) to assess whether individuals with liver disease display MB and/or energy (i.e., total energy expenditure [EE], basal EE, resting EE, and activity EE) compensation throughout the day and/or days; and (2) to examine whether a prescribed PA intervention triggers compensatory responses. Documents were included if they focused on people living with liver disease; analysed MB and/or EE components; were data-based; and were published in English. Fifteen documents were included in the final synthesis. The one finding that addressed research question 1 showed no compensatory response. As for research question 2, most of the findings suggest no compensation effects in response to a PA intervention. There is insufficient evidence to support the ActivityStat hypothesis in people living with liver disease. Further research should be conducted to test this hypothesis using standardized methodological procedures.
Collapse
Affiliation(s)
| | - Ashley P Mccurdy
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Yeong-Bae Kim
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Cliff Lindeman
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Amie J Mangan
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Allison Sivak
- H.T. Coutts Library, University of Alberta, Edmonton, Alberta, Canada
| | - Diana Mager
- Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John C Spence
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Pontzer H, McGrosky A. Balancing growth, reproduction, maintenance, and activity in evolved energy economies. Curr Biol 2022; 32:R709-R719. [PMID: 35728556 DOI: 10.1016/j.cub.2022.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Economic models predominate in life history research, which investigates the allocation of an organism's resources to growth, reproduction, and maintenance. These approaches typically employ a heuristic Y model of resource allocation, which predicts trade-offs among tasks within a fixed budget. The common currency among tasks is not always specified, but most models imply that metabolic energy, either from food or body stores, is the critical resource. Here, we review the evidence for metabolic energy as the common currency of growth, reproduction, and maintenance, focusing on studies in humans and other vertebrates. We then discuss the flow of energy to competing physiological tasks (physical activity, maintenance, and reproduction or growth) and its effect on life history traits. We propose a Ψ model of energy flow to these tasks, which provides an integrative framework for examining the influence of environmental factors and the expansion and contraction of energy budgets in the evolution of life history strategies.
Collapse
Affiliation(s)
- Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA.
| | - Amanda McGrosky
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
31
|
Gildner TE, Cepon-Robins TJ, Urlacher SS. Cumulative host energetic costs of soil-transmitted helminth infection. Trends Parasitol 2022; 38:629-641. [DOI: 10.1016/j.pt.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
|
32
|
A milk-sharing economy allows placental mammals to overcome their metabolic limits. Proc Natl Acad Sci U S A 2022; 119:e2114674119. [PMID: 35238685 PMCID: PMC8915790 DOI: 10.1073/pnas.2114674119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here, we demonstrate that a naturally evolving behavior (allonursing) has greater effect on reproductive power (mass per unit of time) and output (litter mass at birth) than does artificial selection (domestication). Additionally, we demonstrate the importance of resource optimization afforded by sociality (rather than resource abundance per se) in shaping a species’ life history profile and its ability to overcome its own physiological constraints. Maternal resource availability and metabolism have a strong limiting effect on reproductive output. Allomaternal care and domestication increase the energy available to the mother and should correlate with an increase in reproductive output. Here, we take a comparative approach to understand how this increase is accomplished (e.g., litter mass, reproductive frequency, etc.) and the strength of the effect among different forms of external energetic supplementation. We find that domestication and all forms of allocare correlate with increased fertility. All forms of provisioning correlate with larger litters without compromising offspring size. The greatest increase we observe in reproductive power is in species that practice allonursing. Our results suggest that the ultimate factor limiting reproductive output in placental mammals is maternal metabolic power rather than resource availability.
Collapse
|
33
|
Sarma MS, Ocobock CJ, Martin S, Rochelle S, Croom BP, Gettler LT. Sex differences and shifts in body composition, physical activity, and total energy expenditure across a 3-month expedition. Am J Hum Biol 2022; 34:e23634. [PMID: 34181295 PMCID: PMC8712621 DOI: 10.1002/ajhb.23634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES An energetically demanding environment like a wilderness expedition can lead to potent stressors on human physiology and homeostatic balance causing shifts in energy expenditure and body composition. These shifts likely have consequences on overall health and performance and may potentially differ by sex. It is therefore critical to understand the potential differential body composition and energy expenditure changes in response to a novel and challenging environment in both males and female bodies. METHODS Data were collected from 75 healthy individuals (female = 41; ages 18-53) throughout a 3-month long expedition in the American Rockies. Body mass, body fat, and lean muscle mass were measured before, during, and after the course. Physical activity intensity and energy expenditure were also measured in a subset of participants using the wGT3X-BT Actigraph wrist monitor and an accompanying Bluetooth heart rate monitor. RESULTS Over the 3-month period, individuals initially experienced declines in body mass, body fat percentage, and lean muscle mass. Participants partially rebounded from these deficits to maintain overall body mass with a slight recomposition of body fat and lean muscle mass. Our data also demonstrated that sex moderated total energy expenditure, where females experienced a modest decline whereas males experienced an increase in energy expenditure from the beginning to the end of the course. CONCLUSIONS Understanding changes in energy storage in the body and variation in energy expenditure between sexes during a 3-month expedition has critical implications for maintaining health and performance in an energetically demanding environment where resources may be scarce.
Collapse
Affiliation(s)
- Mallika S. Sarma
- Human Spaceflight Lab, Johns Hopkins University School of Medicine, Baltimore, MD, 21205,Corresponding author’s information: Mallika S. Sarma, Ph.D., Postdoctoral Research Fellow, 710 Ross Research Building, Human Spaceflight Lab, Johns Hopkins University School of Medicine, Baltimore, MD, Phone: 248-930-2729,
| | - Cara J. Ocobock
- Department of Anthropology, University of Notre Dame, Notre Dame, IN 46556,The Eck Institute for Global health, University of Notre Dame, Notre Dame, IN 46556
| | - Sarah Martin
- NOLS Rocky Mountain, The National Outdoor Leadership School, Lander, WY, 82520
| | - Shannon Rochelle
- NOLS Rocky Mountain, The National Outdoor Leadership School, Lander, WY, 82520
| | | | - Lee T. Gettler
- Department of Anthropology, University of Notre Dame, Notre Dame, IN 46556,The Eck Institute for Global health, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
34
|
Shirley MK, Longman DP, Elliott-Sale KJ, Hackney AC, Sale C, Dolan E. A Life History Perspective on Athletes with Low Energy Availability. Sports Med 2022; 52:1223-1234. [PMID: 35113390 DOI: 10.1007/s40279-022-01643-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 12/19/2022]
Abstract
The energy costs of athletic training can be substantial, and deficits arising from costs unmet by adequate energy intake, leading to a state of low energy availability, may adversely impact athlete health and performance. Life history theory is a branch of evolutionary theory that recognizes that the way the body uses energy-and responds to low energy availability-is an evolved trait. Energy is a finite resource that must be distributed throughout the body to simultaneously fuel all biological processes. When energy availability is low, insufficient energy may be available to equally support all processes. As energy used for one function cannot be used for others, energetic "trade-offs" will arise. Biological processes offering the greatest immediate survival value will be protected, even if this results in energy being diverted away from others, potentially leading to their downregulation. Athletes with low energy availability provide a useful model for anthropologists investigating the biological trade-offs that occur when energy is scarce, while the broader conceptual framework provided by life history theory may be useful to sport and exercise researchers who investigate the influence of low energy availability on athlete health and performance. The goals of this review are: (1) to describe the core tenets of life history theory; (2) consider trade-offs that might occur in athletes with low energy availability in the context of four broad biological areas: reproduction, somatic maintenance, growth, and immunity; and (3) use this evolutionary perspective to consider potential directions for future research.
Collapse
Affiliation(s)
- Meghan K Shirley
- Division of GI, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel P Longman
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Kirsty J Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Anthony C Hackney
- Department of Exercise and Sport Science, Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
35
|
Oliveira-Junior G, Pinto RS, Shirley MK, Longman DP, Koehler K, Saunders B, Roschel H, Dolan E. The Skeletal Muscle Response to Energy Deficiency: A Life History Perspective. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2022. [DOI: 10.1007/s40750-021-00182-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Rimbach R, Yamada Y, Sagayama H, Ainslie PN, Anderson LF, Anderson LJ, Arab L, Baddou I, Bedu-Addo K, Blaak EE, Blanc S, Bonomi AG, Bouten CVC, Bovet P, Buchowski MS, Butte NF, Camps SGJA, Close GL, Cooper JA, Das SK, Dugas LR, Ekelund U, Entringer S, Forrester T, Fudge BW, Goris AH, Gurven M, Hambly C, El Hamdouchi A, Hoos MB, Hu S, Joonas N, Joosen AM, Katzmarzyk P, Kempen KP, Kimura M, Kraus WE, Kushner RF, Lambert EV, Leonard WR, Lessan N, Martin CK, Medin AC, Meijer EP, Morehen JC, Morton JP, Neuhouser ML, Nicklas TA, Ojiambo RM, Pietiläinen KH, Pitsiladis YP, Plange-Rhule J, Plasqui G, Prentice RL, Rabinovich RA, Racette SB, Raichlen DA, Ravussin E, Reynolds RM, Roberts SB, Schuit AJ, Sjödin AM, Stice E, Urlacher SS, Valenti G, Van Etten LM, Van Mil EA, Wells JCK, Wilson G, Wood BM, Yanovski J, Yoshida T, Zhang X, Murphy-Alford AJ, Loechl CU, Luke AH, Rood J, Schoeller DA, Westerterp KR, Wong WW, Speakman JR, Pontzer H. Total energy expenditure is repeatable in adults but not associated with short-term changes in body composition. Nat Commun 2022; 13:99. [PMID: 35013190 PMCID: PMC8748652 DOI: 10.1038/s41467-021-27246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
Low total energy expenditure (TEE, MJ/d) has been a hypothesized risk factor for weight gain, but repeatability of TEE, a critical variable in longitudinal studies of energy balance, is understudied. We examine repeated doubly labeled water (DLW) measurements of TEE in 348 adults and 47 children from the IAEA DLW Database (mean ± SD time interval: 1.9 ± 2.9 y) to assess repeatability of TEE, and to examine if TEE adjusted for age, sex, fat-free mass, and fat mass is associated with changes in weight or body composition. Here, we report that repeatability of TEE is high for adults, but not children. Bivariate Bayesian mixed models show no among or within-individual correlation between body composition (fat mass or percentage) and unadjusted TEE in adults. For adults aged 20-60 y (N = 267; time interval: 7.4 ± 12.2 weeks), increases in adjusted TEE are associated with weight gain but not with changes in body composition; results are similar for subjects with intervals >4 weeks (N = 53; 29.1 ± 12.8 weeks). This suggests low TEE is not a risk factor for, and high TEE is not protective against, weight or body fat gain over the time intervals tested.
Collapse
Affiliation(s)
- Rebecca Rimbach
- Evolutionary Anthropology, Duke University, Durham, NC, USA.
- School of Animal, Plant & Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Yosuke Yamada
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan.
- Institute for Active Health, Kyoto University of Advanced Science, Kyoto, Japan.
| | - Hiroyuki Sagayama
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan.
| | - Philip N Ainslie
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Lene F Anderson
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Liam J Anderson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
- Crewe Alexandra Football Club, Crewe, UK
| | - Lenore Arab
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Issaad Baddou
- Unité Mixte de Recherche en Nutrition et Alimentation, CNESTEN- Université Ibn Tofail URAC39, Regional Designated Center of Nutrition Associated with AFRA/IAEA, Rabat, Morocco
| | - Kweku Bedu-Addo
- Department of Physiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Stephane Blanc
- Nutritional Sciences, University of Wisconsin, Madison, WI, USA
- Institut Pluridisciplinaire Hubert Curien, CNRS Université de Strasbourg, Strasbourg, UMR7178, France
| | | | - Carlijn V C Bouten
- Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven Unversity of Technology, Eindhoven, The Netherlands
| | - Pascal Bovet
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Maciej S Buchowski
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Nancy F Butte
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| | | | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jamie A Cooper
- Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Sai Krupa Das
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA, 02111, USA
| | - Lara R Dugas
- Department of Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University, Maywood, IL, USA
| | - Ulf Ekelund
- Department of Sport Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
- University of California Irvine, Irvine, California, USA
| | - Terrence Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | | | | | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Asmaa El Hamdouchi
- Unité Mixte de Recherche en Nutrition et Alimentation, CNESTEN- Université Ibn Tofail URAC39, Regional Designated Center of Nutrition Associated with AFRA/IAEA, Rabat, Morocco
| | | | - Sumei Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Noorjehan Joonas
- Central Health Laboratory, Ministry of Health and Wellness, Port Louis, Mauritius
| | | | - Peter Katzmarzyk
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | - Misaka Kimura
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - William E Kraus
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Estelle V Lambert
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - William R Leonard
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Nader Lessan
- Imperial College London Diabetes Centre, Imperial College London, London, UK
| | - Corby K Martin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Anine C Medin
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
- Department of Nutrition and Public Health, Faculty of Health and Sport Sciences, University of Agder, 4630, Kristiansand, Norway
| | | | - James C Morehen
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
- The FA Group, Burton-Upon-Trent, Staffordshire, UK
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center and School of Public Health, University of Washington, Seattle, WA, USA
| | - Theresa A Nicklas
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| | - Robert M Ojiambo
- Moi University, Eldoret, Kenya
- University of Global Health Equity, Kigali, Rwanda
| | | | | | - Jacob Plange-Rhule
- Department of Physiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Guy Plasqui
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Ross L Prentice
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center and School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Susan B Racette
- Program in Physical Therapy and Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David A Raichlen
- Biological Sciences and Anthropology, University of Southern California, California, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Rebecca M Reynolds
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Susan B Roberts
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA, 02111, USA
| | | | - Anders M Sjödin
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | | | | | | | | | - Edgar A Van Mil
- Maastricht University, Maastricht and Lifestyle Medicine Center for Children, Jeroen Bosch Hospital's-Hertogenbosch, 's-Hertogenbosch, The Netherlands
| | - Jonathan C K Wells
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - George Wilson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Brian M Wood
- University of California Los Angeles, Los Angeles, USA
- Max Planck Institute for Evolutionary Anthropology, Department of Human Behavior, Ecology, and Culture, Leipzig, Germany
| | - Jack Yanovski
- Growth and Obesity, Division of Intramural Research, NIH, Bethesda, MD, USA
| | - Tsukasa Yoshida
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Xueying Zhang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Alexia J Murphy-Alford
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Cornelia U Loechl
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Amy H Luke
- Division of Epidemiology, Department of Public Health Sciences, Loyola University School of Medicine, Maywood, Illinois, USA.
| | - Jennifer Rood
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.
| | - Dale A Schoeller
- Biotech Center and Nutritional Sciences University of Wisconsin, Madison, Wisconsin, USA.
| | - Klaas R Westerterp
- School of Nutrition and Translational Research in Metabolism, University of Maastricht, Maastricht, The Netherlands.
| | - William W Wong
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA.
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming, China.
| | - Herman Pontzer
- Evolutionary Anthropology, Duke University, Durham, NC, USA.
- Duke Global Health Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
37
|
Alternative Metabolic Strategies are Employed by Endurance Runners of Different Body Sizes; Implications for Human Evolution. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2022. [DOI: 10.1007/s40750-021-00183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Objective
A suite of adaptations facilitating endurance running (ER) evolved within the hominin lineage. This may have improved our ability to reach scavenging sites before competitors, or to hunt prey over long distances. Running economy (RE) is a key determinant of endurance running performance, and depends largely on the magnitude of force required to support body mass. However, numerous environmental factors influence body mass, thereby significantly affecting RE. This study tested the hypothesis that alternative metabolic strategies may have emerged to enable ER in individuals with larger body mass and poor RE.
Methods
A cohort of male (n = 25) and female (n = 19) ultra-endurance runners completed submaximal and exhaustive treadmill protocols to determine RE, and V̇O2Max.
Results
Body mass was positively associated with sub-maximal oxygen consumption at both LT1 (male r=0.66, p<0.001; female LT1 r=0.23, p=0.177) and LT2 (male r=0.59, p=0.001; female r=0.23, p=0.183) and also with V̇O2Max (male r=0.60, p=0.001; female r=0.41, p=0.046). Additionally, sub-maximal oxygen consumption varied positively with V̇O2Max in both male (LT1 r=0.54, p=0.003; LT2 r=0.77, p<0.001) and female athletes (LT1 r=0.88, p<0.001; LT2 r=0.92, p<0.001).
Conclusions
The results suggest that, while individuals with low mass and good RE can glide economically as they run, larger individuals can compensate for the negative effects their mass has on RE by increasing their capacity to consume oxygen. The elevated energy expenditure of this low-economy high-energy turnover approach to ER may bring costs associated with energy diversion away from other physiological processes, however.
Collapse
|
38
|
Abdeen A, Agnani P, Careau V. The active mouse rests within: Energy management among and within individuals. Funct Ecol 2022. [DOI: 10.1111/1365-2435.13979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aly Abdeen
- Department of Biology University of Ottawa Ottawa ON Canada
| | - Paul Agnani
- Department of Biology University of Ottawa Ottawa ON Canada
| | - Vincent Careau
- Department of Biology University of Ottawa Ottawa ON Canada
| |
Collapse
|
39
|
Ramadan FA, Bea JW, Garcia DO, Ellingson KD, Canales RA, Raichlen DA, Klimentidis YC. Association of sedentary and physical activity behaviours with body composition: a genome-wide association and Mendelian randomisation study. BMJ Open Sport Exerc Med 2022; 8:e001291. [PMID: 35990758 PMCID: PMC9351346 DOI: 10.1136/bmjsem-2021-001291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Studies suggest that body composition can be independently improved through physical activity (PA). We performed a Mendelian randomisation (MR) study to test the incremental benefits of sedentary behaviour and various PA exposures on body composition outcomes as assessed by anthropometric indices, lean body mass (kg), body fat (%) and visceral adipose tissue (VAT) (kg). Methods Genetic instruments were identified for both self-reported and accelerometer-measured sedentary behaviour and PA. Outcomes included anthropometric and dual-energy X-ray absorptiometry measures of adiposity, extracted from the UK Biobank and the largest available consortia. Multivariable MR (MVMR) included educational attainment as a covariate to address potential confounding. Sensitivity analyses were evaluated for weak instrument bias and pleiotropic effects. Results We did not identify consistent associations between genetically predicted self-reported and accelerometer-measured sedentary behaviour and body composition outcomes. All analyses for self-reported moderate PA were null for body composition outcomes. Genetically predicted PA at higher intensities was protective against VAT in MR and MVMR analyses of both accelerometer-measured vigorous PA (MVMR β=-0.15, 95% CI: -0.24 to -0.07, p<0.001) and self-reported participation in strenuous sports or other exercises (MVMR β=-0.27, 95% CI: -0.52 to -0.01, p=0.034) was robust across several sensitivity analyses. Conclusions We did not identify evidence of a causal relationship between genetically predicted PA and body composition, with the exception of a putatively protective effect of higher-intensity PA on VAT. Protective effects of PA against VAT may support prior evidence of biological pathways through which PA decreases risk of downstream cardiometabolic diseases.
Collapse
Affiliation(s)
- Ferris A Ramadan
- Department of Epidemiology and Biostatistics, The University of Arizona, Tucson, Arizona, USA
| | - Jennifer W Bea
- Department of Medicine, The University of Arizona, Tucson, Arizona, USA.,Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - David O Garcia
- Department of Health Promotion Sciences, University of Arizona, Tucson, Arizona, USA
| | - Katherine D Ellingson
- Department of Epidemiology and Biostatistics, The University of Arizona, Tucson, Arizona, USA
| | - Robert A Canales
- Milken Institute of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - David A Raichlen
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Yann C Klimentidis
- Department of Epidemiology and Biostatistics, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
40
|
Willis EA, Creasy SA, Saint-Maurice PF, Keadle SK, Pontzer H, Schoeller D, Troiano RP, Matthews CE. Physical Activity and Total Daily Energy Expenditure in Older US Adults: Constrained versus Additive Models. Med Sci Sports Exerc 2022; 54:98-105. [PMID: 34334719 PMCID: PMC8678174 DOI: 10.1249/mss.0000000000002759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE This study aimed to examine the shape of the relationship between physical activity (PA) and total energy expenditure (TEE) and to explore the role of energy balance status (negative, stable, positive) in influencing this association. METHODS Cross-sectional. Participants were 584 older adults (50-74 yr) participating in the Interactive Diet and Activity Tracking in AARP study. TEE was assessed by doubly labeled water and PA by accelerometer. The relationship between PA and TEE was assessed visually and using nonlinear methods (restricted cubic splines). Percent weight change (>3%) over a 6-month period was used as a proxy measurement of energy balance status. RESULTS TEE generally increased with increasing deciles of PA averaging 2354 (SD, 351) kcal·d-1 in the bottom decile to 2693 (SD, 480) kcal·d-1 in the top decile. Cubic spline models showed an approximate linear association between PA and TEE (linear relation, P < 0.0001; curvature, P = 0.920). Results were similar in subgroup analyses for individuals classified as stable or positive energy balance. For those in negative energy balance, TEE was generally flat with increasing deciles of PA averaging 2428 (SD, 285) kcal·d-1 in the bottom decile to 2372 (SD, 560) kcal·d-1 in the top decile. CONCLUSIONS Energy balance status seems to play an important role in the relationship between PA and TEE. When in a positive energy balance, the relationship between TEE and PA was consistent with an additive model; however, when energy balance was negative, TEE seems to be consistent with a constrained model. These findings support PA for weight gain prevention by increasing TEE; however, the effect of PA on TEE during periods of weight loss may be limited. An adequately powered, prospective study is warranted to confirm these exploratory findings.
Collapse
Affiliation(s)
- Erik A. Willis
- Center for Health Promotion Disease Prevention, University of North Carolina-Chapel Hill, Chapel Hill, NC
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Seth A. Creasy
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Pedro F. Saint-Maurice
- Division of Epidemiology and Genetics, Metabolic Epidemiology Branch, National Cancer Institute, Bethesda, MD
| | - Sarah Kozey Keadle
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, CA
| | - Hermann Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC
- Duke Global Health Institute, Duke University, Durham, NC
| | - Dale Schoeller
- Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Richard P. Troiano
- Risk Factor Assessment Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD
| | - Charles E. Matthews
- Division of Epidemiology and Genetics, Metabolic Epidemiology Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|
41
|
The Comparison of the Effects between Continuous and Intermittent Energy Restriction in Short-Term Bodyweight Loss for Sedentary Population: A Randomized, Double-Blind, Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111645. [PMID: 34770157 PMCID: PMC8583133 DOI: 10.3390/ijerph182111645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
Objective: To compare the effects of continuous energy restriction (CER) and intermittent energy restriction (IER) in bodyweight loss plan in sedentary individuals with normal bodyweight and explore the influence factors of effect and individual retention. Methods: 26 participants were recruited in this randomized controlled and double-blinded trial and allocated to CER and IER groups. Bodyweight (BW), body mass index (BMI), and resting metabolic rate (RMR) would be collected before and after a 4-week (28 days) plan which included energy restriction (CER or IER) and moderate-intensity exercise. Daily intake of three major nutrients (protein, carbohydrate, fat) and calories were recorded. Results: A significant decrease in BW and BMI were reported within each group. No statistically significant difference in the change of RMR in CERG. No statistically significant difference was reported in the effect between groups, neither as well the intake of total calories, three major nutrients, and individual plan retention. The influence factors of IER and CER are different. Conclusion: Both CER and IER are effective and safe energy restriction strategies in the short term. Daily energy intake and physical exercise are important to both IER and CER.
Collapse
|
42
|
Borer KT. Why We Eat Too Much, Have an Easier Time Gaining Than Losing Weight, and Expend Too Little Energy: Suggestions for Counteracting or Mitigating These Problems. Nutrients 2021; 13:3812. [PMID: 34836068 PMCID: PMC8618649 DOI: 10.3390/nu13113812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
The intent of this review is to survey physiological, psychological, and societal obstacles to the control of eating and body weight maintenance and offer some evidence-based solutions. Physiological obstacles are genetic and therefore not amenable to direct abatement. They include an absence of feedback control against gaining weight; a non-homeostatic relationship between motivations to be physically active and weight gain; dependence of hunger and satiation on the volume of food ingested by mouth and processed by the gastrointestinal tract and not on circulating metabolites and putative hunger or satiation hormones. Further, stomach size increases from overeating and binging, and there is difficulty in maintaining weight reductions due to a decline in resting metabolism, increased hunger, and enhanced efficiency of energy storage. Finally, we bear the evolutionary burden of extraordinary human capacity to store body fat. Of the psychological barriers, human craving for palatable food, tendency to overeat in company of others, and gullibility to overeat when offered large portions, can be overcome consciously. The tendency to eat an unnecessary number of meals during the wakeful period can be mitigated by time-restricted feeding to a 6-10 hour period. Social barriers of replacing individual physical work by labor-saving appliances, designing built environments more suitable for car than active transportation; government food macronutrient advice that increases insulin resistance; overabundance of inexpensive food; and profit-driven efforts by the food industry to market energy-dense and nutritionally compromised food are best overcome by informed individual macronutrient choices and appropriate timing of exercise with respect to meals, both of which can decrease insulin resistance. The best defense against overeating, weight gain, and inactivity is the understanding of factors eliciting them and of strategies that can avoid and mitigate them.
Collapse
Affiliation(s)
- Katarina T Borer
- School of Kinesiology, The University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
43
|
Gaesser GA, Angadi SS. Obesity treatment: Weight loss versus increasing fitness and physical activity for reducing health risks. iScience 2021; 24:102995. [PMID: 34755078 PMCID: PMC8560549 DOI: 10.1016/j.isci.2021.102995] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We propose a weight-neutral strategy for obesity treatment on the following grounds: (1) the mortality risk associated with obesity is largely attenuated or eliminated by moderate-to-high levels of cardiorespiratory fitness (CRF) or physical activity (PA), (2) most cardiometabolic risk markers associated with obesity can be improved with exercise training independent of weight loss and by a magnitude similar to that observed with weight-loss programs, (3) weight loss, even if intentional, is not consistently associated with lower mortality risk, (4) increases in CRF or PA are consistently associated with greater reductions in mortality risk than is intentional weight loss, and (5) weight cycling is associated with numerous adverse health outcomes including increased mortality. Adherence to PA may improve if health care professionals consider PA and CRF as essential vital signs and consistently emphasize to their patients the myriad benefits of PA and CRF in the absence of weight loss.
Collapse
Affiliation(s)
- Glenn A. Gaesser
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Siddhartha S. Angadi
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
44
|
Broskey NT, Martin CK, Burton JH, Church TS, Ravussin E, Redman LM. Effect of Aerobic Exercise-induced Weight Loss on the Components of Daily Energy Expenditure. Med Sci Sports Exerc 2021; 53:2164-2172. [PMID: 34519717 PMCID: PMC8441008 DOI: 10.1249/mss.0000000000002689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Exercise usually results in less weight loss than expected. This suggests increased energy intake and/or deceased expenditure counteract the energy deficit induced by exercise. The aim of this study was to evaluate changes in components of daily energy expenditure (doubly labeled water and room calorimetry) after 24 wk of exercise training with two doses of aerobic exercise. METHODS This was an ancillary study in 42 (29 women, 13 men) sedentary, middle-age (47.8 ± 12.5 yr) individuals with obesity (35 ± 3.7 kg·m-2) enrolled in the Examination of Mechanisms of Exercise-induced Weight Compensation study. Subjects were randomized to three groups: healthy living control group (n = 13), aerobic exercise that expended 8 kcal·kg-1 of body weight per week (8 KKW, n = 14), or aerobic exercise that expended 20 kcal per kilogram of weight per week (20 KKW, n = 15). Total daily energy expenditure (TDEE) was measured in free-living condition by doubly labeled water and in sedentary conditions in a metabolic chamber over 24 h (24EE). Energy intake was calculated over 14 d from TDEE before and after the intervention using the intake-balance method. RESULTS Significant weight loss occurred with 20 KKW (-2.1 ± 0.7 kg, P = 0.04) but was only half of expected. In the 20 KKW group free-living TDEE increased by ~4% (P = 0.03), which is attributed to the increased exercise energy expenditure (P = 0.001), while 24EE in the chamber decreased by ~4% (P = 0.04). Aerobic exercise at 8 KKW did not induce weight change, and there was no significant change in any component of EE. There was no significant change in energy intake for any group (P = 0.53). CONCLUSIONS Structured aerobic exercise at a dose of 20 KKW produced less weight loss than expected possibly due to behavioral adaptations leading to reduced 24EE in a metabolic chamber without any change in energy intake.
Collapse
|
45
|
Brzęk P, Gębczyński A, Selewestruk P, Książek A, Sadowska J, Konarzewski M. Significance of variation in basal metabolic rate in laboratory mice for translational experiments. J Comp Physiol B 2021; 192:161-169. [PMID: 34595579 PMCID: PMC8816319 DOI: 10.1007/s00360-021-01410-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/24/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022]
Abstract
The basal metabolic rate (BMR) accounts for 60–70% of the daily energy expenditure (DEE) in sedentary humans and at least 50% of the DEE in laboratory mice in the thermoneutral zone. Surprisingly, however, the significance of the variation in the BMR is largely overlooked in translational research using such indices as physical activity level (PAL), i.e., the ratio of DEE/BMR. In particular, it is unclear whether emulation of human PAL in mouse models should be carried out within or below the thermoneutral zone. It is also unclear whether physical activity within the thermoneutral zone is limited by the capacity to dissipate heat generated by exercise and obligatory metabolic processes contributing to BMR. We measured PAL and spontaneous physical activity (SPA) in laboratory mice from two lines, divergently selected towards either high or low level of BMR, and acclimated to 30 °C (i.e., the thermoneutral zone), 23 or 4 °C. The mean PAL did not differ between both lines in the mice acclimated to 30 °C but became significantly higher in the low BMR mouse line at the lower ambient temperatures. Acclimation to 30 °C reduced the mean locomotor activity but did not affect the significant difference observed between the selected lines. We conclude that carrying out experiments within the thermoneutral zone can increase the consistency of translational studies aimed at the emulation of human energetics, without affecting the variation in physical activity correlated with BMR.
Collapse
Affiliation(s)
- Paweł Brzęk
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland.
| | - Andrzej Gębczyński
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Piotr Selewestruk
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Aneta Książek
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Julita Sadowska
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Marek Konarzewski
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| |
Collapse
|
46
|
Abstract
AbstractThe received wisdom on how activity affects energy expenditure is that the more activity is undertaken, the more calories will have been burned by the end of the day. Yet traditional hunter-gatherers, who lead physically hard lives, burn no more calories each day than Western populations living in labor-saving environments. Indeed, there is now a wealth of data, both for humans and other animals, demonstrating that long-term lifestyle changes involving increases in exercise or other physical activities do not result in commensurate increases in daily energy expenditure (DEE). This is because humans and other animals exhibit a degree of energy compensation at the organismal level, ameliorating some of the increases in DEE that would occur from the increased activity by decreasing the energy expended on other biological processes. And energy compensation can be sizable, reaching many hundreds of calories in humans. But the processes that are downregulated in the long-term to achieve energy compensation are far from clear, particularly in humans-we do not know how energy compensation is achieved. My review here of the literature on relevant exercise intervention studies, for both humans and other species, indicates conflict regarding the role, if any, of basal metabolic rate (BMR) or low-level activity such as fidgeting play, particularly once changes in body composition are factored out. In situations where BMR and low-level activity are not major components of energy compensation, what then drives it? I discuss how changes in mitochondrial efficiency and changes in circadian fluctuations in BMR may contribute to our understanding of energy management. Currently unexplored, these mechanisms and others may provide important insights into the mystery of how energy compensation is achieved.
Collapse
|
47
|
Urlacher SS. Child growth and development: new insights from evolutionary energetics. Ann Hum Biol 2021; 48:371-373. [PMID: 34455872 DOI: 10.1080/03014460.2021.1974090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Samuel S Urlacher
- Department of Anthropology, Baylor University, Waco, TX, USA.,Child and Brain Development Program, CIFAR, Toronto, Canada
| |
Collapse
|
48
|
Rimbach R, Amireh A, Allen A, Hare B, Guarino E, Kaufman C, Salomons H, Pontzer H. Total energy expenditure of bottlenose dolphins (Tursiops truncatus) of different ages. J Exp Biol 2021; 224:271194. [PMID: 34350948 DOI: 10.1242/jeb.242218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
Marine mammals are thought to have an energetically expensive lifestyle because endothermy is costly in marine environments. However, measurements of total energy expenditure (TEE; kcal day-1) are available only for a limited number of marine mammals, because large body size and inaccessible habitats make TEE measurements expensive and difficult to obtain for many taxa. We measured TEE in 10 adult common bottlenose dolphins (Tursiops truncatus) living in natural seawater lagoons at two facilities (Dolphin Research Center and Dolphin Quest) using the doubly labeled water method. We assessed the relative effects of body mass, age and physical activity on TEE. We also examined whether TEE of bottlenose dolphins, and more generally of marine mammals, differs from that expected for their body mass compared with other eutherian mammals, using phylogenetic least squares (PGLS) regressions. There were no differences in body mass or TEE (unadjusted TEE and TEE adjusted for fat-free mass) between dolphins from the two facilities. Our results show that adjusted TEE decreased and fat mass increased with age. Different measures of activity were not related to age, body fat or adjusted TEE. Both PGLS and the non-phylogenetic linear regression indicate that marine mammals have an elevated TEE compared with that of terrestrial mammals. However, bottlenose dolphins expended 17.1% less energy than other marine mammals of similar body mass. The two oldest dolphins (>40 years) showed a lower TEE, similar to the decline in TEE seen in older humans. To our knowledge, this is the first study to show an age-related metabolic decline in a large non-human mammal.
Collapse
Affiliation(s)
- Rebecca Rimbach
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
| | - Ahmad Amireh
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Austin Allen
- Duke University Marine Lab, Beaufort, NC 28516, USA
| | - Brian Hare
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | | | - Chana Kaufman
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Hannah Salomons
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Herman Pontzer
- Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
49
|
Bosy-Westphal A, Hägele FA, Müller MJ. Impact of Energy Turnover on the Regulation of Energy and Macronutrient Balance. Obesity (Silver Spring) 2021; 29:1114-1119. [PMID: 34002543 DOI: 10.1002/oby.23133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/07/2022]
Abstract
Energy turnover, defined as the average daily total metabolic rate, can be normalized for basal metabolic rate in order to compare physical activity level between individuals, whereas normalization of energy turnover for energy intake (energy flux) allows investigation of its impact on regulation of energy partitioning independent of energy balance. Appetite sensations better correspond to energy requirements at a high compared with a low energy turnover. Adaptation of energy intake to habitual energy turnover may, however, contribute to the risk of weight gain associated with accelerated growth, pregnancy, detraining in athletes, or after weight loss in people with obesity. The dose-response relationship between energy turnover and energy intake as well as the metabolic effects of energy turnover varies with the habitual level of physical activity and the etiology of energy turnover (e.g., cold-induced thermogenesis, growth, or lactation; aerobic vs. anaerobic exercise). Whether a high energy turnover due to physical activity or exercise may compensate for adverse effects of overfeeding or an unhealthy diet needs to be further investigated using the concept of energy flux. In summary, the beneficial effects of a high energy turnover on regulation of energy and macronutrient balance facilitate the prevention and treatment of obesity and associated metabolic risk.
Collapse
Affiliation(s)
- Anja Bosy-Westphal
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Christian-Albrechts University, Kiel, Germany
| | - Franziska A Hägele
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Christian-Albrechts University, Kiel, Germany
| | - Manfred J Müller
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
50
|
Deciphering the constrained total energy expenditure model in humans by associating accelerometer-measured physical activity from wrist and hip. Sci Rep 2021; 11:12302. [PMID: 34112912 PMCID: PMC8192775 DOI: 10.1038/s41598-021-91750-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
The constrained total energy expenditure (TEE) model posits that progressive increases in physical activity (PA) lead to increases in TEE; but after certain PA threshold, TEE plateaus. Then, a compensatory reduction in the expenditure of non-essential activities constrains the TEE. We hypothesized that high PA levels as locomotion associate with a compensatory attenuation in arm movements. We included 209 adults (64% females, mean [SD] age 32.1 [15.0] years) and 105 children (40% females, age 10.0 [1.1] years). Subjects wore, simultaneously, one accelerometer in the non-dominant wrist and another in the hip for ≥ 4 days. We analyzed the association between wrist-measured (arm movements plus locomotion) and hip-measured PA (locomotion). We also analyzed how the capacity to dissociate arm movements from locomotion influences total PA. In adults, the association between wrist-measured and hip-measured PA was better described by a quadratic than a linear model (Quadratic-R2 = 0.54 vs. Linear-R2 = 0.52; P = 0.003). Above the 80th percentile of hip-measured PA, wrist-measured PA plateaued. In children, there was no evidence that a quadratic model fitted the association between wrist-measured and hip-measured PA better than a linear model (R2 = 0.58 in both models, P = 0.25). In adults and children, those with the highest capacity to dissociate arm movements from locomotion—i.e. higher arm movements for a given locomotion—reached the highest total PA. We conclude that, in adults, elevated locomotion associates with a compensatory reduction in arm movements (probably non-essential fidgeting) that partially explains the constrained TEE model. Subjects with the lowest arm compensation reach the highest total PA.
Collapse
|