1
|
McGachy L, Sedlak DL. From Theory to Practice: Leveraging Chemical Principles To Improve the Performance of Peroxydisulfate-Based In Situ Chemical Oxidation of Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17-32. [PMID: 38110187 PMCID: PMC10785823 DOI: 10.1021/acs.est.3c07409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
In situ chemical oxidation (ISCO) using peroxydisulfate has become more popular in the remediation of soils and shallow groundwater contaminated with organic chemicals. Researchers have studied the chemistry of peroxydisulfate and the oxidative species produced upon its decomposition (i.e., sulfate radical and hydroxyl radical) for over five decades, describing reaction kinetics, mechanisms, and product formation in great detail. However, if this information is to be useful to practitioners seeking to optimize the use of peroxydisulfate in the remediation of hazardous waste sites, the relevant conditions of high oxidant concentrations and the presence of minerals and solutes that affect radical chain reactions must be considered. The objectives of this Review are to provide insights into the chemistry of peroxydisulfate-based ISCO that can enable more efficient operation of these systems and to identify research needed to improve understanding of system performance. By gaining a deeper understanding of the underlying chemistry of these complex systems, it may be possible to improve the design and operation of peroxydisulfate-based ISCO remediation systems.
Collapse
Affiliation(s)
- Lenka McGachy
- Department
of Environmental Chemistry, University of
Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech
Republic
| | - David L. Sedlak
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Zou H, Zhang M, Chen J, Aniagu S, Jiang Y, Chen T. AHR-mediated DNA damage contributes to BaP-induced cardiac malformations in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167636. [PMID: 37806592 DOI: 10.1016/j.scitotenv.2023.167636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Benzo[a]pyrene (BaP) is a representative polycyclic aromatic hydrocarbon widely present in the environment. We previously reported that the aryl hydrocarbon receptor (AHR) mediates BaP-induced apoptosis and cardiac malformations in zebrafish embryos, but the underlying molecular mechanisms were unclear. Since BaP is a mutagenetic compound, we hypothesize that BaP induces apoptosis and heart defects via AHR-mediated DNA damage. In this study, zebrafish embryos were exposed to BaP at a concentration of 0.1 μM from 2 to 72 h post fertilization, either with or without inhibitors/agonists. AHR activity and levels of reactive oxygen species (ROS) were examined under a fluorescence microscope. mRNA expression levels were quantified by qPCR. DNA damage and apoptosis were detected by immunofluorescence. Our findings revealed that BaP exposure significantly increased BPDE-DNA adducts, mitochondrial damage, apoptosis and heart defects in zebrafish embryos. These effects were counteracted by inhibiting AHR/cyp1a1 using pharmaceutical inhibitors or genetic knockdown. Furthermore, we observed that spironolactone, an antagonist of nucleotide excision repair (NER), significantly enhanced BaP-induced BPDE-DNA adducts, mitochondrial damage, apoptosis and heart malformation rates. Conversely, SRT1720, a SIRT1 agonist, reduced the adverse effects of BaP. Supplementation with spironolactone also enhanced γ-H2AX signals in the heart of zebrafish embryos exposed to BaP. Additional experiments demonstrated that BaP suppressed the expression of SIRT1. We further established that AHR, when activated by BaP, directly inhibited SIRT1 transcription, leading to downregulation of XPC and XPA, which are essential NER genes involved in the recognition and verification steps of the NER process. Taken together, our results indicate that AHR mediates BaP-induced DNA damage in the heart of zebrafish embryos by inducing BPDE-DNA adduct formation via the AHR/Cyp1a1 signalling pathway, as well as suppressing NER via AHR-mediated inhibition of SIRT1.
Collapse
Affiliation(s)
- Hongmei Zou
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Mingxuan Zhang
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Jin Chen
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| | - Tao Chen
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| |
Collapse
|
3
|
Zhao L, Zhao Z, Zhang J, Zhang P. Seasonal variation, spatial distribution, and sources of PAHs in surface seawater from Zhanjiang bay influenced by land-based inputs. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106028. [PMID: 37267664 DOI: 10.1016/j.marenvres.2023.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
This study was carried out for a comprehensive understanding of the concentrations, seasonal variation, spatial distribution, sources, and land-based inputs of polycyclic aromatic hydrocarbons (PAHs) in surface seawater from Zhanjiang Bay (ZJB). Although the PAHs were ubiquitous, their concentrations were relatively low, and significant seasonal trends and spatial distributions were observed. Based on the diagnostic ratios and composition profiles, the PAHs found in this study mainly originated from coal/biomass burning, and petroleum and its combustion played an important role in the wet seasons. Furthermore, the PAHs from land-based inputs had seasonal variations, spatial distributions, sources, and composition profiles similar to those in ZJB seawater. By combining the cases of energy structure, residential and industrial layouts, maritime traffic, and activities related to ports and mariculture, this study concluded that PAHs in ZJB seawater are greatly influenced by land-based inputs, atmospheric deposition and human activities.
Collapse
Affiliation(s)
- Lirong Zhao
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zike Zhao
- Analysis and Test Center, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jibiao Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Peng Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
4
|
Márquez-Villa JM, Rodríguez-Sierra JC, Amtanus Chequer N, Cob-Calan NN, García-Maldonado JQ, Cadena S, Hernández-Núñez E. Phenanthrene Degradation by Photosynthetic Bacterial Consortium Dominated by Fischerella sp. Life (Basel) 2023; 13:life13051108. [PMID: 37240753 DOI: 10.3390/life13051108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Microbial degradation of aromatic hydrocarbons is an emerging technology, and it is well recognized for its economic methods, efficiency, and safety; however, its exploration is still scarce and greater emphasis on cyanobacteria-bacterial mutualistic interactions is needed. We evaluated and characterized the phenanthrene biodegradation capacity of consortium dominated by Fischerella sp. under holoxenic conditions with aerobic heterotrophic bacteria and their molecular identification through 16S rRNA Illumina sequencing. Results indicated that our microbial consortium can degrade up to 92% of phenanthrene in five days. Bioinformatic analyses revealed that consortium was dominated by Fischerella sp., however different members of Nostocaceae and Weeksellaceae, as well as several other bacteria, such as Chryseobacterium, and Porphyrobacter, were found to be putatively involved in the biological degradation of phenanthrene. This work contributes to a better understanding of biodegradation of phenanthrene by cyanobacteria and identify the microbial diversity related.
Collapse
Affiliation(s)
| | | | - Nayem Amtanus Chequer
- Department of Marine Resources, Centro de Investigación y de Estudios Avanzados del IPN, Merida 97310, Yucatan, Mexico
| | - Nubia Noemí Cob-Calan
- Instituto Tecnológico Superior de Calkiní en el Estado de Campeche, Calkiní 24900, Campeche, Mexico
| | | | - Santiago Cadena
- Department of Marine Resources, Centro de Investigación y de Estudios Avanzados del IPN, Merida 97310, Yucatan, Mexico
| | - Emanuel Hernández-Núñez
- Department of Marine Resources, Centro de Investigación y de Estudios Avanzados del IPN, Merida 97310, Yucatan, Mexico
| |
Collapse
|
5
|
A Graph Convolution Network with Subgraph Embedding for Mutagenic Prediction in Aromatic Hydrocarbons. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2023.01.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Mundo R, Matsunaka T, Iwai H, Ochiai S, Nagao S. Environmental processes and fate of PAHs at a shallow and enclosed bay: West Nanao Bay, Noto Peninsula, Japan. MARINE POLLUTION BULLETIN 2022; 184:114105. [PMID: 36115196 DOI: 10.1016/j.marpolbul.2022.114105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
From August 2019 to August 2020, particulate and dissolved polycyclic aromatic hydrocarbons concentrations (PAHs) were analyzed in the water body of West Nanao Bay, Japan, to determinate their levels, environmental pathways, and ecological risks at this remote but shallow and semi-enclosed bay. The 14 targeted PAHs were analyzed by high performance liquid chromatography-fluorescence detector. Even when water column stratifies, the summatory of 14 targeted dissolved PAHs did not follow significantly change with depth. Results agreed with our previous findings in the surface distribution at the bay and can be attributed to long retention time of the water mass of the semi-enclosed bay. Suspended solids start precipitating according to their size; with biggest particles rapidly settling in the proximities of river mouths. Partition coefficients (Kp) varied from 103 to 107, according to molecular weights. In general, highest Kp were found in the nepheloid layer. The risk quotients, RQ∑14 PAHs (NCs) (1.04-174.08), indicated that PAHs represented a very low to low environmental risks.
Collapse
Affiliation(s)
- Rodrigo Mundo
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Tetsuya Matsunaka
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O, Nomi, Ishikawa, 923-1224, Japan.
| | - Hisanori Iwai
- Faculty of science and Engineering, Waseda University, Tokyo, Japan.
| | - Shinya Ochiai
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O, Nomi, Ishikawa, 923-1224, Japan.
| | - Seiya Nagao
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O, Nomi, Ishikawa, 923-1224, Japan.
| |
Collapse
|
7
|
Kou J, Li X, Zhang M, Wang L, Hu L, Liu X, Mei S, Xu G. Accumulative levels, temporal and spatial distribution of common chemical pollutants in the blood of Chinese adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119980. [PMID: 35985432 DOI: 10.1016/j.envpol.2022.119980] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
China has been in a rapid development period in recent decades, the mass production and use of chemical industrial products and pesticides have resulted in a large amount of pollutants in the environment. These pollutants enter the human body through environmental exposure and dietary intake, causing adverse health effects. Although many of them have been banned and restricted in the production and use in China, these pollutants still remain in the human body due to their high persistence and strong bioaccumulation. In this review, we aim to reveal the accumulation levels and profiles, as well as the temporal and spatial distribution of common chemical pollutants including chlorinated paraffins (CPs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers, organophosphorus flame retardants (OPFRs), new halogenated flame retardants (NHFRs), polychlorinated biphenyls, phthalic acid esters, perfluorinated compounds, bisphenols, organophosphorus pesticides and pyrethroid insecticides in the blood (including whole blood, serum and plasma) of Chinese adults by extracting 93 related studies published from 1990 to 2021. Results have shown that CPs, OCPs and PAHs were the main pollutants in China, the levels of short-chain chlorinated paraffin, p,p'-DDE and phenanthrene in blood even reached 11,060.58, 740.41 and 498.28 ng/g lipid respectively. Under the strict control of pollutants in China, the levels of most pollutants have been on a downward trend except for perfluoro octanoate and perfluoro nonanoate. Besides, OPFRs, NHFRs and PAHs may have a potential upward trend, requiring further research and observation. As for spatial distribution, East China (Bohai Bay and Yangtze River Delta) and South China (Pearl River Delta) were the major polluted regions due to their fast development of industry and agriculture.
Collapse
Affiliation(s)
- Jing Kou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| |
Collapse
|
8
|
Matsunaka T, Nagao S, Inoue M, Mundo R, Tanaka S, Tang N, Yoshida MA, Nishizaki M, Morita M, Takikawa T, Suzuki N, Ogiso S, Hayakawa K. Seasonal variations in marine polycyclic aromatic hydrocarbons off Oki Island, Sea of Japan, during 2015-2019. MARINE POLLUTION BULLETIN 2022; 180:113749. [PMID: 35596998 DOI: 10.1016/j.marpolbul.2022.113749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 05/27/2023]
Abstract
Concentrations of 13 phase-partitioned polycyclic aromatic hydrocarbons (PAHs) in seawater were monitored monthly off Oki Island, Japan, during 2015-2019 to elucidate seasonal variations, main source, and transport pathways of PAHs in the southwestern Sea of Japan. Total PAH (dissolved plus particulate) concentrations in surface seawater at 36°09.0'N, 133°17.3'E (site OK) were in the range 0.49-9.36 ng L-1 (mean 2.77, SD 2.05 ng L-1) with higher levels in summer-autumn, an order of magnitude lower than those in the East China Sea during 2005 and 2009-2011 and about one-third of those recorded in the Sea of Japan in 2008 and 2010. The main sources of dissolved and particulate PAHs were combustion products. Increasing dissolved PAH levels during July-October indicate that the area around southern Oki Island is impacted by PAH-rich summer continental-shelf water transported by the Tsushima Warm Current flowing from the East China Sea.
Collapse
Affiliation(s)
- Tetsuya Matsunaka
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O-24, Nomi, Ishikawa 923-1224, Japan; Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Seiya Nagao
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O-24, Nomi, Ishikawa 923-1224, Japan; Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Mutsuo Inoue
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O-24, Nomi, Ishikawa 923-1224, Japan; Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Rodrigo Mundo
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Saki Tanaka
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Ning Tang
- Division of Atmospheric Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Masa-Aki Yoshida
- Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane 685-0024, Japan.
| | - Masanori Nishizaki
- Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane 685-0024, Japan.
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan.
| | - Tetsutaro Takikawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| | - Shouzo Ogiso
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| | - Kazuichi Hayakawa
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O-24, Nomi, Ishikawa 923-1224, Japan.
| |
Collapse
|
9
|
Lara S, Villanueva F, Martín P, Salgado S, Moreno A, Sánchez-Verdú P. Investigation of PAHs, nitrated PAHs and oxygenated PAHs in PM 10 urban aerosols. A comprehensive data analysis. CHEMOSPHERE 2022; 294:133745. [PMID: 35090855 DOI: 10.1016/j.chemosphere.2022.133745] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic compounds (PACs) in particulate matter contribute considerably to the health risk of air pollution. As such, we have optimized a method to determine the levels of polycyclic aromatic hydrocarbons, especially nitrated and oxygenated polycyclic aromatic hydrocarbons, in samples of PM10 particulate matter using microwave-assisted extraction (MAE) and gas chromatography coupled to a triple quadrupole mass spectrometer (GC-MS/MS). The proposed method was applied to the analysis of real samples collected in the urban area of Ciudad Real (Spain) during one year. The median total concentrations of eighteen PAHs (∑PAHs) and seven OPAHs (∑OPAHs) were 0.54 and 0.23 ng m-3, respectively, with the corresponding value for NPAH (∑NPAHs) being 0.03 ng m-3 (only detected in 40% of samples). A clear seasonal trend was observed, with higher levels in the cold season and lower in the warm season for ∑PAHs. The same effect was observed for ∑OPAHs, which exhibited a median concentration of 0.72 ng m-3 in the cold season and 0.10 ng m-3 in the warm season, and for ∑NPAH, which exhibited a median of 0.04 ng m-3 in the cold season but were not detected in the warm season. Molecular diagnostic ratios and PCA (principal component analysis) showed a predominantly traffic origin for PACs. The sources of PAHs also depend on meteorological conditions and/or atmospheric reactions, as confirmed by means of statistical analysis. The ∑OPAH/∑PAH and ∑NPAH/∑PAH ratios were higher in the cold season than the warm season, thus suggesting that PAH derivatives originated from primary combustion emission sources together with their parent PAHs. The concentration range found for benzo(a)pyrene was 0.006-0.542 ng m-3, which is below the threshold value of 1 ng m-3 established in European legislation as the annual average value. The lifetime lung risk from inhalation of PM10-bound PACs was estimated to be six cancer cases per million people using the World Health Organization method.
Collapse
Affiliation(s)
- Sonia Lara
- Universidad de Castilla La Mancha. Instituto de Investigación en Combustión y Contaminación Atmosférica. Camino de Moledores s/n, 13071, Ciudad Real, Spain.
| | - Florentina Villanueva
- Universidad de Castilla La Mancha. Instituto de Investigación en Combustión y Contaminación Atmosférica. Camino de Moledores s/n, 13071, Ciudad Real, Spain; Parque Científico y Tecnológico de Castilla La Mancha, Paseo de la Innovación 1, 02006, Albacete, Spain.
| | - Pilar Martín
- Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Sagrario Salgado
- Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Andres Moreno
- Universidad de Castilla La Mancha, Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Prado Sánchez-Verdú
- Universidad de Castilla La Mancha, Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
10
|
Silva Dos Santos F, Neves RAF, Crapez MAC, Teixeira VL, Krepsky N. How does the brown mussel Perna perna respond to environmental pollution? A review on pollution biomarkers. J Environ Sci (China) 2022; 111:412-428. [PMID: 34949370 DOI: 10.1016/j.jes.2021.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 06/14/2023]
Abstract
The brown mussel Perna perna (Linnaeus, 1758) is a valuable resource for aquaculture in tropical and subtropical coastal regions. It presents desirable characteristics for biomonitoring, including being sessile, widely distributed and abundant, and is a filter-feeder able to accumulate several classes of pollutants (e.g., metals, hydrocarbons, among others). Mussels' biological responses to pollution exposure can be measured as biomarkers, which include alterations ranging from molecular to physiological levels, to estimate the degree of environmental contamination and its effects on biota. This full review compiles two decades (2000-2020) of literature concerning biological effects on P. perna mussel caused by environmental pollutants (i.e., metals, hydrocarbons, and emerging pollutants), considering environmental and farm-based biomonitoring. Biochemical markers related to mussels' oxidative status were efficient for the biomonitoring of metals (i.e., antioxidant enzymes associated with oxidative damage in biomolecules). Genotoxicity and cytotoxicity indicators (i.e., comet, micronucleus, and neutral red assays) provided a depiction of hydrocarbon contamination. The neutral red assay gave a time-concentration cytotoxic response to a wide range of pollutants, including emerging pollutants (e.g., pharmaceuticals and biocides) and hydrocarbons. Perna perna hemocyte parameters provided a useful approach for biocide biomonitoring. This paper summarizes useful biomarkers from molecular to physiological levels in this mussel species used to identify and quantify the degree of coastal pollution. An integrated biomarker analysis may provide a way to overcome possible biomarker variations and assess multi-polluted sites. Nevertheless, it is necessary to investigate biomarker variations according to natural factors (e.g., season and gonad maturation stage) to standardize them for trustworthy biomonitoring.
Collapse
Affiliation(s)
- Fernanda Silva Dos Santos
- Fluminense Federal University (UFF), Institute of Biology, Graduate Program in Science and Biotechnology, Mario Santos Braga Street, s/n. Centro, Niterói, RJ CEP 24.020-141, Brazil.
| | - Raquel A F Neves
- Federal University of the State of Rio de Janeiro (UNIRIO), Institute of Biosciences (IBIO), Graduate Program in Neotropical Biodiversity (PPGBIO), Pasteur Avenue, 458. Urca, Rio de Janeiro, RJ CEP 22.290-255, Brazil
| | - Mirian Araújo Carlos Crapez
- Fluminense Federal University (UFF), Institute of Biology, Graduate Program in Marine Biology and Coastal Environments, Mario Santos Braga Street, s/n. Centro, Niterói, RJ CEP 24.020-141, Brazil
| | - Valéria Laneuville Teixeira
- Fluminense Federal University (UFF), Institute of Biology, Graduate Program in Science and Biotechnology, Mario Santos Braga Street, s/n. Centro, Niterói, RJ CEP 24.020-141, Brazil; Federal University of the State of Rio de Janeiro (UNIRIO), Institute of Biosciences (IBIO), Graduate Program in Neotropical Biodiversity (PPGBIO), Pasteur Avenue, 458. Urca, Rio de Janeiro, RJ CEP 22.290-255, Brazil
| | - Natascha Krepsky
- Federal University of the State of Rio de Janeiro (UNIRIO), Institute of Biosciences (IBIO), Graduate Program in Neotropical Biodiversity (PPGBIO), Pasteur Avenue, 458. Urca, Rio de Janeiro, RJ CEP 22.290-255, Brazil; Federal University of the State of Rio de Janeiro (UNIRIO), Institute of Biosciences (IBIO), Graduate Program in Ecotourism and Conservation, Pasteur Avenue, 458. Urca, Rio de Janeiro, RJ CEP 22.290-255, Brazil
| |
Collapse
|
11
|
Banfalvi G. Janus-Faced Molecules against Plant Pathogenic Fungi. Int J Mol Sci 2021; 22:12323. [PMID: 34830204 PMCID: PMC8623416 DOI: 10.3390/ijms222212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
The high cytotoxicity of the secondary metabolites of mycotoxins is capable of killing microbes and tumour cells alike, similarly to the genotoxic effect characteristic of Janus-faced molecules. The "double-edged sword" effect of several cytotoxins is known, and these agents have, therefore, been utilized only reluctantly against fungal infections. In this review, consideration was given to (a) toxins that could be used against plant and human pathogens, (b) animal models that measure the effect of antifungal agents, (c) known antifungal agents that have been described and efficiently prevent the growth of fungal cells, and (d) the chemical interactions that are characteristic of antifungal agents. The utilization of apoptotic effects against tumour growth by agents that, at the same time, induce mutations may raise ethical issues. Nevertheless, it deserves consideration despite the mutagenic impact of Janus-faced molecules for those patients who suffer from plant pathogenic fungal infections and are older than their fertility age, in the same way that the short-term cytotoxicity of cancer treatment is favoured over the long-term mutagenic effect.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 1 Egyetem Square, 4010 Debrecen, Hungary
| |
Collapse
|
12
|
Ali F, Das S, Hossain TJ, Chowdhury SI, Zedny SA, Das T, Ahmed Chowdhury MN, Uddin MS. Production optimization, stability and oil emulsifying potential of biosurfactants from selected bacteria isolated from oil-contaminated sites. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211003. [PMID: 34659780 PMCID: PMC8511774 DOI: 10.1098/rsos.211003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Oil pollution is of increasing concern for environmental safety and the use of microbial surfactants in oil remediation has become inevitable for their efficacy and ecofriendly nature. In this work, biosurfactants of bacteria isolated from oil-contaminated soil have been characterized. Four potent biosurfactant-producing strains (SD4, SD11, SD12 and SD13) were selected from 27 isolates based on drop collapse assay and emulsification index, and identified as species belonging to Bacillus, Burkholderia, Providencia and Klebsiella, revealed from their 16S rRNA gene-based analysis. Detailed morphological and biochemical characteristics of each selected isolate were determined. Their growth conditions for maximum biosurfactant production were optimized and found quite similar among the four isolates with a pH of 3.0 and temperature 37°C after 6 or 7 days of growth on kerosene. The biosurfactants of SD4, SD11 and SD12 appeared to be glycolipids and that of SD13 a lipopeptide. Emulsification activity of most of the biosurfactants was stable at low and high temperatures (4-100°C), a wide range of pH (2-10) and salt concentrations (2-7% NaCl). Each biosurfactant showed antimicrobial activity against two or more pathogenic bacteria. The biosurfactants were well-capable of emulsifying kerosene, diesel and soya bean, and could efficiently degrade diesel.
Collapse
Affiliation(s)
- Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sharup Das
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Tanim Jabid Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sumaiya Islam Chowdhury
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Subrina Akter Zedny
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
| | | | - Mohammad Seraj Uddin
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|
13
|
Geochemical Control of PAHs by Inflowing River Water to West Nanao Bay, Japan, and Its Influences on Ecological Risk: Small-Scale Changes Observed under Near-Background Conditions at an Enclosed Bay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910310. [PMID: 34639613 PMCID: PMC8508535 DOI: 10.3390/ijerph181910310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), even at low concentrations, have been shown to trigger changes in life cycles and provoke abnormal behaviors in numerous marine organisms. From May 2019 to September 2020, particulate and dissolved PAH concentrations were analyzed on the surface water of West Nanao Bay, Japan, to determinate their levels, emission sources, environmental pathways, and ecological risks at this remote but semi-enclosed bay. The 14 targeted PAHs were analyzed by HPLC-fluorescence detector. Mean total PAH concentrations were lower than 20.0 ng L−1 for most samples. Based on fluoranthene (Flu) to pyrene (Pyr) ([Flu]/[Flu + Pyr]) and benzo[a]anthracene (BaA) to chrysene (Chr) ([BaA]/[BaA + Chr]) isomeric ratios and a varimax rotated PCA, it was established that biomass combustion was the principal source in the particulate phase and that liquid fossil fuel combustion was the principal source in the dissolved phase. From salinity and turbidity distribution, riverine discharges were determined to be the major and continuous transportation pathway of particulate PAHs. It was observed that rain events had a role in the transport of dissolved PAHs. The risk quotients (RQ∑14 PAHs (NCs): 0–84.53) indicated that PAHs represented a very low to low acute environmental risk. The results of this study will contribute to filling the paradigm gap of ecotoxicological studies in remote areas, working as a booster for future in-lab studies of non-lethal implications of endocrine disruptors such as PAHs.
Collapse
|
14
|
Kinouchi H, Sugimoto K, Yamaoka Y, Takikawa H, Takasu K. Oxidative β-Cleavage of Fused Cyclobutanols Leading to Hydrofuran-Fused Polycyclic Aromatic Compounds. J Org Chem 2021; 86:12615-12622. [PMID: 34474562 DOI: 10.1021/acs.joc.1c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Treatment of aryl-fused bicyclo[4.2.0]octanols with an oxidant such as phenyliodine diacetate (PIDA) or hypochlorous acid gave dihydrofuran-containing polycyclic aromatic compounds by selective β-cleavage of the cyclobutanol moiety. Mechanistic studies suggest that the oxygen atom of the hydrofuran ring is incorporated from the hydroxy group of the substrate via intramolecular addition. The oxidative transformation should serve as a new method to prepare functionalized polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Hayate Kinouchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuma Sugimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Takikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
da Silva Junior FC, Felipe MBMC, Castro DEFD, Araújo SCDS, Sisenando HCN, Batistuzzo de Medeiros SR. A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116838. [PMID: 33714059 DOI: 10.1016/j.envpol.2021.116838] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Knowledge of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) has increased over time. Much of this knowledge is about the 16 United States - Environmental Protection Agency (US - EPA) priority PAHs; however, there are other US - EPA non-priority PAHs in the environment, whose toxic potential is underestimated. We conducted a systematic review of in vitro, in vivo, and in silico studies to assess the genotoxicity, mutagenicity, and carcinogenicity of 13 US - EPA non-priority parental PAHs present in the environment. Electronic databases, such as Science Direct, PubMed, Scopus, Google Scholar, and Web of Science, were used to search for research with selected terms without time restrictions. After analysis, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, 249 articles, published between 1946 and 2020, were selected and the quality assessment of these studies was performed. The results showed that 5-methylchrysene (5-MC), 7,12-dimethylbenz[a]anthracene (7,12-DMBA), cyclopenta[cd]pyrene (CPP), and dibenzo[al]pyrene (Db[al]P) were the most studied PAHs. Moreover, 5-MC, 7,12-DMBA, benz[j]aceanthrylene (B[j]A), CPP, anthanthrene (ANT), dibenzo[ae]pyrene (Db[ae]P), and Db[al]P have been reported to cause mutagenic effects and have been being associated with a risk of carcinogenicity. Retene (RET) and benzo[c]fluorene (B[c]F), the least studied compounds, showed evidence of a strong influence on the mutagenicity and carcinogenicity endpoints. Overall, this systematic review provided evidence of the genotoxic, mutagenic, and carcinogenic endpoints of US - EPA non-priority PAHs. However, further studies are needed to improve the future protocols of environmental analysis and risk assessment in severely exposed populations.
Collapse
Affiliation(s)
- Francisco Carlos da Silva Junior
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | | | - Denis Elvis Farias de Castro
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Sinara Carla da Silva Araújo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Herbert Costa Nóbrega Sisenando
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|
16
|
Finnell RH, Caiaffa CD, Kim SE, Lei Y, Steele J, Cao X, Tukeman G, Lin YL, Cabrera RM, Wlodarczyk BJ. Gene Environment Interactions in the Etiology of Neural Tube Defects. Front Genet 2021; 12:659612. [PMID: 34040637 PMCID: PMC8143787 DOI: 10.3389/fgene.2021.659612] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Human structural congenital malformations are the leading cause of infant mortality in the United States. Estimates from the United States Center for Disease Control and Prevention (CDC) determine that close to 3% of all United States newborns present with birth defects; the worldwide estimate approaches 6% of infants presenting with congenital anomalies. The scientific community has recognized for decades that the majority of birth defects have undetermined etiologies, although we propose that environmental agents interacting with inherited susceptibility genes are the major contributing factors. Neural tube defects (NTDs) are among the most prevalent human birth defects and as such, these malformations will be the primary focus of this review. NTDs result from failures in embryonic central nervous system development and are classified by their anatomical locations. Defects in the posterior portion of the neural tube are referred to as meningomyeloceles (spina bifida), while the more anterior defects are differentiated as anencephaly, encephalocele, or iniencephaly. Craniorachischisis involves a failure of the neural folds to elevate and thus disrupt the entire length of the neural tube. Worldwide NTDs have a prevalence of approximately 18.6 per 10,000 live births. It is widely believed that genetic factors are responsible for some 70% of NTDs, while the intrauterine environment tips the balance toward neurulation failure in at risk individuals. Despite aggressive educational campaigns to inform the public about folic acid supplementation and the benefits of providing mandatory folic acid food fortification in the United States, NTDs still affect up to 2,300 United States births annually and some 166,000 spina bifida patients currently live in the United States, more than half of whom are now adults. Within the context of this review, we will consider the role of maternal nutritional status (deficiency states involving B vitamins and one carbon analytes) and the potential modifiers of NTD risk beyond folic acid. There are several well-established human teratogens that contribute to the population burden of NTDs, including: industrial waste and pollutants [e.g., arsenic, pesticides, and polycyclic aromatic hydrocarbons (PAHs)], pharmaceuticals (e.g., anti-epileptic medications), and maternal hyperthermia during the first trimester. Animal models for these teratogens are described with attention focused on valproic acid (VPA; Depakote). Genetic interrogation of model systems involving VPA will be used as a model approach to discerning susceptibility factors that define the gene-environment interactions contributing to the etiology of NTDs.
Collapse
Affiliation(s)
- Richard H. Finnell
- Department of Molecular and Human Genetics and Medicine, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Carlo Donato Caiaffa
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Sung-Eun Kim
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - John Steele
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Xuanye Cao
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Gabriel Tukeman
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Ying Linda Lin
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Robert M. Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Bogdan J. Wlodarczyk
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Study of the Water Quality Index and Polycyclic Aromatic Hydrocarbon for a River Receiving Treated Landfill Leachate. WATER 2020. [DOI: 10.3390/w12102877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rising solid waste production has caused high levels of environmental pollution. Population growth, economic patterns, and lifestyle patterns are major factors that have led to the alarming rate of solid waste production. Generally, solid wastes such as paper, wood, and plastic are disposed into landfills due to its low operation and maintenance costs. However, leachate discharged from landfills could be a problem in surfaces and groundwater if not adequately treated. This study investigated the patterns of the water quality index (WQI) and polycyclic aromatic hydrocarbons (PAH) along Johan River in Perak, Malaysia, which received treated leachate from a nearby landfill. An artificial neural network (ANN) was also applied to predict WQI and PAH concentration of the river. Seven sampling stations were chosen along the river. The stations represented the upstream of leachate discharge, point of leachate discharge, and five locations downstream of the landfill. Sampling was conducted for one year starting July 2018. Physicochemical parameters, namely pH, biological oxygen demand, chemical oxygen demand, ammoniacal nitrogen, total suspended solids, and dissolved oxygen, were used to compute the water quality index (WQI). PAH concentrations were determined by liquid–liquid extraction of water samples followed by an analysis using gas chromatography. Results showed that WQI of Johan River was under Class III where intensive treatment was required to make it suitable for drinking purposes. The highest recorded PAH concentrations were fluoranthene (333.4 ppb) in the dry season and benzo(a) pyrene (93.5 ppb) in the wet season. A correlation coefficient (Rp) for a model prediction based on WQI-ANN and TEC-ANN (toxicity equivalent concentration) in the wet and dry seasons was 0.9915, 0.9431, 0.9999, and 0.9999, respectively. ANN results showed good model performance with Rp ≈ 0.9. This study suggested that ANN is a useful tool for water quality studies.
Collapse
|
18
|
Biomimetic oxidation of benzo[a]pyrene to a quinone metabolite as a cysteine-oxidation mediator on MWCNT-modified electrode surface. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Xu M, Fu L, Zhang J, Wang T, Fan J, Zhu B, Dziugan P, Zhang B, Zhao H. Potential of Inactivated Bifidobacterium Strain in Attenuating Benzo(A)Pyrene Exposure-Induced Damage in Colon Epithelial Cells In Vitro. TOXICS 2020; 8:toxics8010012. [PMID: 32053893 PMCID: PMC7151743 DOI: 10.3390/toxics8010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Long-term exposure to benzo(a)pyrene (BaP) poses a serious genotoxic threat to human beings. This in vitro study investigated the potential of inactivated Bifidobacterium animalis subsp. lactis BI-04 in alleviating the damage caused by BaP in colon epithelial cells. A concentration of BaP higher than 50 μM strongly inhibited the growth of colon epithelial cells. The colon epithelial cells were treated with 50 μM BaP in the presence or absence of inactivated strain BI-04 (~5 × 108 CFU/mL). The BaP-induced apoptosis of the colon epithelial cells was retarded in the presence of B. lactis BI-04 through activation of the PI3K/ AKT signaling pathway, and p53 gene expression was decreased. The presence of the BI-04 strain reduced the intracellular oxidative stress and DNA damage incurred in the colon epithelial cells by BaP treatment due to the enhanced expression of antioxidant enzymes and metabolism-related enzymes (CYP1A1). The data from comet assay, qRT-PCR, and western blot analysis showed that the cytotoxic effects of BaP on colon epithelial cells were largely alleviated because the bifidobacterial strain could bind to this carcinogenic compound. The in vitro study highlights that the consumption of commercial probiotic strain BI-04 might be a promising strategy to mitigate BaP cytotoxicity.
Collapse
Affiliation(s)
- Mengfan Xu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Lili Fu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Junwen Zhang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Tao Wang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Junfeng Fan
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Piotr Dziugan
- Institute of Fermentation Technology & Microbiology, Technical University of Lodz, 90924 Lodz, Poland
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
- Correspondence: (B.Z.); (H.Z.)
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
- Correspondence: (B.Z.); (H.Z.)
| |
Collapse
|
20
|
Temporal Variations of Polycyclic Aromatic Hydrocarbons in the Seawater at Tsukumo Bay, Noto Peninsula, Japan, during 2014–2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020. [DOI: 10.3390/ijerph17030873 10.3390/ijerph18041574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Concentrations of phase-partitioning 13 polycyclic aromatic hydrocarbons (PAHs) in seawater were investigated in the Tsukumo Bay, Noto Peninsula, Japan, during 2014–2018, to improve the understanding of the environmental behavior of PAHs in the coastal areas of the Japan Sea. Total PAH (particulate plus dissolved) concentrations in surface seawater were in the range 0.24–2.20 ng L−1 (mean 0.89 ng L−1), an order of magnitude lower than the mean values observed in the Japan Sea in 2008 and 2010. Although the PAH contamination levels during 2014–2018 were significantly lower than those in the East China Sea, the levels increased from 2014 to 2017 and were maintained at the higher level during 2017–2018. The main sources of particulate and dissolved PAHs during 2014–2018 were combustion products, of which the former were more influenced by liquid fossil-fuel combustion and the latter by biomass or coal combustion. The increase in particulate PAH concentrations in October–December during 2014–2018 was due to the impact of PAH-rich airmasses transported from the East Asian landmass in the northwesterly winter monsoon winds. The increase in dissolved PAH levels during July–September in 2014, 2016, 2017, and 2018 indicates that the Tsukumo Bay is possibly impacted by the PAH-rich summer continental shelf water transported by the Coastal Branch of the Tsushima Warm Current, which flows into the Japan Sea from the East China Sea.
Collapse
|
21
|
Temporal Variations of Polycyclic Aromatic Hydrocarbons in the Seawater at Tsukumo Bay, Noto Peninsula, Japan, during 2014-2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030873. [PMID: 32019251 PMCID: PMC7037195 DOI: 10.3390/ijerph17030873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/17/2020] [Accepted: 01/25/2020] [Indexed: 12/04/2022]
Abstract
Concentrations of phase-partitioning 13 polycyclic aromatic hydrocarbons (PAHs) in seawater were investigated in the Tsukumo Bay, Noto Peninsula, Japan, during 2014–2018, to improve the understanding of the environmental behavior of PAHs in the coastal areas of the Japan Sea. Total PAH (particulate plus dissolved) concentrations in surface seawater were in the range 0.24–2.20 ng L−1 (mean 0.89 ng L−1), an order of magnitude lower than the mean values observed in the Japan Sea in 2008 and 2010. Although the PAH contamination levels during 2014–2018 were significantly lower than those in the East China Sea, the levels increased from 2014 to 2017 and were maintained at the higher level during 2017–2018. The main sources of particulate and dissolved PAHs during 2014–2018 were combustion products, of which the former were more influenced by liquid fossil-fuel combustion and the latter by biomass or coal combustion. The increase in particulate PAH concentrations in October–December during 2014–2018 was due to the impact of PAH-rich airmasses transported from the East Asian landmass in the northwesterly winter monsoon winds. The increase in dissolved PAH levels during July–September in 2014, 2016, 2017, and 2018 indicates that the Tsukumo Bay is possibly impacted by the PAH-rich summer continental shelf water transported by the Coastal Branch of the Tsushima Warm Current, which flows into the Japan Sea from the East China Sea.
Collapse
|
22
|
Phale PS, Shah BA, Malhotra H. Variability in Assembly of Degradation Operons for Naphthalene and its derivative, Carbaryl, Suggests Mobilization through Horizontal Gene Transfer. Genes (Basel) 2019; 10:genes10080569. [PMID: 31357661 PMCID: PMC6723655 DOI: 10.3390/genes10080569] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 01/14/2023] Open
Abstract
In the biosphere, the largest biological laboratory, increased anthropogenic activities have led microbes to evolve and adapt to the changes occurring in the environment. Compounds, specifically xenobiotics, released due to such activities persist in nature and undergo bio-magnification in the food web. Some of these compounds act as potent endocrine disrupters, mutagens or carcinogens, and therefore their removal from the environment is essential. Due to their persistence, microbial communities have evolved to metabolize them partially or completely. Diverse biochemical pathways have evolved or been assembled by exchange of genetic material (horizontal gene transfer) through various mobile genetic elements like conjugative and non-conjugative plasmids, transposons, phages and prophages, genomic islands and integrative conjugative elements. These elements provide an unlimited opportunity for genetic material to be exchanged across various genera, thus accelerating the evolution of a new xenobiotic degrading phenotype. In this article, we illustrate examples of the assembly of metabolic pathways involved in the degradation of naphthalene and its derivative, Carbaryl, which are speculated to have evolved or adapted through the above-mentioned processes.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai-400 076, India.
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai-400 076, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai-400 076, India
| |
Collapse
|
23
|
Starling MCVM, Amorim CC, Leão MMD. Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. JOURNAL OF HAZARDOUS MATERIALS 2019; 372:17-36. [PMID: 29728279 DOI: 10.1016/j.jhazmat.2018.04.043] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
This is the first review to present data obtained in Brazil over the years regarding contaminants of emerging concern (CEC) and to contrast it with contamination in other countries. Data gathered indicated that caffeine, paracetamol, atenolol, ibuprofen, cephalexin and bisphenol A occur in the μg L-1 range in streams near urban areas. While endocrine disruptors are frequently detected in surface waters, highest concentrations account for 17α-ethynylestradiol and 17β-estradiol. Organochlorine pesticides are the most frequently found and persistent in sediments in agricultural regions. Moreover, in tropical agricultural fields, pesticide volatilization and its implications to ecosystem protection must be better investigated. The reality represented here for Brazil may be transposed to other developing countries due to similarities related to primitive basic sanitation infrastructure and economic and social contexts, which contribute to continuous environmental contamination by CEC. Municipal wastewater treatment facilities in Brazil, treat up to the secondary stage and lead to limited CEC removal. This is also true for other nations in Latin America, such as Argentina, Colombia and Mexico. Therefore, it is an urgent priority to improve sanitation infrastructure and, then, the implementation of tertiary treatment shall be imposed.
Collapse
Affiliation(s)
- Maria Clara V M Starling
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901
| | - Camila C Amorim
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901.
| | - Mônica Maria D Leão
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901
| |
Collapse
|
24
|
Nagato EG, Makino F, Nakase H, Yoshida S, Hayakawa K. Improvements in polycyclic aromatic hydrocarbon contamination in the Japan Sea: An interannual survey from 2008 to 2014. MARINE POLLUTION BULLETIN 2019; 138:333-340. [PMID: 30660282 DOI: 10.1016/j.marpolbul.2018.11.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/09/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
The concentrations and distributions of polycyclic aromatic hydrocarbons (PAHs) were examined from 2008 to 2014 in the surface waters of the Japan Sea region. PAH concentrations decreased in the Japan Sea and Tsushima Strait; consistent with improvements in atmospheric pollution from Japan. There were no changes in the Korean Strait, suggesting a continual influx of contamination separate from the Japan Sea. At all sites, PAHs in the dissolved phase were greater than in the particulate phase. A separate survey in 2011 studied whether contamination in the Kuroshio current accounted for the contamination in the Tsushima strait and Japan Sea. PAH concentrations increased as waters moved into the Tsushima strait and the Japan Sea, suggesting inputs were local and not from the Kuroshio current. This was however confounded by the greater influence of particulate phase PAHs, which are likely deposited by seasonal desert storms.
Collapse
Affiliation(s)
- Edward G Nagato
- Institute of Nature and Environmental Technology, Kanazawa University; Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Fumiya Makino
- Institute of Nature and Environmental Technology, Kanazawa University; Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hisatoshi Nakase
- Institute of Nature and Environmental Technology, Kanazawa University; Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shota Yoshida
- Institute of Nature and Environmental Technology, Kanazawa University; Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University; Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
25
|
Tarafdar A, Chawda S, Sinha A. Health Risk Assessment from Polycyclic Aromatic Hydrocarbons (PAHs) Present in Dietary Components: A Meta-analysis on a Global Scale. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1492426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Republic of Korea
| | - Shruti Chawda
- Department of Environment, Headquarters, Western Coalfields Ltd, Nagpur, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad
| |
Collapse
|
26
|
TiO₂-Based Hybrid Nanocomposites Modified by Phosphonate Molecules as Selective PAH Adsorbents. Molecules 2018; 23:molecules23113046. [PMID: 30469386 PMCID: PMC6278484 DOI: 10.3390/molecules23113046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/11/2018] [Accepted: 11/17/2018] [Indexed: 12/01/2022] Open
Abstract
A robust sol-gel process was developed for the synthesis of surface-functionalized titania nanocrystallites bearing unsaturated groups starting from molecular heteroleptic single-source precursors. Molecules and nanomaterials were thoroughly characterized by multinuclear liquid and solid-state nuclear magnetic resonance (NMR), infra-red (FT-IR, DRIFT) spectroscopies. Nitrogen adsorption-desorption (BET), thermogravimetric (TG) and elemental analyses demonstrated the reliability and the fine tuning of the surface functionalization in terms of ratio TiO2:ligand. The as-prepared materials were used as nano-adsorbents to remove mixture of 16 polycyclic aromatic hydrocarbon (PAHs) from aqueous solutions. Adsorption kinetic experiments were carried out for 24 h in solutions of one PAH [benzo(a)pyrene, 220 ppb] and of a mixture of sixteen ones [220 ppb for each PAH]. Most kinetic data best fitted the pseudo-second order model. However, in PAHs mixture, a competition process took place during the first hours leading to a remarkable high selectivity between light and heavy PAHs. This selectivity could be fine-tuned depending on the nature of the unsaturated group of the phosphonate framework and on the nanomaterial textures.
Collapse
|
27
|
Vagge G, Cutroneo L, Castellano M, Canepa G, Bertolotto RM, Capello M. The effects of dredging and environmental conditions on concentrations of polycyclic aromatic hydrocarbons in the water column. MARINE POLLUTION BULLETIN 2018; 135:704-713. [PMID: 30301089 DOI: 10.1016/j.marpolbul.2018.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Sediment dredging can cause damage to the marine environment due to mobilization of sediments and contaminants. The effects of dredging and boundary environmental conditions on the concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in water were evaluated during dredging of the Oil Port of Genoa-Multedo (Italy). Results showed that turbidity and PAH concentrations increased in the water during dredging. However, the scenario was complex due to the high number of interacting physical-chemical factors influencing PAH concentrations and transport. Due to these, PAH distribution is different in water, where low-molecular-weight PAHs were predominant (maximum concentration 0.105 μg L-1), and in bottom sediments, where high-molecular-weight PAHs had the highest concentrations (from 299.3 to 1256.5 ng g-1). Moreover, mainly during dredging the PAH concentrations in water were significantly higher inside than outside the port as a consequence of the lower dynamics within the port basin. Turbidity was the main parameter related to PAH concentrations.
Collapse
Affiliation(s)
- Greta Vagge
- DISTAV, University of Genoa, 26 Corso Europa, Genoa I-16132, Italy
| | - Laura Cutroneo
- DISTAV, University of Genoa, 26 Corso Europa, Genoa I-16132, Italy
| | | | - Giuseppe Canepa
- Port System Authority of the Western Ligurian Sea, Port of Genoa, Palazzo San Giorgio, 2 Via della Mercanzia, Genoa I-16123, Italy
| | - Rosa Maria Bertolotto
- ARPAL, Ligurian Environmental Protection Agency, 8 Via Bombrini, Genoa I-16149, Italy
| | - Marco Capello
- DISTAV, University of Genoa, 26 Corso Europa, Genoa I-16132, Italy.
| |
Collapse
|
28
|
Alves CA, Vicente AM, Custódio D, Cerqueira M, Nunes T, Pio C, Lucarelli F, Calzolai G, Nava S, Diapouli E, Eleftheriadis K, Querol X, Musa Bandowe BA. Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM 2.5 from Southern European cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:494-504. [PMID: 28395264 DOI: 10.1016/j.scitotenv.2017.03.256] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 05/25/2023]
Abstract
Atmospheric particulate matter (PM2.5) samples were collected over two one month periods during winter and summer in three Southern European cities (Oporto - traffic site, Florence - urban background, Athens - suburban). Concentrations of 27 polycyclic aromatic hydrocarbons (PAHs), 15 nitro-PAHs (NPAHs), 15 oxygenated-PAHs (OPAHs) and 4 azaarenes (AZAs) were determined. On average, the winter-summer concentrations of ΣPAHs were 16.3-5.60, 7.75-3.02 and 3.44-0.658ngm-3 in Oporto, Florence and Athens, respectively. The corresponding concentrations of ΣNPAHs were 15.8-9.15, 10.9-3.36 and 15.9-2.73ngm-3, whilst ΣOPAHs varied in the ranges 41.8-19.0, 11.3-3.10 and 12.6-0.704ngm-3. Concentrations of ΣAZAs were always below 0.5ngm-3. Irrespective of the city, the dominant PAHs were benzo[b+j+k]fluoranthene, retene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene. The most abundant OPAH in all cities was 1,8-naphthalic anhydride, whereas 5-nitroacenaphthene was the prevailing NPAH. The ΣOPAHs/ΣPAHs and ΣNPAHs/ΣPAHs were higher in summer than in winter, suggesting increasing formation of derivatives by photochemical degradation of PAHs. Molecular diagnostic ratios suggested that, after traffic, biomass burning was the dominant emission source. Apart from being influenced by seasonal sources, the marked differences between winter and summer may indicate that these diagnostic ratios are particularly sensitive to photodegradation, and thus should be applied and interpreted cautiously. The lifetime excess cancer risk from inhalation was, in part, attributable to PAH derivatives, acclaiming the need to include these compounds in regular monitoring programmes. On average, 206, 88 and 26 cancer cases per million people were estimated, by the World Health Organisation method, for the traffic-impacted, urban background and suburban atmospheres of Oporto, Florence and Athens, respectively.
Collapse
Affiliation(s)
- Célia A Alves
- Centre for Environmental and Marine Studies, Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana M Vicente
- Centre for Environmental and Marine Studies, Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Danilo Custódio
- Centre for Environmental and Marine Studies, Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mário Cerqueira
- Centre for Environmental and Marine Studies, Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Nunes
- Centre for Environmental and Marine Studies, Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Casimiro Pio
- Centre for Environmental and Marine Studies, Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Franco Lucarelli
- Dep. of Physics and Astronomy, Università di Firenze and INFN-Firenze, Sesto Fiorentino 50019, Italy
| | - Giulia Calzolai
- Dep. of Physics and Astronomy, Università di Firenze and INFN-Firenze, Sesto Fiorentino 50019, Italy
| | - Silvia Nava
- Dep. of Physics and Astronomy, Università di Firenze and INFN-Firenze, Sesto Fiorentino 50019, Italy
| | - Evangelia Diapouli
- National Centre for Scientific Research (NCSR) "Demokritos", 15341 Ag. Paraskevi, Attiki, Greece
| | | | - Xavier Querol
- Institute of Environmental Assessment and Water Research, Spanish Research Council, C/Jordi Girona, 08034 Barcelona, Spain
| | - Benjamin A Musa Bandowe
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany; Organic Geochemistry Unit (OGU), School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; Institute of Geography & Oeschger Centre for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| |
Collapse
|
29
|
Gui EM, Lu T, Teo TL, Cheow PS, Lee TK. Optimisation of extraction methods and quantification of benzo[a]pyrene and benz[a]anthracene in yerba maté tea by isotope dilution mass spectrometry. Anal Bioanal Chem 2017; 409:6069-6080. [PMID: 28808779 DOI: 10.1007/s00216-017-0544-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
A gas chromatography-isotope dilution mass spectrometry (GC-IDMS) technique was developed for the quantification of two heavy polyaromatic hydrocarbons (PAHs), benz[a]anthracene and benzo[a]pyrene, in yerba maté tea (maté). The optimisation of two extraction methods, namely liquid-liquid extraction and accelerated solvent extraction, was carried out. Both optimised methods were validated using a certified reference material of fine dust and the results were within the expanded uncertainties at 95% confidence level. Recoveries of 99.2-106.7% with RSD of measurements of 1.1-2.3% were achieved for benz[a]anthracene. Recoveries of 95.7-101.9% with RSD of measurements of 0.4-1.4% were achieved for benzo[a]pyrene. The validated methods were applied for the extraction of benz[a]anthracene and benzo[a]pyrene in maté powder from NIST. A metrological approach was undertaken to ensure the traceability of measurement results. The uncertainties associated with the results were rigorously evaluated and also reported herein. Graphical abstract Quantification of benz[a]anthracene and benzo[a]pyrene using IDMS.
Collapse
Affiliation(s)
- Ee Mei Gui
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| | - Ting Lu
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| | - Tang Lin Teo
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore.
| | - Pui Sze Cheow
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| | - Tong Kooi Lee
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| |
Collapse
|
30
|
Chawda S, Tarafdar A, Sinha A, Mishra BK. Profiling and Health Risk Assessment of PAHs Content in Tandoori and Tawa Bread from India. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1349679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shruti Chawda
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India
| | - Abhrajyoti Tarafdar
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India
| | - Brijesh Kumar Mishra
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India
| |
Collapse
|
31
|
Sakkos JK, Mutlu BR, Wackett LP, Aksan A. Adsorption and Biodegradation of Aromatic Chemicals by Bacteria Encapsulated in a Hydrophobic Silica Gel. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26848-26858. [PMID: 28719174 DOI: 10.1021/acsami.7b06791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An adsorbent silica biogel material was developed via silica gel encapsulation of Pseudomonas sp. NCIB 9816-4, a bacterium that degrades a broad spectrum of aromatic pollutants. The adsorbent matrix was synthesized using silica precursors methyltrimethoxysilane and tetramethoxysilane to maximize the adsorption capacity of the matrix while maintaining a highly networked and porous microstructure. The encapsulated bacteria enhanced the removal rate and capacity of the matrix for an aromatic chemical mixture. Repeated use of the material over four cycles was conducted to demonstrate that the removal capacity could be maintained with combined adsorption and biodegradation. The silica biogel can thus be used extensively without the need for disposal, as a result of continuous biodegradation by the encapsulated bacteria. However, an inverse trend was observed with the ratio of biodegradation to adsorption as a function of log Kow, suggesting increasing mass-transport limitation for the most hydrophobic chemicals used (log Kow > 4).
Collapse
Affiliation(s)
| | | | - Lawrence P Wackett
- The BioTechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Alptekin Aksan
- The BioTechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| |
Collapse
|
32
|
Higher Meat Intake Is Positively Associated With Higher Risk of Developing Pancreatic Cancer in an Age-Dependent Manner and Are Modified by Plasma Antioxidants: A Prospective Cohort Study (EPIC-Norfolk) Using Data From Food Diaries. Pancreas 2017; 46:672-678. [PMID: 28375948 PMCID: PMC5400064 DOI: 10.1097/mpa.0000000000000819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Carcinogens in meat may be involved in pancreatic carcinogenesis. Meat intake was investigated using 7-day food diaries and according to factors potentially influencing carcinogenesis: age, cooking method, and antioxidants. METHODS Twenty-three thousand one hundred thirty-three participants in the European Prospective Investigation of Cancer-Norfolk cohort study completed 7-day food diaries and were followed up. Meat intakes were compared with controls and hazard ratios (HRs) calculated. RESULTS Eighty-six participants developed pancreatic cancer. If younger than 60 years at recruitment, all quintiles of red meat (Q1 vs Q5; HR, 4.62; 95% confidence interval [CI], 0.96-22.30; P = 0.06) and processed meat (Q1 vs Q5; HR, 3.73; 95% CI, 0.95-14.66; P = 0.06) were nonsignificantly positively associated, with significant trends across quintiles (HRtrend, 1.33; 95% CI, 1.01-1.77 and HRtrend, 1.37; 95% CI, 1.04-1.82, respectively). Red meat's effect was attenuated by higher, but not lower, plasma vitamin C (HR, 1.06; 95% CI, 0.69-1.63 vs HR, 1.84; 95% CI, 1.09-3.14) and for processed meat (HR, 1.07; 95% CI, 0.71-1.63 vs HR, 1.80; 95% CI, 1.10-2.96). A nonstatistically significant risk was observed for high-temperature cooking methods in younger people (HR, 4.68; 95% CI, 0.63-34.70; P = 0.13). CONCLUSIONS Red and processed meats may be involved in pancreatic carcinogenesis.
Collapse
|
33
|
Kikuzuki R, Sato H, Fujiwara A, Takahashi T, Ogiwara Y, Sugiura M. Evaluation of the RBC Pig-a assay and the PIGRET assay using benzo[a]pyrene in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:86-90. [PMID: 27931821 DOI: 10.1016/j.mrgentox.2016.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022]
Abstract
The red blood cell (RBC) Pig-a assay has the potential to detect the in vivo mutagenicity of chemicals. Recently, use of the Pig-a assay with reticulocytes (the PIGRET assay) reportedly enabled the in vivo mutagenicity of chemicals to be detected earlier than using the RBC Pig-a assay. To evaluate whether the PIGRET assay is useful and effective as a short-term test, compared with the RBC Pig-a assay, we performed both assays using benzo[a]pyrene (BP), which is a well-known mutagen. BP was used to dose 8-week-old male rats orally at 0, 75.0, 150, and 300mg/kg administered as a single administration. Peripheral blood samples were then collected on days 0, 7, 14, and 28 after treatment and were used in both assays. In the treatment groups receiving 150mg/kg of BP or more, both the RBC Pig-a assay and the PIGRET assay detected the in vivo mutagenicity of BP. In the 300mg/kg treatment group, in which a significant increase in the mutant frequency (MF) was observed at all the sampling points using both the RBC Pig-a assay and the PIGRET assay, the reticulocyte (RET) Pig-a MF was higher than the RBC Pig-a MF on days 7 and 14 after treatment; nevertheless, the negative control RET Pig-a MF was comparable to the negative control RBC Pig-a MF. In addition, the RET Pig-a MF began to increase after day 7 and reached a maximum value on day 14 after treatment, whereas the RBC Pig-a MF increased continuously from day 7 until day 28 after treatment. These results indicate that the PIGRET assay has a higher sensitivity than the RBC Pig-a assay and that the PIGRET assay is useful for the earlier detection of the in vivo mutagenicity of chemicals, compared with the RBC Pig-a assay.
Collapse
Affiliation(s)
- Ryuta Kikuzuki
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan.
| | - Haruka Sato
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Ai Fujiwara
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Tomoko Takahashi
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Yosuke Ogiwara
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Mihoko Sugiura
- Taisho Pharmaceutical, Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| |
Collapse
|
34
|
Kang HJ, Lee SY, Kwon JH. Physico-chemical properties and toxicity of alkylated polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:200-207. [PMID: 27037474 DOI: 10.1016/j.jhazmat.2016.03.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/12/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
Crude oil and refined petroleum products contain many polycyclic and heterocyclic aromatic hydrocarbons, in particular, alkylated PAHs. Although alkylated PAHs are found in significantly higher quantities than their corresponding unsubstituted PAHs, the most studies on the physico-chemical properties and toxicities of these compounds have been conducted on unsubstituted PAHs. In this study, we measured crucial physico-chemical properties (i.e., water solubility, partition coefficients between polydimethylsiloxane and water (KPDMSw), and partition coefficient between liposomes and water (Klipw)) of selected alkylated PAHs, and evaluated their toxicity using the luminescence inhibition of Aliivibrio fischeri and growth inhibition of Raphidocelis subcapitata. In general, the logarithms of these properties for alkylated PAHs showed good linear correlations with log Kow, as did those for unsubstituted PAHs. Changes in molecular symmetry on the introduction of alkyl groups on aromatic ring structure significantly altered water solubility. The inhibition of bacterial luminescence and algal growth by alkylated PAHs can be explained well by the baseline toxicity hypothesis, and good linear relationships between log Kow or log Klipw and log (1/EC50) were found.
Collapse
Affiliation(s)
- Hyun-Joong Kang
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841, Republic of Korea
| | - So-Young Lee
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841, Republic of Korea.
| |
Collapse
|
35
|
Mutlu BR, Sakkos JK, Yeom S, Wackett LP, Aksan A. Silica ecosystem for synergistic biotransformation. Sci Rep 2016; 6:27404. [PMID: 27264916 PMCID: PMC4893658 DOI: 10.1038/srep27404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/18/2016] [Indexed: 01/07/2023] Open
Abstract
Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production, and was then used to maximize the biotransformation rate of the system.
Collapse
Affiliation(s)
- Baris R Mutlu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan K Sakkos
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sujin Yeom
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Alptekin Aksan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.,BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
36
|
Sakkos JK, Kieffer DP, Mutlu BR, Wackett LP, Aksan A. Engineering of a silica encapsulation platform for hydrocarbon degradation using Pseudomonas sp. NCIB 9816-4. Biotechnol Bioeng 2015; 113:513-21. [PMID: 26332745 DOI: 10.1002/bit.25821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/13/2015] [Accepted: 08/23/2015] [Indexed: 11/07/2022]
Abstract
Industrial application of encapsulated bacteria for biodegradation of hydrocarbons in water requires mechanically stable materials. A silica gel encapsulation method was optimized for Pseudomonas sp. NCIB 9816-4, a bacterium that degrades more than 100 aromatic hydrocarbons. The design process focused on three aspects: (i) mechanical property enhancement; (ii) gel cytocompatibility; and (iii) reduction of the diffusion barrier in the gel. Mechanical testing indicated that the compressive strength at failure (σf ) and elastic modulus (E) changed linearly with the amount of silicon alkoxide used in the gel composition. Measurement of naphthalene biodegradation by encapsulated cells indicated that the gel maintained cytocompatibility at lower levels of alkoxide. However, significant loss in activity was observed due to methanol formation during hydrolysis at high alkoxide concentrations, as measured by FTIR spectroscopy. The silica gel with the highest amount of alkoxide (without toxicity from methanol) had a biodegradation rate of 285 ± 42 nmol/L-s, σf = 652 ± 88 kPa, and E = 15.8 ± 2.0 MPa. Biodegradation was sustained for 1 month before it dropped below 20% of the initial rate. In order to improve the diffusion through the gel, polyvinyl alcohol (PVA) was used as a porogen and resulted in a 48 ± 19% enhancement in biodegradation, but it impacted the mechanical properties negatively. This is the first report studying how the silica composition affects biodegradation of naphthalene by Pseudomonas sp. NCIB 9816-4 and establishes a foundation for future studies of aromatic hydrocarbon biodegradation for industrial application.
Collapse
Affiliation(s)
- Jonathan K Sakkos
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, Minnesota, 55455
| | - Daniel P Kieffer
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Baris R Mutlu
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, Minnesota, 55455
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota
| | - Lawrence P Wackett
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Alptekin Aksan
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, Minnesota, 55455.
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota.
| |
Collapse
|
37
|
Wang H, Zhao X, Meng W, Wang P, Wu F, Tang Z, Han X, Giesy JP. Cetyltrimethylammonium Bromide-Coated Fe3O4 Magnetic Nanoparticles for Analysis of 15 Trace Polycyclic Aromatic Hydrocarbons in Aquatic Environments by Ultraperformance, Liquid Chromatography With Fluorescence Detection. Anal Chem 2015; 87:7667-75. [DOI: 10.1021/acs.analchem.5b01077] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Wang
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College
of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaoli Zhao
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Meng
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peifang Wang
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Fengchang Wu
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhi Tang
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Han
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - John P. Giesy
- Department
of Veterinary Biomedical Science and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| |
Collapse
|
38
|
Wang B, Jin L, Ren A, Yuan Y, Liu J, Li Z, Zhang L, Yi D, Wang LL, Zhang Y, Wang X, Tao S, Finnell R. Levels of polycyclic aromatic hydrocarbons in maternal serum and risk of neural tube defects in offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:588-96. [PMID: 25488567 PMCID: PMC4291766 DOI: 10.1021/es503990v] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 05/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, and have been reported to be a risk factor for human neural tube defects (NTDs). We investigated the relationship between PAH concentrations in maternal serum and NTD risk in offspring using a case-control study design, and explored the link between PAH concentrations to household energy usage characteristics and life styles. One hundred and seventeen women who had NTD-affected pregnancies (cases) and 121 women who delivered healthy infants (controls) were recruited in Northern China. Maternal blood samples were collected at pregnancy termination or at delivery. Twenty-seven PAHs were measured by gas chromatography-mass spectrometry. The concentrations of 13 individual PAHs detected were significantly higher in the cases than in the controls. Clear dose-response relationships between concentrations of most individual PAHs and the risk of total NTDs or subtypes were observed, even when potential covariates were adjusted for. High-molecular-weight PAHs (H-PAHs) showed higher risk than low-molecular-weight PAHs (L-PAHs). No associations between PAH concentrations and indoor life styles and energy usage characteristics were observed. It was concluded that maternal exposure to PAHs was associated with an increased risk of NTDs, and H-PAHs overall posed a higher risk for NTDs than L-PAHs.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Reproductive
and Child Health/Ministry of Health Key Laboratory of Reproductive
Health, School of Public Health, Peking University, Beijing 100191, People’s Republic
of China
| | - Lei Jin
- Institute of Reproductive
and Child Health/Ministry of Health Key Laboratory of Reproductive
Health, School of Public Health, Peking University, Beijing 100191, People’s Republic
of China
| | - Aiguo Ren
- Institute of Reproductive
and Child Health/Ministry of Health Key Laboratory of Reproductive
Health, School of Public Health, Peking University, Beijing 100191, People’s Republic
of China
- Aiguo
Ren. Phone: +86-10-82801140. Fax: +86-10-82801141. E-mail:
| | - Yue Yuan
- Institute of Reproductive
and Child Health/Ministry of Health Key Laboratory of Reproductive
Health, School of Public Health, Peking University, Beijing 100191, People’s Republic
of China
| | - Jufen Liu
- Institute of Reproductive
and Child Health/Ministry of Health Key Laboratory of Reproductive
Health, School of Public Health, Peking University, Beijing 100191, People’s Republic
of China
| | - Zhiwen Li
- Institute of Reproductive
and Child Health/Ministry of Health Key Laboratory of Reproductive
Health, School of Public Health, Peking University, Beijing 100191, People’s Republic
of China
| | - Le Zhang
- Institute of Reproductive
and Child Health/Ministry of Health Key Laboratory of Reproductive
Health, School of Public Health, Peking University, Beijing 100191, People’s Republic
of China
| | - Deqing Yi
- Institute of Reproductive
and Child Health/Ministry of Health Key Laboratory of Reproductive
Health, School of Public Health, Peking University, Beijing 100191, People’s Republic
of China
| | - Lin-lin Wang
- Institute of Reproductive
and Child Health/Ministry of Health Key Laboratory of Reproductive
Health, School of Public Health, Peking University, Beijing 100191, People’s Republic
of China
| | - Yali Zhang
- Institute of Reproductive
and Child Health/Ministry of Health Key Laboratory of Reproductive
Health, School of Public Health, Peking University, Beijing 100191, People’s Republic
of China
| | - Xilong Wang
- Laboratory for
Earth Surface Processes, College of Urban and Environmental
Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Shu Tao
- Laboratory for
Earth Surface Processes, College of Urban and Environmental
Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Richard
H. Finnell
- Institute of Reproductive
and Child Health/Ministry of Health Key Laboratory of Reproductive
Health, School of Public Health, Peking University, Beijing 100191, People’s Republic
of China
- Dell Pediatric Research
Institute, Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas 78723, United States
| |
Collapse
|
39
|
Alija AJ, Bajraktari ID, Muharremi H, Bresgen N, Eckl PM. Effects of pollutants from power plants in Kosova on genetic loads of Drosophila melanogaster. Toxicol Ind Health 2014; 32:1310-7. [PMID: 25501255 DOI: 10.1177/0748233714558083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been reported by the Ministry of Environment in Kosova that particle emissions from one of the units of the coal-fired power plants (Kosova A) in Kastriot/Obiliq were exceeding the European standard by some 74 times. Besides the particle emission, there is also release of sulphur dioxide, mono-nitrogen oxide (NOx), carbon monoxide, carbon dioxide, organic compounds and heavy metals. In addition, there is also release of heavy metals and organic compounds from a nearby solid waste dumpsite. Together, they are considered to be responsible for the increased health problems of the population living in the vicinity.To study the genetic effects of these emissions we focused on the genetic load, that is, recessive mutations that affect the fitness of their carriers, of exposed wild living Drosophila melanogaster The effects of ash from the dumpsite on the other hand were investigated upon feeding the ash with the nutrient medium. Our results revealed that the D. melanogaster population from the Kastriot/Obiliq area carries a high genetic load of 54.7%. Drosophila fed with the nutrient medium containing ash in a concentration of 1% carried a genetic load of 37.1%, whilst increasing concentrations (2% and 3% of ash) led to higher genetic loads of 68.7% and 67.4%, respectively.
Collapse
Affiliation(s)
- Avdulla J Alija
- Department of Biology, University of Prishtina, Prishtina, Kosova
| | | | | | - Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Peter M Eckl
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
40
|
Morreall J, Limpose K, Sheppard C, Kow YW, Werner E, Doetsch PW. Inactivation of a common OGG1 variant by TNF-alpha in mammalian cells. DNA Repair (Amst) 2014; 26:15-22. [PMID: 25534136 DOI: 10.1016/j.dnarep.2014.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species threaten genomic integrity by inducing oxidative DNA damage. One common form of oxidative DNA damage is the mutagenic lesion 8-oxoguanine (8-oxodG). One driver of oxidative stress that can induce 8-oxodG is inflammation, which can be initiated by the cytokine tumor necrosis factor alpha (TNF-α). Oxidative DNA damage is primarily repaired by the base excision repair pathway, initiated by glycosylases targeting specific DNA lesions. 8-oxodG is excised by 8-oxoguanine glycosylase 1 (OGG1). A common Ogg1 allelic variant is S326C-Ogg1, prevalent in Asian and Caucasian populations. S326C-Ogg1 is associated with various forms of cancer, and is inactivated by oxidation. However, whether oxidative stress caused by inflammatory cytokines compromises OGG1 variant repair activity remains unknown. We addressed whether TNF-α causes oxidative stress that both induces DNA damage and inactivates S326C-OGG1 via cysteine 326 oxidation. In mouse embryonic fibroblasts, we found that S326C-OGG1 was inactivated only after exposure to H2O2 or TNF-α. Treatment with the antioxidant N-acetylcysteine prior to oxidative stress rescued S326C-OGG1 activity, demonstrated by in vitro and cellular repair assays. In contrast, S326C-OGG1 activity was unaffected by potassium bromate, which induces oxidative DNA damage without causing oxidative stress, and presumably cysteine oxidation. This study reveals that Cys326 is vulnerable to oxidation that inactivates S326C-OGG1. Physiologically relevant levels of TNF-α simultaneously induce 8-oxodG and inactivate S326C-OGG1. These results suggest a mechanism that could contribute to increased risk of cancer among S326C-Ogg1 homozygous individuals.
Collapse
Affiliation(s)
- Jordan Morreall
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA; Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, 30322, USA
| | - Kristin Limpose
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, USA
| | - Clayton Sheppard
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yoke Wah Kow
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Erica Werner
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA; Emory Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
41
|
Dasgupta S, Cao A, Mauer B, Yan B, Uno S, McElroy A. Genotoxicity of oxy-PAHs to Japanese medaka (Oryzias latipes) embryos assessed using the comet assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13867-13876. [PMID: 24510601 DOI: 10.1007/s11356-014-2586-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have long been recognized as important environmental toxicants. Despite a plethora of information on the fate and effects of parent PAHs, relatively little is known about the environmental fate and toxicity of ketone- and quinone-substituted PAH oxidation products (termed oxy-PAHs), particularly in the aquatic environment. This study begins to fill that gap using embryos of the Japanese medaka (Oryzias latipes) as a model species. The genotoxic potential of two environmentally relevant oxy-PAHs, acenaphthenequinone and 7,12-benz[a]anthracenquinone, was assessed using the comet assay. We found that both oxy-PAHs could cause significant increases in DNA damage after only 48 h of exposure at the lowest concentrations tested (5 μg/L). Comparisons of the genotoxic potential between these oxy-PAHs and their corresponding parent PAHs (acenaphthene and benz[a]anthracene) and a well-known mutagenic PAH, benzo[a]pyrene, indicated similar potencies among all five of these compounds, particularly after longer (7 day) exposures. This study demonstrates the mutagenic potential of oxy-PAHs to an in vivo fish embryo model and points out the need for further study of their environmental occurrence and biologic effects.
Collapse
Affiliation(s)
- Subham Dasgupta
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | | | | | | | | | | |
Collapse
|
42
|
Use of silica-encapsulated Pseudomonas sp. strain NCIB 9816-4 in biodegradation of novel hydrocarbon ring structures found in hydraulic fracturing waters. Appl Environ Microbiol 2014; 80:4968-76. [PMID: 24907321 DOI: 10.1128/aem.01100-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The most problematic hydrocarbons in hydraulic fracturing (fracking) wastewaters consist of fused, isolated, bridged, and spiro ring systems, and ring systems have been poorly studied with respect to biodegradation, prompting the testing here of six major ring structural subclasses using a well-characterized bacterium and a silica encapsulation system previously shown to enhance biodegradation. The direct biological oxygenation of spiro ring compounds was demonstrated here. These and other hydrocarbon ring compounds have previously been shown to be present in flow-back waters and waters produced from hydraulic fracturing operations. Pseudomonas sp. strain NCIB 9816-4, containing naphthalene dioxygenase, was selected for its broad substrate specificity, and it was demonstrated here to oxidize fundamental ring structures that are common in shale-derived waters but not previously investigated with this or related enzymes. Pseudomonas sp. NCIB 9816-4 was tested here in the presence of a silica encasement, a protocol that has previously been shown to protect bacteria against the extremes of salinity present in fracking wastewaters. These studies demonstrate the degradation of highly hydrophobic compounds by a silica-encapsulated model bacterium, demonstrate what it may not degrade, and contribute to knowledge of the full range of hydrocarbon ring compounds that can be oxidized using Pseudomonas sp. NCIB 9816-4.
Collapse
|
43
|
Rogowska J, Kudłak B, Tsakovski S, Wolska L, Simeonov V, Namieśnik J. Novel approach to ecotoxicological risk assessment of sediments cores around the shipwreck by the use of self-organizing maps. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:239-246. [PMID: 24726935 DOI: 10.1016/j.ecoenv.2014.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
Marine and coastal pollution plays an increasingly important role due to recent severe accidents which drew attention to the consequences of oil spills causing widespread devastation of marine ecosystems. All these problems cannot be solved without conducting environmental studies in the area of possible oil spill and performing chemometric evaluation of the data obtained looking for similar patterns among pollutants and optimize environmental monitoring during eventual spills and possible remediation actions - what is the aim of the work presented. Following the chemical and ecotoxicological studies self-organising maps technique has been applied as a competitive learning algorithm based on unsupervised learning process. Summarizing it can be stated that biotests enable assessing the impact of complex chemical mixtures on the organisms inhabiting particular ecosystems. Short and simple application of biotests cannot easily explain the observable toxicity without more complex chemometric evaluation of datasets obtained describing dependence between xenobiotics and toxicological results.
Collapse
Affiliation(s)
- Justyna Rogowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland.
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Stefan Tsakovski
- Laboratory of Chemometrics and Environmetrics, Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski", 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland; Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Vasil Simeonov
- Laboratory of Chemometrics and Environmetrics, Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski", 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
44
|
Gauchotte-Lindsay C, McGregor LA, Assal A, Thomas R, Kalin RM. Highlighting the Effects of Co-eluting Interferences on Compound-Specific Stable Isotope Analysis of Polycyclic Aromatic Hydrocarbons by Using Comprehensive Two-Dimensional Gas Chromatography. Chempluschem 2014. [DOI: 10.1002/cplu.201400026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Hirano M, Tanaka S, Asami O. Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray. ENVIRONMENTAL TOXICOLOGY 2013; 28:652-659. [PMID: 21887816 DOI: 10.1002/tox.20761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/03/2011] [Accepted: 07/10/2011] [Indexed: 05/31/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. Exposure to PAHs raises the risk of lung cancer and inflammatory and allergic disorders such as asthma. DNA microarray technologies have been applied to research on toxicogenomics in the recent years. To evaluate the mutagenicity of PAHs and constituents of environmental pollutants in lung tissue, including metabolic activation, human alveolar epithelial type II cells (A549) were treated with nonmutagenic PAH pyrene and with the mutagenic PAHs benzo-[a]-pyrene, 1-nitropyrene, or 1,8-dinitropyrene. Comparison of genome-wide microarray expression profiles between a nonmutagenic and a mutagenic PAH-treated group revealed that xenobiotic response genes such as CYP1B1 were commonly upregulated in two groups and that DNA damage induced genes, especially p53-downstream genes such as p21 (CDKN1A) were upregulated only in the mutagenic PAH-treated group. Pretreatment with cytochrome P450 inhibitor α-naphthoflavone or p53 inhibitor pifithrin-α inhibited the benzo-[a]-pyrene-induced p21 expression. These data suggest that when PAHs enter the cells, lung epithelium induces PAH metabolic activating enzymes, and then the DNA damages-recognition signal is converged with p53 downstream genes. This metabolic activation and DNA damage is induced in lung epithelium, and the mutagenicity of PAHs can be classified by DNA microarray expression profiles.
Collapse
Affiliation(s)
- Minoru Hirano
- Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan
| | | | | |
Collapse
|
46
|
Valili S, Siavalas G, Karapanagioti HK, Manariotis ID, Christanis K. Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 128:252-258. [PMID: 23764506 DOI: 10.1016/j.jenvman.2013.04.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/24/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
Malt spent rootlets (MSR) are biomaterials produced in big quantities by beer industry as by-products. A sustainable solution is required for their management. In the present study, MSR are examined as sorbents of a hydrophobic organic compound, phenanthrene, from aqueous solutions. Raw MSR sorb phenanthrene but their sorptive properties are not competitive with the respective properties of commercial sorbents (e.g., activated carbons). Organic petrography is used as a tool to characterize MSR after treatment in order to produce an effective sorbent for phenanthrene. Chemical and thermal (at low temperature under nitrogen atmosphere) treatments of MSR did not result in highly effective sorbents. Based on organic petrography characterization, the pores of the treated materials were filled with humic colloids. When pyrolysis at 800 °C was used to treat MSR, a sorbent with new and empty pores was produced. Phenanthrene sorption capacity was 2 orders of magnitude higher for the pyrolized MSR than for raw MSR.
Collapse
Affiliation(s)
- Styliani Valili
- Department of Chemistry, University of Patras, Patras 26504, Greece
| | | | | | | | | |
Collapse
|
47
|
Vinci G, Antonelli ML, Preti R. Rapid determination of polycyclic aromatic hydrocarbons in rainwater by liquid-liquid microextraction and LC with core-shell particles column and fluorescence detection. J Sep Sci 2013; 36:461-8. [PMID: 23303536 DOI: 10.1002/jssc.201200854] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 11/08/2022]
Abstract
Liquid-liquid microextraction coupled to LC with fluorescence detection for the determination of Environmental Protection Agency's 16 priority pollutant polycyclic aromatic hydrocarbons in rainwater has been developed. The optimization of the extraction method has involved several parameters, including the comparison between an ultrasonic bath and a magnetic stirrer as extractant apparatus, the choice of the extractant solvent, and the optimization of the extraction time. Liquid-liquid microextraction gave good results in terms of recoveries (from 73.6 to 102.8% in rainwater) and repeatability, with a very simple procedure and low solvent consumption. The reported chromatographic method uses a Core-Shell technology column, with particle size <3 μm instead of classical 5-μm particles column. The resulting backpressure was below 300 bar, allowing the use of a conventional HPLC system rather than the more expensive ultrahigh performance LC (UHPLC). An average decrease of 59% in run time and 75% in eluent consumption has been obtained, compared to classical HPLC methods, keeping good separation, sensitivity, and repeatability. The proposed conditions were successfully applied to the determinations of polycyclic aromatic hydrocarbons in genuine rainwater samples.
Collapse
Affiliation(s)
- Giuliana Vinci
- Laboratory of Commodity Science, Department of Management, Sapienza University of Rome, Roma, Italy.
| | | | | |
Collapse
|
48
|
Arinaitwe K, Kiremire BT, Muir DCG, Fellin P, Li H, Teixeira C, Mubiru DN. Atmospheric concentrations of polycyclic aromatic hydrocarbons in the watershed of Lake Victoria, East Africa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11524-11531. [PMID: 23020709 DOI: 10.1021/es302238w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the first study of its kind in Africa, PAHs were measured in high volume (24 h) air samples collected from two sampling stations, at Kakira and Entebbe (KAK and EBB, respectively) within the Lake Victoria watershed in Uganda, to assess source contributions and generate a baseline reference data set for future studies in the East African region. Sampling was conducted over two periods [2000-2004 (KAK and EBB1) and 2008-2010 (EBB2)]. The samples were extracted by accelerated solvent extraction and analyzed for 30 PAHs by GC-MS. The mean total PAH concentrations (ng/m(3)) were found to be 74.3 (range; 19.3-311, N = 39) for KAK, 56.8 (range; 13.3-126, N = 22) for EBB1 and 33.1 (range; 4.91-108, N = 56) for EBB2. The 3-ringed PAHs were the most predominant group with mean concentrations of 35.9 ng/m(3)(EBB1), 30.5 ng/m(3)(KAK) and 23.2 ng/m(3)(EBB2). Naphthalene had an exceptionally high mean concentration (21.9 ng/m(3)) for KAK compared to 0.44 and 0.39 ng/m(3) in EBB1 and EBB2 respectively, likely due to intensive agricultural operations nearby KAK. Principal component and diagnostic ratio analyses showed that the measured levels of PAHs were associated with mixed sources, combustion of petroleum, and biomass being the major sources.
Collapse
Affiliation(s)
- Kenneth Arinaitwe
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | | | | | | | | | | | | |
Collapse
|
49
|
Bahitova LM. Mutagenicity of benzo[a]pyrene and the antioxidant phenol at the HGPRT locus of V79 chinese hamster cells. Mutat Res 1982; 104:389-93. [PMID: 6287251 DOI: 10.1016/0165-7992(82)90175-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|