1
|
Anderson WA, Domingo-Relloso A, Galvez-Fernandez M, Schilling K, Glabonjat RA, Basu A, Nigra AE, Gutierrez OM, Scherzer R, Goldsmith J, Sarnak MJ, Bonventre JV, Kimmel PL, Vasan RS, Ix JH, Shlipak MG, Navas-Acien A. Uranium exposure and kidney tubule biomarkers in the Multi-Ethnic Study of Atherosclerosis (MESA). ENVIRONMENTAL RESEARCH 2025; 271:121060. [PMID: 39922262 DOI: 10.1016/j.envres.2025.121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Experimental studies indicate that uranium exposure is toxic to the kidney tubules. We evaluated the association of urinary uranium concentrations with biomarkers of tubule cell dysfunction (alpha-1-microglobulin [A1M], uromodulin [UMOD], epidermal growth factor [EGF]), and tubule cell injury (kidney injury molecule-1 [KIM-1], monocyte chemoattractant protein-1 [MCP-1], and chitinase-3-like protein 1 [YKL-40]), as well as with albuminuria and estimated glomerular filtration rate (eGFR) among participants in the Multi-Ethnic Study of Atherosclerosis (MESA). METHODS We conducted a cross-sectional study that included 461 participants selected for the absence of diabetes, chronic kidney disease (CKD), and cardiovascular disease, evaluated with six kidney tubule biomarker measurements. Urinary uranium concentrations were measured using inductively coupled plasma mass spectrometry in spot urine samples. Linear models were used to determine associations of urinary uranium concentrations with each kidney tubule biomarker, calculated by the geometric mean ratio (GMR), after adjustment for participant's urinary creatinine concentrations, age, sex, race/ethnicity, MESA field center, highest level of education completed, cigarette smoking status, alcohol consumption, body mass index (BMI), albuminuria levels, and eGFR. RESULTS Median (interquartile range) urinary uranium concentration was 5.2 (2.9, 10.4) ng/L, and mean (standard deviation) eGFR was 99 (16) mL/min/1.73 m2. The adjusted GMRs (95%CI) of KIM-1 and MCP-1 were 1.11 (1.01, 1.22) and 1.10 (1.01, 1.20), respectively per 7.5 ng/L (interquartile range) higher urinary uranium concentration, while no statistically significant associations were observed for YKL-40, A1M, UMOD, EGF, albuminuria, or eGFR. In flexible dose-response models, the associations were positive and largely linear between urinary uranium concentrations and higher KIM-1 and MCP-1. CONCLUSIONS Among healthy community-living individuals, chronic low-level uranium exposure, as measured in urine, was associated with markers of kidney tubule cell injury. Chronic low-level uranium exposure observed in contemporary US urban centers may adversely affect kidney tubule health and related outcomes.
Collapse
Affiliation(s)
- William A Anderson
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Arce Domingo-Relloso
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Marta Galvez-Fernandez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Anirban Basu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Orlando M Gutierrez
- Department of Medicine and Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca Scherzer
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Healthcare System, and Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Mark J Sarnak
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Joseph V Bonventre
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ramachandran S Vasan
- University of Texas School of Public Health and University of Texas Health Sciences Center, San Antonio, TX, USA; Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, and Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Michael G Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Healthcare System, and Department of Medicine, University of California, San Francisco, CA, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
2
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
3
|
Margiana R, Hamoud Alshahrani S, Kayumova D, Hussien Radie Alawadi A, Hjazi A, Alsalamy A, Qasim QA, Juyal A, Garousi N. Association between maternal exposure to arsenic by drinking water during pregnancy and risk of preterm birth: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2947-2956. [PMID: 37967266 DOI: 10.1080/09603123.2023.2280155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
The relation of exposure to arsenic in drinking water during pregnancy to the risk of preterm birth (PTB) was contradictory. This meta-analysis aimed to examine the association between drinking water arsenic and PTB. A systematic search in PubMed and Scopus was performed to achieve all relevant studies. Odds ratios (OR) and 95% confidence intervals (CI) were used to pool data using the random-effect models. Overall, 11 studies with a total sample size of 3,404,189 participants were included in the meta-analysis. Arsenic exposure through drinking water during pregnancy was related to an increased risk of PTB (OR = 1.06; 95%CI = 1.01-1.10 for highest versus lowest category of arsenic), with significant heterogeneity across the studies (I2 = 84.8%, P = 0.001). This finding was supported by cohort studies (OR = 1.05; 95%CI = 1.01-1.10). This meta-analysis proposes that higher arsenic exposure in drinking water may be a risk factor for PTB.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | | | - Dilrabo Kayumova
- Department of Obstetrics and Gynecology, Tashkent Medical Academy, Tashkent, Uzbekistan
| | - Ahmed Hussien Radie Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| | | | - Ashima Juyal
- Electronics & Communication engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Nazila Garousi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Yan X, Chen X, Zhang X, Qureshi A, Wang Y, Tang X, Hu T, Zhuang H, Ran X, Ma G, Luo P, Shen L. Proteomic analysis of the effects of Dictyophora polysaccharide on arsenic-induced hepatotoxicity in rats. Exp Mol Pathol 2024; 138:104910. [PMID: 38876078 DOI: 10.1016/j.yexmp.2024.104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Arsenic (As) is a highly toxic environmental toxicant and a known human carcinogen. Long-term exposure to As can cause liver injury. Dictyophora polysaccharide (DIP) is a biologically active natural compound found in the Dictyophora with excellent antioxidation, anti-inflammation, and immune protection properties. In this study, the Sprague-Dawley (SD) rat model of As toxicity was established using a feeding method, followed by DIP treatment in rats with As-induced liver injury. The molecular mechanisms of As toxicity to the rat liver and the protective effect of DIP were investigated by proteomic studies. The results showed that 172, 328 and 191 differentially expressed proteins (DEPs) were identified between the As-exposed rats versus control rats (As/Ctrl), DIP treated rats versus As-exposed rats (DIP+As/As), and DIP treated rats versus control rats (DIP+As /Ctrl), respectively. Among them, the expression of 90 DEPs in the As/Ctrl groups was reversed by DIP treatment. As exposure caused dysregulation of metabolic pathways, mitochondria, oxidative stress, and apoptosis-related proteins in the rat liver. However, DIP treatment changed or restored the levels of these proteins, which attenuated the damage to the livers of rats caused by As exposure. The results provide new insights into the mechanisms of liver injury induced by As exposure and the treatment of DIP in As poisoning.
Collapse
Affiliation(s)
- Xi Yan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaolu Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ayesha Qureshi
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Ting Hu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoqian Ran
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Peng Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China.
| | - Liming Shen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
5
|
Drago G, Aloi N, Ruggieri S, Longo A, Contrino ML, Contarino FM, Cibella F, Colombo P, Longo V. Guardians under Siege: Exploring Pollution's Effects on Human Immunity. Int J Mol Sci 2024; 25:7788. [PMID: 39063030 PMCID: PMC11277414 DOI: 10.3390/ijms25147788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical pollution poses a significant threat to human health, with detrimental effects on various physiological systems, including the respiratory, cardiovascular, mental, and perinatal domains. While the impact of pollution on these systems has been extensively studied, the intricate relationship between chemical pollution and immunity remains a critical area of investigation. The focus of this study is to elucidate the relationship between chemical pollution and human immunity. To accomplish this task, this study presents a comprehensive review that encompasses in vitro, ex vivo, and in vivo studies, shedding light on the ways in which chemical pollution can modulate human immunity. Our aim is to unveil the complex mechanisms by which environmental contaminants compromise the delicate balance of the body's defense systems going beyond the well-established associations with defense systems and delving into the less-explored link between chemical exposure and various immune disorders, adding urgency to our understanding of the underlying mechanisms and their implications for public health.
Collapse
Affiliation(s)
- Gaspare Drago
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Silvia Ruggieri
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Maria Lia Contrino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Massimo Contarino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| |
Collapse
|
6
|
Ding Y, Xu Y, Tan X, Alizadeh M, Alizadeh H. Association between Maternal Exposure to Arsenic during Pregnancy and Risk of Preterm Birth: A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:760-773. [PMID: 39444474 PMCID: PMC11493578 DOI: 10.18502/ijph.v53i4.15553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/11/2023] [Indexed: 10/25/2024]
Abstract
Background Several observational studies have suggested that maternal exposure during pregnancy to arsenic is associated with the risk of preterm birth (PTB); however, available evidence is inconsistent. Therefore, we aimed to explore the relation of maternal exposure to arsenic to PTB risk. Methods A comprehensive systematic search was carried out from inception to April 2023 in PubMed and Scopus to retrieve all relevant studies. A pooled odds ratio (OR) with corresponding 95% confidence interval (CI) was employed using a random effects model to test the association. Results As a result, 14 eligible studies, with 12,619 participants, were included in the meta-analysis. Overall, the pooled OR of all analyzed studies indicated that higher maternal arsenic exposure is significantly related to the 1.12-fold increased odds of PTB (OR = 1.12, 95% CI = 1.04-1.21), with a remarkable heterogeneity across studies (P = <0.001, I2 = 70.9%). This association was found in prospective cohort studies (OR = 1.15, 95% CI = 1.05-1.26), but not in non-cohort studies. In the stratified analysis, the majority of subgroups supported the association of arsenic with PTB. Conclusion Maternal exposure to arsenic during pregnancy is directly linked to the odds of PTB. Future studies are suggested to investigate the effectiveness of specific measures to decrease exposure to arsenic in high-risk communities, particularly in pregnant women.
Collapse
Affiliation(s)
- Yanwen Ding
- Outpatient Surgical Center, Zibo First Hospital, Zibo, 255200, China
| | - Yuxin Xu
- Department of Endocrinology, Zibo First Hospital, Zibo, 255200, China
| | - Xiujuan Tan
- Department of Intervention Chemotherapy, Zibo First Hospital, Zibo, 255200, China
| | - Mohammad Alizadeh
- Department of Medical Surgical Nursing, Nasibeh Nursing & Midwifery School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamzeh Alizadeh
- Genetics Research Center, Department of Genetics and Breeding, the University of Guilan, Rasht, Iran
| |
Collapse
|
7
|
D'Souza LC, Paithankar JG, Stopper H, Pandey A, Sharma A. Environmental Chemical-Induced Reactive Oxygen Species Generation and Immunotoxicity: A Comprehensive Review. Antioxid Redox Signal 2024; 40:691-714. [PMID: 37917110 DOI: 10.1089/ars.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Reactive oxygen species (ROS), the reactive oxygen-carrying chemicals moieties, act as pleiotropic signal transducers to maintain various biological processes/functions, including immune response. Increased ROS production leads to oxidative stress, which is implicated in xenobiotic-induced adverse effects. Understanding the immunoregulatory mechanisms and immunotoxicity is of interest to developing therapeutics against xenobiotic insults. Recent Advances: While developmental studies have established the essential roles of ROS in the establishment and proper functioning of the immune system, toxicological studies have demonstrated high ROS generation as one of the potential mechanisms of immunotoxicity induced by environmental chemicals, including heavy metals, pesticides, aromatic hydrocarbons (benzene and derivatives), plastics, and nanoparticles. Mitochondrial electron transport and various signaling components, including NADH oxidase, toll-like receptors (TLRs), NF-κB, JNK, NRF2, p53, and STAT3, are involved in xenobiotic-induced ROS generation and immunotoxicity. Critical Issues: With many studies demonstrating the role of ROS and oxidative stress in xenobiotic-induced immunotoxicity, rigorous and orthogonal approaches are needed to achieve in-depth and precise understanding. The association of xenobiotic-induced immunotoxicity with disease susceptibility and progression needs more data acquisition. Furthermore, the general methodology needs to be possibly replaced with high-throughput precise techniques. Future Directions: The progression of xenobiotic-induced immunotoxicity into disease manifestation is not well documented. Immunotoxicological studies about the combination of xenobiotics, age-related sensitivity, and their involvement in human disease incidence and pathogenesis are warranted. Antioxid. Redox Signal. 40, 691-714.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| |
Collapse
|
8
|
Joshi A, Kaur S, Taneja SK, Mandal R. Review Article on Molecular Mechanism of Regulation of Hypertension by Macro-elements (Na, K, Ca and Mg), Micro-elements/Trace Metals (Zn and Cu) and Toxic Elements (Pb and As). Biol Trace Elem Res 2024; 202:1477-1502. [PMID: 37523058 DOI: 10.1007/s12011-023-03784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Hypertension (HT) is a medical condition arising due to increase in blood pressure (BP) prevalent worldwide. The balanced dietary intakes of macro-elements and micro-elements including Na, K, Ca, Mg, Zn, and Cu have been described to maintain BP in humans by regulating the osmolarity of blood, cells/tissues, prevention of generation of oxidative and nitrosative stress (OANS), and endothelial damage through their functioning as important components of renin-angiotensin-aldosterone system (RAAS), antioxidant enzyme defense system, and maintenance of blood vascular-endothelial and vascular smooth muscle cell (VSMC) functions. However, inadequate/excess dietary intakes of Na/K, Ca/Mg, and Zn/Cu along with higher Pb and As exposures recognized to induce HT through common mechanisms including the followings: endothelial dysfunctions due to impairment of vasodilatation, increased vasoconstriction and arterial stiffness, blood clotting, inflammation, modification of sympathetic activity and higher catecholamine release, increased peripheral vascular resistance, and cardiac output; increased OANS due to reduced and elevated activities of extracellular superoxide dismutase and NAD(P)H oxidase, less nitric oxide bioavailability, decrease in cGMP and guanylate cyclase activity, increase in intracellular Ca2+ ions in VSMCs, and higher pro-inflammatory cytokines; higher parathyroid and calcitriol hormones; activation/suppression of RAAS resulting imbalance in blood Na+, K+, and water regulated by renin, angiotensin II, and aldosterone through affecting natriuresis/kaliuresis/diuresis; elevation in serum cholesterol and LDL cholesterol, decrease in HDL cholesterol due to defect in lipoprotein metabolism. The present study recommends the need to review simple dietary mineral intervention studies/supplementation trials before keeping their individual dietary excess intakes/exposures in consideration because their interactions lead to elevation and fall of their concentrations in body affecting onset of HT.
Collapse
Affiliation(s)
- Amit Joshi
- PG Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Sector-26, Chandigarh, UT, India
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Sector-14, Chandigarh, UT, India
| | | | - Reshu Mandal
- PG Department of Zoology, Sri Guru Gobind Singh College, Sector-26, Chandigarh, UT, India.
| |
Collapse
|
9
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
10
|
Roh T, Regan AK, Johnson NM, Hasan NT, Trisha NF, Aggarwal A, Han D. Association of arsenic exposure with measles antibody titers in US children: Influence of sex and serum folate levels. ENVIRONMENT INTERNATIONAL 2024; 183:108329. [PMID: 38071850 DOI: 10.1016/j.envint.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
Exposure to arsenic during childhood is associated with various adverse health conditions. However, little is known about the effect of arsenic exposure on vaccine-related humoral immunity in children. We analyzed data from the National Health and Nutrition Examination Survey (2003-2004 and 2009-2010) to study the relationship between urinary arsenic and measles antibody levels in 476 US children aged 6-11. Multivariable linear regression was used to evaluate the association, adjusting for cycle, age, race, body mass index (BMI), serum cotinine, poverty index ratio, and vitamin B12 and selenium intakes. Stratified analyses were conducted by sex and serum folate levels using the median as cutoff (18.7 ng/mL). The measles antibody concentrations in the 3rd and 4th quartiles were found to have significantly decreased by 28.5 % (95 % Confidence Interval (CI) -47.6, -2.28) and 36.8 % (95 % CI -50.2, -19.5), compared to the lowest quartile among boys with serum folate levels lower than 18.7 ng/ml. The serum measles antibody titers significantly decreased by 16.7 % (95 %CI -25.0, -7.61) for each doubling of creatinine-corrected urinary total inorganic arsenic concentrations in the same group. No associations were found in boys with high serum folate levels or in girls. Further prospective studies are needed to validate these findings and develop interventions to protect children from infectious diseases.
Collapse
Affiliation(s)
- Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| | - Annette K Regan
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA 94117, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nishat Tasnim Hasan
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nusrat Fahmida Trisha
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Anisha Aggarwal
- Department of Health Behavior, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Haidar Z, Fatema K, Shoily SS, Sajib AA. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep 2023; 10:554-570. [PMID: 37396849 PMCID: PMC10313886 DOI: 10.1016/j.toxrep.2023.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023] Open
Abstract
Increased exposure to environmental heavy metals and metalloids and their associated toxicities has become a major threat to human health. Hence, the association of these metals and metalloids with chronic, age-related metabolic disorders has gained much interest. The underlying molecular mechanisms that mediate these effects are often complex and incompletely understood. In this review, we summarize the currently known disease-associated metabolic and signaling pathways that are altered following different heavy metals and metalloids exposure, alongside a brief summary of the mechanisms of their impacts. The main focus of this study is to explore how these affected pathways are associated with chronic multifactorial diseases including diabetes, cardiovascular diseases, cancer, neurodegeneration, inflammation, and allergic responses upon exposure to arsenic (As), cadmium (Cd), chromium (Cr), iron (Fe), mercury (Hg), nickel (Ni), and vanadium (V). Although there is considerable overlap among the different heavy metals and metalloids-affected cellular pathways, these affect distinct metabolic pathways as well. The common pathways may be explored further to find common targets for treatment of the associated pathologic conditions.
Collapse
|
12
|
Effects of Prenatal Exposure to Arsenic on T Cell Development in Children. CURRENT OPINION IN TOXICOLOGY 2023. [DOI: 10.1016/j.cotox.2023.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
13
|
Liu J, Hermon T, Gao X, Dixon D, Xiao H. Arsenic and Diabetes Mellitus: A Putative Role for the Immune System. ALL LIFE 2023; 16:2167869. [PMID: 37152101 PMCID: PMC10162781 DOI: 10.1080/26895293.2023.2167869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is an enormous public health issue worldwide. Recent data suggest that chronic arsenic exposure is linked to the risk of developing type 1 and type 2 DM, albeit the underlying mechanisms are unclear. This review discusses the role of the immune system as a link to possibly explain some of the mechanisms of developing T1DM or T2DM associated with arsenic exposure in humans, animal models, and in vitro studies. The rationale for the hypothesis includes: (1) Arsenic is a well-recognized modulator of the immune system; (2) arsenic exposures are associated with increased risk of DM; and (3) dysregulation of the immune system is one of the hallmarks in the pathogenesis of both T1DM and T2DM. A better understanding of DM in association with immune dysregulation and arsenic exposures may help to understand how environmental exposures modulate the immune system and how these effects may impact the manifestation of disease.
Collapse
Affiliation(s)
- Jingli Liu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Tonia Hermon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Xiaohua Gao
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
14
|
Balarastaghi S, Rezaee R, Hayes AW, Yarmohammadi F, Karimi G. Mechanisms of Arsenic Exposure-Induced Hypertension and Atherosclerosis: an Updated Overview. Biol Trace Elem Res 2023; 201:98-113. [PMID: 35167029 DOI: 10.1007/s12011-022-03153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Arsenic is an abundant element in the earth's crust. In the environment and within the human body, this toxic element can be found in both organic and inorganic forms. Chronic exposure to arsenic can predispose humans to cardiovascular diseases including hypertension, stroke, atherosclerosis, and blackfoot disease. Oxidative damage induced by reactive oxygen species is a major player in arsenic-induced toxicity, and it can affect genes expression, inflammatory responses, and/or nitric oxide homeostasis. Exposure to arsenic in drinking water can lead to vascular endothelial dysfunction which is reflected by an imbalance between vascular relaxation and contraction. Arsenic has been shown to inactivate endothelial nitric oxide synthase leading to a reduction of the generation and bioavailability of nitric oxide. Ultimately, these effects increase the risk of vascular diseases such as hypertension and atherosclerosis. The present article reviews how arsenic exposure contributes to hypertension and atherosclerosis development.
Collapse
Affiliation(s)
- Soudabeh Balarastaghi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Wu MM, Chen CW, Chen CY, Lee CH, Chou M, Hsu LI, Lee TC, Chen CJ. TIMP3 Gene Polymorphisms of -1296 T > C and -915 A > G Increase the Susceptibility to Arsenic-Induced Skin Cancer: A Cohort Study and In Silico Analysis of Mutation Impacts. Int J Mol Sci 2022; 23:ijms232314980. [PMID: 36499314 PMCID: PMC9735753 DOI: 10.3390/ijms232314980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Long-term exposure to arsenic may induce several human cancers, including non-melanoma skin cancer. The tissue inhibitor of metalloproteinase (TIMP)-3, encoded by the TIMP3 gene, may inhibit tumor growth, invasion, and metastasis of several cancer types. In this study, we aimed to investigate effects of the TIMP3 -1296 T > C (rs9619311) and -915 A > G (rs2234921) single-nucleotide polymorphisms (SNPs) on skin cancer risk in an arsenic-exposed population, and to evaluate the influence of allele-specific changes by an in silico analysis. In total, 1078 study participants were followed up for a median of 15 years for newly diagnosed skin cancer. New cases were identified through linkage to the National Cancer Registry of Taiwan. A Cox regression analysis was used to evaluate the effects of TIMP3 variants. Transcription factor (TF) profiling of binding sites of allele-specific changes in SNPs was conducted using the JASPAR scan tool. We observed borderline associations between TIMP3 genotypes and skin cancer risk. However, when combined with high arsenic exposure levels, the rs9619311 C allele, rs2234921 G allele, or C-G haplotype groups exhibited a greater risk of developing skin cancer compared to the respective common homozygous genotype group. The in silico analysis revealed several TF motifs located at or flanking the two SNP sites. We validated that the C allele of rs9619311 attenuated the binding affinity of BACH2, MEIS2, NFE2L2, and PBX2 to the TIMP3 promoter, and that the G allele of rs2234921 reduced the affinity of E2F8 and RUNX1 to bind to the promoter. Our findings suggest significant modifications of the effect of the association between arsenic exposure and skin cancer risk by the TIMP3 rs9619311 and rs2234921 variants. The predicted TFs and their differential binding affinities to the TIMP3 promoter provide insights into how TIMP3 interacts with arsenic through TFs in skin cancer formation.
Collapse
Affiliation(s)
- Meei-Maan Wu
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| | - Chi-Wei Chen
- Department of Life Science, College of Sciences and Engineering, National Dong Hwa University, Hualien 97430, Taiwan
| | - Chiu-Yi Chen
- Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83325, Taiwan
| | - Mark Chou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| | - Ling-I Hsu
- Department of Research, Taiwan Blood Services Foundation, Taipei 10066, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
16
|
Huang J, El-Kersh K, Mann KK, James KA, Cai L. Overview of the cardiovascular effects of environmental metals: New preclinical and clinical insights. Toxicol Appl Pharmacol 2022; 454:116247. [PMID: 36122736 PMCID: PMC9941893 DOI: 10.1016/j.taap.2022.116247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 02/06/2023]
Abstract
Environmental causes of cardiovascular diseases (CVDs) are global health issues. In particular, an association between metal exposure and CVDs has become evident but causal evidence still lacks. Therefore, this symposium at the Society of Toxicology 2022 annual meeting addressed epidemiological, clinical, pre-clinical animal model-derived and mechanism-based evidence by five presentations: 1) An epidemiologic study on potential CVD risks of individuals exposed occupationally and environmentally to heavy metals; 2) Both presentations of the second and third were clinical studies focusing on the potential link between heavy metals and pulmonary arterial hypertension (PAH), by presenting altered blood metal concentrations of both non-essential and essential metals in the patients with PAH and potential therapeutic approaches; 3) Arsenic-induced atherosclerosis via inflammatory cells in mouse model; 4) Pathogenic effects on the heart by adult chronic exposure to very low-dose cadmium via epigenetic mechanisms and whole life exposure to low dose cadmium via exacerbating high-fat-diet-lipotoxicity. This symposium has brought epidemiologists, therapeutic industry, physicians, and translational scientists together to discuss the health risks of occupational and environmental exposure to heavy metals through direct cardiotoxicity and indirect disruption of homeostatic mechanisms regulating essential metals, as well as lipid levels. The data summarized by the presenters infers a potential causal link between multiple metals and CVDs and defines differences and commonalities. Therefore, summary of these presentations may accelerate the development of efficient preventive and therapeutic strategies by facilitating collaborations among multidisciplinary investigators.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Cardiovascular Innovation Institute, Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Karim El-Kersh
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koren K Mann
- Departments of Pharmacology & Therapeutics and Oncology and Medicine, McGill University, Canada; Segal Cancer Center, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Katherine A James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA,.
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Pediatric Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
17
|
Mandal R, Kaur S, Gupta VK, Joshi A. Heavy metals controlling cardiovascular diseases risk factors in myocardial infarction patients in critically environmentally heavy metal-polluted steel industrial town Mandi-Gobindgarh (India). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3215-3238. [PMID: 34455537 DOI: 10.1007/s10653-021-01068-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals (HMs) have a very significant clinical role in the pathogenesis, progression and management of cardiovascular diseases (CVDs). The prevalence of CVDs was reported to be higher in critically environmentally HM-polluted (EHMP) steel industrial town Mandi-Gobindgarh (India) for the last more than a decade. To ascertain the role of HMs in the onset of CVDs, the present study was chosen to investigate HMs content in myocardial infarction (MI) patients from EHMP steel industrial town Mandi-Gobindgarh. Total of 110 MI patients along with number- and age-matched healthy volunteers were recruited in the present investigation. The CVDs risk factors estimated in MI patients were overweight (higher body mass index), hypertension (higher systolic and diastolic blood pressures), dyslipidaemia (higher serum cholesterol, triglycerides and lower HDL cholesterol), inflammation (higher-serum C reactive protein and aldosterone) and elevated oxidative stress (higher urinary 8-hydroxydeoxyguanosine). An imbalance of serum electrolyte concentrations including Na (hypernatremia), Ca (hypercalcaemia) and K (hypokalaemia) was also observed in MI patients in which CVDs risk factors were found to correlate positively with serum Na and Ca and negatively with serum K, respectively. Hair HM analysis was used as a bio-indicator for monitoring body HM status from past environmental HM exposure in which CVDs risk factors were observed to correlate positively with higher hair concentrations of Zn, Fe, Mo, Pb, As, Ca and Na and negatively with lower hair concentrations of Cu, Mg, Mn and K in MI patients, respectively. Thus, higher hair concentrations of Zn and Pb indicate their higher environmental exposure and possible cause of higher CVDs risk factors in MI patients from Mandi-Gobindgarh.
Collapse
Affiliation(s)
- Reshu Mandal
- Department of Zoology, Sri Guru Gobind Singh College, Sector-26, Chandigarh, UT, India.
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Chandigarh, UT, India
| | - Vinod Kumar Gupta
- Civil Hospital, Mandi-Gobindgarh, Fatehgarh Sahib District, Punjab, India
| | - Amit Joshi
- Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Sector-26, Chandigarh, UT, India
| |
Collapse
|
18
|
Kim S, Hollinger H, Radke EG. 'Omics in environmental epidemiological studies of chemical exposures: A systematic evidence map. ENVIRONMENT INTERNATIONAL 2022; 164:107243. [PMID: 35551006 PMCID: PMC11515950 DOI: 10.1016/j.envint.2022.107243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Systematic evidence maps are increasingly used to develop chemical risk assessments. These maps can provide an overview of available studies and relevant study information to be used for various research objectives and applications. Environmental epidemiological studies that examine the impact of chemical exposures on various 'omic profiles in human populations provide relevant mechanistic information and can be used for benchmark dose modeling to derive potential human health reference values. OBJECTIVES To create a systematic evidence map of environmental epidemiological studies examining environmental contaminant exposures with 'omics in order to characterize the extent of available studies for future research needs. METHODS Systematic review methods were used to search and screen the literature and included the use of machine learning methods to facilitate screening studies. The Populations, Exposures, Comparators and Outcomes (PECO) criteria were developed to identify and screen relevant studies. Studies that met the PECO criteria after full-text review were summarized with information such as study population, study design, sample size, exposure measurement, and 'omics analysis. RESULTS Over 10,000 studies were identified from scientific databases. Screening processes were used to identify 84 studies considered PECO-relevant after full-text review. Various contaminants (e.g. phthalate, benzene, arsenic, etc.) were investigated in epidemiological studies that used one or more of the four 'omics of interest: epigenomics, transcriptomics, proteomics, and metabolomics . The epidemiological study designs that were used to explore single or integrated 'omic research questions with contaminant exposures were cohort studies, controlled trials, cross-sectional, and case-control studies. An interactive web-based systematic evidence map was created to display more study-related information. CONCLUSIONS This systematic evidence map is a novel tool to visually characterize the available environmental epidemiological studies investigating contaminants and biological effects using 'omics technology and serves as a resource for investigators and allows for a range of applications in chemical research and risk assessment needs.
Collapse
Affiliation(s)
- Stephanie Kim
- Superfund and Emergency Management Division, Region 2, U.S. Environmental Protection Agency, NY, USA.
| | - Hillary Hollinger
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, NC, USA.
| | - Elizabeth G Radke
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, D.C, USA.
| |
Collapse
|
19
|
Zhang ZH, Liao TT, Deng CM, Li B, Okeke ES, Feng WW, Chen Y, Zhao T, Mao GH, Wu XY. Purification and characterization of Se-enriched Grifola frondosa glycoprotein, and evaluating its amelioration effect on As 3+ -induced immune toxicity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2526-2537. [PMID: 34676564 DOI: 10.1002/jsfa.11594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/05/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Selenium (Se)-enriched glycoproteins have been a research highlight for the role of both Se and glycoproteins in immunoregulation. Arsenic (As) is a toxicant that is potentially toxic to the immune function and consequently to human health. Several reports suggested that Se could reduce the toxicity of heavy metals. Moreover, more and more nutrients in food had been applied to relieve As-induced toxicity. Hence glycoproteins were isolated and purified from Se-enriched Grifola frondosa, and their preliminary characteristics as well as amelioration effect and mechanism on As3+ -induced immune toxicity were evaluated. RESULTS Four factions, namely Se-GPr11 (electrophoresis analysis exhibited one band: 14.32 kDa), Se-GPr22 (two bands: 20.57 and 31.12 kDa), Se-GPr33 (three bands: 15.08, 20.57 and 32.78 kDa) and Se-GPr44 (three bands: 16.73, 32.78 and 42.46 kDa), were obtained from Se-enriched G. frondosa via DEAE-52 and Sephacryl S-400 column. In addition, Se-GPr11 and Se-GPr44 are ideal proteins that contain high amounts of almost all essential amino acids. Thereafter, the RAW264.7 macrophage model was adopted to estimate the effect of Se-GPr11 and Se-GPr44 on As3+ -induced immune toxicity. The results showed that the pre-intervention method was the best consequent and the potential mechanisms were, first, by improving the oxidative stress state (enhancing the activity of superoxide dismutase and glutathione peroxidase, decreasing the levels of reactive oxygen species and malondialdehyde); secondly, through nuclear factor-κB and mitogen-activated protein kinase-mediated upregulation cytokines (interleukin-2 and interferon-γ) secretion induced by As3+ . CONCLUSION The results suggested Se-enriched G. frondosa may be a feasible supplement to improve health level of the As3+ pollution population. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe-Han Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Tao-Tao Liao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Chun-Meng Deng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Baorui Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wei-Wei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Guang-Hua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang-Yang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Bonzini M, Leso V, Iavicoli I. Towards a toxic-free environment: perspectives for chemical risk assessment approaches. LA MEDICINA DEL LAVORO 2022; 113:e2022004. [PMID: 35226649 PMCID: PMC8902740 DOI: 10.23749/mdl.v113i1.12748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/05/2022]
Abstract
Regulatory frameworks to control chemical exposure in general living and occupational environments have changed exposure scenarios towards a widely spread contamination at relatively low doses in developed countries. In such evolving context, some critical aspects should be considered to update risk assessment and management strategies. Risk assessment in low-dose chemical exposure scenarios should take advantage of: toxicological investigations on emerging substances of interest, like those recognised as endocrine disruptors or increasingly employed nanoscale materials; human biological monitoring studies aimed to identify innovative biomarkers for known chemical exposure; "omic" technologies useful to identify hazards of chemicals and their modes of action. For updated risk assessment models, suitable toxicological studies, analyses of dose-responses at low-concentrations, environmental and biological monitoring of exposure, together with exposome studies, and the proper definition of susceptible populations may all provide helpful contributions. These may guide defining preventive measures to control the exposure and develop safe and sustainable chemicals by design. Occupational medicine can offer know-how and instruments to understand and manage such evolution towards a toxic-free environment to protect the safety and health of the workforce and, in turn, that of the general population.
Collapse
Affiliation(s)
- Matteo Bonzini
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano.
| | | | | |
Collapse
|
21
|
Fleisch AF, Mukherjee SK, Biswas SK, Obrycki JF, Ekramullah SM, Arman DM, Islam J, Christiani DC, Mazumdar M. Arsenic exposure during pregnancy and postpartum maternal glucose tolerance: evidence from Bangladesh. Environ Health 2022; 21:13. [PMID: 35031057 PMCID: PMC8759206 DOI: 10.1186/s12940-021-00811-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/25/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Arsenic exposure has been associated with gestational diabetes mellitus. However, the extent to which arsenic exposure during pregnancy is associated with postpartum glucose intolerance is unknown. METHODS We studied 323 women in Bangladesh. We assessed arsenic exposure in early pregnancy via toenail and water samples. We measured fasting glucose and insulin in serum at a mean (SD) of 4.0 (3.5) weeks post-delivery. We ran covariate-adjusted, linear regression models to examine associations of arsenic concentrations with HOMA-IR, a marker of insulin resistance, and HOMA-β, a marker of beta cell function. RESULTS Median (IQR) arsenic concentration was 0.45 (0.67) μg/g in toenails and 2.0 (6.5) μg/L in drinking water. Arsenic concentrations during pregnancy were not associated with insulin resistance or beta cell function postpartum. HOMA-IR was 0.07% (- 3.13, 3.37) higher and HOMA-β was 0.96% (- 3.83, 1.99) lower per IQR increment in toenail arsenic, but effect estimates were small and confidence intervals crossed the null. CONCLUSIONS Although arsenic exposure during pregnancy has been consistently associated with gestational diabetes mellitus, we found no clear evidence for an adverse effect on postpartum insulin resistance or beta cell function.
Collapse
Affiliation(s)
- Abby F Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Subrata K Biswas
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - John F Obrycki
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Joynul Islam
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Dong L, Xia S, Sun B, Ma L, Chen X, Wei S, Zou Z, Zhang A. Potential value and mechanism of Rosa roxburghii tratt juice on pro-inflammatory responses in peripheral blood of patients with arsenic poisoning. Hum Exp Toxicol 2022; 41:9603271221121313. [PMID: 35968550 DOI: 10.1177/09603271221121313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing evidence supports the role of arsenic in dysregulated immune and inflammation responses, while, safe and effective treatments have not been fully examined. Rosa roxburghii Tratt (RRT), a traditional Chinese edible fruit with potential immunoregulatory activities, was considered as a dietary supplement to explore its protective effects and possible mechanism in arsenic-induced dysregulated inflammation responses. We enrolled 209 arsenicosis patients and 41 controls to obtain baseline data, including the degree of arsenic poisoning prior to the RRT juice (RRTJ) intervention. Then, based on criteria of inclusion and exclusion and the principle of voluntary participation, 106 arsenicosis patients who volunteered to receive treatment were divided into RRTJ (n = 53) and placebo (n = 53) groups randomly. After three months follow-up, 89 subjects (46 and 43 of the RRTJ and placebo groups, respectively) completed the study and were examined for the effects and possible mechanisms of RRTJ on the Th17 cells-related pro-inflammatory responses in peripheral blood mononuclear cells (PBMCs). The PBMCs had higher levels of Th17 and Th17-related inflammatory cytokines IL-17, IL-6, and RORγt. Furthermore, the gene expressions of STAT3 and SOCS3 in PBMCs increased and decreased, respectively. Conversely, RRTJ decreased the number of Th17 cells, secretion of IL-17, IL-6, RORγt, and relative mRNA levels of STAT3, and increased the transcript levels of SOCS3. This study provides limited evidence that possible immunomodulatory effects of RRTJ on the critical regulators, IL-6 and STAT3, of the Th17 cells in arsenicosis patients, which indicated that IL-6/STAT3 pathway might appear as a potential therapeutic target in arsenicosis.
Collapse
Affiliation(s)
- Ling Dong
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, China
| | - Shiqing Xia
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, China
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
23
|
Pánico P, Velasco M, Salazar AM, Picones A, Ortiz-Huidobro RI, Guerrero-Palomo G, Salgado-Bernabé ME, Ostrosky-Wegman P, Hiriart M. Is Arsenic Exposure a Risk Factor for Metabolic Syndrome? A Review of the Potential Mechanisms. Front Endocrinol (Lausanne) 2022; 13:878280. [PMID: 35651975 PMCID: PMC9150370 DOI: 10.3389/fendo.2022.878280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to arsenic in drinking water is a worldwide health problem. This pollutant is associated with increased risk of developing chronic diseases, including metabolic diseases. Metabolic syndrome (MS) is a complex pathology that results from the interaction between environmental and genetic factors. This condition increases the risk of developing type 2 diabetes, cardiovascular diseases, and cancer. The MS includes at least three of the following signs, central obesity, impaired fasting glucose, insulin resistance, dyslipidemias, and hypertension. Here, we summarize the existing evidence of the multiple mechanisms triggered by arsenic to developing the cardinal signs of MS, showing that this pollutant could contribute to the multifactorial origin of this pathology.
Collapse
Affiliation(s)
- Pablo Pánico
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana María Salazar
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Picones
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Guerrero-Palomo
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Eduardo Salgado-Bernabé
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Marcia Hiriart,
| |
Collapse
|
24
|
Dong L, Liu Y, Wang D, Zhu K, Zou Z, Zhang A. Imbalanced inflammatory response in subchronic arsenic-induced liver injury and the protective effects of Ginkgo biloba extract in rats: Potential role of cytokines mediated cell-cell interactions. ENVIRONMENTAL TOXICOLOGY 2021; 36:2073-2092. [PMID: 34251737 DOI: 10.1002/tox.23324] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a well-known environmental toxicant and carcinogen, which has been epidemiologically proved related to the increased hepatic disorders. Researches have shown that aseptic inflammation and abnormal immune response are associated with arsenic-induced liver injury. However, the immunotoxic effects of liver have not been extensively characterized. Ginkgo biloba extract (GBE), a natural products of G. biloba leaves with proven anti-inflammatory and potential immunoregulatory activities, was used as intervention agent to explore its protective effects on arsenic-induced hepatotoxicity. Thus, the underlying mechanism of the immunotoxic effects on arsenic-induced liver injury were investigated in 2.5, 5.0, and 10.0 mg/kg NaAsO2 of Wistar rats for 16 weeks. Subsequently, GBE was used as intervention agent in 50 mg/kg for 6 weeks after cessation of arsenic exposure. The ratio of Th17 to Treg cells in peripheral blood as well as the secretion of inflammatory cytokines IL-17A, IL-6, TGF-β1, and IL-10 in serum and liver were detected. Meanwhile, the notable activation of aseptic inflammation-related molecule TLR4 and its downstream targets MyD88 and NF-κB in the liver were observed. In this work, we confirmed that subchronic exposed to arsenic triggered the infiltration of inflammatory cells in rat liver, coupled with obvious histopathological changes and aberrant hepatic serum biochemical parameters. Meanwhile, imbalanced immune response was verified by the notable abnormal ratio of Th17 to Treg cells in peripheral blood as well as the secretion of inflammatory cytokines IL-17A, IL-6, TGF-β1, and IL-10 in serum and liver of arsenic exposed rats. Further, the level of TLR4, MyD88, and NF-κB in liver both transcription and translation activity were raised. Subsequently, GBE markedly mitigated arsenic-induced liver injury, most impressively, post treatment with GBE prominently suppressed the overactivated inflammatory-related TLR4-MyD88-NF-κB pathway and evidently decreased the secretion of inflammation cytokines. Meanwhile, the disturbance of pro- and anti-inflammatory response was reversed. We concluded that the disruption of pro- and anti-inflammatory T-cells balance caused by cytokines mediated cell-cell interactions may be one of the mechanisms underlying arsenic-induced liver injury and that GBE intervention exerts an evidence protective effects, which might be closely associated with the suppression of inflammatory-related TLR4 pathway.
Collapse
Affiliation(s)
- Ling Dong
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
25
|
Stone J, Sutrave P, Gascoigne E, Givens MB, Fry RC, Manuck TA. Exposure to toxic metals and per- and polyfluoroalkyl substances and the risk of preeclampsia and preterm birth in the United States: a review. Am J Obstet Gynecol MFM 2021; 3:100308. [PMID: 33444805 PMCID: PMC8144061 DOI: 10.1016/j.ajogmf.2021.100308] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 01/09/2023]
Abstract
Preeclampsia and preterm birth are among the most common pregnancy complications and are the leading causes of maternal and fetal morbidity and mortality in the United States. Adverse pregnancy outcomes are multifactorial in nature and increasing evidence suggests that the pathophysiology behind preterm birth and preeclampsia may be similar-specifically, both of these disorders may involve abnormalities in placental vasculature. A growing body of literature supports that exposure to environmental contaminants in the air, water, soil, and consumer and household products serves as a key factor influencing the development of adverse pregnancy outcomes. In pregnant women, toxic metals have been detected in urine, peripheral blood, nail clippings, and amniotic fluid. The placenta serves as a "gatekeeper" between maternal and fetal exposures, because it can reduce or enhance fetal exposure to various toxicants. Proposed mechanisms underlying toxicant-mediated damage include disrupted placental vasculogenesis, an up-regulated proinflammatory state, oxidative stressors contributing to prostaglandin production and consequent cervical ripening, uterine contractions, and ruptured membranes and epigenetic changes that contribute to disrupted regulation of endocrine and immune system signaling. The objective of this review is to provide an overview of studies examining the relationships between environmental contaminants in the US setting, specifically inorganic (eg, cadmium, arsenic, lead, and mercury) and organic (eg, per- and polyfluoroalkyl substances) toxicants, and the development of preeclampsia and preterm birth among women in the United States.
Collapse
Affiliation(s)
- Juliana Stone
- Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pragna Sutrave
- Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Emily Gascoigne
- Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew B Givens
- Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC; Institute for Environmental Health Solutions, Chapel Hill, NC
| | - Tracy A Manuck
- Division of Maternal-Fetal Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; Institute for Environmental Health Solutions, Chapel Hill, NC.
| |
Collapse
|
26
|
GT-Repeat Polymorphism in the HO-1 Gene Promoter Is Associated with Risk of Liver Cancer: A Follow-Up Study from Arseniasis-Endemic Areas in Taiwan. J Clin Med 2021; 10:jcm10071489. [PMID: 33916685 PMCID: PMC8038349 DOI: 10.3390/jcm10071489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
The induction of heme oxygenase-1 (HO-1) has been shown to have therapeutic potential in experimental models of hepatitis and liver fibrosis, which are closely related to liver cancer. In humans, HO-1 induction is transcriptionally modulated by the length of a GT-repeat [(GT)n] in the promoter region. We aimed to investigate the effect of HO-1 (GT)n variants on liver cancer in a human population. We determined the HO-1 genotype in 1153 study subjects and examined their association with liver cancer risk during a 15.9-year follow-up. Allelic polymorphisms were classified as short [S, <27 (GT)n] or long [L, ≥27 (GT)n]. Newly developed cancer cases were identified through linkage to the National Cancer Registry of Taiwan. Multivariate Cox regression analysis was used to evaluate the effect of the HO-1 (GT)n variants. Alpha-fetoprotein (AFP) and cirrhosis history were also examined. The S/S genotype was found to be significantly associated with liver cancer risk, compared to the L/S and L/L genotypes. The S/S genotype group also had a higher percentage of subjects with abnormal AFP levels than other groups. There were significant percentages of cirrhosis among groups who carried S-alleles. Our findings indicate that short (GT)n variants in the HO-1 gene may confer susceptibility to rather than protection from liver cirrhosis/cancer.
Collapse
|
27
|
Bollati V, Ferrari L, Leso V, Iavicoli I. Personalised Medicine: implication and perspectives in the field of occupational health. LA MEDICINA DEL LAVORO 2020; 111:425-444. [PMID: 33311418 PMCID: PMC7809984 DOI: 10.23749/mdl.v111i6.10947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
"Personalised medicine" relies on identifying and integrating individual variability in genomic, biological, and physiological parameters, as well as in environmental and lifestyle factors, to define "individually" targeted disease prevention and treatment. Although innovative "omic" technologies supported the application of personalised medicine in clinical, oncological, and pharmacological settings, its role in occupational health practice and research is still in a developing phase. Occupational personalised approaches have been currently applied in experimental settings and in conditions of unpredictable risks, e.g.. war missions and space flights, where it is essential to avoid disease manifestations and therapy failure. However, a debate is necessary as to whether personalized medicine may be even more important to support a redefinition of the risk assessment processes taking into consideration the complex interaction between occupational and individual factors. Indeed, "omic" techniques can be helpful to understand the hazardous properties of the xenobiotics, dose-response relationships through a deeper elucidation of the exposure-disease pathways and internal doses of exposure. Overall, this may guide the adoption/implementation of primary preventive measures protective for the vast majority of the population, including most susceptible subgroups. However, the application of personalised medicine into occupational health requires overcoming some practical, ethical, legal, economical, and socio-political issues, particularly concerning the protection of privacy, and the risk of discrimination that the workers may experience. In this scenario, the concerted action of academic, industry, governmental, and stakeholder representatives should be encouraged to improve research aimed to guide effective and sustainable implementation of personalised medicine in occupational health fields.
Collapse
Affiliation(s)
- Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy.
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy.
| | - Veruscka Leso
- Section of Occupational Medicine, Department of Public Health, Università degli Studi di Napoli Federico II, Napoli, Italy.
| | - Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health, Università degli Studi di Napoli Federico II, Napoli, Italy.
| |
Collapse
|
28
|
Khan F, Hodjat M, Rahimifard M, Nigjeh MN, Azizi M, Baeeri M, Bayrami Z, Gholami M, Hassani S, Abdollahi M. Assessment of arsenic-induced modifications in the DNA methylation of insulin-related genes in rat pancreatic islets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110802. [PMID: 32531573 DOI: 10.1016/j.ecoenv.2020.110802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Extended exposure to inorganic arsenic through contaminated drinking water has been linked with increased incidence of diabetes mellitus. The most common exposure occurs through the consumption of contaminated drinking water mainly through geogenic sources of inorganic arsenic. Epigenetic modifications are important mechanisms through which environmental pollutants could exert their toxic effects. Bisulfite sequencing polymerase chain reaction method followed by Sanger sequencing was performed for DNA methylation analysis. Our results showed that sodium arsenite treatment significantly reduced insulin secretion in pancreatic islets. It was revealed that the methylation of glucose transporter 2 (Glut2) gene was changed at two cytosine-phosphate-guanine (CpG) sites (-1743, -1734) in the promoter region of the sodium arsenite-treated group comparing to the control. No changes were observed in the methylation status of peroxisome proliferator-activated receptor-gamma (PPARγ), pancreatic and duodenal homeobox 1 (Pdx1) and insulin 2 (Ins2) CpG sites in the targeted regions. Measuring the gene expression level showed increase in Glut2 expression, while the expression of insulin (INS) and Pdx1 were significantly affected by sodium arsenite treatment. This study revealed that exposure to sodium arsenite changed the DNA methylation pattern of Glut2, a key transporter of glucose entry into the pancreatic beta cells (β-cells). Our data suggested possible epigenetic-mediated toxicity mechanism for arsenite-induced β-cells dysfunction. Further studies are needed to dissect the precise epigenetic modulatory activity of sodium arsenite that affect the biogenesis of insulin.
Collapse
Affiliation(s)
- Fazlullah Khan
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei Nigjeh
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Masoumeh Azizi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Bayrami
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
29
|
DAS SUBHASHREE, DE AK, PERUMAL P, BERA AK, RANA T, MUNISWAMY K, KUNDU A, MUTHIYAN R, MALAKAR D, BHATTACHARYA D, DAS P, SAMANTA S, PAN D. Bioaccumulation and cytological alteration of immune organs of chicken following inorganic arsenic exposure. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i5.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Arsenic is an ecotoxicant that has been found to affect both mammal and avian population. The present study deals with the arsenic deposition in different immune organs of arsenic exposed broiler chicken. Further, its effect on immune cell function and histological alteration was investigated. The study revealed that bursa and liver were the most arsenic deposition prone sites as compared to other immune organs. Histopathological study of the immune organs showed significant structural changes like increased bursal medullary region along with follicular atrophy and detachment of outer serosal layer from the muscularis layer in bursa, decrease in average diameter of white pulp in spleen, decreased cortical as well as medullary region along with less number of Hassall's corpuscle in thymus in the arsenic exposed birds. Arsenic induced apoptosis in peripheral blood mononuclear cells (PBMCs) was also detected and a positive correlation between apoptotic index and dose of arsenic was observed. It may be concluded that insult to avian immune organ by any toxic compound may threaten immune response and may lead to immunosuppression.
Collapse
|
30
|
Souza ACF, de Paiva Coimbra JL, Ervilha LOG, Bastos DSS, Cossolin JFS, Santos EC, de Oliveira LL, Machado-Neves M. Arsenic induces dose-dependent structural and ultrastructural pathological remodeling in the heart of Wistar rats. Life Sci 2020; 257:118132. [PMID: 32710949 DOI: 10.1016/j.lfs.2020.118132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/07/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
AIM Arsenic, an environmental contaminant, represents a public health problem worldwide. Studies have shown its association with molecular mechanisms related to cardiomyocytes redox balance. However, the microstructure and ultrastructure of cardiac tissue, as well as the activity of its antioxidant defenses front of disturbances in the mineral bioavailability induced by arsenic are still scarce. Thus, the aim of this study was to evaluate if arsenic exposure might induce structural and ultrastructural damages in cardiac tissue, including pathological remodeling of the parenchyma and stroma. Moreover, its impact on micromineral distribution and antioxidant enzymes activity in heart tissue was also evaluated. MAIN METHODS Adult male Wistar rats were divided into three groups that received 0, 1 and 10 mg/L sodium arsenite in drinking water for eight weeks. The hearts were collected and subjected to structural and ultrastructural analysis, mineral microanalysis and antioxidant enzymes quantification. Functional markers of cardiac damages were evaluated using serum samples. KEY FINDINGS Arsenic exposure induced dose-dependent structural and ultrastructural remodeling of cardiac tissue, with parenchyma loss, increase of stroma components, collagen deposition, and pathological damages such as inflammation, sarcomere disorganization, mitochondria degeneration and myofilament dissociation. Moreover, this metalloid was bioaccumulated in the tissue affecting its micromineral content, which resulted in antioxidant imbalance and increased levels of oxidative stress and cardiac markers. SIGNIFICANCE Taken together, our findings indicate that the heart is a potential target to arsenic toxicity, and long-term exposure to this metalloid must be avoided, once it might induce several cardiac tissue pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliziária Cardoso Santos
- Medicine School, Federal University of Jequitinhonha and Mucuri Valleys, Minas Gerais, Brazil; Postgraduate Program in Animal Biology, Federal University of Jequitinhonha and Mucuri Valleys, Minas Gerais, Brazil
| | | | | |
Collapse
|
31
|
Abstract
Exposure to arsenic in contaminated drinking water is a worldwide public health problem that affects more than 200 million people. Protein quality control constitutes an evolutionarily conserved mechanism for promoting proper folding of proteins, refolding of misfolded proteins, and removal of aggregated proteins, thereby maintaining homeostasis of the proteome (i.e., proteostasis). Accumulating lines of evidence from epidemiological and laboratory studies revealed that chronic exposure to inorganic arsenic species can elicit proteinopathies that contribute to neurodegenerative disorders, cancer, and type II diabetes. Here, we review the effects of arsenic exposure on perturbing various elements of the proteostasis network, including mitochondrial homeostasis, molecular chaperones, inflammatory response, ubiquitin-proteasome system, autophagy, as well as asymmetric segregation and axonal transport of misfolded proteins. We also discuss arsenic-induced disruptions of post-translational modifications of proteins, for example, ubiquitination, and their implications in proteostasis. Together, studies in the past few decades support that disruption of protein quality control may constitute an important mechanism underlying the arsenic-induced toxicity.
Collapse
|
32
|
Sobel MH, Sanchez TR, Jones MR, Kaufman JD, Francesconi KA, Blaha MJ, Vaidya D, Shimbo D, Gossler W, Gamble MV, Genkinger JM, Navas‐Acien A. Rice Intake, Arsenic Exposure, and Subclinical Cardiovascular Disease Among US Adults in MESA. J Am Heart Assoc 2020; 9:e015658. [PMID: 32067593 PMCID: PMC7070216 DOI: 10.1161/jaha.119.015658] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Background Arsenic-related cardiovascular effects at exposure levels below the US Environmental Protection Agency's standard of 10 μg/L are unclear. For these populations, food, especially rice, is a major source of exposure. We investigated associations of rice intake, a marker of arsenic exposure, with subclinical cardiovascular disease (CVD) markers in a multiethnic population. Methods and Results Between 2000 and 2002, MESA (Multi-Ethnic Study of Atherosclerosis) enrolled 6814 adults without clinical CVD. We included 5050 participants with baseline data on rice intake and markers of 3 CVD domains: inflammation (hsCRP [high-sensitivity C-reactive protein], interleukin-6, and fibrinogen), vascular function (aortic distensibility, carotid distensibility, and brachial flow-mediated dilation), and subclinical atherosclerosis at 3 vascular sites (carotid intima-media thickness, coronary artery calcification, and ankle-brachial index). We also evaluated endothelial-related biomarkers previously associated with arsenic. Rice intake was assessed by food frequency questionnaire. Urinary arsenic was measured in 310 participants. A total of 13% of participants consumed ≥1 serving of rice/day. Compared with individuals consuming <1 serving of rice/week, ≥1 serving of rice/day was not associated with subclinical markers after demographic, lifestyle, and CVD risk factor adjustment (eg, geometric mean ratio [95% CI] for hsCRP, 0.98 [0.86-1.11]; aortic distensibility, 0.99 [0.91-1.07]; and carotid intima-media thickness, 0.98 [0.91-1.06]). Associations with urinary arsenic were similar to those for rice intake. Conclusions Rice intake was not associated with subclinical CVD markers in a multiethnic US population. Research using urinary arsenic is needed to assess potential CVD effects of low-level arsenic exposure. Understanding the role of low-level arsenic as it relates to subclinical CVD may contribute to CVD prevention and control.
Collapse
Affiliation(s)
- Marisa H. Sobel
- Department of Environmental Health ScienceColumbia UniversityNew YorkNY
| | | | - Miranda R. Jones
- Department of EpidemiologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMD
| | | | | | | | | | | | | | - Mary V. Gamble
- Department of Environmental Health ScienceColumbia UniversityNew YorkNY
| | | | - Ana Navas‐Acien
- Department of Environmental Health ScienceColumbia UniversityNew YorkNY
| |
Collapse
|
33
|
Rehman MYA, van Herwijnen M, Krauskopf J, Farooqi A, Kleinjans JCS, Malik RN, Briedé JJ. Transcriptome responses in blood reveal distinct biological pathways associated with arsenic exposure through drinking water in rural settings of Punjab, Pakistan. ENVIRONMENT INTERNATIONAL 2020; 135:105403. [PMID: 31864032 DOI: 10.1016/j.envint.2019.105403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/28/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Groundwater Arsenic (As) contamination is a global public health concern responsible for various health implications and a neglected area of environmental health research in Pakistan. Because of interindividual differences in genetic predisposition, As-related health issues may not be equally distributed among the As-exposed population. However, till date, no studies have been conducted including multiple SNPs involved in As metabolism and disease risk using a linear mixed effect model approach to analyze peripheral blood transcriptomics results. OBJECTIVES In order to detect early responses on the gene expression level and to evaluate the impact of selected SNPs inferring disease risks associated with As exposure, we designed a systematic study to investigate blood transcriptomics profiles of 57 differentially exposed rural subjects living in drinking water As-contaminated settings of Lahore and Kasur districts in Punjab Province in southeast Pakistan. Exposure among the subjects was correlated with individual transcriptome responses applying urinary As profiles as the main biomarker for risk stratification. METHODS We performed whole genome gene expression analysis in blood of subjects using microarrays. Linear effect mixed models were applied for evaluating the combined impact of SNPs hypothetically increasing the risk for As exposure-induced health effects (GSTM1, GSTT1, As3MT, DNMT1, MTHFR, ERCC2 and EGFR). RESULTS Our findings confirmed important signaling, growth factor, cancer and other disease related pathways known to be associated with increased As exposure levels. In addition, upon implementing our integrative SNPs-based genetic risk factor, pathways associated with an increased risk of NAFLD and diabetes appeared significantly enhanced by down-regulation of genes NDUFV3, IKBKB, IL6R, ADIPOR1, PPARA, OGT and FOXO1. CONCLUSION We report the first comprehensive study applying state-of-the-art bioinformatics approaches to address multiple SNP-based inter-individual variability in adverse molecular responses among subjects exposed to drinking water As contamination in Pakistan thereby providing strong evidence of various gene expression targets associated with development of known As-related diseases.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Marcel van Herwijnen
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Julian Krauskopf
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Abida Farooqi
- Environmental Hydro-Geochemistry Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jos C S Kleinjans
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Jacco Jan Briedé
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands.
| |
Collapse
|
34
|
Chen Y, Wu F, Liu X, Parvez F, LoIacono NJ, Gibson EA, Kioumourtzoglou MA, Levy D, Shahriar H, Uddin MN, Islam T, Lomax A, Saxena R, Sanchez T, Santiago D, Ellis T, Ahsan H, Wasserman GA, Graziano JH. Early life and adolescent arsenic exposure from drinking water and blood pressure in adolescence. ENVIRONMENTAL RESEARCH 2019; 178:108681. [PMID: 31520830 PMCID: PMC7010462 DOI: 10.1016/j.envres.2019.108681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 05/26/2023]
Abstract
OBJECTIVES Evidence of the association between inorganic arsenic (As) exposure, especially early-life exposure, and blood pressure (BP) in adolescence is limited. We examined the association of As exposure during early childhood, childhood, and adolescence with BP in adolescence. METHODS We conducted a cross-sectional study of 726 adolescents aged 14-17 (mean 14.75) years whose mothers were participants in the Bangladesh Health Effects of Arsenic Longitudinal Study (HEALS). Adolescents' BP was measured at the time of their recruitment between December 2012 and December 2016. We considered maternal urinary As (UAs), repeatedly measured during childhood, as proxy measures of early childhood (<5 years old, A1) and childhood (5-12 years old, A2) exposure. Adolescents' current UAs was collected at the time of recruitment (14-17 years of age, A3). RESULTS Every doubling of UAs at A3 and maternal UAs at A1 was positively associated with a difference of 0.7-mmHg (95% confidence interval [CI]: 0.1, 1.3) and a 0.7-mmHg (95% CI: 0.05, 1.4) in SBP, respectively. These associations were stronger in adolescents with a BMI above the median (17.7 kg/m2) than those with a BMI below the median (P for interaction = 0.03 and 0.03, respectively). There was no significant association between any of the exposure measures and DBP. The Weighted Quantile Sum (WQS) regression confirmed that adolescents' UAs at A3 and maternal UAs at A1 contributed the most to the overall effect of As exposure at three life stages on SBP. Mixture analyses using Bayesian Kernel Machine Regression identified UAs at A3 as a significant contributor to SBP and DBP independent of other concurrent blood levels of cadmium, lead, manganese, and selenium. CONCLUSION Our findings suggest an association of current exposure and early childhood exposure to As with higher BP in adolescents, which may be exacerbated by higher BMI at adolescence.
Collapse
Affiliation(s)
- Yu Chen
- Departments of Population Health, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.
| | - Fen Wu
- Departments of Population Health, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Xinhua Liu
- Department of Biostatistics, New York, NY, USA
| | - Faruque Parvez
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nancy J LoIacono
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Elizabeth A Gibson
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Diane Levy
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | | | - Taruqul Islam
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Angela Lomax
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Roheeni Saxena
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tiffany Sanchez
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - David Santiago
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tyler Ellis
- Lamont-Doherty Earth Observatory, Columbia University, New York, NY, USA
| | - Habibul Ahsan
- Department of Health Studies, Center for Cancer Epidemiology and Prevention, The University of Chicago, Chicago, IL, USA
| | - Gail A Wasserman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Joseph H Graziano
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
35
|
Pánico P, Juárez-Nájera A, Iturriaga-Goyon E, Ostrosky-Wegman P, Salazar AM. Arsenic impairs GLUT1 trafficking through the inhibition of the calpain system in lymphocytes. Toxicol Appl Pharmacol 2019; 380:114700. [PMID: 31398423 DOI: 10.1016/j.taap.2019.114700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/24/2019] [Accepted: 08/04/2019] [Indexed: 01/28/2023]
Abstract
Exposure to arsenic is associated with increased risk of developing insulin resistance and type 2 diabetes. The proteases calpain-1 (CAPN1), calpain-2 (CAPN2) and calpain-10 (CAPN10) and their endogenous inhibitor calpastatin (CAST) regulate glucose uptake in skeletal muscle and adipocytes. We investigated whether arsenic disrupts GLUT1 trafficking and function through calpain inhibition, using lymphocytes as a cell model. Lymphocytes from healthy subjects were treated with 0.1 or 1 μM of sodium arsenite for 72 h and challenged with 3.9 or 11.1 mM of glucose. Our results showed that arsenite inhibited GLUT1 trafficking, glucose uptake, and calpain activity in the presence of 11.1 mM of glucose. These correlated with a decrease in the autolytical fragment of 50 kDa of CAPN1 and increased levels of CAST, but there were no changes in CAPN2 and CAPN10. We used a cell-free system to evaluate the effect of arsenite over CAPN1, finding that arsenite induced CAPN1 autolysis. To confirm that calpains are involved in GLUT1 trafficking and glucose uptake in lymphocytes, we generated stable CAPN1 or CAPN10 knockdowns in Jurkat cells using short hairpin RNA (shRNA). CAPN1 knockdown induced glucose uptake, while CAPN10 knockdown diminished glucose uptake, which correlated with a significant reduction of calpain activity after the pulse with 11.1 mM of glucose. These data showed that CAPN10 was responsible for the induction of calpain activity after the challenge with 11.1 mM of glucose and that CAPN1 and CAPN10 regulate glucose uptake in lymphocytes. Altogether, our results suggest that arsenite impairs GLUT1 trafficking and function through calpain dysregulation.
Collapse
Affiliation(s)
- Pablo Pánico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Adriana Juárez-Nájera
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Emilio Iturriaga-Goyon
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | | | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
36
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
37
|
Arnold MG, Gokulan K, Doerge DR, Vanlandingham M, Cerniglia CE, Khare S. A single or short time repeated arsenic oral exposure in mice impacts mRNA expression for signaling and immunity related genes in the gut. Food Chem Toxicol 2019; 132:110597. [PMID: 31233874 DOI: 10.1016/j.fct.2019.110597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
Abstract
Arsenic is prevalent in contaminated drinking water and affects more than 140 million people in 50 countries. While the wide-ranging effects of arsenic on neurological development and cancer draw the majority of concern, arsenic's effects on the gut mucosa-associated immune system are often overlooked. In this study, we show that 24 h after a single dose [low dose (50 μg/kg bw), medium dose (100 μg/kg bw) or high dose (200 μg/kg bw)] of arsenic by oral gavage, mice show significantly reduced gut mucosa-associated mRNA expression for the key genes involved in the signaling pathways central to immune responses, such as Nuclear factor κB (NFκB), Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), p38 and Myeloid differentiation protein 88-dependent (Myd88) pathways. Additionally, mRNA expression of apoptosis, inflammasomes and inflammatory response genes are significantly downregulated in the animals exposed to arsenic. Comparisons of time-dependent effects (24 h vs 48 h) from low dose arsenic exposed animals showed a significant shift in expression of Myd88 alone, suggesting that the down regulation was sustained for the key genes/signaling pathway. An extended eight-day exposure to arsenic showed a decreased state of immune preparedness, though not as diminished as seen in the single dose exposure.
Collapse
Affiliation(s)
- Matthew G Arnold
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Michelle Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
38
|
Carmean CM, Yokoi N, Takahashi H, Oduori OS, Kang C, Kanagawa A, Kirkley AG, Han G, Landeche M, Hidaka S, Katoh M, Sargis RM, Seino S. Arsenic modifies serotonin metabolism through glucuronidation in pancreatic β-cells. Am J Physiol Endocrinol Metab 2019; 316:E464-E474. [PMID: 30562058 PMCID: PMC6459295 DOI: 10.1152/ajpendo.00302.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In arsenic-endemic regions of the world, arsenic exposure correlates with diabetes mellitus. Multiple animal models of inorganic arsenic (iAs, as As3+) exposure have revealed that iAs-induced glucose intolerance manifests as a result of pancreatic β-cell dysfunction. To define the mechanisms responsible for this β-cell defect, the MIN6-K8 mouse β-cell line was exposed to environmentally relevant doses of iAs. Exposure to 0.1-1 µM iAs for 3 days significantly decreased glucose-induced insulin secretion (GIIS). Serotonin and its precursor, 5-hydroxytryptophan (5-HTP), were both decreased. Supplementation with 5-HTP, which loads the system with bioavailable 5-HTP and serotonin, rescued GIIS, suggesting that recovery of this pathway was sufficient to restore function. Exposure to iAs was accompanied by an increase in mRNA expression of UDP-glucuronosyltransferase 1 family, polypeptide a6a (Ugt1a6a), a phase-II detoxification enzyme that facilitates the disposal of cyclic amines, including serotonin, via glucuronidation. Elevated Ugt1a6a and UGT1A6 expression levels were observed in mouse and human islets, respectively, following 3 days of iAs exposure. Consistent with this finding, the enzymatic rate of serotonin glucuronidation was increased in iAs-exposed cells. Knockdown by siRNA of Ugt1a6a during iAs exposure restored GIIS in MIN6-K8 cells. This effect was prevented by blockade of serotonin biosynthesis, suggesting that the observed iAs-induced increase in Ugt1a6a affects GIIS by targeting serotonin or serotonin-related metabolites. Although it is not yet clear exactly which element(s) of the serotonin pathway is/are most responsible for iAs-induced GIIS dysfunction, this study provides evidence that UGT1A6A, acting on the serotonin pathway, regulates GIIS under both normal and pathological conditions.
Collapse
Affiliation(s)
- Christopher M Carmean
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
- Kansai Electric Power Medical Research Institute , Kobe , Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
- Kansai Electric Power Medical Research Institute , Kobe , Japan
| | - Okechi S Oduori
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
| | - Christie Kang
- Department of Pathology, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Akiko Kanagawa
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
| | - Andrew G Kirkley
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago , Chicago, Illinois
| | - Guirong Han
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
- Kansai Electric Power Medical Research Institute , Kobe , Japan
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences , Kobe , Japan
| | - Michael Landeche
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Shihomi Hidaka
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
| | - Miki Katoh
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University , Nagoya , Japan
| | - Robert M Sargis
- Department of Pathology, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine , Kobe , Japan
- Kansai Electric Power Medical Research Institute , Kobe , Japan
| |
Collapse
|
39
|
Tutkun L, Gunduzoz M, Turksoy VA, Deniz S, Oztan O, Cetintepe SP, Iritas SB, Yilmaz FM. Arsenic-induced inflammation in workers. Mol Biol Rep 2019; 46:2371-2378. [DOI: 10.1007/s11033-019-04694-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/09/2019] [Indexed: 12/14/2022]
|
40
|
Carmean CM, Seino S. Braving the Element: Pancreatic β-Cell Dysfunction and Adaptation in Response to Arsenic Exposure. Front Endocrinol (Lausanne) 2019; 10:344. [PMID: 31258514 PMCID: PMC6587364 DOI: 10.3389/fendo.2019.00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/13/2019] [Indexed: 12/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a serious global health problem, currently affecting an estimated 451 million people worldwide. T2DM is characterized by hyperglycemia and low insulin relative to the metabolic demand. The precise contributing factors for a given individual vary, but generally include a combination of insulin resistance and insufficient insulin secretion. Ultimately, the progression to diabetes occurs only after β-cells fail to meet the needs of the individual. The stresses placed upon β-cells in this context manifest as increased oxidative damage, local inflammation, and ER stress, often inciting a destructive spiral of β-cell death, increased metabolic stress due to further insufficiency, and additional β-cell death. Several pathways controlling insulin resistance and β-cell adaptation/survival are affected by a class of exogenous bioactive compounds deemed endocrine disrupting chemicals (EDCs). Epidemiological studies have shown that, in several regions throughout the world, exposure to the EDC inorganic arsenic (iAs) correlates significantly with T2DM. It has been proposed that a lifetime of exposure to iAs may exacerbate problems with both insulin sensitivity as well as β-cell function/survival, promoting the development of T2DM. This review focuses on the mechanisms of iAs action as they relate to known adaptive and maladaptive pathways in pancreatic β-cells.
Collapse
Affiliation(s)
- Christopher M. Carmean
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Christopher M. Carmean
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Susumu Seino
| |
Collapse
|
41
|
Yu S, Liao WT, Lee CH, Chai CY, Yu CL, Yu HS. Immunological dysfunction in chronic arsenic exposure: From subclinical condition to skin cancer. J Dermatol 2018; 45:1271-1277. [DOI: 10.1111/1346-8138.14620] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Sebastian Yu
- Department of Dermatology; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Dermatology; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Dermatology; University of California Davis School of Medicine; Sacramento California USA
| | - Wei-Ting Liao
- Department of Biotechnology; College of Life Science; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Chih-Hung Lee
- Department of Dermatology; Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Chee-Yin Chai
- Department of Pathology; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Chia-Li Yu
- Department of International Medicine; National Taiwan University Hospital; Taipei Taiwan
| | - Hsin-Su Yu
- Department of Dermatology; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Dermatology; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Graduate Institute of Clinical Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|
42
|
|
43
|
Sage AP, Minatel BC, Ng KW, Stewart GL, Dummer TJB, Lam WL, Martinez VD. Oncogenomic disruptions in arsenic-induced carcinogenesis. Oncotarget 2018; 8:25736-25755. [PMID: 28179585 PMCID: PMC5421966 DOI: 10.18632/oncotarget.15106] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic exposure to arsenic affects more than 200 million people worldwide, and has been associated with many adverse health effects, including cancer in several organs. There is accumulating evidence that arsenic biotransformation, a step in the elimination of arsenic from the human body, can induce changes at a genetic and epigenetic level, leading to carcinogenesis. At the genetic level, arsenic interferes with key cellular processes such as DNA damage-repair and chromosomal structure, leading to genomic instability. At the epigenetic level, arsenic places a high demand on the cellular methyl pool, leading to global hypomethylation and hypermethylation of specific gene promoters. These arsenic-associated DNA alterations result in the deregulation of both oncogenic and tumour-suppressive genes. Furthermore, recent reports have implicated aberrant expression of non-coding RNAs and the consequential disruption of signaling pathways in the context of arsenic-induced carcinogenesis. This article provides an overview of the oncogenomic anomalies associated with arsenic exposure and conveys the importance of non-coding RNAs in the arsenic-induced carcinogenic process.
Collapse
Affiliation(s)
- Adam P Sage
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Brenda C Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Kevin W Ng
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Greg L Stewart
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Trevor J B Dummer
- Centre of Excellence in Cancer Prevention, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Tsinovoi CL, Xun P, McClure LA, Carioni VMO, Brockman JD, Cai J, Guallar E, Cushman M, Unverzagt FW, Howard VJ, He K. Arsenic Exposure in Relation to Ischemic Stroke: The Reasons for Geographic and Racial Differences in Stroke Study. Stroke 2018; 49:19-26. [PMID: 29212736 PMCID: PMC5742041 DOI: 10.1161/strokeaha.117.018891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE The purpose of this case-cohort study was to examine urinary arsenic levels in relation to incident ischemic stroke in the United States. METHODS We performed a case-cohort study nested within the REGARDS (REasons for Geographic and Racial Differences in Stroke) cohort. A subcohort (n=2486) of controls was randomly sampled within region-race-sex strata while all incident ischemic stroke cases from the full REGARDS cohort (n=671) were included. Baseline urinary arsenic was measured by inductively coupled plasma-mass spectrometry. Arsenic species, including urinary inorganic arsenic and its metabolites monomethylarsonic acid and dimethylarsinic acid, were measured in a random subset (n=199). Weighted Cox's proportional hazards models were used to calculate hazard ratios and 95% confidence intervals of ischemic stroke by arsenic and its species. RESULTS The average follow-up was 6.7 years. Although incident ischemic stroke showed no association with total arsenic or total inorganic arsenic, for each unit higher level of urinary monomethylarsonic acid on a log-scale, after adjustment for potential confounders, ischemic stroke risk increased ≈2-fold (hazard ratio=1.98; 95% confidence interval: 1.12-3.50). Effect modification by age, race, sex, or geographic region was not evident. CONCLUSIONS A metabolite of arsenic was positively associated with incident ischemic stroke in this case-cohort study of the US general population, a low-to-moderate exposure area. Overall, these findings suggest a potential role for arsenic methylation in the pathogenesis of stroke, having important implications for future cerebrovascular research.
Collapse
Affiliation(s)
- Cari L Tsinovoi
- From the Departments of Epidemiology and Biostatistics (C.L.T., P.X., K.H.) and Psychiatry (F.W.U.), Indiana University, Bloomington; Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA (L.A.M.); University of Missouri Research Reactor Center, University of Missouri, Columbia (V.M.O.C., J.D.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (J.C.); Department of Epidemiology, Johns Hopkins University, Baltimore, MD (E.G.); Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington (M.C.); and Department of Epidemiology, University of Alabama at Birmingham (V.J.H.)
| | - Pengcheng Xun
- From the Departments of Epidemiology and Biostatistics (C.L.T., P.X., K.H.) and Psychiatry (F.W.U.), Indiana University, Bloomington; Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA (L.A.M.); University of Missouri Research Reactor Center, University of Missouri, Columbia (V.M.O.C., J.D.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (J.C.); Department of Epidemiology, Johns Hopkins University, Baltimore, MD (E.G.); Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington (M.C.); and Department of Epidemiology, University of Alabama at Birmingham (V.J.H.)
| | - Leslie A McClure
- From the Departments of Epidemiology and Biostatistics (C.L.T., P.X., K.H.) and Psychiatry (F.W.U.), Indiana University, Bloomington; Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA (L.A.M.); University of Missouri Research Reactor Center, University of Missouri, Columbia (V.M.O.C., J.D.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (J.C.); Department of Epidemiology, Johns Hopkins University, Baltimore, MD (E.G.); Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington (M.C.); and Department of Epidemiology, University of Alabama at Birmingham (V.J.H.)
| | - Vivian M O Carioni
- From the Departments of Epidemiology and Biostatistics (C.L.T., P.X., K.H.) and Psychiatry (F.W.U.), Indiana University, Bloomington; Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA (L.A.M.); University of Missouri Research Reactor Center, University of Missouri, Columbia (V.M.O.C., J.D.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (J.C.); Department of Epidemiology, Johns Hopkins University, Baltimore, MD (E.G.); Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington (M.C.); and Department of Epidemiology, University of Alabama at Birmingham (V.J.H.)
| | - John D Brockman
- From the Departments of Epidemiology and Biostatistics (C.L.T., P.X., K.H.) and Psychiatry (F.W.U.), Indiana University, Bloomington; Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA (L.A.M.); University of Missouri Research Reactor Center, University of Missouri, Columbia (V.M.O.C., J.D.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (J.C.); Department of Epidemiology, Johns Hopkins University, Baltimore, MD (E.G.); Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington (M.C.); and Department of Epidemiology, University of Alabama at Birmingham (V.J.H.)
| | - Jianwen Cai
- From the Departments of Epidemiology and Biostatistics (C.L.T., P.X., K.H.) and Psychiatry (F.W.U.), Indiana University, Bloomington; Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA (L.A.M.); University of Missouri Research Reactor Center, University of Missouri, Columbia (V.M.O.C., J.D.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (J.C.); Department of Epidemiology, Johns Hopkins University, Baltimore, MD (E.G.); Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington (M.C.); and Department of Epidemiology, University of Alabama at Birmingham (V.J.H.)
| | - Eliseo Guallar
- From the Departments of Epidemiology and Biostatistics (C.L.T., P.X., K.H.) and Psychiatry (F.W.U.), Indiana University, Bloomington; Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA (L.A.M.); University of Missouri Research Reactor Center, University of Missouri, Columbia (V.M.O.C., J.D.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (J.C.); Department of Epidemiology, Johns Hopkins University, Baltimore, MD (E.G.); Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington (M.C.); and Department of Epidemiology, University of Alabama at Birmingham (V.J.H.)
| | - Mary Cushman
- From the Departments of Epidemiology and Biostatistics (C.L.T., P.X., K.H.) and Psychiatry (F.W.U.), Indiana University, Bloomington; Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA (L.A.M.); University of Missouri Research Reactor Center, University of Missouri, Columbia (V.M.O.C., J.D.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (J.C.); Department of Epidemiology, Johns Hopkins University, Baltimore, MD (E.G.); Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington (M.C.); and Department of Epidemiology, University of Alabama at Birmingham (V.J.H.)
| | - Frederick W Unverzagt
- From the Departments of Epidemiology and Biostatistics (C.L.T., P.X., K.H.) and Psychiatry (F.W.U.), Indiana University, Bloomington; Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA (L.A.M.); University of Missouri Research Reactor Center, University of Missouri, Columbia (V.M.O.C., J.D.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (J.C.); Department of Epidemiology, Johns Hopkins University, Baltimore, MD (E.G.); Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington (M.C.); and Department of Epidemiology, University of Alabama at Birmingham (V.J.H.)
| | - Virginia J Howard
- From the Departments of Epidemiology and Biostatistics (C.L.T., P.X., K.H.) and Psychiatry (F.W.U.), Indiana University, Bloomington; Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA (L.A.M.); University of Missouri Research Reactor Center, University of Missouri, Columbia (V.M.O.C., J.D.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (J.C.); Department of Epidemiology, Johns Hopkins University, Baltimore, MD (E.G.); Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington (M.C.); and Department of Epidemiology, University of Alabama at Birmingham (V.J.H.)
| | - Ka He
- From the Departments of Epidemiology and Biostatistics (C.L.T., P.X., K.H.) and Psychiatry (F.W.U.), Indiana University, Bloomington; Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA (L.A.M.); University of Missouri Research Reactor Center, University of Missouri, Columbia (V.M.O.C., J.D.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (J.C.); Department of Epidemiology, Johns Hopkins University, Baltimore, MD (E.G.); Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington (M.C.); and Department of Epidemiology, University of Alabama at Birmingham (V.J.H.).
| |
Collapse
|
45
|
Li S, Wang Y, Zhao H, He Y, Li J, Jiang G, Xing M. NF-κB-mediated inflammation correlates with calcium overload under arsenic trioxide-induced myocardial damage in Gallus gallus. CHEMOSPHERE 2017; 185:618-627. [PMID: 28728119 DOI: 10.1016/j.chemosphere.2017.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Arsenic is a known environmental pollutant and highly hazardous toxin to human health. Due to the biological accumulation, arsenic produces a variety of cardiovascular diseases. However, the exact mechanism is still unclear. Here, our objective was to evaluate myocardial damage and determine the potential mechanism under arsenic exposure in chickens. Arsenic trioxide (As2O3) (1.25 mg/kg BW, corresponding 15 mg/kg feed) was administered as basal diet to male Hy-line chickens (one-day-old) for 4, 8 and 12 weeks. The results showed that As2O3-induced histological and ultrastructural damage in heart accompanied with significantly Ca2+ overload and increased the activities of myocardial enzymes. Moreover, As2O3 exposure significantly increased (P < 0.05) the mRNA levels of ITPR3, PMCA, TRPC1, TRPC3, STIM1, ORAI1 and pro-inflammatory genes, while the mRNA levels of ITPR1, ITPR2, RyR1, RyR3, SERCA, SLC8A1, CACNA1S and interleukin-10 were decreased (P < 0.05) by As2O3 exposure at 4, 8 and 12 weeks as compared with the corresponding control group. Western blot results showed that As2O3 exposure decreased the expression of SERCA and SLC8A1 protein, while the expression of TNF-α, NF-κB, iNOS and PMCA1 increased compared with the corresponding control group. Additionally, correlation analysis and protein-protein interaction prediction shown that NF-κB-mediated inflammatory response have a function correlation with calcium (Ca) regulation-related genes. In conclusion, this study indicated that As2O3-induced inflammatory response might dependent on Ca overload in myocardial damage of chickens. Our work has implications for the development of potential therapeutic approaches by resisting Ca overload for arsenic-induced myocardial damage.
Collapse
Affiliation(s)
- Siwen Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Yu Wang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Ying He
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Jinglun Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Guangshun Jiang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
46
|
Nardone A, Ferreccio C, Acevedo J, Enanoria W, Blair A, Smith AH, Balmes J, Steinmaus C. The impact of BMI on non-malignant respiratory symptoms and lung function in arsenic exposed adults of Northern Chile. ENVIRONMENTAL RESEARCH 2017; 158:710-719. [PMID: 28738299 PMCID: PMC5603214 DOI: 10.1016/j.envres.2017.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/10/2017] [Accepted: 06/15/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Elevated body mass index (BMI) and arsenic are both associated with cancer and with non-malignant lung disease. Using a unique exposure situation in Northern Chile with data on lifetime arsenic exposure, we previously identified the first evidence of an interaction between arsenic and BMI for the development of lung cancer. OBJECTIVES We examined whether there was an interaction between arsenic and BMI for the development of non-malignant lung disease. METHODS Data on lifetime arsenic exposure, respiratory symptoms, spirometry, BMI, and smoking were collected from 751 participants from cities in Northern Chile with varying levels of arsenic water concentrations. Spirometry values and respiratory symptoms were compared across subjects in different categories of arsenic exposure and BMI. RESULTS Adults with both a BMI above the 90th percentile (>33.9kg/m2) and arsenic water concentrations ≥11µg/L exhibited high odds ratios (ORs) for cough (OR = 10.7, 95% confidence interval (CI): 3.03, 50.1), shortness of breath (OR = 14.2, 95% CI: 4.79, 52.4), wheeze (OR = 14.4, 95% CI: 4.80, 53.7), and the combined presence of any respiratory symptom (OR = 9.82, 95% CI: 4.22, 24.5). In subjects with lower BMIs, respiratory symptom ORs for arsenic water concentrations ≥11µg/L were markedly lower. In never-smokers, reductions in forced vital capacity associated with arsenic increased as BMI increased. Analysis of the FEV1/FVC ratio in never-smokers significantly increased as BMI and arsenic concentrations increased. Similar trends were not observed for FEV1 alone or in ever-smokers. CONCLUSIONS This study provides preliminary evidence that BMI may increase the risk for arsenic-related non-malignant respiratory disease.
Collapse
Affiliation(s)
- Anthony Nardone
- Global Health Sciences Program, University of California San Francisco, San Francisco, CA, USA
| | - Catterina Ferreccio
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), FONDAP, Santiago, Chile
| | - Johanna Acevedo
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), FONDAP, Santiago, Chile
| | - Wayne Enanoria
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Alden Blair
- Global Health Sciences Program, University of California San Francisco, San Francisco, CA, USA
| | - Allan H Smith
- Arsenic Health Effects Research Program, University of California Berkeley, School of Public Health, Berkeley, CA, USA
| | - John Balmes
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Division of Environmental Health Sciences, University of California Berkeley, School of Public Health, Berkeley, CA, USA
| | - Craig Steinmaus
- Arsenic Health Effects Research Program, University of California Berkeley, School of Public Health, Berkeley, CA, USA.
| |
Collapse
|
47
|
Ceja-Galicia ZA, Daniel A, Salazar AM, Pánico P, Ostrosky-Wegman P, Díaz-Villaseñor A. Effects of arsenic on adipocyte metabolism: Is arsenic an obesogen? Mol Cell Endocrinol 2017; 452:25-32. [PMID: 28495457 DOI: 10.1016/j.mce.2017.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022]
Abstract
The environmental obesogen model proposes that in addition to a high-calorie diet and diminished physical activity, other factors such as environmental pollutants and chemicals are involved in the development of obesity. Although arsenic has been recognized as a risk factor for Type 2 Diabetes with a specific mechanism, it is still uncertain whether arsenic is also an obesogen. The impairment of white adipose tissue (WAT) metabolism is crucial in the onset of obesity, and distinct studies have evaluated the effects of arsenic on it, however only in some of them for obesity-related purposes. Thus, the known effects of arsenic on WAT/adipocytes were integrated based on the diverse metabolic and physiological processes that occur in WAT and are altered in obesity, specifically: adipocyte growth, adipokine secretion, lipid metabolism, and glucose metabolism. The currently available information suggests that arsenic can negatively affect WAT metabolism, resulting in arsenic being a potential obesogen.
Collapse
Affiliation(s)
- Zeltzin A Ceja-Galicia
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Maestría en Ciencias de la Producción y Salud Animal, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Alberto Daniel
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Maestría en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Pablo Pánico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Andrea Díaz-Villaseñor
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
48
|
Gera R, Singh V, Mitra S, Sharma AK, Singh A, Dasgupta A, Singh D, Kumar M, Jagdale P, Patnaik S, Ghosh D. Arsenic exposure impels CD4 commitment in thymus and suppress T cell cytokine secretion by increasing regulatory T cells. Sci Rep 2017; 7:7140. [PMID: 28769045 PMCID: PMC5541098 DOI: 10.1038/s41598-017-07271-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/27/2017] [Indexed: 01/31/2023] Open
Abstract
Arsenic is globally infamous for inducing immunosuppression associated with prevalence of opportunistic infection in exposed population, although the mechanism remains elusive. In this study, we investigate the effect of arsenic exposure on thymocyte lineage commitment and the involvement of regulatory T cells (Treg) in arsenic-induced immunosuppression. Male Balb/c mice were exposed to 0.038, 0.38 and 3.8 ppm sodium arsenite for 7, 15 and 30 days through oral gavage. Arsenic exposure promoted CD4 lineage commitment in a dose dependent manner supported by the expression of ThPOK in thymus. Arsenic also increased splenic CD4+ T cells and promoted their differentiation into Treg cells. In parallel, arsenic exposure induced immunosuppression characterized by low cytokine secretion from splenocytes and increased susceptibility to Mycobacterium fortuitum (M. fortuitum) infection. Therefore, we linked arsenic-induced rise in Treg cells with suppressed Th1 and Th2 related cytokines, which has been reversed by inhibition of Treg cells in-vivo using wortmannin. Other parameters like body weight, kidney and liver function, histoanatomy of thymus and spleen as well as thymocyte and splenocytes viability were unaltered by arsenic exposure. Taken together our findings indicated that environmentally relevant dose of arsenic enhanced differentiation of Treg cells which in turn induce immunosuppression in experimental animals.
Collapse
Affiliation(s)
- Ruchi Gera
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, 226001, India
| | - Vikas Singh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, 226001, India
| | - Sumonto Mitra
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Anuj Kumar Sharma
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Alok Singh
- Microbiology, CSIR- Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arunava Dasgupta
- Microbiology, CSIR- Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- Regulatory toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Mahadeo Kumar
- Regulatory toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Pankaj Jagdale
- Regulatory toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Debabrata Ghosh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
49
|
Almberg KS, Turyk ME, Jones RM, Rankin K, Freels S, Graber JM, Stayner LT. Arsenic in drinking water and adverse birth outcomes in Ohio. ENVIRONMENTAL RESEARCH 2017; 157:52-59. [PMID: 28521257 DOI: 10.1016/j.envres.2017.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/08/2017] [Accepted: 05/08/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Arsenic in drinking water has been associated with adverse reproductive outcomes in areas with high levels of naturally occurring arsenic. Less is known about the reproductive effects of arsenic at lower levels. OBJECTIVES This research examined the association between low-level arsenic in drinking water and small for gestational age (SGA), term low birth weight (term LBW), very low birth weight (VLBW), preterm birth (PTB), and very preterm birth (VPTB) in the state of Ohio. METHODS Exposure was defined as the mean annual arsenic concentration in drinking water in each county in Ohio from 2006 to 2008 using Safe Drinking Water Information System data. Birth outcomes were ascertained from the birth certificate records of 428,804 births in Ohio from the same time period. Multivariable generalized estimating equation logistic regression models were used to assess the relationship between arsenic and each birth outcome separately. Sensitivity analyses were performed to examine the roles of private well use and prenatal care utilization in these associations. RESULTS Arsenic in drinking water was associated with increased odds of VLBW (AOR 1.14 per µg/L increase; 95% CI 1.04, 1.24) and PTB (AOR 1.10; 95% CI 1.06, 1.15) among singleton births in counties where <10% of the population used private wells. No significant association was observed between arsenic and SGA, or VPTB, but a suggestive association was observed between arsenic and term LBW. CONCLUSIONS Arsenic in drinking water was positively associated with VLBW and PTB in a population where nearly all (>99%) of the population was exposed under the current maximum contaminant level of 10µg/L. Current regulatory standards may not be protective against reproductive effects of prenatal exposure to arsenic.
Collapse
Affiliation(s)
- Kirsten S Almberg
- Epidemiology and Biostatistics Division, University of Illinois at Chicago, School of Public Health, 1603 W. Taylor Street, Chicago, IL 60607, USA.
| | - Mary E Turyk
- Epidemiology and Biostatistics Division, University of Illinois at Chicago, School of Public Health, 1603 W. Taylor Street, Chicago, IL 60607, USA.
| | - Rachael M Jones
- Environmental and Occupational Health Sciences Division, University of Illinois at Chicago, School of Public Health, 2121 W. Taylor Street, Chicago, IL 60612, USA.
| | - Kristin Rankin
- Epidemiology and Biostatistics Division, University of Illinois at Chicago, School of Public Health, 1603 W. Taylor Street, Chicago, IL 60607, USA.
| | - Sally Freels
- Epidemiology and Biostatistics Division, University of Illinois at Chicago, School of Public Health, 1603 W. Taylor Street, Chicago, IL 60607, USA.
| | - Judith M Graber
- Epidemiology and Biostatistics Division, University of Illinois at Chicago, School of Public Health, 1603 W. Taylor Street, Chicago, IL 60607, USA; Epidemiology Department, Rutgers the State University of New Jersey, School of Public Health, 683 Hoes Lane West, Piscataway, NJ 08854, United States.
| | - Leslie T Stayner
- Epidemiology and Biostatistics Division, University of Illinois at Chicago, School of Public Health, 1603 W. Taylor Street, Chicago, IL 60607, USA.
| |
Collapse
|
50
|
Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Food Chem Toxicol 2017; 107:406-417. [PMID: 28709971 DOI: 10.1016/j.fct.2017.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs) is a major threat to the human health worldwide. The consumption of arsenic in drinking water and other food products is associated with the risk of development of type-2 diabetes mellitus (T2DM). The available experimental evidence indicates that epigenetic alterations may play an important role in the development of diseases that are linked with exposure to environmental toxicants. iAs seems to be associated with the epigenetic modifications such as alterations in DNA methylation, histone modifications, and micro RNA (miRNA) abundance. OBJECTIVE This article reviewed epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. METHOD Electronic databases such as PubMed, Scopus and Google scholar were searched for published literature from 1980 to 2017. Searched MESH terms were "Arsenic", "Epigenetic mechanism", "DNA methylation", "Histone modifications" and "Diabetes". RESULTS There are various factors involved in the pathogenesis of T2DM but it is assumed that arsenic consumption causes the epigenetic alterations both at the gene-specific level and generalized genome level. CONCLUSION The research indicates that exposure from low to moderate concentrations of iAs is linked with the epigenetic effects. In addition, it is evident that, arsenic can change the components of the epigenome and hence induces diabetes through epigenetic mechanisms, such as alterations in glucose transport and/or metabolism and insulin expression/secretion.
Collapse
|