1
|
Elliott KC, Patisaul HB, Sargis RM, Vandenberg LN. Words Matter: Reflective Science Communication and Tradeoffs in Environmental Health Research. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:105001. [PMID: 39475729 PMCID: PMC11524408 DOI: 10.1289/ehp14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Scientists who communicate societally relevant information face challenging contexts in which misinformation, disinformation, hype, and spin are prevalent. As a result, they often face difficult decisions about how to frame their work in a socially responsible manner. OBJECTIVES Drawing from the literature on science communication and framing, we identify tradeoffs that environmental health scientists face when deciding how to communicate their work, and we propose strategies for handling these tradeoffs. We use research on the human health effects of environmental endocrine disruptors as a case study to illustrate these challenges and strategies. DISCUSSION We examine four major frames (i.e., ways of packaging information that draw attention to facets of an issue or topic) in discussions of the effects of endocrine-disrupting chemicals on sexual and neural development and obesity. We show how these frames can be beneficial (e.g., focusing public attention on environmental health threats and promoting actions to address environmental pollution) while simultaneously having harmful effects (e.g., contributing to stigmatization of particular groups or the promotion of harmful political ideologies). CONCLUSIONS Researchers who seek to responsibly communicate societally relevant work can employ several strategies to mitigate difficult tradeoffs, including a) striving for sensitivity to the social context and its relationship to their framing choices, b) choosing to avoid some frames, c) employing frames that alleviate ethical tensions, d) fostering education to alleviate harms, e) developing interdisciplinary and community collaborations, and f) working with institutions like scientific societies and journals to develop guidance on responsible communication practices. https://doi.org/10.1289/EHP14527.
Collapse
Affiliation(s)
- Kevin C. Elliott
- Lyman Briggs College, Michigan State University, East Lansing, Michigan, USA
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
- Department of Philosophy, Michigan State University, East Lansing, Michigan, USA
| | - Heather B. Patisaul
- Department of Biological Sciences, College of Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert M. Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Abarikwu SO, Coimbra JLP, Campolina-Silva G, Rocha ST, Costa VV, Lacerda SMSN, Costa GMJ. Acute effects of atrazine on the immunoexpressions of sertoli and germ cells molecular markers, cytokines, chemokines, and sex hormones levels in mice testes and epididymides. CHEMOSPHERE 2024; 363:142852. [PMID: 39019188 DOI: 10.1016/j.chemosphere.2024.142852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Atrazine is currently one of the most commonly used agrochemicals in the United States and elsewhere. Here, we studied the immunoexpression of molecular markers of mammalian testicular functions: androgen receptor (AR), promyelocytic leukemia zinc finger (PLZF), GDNF family receptor alpha-1 (GFRA1), VASA/DDX4 (DEAD-Box Helicase 4) as well as the levels of intratesticular and intra-epididymal estradiol (E2) and dihydrotestosterone (DHT), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukins (IL-1β and IL-6, IL-10) and testicular chemokines (CXCL-1, CCL-2 and CCL3) in BalB/c mice after a sub-acute gavage treatment with a gonado-toxin, atrazine (50 mg/kg body wt.) for three days. We found high numbers of AR immunopositive Sertoli cells and low numbers of GFRA1, PLZF and VASA/DDX4-positive germ cells in the seminiferous tubule regions of the testes. While TNF-α level in the testes fell and remained unchanged in the epididymides, IFN-γ levels in the testes remained constant but increased in the epididymides. E2 and DHT concentrations remained unaltered in the testes but were changed in the epididymides. There were no significant changes in the levels of interleukins in the testis and epididymis. Intratesticular chemokines were also not significantly altered, except for CCL-4, which was increased in the testis. Light microscopy of the epididymis showed detached epithelium and some detached cells in the lumen. It is concluded that atrazine changed the inflammatory status of the gonads and highlighted Sertoli and undifferentiated spermatogonia as important targets for atrazine's toxic effects in the testis of mice. Concerning the epididymis, atrazine altered the epididymal hormonal concentrations and promoted histopathological modifications in its parenchyma.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria.
| | - John L P Coimbra
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | | | - Samuel Tadeu Rocha
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Vivian Vasconcelos Costa
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Samyra M S N Lacerda
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Guilherme M J Costa
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| |
Collapse
|
3
|
Zhao H, Qian H, Cui J, Ge Z, Shi J, Huo Y, Zhang Y, Ye L. Endocrine toxicity of atrazine and its underlying mechanisms. Toxicology 2024; 505:153846. [PMID: 38815618 DOI: 10.1016/j.tox.2024.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Atrazine (ATR) is one of the most widely utilized herbicides globally and is prevalent in the environment due to its extensive use and long half-life. It can infiltrate the human body through drinking water, ingestion, and dermal contact, and has been recognized as an environmental endocrine disruptor. This study aims to comprehensively outline the detrimental impacts of ATR on the endocrine system. Previous research indicates that ATR is harmful to various bodily systems, including the reproductive system, nervous system, adrenal glands, and thyroi d gland. The toxic effects of ATR on the endocrine system and its underlying molecular mechanisms are summarized as follows: influencing the expression of kisspeptin in the HPG axis, consequently affecting steroid synthesis; disrupting DNA synthesis and meiosis, as well as modifying DNA methylation levels, leading to reproductive and developmental toxicity; impacting dopamine by altering Nurr1, VMAT2, and DAT expression, consequently affecting dopamine synthesis and transporter expression, and influencing other neurotransmitters, resulting in neurotoxicity; and changing adipose tissue synthesis and metabolism by reducing basal metabolism, impairing cellular oxidative phosphorylation, and inducing insulin resistance. Additionally, a compilation of natural products used to mitigate the toxic effects of ATR has been provided, encompassing melatonin, curcumin, quercetin, lycopene, flavonoids, vitamin C, vitamin E, and other natural remedies. It is important to note that existing research predominantly relies on in vitro and ex vivo experiments, with limited population-based empirical evidence available.
Collapse
Affiliation(s)
- Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhili Ge
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jingjing Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yingchao Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Pan X, Xu L, He Z, Wan Y. Occurrence, fate, seasonal variability, and risk assessment of twelve triazine herbicides and eight related derivatives in source, treated, and tap water of Wuhan, Central China. CHEMOSPHERE 2023; 322:138158. [PMID: 36806804 DOI: 10.1016/j.chemosphere.2023.138158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Triazine herbicides have been widely used, are frequently detected in aqueous environments and soils, and can cause acute or chronic toxicity to living organisms. We collected source water samples (n = 20) originating from the Hanshui River and the Yangtze River of Wuhan section, treated water samples (n = 20), and tap water samples (n = 169) in Wuhan, Central China during 2019 for determination of twelve triazine herbicides and their eight derivatives (collectively defined as TZs) and characterizing their fate during water treatment. Eighteen of the twenty TZs were detected in the source water. Atrazine (ATZ) had the highest concentrations (median: 22.4 ng/L) in the source water samples while DACT had the highest concentrations (median: 31.4 ng/L) in the treated water. "Tryns" (ametryn, prometryn, simetryn, terbutryn) were efficiently removed by conventional water treatment, while other target analytes were not; interestingly, hydroxypropazine and prometon increased significantly accompanied by prometryn disappearance, which implicated potential transformation pathways. In addition, "tryns" might be transformed into "tons" (atraton, prometon, secbumeton, terbumeton) by ozonation. In the tap water samples, diaminochlorotriazine had the highest concentrations (median: 34.9 ng/L) among the target analytes, followed by ATZ (18.3 ng/L), hydroxyatrazine (5.17 ng/L), deethylatrazine (5.00 ng/L), hydroxypropazine (3.20 ng/L), deisopropylatrazine (2.05 ng/L), hydroxydesethylatrazine (1.68 ng/L), and others. The TZs had the highest cumulative concentration in July in the tap water samples (median: 89.7 ng/L). This study found that ozonation in combination with activated carbon was more efficient in removing triazine herbicides, although "tryns" could also be transformed during conventional treatment. Ecological risk assessment showed moderate risks posed by hydroxyterbuthylazine, prometryn, and simetryn; the Hanshui River had higher risks than the Yangtze River, and July had higher risks than February. Human exposure to the TZs via water ingestion was low compared to the reference doses. This study characterized the occurrence of some new emerging TZs in the source water, their fate during drinking water treatment, and their seasonal variability in the tap water.
Collapse
Affiliation(s)
- Xinyun Pan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, People's Republic of China
| | - Li Xu
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, People's Republic of China
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, People's Republic of China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, People's Republic of China.
| |
Collapse
|
5
|
Canesini G, Galoppo GH, Tavalieri YE, Lazzarino GP, Stoker C, Luque EH, Ramos JG, Muñoz-de-Toro M. Disruption of the developmental programming of the gonad of the broad snouted caiman (Caiman latirostris) after in ovo exposure to atrazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40132-40146. [PMID: 36607581 DOI: 10.1007/s11356-022-25104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Environmental exposure to agrochemicals during early stages of development can induce subtle alterations that could permanently affect normal physiology. Previously, we reported that in ovo exposure to atrazine (ATZ) disrupts testicular histoarchitecture in postnatal caimans (Caiman latirostris). To assess whether such alterations are the result of disruption of gonadal developmental programming, this study aimed to evaluate the expression of histofunctional biomarkers (VASA, ER, PR, PCNA, and aromatase) and genes involved in gonadal development and differentiation (amh, sox-9, sf-1 and cyp19-a1) in the gonads of male and female caiman embryos and to assess the effect of ATZ exposure on these biomarkers and genes in the gonads of male embryos. Our results suggest that amh, aromatase and sox-9 play a role in sex determination and gonadal differentiation. In male caiman embryos, ATZ exposure increased aromatase expression and altered the temporal expression pattern of amh and sox-9 evidencing an ATZ-induced disruption of gonadal developmental programming. Since the effects of ATZ are consistent across all vertebrate classes, the ATZ-mediated disruptive effects here observed could be present in other vertebrate species.
Collapse
Affiliation(s)
- Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Germán H Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina.
| | - Yamil E Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Gisela P Lazzarino
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| |
Collapse
|
6
|
Souza VVD, Souza TDS, Campos JMSD, Oliveira LAD, Ribeiro YM, Hoyos DCDM, Xavier RMP, Charlie-Silva I, Lacerda SMDSN. Ecogenotoxicity of environmentally relevant atrazine concentrations: A threat to aquatic bioindicators. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105297. [PMID: 36549823 DOI: 10.1016/j.pestbp.2022.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a herbicide that is frequently present in surface waters and may result in damage to the health of various organisms, including humans. However, most scientific literature reports injuries caused by ATZ at high concentrations, which are not found in the environment. Therefore, the scope of this study was to investigate the impacts of realistic concentrations of ATZ found in surface waters (1, 2, 5, 10, 15 and 20 μg/L) using the bioindicators Allium cepa, Daphnia magna and zebrafish (Danio rerio). ATZ elicited a genotoxic effect in A. cepa, manifested by the induction of chromosomal aberrations, and a mutagenic effect with increased incidence of micronuclei formation, promotion of cell death and reduction in nuclear size revealed by flow cytometry analysis. D. magna exposed to 10, 15 and 20 μg/L of ATZ showed significant reduction in body size after 21 days, delayed first-brood release, decreased egg production and total offspring, as well as swimming behavioral changes. ATZ exposure promoted physiological and developmental alterations in zebrafish embryos, including an increased spontaneous movement rate, which led to premature hatching at all concentrations investigated. Increase in total body length, decrease of the yolk sac area, pericardial edema and higher heart rate were also detected in ATZ-treated zebrafish. In summary, environmentally relevant concentrations of ATZ can induce substantial alterations in the three bioindicators investigated. This study evidences the deleterious effects of ATZ on three aquatic bioindicators employing established and current techniques, and may contribute to elucidate the risks caused by this widely used herbicide even at low concentrations and short-to-medium-term exposure.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tatiana da Silva Souza
- Laboratory of Ecotoxicology, Department of Biology, Federal University of Espírito Santo, Alegre, Brazil
| | | | - Luiza Araújo de Oliveira
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves Moreira Ribeiro
- Laboratory of Ichthyohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
7
|
Silveyra GR, Medesani DA, Rodríguez EM. Effects of the Herbicide Atrazine on Crustacean Reproduction. Mini-Review. Front Physiol 2022; 13:926492. [PMID: 35784891 PMCID: PMC9244840 DOI: 10.3389/fphys.2022.926492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Atrazine, one of the most intensively applied herbicides worldwide, is commonly found in several water bodies, affecting the associated fauna. Autochthon crustacean species have been relatively less studied, compared to vertebrate species, particularly concerning reproductive success. In this mini-review, we summarize the relevant information about the effects of atrazine exposure on the main reproductive aspects of crustaceans. One of these effects is related to the inhibition of ovarian growth. In this respect, a diminished vitellogenin content was found in the ovary of crabs exposed to atrazine during the entire period of ovarian growth, in correlation with a reduced oocyte size and a delay of ovarian maturation. Similar results were observed in crayfish. Atrazine was also able to affect the reproductive process, acting as an endocrine disruptor. In this sense, this herbicide was suspected to affect the secretion of some neurohormones involved in the gonadal growth, as well as to alter the circulating levels of steroid hormones which promote the synthesis of vitellogenin for ovarian growth. Moreover, atrazine induced sexual differentiation in juvenile crayfish toward a higher proportion of females, while it produced an increment of males in daphnids. Another aspect affected by this herbicide was the reduction of offspring production, as well as several embryonic abnormalities; genotoxic effects have been also reported in crayfish. Finally, some metabolic imbalances, such as reduction in energy reserves, have been observed in some species, together with oxidative stress and histopathological effects.
Collapse
|
8
|
Li HM, Li YY, Zhang YC, Li JB, Xu HM, Xiong YM, Qin ZF. Bisphenol B disrupts testis differentiation partly via the estrogen receptor-mediated pathway and subsequently causes testicular dysgenesis in Xenopus laevis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113453. [PMID: 35390692 DOI: 10.1016/j.ecoenv.2022.113453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
There is growing concern about adverse effects of bisphenol A alternatives including bisphenol B (BPB) due to their estrogenic activity. However, limited data are available concerning the influences of BPB on male reproductive development in vertebrates, especially in amphibians, which are believed to be susceptible to estrogenic chemicals. The present study investigated the effects of 10, 100 and 1000 nM BPB (2.42, 24.2 and 242 μg/L) on testis development in Xenopus laevis, a model amphibian species for studying gonadal feminization. We found that exposure to BPB from stages 45/46 to 52 resulted in down-regulation of testis-biased gene expression and up-regulation of ovary-biased gene and vitellogenin (vtgb1) expression in gonad-mesonephros complexes (GMCs) of tadpoles at stage 52, coupled with suppressed cell proliferation in testes and reduced gonadal metameres, resembling the effects of 17ß-estradiol. Moreover, an estrogen receptor (ER) antagonist ICI 182780 antagonized BPB-caused up-regulation of ovary-biased gene and vtgb1 expression to some degree, indicating that the effects of BPB on X. laevis testis differentiation could be partly mediated by ER. All observations demonstrate that early exposure to BPB inhibited testis differentiation and exerted certain feminizing effects during gonadal differentiation. When exposure was extended to post-metamorphosis, testes exhibited histological and morphological abnormalities including segmented, discontinuous and fragmented shapes, besides altered sex-dimorphic gene expression. Notably, most of BPB-caused alterations were not concentration-dependent, but the lowest concentration indeed exerted significant effects. Overall, our study for the first time reveals that low concentrations of BPB can disrupt testis differentiation partly due to its estrogenic activity and subsequently cause testicular dysgenesis after metamorphosis, highlighting its reproductive risk to amphibians and other vertebrates including humans. Our finding also implies that estrogenic chemicals-caused testis differentiation inhibition at tadpole stages could predict later testicular dysgenesis after metamorphosis, meaning a possibility of early detection of abnormal testis development caused by estrogenic chemicals.
Collapse
Affiliation(s)
- Hong-Mei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Chi Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Occupational and Environmental Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jin-Bo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Atrazine impairs testicular function in BalB/c mice by affecting Leydig cells. Toxicology 2021; 455:152761. [PMID: 33766575 DOI: 10.1016/j.tox.2021.152761] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022]
Abstract
Several studies have reported the effects of atrazine on the gonads of many experimental models. However, the short-term effects of in vivo exposure to atrazine on the testes of mice are not well clarified. Here we reported that adult BalB/c mice exposed to atrazine (50 mg kg-1 body weight) by gavage for three consecutive days have reduced numbers of 3β-hydroxysteroid dehydrogenase positive Leydig cells (LCs), associated with increased in situ cell death fluorescence and caspase-3 immuno-expression in the testes. Consequently, immunostaining for cell cycle gene regulators showed increased expressions of p45, accompanied with increased expressions of cyclin D2 and E2. Histological observations of the gonads showed reduced number of germ cells in particular areas, sloughed seminiferous epithelium, presence of giant apoptotic cells close to the seminiferous tubule lumen and in the epididymal lumen along with low numbers of Leydig cells in the testicular interstitial areas. Similarly, LCs isolated from the testes of BalB/c mice that were exposed to atrazine (0.5, 25, 50 mg kg-1 body weight) in the same manner as in the first experiment presented dose-dependent increased caspase-3 activity, decreased cell viability, intratesticular and serum testosterone concentrations and LCs testosterone secretion. In summary, atrazine appears to directly decrease the number of testosterone secreting LCs in mice through apoptosis.
Collapse
|
10
|
Herek JS, Vargas L, Rinas Trindade SA, Rutkoski CF, Macagnan N, Hartmann PA, Hartmann MT. Genotoxic effects of glyphosate on Physalaemus tadpoles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103516. [PMID: 33080355 DOI: 10.1016/j.etap.2020.103516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Genotoxicity studies have revealed that pesticides bind to genetic material in non-target vertebrates, thereby impairing the genetic integrity of these animals. The main objective of this study was to determine the genotoxic damage in erythrocytes of two native South American amphibian Physalaemus cuvieri and Physalaemus gracilis, both species exposed to a glyphosate-based herbicide. We evaluated the presence of micronuclei (MN) and erythrocyte nuclear abnormalities (ENA) as biomarkers for potential genotoxic compounds. Tadpoles were exposed to doses permitted by Brazilian legislation and concentrations found naturally in Brazilian and Argentinian waters (500, 700 and 1000 μg/L). Glyphosate-based herbicide caused micronuclei formation and several types of erythrocyte nuclear abnormalities in both Physalaemus species. The total frequency of MN and ENA demonstrated the occurrence of cell damage at all tested concentrations. Glyphosate herbicide can be considered a genotoxic that may impact the genetic integrity of native populations of P. cuvieri and P. gracilis.
Collapse
Affiliation(s)
- Jéssica Samara Herek
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Luana Vargas
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Suélen Andressa Rinas Trindade
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Camila Fatima Rutkoski
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Natani Macagnan
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Paulo Afonso Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Marilia Teresinha Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, Brazil, ERS 135 - Km 72, nº 200, Erechim, RS, Brazil.
| |
Collapse
|
11
|
Vandenberg LN, Najmi A, Mogus JP. Agrochemicals with estrogenic endocrine disrupting properties: Lessons Learned? Mol Cell Endocrinol 2020; 518:110860. [PMID: 32407980 PMCID: PMC9448509 DOI: 10.1016/j.mce.2020.110860] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Many agrochemicals have endocrine disrupting properties. A subset of these chemicals is characterized as "estrogenic". In this review, we describe several distinct ways that chemicals used in crop production can affect estrogen signaling. Using three agrochemicals as examples (DDT, endosulfan, and atrazine), we illustrate how screening tests such as the US EPA's EDSP Tier 1 assays can be used as a first-pass approach to evaluate agrochemicals for endocrine activity. We then apply the "Key Characteristics" approach to illustrate how chemicals like DDT can be evaluated, together with the World Health Organization's definition of an endocrine disruptor, to identify data gaps. We conclude by describing important issues that must be addressed in the evaluation and regulation of hormonally active agrochemicals including mixture effects, efforts to reduce vertebrate animal use, chemical prioritization, and improvements in hazard, exposure, and risk assessments.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA.
| | - Aimal Najmi
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| |
Collapse
|
12
|
Shen Y, Li Y, Zhu M, Li J, Qin Z. Transcriptional changes caused by estrogenic endocrine disrupting chemicals in gonad-mesonephros complexes of genetic male Xenopus laevis: Multiple biomarkers for early detection of testis differentiation disruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138522. [PMID: 32335401 DOI: 10.1016/j.scitotenv.2020.138522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Our recent study revealed some early molecular and cellular events in which 17β-estradiol (E2) disrupted testis differentiation and resulted in feminization in Xenopus laevis (the African clawed frog), an ideal species for studying reproductive endocrine disruption by estrogenic endocrine disrupting chemicals (EDCs). On this basis, we aimed to develop multiple biomarkers for early detection of testis differentiation disruption by estrogenic EDCs in X. laevis. Tadpoles at stage 45/46 were exposed to four known estrogenic EDCs with different estrogenic activities, including E2, diethylstilbestrol (DES), mestranol (MES) and 4-n-nonyphenol (NP). At stage 53, gonadal morphological and histological changes as well as altered sex-dimorphic gene expression in gonad-mesonephros complexes (GMCs) showed that these estrogenic EDCs disrupted testis differentiation and caused feminization to different degrees. Then we measured transcriptional changes of 48 candidate genes, which are believed to be associated with E2-induced testis differentiation alterations, in GMCs at stage 50. As a result, 19 genes were found to be transcriptionally altered by all test chemicals and proposed as promising biomarkers for early detection of testis differentiation disruption by estrogenic EDCs. Finally, all biomarker responses were integrated as integrated biomarker response (IBR) index to characterize testis differentiation disruption by these estrogenic EDCs in X. laevis. Compared with the methods used in previous studies, the multiple biomarker test using X. laevis at early developmental stages largely shortens the exposure duration, thereby achieving the goal of rapid detection. Certainly, the biomarker test needs further validations in the future study.
Collapse
Affiliation(s)
- Yanping Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Herek JS, Vargas L, Trindade SAR, Rutkoski CF, Macagnan N, Hartmann PA, Hartmann MT. Can environmental concentrations of glyphosate affect survival and cause malformation in amphibians? Effects from a glyphosate-based herbicide on Physalaemus cuvieri and P. gracilis (Anura: Leptodactylidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22619-22630. [PMID: 32319061 DOI: 10.1007/s11356-020-08869-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Herbicides are the most common agrochemicals used in crops. Among them, glyphosate is the most widely applied in the world. Herbicides, especially organophosphates, have been shown to be hazardous to non-target species, including amphibians. The present study evaluated the acute and chronic effects of glyphosate-based herbicide (GBH), Roundup original® DI on tadpoles from two South American native species, Physalaemus cuvieri and P. gracilis. Spawnings were collected in the natural environment and maintained in the laboratory under controlled conditions. Acute and chronic toxicology trials began at stage 25 of Gosner (Herpetological 16:183-190, 1960). In an acute toxicity assay, seven GBH concentrations between 100 and 4500 μg a.e./L were tested over 96 h. For the chronic trials, tadpoles were subjected to both doses allowed by Brazilian legislation and to concentrations found in natural environment waters from Brazil and Argentina, between 65 and 1000 μg a.e/L over 14 days. Glyphosate had lethal effects on both studied species. Tadpoles showed shorter lengths and lower masses; that is, those that survived suffered chronic effects on growth and weight. The GBH maximum acceptable toxicant concentration for mortality and malformation was lower than the allowed level for Brazilian waters. The GBH tested in this study presented a high environmental and acute risk for the two studied species.
Collapse
Affiliation(s)
- Jéssica Samara Herek
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Luana Vargas
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Suélen Andressa Rinas Trindade
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Camila Fatima Rutkoski
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Natani Macagnan
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Paulo Afonso Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil
| | - Marilia Teresinha Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, ERS 135 - Km 72, n°200, Erechim, RS, Brazil.
| |
Collapse
|
14
|
Cai M, Li YY, Zhu M, Li JB, Qin ZF. Evaluation of the effects of low concentrations of bisphenol AF on gonadal development using the Xenopus laevis model: A finding of testicular differentiation inhibition coupled with feminization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113980. [PMID: 31991354 DOI: 10.1016/j.envpol.2020.113980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
Developmental exposures to estrogenic chemicals possibly cause structural and functional abnormalities of reproductive organs in vertebrates. Bisphenol AF (BPAF), a bisphenol A (BPA) analogue, has been shown to have higher estrogenic activity than BPA, but little is known about the effects of BPAF on gonadal development, particularly gonadal differentiation. We aimed to determine whether low concentrations of BPAF could disrupt gonadal differentiation and subsequent development using Xenopus laevis, a model species for studying feminizing effects of estrogenic chemicals. X. laevis tadpoles were exposed to BPAF (1, 10, 100 nM) or 17β-estradiol (E2, positive control) from stages 45/46 to 53 and 66 in a semi-static exposure system, with a prolonged treatment with the highest concentration to the eighth week post-metamorphosis (WPM8). Gonadal morphology and histology as well as sexually dimorphic gene expression were examined to evaluate the effects of BPAF. All concentrations of BPAF caused changes in testicular morphology at different developmental stages compared with controls. Specifically, at stage 53, BPAF like E2 resulted in decreases in both the size and the number of gonadal metameres (gonomeres) in testes, looking like ovaries. Some of BPAF-treated testes remained segmented and even became discontinuous and fragmented at subsequent stages. Histological abnormalities were also observed in BPAF-treated testes, such as ovarian cavity at stages 53 and 66 and poorly developed seminiferous tubules on WPM8. At the molecular level, BPAF inhibited expression of male highly expressed genes in testes at stage 53. Correspondingly, BPAF, like E2, inhibited cell proliferation in testes at stage 50. All results show that low concentrations of BPAF inhibited testicular differentiation and subsequent development in X. laevis, along with feminizing effects to some degree. Our finding implies a risk of BPAF to the male reproductive system of vertebrates including humans.
Collapse
Affiliation(s)
- Man Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Bo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Cook LE, Finger BJ, Green MP, Pask AJ. Exposure to atrazine during puberty reduces sperm viability, increases weight gain and alters the expression of key metabolic genes in the liver of male mice. Reprod Fertil Dev 2020; 31:920-931. [PMID: 30636190 DOI: 10.1071/rd18505] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/16/2018] [Indexed: 12/14/2022] Open
Abstract
Atrazine (ATZ) is one of the most widely used herbicides worldwide and is a common contaminant in human drinking water. It disrupts metabolic pathways in plants, and has metabolic and reproductive effects in vertebrates, including humans. Few studies have investigated the effects of exposure to low doses of ATZ, especially during sexual development in males. In this study, we exposed C57BL/6J male mice from weaning for 8 weeks to drinking water containing 0.5mgkg-1 bodyweight (BW) day-1 ATZ, the 'no observed effect' level used by the Australian government, or a 10-fold higher dose (5mgkg-1 BW day-1). Mice treated with the low dose of ATZ showed increased total and cumulative weight gain. At 12 weeks of age, there was a significant increase in the percentage of dead spermatozoa in both ATZ-exposed groups, as well as decreased epididymal sperm motility in the low-dose ATZ group. Significant changes in testis and liver gene expression were also observed following ATZ exposure. These data demonstrate that a low dose of ATZ can perturb metabolic and reproductive characteristics in male mice. A chronic reduction in sperm quality and increased weight gain could have negative consequences on the reproductive capacity of males, and further studies should consider the effects of long-term ATZ exposure on male reproductive health.
Collapse
Affiliation(s)
- Laura E Cook
- School of BioSciences, The University of Melbourne, Melbourne, Vic. 3010, Australia
| | - Bethany J Finger
- School of BioSciences, The University of Melbourne, Melbourne, Vic. 3010, Australia
| | - Mark P Green
- School of BioSciences, The University of Melbourne, Melbourne, Vic. 3010, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Vic. 3010, Australia
| |
Collapse
|
16
|
Preliminary Analysis of the Diet of Triturus carnifex and Pollution in Mountain Karst Ponds in Central Apennines. WATER 2019. [DOI: 10.3390/w12010044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mountain karst ponds are sensitive environments, hosting complex trophic networks where amphibians play a major role, often as top predators. The diet of the Italian crested newt (Triturus carnifex) is still poorly known for populations occupying mountain karst ponds. These are traditionally used as livestock’s watering points, leading to water pollution due to excreta and wading behavior. The aim of this paper is to understand the relationship between T. carnifex diet composition, assessed through the stomach flushing technique, and physical and chemical characteristics in mountain ponds, focusing on parameters altered by livestock pressure, such as ammonium concentration and dissolved oxygen. The high diversity of prey items found within the newts’ gut contents confirms the generalist diet even in mountain ponds. The number of prey taxa, their relative abundance and Shannon–Wiener diversity index show variations among the sampled sites, related to livestock organic pollution. Moreover, we report the very first European records of microplastic items in amphibians’ stomach content, which also represent the first evidence for Caudata worldwide. Our findings suggest that livestock pressure directly influences T. carnifex diet and highlight that the emerging issue of plastics is a threat even in remote high-altitude environments.
Collapse
|
17
|
Wu Y, Zhang Y, Chen M, Yang Q, Zhuang S, Lv L, Zuo Z, Wang C. Exposure to low-level metalaxyl impacts the cardiac development and function of zebrafish embryos. J Environ Sci (China) 2019; 85:1-8. [PMID: 31471016 DOI: 10.1016/j.jes.2019.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 06/10/2023]
Abstract
Metalaxyl is an anilide pesticide that is widely used to control plant diseases caused by Peronosporales species. In order to study the toxic effects, zebrafish embryos were exposed to metalaxyl at nominal concentrations of 5, 50 and 500 ng/L for 72 hr, and the cardiac development and functioning of larvae were observed. The results showed that metalaxyl exposure resulted in increased rates of pericardial edema, heart hemorrhage and cardiac malformation. The distance between the sinus venosus and bulbus arteriosus, stroke volume, cardiac output and heart rate were significantly increased in larvae exposed to 50 and 500 ng/L metalaxyl compared to solvent control larvae. Significant upregulation in the transcription of tbx5, gata4 and myh6 was observed in the 50 and 500 ng/L treatments, and that of nkx2.5 and myl7 was observed in the 5, 50 and 500 ng/L groups. These disturbances may be related to cardiac developmental and functional defects in the larvae. The activity of Na+/K+-ATPase and Ca2+-ATPase was significantly increased in zebrafish embryos exposed to 500 ng/L metalaxyl, and the mRNA levels of genes related to ATPase (atp2a11, atp1b2b, and atp1a3b) (in the 50 and 500 ng/L groups) and calcium channels (cacna1ab) (in the 500 ng/L group) were significantly downregulated; these changes might be associated with heart arrhythmia and functional failure.
Collapse
Affiliation(s)
- Yuqiong Wu
- Wuyi University, College of Tea and Food Science, Wuyishan 354300, China.
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Meng Chen
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, Xiamen University, Xiamen 361005, China
| | - Qihong Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Shanshan Zhuang
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, Xiamen University, Xiamen 361005, China
| | - Liangju Lv
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
18
|
Rozenblut-Kościsty B, Ogielska M, Hahn J, Kleemann D, Kossakowski R, Tamschick S, Schöning V, Krüger A, Lutz I, Lymberakis P, Kloas W, Stöck M. Impacts of the synthetic androgen Trenbolone on gonad differentiation and development - comparisons between three deeply diverged anuran families. Sci Rep 2019; 9:9623. [PMID: 31270347 PMCID: PMC6610071 DOI: 10.1038/s41598-019-45985-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/20/2019] [Indexed: 11/25/2022] Open
Abstract
Using a recently developed approach for testing endocrine disruptive chemicals (EDCs) in amphibians, comprising synchronized tadpole exposure plus genetic and histological sexing of metamorphs in a flow-through-system, we tested the effects of 17β-Trenbolone (Tb), a widely used growth promoter in cattle farming, in three deeply diverged anuran families: the amphibian model species Xenopus laevis (Pipidae) and the non-models Bufo(tes) viridis (Bufonidae) and Hyla arborea (Hylidae). Trenbolone was applied in three environmentally and/or physiologically relevant concentrations (0.027 µg/L (10-10 M), 0.27 µg/L (10-9 M), 2.7 µg/L (10-8 M)). In none of the species, Tb caused sex reversals or masculinization of gonads but had negative species-specific impacts on gonad morphology and differentiation after the completion of metamorphosis, independently of genetic sex. In H. arborea and B. viridis, mounting Tb-concentration correlated positively with anatomical abnormalities at 27 µg/L (10-9 M) and 2.7 µg/L (10-8 M), occurring in X. laevis only at the highest Tb concentration. Despite anatomical aberrations, histologically all gonadal tissues differentiated seemingly normally when examined at the histological level but at various rates. Tb-concentration caused various species-specific mortalities (low in Xenopus, uncertain in Bufo). Our data suggest that deep phylogenetic divergence modifies EDC-vulnerability, as previously demonstrated for Bisphenol A (BPA) and Ethinylestradiol (EE2).
Collapse
Affiliation(s)
- Beata Rozenblut-Kościsty
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335, Wroclaw, Poland
| | - Juliane Hahn
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Denise Kleemann
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Ronja Kossakowski
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Stephanie Tamschick
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Viola Schöning
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Angela Krüger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Ilka Lutz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
| | - Petros Lymberakis
- Natural History Museum of Crete, University of Crete, Knossou Ave., 71409, Heraklion, Crete, Greece
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany
- Department of Endocrinology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Unter den Linden 6, 10099, Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587, Berlin, Germany.
| |
Collapse
|
19
|
Borges RE, de Souza Santos LR, Assis RA, Benvindo-Souza M, Franco-Belussi L, de Oliveira C. Monitoring the morphological integrity of neotropical anurans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2623-2634. [PMID: 30474816 DOI: 10.1007/s11356-018-3779-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Amphibians are considered to be excellent bioindicators to their morphophysiological characteristics and life cycle. In this context, the present study investigated the morphological integrity of anuran larvae collected in preserved environments in the Emas National Park, in the municipality of Mineiros (Goiás state, Brazil), and in environments representative of the agricultural matrix of the Rio Verde region, also in Goiás, where there is a long history of the use of agricultural pesticides. Samples of water from temporary ponds, permanent dams, and veredas were analyzed for the presence of pesticides and, especially atrazine (5350 μg/L), found at significantly higher concentrations in the agricultural matrix. We observed a high percentage (approximately 10%) of morphological malformations including alterations of the fins in Boana albopunctatus and Scinax fuscovarius; alteration in oral structures in B. albopunctatus, Dematonotus muelleri, Physalaemus centralis, Physalaemus cuvieri, and Leptodactylus fuscus mainly in the tadpoles collected in the agricultural environment in comparison with those from the protected area (3.5%; P < 0.0001, χ2 31.75). However, changes in the eyes, mouth, intestines, and nostrils, as well as amelia were observed only in the agricultural environment. The vast majority of the observed malformations were associated with the tail and oral disc, which suggests that these anatomical parameters may be used as sensitive morphological biomarkers. Given these findings, we reinforce that areas of agricultural land may have a deleterious effect on the morphological integrity of the tadpoles and consequently, on their development, and that these features may be used as indicators of environmental quality and health.
Collapse
Affiliation(s)
- Rinneu Elias Borges
- Department of Biology, Universidade de Rio Verde, UniRV, Fazenda Fontes do Saber, Rio Verde, GO, CEP 75.901-970, Brazil.
| | - Lia Raquel de Souza Santos
- Laboratory of Animal Biology, Instituto Federal Goiano, IF Goiano, campus Rio Verde, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, CEP 75.901-970, Brazil
| | - Rhayane Alves Assis
- Laboratory of Animal Biology, Instituto Federal Goiano, IF Goiano, campus Rio Verde, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, CEP 75.901-970, Brazil
| | - Marcelino Benvindo-Souza
- Laboratory of Animal Biology, Instituto Federal Goiano, IF Goiano, campus Rio Verde, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, CEP 75.901-970, Brazil
| | - Lilian Franco-Belussi
- Department of Biology, Universidade Estadual Paulista -Júlio de Mesquita Filho, UNESP, campus São José do Rio Preto, R. Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, SP, CEP 15.054-000, Brazil
- Institute of Biosciences, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande, MS, CEP 79002970, Brazil
| | - Classius de Oliveira
- Department of Biology, Universidade Estadual Paulista -Júlio de Mesquita Filho, UNESP, campus São José do Rio Preto, R. Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, SP, CEP 15.054-000, Brazil
| |
Collapse
|
20
|
Zhang C, Qin L, Dou DC, Li XN, Ge J, Li JL. Atrazine induced oxidative stress and mitochondrial dysfunction in quail (Coturnix C. coturnix) kidney via modulating Nrf2 signaling pathway. CHEMOSPHERE 2018; 212:974-982. [PMID: 30286554 DOI: 10.1016/j.chemosphere.2018.08.138] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/10/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Atrazine (ATR) is a most used herbicide which is believed as a pivotal determinant of environmental nephrosis, but potential mechanism is still largely unclear. This study intends to reveal a novel mechanism of ATR-induced nephrotoxicity. Quail were treated with 0, 50, 250 and 500 mg ATR/kg/d by oral gavage for 45 days. Kidney coefficient was decreased, biochemical and morphologic indices reflecting the kidney injury were significantly increased in ATR-exposed quail. ATR exposure upregulated the expression of proapoptotic factors (Bax, Caspase 3 and FasL) and downregulated antiapoptotic factor (Bcl-2). Notably, cristae of mitochondria decreased, mitochondrial malformation and mitochondrial vacuolar degeneration were observed in ATR-exposed quail. ATR induced the disorder of mitochondrial function related factors expressions and promoted oxidative damage. Furthermore, ATR induced toxicities in the expression of Nrf2 and Nrf2-target genes. In conclusion, ATR altered the microstructure and function of quail kidney. ATR induced renal damage via causing mitochondrial dysfunction, influencing mitochondrial function related genes expression, modulating Nrf2 signaling pathway. This study suggested ATR induced the nephrotoxicity via disturbing the transcription of mitochondrial function related factors and Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lei Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory Animal Centre, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Da-Chang Dou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
21
|
Yang M, Ren B, Qiao L, Ren B, Hu Y, Zhao R, Ren Z, Du J. Behavior responses of zebrafish (Danio rerio) to aquatic environmental stresses in the characteristic of circadian rhythms. CHEMOSPHERE 2018; 210:129-138. [PMID: 29986218 DOI: 10.1016/j.chemosphere.2018.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
As behavior shows a distinct circadian rhythm, it is hypothesized that circadian rhythms based on zebrafish (Danio rerio) behavior responses could be affected by contaminants in this study, and then the behavior strength of zebrafish exposed to 0.005 mg/L Cadmium chloride (CdCl2), 0.01 mg/L Dibasic Sodium Phosphate (Na2HPO4), 0.002 mg/L deltamethrin, and 0.003 mg/L atrazine for 6 days is used to illustrate the possibility of behavior circadian rhythms as an indicator in the environmental stress assessment. Statistical analysis with p < 0.01 shows that a clear difference between average values of BS during dark period (AVD) and those during light period (AVL) could be observed, and 24 h circadian rhythms do exist in zebrafish behavior responses. Both BS values and circadian rhythms of zebrafish can be affected in the aspect of periodicity with clear time delay, which were 1 h delay in CdCl2, 4 h delay in Na2HPO4, 4 h delay in deltamethrin, and 1 h delay in atrazine. Behavior circadian rhythms were disturbed according to the repetitive cycles after autocorrelation analysis, and the toxic effects of different chemicals could be reflected by the profiles of the Self-Organizing Map (SOM), which indicated the circadian rhythm disorder in different degrees. These results deduced from the statistical analysis, autocorrelation and SOM strongly supported that circadian rhythms based on zebrafish BS could be used as an indicator in the environmental stress assessment.
Collapse
Affiliation(s)
- Meiyi Yang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Baigang Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China; School of Physics and Electronic Science, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Linlin Qiao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Baixiang Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Yongyuan Hu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China.
| | - Jun Du
- School of Physics and Electronic Science, Shandong Normal University, Ji'nan 250014, Shandong, China
| |
Collapse
|
22
|
Exposure to an anti-androgenic herbicide negatively impacts reproductive physiology and fertility in Xenopus tropicalis. Sci Rep 2018; 8:9124. [PMID: 29904069 PMCID: PMC6002408 DOI: 10.1038/s41598-018-27161-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
Amphibians are threatened on a global scale and pollutants may be contributing to population declines, but how chemicals impact on their reproduction is poorly understood. We conducted a life cycle analysis to investigate the impacts of early life exposure to two anti-androgens (exposure until completion of metamorphosis;stage 66): flutamide, (50 µg/L)/linuron (9 and 45 µg/L)) on sexual development and breeding competence in Xenopus tropicalis. Our analyses included: mRNA levels of dmrt1, cyp17, amh, cyp19, foxl2 and ar (tadpoles/metamorphs), gonadal histomorphology (metamorphs/adults), mRNA levels of ar/gr (adult male brain/gonad/forelimb), testosterone/corticosterone levels (adult males), secondary sexual characteristics (forelimb width/nuptial pad: adult males) and breeding competence (amplexus/fertility: adult males). Compared to controls, feminised sex ratios and increased number of spermatogonia (adults) were observed after exposure to flutamide and the lower linuron concentration. Exposure to the lower linuron concentration also resulted in demasculinisation of secondary sexual characteristics and reduced male fertility. Flutamide exposure resulted in masculinisation of the nuptial pad and elevated mRNA levels of dmrt1, cyp17, amh and foxl2 in brains (metamorphs). Testosterone levels were higher in all treatment groups, however, overall few effects were observed in response to the higher linuron concentration. Our findings advance understanding of reproductive biology of X. tropicalis and illustrate negative effects of linuron on reproductive processes at a concentration measured in freshwater environments.
Collapse
|
23
|
Regnault C, Usal M, Veyrenc S, Couturier K, Batandier C, Bulteau AL, Lejon D, Sapin A, Combourieu B, Chetiveaux M, Le May C, Lafond T, Raveton M, Reynaud S. Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline. Proc Natl Acad Sci U S A 2018; 115:E4416-E4425. [PMID: 29686083 PMCID: PMC5948982 DOI: 10.1073/pnas.1721267115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite numerous studies suggesting that amphibians are highly sensitive to endocrine disruptors (EDs), both their role in the decline of populations and the underlying mechanisms remain unclear. This study showed that frogs exposed throughout their life cycle to ED concentrations low enough to be considered safe for drinking water, developed a prediabetes phenotype and, more commonly, a metabolic syndrome. Female Xenopus tropicalis exposed from tadpole stage to benzo(a)pyrene or triclosan at concentrations of 50 ng⋅L-1 displayed glucose intolerance syndrome, liver steatosis, liver mitochondrial dysfunction, liver transcriptomic signature, and pancreatic insulin hypersecretion, all typical of a prediabetes state. This metabolic syndrome led to progeny whose metamorphosis was delayed and occurred while the individuals were both smaller and lighter, all factors that have been linked to reduced adult recruitment and likelihood of reproduction. We found that F1 animals did indeed have reduced reproductive success, demonstrating a lower fitness in ED-exposed Xenopus Moreover, after 1 year of depuration, Xenopus that had been exposed to benzo(a)pyrene still displayed hepatic disorders and a marked insulin secretory defect resulting in glucose intolerance. Our results demonstrate that amphibians are highly sensitive to EDs at concentrations well below the thresholds reported to induce stress in other vertebrates. This study introduces EDs as a possible key contributing factor to amphibian population decline through metabolism disruption. Overall, our results show that EDs cause metabolic disorders, which is in agreement with epidemiological studies suggesting that environmental EDs might be one of the principal causes of metabolic disease in humans.
Collapse
Affiliation(s)
- Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | | | | | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 69000 Lyon, France
| | - David Lejon
- Rovaltain Research Company, F-26300 Alixan, France
| | | | | | - Maud Chetiveaux
- Plate-forme Therassay, l'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Cédric Le May
- Plate-forme Therassay, l'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Thomas Lafond
- Centre de Ressources Biologiques Xénopes, Université Rennes 1, CNRS, Unité Mixte de Service 3387, 35042 Rennes, France
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France;
| |
Collapse
|
24
|
Silveyra GR, Silveyra P, Vatnick I, Medesani DA, Rodríguez EM. Effects of atrazine on vitellogenesis, steroid levels and lipid peroxidation, in female red swamp crayfish Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:136-142. [PMID: 29482076 DOI: 10.1016/j.aquatox.2018.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Atrazine, a widely use herbicide, has been classified as a potential endocrine disruptor, especially for freshwater species. In this study, we tested the hypothesis that atrazine can affect reproduction in crayfish through dysregulation of vitellogenin expression and hormone synthesis. Adult female crayfish (Procambarus clarkii) were exposed during one month to atrazine at concentrations of either 1 or 5 mg/L. At the end of the exposure, ovaries, hepatopancreas, and hemolymph samples were harvested for analysis of vitellogenin expression and steroid hormone levels. Ovarian tissue was also sampled for both biochemical and histological analyses. Our results show that atrazine-exposed crayfish had a lower expression of vitellogenin in the ovary and hepatopancreas, as well as smaller oocytes, and reduced vitellogenin content in the ovary. Despite these effects, circulating levels of estradiol increased in females exposed to 5 mg/L of atrazine, showing that the inhibiting effect of atrazine on vitellogenin production was not related to a lower secretion of sexual steroids. Instead, some early stimulating effects of estradiol on vitellogenesis could have occurred, particularly in the hepatopancreas. On the other hand, atrazine caused a higher metabolic effort, in terms of lactate production, presumably triggered to provide the energy needed to face the unspecific stress produced by the herbicide. Lipid peroxidation was not affected by atrazine, but glutathione levels were significantly increased.
Collapse
Affiliation(s)
- Gabriela Romina Silveyra
- Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, Institute of Biodiversity, Experimental and Applied Biology (IBBEA), CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EGA, Buenos Aires, Argentina.
| | - Patricia Silveyra
- Pulmonary Immunology and Physiology Laboratory, Dept. of Pediatrics, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Itzick Vatnick
- Dept. of Biology, Widener University, Chester, PA 19809, USA.
| | - Daniel Alberto Medesani
- Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, Institute of Biodiversity, Experimental and Applied Biology (IBBEA), CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EGA, Buenos Aires, Argentina.
| | - Enrique Marcelo Rodríguez
- Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, Institute of Biodiversity, Experimental and Applied Biology (IBBEA), CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Martins-Santos E, Pimenta CG, Campos PRN, Oliveira AG, Mahecha GAB, Oliveira CA. Atrazine affects the morphophysiology, tissue homeostasis and aromatase expression in the efferent ductules of adult rats with mild alterations in the ventral prostate. CHEMOSPHERE 2018; 193:958-967. [PMID: 29874772 DOI: 10.1016/j.chemosphere.2017.11.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
The widely used herbicide atrazine is a potent endocrine disruptor known to cause increased aromatase expression and transient increase in testicular weight followed by remarkable testis atrophy. However, whether the effects of atrazine on the testes are primary or secondary to dysfunctions in other components of male reproductive tract remains unknown. Given the high sensitivity of the efferent ductules to estrogen imbalance and the similarity to alterations previously described for other disruptors of these ductules function, and the testicular alterations observed after atrazine exposure, we hypothesized that the efferent ductules could be a target for atrazine. Herein we characterized the efferent ductules and the ventral prostate of adult Wistar rats treated with 200 mg/kg/day of atrazine for 7, 15, and 40 days. Additionally, we evaluated if the effects of atrazine in these organs could be reduced after discontinuation of the treatment. Atrazine exposure resulted in mild effects on the ventral prostate, but remarkable alterations on the efferent ductules, including luminal dilation, reduced epithelial height, and disruption of the epithelial homeostasis, which coincides with increased aromatase expression. Together with our previous data, these results suggest that at least part of the testicular effects of atrazine may be secondary to the alterations in the efferent ductules.
Collapse
Affiliation(s)
- Elisângela Martins-Santos
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - Cristiano Guimarães Pimenta
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - Pollyana Rabelo Nunes Campos
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - André Gustavo Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | | | - Cleida Aparecida Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
26
|
Elias D, Wang L, Jacinthe PA. A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:79. [PMID: 29330590 DOI: 10.1007/s10661-017-6441-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Global agricultural intensification has led to increased pesticide use (37-fold from 1960 to 2005) and soil erosion (14% since 2000). Conservation tillage, including no-till (NT), has been proposed as an alternative to conventional plow till (PT) to mitigate soil erosion, but past studies have reported mixed results on the effect of conservation tillage on pesticide loss. To explore the underlying factors of these differences, a meta-analysis was conducted using published data on pesticide concentration and load in agricultural runoff from NT and PT fields. Peer-reviewed articles (1985-2016) were compiled to build a database for analysis. Contrary to expectations, results showed greater concentration of atrazine, cyanazine, dicamba, and simazine in runoff from NT than PT fields. Further, we observed greater load of dicamba and metribuzin, but reduced load of alachlor from NT fields. Overall, the concentration and the load of pesticides were greater in runoff from NT fields, especially pesticides with high solubility and low affinity for solids. Thus, NT farming affects soil properties that control pesticide retention and interactions with soils, and ultimately their mobility in the environment. Future research is needed for a more complete understanding of pesticide-soil interactions in NT systems. This research could inform the selection of pesticides by farmers and improve the predictive power of pesticide transport models.
Collapse
Affiliation(s)
- Daniel Elias
- Department of Earth Sciences, Indiana University Purdue University Indianapolis, 723 W. Michigan Street, SL 118, Indianapolis, IN, 46202, USA
| | - Lixin Wang
- Department of Earth Sciences, Indiana University Purdue University Indianapolis, 723 W. Michigan Street, SL 118, Indianapolis, IN, 46202, USA
| | - Pierre-Andre Jacinthe
- Department of Earth Sciences, Indiana University Purdue University Indianapolis, 723 W. Michigan Street, SL 118, Indianapolis, IN, 46202, USA.
| |
Collapse
|
27
|
Saka M, Tada N, Kamata Y. Chronic toxicity of 1,3,5-triazine herbicides in the postembryonic development of the western clawed frog Silurana tropicalis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:373-381. [PMID: 28869887 DOI: 10.1016/j.ecoenv.2017.08.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 05/22/2023]
Abstract
Seven 1,3,5- triazine (s-triazine) herbicides (ametryn, prometryn, dimethametryn, simazine, atrazine, propazine, and cyanazine) were tested using an amphibian (Silurana tropicalis) metamorphosis assay focusing on morphometric, gravimetric, and thyroid-histological endpoints. Premetamorphic tadpoles were exposed to each s-triazine at 2 concentrations between 1/1000 and 1/10 of the 96-h acute toxicity values, until all tadpoles in the control group reached either the late prometamorphosic stages or the initial stage of metamorphic climax. All s-triazines tested induced significant retardation in growth and development at the higher concentrations (0.2-1.0mg/L), and some of them induced similar effects even at the lower concentrations (0.02-0.1mg/L) while each showing a linear dose-response. Total size of the thyroid glands tended to be reduced corresponding to the delayed development, but without showing histomorphological lesions typical of anti-thyroid chemicals. These consistent results suggest that the s-triazines can act as a chemical stressor inhibiting tadpole growth and development, possibly without disrupting the thyroid axis. In addition, tadpoles exhibiting spinal curvatures appeared in either one or both of the lower and higher concentration groups for each s-triazine tested. The incidence rate in the s-triazine exposure groups where tadpoles with scoliosis were observed ranged from 3.3% to 63.3%, some of which were significantly higher than that in the respective control groups (0-6.7%). It is speculated that the s-triazines may promote to occur axial malformations in developing tadpoles.
Collapse
Affiliation(s)
- Masahiro Saka
- Division of Aquatic Environment, Kyoto Prefectural Institute of Public Health and Environment, Murakamicho 395, Fushimi-ku, Kyoto 612-8369, Japan.
| | - Noriko Tada
- Division of Aquatic Environment, Kyoto Prefectural Institute of Public Health and Environment, Murakamicho 395, Fushimi-ku, Kyoto 612-8369, Japan
| | - Yoichi Kamata
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
28
|
Gonçalves MW, Marins de Campos CB, Batista VG, da Cruz AD, de Marco Junior P, Bastos RP, de Melo E Silva D. Genotoxic and mutagenic effects of Atrazine Atanor 50 SC on Dendropsophus minutus Peters, 1872 (Anura: Hylidae) developmental larval stages. CHEMOSPHERE 2017; 182:730-737. [PMID: 28531839 DOI: 10.1016/j.chemosphere.2017.05.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
The potential mutagenic and genotoxic effects of the herbicide atrazine were investigated in different developmental stages of Dendropsophus minutus tadpoles. These animals were exposed to 4 nominal concentrations of atrazine (2.25, 4.5, 9, and 18 mg/L) and 40 mg/L of Cyclophosphamide as a positive control, for 96 h. Negative controls were also added to the experiment. The tadpoles were divided into three groups according to Gosner's developmental stages, namely GS 25-33 as premetamorphic, GS 36-39 as prometamorphic, and GS 42-43 as metamorphic climax. Our results showed that the premetamorphic and metamorphic stages were more sensitive than the prometamorphic stage to the herbicide. A comet assay and micronucleus test for the sensitive stages demonstrated DNA damage in a concentration-dependent curve. Although a dose-response effect was not observed for the prometamorphic stage, a statistically significant difference was found between the treatment of 18 mg/L and the negative control. Moreover, the highest concentration of atrazine showed both the largest amount of DNA damage and the highest micronucleus frequency regardless of the developmental stage of D. minutus. In conclusion, atrazine was genotoxic and mutagenic for D. minutus in a dose-sensitive manner, dependent on larval developmental stages. Considering the prometamorphic stages showed no dose-response effect to atrazine, we suggest caution when using this stage in biomonitoring studies in order to avoid false negative results. Amphibians have been proven to be useful bioindicators, and we suggest replicating biomonitoring studies using different species to represent ecosystems' environmental impacts.
Collapse
Affiliation(s)
- Macks Wendhell Gonçalves
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | | | - Vinícius Guerra Batista
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Paraná, Brazil
| | - Aparecido Divino da Cruz
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Paulo de Marco Junior
- Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rogério Pereira Bastos
- Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Paraná, Brazil
| | - Daniela de Melo E Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
29
|
Persistent testicular structural and functional alterations after exposure of adult rats to atrazine. Reprod Toxicol 2017; 73:201-213. [PMID: 28847621 DOI: 10.1016/j.reprotox.2017.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/11/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
Abstract
Atrazine is an endocrine disruptor affecting testicular steroidogenesis, and promoting testicular atrophy and 3β-HSD reduction. However, it remains unknown whether these effects are reversible or permanent. To address this issue was the aim of this study. Exposition of rats to 200mg/kg of atrazine resulted in transient increase in testicular weight, seminiferous tubules dilation and atrophy, and reduction in Leydig cell 3β-HSD. Testicular atrophy and 3β-HSD reduction were more pronounced after the recovery period of 75days. There was increase in aromatase expression after long-term exposure but it returned to control level after recovery. Moreover, there was increase in ED1-/ED2+, ED1+/ED2+ and ED1+/ED2- macrophages, in the recovery group. These macrophages were positive for 3β-HSD, thereby raising possibility of their involvement in steroidogenesis. These findings further emphasize the adverse effects of atrazine on male reproduction, highlighting that testicular damages may be irreversible even after a recovery period longer than the spermatogenic cycle.
Collapse
|
30
|
Traba HM, Domínguez-Morueco N, Barreno E, Catalá M. Lichen microalgae are sensitive to environmental concentrations of atrazine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:223-228. [PMID: 28095253 DOI: 10.1080/03601234.2016.1270679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The identification of new organisms for environmental toxicology bioassays is currently a priority, since these tools are strongly limited by the ecological relevance of taxa used to study global change. Lichens are sensitive bioindicators of air quality and their microalgae are an untapped source for new low-cost miniaturized bioassays with ecological importance. In order to increase the availability of a wider range of taxa for bioassays, the sensitivity of two symbiotic lichen microalgae, Asterochloris erici and Trebouxia sp. TR9, to atrazine was evaluated. To achieve this goal, axenic cultures of these phycobionts in suspension were exposed to a range of environmental concentrations of the herbicide atrazine, a common water pollutant. Optical density and chlorophyll autofluorescence were used as endpoints of ecotoxicity and ecophysiology on cell suspensions. Results show that lichen microalgae show high sensitivity to very low doses of atrazine, being higher in Asterochloris erici than in Trebouxia sp. TR9. We conclude that environmental concentrations of atrazine could modify population dynamics probably through a shift in reproduction strategies of these organisms. This seminal work is a breakthrough in the use of lichen microalgae in the assessment of micropollution effects on biodiversity.
Collapse
Affiliation(s)
- Helena Moreno Traba
- a Biology and Geology Department, ESCET , Rey Juan Carlos University , Móstoles (Madrid) , Spain
| | - Noelia Domínguez-Morueco
- a Biology and Geology Department, ESCET , Rey Juan Carlos University , Móstoles (Madrid) , Spain
| | - Eva Barreno
- b Departamento de Botánica , Universitat de València, ICBIBE, Fac. C. Biológicas , Burjassot (Valencia) , Spain
| | - Myriam Catalá
- a Biology and Geology Department, ESCET , Rey Juan Carlos University , Móstoles (Madrid) , Spain
| |
Collapse
|
31
|
Li YY, Chen J, Qin ZF. Determining the optimal developmental stages of Xenopus laevis for initiating exposures to chemicals for sensitively detecting their feminizing effects on gonadal differentiation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:134-142. [PMID: 27611864 DOI: 10.1016/j.aquatox.2016.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Xenopus laevis is an important model for detecting feminizing effects of endocrine disrupting chemicals (EDCs) on amphibians because its genetic males can be induced to phenotypic females by estrogenic chemicals. It is crucial that chemical exposures begin at sensitive developmental stages for gonadal sex-reversal in X. laevis. To determine the optimal stages for initiating exposures, we investigated gonadal sex-reversal induced by low concentrations of 17α-ethinylestradiol (EE2) when exposures were initiated at different stages (3/4, 45/46, 48 and 50) until stage 58. We found that 0.1nM EE2 resulted in 85%, 86%, 43%, and 19% intersex, whereas 1nM EE2 caused 77%, 81%, 17%, and 8% phenotypic females, when genetic male tadpoles were exposed from stages 3/4, 45/46, 48 and 50, respectively. The data show the sensitivity of X. laevis gonads to EE2 at stages 45/46 is similar with that at stages 3/4, but the sensitivity decreases at stage 48 and stage 50, displaying a developmental stage-dependent manner. In another experiment using the offspring of another pair of frogs, we confirmed high sensitivity of X. laevis gonads at stages 45/46 to low concentrations of EE2. Considering that stages 45/46 tadpoles are easier to manipulate and have higher survival rates than earlier embryos, we propose that stages 45/46 are the optimal stages for initiating exposure for detecting feminizing effects of EDCs on gonadal differentiation in X. laevis. The developmental stages for initiating exposures we determined will guarantee the high sensitivity for detecting feminizing effects of EDCs with low estrogenic activities on gonadal differentiation in X. laevis. Also, our study suggests that gonadal differentiation in X. laevis possibly begins at stages 45/46, but not at later stages.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Marcus SR, Fiumera AC. Atrazine exposure affects longevity, development time and body size in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:18-25. [PMID: 27317622 PMCID: PMC4969214 DOI: 10.1016/j.jinsphys.2016.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 05/13/2023]
Abstract
Atrazine is the one of the most widely used herbicides in the United States and non-target organisms may encounter it in the environment. Atrazine is known to affect male reproduction in both vertebrates and invertebrates but less is known about its effects on other fitness traits. Here we assessed the effects of five different chronic exposure levels on a variety of fitness traits in Drosophila melanogaster. We measured male and female longevity, development time, proportion pupated, proportion emerged, body size, female mating rate, fertility and fecundity. Atrazine exposure decreased the proportion pupated, the proportion emerged and adult survival. Development time was also affected by atrazine and exposed flies pupated and emerged earlier than controls. Although development time was accelerated, body size was actually larger in some of the exposures. Atrazine exposure had no effect on female mating rate and the effects on female fertility and fecundity were only observed in one of the two independent experimental blocks. Many of the traits showed non-monotonic dose response curves, where the intermediate concentrations showed the largest effects. Overall this study shows that atrazine influences a variety of life history traits in the model genetic system, D. melanogaster, and future studies should aim to identify the molecular mechanisms of toxicity.
Collapse
Affiliation(s)
- Sarah R Marcus
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
| | - Anthony C Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
33
|
Tamschick S, Rozenblut-Kościsty B, Ogielska M, Lehmann A, Lymberakis P, Hoffmann F, Lutz I, Schneider RJ, Kloas W, Stöck M. Impaired gonadal and somatic development corroborate vulnerability differences to the synthetic estrogen ethinylestradiol among deeply diverged anuran lineages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:503-514. [PMID: 27434076 DOI: 10.1016/j.aquatox.2016.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Amphibians are undergoing a global decline. One poorly investigated reason could be the pollution of aquatic habitats by endocrine disrupting compounds (EDCs). We tested the susceptibility to the synthetically stabilized estrogen 17α-ethinylestradiol (EE2) in three deeply diverged anuran species, differing in sex determination systems, types of gonadogenesis and larval ecologies. To understand whether data from the amphibian model Xenopus laevis (Pipidae) are analogous and applicable to only distantly related non-model amphibians, tadpoles of X. laevis, Hyla arborea (Hylidae) and Bufo viridis (Bufonidae) were simultaneously exposed to 50, 500 and 5000ng/L EE2 from hatching until completion of metamorphosis, using a flow-through-system under identical experimental conditions. Comparing molecularly established genetic with histologically assessed phenotypic sex in all species, we have recently shown that EE2 provoked numerous genetic-male-to-phenotypic-female sex reversals and mixed sex individuals, confirming overall its expected feminizing effect. In the present study, we focus on the influence of EE2 on gonadal and somatic development. Anatomy and histology revealed several species-specific effects. In both non-model species, H. arborea and B. viridis, high numbers of anatomically impaired gonads were observed. In H. arborea, exposed to 5000ng/L EE2, numerous underdeveloped gonads were detected. Whereas EE2 did not alter snout-to-vent length and body weight of X. laevis metamorphs, H. arborea showed a treatment-dependent decrease, while B. viridis exhibited an increase in body weight and snout-to-vent length. Apart from a concentration-dependent occurrence of yellowish skin color in several H. arborea, no organ-specific effects were detected. Since EE2 ubiquitously occurs in many aquatic ecosystems and affects sexual and somatic development, among EDCs, it may indeed contribute to amphibian decline. The inter-species variation in developmental EE2-effects corroborates species-specific vulnerability differences towards EDCs between deeply diverged amphibian groups.
Collapse
Affiliation(s)
- Stephanie Tamschick
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Beata Rozenblut-Kościsty
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335 Wroclaw, Poland.
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of Vertebrates, Wroclaw University, Sienkiewicza 21, 50-335 Wroclaw, Poland.
| | - Andreas Lehmann
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| | - Petros Lymberakis
- Natural History Museum of Crete, University of Crete, Knossou Ave., 71409 Heraklion, Crete, Greece.
| | - Frauke Hoffmann
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Ilka Lutz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Rudolf J Schneider
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, D-12489 Berlin, Germany.
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301 & 310, D-12587 Berlin, Germany.
| |
Collapse
|
34
|
Lee EJ, Jang Y, Kang K, Song DH, Kim R, Chang HW, Lee DE, Song CKE, Choi B, Kang MJ, Chang EJ. Atrazine induces endoplasmic reticulum stress-mediated apoptosis of T lymphocytes via the caspase-8-dependent pathway. ENVIRONMENTAL TOXICOLOGY 2016; 31:998-1008. [PMID: 25640594 DOI: 10.1002/tox.22109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/15/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Atrazine (ATR) is one of the most commonly applied broad-spectrum herbicides. Although ATR is well known to be a biologically hazardous molecule with potential toxicity in the immune system, the molecular mechanisms responsible for ATR-induced immunotoxicity remain unclear. In this study, we found that the immunotoxic properties of ATR were mediated through the induction of apoptotic changes in T lymphocytes. Mice exposed to ATR for 4 weeks exhibited a significant decrease in the number of spleen CD3(+) T lymphocytes, while CD19(+) B lymphocytes and nonlymphoid cells were unaffected. ATR exposure also led to inhibition of cell growth and induction of apoptosis in human Jurkat T-cells. Importantly, ATR triggered the activation of caspase-3 and the cleavage of caspase-8 and PARP, whereas it did not affect the release of cytochrome c from the mitochondria in Jurkat T-cells. In addition, ATR activated the unfolded protein response signaling pathway, as indicated by eIF2α phosphorylation and CHOP induction. Our results demonstrate that ATR elicited an immunotoxic effect by inducing ER stress-induced apoptosis in T-cells, therefore providing evidence for the molecular mechanism by which ATR induces dysregulation of the immune system. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 998-1008, 2016.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Youngsaeng Jang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Kwonyoon Kang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Da-Hyun Song
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Rihyun Kim
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Hee-Won Chang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Dong Eil Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Claire Ka-Eun Song
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Bongkun Choi
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| |
Collapse
|
35
|
Winston JJ, Emch M, Meyer RE, Langlois P, Weyer P, Mosley B, Olshan AF, Band LE, Luben TJ. Hypospadias and maternal exposure to atrazine via drinking water in the National Birth Defects Prevention study. Environ Health 2016; 15:76. [PMID: 27422386 PMCID: PMC4946150 DOI: 10.1186/s12940-016-0161-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Hypospadias is a relatively common birth defect affecting the male urinary tract. It has been suggested that exposure to endocrine disrupting chemicals might increase the risk of hypospadias by interrupting normal urethral development. METHODS Using data from the National Birth Defects Prevention Study, a population-based case-control study, we considered the role of maternal exposure to atrazine, a widely used herbicide and potential endocrine disruptor, via drinking water in the etiology of 2nd and 3rd degree hypospadias. We used data on 343 hypospadias cases and 1,422 male controls in North Carolina, Arkansas, Iowa, and Texas from 1998-2005. Using catchment level stream and groundwater contaminant models from the US Geological Survey, we estimated atrazine concentrations in public water supplies and in private wells. We assigned case and control mothers to public water supplies based on geocoded maternal address during the critical window of exposure for hypospadias (i.e., gestational weeks 6-16). Using maternal questionnaire data about water consumption and drinking water, we estimated a surrogate for total maternal consumption of atrazine via drinking water. We then included additional maternal covariates, including age, race/ethnicity, parity, and plurality, in logistic regression analyses to consider an association between atrazine and hypospadias. RESULTS When controlling for maternal characteristics, any association between hypospadias and daily maternal atrazine exposure during the critical window of genitourinary development was found to be weak or null (odds ratio for atrazine in drinking water = 1. 00, 95 % CI = 0.97 to 1.03 per 0.04 μg/day increase; odds ratio for maternal consumption = 1.02, 95 % CI = 0.99 to 1.05; per 0.05 μg/day increase). CONCLUSIONS While the association that we observed was weak, our results suggest that additional research into a possible association between atrazine and hypospadias occurrence, using a more sensitive exposure metric, would be useful.
Collapse
Affiliation(s)
- Jennifer J. Winston
- />Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Michael Emch
- />Department of Geography and Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Robert E. Meyer
- />North Carolina Birth Defects Monitoring Program, State Center for Health Statistics, Raleigh, NC USA
- />Department of Maternal and Child Health, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Peter Langlois
- />Texas Department of State Health Services, Birth Defects Epidemiology and Surveillance Branch, Austin, TX USA
| | - Peter Weyer
- />Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, IA USA
| | - Bridget Mosley
- />Department of Pediatrics, Arkansas Children’s Hospital, Little Rock, AR USA
| | - Andrew F. Olshan
- />Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Lawrence E. Band
- />Department of Geography and Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Thomas J. Luben
- />National Center for Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC USA
| | | |
Collapse
|
36
|
Guo Y, Zhao P, Zhang W, Li X, Chen X, Chen D. Catalytic improvement and structural analysis of atrazine chlorohydrolase by site-saturation mutagenesis. Biosci Biotechnol Biochem 2016; 80:1336-43. [DOI: 10.1080/09168451.2016.1156481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
To improve the catalytic activity of atrazine chlorohydrolase (AtzA), amino acid residues involved in substrate binding (Gln71) and catalytic efficiency (Val12, Ile393, and Leu395) were targeted to generate site-saturation mutagenesis libraries. Seventeen variants were obtained through Haematococcus pluvialis-based screening, and their specific activities were 1.2–5.2-fold higher than that of the wild type. For these variants, Gln71 tended to be substituted by hydrophobic amino acids, Ile393 and Leu395 by polar ones, especially arginine, and Val12 by alanine, respectively. Q71R and Q71M significantly decreased the Km by enlarging the substrate-entry channel and affecting N-ethyl binding. Mutations at sites 393 and 395 significantly increased the kcat/Km, probably by improving the stability of the dual β-sheet domain and the whole enzyme, owing to hydrogen bond formation. In addition, the contradictory relationship between the substrate affinity improvement by Gln71 mutation and the catalytic efficiency improvement by the dual β-sheet domain modification was discussed.
Collapse
Affiliation(s)
- Yuan Guo
- College of Life Sciences, Nankai University, Tianjin, China
| | - Panjie Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wenhao Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolong Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiwen Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Defu Chen
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
37
|
Háhn J, Szoboszlay S, Krifaton C, Kovács KJ, Ferenczi S, Kriszt B. Development of a combined method to assess the complex effect of atrazine on sex steroid synthesis in H295R cells. CHEMOSPHERE 2016; 154:507-514. [PMID: 27085065 DOI: 10.1016/j.chemosphere.2016.03.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/04/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
The aim of the study was to develop a rapid, cost-effective combined testing method to assess the indirect effect of compounds interfering with sex steroid synthesis and to determine complex effects of atrazine on estrogen and androgen synthesis in vitro on H295R human cell line. Steroidogenic assay was performed on H295R human adrenocortical carcinoma cell line. Instead of standard analytical methods, bioluminescence bioreporter assays (Saccharomyces cerevisiae BLYES and BLYAS) were used to measure estrogenic and androgenic effects of sex steroid hormones released by human cells in response to atrazine. Atrazine resulted in elevated estrogen production presumably due to its well documented inductive effect on aromatase on H295R cell line, detected by BLYES. Interestingly, results of BLYAS test showed concentration-dependent increase of androgen production in H295R cells. That indicates that atrazine can not only increase estrogen level via aromatase induction, but may interfere in androgen synthesis as well. The combined method allows us to assess the androgenic and estrogenic effect of sex steroids produced by human cells in increased or decreased quantity as a result of the different chemicals, without determining specific analytical measurement endpoints, by using the yeast based bioluminescent bioreporter test.
Collapse
Affiliation(s)
- Judit Háhn
- Szent István University, Regional University Center of Excellence, 1 Páter Károly Street, Gödöllő 2100, Hungary
| | - Sándor Szoboszlay
- Szent István University, Department of Environmental Safety and Ecotoxicology, 1 Páter Károly Street, Gödöllő 2100, Hungary.
| | - Csilla Krifaton
- Szent István University, Department of Environmental Safety and Ecotoxicology, 1 Páter Károly Street, Gödöllő 2100, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, 43 Szigony Street, Budapest 1083, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, 43 Szigony Street, Budapest 1083, Hungary
| | - Balázs Kriszt
- Szent István University, Department of Environmental Safety and Ecotoxicology, 1 Páter Károly Street, Gödöllő 2100, Hungary
| |
Collapse
|
38
|
Ji Q, Lee J, Lin YH, Jing G, Tsai LJ, Chen A, Hetrick L, Jocoy D, Liu J. Atrazine and malathion shorten the maturation process of Xenopus laevis oocytes and have an adverse effect on early embryo development. Toxicol In Vitro 2016; 32:63-9. [DOI: 10.1016/j.tiv.2015.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/18/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022]
|
39
|
Atrazine Exposure and Reproductive Dysfunction through the Hypothalamus-Pituitary-Gonadal (HPG) Axis. TOXICS 2015; 3:414-450. [PMID: 28713818 PMCID: PMC5507375 DOI: 10.3390/toxics3040414] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocrine disrupting chemicals (EDC) are exogenous agents that alter endogenous hormone signaling pathways. These chemicals target the neuroendocrine system which is composed of organs throughout the body that work alongside the central nervous system to regulate biological processes. Of primary importance is the hypothalamic-pituitary-gonadal (HPG) axis which is vital for maintaining proper reproductive function. Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a pre-emergent herbicide used to prevent the growth of weeds on various crops. This herbicide is reported to widely contaminate potable water supplies everywhere it is applied. As such, the European Union banned the use of atrazine in 2004. Currently the United States Environmental Protection Agency regulates atrazine at 3 parts per billion (ppb; μg/L) in drinking water, while the World Health Organization recently changed their drinking water guideline to 100 ppb. Atrazine is implicated to be an EDC that alters reproductive dysfunction by targeting the HPG axis. However, questions remain as to the human health risks associated with atrazine exposure with studies reporting mixed results on the ability of atrazine to alter the HPG axis. In this review, the current findings for atrazine’s effects on the HPG axis are examined in mammalian, anuran, and fish models and in epidemiological studies.
Collapse
|
40
|
Van Der Kraak GJ, Hosmer AJ, Hanson ML, Kloas W, Solomon KR. Effects of atrazine in fish, amphibians, and reptiles: an analysis based on quantitative weight of evidence. Crit Rev Toxicol 2015; 44 Suppl 5:1-66. [PMID: 25375889 DOI: 10.3109/10408444.2014.967836] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A quantitative weight of evidence (WoE) approach was developed to evaluate studies used for regulatory purposes, as well as those in the open literature, that report the effects of the herbicide atrazine on fish, amphibians, and reptiles. The methodology for WoE analysis incorporated a detailed assessment of the relevance of the responses observed to apical endpoints directly related to survival, growth, development, and reproduction, as well as the strength and appropriateness of the experimental methods employed. Numerical scores were assigned for strength and relevance. The means of the scores for relevance and strength were then used to summarize and weigh the evidence for atrazine contributing to ecologically significant responses in the organisms of interest. The summary was presented graphically in a two-dimensional graph which showed the distributions of all the reports for a response. Over 1290 individual responses from studies in 31 species of fish, 32 amphibians, and 8 reptiles were evaluated. Overall, the WoE showed that atrazine might affect biomarker-type responses, such as expression of genes and/or associated proteins, concentrations of hormones, and biochemical processes (e.g. induction of detoxification responses), at concentrations sometimes found in the environment. However, these effects were not translated to adverse outcomes in terms of apical endpoints. The WoE approach provided a quantitative, transparent, reproducible, and robust framework that can be used to assist the decision-making process when assessing environmental chemicals. In addition, the process allowed easy identification of uncertainty and inconsistency in observations, and thus clearly identified areas where future investigations can be best directed.
Collapse
|
41
|
Huang P, Yang J, Ning J, Wang M, Song Q. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells. Int J Mol Sci 2015; 16:14353-68. [PMID: 26114388 PMCID: PMC4519846 DOI: 10.3390/ijms160714353] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023] Open
Abstract
Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague–Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo.
Collapse
Affiliation(s)
- Peixin Huang
- Department of Agriculture & Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO 65102, USA.
- Department of Pediatrics, Children's Mercy Hospitals and Clinics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA.
| | - John Yang
- Department of Agriculture & Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO 65102, USA.
| | - Jie Ning
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Michael Wang
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
42
|
Katti PA, Ghodgeri MG, Goundadkar BB. Amphibian (Euphlyctis cyanophlyctis) in vitro ovarian culture system to assess impact of aquatic agrochemical contaminants on female reproduction. Drug Chem Toxicol 2015; 39:104-10. [PMID: 25945413 DOI: 10.3109/01480545.2015.1041603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study is an attempt to screen impacts of aquatic agrochemical contaminants (acephate, atrazine and cypermethrin) on development and growth of follicles, in in vitro-cultured ovarian fragments of frog (Euphlyctis cyanophlyctis). Ovarian lobes removed surgically from gravid females were cut into small pieces and cultured in vitro in presence of graded (0.01 or 0.1 μg/ml of culture medium) concentrations of test chemicals or estradiol-17β (positive controls) or culture medium alone (controls) in quadruplicate sets at 23 ± 1 °C temperature for 20 days in a humidified sterile chamber. On 21st day, they were fixed in Bouin's fluid and used for differential follicle counting (n = 3 sets) and histology (n = 1 set). In vitro exposure of ovarian fragments to test chemicals caused a decline in previtellogenic follicles, maintenance of large yolky follicles, incorporation of brown granules into early vitellogenic follicles and decrease in follicular atresia compared to corresponding controls. These results suggest that ovarian follicles are greatly sensitive to chemical exposure during their transition from previtellogenic to vitellogenic growth phase and in vitro ovarian culture system may be used as a tool to assess the effects of aquatic agrochemical contaminants on ovarian function.
Collapse
|
43
|
Jesionowski AM, Gabriel SM, Rich JD, Schroeder JR. Failure of pesticides to alter migration of cancerous and non-cancerous breast cell lines in vitro. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00098f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Organochlorine pesticides are routinely used in agricultural processes across the United States.
Collapse
Affiliation(s)
| | | | - J. D. Rich
- Department of Biology
- Millikin University
- Decatur
- USA
| | | |
Collapse
|
44
|
|
45
|
Lou Q, Cao S, Xu W, Zhang Y, Qin Z, Wei W. Molecular characterization and mRNA expression of ribosomal protein L8 in Rana nigromaculata during development and under exposure to hormones. J Environ Sci (China) 2014; 26:2331-2339. [PMID: 25458689 DOI: 10.1016/j.jes.2014.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/22/2014] [Accepted: 02/24/2014] [Indexed: 06/04/2023]
Abstract
Like Xenopus laevis, some species of the Rana genus are also used to study endocrine disrupting chemicals (EDCs). Although ribosomal protein L8 (rpl8) is the most-used reference gene for analyzing gene expression by quantitative reverse transcription polymerase chain reaction in Rana, its suitability as the reference gene has never been validated in any species of the Rana genus. We characterized rpl8 cDNA in Rana nigromaculata, a promising native species in East Asia for assaying endocrine disrupting effects. We found that the rpl8 cDNA consisted of 919bp and encoded 257 amino acids, exhibiting high identities of amino acid sequence with known rpl8 in other Rana species. Then, we examined the stability of mRNA expression during development. Compared with elongation factor 1 alpha 1, another common housekeeping gene, neither stage-specific nor tissue-specific expression of the rpl8 gene was found in all tissues examined (brain, liver, intestine, tail, testis and ovary) during R. nigromaculata development. Finally, we investigated rpl8 expression under exposure to hormones. No change in rpl8 mRNA expression was found under exposure to thyroid hormone (T4) and estrogen (estradiol), whereas expression of the corresponding biomarker genes was induced. Our results show that rpl8 is an appropriate reference gene for analyzing gene expression by quantitative reverse transcription polymerase chain reaction for assaying EDCs using R. nigromaculata, and might also provide support for using rpl8 as a reference gene in other Rana species due to the high conservation of rpl8 among the Rana genus.
Collapse
Affiliation(s)
- Qinqin Lou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment, Nanjing University of Technology, Nanjing 210009, China.
| | - Shan Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment, Nanjing University of Technology, Nanjing 210009, China
| | - Wei Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment, Nanjing University of Technology, Nanjing 210009, China
| | - Yinfeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wuji Wei
- College of Environment, Nanjing University of Technology, Nanjing 210009, China
| |
Collapse
|
46
|
Liu W, Du Y, Liu J, Wang H, Sun D, Liang D, Zhao L, Shang J. Effects of atrazine on the oxidative damage of kidney in Wister rats. Int J Clin Exp Med 2014; 7:3235-3243. [PMID: 25419354 PMCID: PMC4238554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/20/2014] [Indexed: 06/04/2023]
Abstract
The environmental persistence and bioaccumulation of herbicide atrazine may pose a significant threat to human health. In this experiment, 4 weeks old female Wister rats were treated by 0, 5, 25 and 125 mg/kg atrazine respectively for 28 days, and the oxidative stress responses as well as the activations of Nrf2 signaling pathway in kidney tissues induced by atrazine were observed. The results showed that after be treated by atrazine, the Blood urea nitrogen (BUN) and creatinine (CREA) levels in serum were increased, the contents of nitric oxide (NO) and malondialdehyde (MDA) in the kidney tissue homogenates were increased, the over-expressed Nrf2 transferred into the nuclei and played an antioxidant role by up-regulated the expression of II phase detoxifying enzymes such as heme oxygenase-1 (HO1) and NAD(P)H quinone oxidoreductase (NQO1) and the expression of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).
Collapse
Affiliation(s)
- Wei Liu
- School of Environment, Northeast Normal UniversityChangchun 130021, China
- Jilin Academic of Environmental ScienceChangchun 130021, China
| | - Yanwei Du
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin UniversityChangchun 130021, China
| | - Jian Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin UniversityChangchun 130021, China
| | - Hebin Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin UniversityChangchun 130021, China
| | - Daguang Sun
- Jilin Academic of Environmental ScienceChangchun 130021, China
| | - Dongmei Liang
- Jilin Academic of Environmental ScienceChangchun 130021, China
| | - Lijing Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin UniversityChangchun 130021, China
| | - Jincheng Shang
- School of Environment, Northeast Normal UniversityChangchun 130021, China
| |
Collapse
|
47
|
Huang P, Yang J, Song Q. Atrazine affects phosphoprotein and protein expression in MCF-10A human breast epithelial cells. Int J Mol Sci 2014; 15:17806-26. [PMID: 25275270 PMCID: PMC4227191 DOI: 10.3390/ijms151017806] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/26/2014] [Accepted: 09/11/2014] [Indexed: 11/17/2022] Open
Abstract
Atrazine, a member of the 2-chloro-s-triazine family of herbicides, is the most widely used pesticide in the world and often detected in agriculture watersheds. Although it was generally considered as an endocrine disruptor, posing a potential threat to human health, the molecular mechanisms of atrazine effects remain unclear. Using two-dimensional gel electrophoresis, we identified a panel of differentially expressed phosphoproteins and total proteins in human breast epithelial MCF-10A cells after being exposed to environmentally relevant concentrations of atrazine. Atrazine treatments for 6 h resulted in differential expression of 4 phosphoproteins and 8 total-proteins as compared to the control cells (>1.5-fold, p < 0.05). MALDI-TOF MS/MS analysis revealed that the differentially expressed proteins belong to various cellular compartments (nucleus, cytosol, membrane) and varied in function, including those regulating the stress response such as peroxiredoxin I, HSP70 and HSP27; structural proteins such as tropomyosin and profilin 1; and oncogenesis proteins such as ANP32A. Six of the 12 identified proteins were verified by quantitative PCR for their transcript levels. The most up-regulated phosphoprotein by atrazine treatment, ANP32A, was further analyzed for its expression, distribution and cellular localization using Western blot and immunocytochemical approaches. The results revealed that ANP32 expression after atrazine treatment increased dose and time dependently and was primarily located in the nucleus. This study may provide new evidence on the potential toxicity of atrazine in human cells.
Collapse
Affiliation(s)
- Peixin Huang
- Department of Agriculture & Environmental Science, Lincoln University of Missouri, Jefferson City, MO 65120, USA.
| | - John Yang
- Department of Agriculture & Environmental Science, Lincoln University of Missouri, Jefferson City, MO 65120, USA.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
48
|
Agopian AJ, Langlois PH, Cai Y, Canfield MA, Lupo PJ. Maternal residential atrazine exposure and gastroschisis by maternal age. Matern Child Health J 2014. [PMID: 23184502 DOI: 10.1007/s10995-012-1196-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous literature has suggested a link between maternal exposure to atrazine (the most commonly used herbicide in the US) and risk for gastroschisis (a birth defect that involves incomplete closure of the abdominal wall). Our objective was to evaluate the relationship between maternal atrazine exposure and gastroschisis risk by maternal age. We analyzed data for 1,161 cases with isolated gastroschisis and 8,390 controls delivered in Texas from 1999 through 2008. We estimated atrazine exposure based on maternal county of residence and data from the United States Geological Survey. Logistic regression was conducted among all subjects, and separately among offspring of women <25 and ≥25 years. Risk for gastroschisis in offspring was significantly increased for women ≥25 years with high levels of residential atrazine exposure compared to low (adjusted odds ratio: 1.97, 95 % confidence interval 1.19-3.26). This association was not observed among women <25 years. Our results provide additional insight into the suspected relationship of gastroschisis with atrazine. This relationship appears to be different in older versus younger mothers, providing further evidence that the etiology of gastroschisis may vary based on maternal age.
Collapse
Affiliation(s)
- A J Agopian
- Division of Epidemiology, Human Genetics and Environmental Sciences, Human Genetics Center, University of Texas School of Public Health, Houston, TX, USA
| | | | | | | | | |
Collapse
|
49
|
Moresco RM, Margarido VP, de Oliveira C. A persistent organic pollutant related with unusual high frequency of hermaphroditism in the neotropical anuran Physalaemus cuvieri Fitzinger, 1826. ENVIRONMENTAL RESEARCH 2014; 132:6-11. [PMID: 24742721 DOI: 10.1016/j.envres.2014.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 01/07/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Representing a reflection of anthropic activity, the level of xenobiotic compounds in aquatic ecosystems has increased in recent years, bringing severe damage to the environment. The present work reports the occurrence of malformation in gonads of Physalaemus cuvieri individuals from a population of Atlantic Forest in Southern Brazil. Twenty male specimens were collected, which had their testicles removed, immersed in Karnovsky fixative solution, included in historesin for 2 μm cuts and stained with Hematoxylin-eosin. Four specimens showed intersexual gonads condition along with the presence of sperm and oocytes. In order to test a possible contamination of water, 2L were collected from the water body to check organochlorine, organophosphate and carbamate compounds. The analysis of water showed the presence of agrotoxic Dieldrin in a concentration of 0.05 μg/L, representing a concentration above the recommended reference. This agrotoxic, in addition to acting as endocrine disrupter and commercially prohibited, has quite persistent residual effects, and may be responsible for the high frequency of P. cuvieri with intersexual gonads, which in the long term can represent a risk for this population due to the potential impact on its effective reproductive ability.
Collapse
Affiliation(s)
- Rafaela M Moresco
- Universidade Estadual Paulista (Unesp), Departamento de Biologia. Rua Cristóvão Colombo, 2265-Jardim Nazareth, CEP 15054-000, São José do Rio Preto, São Paulo, Brazil; Universidade Estadual do Oeste do Paraná (Unioeste), Centro de Ciências Biológicas e da Saúde, Rua Universitária, 2069-Jardim Universitário, CEP 85819-110, Cascavel, Paraná, Brazil.
| | - Vladimir P Margarido
- Universidade Estadual do Oeste do Paraná (Unioeste), Centro de Ciências Biológicas e da Saúde, Rua Universitária, 2069-Jardim Universitário, CEP 85819-110, Cascavel, Paraná, Brazil
| | - Classius de Oliveira
- Universidade Estadual Paulista (Unesp), Departamento de Biologia. Rua Cristóvão Colombo, 2265-Jardim Nazareth, CEP 15054-000, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
50
|
Shenoy K. Prenatal exposure to low doses of atrazine affects mating behaviors in male guppies. Horm Behav 2014; 66:439-48. [PMID: 25014197 DOI: 10.1016/j.yhbeh.2014.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 12/29/2022]
Abstract
Performing appropriate mating behaviors is crucial to male reproductive success, especially in species where mating is predominantly via female mate choice. Mating behaviors are hormonally regulated and may be sexually selected traits: courtship displays are selected via mate choice, while forced copulations and aggressive behaviors are selected for via intrasexual competition. Endocrine disrupting compounds interfere with proper hormonal functioning in exposed animals. Exposures during developmentally crucial life stages can have irreversible effects lasting through adulthood. I tested the effects of prenatal exposure to environmentally relevant doses of a commonly used herbicide, atrazine (1 and 13.5μg/L) on mating behaviors in male guppies. Guppies were used as a model organism to test the effects of atrazine exposure on wildlife reproductive health. Adult female guppies were mated and exposed to the treatments throughout the gestation period, and offspring born to them were raised without further treatment. At adulthood, the males were tested for the effects of prenatal exposure on their mating behaviors such as courtship displays, gonopodium swings, forced copulatory attempts, and competitive and aggressive behaviors towards rivals who were not exposed to atrazine. I also tested female preference for treated males compared to control males. Atrazine-exposed males were less likely to perform the mating behaviors, and performed them less frequently, than control males. Atrazine exposure also made males less aggressive towards rivals. Females preferred untreated males over atrazine-treated males. In all cases, a non-monotonic pattern was seen, highlighting the significance of low-dose exposures.
Collapse
Affiliation(s)
- Kausalya Shenoy
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, KY 40506, USA.
| |
Collapse
|