1
|
Jeong K, Lee Y, Park M, Lee M, Jo J, Koh S, Lim Y, Shin D, Kim C. Association between respiratory tract deposited dose of size-segregated PM and FeNO based on individual exposure assessment for Korean children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177795. [PMID: 39622086 DOI: 10.1016/j.scitotenv.2024.177795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
FeNO (fractional exhaled nitric oxide) is a crucial marker to understand children's respiratory diseases such as asthma, and severity may vary depending on PM diameter and respiratory tract region. This study investigates the relationship between size-segregated respiratory deposited PM dose and FeNO for children. Size-segregated PM (PM1.0, PM1.0-2.5, and PM2.5-10.0) and FeNO were measured for eighty children based on individual exposure assessment in five consecutive days. Individual physical activity was measured by an accelerometer device. Accordingly, a dosimetry model estimated the respiratory deposited dose by PM diameter in the extrathoracic (ET), tracheobronchial (TB), and pulmonary (PUL) regions. A linear mixed model (LMM) with distributed lag non-linear model (DLNM) was used for analysis. The effects of home environment and traffic-related factors were also examined for sensitivity analysis. We found that IQR increases of PM2.5-10.0 and PM1.0 were associated with 15.1 % (95 % CI: 3.5, 28.1) and 15.9 % (95 % CI: 2.7, 30.9) FeNO increase in respiratory Total region in 0-12 h lag. In cumulative lag 0-24 h, PM1.0 was only associated with FeNO increase: 16.6 % (95 % CI: 1.5, 34.1) in total region. No association was observed in lag 12-24 h. PM2.5-10.0 was related to short-term airway inflammation in the upper respiratory tract whereas PM1.0 has a cumulative effect on both the upper and lower respiratory tract. In sensitivity analysis, PM2.5-10.0 was associated with a 0-12 h lag, whereas both PM2.5-10.0 and PM1.0 were associated with a cumulative lag of 0-24 h. Both home environment and traffic-related factors showed a synergetic effect with PM1.0 in short-term exposure and an antagonistic effect with PM2.5-10.0 in long-term exposure. This study highlights that airway inflammation depends on PM sizes, exposure durations, and respiratory tract regions.
Collapse
Affiliation(s)
- Kyungjun Jeong
- Institute of Environmental Research, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Yongjin Lee
- Institute of Environmental Research, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Minji Park
- Institute of Environmental Research, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Minsun Lee
- Institute of Environmental Research, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Jaelim Jo
- Department of Preventive Medicine, Yonsei University, Seoul, Republic of Korea
| | - Sangbaek Koh
- College of Medicine, Yonsei University Wonju, Wonju, Republic of Korea
| | - Youngwook Lim
- Institute of Environmental Research, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Dongchun Shin
- Institute of Environmental Research, College of Medicine, Yonsei University, Seoul, Republic of Korea; Department of Preventive Medicine, Yonsei University, Seoul, Republic of Korea
| | - Changsoo Kim
- Institute of Environmental Research, College of Medicine, Yonsei University, Seoul, Republic of Korea; Department of Preventive Medicine, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Xing C, Zeng Y, Yang X, Zhang A, Zhai J, Cai B, Shi S, Zhang Y, Zhang Y, Fu TM, Zhu L, Shen H, Ye J, Wang C. Molecular characterization of major oxidative potential active species in ambient PM 2.5: Emissions from biomass burning and ship exhaust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125291. [PMID: 39542165 DOI: 10.1016/j.envpol.2024.125291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Ambient fine particulate matter (PM2.5) can catalyze the generation of reactive oxygen species in vivo, causing hazardous effects on human health. Molecular-level analysis of major oxidative potential (OP) active species is still limited. In this study, we used non-targeted high-resolution mass spectrometry to analyze the water-soluble organic components of ambient PM2.5 samples in winter and summer. Chemical components and back trajectory analysis revealed significant impacts of biomass burning and ship emissions on PM2.5 in winter and summer, respectively. Significance Analysis of the Microarray method and correlation analyses were combined to identify OP (OPDTT and OPOH) active species in characteristic organic compounds emitted from ship and biomass combustion emissions and to explore possible mechanisms. The results showed that the characteristic compounds emitted from ship were mainly organic amine compounds and contained more sulfur-containing components, while the characteristic compounds emitted from biomass burning were mainly oxygen-containing aromatic compounds of CHO and CHON groups. The high toxicity of summer PM2.5 might derive from reduced organic nitrogen compounds (C6H14N2O3S, C6H12N2O3S, C10H9N3O, C6H9N5O3S, and C6H14N4O) emission from ship sources. These reduced organic nitrogen compounds can form complexes with metals, affecting their solubility and reactivity in aerosols. Phenolic hydroxyl compounds were the main contributors to the PM2.5 OP from biomass burning in winter. Semiquinone radicals produced by oxidation of phenolic compounds can further promote the generation of reactive oxygen species through Fenton-like reactions. Our studies based on ambient PM2.5 samples further deepened the understanding of the molecular level of organic compounds emitted from ships and biomass burning, and their association with OP.
Collapse
Affiliation(s)
- Chunbo Xing
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, Guangdong, 518055, China.
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao Shi
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yin Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Buthelezi MS, Mentz G, Wright CY, Phaswana S, Garland RM, Naidoo RN. Short-term, lagged association of airway inflammation, lung function, and asthma symptom score with PM 2.5 exposure among schoolchildren within a high air pollution region in South Africa. Environ Epidemiol 2024; 8:e354. [PMID: 39483641 PMCID: PMC11527423 DOI: 10.1097/ee9.0000000000000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Background Asthma affects millions of people globally, and high levels of air pollution aggravate asthma occurrence. This study aimed to determine the association between short-term lagged PM2.5 exposure and airway inflammation, lung function, and asthma symptom scores among schoolchildren in communities in the Highveld high-pollution region in South Africa. Methods A cross-sectional study was conducted among schoolchildren aged 9-14 years in six communities in the Highveld region in South Africa, between October 2018 and February 2019. A NIOX 200 instrument was used to measure fractional exhaled nitric oxide (FeNO). Lung function indices (forced expiratory volume in one second [FEV1]; forced vital capacity [FVC] and FEV1/FVC) were collected using spirometry and the percent of predicted of these was based on the reference equations from the Global Lung Initiative, without ethnic correction. These values were further analyzed as binary outcomes following relevant thresholds (lower limits of normal for lung function and a cutoff of 35 ppb for FeNO). Asthma symptoms were used to create the asthma symptom score. Daily averages of PM2.5 data for the nearest monitoring station located in each community, were collected from the South African Air Quality Information System and created short-term 5-day lag PM2.5 concentrations. Additional reported environmental exposures were collected using standardized instruments. Results Of the 706 participating schoolchildren, only 1.13% of the participants had doctor-diagnosed asthma, compared to a prevalence of 6.94% with an asthma symptom score suggestive of asthma. Lag 1 (odds ratio [OR]: 1.01; 95% confidence interval [CI]: 1.00, 1.02, P = 0.039) and 5-day average lagged PM2.5 (OR: 1.02; 95% CI: 0.99, 1.04, P = 0.050) showed increased odds of the FeNO > 35 ppb. Lung function parameters (FEV1 < lower limit of normal [LLN] [OR: 1.02, 95% CI: 1.00, 1.03, P = 0.018], and FEV1/FVC < LLN [OR: 1.01; 95% CI: 1.00, 1.02, P < 0.001]) and asthma symptom score ≥ 2 (OR: 1.02; 95% CI: 1.00, 1.04, P = 0.039) also showed significant associations with lag 2, lag 4 and lag 1 of PM2.5, respectively. Conclusion Lagged PM2.5 exposure was associated with an increased odds of airway inflammation and an increased odds of lung function parameters below the LLN particularly for the later lags, but a significant dose-response relationship across the entire sample was not consistent.
Collapse
Affiliation(s)
- Minenhle S. Buthelezi
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Graciela Mentz
- Anesthesiology Department, Medical School, University of Michigan, Ann Arbor, Michigan
| | - Caradee Y. Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, South Africa
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Shumani Phaswana
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Rebecca M. Garland
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
- Smart Places, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Rajen N. Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Yu H, Wang Y, Puthussery JV, Verma V. Sources of acellular oxidative potential of water-soluble fine ambient particulate matter in the midwestern United States. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134763. [PMID: 38843639 DOI: 10.1016/j.jhazmat.2024.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
Ambient fine particulate matter (PM2.5) is associated with numerous health complications, yet the specific PM2.5 chemical components and their emission sources contributing to these health outcomes are understudied. Our study analyzes the chemical composition of PM2.5 collected from five distinct locations at urban, roadside and rural environments in midwestern region of the United States, and associates them with five acellular oxidative potential (OP) endpoints of water-soluble PM2.5. Redox-active metals (i.e., Cu, Fe, and Mn) and carbonaceous species were correlated with most OP endpoints, suggesting their significant role in OP. We conducted a source apportionment analysis using positive matrix factorization (PMF) and found a strong disparity in the contribution of various emission sources to PM2.5 mass vs. OP. Regional secondary sources and combustion-related aerosols contributed significantly (> 75 % in total) to PM2.5 mass, but showed weaker contribution (43-69 %) to OP. Local sources such as parking emissions, industrial emissions, and agricultural activities, though accounting marginally to PM2.5 mass (< 10 % for each), significantly contributed to various OP endpoints (10-50 %). Our results demonstrate that the sources contributing to PM2.5 mass and health effects are not necessarily same, emphasizing the need for an improved air quality management strategy utilizing more health-relevant PM2.5 indicators.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Civil and Environmental Engineering, University of Alberta, 9211 116th St, Edmonton, AB T6G 1H9, Canada; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Yixiang Wang
- College of Health, Lehigh University, 124 E Morton St, Bethlehem, PA 18015, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Joseph V Puthussery
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130-4899, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
5
|
Anand A, Castiglia E, Zamora ML. The Association Between Personal Air Pollution Exposures and Fractional Exhaled Nitric Oxide (FeNO): A Systematic Review. Curr Environ Health Rep 2024; 11:210-224. [PMID: 38386269 PMCID: PMC11180488 DOI: 10.1007/s40572-024-00430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW Airway inflammation is a common biological response to many types of environmental exposures and can lead to increased nitric oxide (NO) concentrations in exhaled breath. In recent years, several studies have evaluated airway inflammation using fractional exhaled nitric oxide (FeNO) as a biomarker of exposures to a range of air pollutants. This systematic review aims to summarize the studies that collected personal-level air pollution data to assess the air pollution-induced FeNO responses and to determine if utilizing personal-level data resulted in an improved characterization of the relationship between air pollution exposures and FeNO compared to using only ambient air pollution exposure data. RECENT FINDINGS Thirty-six eligible studies were identified. Overall, the studies included in this review establish that an increase in personal exposure to particulate and gaseous air pollutants can significantly increase FeNO. Nine out of the 12 studies reported statistically significant FeNO increases with increasing personal PM2.5 exposures, and up to 11.5% increase in FeNO per IQR increase in exposure has also been reported between FeNO and exposure to gas-phase pollutants, such as ozone, NO2, and benzene. Furthermore, factors such as chronic respiratory diseases, allergies, and medication use were found to be effect modifiers for air pollution-induced FeNO responses. About half of the studies that compared the effect estimates using both personal and ambient air pollution exposure methods reported that only personal exposure yielded significant associations with FeNO response. The evidence from the reviewed studies confirms that FeNO is a sensitive biomarker for air pollutant-induced airway inflammation. Personal air pollution exposure assessment is recommended to accurately assess the air pollution-induced FeNO responses. Furthermore, comprehensive adjustments for the potential confounding factors including the personal exposures of the co-pollutants, respiratory disease status, allergy status, and usage of medications for asthma and allergies are recommended while assessing the air pollution-induced FeNO responses.
Collapse
Affiliation(s)
- Abhay Anand
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA
| | - Elliana Castiglia
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA
| | - Misti Levy Zamora
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA.
| |
Collapse
|
6
|
Kim PR, Park SW, Han YJ, Lee MH, Holsen TM, Jeong CH, Evans G. Variations of oxidative potential of PM 2.5 in a medium-sized residential city in South Korea measured using three different chemical assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171053. [PMID: 38378060 DOI: 10.1016/j.scitotenv.2024.171053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Although it is evident that PM2.5 has serious adverse health effects, there is no consensus on what the biologically effective dose is. In this study, the intrinsic oxidative potential (OPm) and the extrinsic oxidative potential (OPv) of PM2.5 were measured using three chemical assays including dithiothreitol (DTT), ascorbic acid (AA), and reduced glutathione (GSH), along with chemical compositions of PM2.5 in South Korea. Among the three chemical assays, only OPmAA showed a statistically significant correlation with PM2.5 while OPmGSH and OPmDTT were not correlated with PM2.5 mass concentration. When the samples were categorized by PM2.5 mass concentrations, the variations in the proportion of Ni, As, Mn, Cd, Pb, and Se to PM2.5 mass closely coincided with changes in OPm across all three assays, suggesting a potential association between these elements and PM2.5 OP. Multiple linear regression analysis identified the significant PM components affecting the variability in extrinsic OPv. OPvAA was determined to be significantly influenced by EC, K+, and Ba while OC and Al were common significant factors for OPvGSH and OPvDTT. It was also found that primary OC was an important variable for OPvDTT while secondary OC significantly affected the variability of OPvGSH.
Collapse
Affiliation(s)
- Pyung-Rae Kim
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea.
| | - Sung-Won Park
- Dept. of Interdisciplinary Graduate Program in Environmental and Biomedical Convergence, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea.
| | - Young-Ji Han
- Dept. of Environmental Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea; Gangwon particle pollution research and management center, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea.
| | - Myong-Hwa Lee
- Gangwon particle pollution research and management center, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea; Dept. of Environmental Engineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea.
| | - Thomas M Holsen
- Dept. of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, USA.
| | - Cheol-Heon Jeong
- Dept. Of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
| | - Greg Evans
- Dept. Of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
7
|
Yang Y, Battaglia MA, Robinson ES, DeCarlo PF, Edwards KC, Fang T, Kapur S, Shiraiwa M, Cesler-Maloney M, Simpson WR, Campbell JR, Nenes A, Mao J, Weber RJ. Indoor-Outdoor Oxidative Potential of PM 2.5 in Wintertime Fairbanks, Alaska: Impact of Air Infiltration and Indoor Activities. ACS ES&T AIR 2024; 1:188-199. [PMID: 38482268 PMCID: PMC10928657 DOI: 10.1021/acsestair.3c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 11/01/2024]
Abstract
The indoor air quality of a residential home during winter in Fairbanks, Alaska, was investigated and contrasted with outdoor levels. Twenty-four-hour average indoor and outdoor filter samples were collected from January 17 to February 25, 2022, in a residential area with high outdoor PM2.5 concentrations. The oxidative potential of PM2.5 was determined using the dithiothreitol-depletion assay (OPDTT). For the unoccupied house, the background indoor-to-outdoor (I/O) ratio of mass-normalized OP (OPmDTT), a measure of the intrinsic health-relevant properties of the aerosol, was less than 1 (0.53 ± 0.37), implying a loss of aerosol toxicity as air was transported indoors. This may result from transport and volatility losses driven by the large gradients in temperature (average outdoor temperature of -19°C/average indoor temperature of 21 °C) or relative humidity (average outdoor RH of 78%/average indoor RH of 11%), or both. Various indoor activities, including pellet stove use, simple cooking experiments, incense burning, and mixtures of these activities, were conducted. The experiments produced PM2.5 with a highly variable OPmDTT. PM2.5 from cooking emissions had the lowest OP values, while pellet stove PM2.5 had the highest. Correlations between volume-normalized OPDTT (OPvDTT), relevant to exposure, and indoor PM2.5 mass concentration during experiments were much lower compared to those in outdoor environments. This suggests that mass concentration alone can be a poor indicator of possible adverse effects of various indoor emissions. These findings highlight the importance of considering both the quantity of particles and sources (chemical composition), as health metrics for indoor air quality.
Collapse
Affiliation(s)
- Yuhan Yang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael A. Battaglia
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ellis S. Robinson
- Department
of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kasey C. Edwards
- Department
of Chemistry, University of California,
Irvine, California, 92697, United States
| | - Ting Fang
- Department
of Chemistry, University of California,
Irvine, California, 92697, United States
| | - Sukriti Kapur
- Department
of Chemistry, University of California,
Irvine, California, 92697, United States
| | - Manabu Shiraiwa
- Department
of Chemistry, University of California,
Irvine, California, 92697, United States
| | - Meeta Cesler-Maloney
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - William R. Simpson
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - James R. Campbell
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Athanasios Nenes
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory
of Atmospheric Processes and their Impacts (LAPI), School of Architecture,
Civil & Environmental Engineering, Ecole
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Center for
Studies of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research
and Technology, Patras, Hellas 26504, Greece
| | - Jingqiu Mao
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Rodney J. Weber
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Yang Y, Battaglia MA, Mohan MK, Robinson ES, DeCarlo PF, Edwards KC, Fang T, Kapur S, Shiraiwa M, Cesler-Maloney M, Simpson WR, Campbell JR, Nenes A, Mao J, Weber RJ. Assessing the Oxidative Potential of Outdoor PM 2.5 in Wintertime Fairbanks, Alaska. ACS ES&T AIR 2024; 1:175-187. [PMID: 38482267 PMCID: PMC10928717 DOI: 10.1021/acsestair.3c00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 11/01/2024]
Abstract
The oxidative potential (OP) of outdoor PM2.5 in wintertime Fairbanks, Alaska, is investigated and compared to those in wintertime Atlanta and Los Angeles. Approximately 40 filter samples collected in January-February 2022 at a Fairbanks residential site were analyzed for OP utilizing dithiothreitol-depletion (OPDTT) and hydroxyl-generation (OPOH) assays. The study-average PM2.5 mass concentration was 12.8 μg/m3, with a 1 h average maximum of 89.0 μg/m3. Regression analysis, correlations with source tracers, and contrast between cold and warmer events indicated that OPDTT was mainly sensitive to copper, elemental carbon, and organic aerosol from residential wood burning, and OPOH to iron and organic aerosol from vehicles. Despite low photochemically-driven oxidation rates, the water-soluble fraction of OPDTT was unusually high at 77%, mainly from wood burning emissions. In contrast to other locations, the Fairbanks average PM2.5 mass concentration was higher than Atlanta and Los Angeles, whereas OPDTT in Fairbanks and Atlanta were similar, and Los Angeles had the highest OPDTT and OPOH. Site differences were observed in OP when normalized by both the volume of air sampled and the particle mass concentration, corresponding to exposure and the intrinsic health-related properties of PM2.5, respectively. The sensitivity of OP assays to specific aerosol components and sources can provide insights beyond the PM2.5 mass concentration when assessing air quality.
Collapse
Affiliation(s)
- Yuhan Yang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael A. Battaglia
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Magesh Kumaran Mohan
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ellis S. Robinson
- Department
of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kasey C. Edwards
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Ting Fang
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Sukriti Kapur
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Manabu Shiraiwa
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Meeta Cesler-Maloney
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - William R. Simpson
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - James R. Campbell
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Athanasios Nenes
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory
of Atmospheric Processes and their Impacts (LAPI), School of Architecture,
Civil & Environmental Engineering, Ecole
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Center for
Studies of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research
and Technology Hellas, Patras 26504, Greece
| | - Jingqiu Mao
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Rodney J. Weber
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Lei J, Liu C, Meng X, Sun Y, Huang S, Zhu Y, Gao Y, Shi S, Zhou L, Luo H, Kan H, Chen R. Associations between fine particulate air pollution with small-airway inflammation: A nationwide analysis in 122 Chinese cities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123330. [PMID: 38199484 DOI: 10.1016/j.envpol.2024.123330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/24/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Alveolar nitric oxide is a non-invasive indicator of small-airway inflammation, a key pathophysiologic mechanism underlying lower respiratory diseases. However, no epidemiological studies have investigated the impact of fine particulate matter (PM2.5) exposure on the concentration of alveolar nitric oxide (CANO). To explore the associations between PM2.5 exposure in multiple periods and CANO, we conducted a nationwide cross-sectional study in 122 Chinese cities between 2019 and 2021. Utilizing a satellite-based model with a spatial resolution of 1 × 1 km, we matched long-term, mid-term, and short-term PM2.5 exposure for 28,399 individuals based on their home addresses. Multivariable linear regression models were applied to estimate the associations between PM2.5 at multiple exposure windows and CANO. Stratified analyses were also performed to identify potentially vulnerable subgroups. We found that per interquartile range (IQR) unit higher in 1-year average, 1-month average, and 7-day average PM2.5 concentration was significantly associated with increments of 17.78% [95% confidence interval (95%CI): 12.54%, 23.26%], 8.76% (95%CI: 7.35%, 10.19%), and 4.00% (95%CI: 2.81%, 5.20%) increment in CANO, respectively. The exposure-response relationship curves consistently increased with the slope becoming statistically significant beyond 20 μg/m3. Males, children, smokers, individuals with respiratory symptoms or using inhaled corticosteroids, and those living in Southern China were more vulnerable to PM2.5 exposure. In conclusion, our study provided novel evidence that PM2.5 exposure in long-term, mid-term, and short-term periods could significantly elevate small-airway inflammation represented by CANO. Our results highlight the significance of CANO measurement as a non-invasive tool for early screening in the management of PM2.5-related inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Jian Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Department of Occupational and Environmental Health, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yiqing Sun
- Eberly College of Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Suijie Huang
- Guangzhou Homesun Medical Technology Co., Ltd, Guangdong, 518040, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Lu Zhou
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Huihuan Luo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Weichenthal S, Lavigne E, You H, Pollitt K, Shin T, Kulka R, Stieb DM, Hatzopoulou M, Evans G, Burnett RT. Daily Summer Temperatures and Hospitalization for Acute Cardiovascular Events: Impact of Outdoor PM 2.5 Oxidative Potential on Observed Associations Across Canada. Epidemiology 2023; 34:897-905. [PMID: 37732880 DOI: 10.1097/ede.0000000000001651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
BACKGROUND Oxidative stress plays an important role in the health impacts of both outdoor fine particulate air pollution (PM 2.5 ) and thermal stress. However, it is not clear how the oxidative potential of PM 2.5 may influence the acute cardiovascular effects of temperature. METHODS We conducted a case-crossover study of hospitalization for cardiovascular events in 35 cities across Canada during the summer months (July-September) between 2016 and 2018. We collected three different metrics of PM 2.5 oxidative potential each month in each location. We estimated associations between lag-0 daily temperature (per 5ºC) and hospitalization for all cardiovascular (n = 44,876) and ischemic heart disease (n = 14,034) events across strata of monthly PM 2.5 oxidative potential using conditional logistical models adjusting for potential time-varying confounders. RESULTS Overall, associations between lag-0 temperature and acute cardiovascular events tended to be stronger when outdoor PM 2.5 oxidative potential was higher. For example, when glutathione-related oxidative potential (OP GSH ) was in the highest tertile, the odds ratio (OR) for all cardiovascular events was 1.040 (95% confidence intervals [CI] = 1.004, 1.074) compared with 0.980 (95% CI = 0.943, 1.018) when OP GSH was in the lowest tertile. We observed a greater difference for ischemic heart disease events, particularly for older subjects (age >70 years). CONCLUSIONS The acute cardiovascular health impacts of summer temperature variations may be greater when outdoor PM 2.5 oxidative potential is elevated. This may be particularly important for ischemic heart disease events.
Collapse
Affiliation(s)
- Scott Weichenthal
- From the Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Eric Lavigne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Hongyu You
- Air Health Science Division, Health Canada, Ottawa, Canada
| | | | - Tim Shin
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Dave M Stieb
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Marianne Hatzopoulou
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Greg Evans
- Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Richard T Burnett
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
11
|
Ripley S, Gao D, Pollitt KJG, Lakey PSJ, Shiraiwa M, Hatzopoulou M, Weichenthal S. Within-city spatial variations in long-term average outdoor oxidant gas concentrations and cardiovascular mortality: Effect modification by oxidative potential in the Canadian Census Health and Environment Cohort. Environ Epidemiol 2023; 7:e257. [PMID: 37545813 PMCID: PMC10403014 DOI: 10.1097/ee9.0000000000000257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/01/2023] [Indexed: 08/08/2023] Open
Abstract
Health effects of oxidant gases may be enhanced by components of particulate air pollution that contribute to oxidative stress. Our aim was to examine if within-city spatial variations in the oxidative potential of outdoor fine particulate air pollution (PM2.5) modify relationships between oxidant gases and cardiovascular mortality. Methods We conducted a retrospective cohort study of participants in the Canadian Census Health and Environment Cohort who lived in Toronto or Montreal, Canada, from 2002 to 2015. Cox proportional hazards models were used to estimate associations between outdoor concentrations of oxidant gases (Ox, a redox-weighted average of nitrogen dioxide and ozone) and cardiovascular deaths. Analyses were performed across strata of two measures of PM2.5 oxidative potential and reactive oxygen species concentrations (ROS) adjusting for relevant confounding factors. Results PM2.5 mass concentration showed little within-city variability, but PM2.5 oxidative potential and ROS were more variable. Spatial variations in outdoor Ox were associated with an increased risk of cardiovascular mortality [HR per 5 ppb = 1.028, 95% confidence interval (CI): 1.001, 1.055]. The effect of Ox on cardiovascular mortality was stronger above the median of each measure of PM2.5 oxidative potential and ROS (e.g., above the median of glutathione-based oxidative potential: HR = 1.045, 95% CI: 1.009, 1.081; below median: HR = 1.000, 95% CI: 0.960, 1.043). Conclusion Within-city spatial variations in PM2.5 oxidative potential may modify long-term cardiovascular health impacts of Ox. Regions with elevated Ox and PM2.5 oxidative potential may be priority areas for interventions to decrease the population health impacts of outdoor air pollution.
Collapse
Affiliation(s)
- Susannah Ripley
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Dong Gao
- Yale School of Public Health, New Haven, Connecticut
| | | | - Pascale S. J. Lakey
- Department of Chemistry, University of California Irvine, Irvine, California
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, California
| | - Marianne Hatzopoulou
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Santibáñez M, García-Rivero JL, Fernández-Olmo I. Association Between Particulate Matter Oxidative Potential, Oxidative Stress and Inflammation, in Adult Asthmatic Patients. The ASTHMA-FENOP Study. OPEN RESPIRATORY ARCHIVES 2023; 5:100246. [PMID: 37496869 PMCID: PMC10369605 DOI: 10.1016/j.opresp.2023.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Affiliation(s)
- Miguel Santibáñez
- “Global Health” Research Group, Universidad de Cantabria, Santander, Spain
| | - Juan Luis García-Rivero
- Servicio de Neumología, Hospital Universitario Marqués de Valdecilla (HUMV)-IDIVAL, Santander, Spain
| | | | | |
Collapse
|
13
|
Xing C, Wang Y, Yang X, Zeng Y, Zhai J, Cai B, Zhang A, Fu TM, Zhu L, Li Y, Wang X, Zhang Y. Seasonal variation of driving factors of ambient PM 2.5 oxidative potential in Shenzhen, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160771. [PMID: 36513240 DOI: 10.1016/j.scitotenv.2022.160771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) play a central role in health effects of ambient fine particulate matter (PM2.5). In this work, we screened for efficient and complementary oxidative potential (OP) measurements by comparing the response values of multiple chemical probes (OPDTT, OPOH, OPGSH) to ambient PM2.5 in Shenzhen, China. Combined with meteorological condition and PM2.5 chemical composition analysis, we explored the effects of different chemical components and emission sources on the ambient PM2.5 OP and analyzed their seasonal variations. The results show that OPmDTT(mass-normalized) and OPmGSH-SLF were highly correlated (r = 0.77). OPDTT was mainly influenced by organic carbon, while OPOH was highly dominated by heavy metals. The combination of OPDTT and OPOH provides an efficient and comprehensive measurement of OP. Temporally, the OPs were substantially higher in winter than in summer (1.4 and 4 times higher for OPmDTT and OPmOH, respectively). The long-distance transported biomass burning sources from the north dominated the OPDTT in winter, while the ship emissions mainly influenced the summer OP. The OPmDTT increased sharply with the decrease of PM2.5 mass concentration, especially when the PM2.5 concentration was lower than 30 μg/m3. The huge differences in wind fields between the winter and summer cause considerable variations in PM2.5 concentrations, components, and OP. Our work emphasizes the necessity of long-term, multi-method, multi-component assessment of the OP of PM2.5.
Collapse
Affiliation(s)
- Chunbo Xing
- School of Environment, Harbin Institute of Technology, Harbin 150001, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixiang Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, Guangdong 518055, China.
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Li
- Department of Ocean Sciences and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Chen TL, Hsiao TC, Chuang HC, Ting YC, Wang CH. A mobile platform for characterizing on-road tailpipe emissions and toxicity of ultrafine particles under real driving Conditions. ENVIRONMENTAL RESEARCH 2023; 216:114523. [PMID: 36270534 DOI: 10.1016/j.envres.2022.114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Acute exposure to fresh traffic-related air pollutants (TRAPs) can be high for road users, including motorbike drivers, cyclists, and pedestrians. However, evaluating the toxicity of fresh traffic emissions from on-road vehicles is challenging since pollution properties can change dynamically within a short distance and time. This study demonstrated a mobile platform equipped with an On-Board Diagnostic II (OBDII) system, a tailor-made portable emission measurement system, and an electrostatic air-liquid interface exposure system with human monocytic THP-1 cells to characterize on-road tailpipe emissions under real driving conditions. High number concentrations up to 106-107 # cm-3 of ultrafine particles (UFPs) were observed for a gasoline engine at the cold-start stage and a diesel engine during particulate filter regeneration. In particular, a substantial fraction of freshly emitted UFPs within the size less than 23 nm were observed and should be cautioned. The potential toxicity of fresh TRAPs was quantified by cell viability, cytotoxicity, oxidative stress, and inflammatory biomarkers. Results show that the decreased cell viability, increased lactate dehydrogenase (LDH) activity, and high oxidative stress induced by the fresh TRAPs were potentially contributed by gaseous pollutants as well as particles, especially driving with the high idling frequency. Moreover, the dominant contributor to the toxicity is different for gasoline's and diesel's TRAPs. Characterizing on-road air pollutant toxicity as well as physicochemical properties using an innovative mobile platform can fill this knowledge gap.
Collapse
Affiliation(s)
- Tse-Lun Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Hua Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Korsiak J, Lavigne E, You H, Pollitt K, Kulka R, Hatzopoulou M, Evans G, Burnett RT, Weichenthal S. Air Pollution and Pediatric Respiratory Hospitalizations: Effect Modification by Particle Constituents and Oxidative Potential. Am J Respir Crit Care Med 2022; 206:1370-1378. [PMID: 35802828 DOI: 10.1164/rccm.202205-0896oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rationale: Outdoor particulate and gaseous air pollutants impair respiratory health in children, and these associations may be influenced by particle composition. Objectives: To examine whether associations between short-term variations in fine particulate air pollution, oxidant gases, and respiratory hospitalizations in children are modified by particle constituents (metals and sulfur) or oxidative potential. Methods: We conducted a case-crossover study of 10,500 children (0-17 years of age) across Canada. Daily fine particle mass concentrations and oxidant gases (nitrogen dioxide and ozone) were collected from ground monitors. Monthly estimates of fine particle constituents (metals and sulfur) and oxidative potential were also measured. Conditional logistic regression models were used to estimate associations between air pollutants and respiratory hospitalizations, above and below median values for particle constituents and oxidative potential. Measurements and Main Results: Lag-1 fine particulate matter mass concentrations were not associated with respiratory hospitalizations (odds ratio and 95% confidence interval per 10 μg/m3 increase in fine particulate matter: 1.004 [0.955-1.056]) in analyses ignoring particle constituents and oxidative potential. However, when models were examined above or below median metals, sulfur, and oxidative potential, positive associations were observed above the median. For example, the odds ratio and 95% confidence interval per 10 μg/m3 increase in fine particulate matter were 1.084 (1.007-1.167) when copper was above the median and 0.970 (0.929-1.014) when copper was below the median. Similar trends were observed for oxidant gases. Conclusions: Stronger associations were observed between outdoor fine particles, oxidant gases, and respiratory hospitalizations in children when metals, sulfur, and particle oxidative potential were elevated.
Collapse
Affiliation(s)
- Jill Korsiak
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Eric Lavigne
- Air Health Science Division, Health Canada, Ottawa, Ontario, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Hongyu You
- Air Health Science Division, Health Canada, Ottawa, Ontario, Canada
| | - Krystal Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut; and
| | - Ryan Kulka
- Air Health Science Division, Health Canada, Ottawa, Ontario, Canada
| | | | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry, and
| | | | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada.,Air Health Science Division, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Wu N, Lyu Y, Lu B, Cai D, Meng X, Li X. Oxidative potential induced by metal-organic interaction from PM 2.5 in simulated biological fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157768. [PMID: 35931153 DOI: 10.1016/j.scitotenv.2022.157768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The oxidative potential (OP) of fine particulate matter (PM2.5) has recently been proposed as a metric that may prove more indicative of human health effects than the routinely measured PM2.5 concentration. Observations of exposure to PM2.5 show most OP are originated from the contribution of transition metals and organics, but the pertinent coupling mechanisms are unclear. Here, we report laboratory observations in four simulated biological fluids (i.e., simulated saliva, surrogate lung fluid, artificial lysosomal fluid, and synthetic serum) that reveal OP of PM2.5 are significantly induced by prevalent metal complexes formed with nitrogen- and oxygen-containing compounds in low acid environments. Analyses of mass spectra and interaction factors indicate that organic-metal mixture effect in PM2.5, leading to synergistic, additive to antagonistic effects, which may serve as the dominant mechanism for this OP formation. A metal-organic mixtures origin for OP could explain why PM2.5 emission controls should emphasize the reduction of key toxic components, rather than just PM2.5 mass concentration control. SYNOPSIS: This study has investigated the oxidative potential of inhaled atmospheric particulate matter (PM) in four simulated biological fluids, which highlight the importance of metal-organic complexes to the formation of oxidative potential (OP).
Collapse
Affiliation(s)
- Na Wu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, PR China
| | - Yan Lyu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Bingqing Lu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, PR China
| | - Dongmei Cai
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, PR China
| | - Xue Meng
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, PR China
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
17
|
Chen P, Yuan Z, Miao L, Yang L, Wang H, Xu D, Lin Z. Acute cardiorespiratory response to air quality index in healthy young adults. ENVIRONMENTAL RESEARCH 2022; 214:113983. [PMID: 35948148 DOI: 10.1016/j.envres.2022.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Little is known about the acute health impacts of air quality index (AQI) on cardiorespiratory risk factors. OBJECTIVES To assess the short-term links of AQI with cardiorespiratory risk factors in young healthy adults. METHODS We performed a longitudinal panel study with 4 repeated visits in 40 healthy young adults in Hefei, Anhui Province, China from August to October 2021. Cardiorespiratory factors included systolic blood pressure (BP), diastolic BP (DBP), mean arterial pressure (MAP) and fractional exhaled nitric oxide (FeNO). We collected hourly AQI data from a nearby air quality monitoring site. Linear mixed-effects model was applied to assess the effects of AQI on BP and FeNO. RESULTS The study participants (75.0% females) provided 160 pairs of valid health measurements with average age of 24 years. The mean AQI level was 44.43 during the study period. There were significant positive associations of AQI with three BP parameters and FeNO at different lag periods. For example, an interquartile range increase in AQI (26.54 unit) over lag 0-24 h was associated with increments of 6.69 mmHg (95%CI: 2.95-10.44), 5.71 mmHg (95%CI: 3.30-8.13), 6.04 mmHg (95%CI: 3.46-8.62) and 5.67% (95%CI: 1.05%-16.05%) in SBP, DBP, MAP and FeNO, respectively. The results were robust after controlling for PM1. We did not find effect modifications by gender, BMI, physical activity, or AQI category level on the associations. CONCLUSIONS The current findings on associations of AQI with cardiorespiratory factors might add evidence of the acute adverse cardiorespiratory consequences following air pollution.
Collapse
Affiliation(s)
- Ping Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Lin Miao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| | - Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
18
|
Toyib O, Lavigne E, Traub A, Umbrio D, You H, Ripley S, Pollitt K, Shin T, Kulka R, Jessiman B, Tjepkema M, Martin R, Stieb DM, Hatzopoulou M, Evans G, Burnett RT, Weichenthal S. Long-term Exposure to Oxidant Gases and Mortality: Effect Modification by PM 2.5 Transition Metals and Oxidative Potential. Epidemiology 2022; 33:767-776. [PMID: 36165987 PMCID: PMC9531968 DOI: 10.1097/ede.0000000000001538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Populations are simultaneously exposed to outdoor concentrations of oxidant gases (i.e., O 3 and NO 2 ) and fine particulate air pollution (PM 2.5 ). Since oxidative stress is thought to be an important mechanism explaining air pollution health effects, the adverse health impacts of oxidant gases may be greater in locations where PM 2.5 is more capable of causing oxidative stress. METHODS We conducted a cohort study of 2 million adults in Canada between 2001 and 2016 living within 10 km of ground-level monitoring sites for outdoor PM 2.5 components and oxidative potential. O x exposures (i.e., the redox-weighted average of O 3 and NO 2 ) were estimated using a combination of chemical transport models, land use regression models, and ground-level data. Cox proportional hazards models were used to estimate associations between 3-year moving average O x and mortality outcomes across strata of transition metals and sulfur in PM 2.5 and three measures of PM 2.5 oxidative potential adjusting for possible confounding factors. RESULTS Associations between O x and mortality were consistently stronger in regions with elevated PM 2.5 transition metal/sulfur content and oxidative potential. For example, each interquartile increase (6.27 ppb) in O x was associated with a 14.9% (95% CI = 13.0, 16.9) increased risk of nonaccidental mortality in locations with glutathione-related oxidative potential (OP GSH ) above the median whereas a 2.50% (95% CI = 0.600, 4.40) increase was observed in regions with OP GSH levels below the median (interaction P value <0.001). CONCLUSION Spatial variations in PM 2.5 composition and oxidative potential may contribute to heterogeneity in the observed health impacts of long-term exposures to oxidant gases.
Collapse
Affiliation(s)
- Olaniyan Toyib
- Health Analysis Division, Statistics Canada, Ottawa, ON, Canada
| | - Eric Lavigne
- Air Health Science Division, Health Canada, Ottawa, ON, Canada
- School of Epidemiology & Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Alison Traub
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Dana Umbrio
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Hongyu You
- Air Health Science Division, Health Canada, Ottawa, ON, Canada
| | - Susannah Ripley
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Krystal Pollitt
- Department of Environmental Health Sciences, Yale, New Haven, CT
| | - Tim Shin
- Air Health Science Division, Health Canada, Ottawa, ON, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, Ottawa, ON, Canada
| | | | | | - Randall Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Department of Physics and Atmospheric Science, Washington University, St Louis, MI
| | - Dave M. Stieb
- Population Studies Division, Health Canada, Ottawa, ON, Canada
| | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | - Scott Weichenthal
- Air Health Science Division, Health Canada, Ottawa, ON, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Kodros JK, Bell ML, Dominici F, L'Orange C, Godri Pollitt KJ, Weichenthal S, Wu X, Volckens J. Unequal airborne exposure to toxic metals associated with race, ethnicity, and segregation in the USA. Nat Commun 2022; 13:6329. [PMID: 36319637 PMCID: PMC9626599 DOI: 10.1038/s41467-022-33372-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
Abstract
Persons of color have been exposed to a disproportionate burden of air pollution across the United States for decades. Yet, the inequality in exposure to known toxic elements of air pollution is unclear. Here, we find that populations living in racially segregated communities are exposed to a form of fine particulate matter with over three times higher mass proportions of known toxic and carcinogenic metals. While concentrations of total fine particulate matter are two times higher in racially segregated communities, concentrations of metals from anthropogenic sources are nearly ten times higher. Populations living in racially segregated communities have been disproportionately exposed to these environmental stressors throughout the past decade. We find evidence, however, that these disproportionate exposures may be abated though targeted regulatory action. For example, recent regulations on marine fuel oil not only reduced vanadium concentrations in coastal cities, but also sharply lessened differences in vanadium exposure by segregation.
Collapse
Affiliation(s)
- John K Kodros
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA.
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christian L'Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Xiao Wu
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - John Volckens
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
20
|
Ripley S, Minet L, Zalzal J, Godri Pollitt K, Gao D, Lakey PSJ, Shiraiwa M, Maher BA, Hatzopoulou M, Weichenthal S. Predicting Spatial Variations in Multiple Measures of PM 2.5 Oxidative Potential and Magnetite Nanoparticles in Toronto and Montreal, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7256-7265. [PMID: 34965092 DOI: 10.1021/acs.est.1c05364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is growing interest to move beyond fine particle mass concentrations (PM2.5) when evaluating the population health impacts of outdoor air pollution. However, few exposure models are currently available to support such analyses. In this study, we conducted large-scale monitoring campaigns across Montreal and Toronto, Canada during summer 2018 and winter 2019 and developed models to predict spatial variations in (1) the ability of PM2.5 to generate reactive oxygen species in the lung fluid (ROS), (2) PM2.5 oxidative potential based on the depletion of ascorbate (OPAA) and glutathione (OPGSH) in a cell-free assay, and (3) anhysteretic magnetic remanence (XARM) as an indicator of magnetite nanoparticles. We also examined how exposure to PM oxidative capacity metrics (ROS/OP) varied by socioeconomic status within each city. In Montreal, areas with higher material deprivation, indicating lower area-level average household income and employment, were exposed to PM2.5 characterized by higher ROS and OP. This relationship was not observed in Toronto. The developed models will be used in epidemiologic studies to assess the health effects of exposure to PM2.5 and iron-rich magnetic nanoparticles in Toronto and Montreal.
Collapse
Affiliation(s)
- Susannah Ripley
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada, H3A 1G1
| | - Laura Minet
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Canada, M5S 1A4
| | - Jad Zalzal
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Canada, M5S 1A4
| | - Krystal Godri Pollitt
- Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Dong Gao
- Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Pascale S J Lakey
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster University, Lancaster, U.K., LA1 4YW
| | - Marianne Hatzopoulou
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Canada, M5S 1A4
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada, H3A 1G1
| |
Collapse
|
21
|
Sabeti Z, Ansarin K, Seyedrezazadeh E, Jafarabadi MA, Zafari V, Dastgiri S, Shakerkhatibi M, Gholampour A, Khamnian Z, Sepehri M, Dahim M, Sharbafi J, Hakimi D. Acute responses of airway oxidative stress, inflammation, and hemodynamic markers to ambient PM 2.5 and their trace metal contents among healthy adolescences: A panel study in highly polluted versus low polluted regions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117797. [PMID: 34329054 DOI: 10.1016/j.envpol.2021.117797] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Particulate air pollutants are known contributors to global cardiorespiratory mortality through several pathways. We examined the effects of varied exposure to PM2.5 and trace metals on biological markers of airway inflammation, oxidative stress, and hemodynamic function of young individuals living in two different exposure settings. We enrolled and followed a panel of 97 healthy nonsmoking participants aged 15-18 years living in a highly polluted metropolitan city of Tabriz (TBZ) and a much less polluted semi-urban town of Hadishahr (HDS). For five consecutive months, the subjects were examined by a physician, and fractional exhaled nitric oxide levels (FENO) were measured. Samples of exhaled breath condensation (EBC) were obtained for measuring interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and total nitric oxide (NOx). We measured daily outdoor PM2.5 mass concentration in a fixed station in each location for all this period. The PM-metal content was analyzed by ICP-MS. The linear mixed-effects regression models were applied for data analysis. The averages of PM2.5 mass and total metals in TBZ were nearly two and four times higher than in HDS, respectively. In TBZ, an increased IQR of PM2.5 mass during 0-5 days was -correlated with a significant rise in diastolic blood pressure, heart rate, TNF-α, FENO, and NOx and reduction of IL-6. Moreover, exposure to low PM2.5 concentration is significantly -correlated with an elevation in diastolic blood pressure in HDS. We also observed that exposure to metal constituents in the highly polluted region is correlated with increased TNF-α and IL-6 with 131.80% (95% CI: 56.01, 244.39) and 47.51% (95% CI: 33.01, 62.05) per IQR of Hg, respectively. This study suggests that exposure to ambient PM2.5 and their metal contents in highly polluted areas may incite significant changes in airway inflammation, oxidative stress, and hemodynamic parameters in healthy subjects.
Collapse
Affiliation(s)
- Zahra Sabeti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asghari Jafarabadi
- Department of Statistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Center for the Development of Interdisciplinary Research in Islamic Sciences and Health Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Venus Zafari
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Dastgiri
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shakerkhatibi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Gholampour
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zhila Khamnian
- Department of Community Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sepehri
- Social Determinants of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahin Dahim
- East Azerbaijan Province Health Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jabraeil Sharbafi
- East Azerbaijan Province Health Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryoush Hakimi
- Health Office, Education Department of East Azerbaijan, Tabriz, Iran
| |
Collapse
|
22
|
Weichenthal S, Lavigne E, Traub A, Umbrio D, You H, Pollitt K, Shin T, Kulka R, Stieb DM, Korsiak J, Jessiman B, Brook JR, Hatzopoulou M, Evans G, Burnett RT. Association of Sulfur, Transition Metals, and the Oxidative Potential of Outdoor PM2.5 with Acute Cardiovascular Events: A Case-Crossover Study of Canadian Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:107005. [PMID: 34644144 PMCID: PMC8513754 DOI: 10.1289/ehp9449] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/30/2021] [Accepted: 09/28/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND We do not currently understand how spatiotemporal variations in the composition of fine particulate air pollution [fine particulate matter with aerodynamic diameter ≤2.5μm (PM2.5)] affects population health risks. However, recent evidence suggests that joint concentrations of transition metals and sulfate may influence the oxidative potential (OP) of PM2.5 and associated health impacts. OBJECTIVES The purpose of the study was to evaluate how combinations of transition metals/OP and sulfur content in outdoor PM2.5 influence associations with acute cardiovascular events. METHODS We conducted a national case-crossover study of outdoor PM2.5 and acute cardiovascular events in Canada between 2016 and 2017 (93,344 adult cases). Monthly mean transition metal and sulfur (S) concentrations in PM2.5 were determined prospectively along with estimates of OP using acellular assays for glutathione (OPGSH), ascorbate (OPAA), and dithiothreitol depletion (OPDTT). Conditional logistic regression models were used to estimate odds ratios (OR) [95% confidence intervals (CI)] for PM2.5 across strata of transition metals/OP and sulfur. RESULTS Among men, the magnitudes of observed associations were strongest when both transition metal and sulfur content were elevated. For example, an OR of 1.078 (95% CI: 1.049, 1.108) (per 10μg/m3) was observed for cardiovascular events in men when both copper and S were above the median, whereas a weaker association was observed when both elements were below median values (OR=1.019, 95% CI: 1.007, 1.031). A similar pattern was observed for OP metrics. PM2.5 was not associated with acute cardiovascular events in women. DISCUSSION The combined transition metal and sulfur content of outdoor PM2.5 influences the strength of association with acute cardiovascular events in men. Regions with elevated concentrations of both sulfur and transition metals in PM2.5 should be examined as priority areas for regulatory interventions. https://doi.org/10.1289/EHP9449.
Collapse
Affiliation(s)
- Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Eric Lavigne
- Air Health Science Division, Health Canada, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Alison Traub
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Dana Umbrio
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Hongyu You
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Krystal Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Tim Shin
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Dave M. Stieb
- Population Studies Division, Health Canada, Ottawa, Canada
| | - Jill Korsiak
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Barry Jessiman
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Jeff R. Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | | |
Collapse
|
23
|
Fleck ADS, Debia M, Ryan PE, Couture C, Traub A, Evans GJ, Suarthana E, Smargiassi A. Assessment of the Oxidative Potential and Oxidative Burden from Occupational Exposures to Particulate Matter. Ann Work Expo Health 2021; 66:379-391. [PMID: 34595509 DOI: 10.1093/annweh/wxab086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/03/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Oxidative potential (OP) is a toxicologically relevant metric that integrates features like mass concentration and chemical composition of particulate matter (PM). Although it has been extensively explored as a metric for the characterization of environmental particles, this is still an underexplored application in the occupational field. This study aimed to estimate the OP of particles in two occupational settings from a construction trades school. This characterization also includes the comparison between activities, sampling strategies, and size fractions. Particulate mass concentrations (PM4-Personal, PM4-Area, and PM2.5-Area) and number concentrations were measured during three weeks of welding and construction/bricklaying activities. The OP was assessed by the ascorbate assay (OPAA) using a synthetic respiratory tract lining fluid (RTLF), while the oxidative burden (OBAA) was determined by multiplying the OPAA values with PM concentrations. Median (25th-75th percentiles) of PM mass and number concentrations were 900 (672-1730) µg m-3 and 128 000 (78 000-169 000) particles cm-3 for welding, and 432 (345-530) µg m-3 and 2800 (1700-4400) particles cm-3 for construction. Welding particles, especially from the first week of activities, were also associated with higher redox activity (OPAA: 3.3 (2.3-4.6) ρmol min-1 µg-1; OBAA: 1750 (893-4560) ρmol min-1 m-3) compared to the construction site (OPAA: 1.4 (1.0-1.8) ρmol min-1 µg-1; OBAA: 486 (341-695) ρmol min-1 m-3). The OPAA was independent of the sampling strategy or size fraction. However, driven by the higher PM concentrations, the OBAA from personal samples was higher compared to area samples in the welding shop, suggesting an influence of the sampling strategy on PM concentrations and OBAA. These results demonstrate that important levels of OPAA can be found in occupational settings, especially during welding activities. Furthermore, the OBAA found in both workplaces largely exceeded the levels found in environmental studies. Therefore, measures of OP and OB could be further explored as metrics for exposure assessment to occupational PM, as well as for associations with cardiorespiratory outcomes in future occupational epidemiological studies.
Collapse
Affiliation(s)
- Alan da Silveira Fleck
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Patrick Eddy Ryan
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Caroline Couture
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Alison Traub
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto Engineering, Toronto, Ontario, Canada
| | - Greg J Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto Engineering, Toronto, Ontario, Canada
| | - Eva Suarthana
- Research Institute of McGill University Health Center, Montreal, Quebec, Canada.,Centre de Recherche de l'Hôpital du Sacré-Cœur de Montréal (CRHSCM), 5400 Boul Gouin O, Montreal, Quebec, Canada
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada.,Institut National de Sante Publique du Québec (INSPQ), 190 Boul Crémazie E, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Czubaj-Kowal M, Kurzawa R, Mazurek H, Sokołowski M, Friediger T, Polak M, Nowicki GJ. Relationship Between Air Pollution and the Concentration of Nitric Oxide in the Exhaled Air (FeNO) in 8-9-Year-Old School Children in Krakow. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136690. [PMID: 34206247 PMCID: PMC8296872 DOI: 10.3390/ijerph18136690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/13/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022]
Abstract
The consequences of air pollution pose one of the most serious threats to human health, and especially impact children from large agglomerations. The measurement of nitric oxide concentration in exhaled air (FeNO) is a valuable biomarker in detecting and monitoring airway inflammation. However, only a few studies have assessed the relationship between FeNO and the level of air pollution. The study aims to estimate the concentration of FeNO in the population of children aged 8–9 attending the third grade of public primary schools in Krakow, as well as to determine the relationship between FeNO concentration and dust and gaseous air pollutants. The research included 4580 children aged 8–9 years who had two FeNO measurements in the winter–autumn and spring–summer periods. The degree of air pollution was obtained from the Regional Inspectorate of Environmental Protection in Krakow. The concentration of pollutants was obtained from three measurement stations located in different parts of the city. The FeNO results were related to air pollution parameters. The study showed weak but significant relationships between FeNO and air pollution parameters. The most significant positive correlations were found for CO8h (r = 0.1491, p < 0.001), C6H6 (r = 0.1420, p < 0.001), PM10 (r = 0.1054, p < 0.001) and PM2.5 (r = 0.1112, p < 0.001). We suggest that particulate and gaseous air pollutants impact FeNO concentration in children aged 8–9 years. More research is needed to assess the impact of air pollution on FeNO concentration in children. The results of such studies could help to explain the increase in the number of allergic and respiratory diseases seen in children in recent decades.
Collapse
Affiliation(s)
- Marta Czubaj-Kowal
- Department of Paediatrics, Stefan Żeromski Specialist Hospital in Krakow, Na Skarpie 66 Str., PL-31-913 Krakow, Poland;
- Correspondence: ; Tel.: +48-604-433-428
| | - Ryszard Kurzawa
- Department of Alergology and Pneumonology, Institute of Tuberculosis and Lung Disorders, Prof. Jana Rudnika 3B Str., PL-34-700 Rabka-Zdrój, Poland;
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, Institute of Tuberculosis and Lung Disorders, Prof. Jana Rudnika 3B Str., PL-34-700 Rabka-Zdrój, Poland;
| | - Michał Sokołowski
- Department of Paediatrics, Stefan Żeromski Specialist Hospital in Krakow, Na Skarpie 66 Str., PL-31-913 Krakow, Poland;
| | - Teresa Friediger
- Faculty of Health, Catholic University in Ruzomberok, Námestie A. Hlinku 48 Str., SK-034 01 Ruzomberok, Slovakia;
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Grzegórzecka 20 Str., PL-31-531 Krakow, Poland;
| | - Grzegorz Józef Nowicki
- Department of Family Medicine and Community Nursing, Medical University of Lublin, Staszica 6 Str., PL-20-081 Lublin, Poland;
| |
Collapse
|
25
|
He L, Norris C, Cui X, Li Z, Barkjohn KK, Brehmer C, Teng Y, Fang L, Lin L, Wang Q, Zhou X, Hong J, Li F, Zhang Y, Schauer JJ, Black M, Bergin MH, Zhang JJ. Personal Exposure to PM 2.5 Oxidative Potential in Association with Pulmonary Pathophysiologic Outcomes in Children with Asthma. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3101-3111. [PMID: 33555874 DOI: 10.1021/acs.est.0c06114] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) with a higher oxidative potential has been thought to be more detrimental to pulmonary health. We aim to investigate the associations between personal exposure to PM2.5 oxidative potential and pulmonary outcomes in asthmatic children. We measured each of the 43 asthmatic children 4 times for airway mechanics, lung function, airway inflammation, and asthma symptom scores. Coupling measured indoor and outdoor concentrations of PM2.5 mass, constituents, and oxidative potential with individual time-activity data, we calculated 24 h average personal exposures 0-3 days prior to a health outcome measurement. We found that increases in daily personal exposure to PM2.5 oxidative potential were significantly associated with increased small, large, and total airway resistance, increased airway impedance, decreased lung function, and worsened scores of individual asthma symptoms and the total symptom score. Among the PM2.5 constituents, organic matters largely of indoor origin contributed the greatest to PM2.5 oxidative potential. Given that the variability in PM2.5 oxidative potential was a stronger driver than PM2.5 mass for the variability in the respiratory health outcomes, it is suggested to reduce PM2.5 oxidative potential, particularly by reducing the organic matter constituent of indoor PM2.5, as a targeted source control strategy in asthma management.
Collapse
Affiliation(s)
- Linchen He
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Christina Norris
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Xiaoxing Cui
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Zhen Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Karoline K Barkjohn
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Collin Brehmer
- Department of Civil and Environmental Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706,United States
| | - Yanbo Teng
- Duke Kunshan University, Kunshan, Jiangsu Province 215316, People's Republic of China
| | - Lin Fang
- Department of Building Science, Tsinghua University, Beijing, People's Republic of China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, People's Republic of China
| | - Lili Lin
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Qian Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jianguo Hong
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, People's Republic of China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, People's Republic of China
| | - James J Schauer
- Department of Civil and Environmental Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706,United States
| | - Marilyn Black
- Underwriters Laboratories, Inc, Marietta, Georgia 30067, United States
| | - Michael H Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
- Duke Kunshan University, Kunshan, Jiangsu Province 215316, People's Republic of China
| |
Collapse
|
26
|
Oxidative Potential Induced by Ambient Particulate Matters with Acellular Assays: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8111410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acellular assays of oxidative potential (OP) induced by ambient particulate matters (PMs) are of great significance in screening for toxicity in PMs. In this review, several typical OP measurement techniques, including the respiratory tract lining fluid assay (RTLF), ascorbate depletion assay (AA), dithiothreitol assay (DTT), chemiluminescent reductive acridinium triggering (CRAT), dichlorofluorescin assay (DCFH) and electron paramagnetic/spin resonance assay (EPR/ESR) are discussed and their sensitivity to different PMs species composition, PMs size distribution and seasonality is compared. By comparison, the DTT assay tends to be the preferred method providing a more comprehensive measurement with transition metals and quinones accumulated in the fine PMs fraction. Specific transition metals (i.e., Mn, Cu, Fe) and quinones are found to contribute OPDTT directly whereas the redox properties of PMs species may be changed by the interactions between themselves. The selection of the appropriate OP measurement methods and the accurate analysis of the relationship between the methods and PM components is conducive to epidemiological researches which are related with oxidative stress induced by PMs exposure.
Collapse
|
27
|
Chen X, Liu F, Niu Z, Mao S, Tang H, Li N, Chen G, Liu S, Lu Y, Xiang H. The association between short-term exposure to ambient air pollution and fractional exhaled nitric oxide level: A systematic review and meta-analysis of panel studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114833. [PMID: 32544661 DOI: 10.1016/j.envpol.2020.114833] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 05/27/2023]
Abstract
Several epidemiological studies have evaluated the fractional exhaled nitric oxide (FeNO) of ambient air pollution but the results were controversial. We therefore conducted a systematic review and meta-analysis to investigate the associations between short-term exposure to air pollutants and FeNO level. We searched PubMed and Web of Science and included a total of 27 articles which focused on associations between ambient air pollutants (PM10, PM2.5, black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3)) exposure and the change of FeNO. Random effect model was used to calculate the percent change of FeNO in association with a 10 or 1 μg/m3 increase in air pollutants exposure concentrations. A 10 μg/m3 increase in short-term PM10, PM2.5, NO2, and SO2 exposure was associated with a 3.20% (95% confidence interval (95%CI): 1.11%, 5.29%), 2.25% (95%CI: 1.51%, 2.99%),4.90% (95%CI: 1.98%, 7.81%), and 8.28% (95%CI: 3.61%, 12.59%) change in FeNO, respectively. A 1 μg/m3 increase in short-term exposure to BC was associated with 3.42% (95%CI: 1.34%, 5.50%) change in FeNO. The association between short-term exposure to O3 and FeNO level was insignificant (P>0.05). Future studies are warranted to investigate the effect of multiple pollutants, different sources and composition of air pollutants on airway inflammation.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, 1960, East West Rd, Biomed Bldg, D105, Honolulu, USA
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
28
|
Carlsten C, Salvi S, Wong GWK, Chung KF. Personal strategies to minimise effects of air pollution on respiratory health: advice for providers, patients and the public. Eur Respir J 2020; 55:1902056. [PMID: 32241830 PMCID: PMC7270362 DOI: 10.1183/13993003.02056-2019] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/24/2020] [Indexed: 11/11/2022]
Abstract
As global awareness of air pollution rises, so does the imperative to provide evidence-based recommendations for strategies to mitigate its impact. While public policy has a central role in reducing air pollution, exposure can also be reduced by personal choices. Qualified evidence supports limiting physical exertion outdoors on high air pollution days and near air pollution sources, reducing near-roadway exposure while commuting, utilising air quality alert systems to plan activities, and wearing facemasks in prescribed circumstances. Other strategies include avoiding cooking with solid fuels, ventilating and isolating cooking areas, and using portable air cleaners fitted with high-efficiency particulate air filters. We detail recommendations to assist providers and public health officials when advising patients and the public regarding personal-level strategies to mitigate risk imposed by air pollution, while recognising that well-designed prospective studies are urgently needed to better establish and validate interventions that benefit respiratory health in this context.
Collapse
Affiliation(s)
- Christopher Carlsten
- Air Pollution Exposure Laboratory, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Gary W K Wong
- Dept of Pediatrics and School of Public Health, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kian Fan Chung
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
29
|
Gao D, Ripley S, Weichenthal S, Godri Pollitt KJ. Ambient particulate matter oxidative potential: Chemical determinants, associated health effects, and strategies for risk management. Free Radic Biol Med 2020; 151:7-25. [PMID: 32430137 DOI: 10.1016/j.freeradbiomed.2020.04.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Exposure to ambient air pollution has an adverse influence on human health. There is increasing evidence that oxidative potential (OP), the capacity of airborne pollutants to oxidize target molecules by generating redox oxidizing species, is a plausible metric for particulate matter (PM) toxicity. Here we describe the commonly used acellular techniques for measuring OP (respiratory tract lining fluid, dithiothreitol, ascorbic acid, and electron paramagnetic resonance assays) and review the PM chemical constituents that have been identified to drive the OP response. We further perform a review of the epidemiologic literature to identify studies that reported an association between exposure to ambient PM and a health outcome in a human population, and in which exposure was measured by both PM mass concentration and OP. Laboratory studies have shown that specific redox-active metals and quinones are able to contribute OP directly. However, interactions among PM species may alter the redox properties of PM components. In ambient PM measurements, all OP assays were found to be correlated with metals (Fe, Cu) and organic species (photochemically aged organics). Across the epidemiological studies reviewed, associations between fine PM (PM2.5) mass and cardio-respiratory outcomes were found to be stronger at elevated OP levels but findings varied across the different OP measurement techniques. Future work should aim to identify specific situations in which PM OP can improve air pollution exposure assessment and/or risk management. This may be particularly useful in countries with low PM2.5 mass concentrations over broad spatial scales where such information may greatly improve the efficiency of risk management activities.
Collapse
Affiliation(s)
- Dong Gao
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, United States
| | - Susannah Ripley
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Air Health Science Division, Health Canada, Ottawa, Ontario, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, United States; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States.
| |
Collapse
|
30
|
Relationship between Particulate Matter (PM 10) and Airway Inflammation Measured with Exhaled Nitric Oxide Test in Seoul, Korea. Can Respir J 2020; 2020:1823405. [PMID: 32256904 PMCID: PMC7103060 DOI: 10.1155/2020/1823405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose Particulate matter (PM) is increasing every year in Asia. It is not fully understood how the airway is affected when inhaling PM. We investigated the correlation between particulate matter with a diameter of less than 10 μm (PM10) and fractional exhaled nitric oxide (FeNO) to determine whether PM causes airway inflammation. Material and Methods. We analyzed patients who visited our outpatient clinic and tested FeNO from January 2016 to December 2017 at the Korea University Guro Hospital. PM10 data were provided by the government of the Republic of South Korea, and measuring station of PM10 is located 800 meters from the hospital. We analyzed the correlation between PM10 and FeNO by a Pearson correlation analysis and by a multivariate linear regression analysis. To identify the most correlated times, we analyzed the correlation between the FeNO and PM10 daily average from the day of visit to 4 days before visit. Results FeNO positively correlated with PM10 at two days before hospital visit in the Pearson correlation (Pearson correlation coefficient = 0.057; P-value = 0.023) and in the multivariate linear regression analysis (B = 0.051, P-value = 0.026). If the PM10 increased by 100 μg/m3, the FeNO result was expected to rise to 8.3 ppb in healthy people without respiratory disease. Conclusion The positive correlation was found in both healthy people and asthmatic patients. Therefore, PM10 can increase airway inflammation.
Collapse
|
31
|
Crobeddu B, Baudrimont I, Deweirdt J, Sciare J, Badel A, Camproux AC, Bui LC, Baeza-Squiban A. Lung Antioxidant Depletion: A Predictive Indicator of Cellular Stress Induced by Ambient Fine Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2360-2369. [PMID: 31961142 DOI: 10.1021/acs.est.9b05990] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Regulations on ambient particulate matter (PM) are becoming more stringent because of adverse health effects arising from PM exposure. PM-induced oxidant production is a key mechanism behind the observed health effects and is heavily dependent on PM composition. Measurement of the intrinsic oxidative potential (OP) of PM could provide an integrated indicator of PM bioreactivity and could serve as a better metric of PM hazard exposure than PM mass concentration. The OP of two chemically contrasted PM2.5 samples was compared through four acellular assays, and OP predictive capability was evaluated in different cellular assays on two in vitro lung cell models. PM2.5 collected in Paris at a site close to the traffic exhibited a systematically higher OP in all assays compared to PM2.5 enriched in particles from domestic wood burning. Similar results were obtained for oxidative stress, expression of antioxidant enzymes, and pro-inflammatory chemokine in human bronchial epithelial and endothelial cells. The strongest correlations between OP assays and cellular responses were observed with the antioxidant (ascorbic acid and glutathione) depletion (OPAO) assay. Multivariate regression analysis from OP daily measurements suggested that OPAO was strongly correlated with polycyclic aromatic hydrocarbons at the traffic site while it was correlated with potassium for the domestic wood burning sample.
Collapse
Affiliation(s)
- Belinda Crobeddu
- Université de Paris, BFA, UMR 8251 CNRS , F-75013 Paris , France
| | - Isabelle Baudrimont
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045 , F-33604 Pessac , France
| | - Juliette Deweirdt
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045 , F-33604 Pessac , France
| | - Jean Sciare
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ , F-91190 Gif-sur-Yvette , France
- Energy, Environment and Water Research Center , The Cyprus Institute , 2121 Aglantzia , Cyprus
| | - Anne Badel
- Université de Paris, BFA, UMR 8251, CNRS, ERL 1133, Inserm , F-75013 Paris , France
| | - Anne-Claude Camproux
- Université de Paris, BFA, UMR 8251, CNRS, ERL 1133, Inserm , F-75013 Paris , France
| | - Linh Chi Bui
- Université de Paris, BFA, UMR 8251 CNRS , F-75013 Paris , France
| | | |
Collapse
|
32
|
Oxidative Potential Versus Biological Effects: A Review on the Relevance of Cell-Free/Abiotic Assays as Predictors of Toxicity from Airborne Particulate Matter. Int J Mol Sci 2019; 20:ijms20194772. [PMID: 31561428 PMCID: PMC6801578 DOI: 10.3390/ijms20194772] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives: The oxidative potential (OP) of particulate matter (PM) in cell-free/abiotic systems have been suggested as a possible measure of their biological reactivity and a relevant exposure metric for ambient air PM in epidemiological studies. The present review examined whether the OP of particles correlate with their biological effects, to determine the relevance of these cell-free assays as predictors of particle toxicity. Methods: PubMed, Google Scholar and Web of Science databases were searched to identify relevant studies published up to May 2019. The main inclusion criteria used for the selection of studies were that they should contain (1) multiple PM types or samples, (2) assessment of oxidative potential in cell-free systems and (3) assessment of biological effects in cells, animals or humans. Results: In total, 50 independent studies were identified assessing both OP and biological effects of ambient air PM or combustion particles such as diesel exhaust and wood smoke particles: 32 in vitro or in vivo studies exploring effects in cells or animals, and 18 clinical or epidemiological studies exploring effects in humans. Of these, 29 studies assessed the association between OP and biological effects by statistical analysis: 10 studies reported that at least one OP measure was statistically significantly associated with all endpoints examined, 12 studies reported that at least one OP measure was significantly associated with at least one effect outcome, while seven studies reported no significant correlation/association between any OP measures and any biological effects. The overall assessment revealed considerable variability in reported association between individual OP assays and specific outcomes, but evidence of positive association between intracellular ROS, oxidative damage and antioxidant response in vitro, and between OP assessed by the dithiothreitol (DDT) assay and asthma/wheeze in humans. There was little support for consistent association between OP and any other outcome assessed, either due to repeated lack of statistical association, variability in reported findings or limited numbers of available studies. Conclusions: Current assays for OP in cell-free/abiotic systems appear to have limited value in predicting PM toxicity. Clarifying the underlying causes may be important for further advancement in the field.
Collapse
|
33
|
Bates JT, Fang T, Verma V, Zeng L, Weber RJ, Tolbert PE, Abrams JY, Sarnat SE, Klein M, Mulholland JA, Russell AG. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4003-4019. [PMID: 30830764 DOI: 10.1021/acs.est.8b03430] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxidative stress is a potential mechanism of action for particulate matter (PM) toxicity and can occur when the body's antioxidant capacity cannot counteract or detoxify harmful effects of reactive oxygen species (ROS) due to an excess presence of ROS. ROS are introduced to the body via inhalation of PM with these species present on and/or within the particles (particle-bound ROS) and/or through catalytic generation of ROS in vivo after inhaling redox-active PM species (oxidative potential, OP). The recent development of acellular OP measurement techniques has led to a surge in research across the globe. In this review, particle-bound ROS techniques are discussed briefly while OP measurements are the focus due to an increasing number of epidemiologic studies using OP measurements showing associations with adverse health effects in some studies. The most common OP measurement techniques, including the dithiothreitol assay, glutathione assay, and ascorbic acid assay, are discussed along with evidence for utility of OP measurements in epidemiologic studies and PM characteristics that drive different responses between assay types (such as species composition, emission source, and photochemistry). Overall, most OP assays respond to metals like copper than can be found in emission sources like vehicles. Some OP assays respond to organics, especially photochemically aged organics, from sources like biomass burning. Select OP measurements have significant associations with certain cardiorespiratory end points, such as asthma, congestive heart disease, and lung cancer. In fact, multiple studies have found that exposure to OP measured using the dithiothreitol and glutathione assays drives higher risk ratios for certain cardiorespiratory outcomes than PM mass, suggesting OP measurements may be integrating the health-relevant fraction of PM and will be useful tools for future health analyses. The compositional impacts, including species and emission sources, on OP could have serious implications for health-relevant PM exposure. Though more work is needed, OP assays show promise for health studies as they integrate the impacts of PM species and properties on catalytic redox reactions into one measurement, and current work highlights the importance of metals, organic carbon, vehicles, and biomass burning emissions to PM exposures that could impact health.
Collapse
Affiliation(s)
- Josephine T Bates
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ting Fang
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Vishal Verma
- Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Champaign , Illinois 61820 , United States
| | - Linghan Zeng
- Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Rodney J Weber
- Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Paige E Tolbert
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - Joseph Y Abrams
- Center for Disease Control and Prevention, Atlanta , Georgia 30329 , United States
| | - Stefanie E Sarnat
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - Mitchel Klein
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - James A Mulholland
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Armistead G Russell
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
34
|
Weichenthal S, Shekarrizfard M, Traub A, Kulka R, Al-Rijleh K, Anowar S, Evans G, Hatzopoulou M. Within-City Spatial Variations in Multiple Measures of PM 2.5 Oxidative Potential in Toronto, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2799-2810. [PMID: 30735615 DOI: 10.1021/acs.est.8b05543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Few studies have characterized within-city spatial variations in the oxidative potential of fine particulate air pollution (PM2.5). In this study, we evaluated multiple measures of PM2.5 oxidative potential across Toronto, Canada (2016-2017), including glutathione/ascorbate-related oxidative potential (OPGSH and OPAA) and dithiothreitol depletion (OPDTT). Integrated 2-week samples were collected from 67 sites in summer and 42 sites in winter. Multivariable linear models were developed to predict OP based on various land use/traffic factors, and PM2.5 metals and black carbon were also examined. All three measures of PM2.5 oxidative potential varied substantially across Toronto. OPAA and OPDTT were primarily associated with traffic-related components of PM2.5 (i.e., Fe, Cu, and black carbon) whereas OPGSH was not a strong marker for traffic during either season. During summer, multivariable models performed best for OPAA ( RCV2 = 0.48) followed by OPDTT ( RCV2 = 0.32) and OPGSH ( RCV2 = 0.22). During winter, model performance was best for OPDTT ( RCV2 = 0.55) followed by OPGSH ( RCV2 = 0.50) and OPAA ( RCV2 = 0.23). Model parameters varied between seasons, and between-season differences in PM2.5 mass concentrations were weakly/moderately correlated with seasonal differences in OP. Our findings highlight substantial within-city variations in PM2.5 oxidative potential. More detailed information is needed on local sources of air pollution to improve model performance.
Collapse
Affiliation(s)
- Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health , McGill University , Montreal , Quebec H3A 1A2 , Canada
- Air Health Science Division , Health Canada , Ottawa , Ontario K1A 0K9 , Canada
| | - Maryam Shekarrizfard
- Department of Civil Engineering , University of Toronto , Toronto , Ontario M5S 1A4 , Canada
| | - Alison Traub
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Ryan Kulka
- Air Health Science Division , Health Canada , Ottawa , Ontario K1A 0K9 , Canada
| | - Kenan Al-Rijleh
- Department of Civil Engineering , University of Toronto , Toronto , Ontario M5S 1A4 , Canada
| | - Sabreena Anowar
- Department of Civil Engineering , University of Toronto , Toronto , Ontario M5S 1A4 , Canada
| | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Marianne Hatzopoulou
- Department of Civil Engineering , University of Toronto , Toronto , Ontario M5S 1A4 , Canada
| |
Collapse
|
35
|
Acute Effects of Air Pollution and Noise from Road Traffic in a Panel of Young Healthy Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050788. [PMID: 30836690 PMCID: PMC6427505 DOI: 10.3390/ijerph16050788] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023]
Abstract
Panel studies are an efficient means to assess short-term effects of air pollution and other time-varying environmental exposures. Repeated examinations of volunteers allow for an in-depth analysis of physiological responses supporting the biological interpretation of environmental impacts. Twenty-four healthy students walked for 1 h at a minimum of four separate occasions under each of the following four settings: along a busy road, along a busy road wearing ear plugs, in a park, and in a park but exposed to traffic noise (65 dB) through headphones. Particle mass (PM2.5, PM1), particle number, and noise levels were measured throughout each walk. Lung function and exhaled nitrogen oxide (NO) were measured before, immediately after, 1 h after, and approximately 24 h after each walk. Blood pressure and heart rate variability were measured every 15 min during each walk. Recorded air pollution levels were found to correlate with reduced lung function. The effects were clearly significant for end-expiratory flows and remained visible up to 24 h after exposure. While immediate increases in airway resistance could be interpreted as protective (muscular) responses to particulate air pollution, the persisting effects indicate an induced inflammatory reaction. Noise levels reduced systolic blood pressure and heart rate variability. Maybe due to the small sample size, no effects were visible per specific setting (road vs. park).
Collapse
|
36
|
Liu L, Urch B, Szyszkowicz M, Evans G, Speck M, Van Huang A, Leingartner K, Shutt RH, Pelletier G, Gold DR, Brook JR, Godri Pollitt K, Silverman FS. Metals and oxidative potential in urban particulate matter influence systemic inflammatory and neural biomarkers: A controlled exposure study. ENVIRONMENT INTERNATIONAL 2018; 121:1331-1340. [PMID: 30420132 PMCID: PMC6396878 DOI: 10.1016/j.envint.2018.10.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Oxidative stress and inflammation are considered to be important pathways leading to particulate matter (PM)-associated disease. In this exploratory study, we examined the effects of metals and oxidative potential (OP) in urban PM on biomarkers of systemic inflammation, oxidative stress and neural function. METHODS Fifty-three healthy non-smoking volunteers (mean age 28 years, twenty-eight females) were exposed to coarse (2.5-10 μm, mean 213 μg/m3), fine (0.15-2.5 μm, 238 μg/m3), and/or ultrafine concentrated ambient PM (<0.3 μm, 136 μg/m3). Exposures lasted 130 min, separated by ≥2 weeks. Metal concentrations and OP (measured by ascorbate and glutathione depletion in synthetic airway fluid) in PM were analyzed. Blood and urine samples were collected pre-exposure, and 1-h and 21-h post exposure for assessment of biomarkers. We used mixed-regression models to analyze associations adjusting for PM size and mass concentration. RESULTS Results for metals were expressed as change (%) from daily pre-exposure biomarker levels after exposure to a metal at a level equivalent to the mean concentration. Exposure to various metals (silver, aluminum, barium, copper, iron, potassium, lithium, nickel, tin, and/or vanadium) was significantly associated with increased levels of various blood or urinary biomarkers. For example, the blood inflammatory marker vascular endothelia growth factor (VEGF) increased 5.3% (95% confidence interval: 0.3%, 10.2%) 1-h post exposure to nickel; the traumatic brain injury marker ubiquitin C-terminal hydrolase L1 (UCHL1) increased 11% (1.2%, 21%) and 14% (0.3%, 29%) 1-h and 21-h post exposure to barium, respectively; and the systemic stress marker cortisol increased 1.5% (0%, 2.9%) and 1.5% (0.5%, 2.8%) 1-h and 21-h post exposure to silver, respectively. Urinary DNA oxidation marker 8‑hydroxy‑deoxy‑guanosine increased 14% (6.4%, 21%) 1-h post exposure to copper; urinary neural marker vanillylmandelic acid increased 29% (3%, 54%) 1-h post exposure to aluminum; and urinary cortisol increased 88% (0.9%, 176%) 1-h post exposure to vanadium. Results for OP were expressed as change (%) from daily pre-exposure biomarker levels after exposure to ascorbate-related OP at a level equivalent to the mean concentration, or for exposure to glutathione-related OP at a level above the limit of detection. Exposure to ascorbate- or glutathione-related OP was significantly associated with increased inflammatory and neural biomarkers including interleukin-6, VEGF, UCHL1, and S100 calcium-binding protein B in blood, and malondialdehyde and 8-hydroxy-deoxy-guanosine in urine. For example, UCHL1 increased 9.4% (1.8%, 17%) in blood 21-h post exposure to ascorbate-related OP, while urinary malondialdehyde increased 19% (3.6%, 35%) and 8-hydroxy-deoxy-guanosine increased 24% (2.9%, 48%) 21-h post exposure to ascorbate- and glutathione-related OP, respectively. CONCLUSION Our results from this exploratory study suggest that metal constituents and OP in ambient PM may influence biomarker levels associated with systemic inflammation, oxidative stress, perturbations of neural function, and systemic physiological stress.
Collapse
Affiliation(s)
- Ling Liu
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.
| | - Bruce Urch
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, Ontario, Canada
| | | | - Greg Evans
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, Ontario, Canada
| | - Mary Speck
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Angela Van Huang
- Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, Ontario, Canada
| | - Karen Leingartner
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Robin H Shutt
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Guillaume Pelletier
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Diane R Gold
- The Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey R Brook
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, Ontario, Canada; Environment and Climate Change Canada, Toronto, Ontario, Canada
| | | | - Frances S Silverman
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, Ontario, Canada; Divisions of Occupational Medicine and Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Knibbs LD, Cortés de Waterman AM, Toelle BG, Guo Y, Denison L, Jalaludin B, Marks GB, Williams GM. The Australian Child Health and Air Pollution Study (ACHAPS): A national population-based cross-sectional study of long-term exposure to outdoor air pollution, asthma, and lung function. ENVIRONMENT INTERNATIONAL 2018; 120:394-403. [PMID: 30125857 DOI: 10.1016/j.envint.2018.08.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Most studies of long-term air pollution exposure and children's respiratory health have been performed in urban locations with moderate pollution levels. We assessed the effect of outdoor nitrogen dioxide (NO2), as a proxy for urban air pollution, on current asthma and lung function in Australia, a low-pollution setting. We undertook a national population-based cross-sectional study of children aged 7-11 years living in 12 Australian cities. We collected information on asthma symptoms from parents via questionnaire and measured children's lung function (forced expiratory volume in 1 s [FEV1], forced vital capacity [FVC]) and fractional exhaled nitric oxide [FeNO]). We estimated recent NO2 exposure (last 12 months) using monitors near each child's school, and used a satellite-based land-use regression (LUR) model to estimate NO2 at each child's school and home. Our analysis comprised 2630 children, among whom the prevalence of current asthma was 14.9%. Mean (±SD) NO2 exposure was 8.8 ppb (±3.2) and 8.8 ppb (±2.3) for monitor- and LUR-based estimates, respectively. Mean percent predicted post-bronchodilator FEV1 and FVC were 101.7% (±10.5) and 98.8% (±10.5), respectively. The geometric mean FeNO concentration was 9.4 ppb (±7.1). An IQR increase in NO2 (4.0 ppb) was significantly associated with increased odds of having current asthma; odds ratios (ORs) were 1.24 (95% CI: 1.08, 1.43) and 1.54 (95% CI: 1.26, 1.87) for monitor- and LUR-based estimates, respectively. Increased NO2 exposure was significantly associated with decreased percent predicted FEV1 (-1.35 percentage points [95% CI: -2.21, -0.49]) and FVC (-1.19 percentage points [95% CI: -2.04, -0.35], and an increase in FeNO of 71% (95% CI: 38%, 112%). Exposure to outdoor NO2 was associated with adverse respiratory health effects in this population-based sample of Australian children. The relatively low NO2 levels at which these effects were observed highlight the potential benefits of continuous exposure reduction.
Collapse
Affiliation(s)
- Luke D Knibbs
- Faculty of Medicine, School of Public Health, The University of Queensland, Herston, QLD 4006, Australia; Centre for Air Pollution, Energy and Health Research, Glebe, NSW 2037, Australia.
| | | | - Brett G Toelle
- Woolcock Institute of Medical Research, The University of Sydney, NSW 2006, Australia; Sydney Local Health District, Sydney, NSW 2050, Australia
| | - Yuming Guo
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW 2037, Australia; Department of Epidemiology and Biostatistics, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Lyn Denison
- ERM Services Australia, Melbourne, VIC 3000, Australia
| | - Bin Jalaludin
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW 2037, Australia; Population Health, South Western Sydney Local Health District, Liverpool, NSW 2170, Australia; Ingham Institute, Liverpool, NSW 2170, Australia
| | - Guy B Marks
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW 2037, Australia; Woolcock Institute of Medical Research, The University of Sydney, NSW 2006, Australia; South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW 2170, Australia
| | - Gail M Williams
- Faculty of Medicine, School of Public Health, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
38
|
Spatial variations in the estimated production of reactive oxygen species in the epithelial lung lining fluid by iron and copper in fine particulate air pollution. Environ Epidemiol 2018; 2:e020. [PMID: 33210071 PMCID: PMC7662795 DOI: 10.1097/ee9.0000000000000020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/10/2018] [Indexed: 12/23/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background: Certain metals may play an important role in the adverse health effects of fine particulate air pollution (PM2.5), but few models are available to predict spatial variations in these pollutants. Methods: We conducted large-scale air monitoring campaigns during summer 2016 and winter 2017 in Toronto, Canada, to characterize spatial variations in iron (Fe) and copper (Cu) concentrations in PM2.5. Information on Fe and Cu concentrations at each site was paired with a kinetic multilayer model of surface and bulk chemistry in the lung epithelial lining fluid to estimate the possible impact of these metals on the production of reactive oxygen species (ROS) in exposed populations. Land use data around each monitoring site were used to develop predictive models for Fe, Cu, and their estimated combined impact on ROS generation. Results: Spatial variations in Fe, Cu, and ROS greatly exceeded that of PM2.5 mass concentrations. In addition, Fe, Cu, and estimated ROS concentrations were 15, 18, and 9 times higher during summer compared with winter with little difference observed for PM2.5. In leave-one-out cross-validation procedures, final multivariable models explained the majority of spatial variations in annual mean Fe (R2 = 0.68), Cu (R2 =0.79), and ROS (R2 = 0.65). Conclusions: The combined use of PM2.5 metals data with a kinetic multilayer model of surface and bulk chemistry in the human lung epithelial lining fluid may offer a novel means of estimating PM2.5 health impacts beyond simple mass concentrations.
Collapse
|
39
|
Lavigne É, Burnett RT, Stieb DM, Evans GJ, Godri Pollitt KJ, Chen H, van Rijswijk D, Weichenthal S. Fine Particulate Air Pollution and Adverse Birth Outcomes: Effect Modification by Regional Nonvolatile Oxidative Potential. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:077012. [PMID: 30073952 PMCID: PMC6108848 DOI: 10.1289/ehp2535] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Prenatal exposure to fine particulate matter air pollution with aerodynamic diameter ≤2.5 μm (PM2.5) has been associated with preterm delivery and low birth weight (LBW), but few studies have examined possible effect modification by oxidative potential. OBJECTIVES The aim of this study was to evaluate if regional differences in the oxidative potential of PM2.5 modify the relationship between PM2.5 and adverse birth outcomes. METHODS A retrospective cohort study was conducted using 196,171 singleton births that occurred in 31 cities in the province of Ontario, Canada, from 2006 to 2012. Daily air pollution data were collected from ground monitors, and city-level PM2.5 oxidative potential was measured. We used random-effects meta-analysis to combine the estimates of effect from regression models across cities on preterm birth, term LBW, and term birth weight and used meta-regression to evaluate the modifying effect of PM2.5 oxidative potential. RESULTS An interquartile increase (2.6 μg/m3) in first-trimester PM2.5 was positively associated with term LBW among women in the highest quartile of glutathione (GSH)-related oxidative potential [odds ratio (OR)=1.28; 95% confidence interval (CI): 1.10, 1.48], but not the lowest quartile (OR=0.99; 95% CI: 0.87, 1.14; p-interaction=0.03). PM2.5 on the day of delivery also was associated with preterm birth among women in the highest quartile of GSH-related oxidative potential [hazard ratio (HR)=1.02; 95% CI: 1.01, 1.04], but not the lowest quartile [HR=0.97; 95% CI: 0.95, 1.00; p-interaction=0.04]. Between-city differences in ascorbate (AA)-related oxidative potential did not significantly modify associations with PM2.5. CONCLUSIONS Between-city differences in GSH-related oxidative potential may modify the impact of PM2.5 on the risk of term LBW and preterm birth. https://doi.org/10.1289/EHP2535.
Collapse
Affiliation(s)
- Éric Lavigne
- Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard T Burnett
- Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - David M Stieb
- Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | - Hong Chen
- Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | | | - Scott Weichenthal
- Health Canada, Ottawa, Ontario, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Shang J, Khuzestani RB, Huang W, An J, Schauer JJ, Fang D, Cai T, Tian J, Yang S, Guo B, Zhang Y. Acute changes in a respiratory inflammation marker in guards following Beijing air pollution controls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1539-1549. [PMID: 29929263 DOI: 10.1016/j.scitotenv.2017.12.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 05/21/2023]
Abstract
The adverse respiratory health effects of PM2.5 have been studied. However, the epidemiological evidence for the association of specific PM2.5 sources with health outcomes is still limited. This study investigated the association between PM2.5 components and sources with a biomarker of acute respiratory inflammation (FeNO) in guards. Personal exposure was estimated by microenvironment samplers and FeNO measurements were carried out before, during and after the Victory Day Military Parade in Beijing. Four sources were determined by factor analysis, including urban pollution, dust, alloy steel abrasion and toxic metals. A mixed-effect model was used to estimate the associations of FeNO with PM2.5 sources and chemical constituents, controlling for age, BMI, smoke activity, physical activity, waist circumference, temperature and relative humidity. In summary, large concentration decreases in PM2.5 concentration and PM2.5 chemical constituents were observed in both roadside and indoor environments during the air control periods, immediately followed by statistically significant decreases in FeNO of roadside guards and patrol guards. Besides, statistically significant increases in FeNO were found to be associated with interquartile range (IQR) increases in some pollutants, with an increase of 1.45ppb (95% CI: 0.69, 2.20), 0.65ppb (95% CI: 0.13, 1.17), 1.48ppb (95% CI: 0.60, 2.35), 0.82ppb (95% CI: 0.44, 1.20), 0.77ppb (95% CI: 0.42, 1.11) in FeNO for mass, sulfate, BC, Ca2+ and Sm, respectively. In addition, compared to alloy steel abrasion and toxic metals, urban pollution and dust factors were more associated with acute airway inflammation for highly-exposed populations.
Collapse
Affiliation(s)
- Jing Shang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Reza Bashiri Khuzestani
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Huang
- Institute for Environmental Reference Materials of Ministry of Environmental Protection, Beijing, China
| | - Jianxiong An
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing 100012, China
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dongqing Fang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Tian
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujian Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Shandong 250100, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
41
|
Gulliver J, Morley D, Dunster C, McCrea A, van Nunen E, Tsai MY, Probst-Hensch N, Eeftens M, Imboden M, Ducret-Stich R, Naccarati A, Galassi C, Ranzi A, Nieuwenhuijsen M, Curto A, Donaire-Gonzalez D, Cirach M, Vermeulen R, Vineis P, Hoek G, Kelly FJ. Land use regression models for the oxidative potential of fine particles (PM 2.5) in five European areas. ENVIRONMENTAL RESEARCH 2018; 160:247-255. [PMID: 29031214 DOI: 10.1016/j.envres.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Oxidative potential (OP) of particulate matter (PM) is proposed as a biologically-relevant exposure metric for studies of air pollution and health. We aimed to evaluate the spatial variability of the OP of measured PM2.5 using ascorbate (AA) and (reduced) glutathione (GSH), and develop land use regression (LUR) models to explain this spatial variability. We estimated annual average values (m-3) of OPAA and OPGSH for five areas (Basel, CH; Catalonia, ES; London-Oxford, UK (no OPGSH); the Netherlands; and Turin, IT) using PM2.5 filters. OPAA and OPGSH LUR models were developed using all monitoring sites, separately for each area and combined-areas. The same variables were then used in repeated sub-sampling of monitoring sites to test sensitivity of variable selection; new variables were offered where variables were excluded (p > .1). On average, measurements of OPAA and OPGSH were moderately correlated (maximum Pearson's maximum Pearson's R = = .7) with PM2.5 and other metrics (PM2.5absorbance, NO2, Cu, Fe). HOV (hold-out validation) R2 for OPAA models was .21, .58, .45, .53, and .13 for Basel, Catalonia, London-Oxford, the Netherlands and Turin respectively. For OPGSH, the only model achieving at least moderate performance was for the Netherlands (R2 = .31). Combined models for OPAA and OPGSH were largely explained by study area with weak local predictors of intra-area contrasts; we therefore do not endorse them for use in epidemiologic studies. Given the moderate correlation of OPAA with other pollutants, the three reasonably performing LUR models for OPAA could be used independently of other pollutant metrics in epidemiological studies.
Collapse
Affiliation(s)
- John Gulliver
- MRC-PHE Centre for Environment and Health, the Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom.
| | - David Morley
- MRC-PHE Centre for Environment and Health, the Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Chrissi Dunster
- MRC-PHE Centre for Environment and Health, Environmental Research Group (ERG), King's College London, London, United Kingdom
| | - Adrienne McCrea
- MRC-PHE Centre for Environment and Health, the Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Erik van Nunen
- Institute for Risk Assessment Sciences (IRAS), division of Environmental Epidemiology (EEPI), Utrecht University, Utrecht, The Netherlands
| | - Ming-Yi Tsai
- Swiss Tropical and Public Health (TPH) Institute, University of Basel, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Nicoltae Probst-Hensch
- Swiss Tropical and Public Health (TPH) Institute, University of Basel, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Marloes Eeftens
- Swiss Tropical and Public Health (TPH) Institute, University of Basel, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Medea Imboden
- Swiss Tropical and Public Health (TPH) Institute, University of Basel, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Regina Ducret-Stich
- Swiss Tropical and Public Health (TPH) Institute, University of Basel, Basel, Switzerland; University of Basel, Basel, Switzerland
| | | | - Claudia Galassi
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza University Hospital and Centre for Cancer Prevention, Turin, Italy
| | - Andrea Ranzi
- Environmental Health Reference Centre, Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, Modena, Italy
| | - Mark Nieuwenhuijsen
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - Ariadna Curto
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - David Donaire-Gonzalez
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marta Cirach
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), division of Environmental Epidemiology (EEPI), Utrecht University, Utrecht, The Netherlands
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, the Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), division of Environmental Epidemiology (EEPI), Utrecht University, Utrecht, The Netherlands
| | - Frank J Kelly
- MRC-PHE Centre for Environment and Health, Environmental Research Group (ERG), King's College London, London, United Kingdom
| |
Collapse
|
42
|
Crobeddu B, Aragao-Santiago L, Bui LC, Boland S, Baeza Squiban A. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:125-133. [PMID: 28649040 DOI: 10.1016/j.envpol.2017.06.051] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/19/2017] [Accepted: 06/15/2017] [Indexed: 05/25/2023]
Abstract
Particulate air pollution being recognized to be responsible for short and long term health effects, regulations for particulate matter with an aerodynamic diameter less than 2.5 (PM2.5) are more and more restrictive. PM2.5 regulation is based on mass without taking into account PM2.5 composition that drives toxicity. Measurement of the oxidative potential (OP) of PM could be an additional PM indicator that would encompass the PM components involved in oxidative stress, the main mechanism of PM toxicity. We compared different methods to evaluate the intrinsic oxidative potential of PM2.5 sampled in Paris and their ability to reflect the oxidative and inflammatory response in bronchial epithelial cells used as relevant target organ cells. The dithiothreitol depletion assay, the antioxidant (ascorbic acid and glutathione) depletion assay (OPAO), the plasmid scission assay and the dichlorofluorescein (DCFH) oxidation assay used to characterize the OP of PM2.5 (10-100 μg/mL) provided positive results of different magnitude with all the PM2.5 samples used with significant correlation with different metals such as Cu and Zn as well as total polyaromatic hydrocarbons and the soluble organic fraction. The OPAO assay showed the best correlation with the production of intracellular reactive oxygen species by NCI-H292 cell line assessed by DCFH oxidation and with the expression of anti-oxidant genes (superoxide dismutase 2, heme-oxygenase-1) as well as the proinflammatory response (Interleukin 6) when exposed from 1 to 10 μg/cm2. The OPAO assay appears as the most prone to predict the biological effect driven by PM2.5 and related to oxidative stress.
Collapse
Affiliation(s)
- Bélinda Crobeddu
- Univ Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, F-75205, Paris, France
| | - Leticia Aragao-Santiago
- Univ Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, F-75205, Paris, France
| | - Linh-Chi Bui
- Univ Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, F-75205, Paris, France
| | - Sonja Boland
- Univ Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, F-75205, Paris, France
| | - Armelle Baeza Squiban
- Univ Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology (BFA) UMR 8251 CNRS, F-75205, Paris, France.
| |
Collapse
|
43
|
Buteau S, Hatzopoulou M, Crouse DL, Smargiassi A, Burnett RT, Logan T, Cavellin LD, Goldberg MS. Comparison of spatiotemporal prediction models of daily exposure of individuals to ambient nitrogen dioxide and ozone in Montreal, Canada. ENVIRONMENTAL RESEARCH 2017; 156:201-230. [PMID: 28359040 DOI: 10.1016/j.envres.2017.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In previous studies investigating the short-term health effects of ambient air pollution the exposure metric that is often used is the daily average across monitors, thus assuming that all individuals have the same daily exposure. Studies that incorporate space-time exposures of individuals are essential to further our understanding of the short-term health effects of ambient air pollution. OBJECTIVES As part of a longitudinal cohort study of the acute effects of air pollution that incorporated subject-specific information and medical histories of subjects throughout the follow-up, the purpose of this study was to develop and compare different prediction models using data from fixed-site monitors and other monitoring campaigns to estimate daily, spatially-resolved concentrations of ozone (O3) and nitrogen dioxide (NO2) of participants' residences in Montreal, 1991-2002. METHODS We used the following methods to predict spatially-resolved daily concentrations of O3 and NO2 for each geographic region in Montreal (defined by three-character postal code areas): (1) assigning concentrations from the nearest monitor; (2) spatial interpolation using inverse-distance weighting; (3) back-extrapolation from a land-use regression model from a dense monitoring survey, and; (4) a combination of a land-use and Bayesian maximum entropy model. We used a variety of indices of agreement to compare estimates of exposure assigned from the different methods, notably scatterplots of pairwise predictions, distribution of differences and computation of the absolute agreement intraclass correlation (ICC). For each pairwise prediction, we also produced maps of the ICCs by these regions indicating the spatial variability in the degree of agreement. RESULTS We found some substantial differences in agreement across pairs of methods in daily mean predicted concentrations of O3 and NO2. On a given day and postal code area the difference in the concentration assigned could be as high as 131ppb for O3 and 108ppb for NO2. For both pollutants, better agreement was found between predictions from the nearest monitor and the inverse-distance weighting interpolation methods, with ICCs of 0.89 (95% confidence interval (CI): 0.89, 0.89) for O3 and 0.81 (95%CI: 0.80, 0.81) for NO2, respectively. For this pair of methods the maximum difference on a given day and postal code area was 36ppb for O3 and 74ppb for NO2. The back-extrapolation method showed a higher degree of disagreement with the nearest monitor approach, inverse-distance weighting interpolation, and the Bayesian maximum entropy model, which were strongly constrained by the sparse monitoring network. The maps showed that the patterns of agreement differed across the postal code areas and the variability depended on the pair of methods compared and the pollutants. For O3, but not NO2, postal areas showing greater disagreement were mostly located near the city centre and along highways, especially in maps involving the back-extrapolation method. CONCLUSIONS In view of the substantial differences in daily concentrations of O3 and NO2 predicted by the different methods, we suggest that analyses of the health effects from air pollution should make use of multiple exposure assessment methods. Although we cannot make any recommendations as to which is the most valid method, models that make use of higher spatially resolved data, such as from dense exposure surveys or from high spatial resolution satellite data, likely provide the most valid estimates.
Collapse
Affiliation(s)
- Stephane Buteau
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Institut national de sante publique du Quebec (INSPQ), Montreal, Quebec, Canada.
| | - Marianne Hatzopoulou
- Department of Civil Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dan L Crouse
- Department of Sociology, University of New Brunswick, Fredericton, New Brunswick, Canada; New Brunswick Institute for Research, Data, and Training, Fredericton, New Brunswick, Canada
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada; Public Health Research Institute of the University of Montreal (IRSPUM), Montreal, Quebec, Canada
| | | | | | - Laure Deville Cavellin
- Department of civil engineering and applied mechanics, McGill University, Montreal, Quebec, Canada
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Division of Clinical Epidemiology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Jesenak M, Zelieskova M, Babusikova E. Oxidative Stress and Bronchial Asthma in Children-Causes or Consequences? Front Pediatr 2017; 5:162. [PMID: 28791280 PMCID: PMC5523023 DOI: 10.3389/fped.2017.00162] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Bronchial asthma is one of the most common chronic inflammatory diseases of the airways. In the pathogenesis of this disease, the interplay among the genes, intrinsic, and extrinsic factors are crucial. Various combinations of the involved factors determine and modify the final clinical phenotype/endotype of asthma. Oxidative stress results from an imbalance between the production of reactive oxygen species and reactive nitrogen species and the capacity of antioxidant defense mechanisms. It was shown that oxidative damage of biomolecules is strongly involved in the asthmatic inflammation. It is evident that asthma is accompanied by oxidative stress in the airways and in the systemic circulation. The oxidative stress is more pronounced during the acute exacerbation or allergen challenge. On the other hand, the genetic variations in the genes for anti-oxidative and pro-oxidative enzymes are variably associated with various asthmatic subtypes. Whether oxidative stress is the consequence of, or the cause for, chronic changes in asthmatic airways is still being discussed. Contribution of oxidative stress to asthma pathology remains at least partially controversial, since antioxidant interventions have proven rather unsuccessful. According to current knowledge, the relationship between oxidative stress and asthmatic inflammation is bidirectional, and genetic predisposition could modify the balance between these two positions-oxidative stress as a cause for or consequence of asthmatic inflammation.
Collapse
Affiliation(s)
- Milos Jesenak
- Jessenius Faculty of Medicine, Department of Pediatrics, Comenius University in Bratislava, University Hospital, Martin, Slovakia
| | - Maria Zelieskova
- Jessenius Faculty of Medicine, Department of Pediatrics, Comenius University in Bratislava, University Hospital, Martin, Slovakia
| | - Eva Babusikova
- Jessenius Faculty of Medicine, Department of Medical Biochemistry, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
45
|
Godri Pollitt KJ, Maikawa CL, Wheeler AJ, Weichenthal S, Dobbin NA, Liu L, Goldberg MS. Trace metal exposure is associated with increased exhaled nitric oxide in asthmatic children. Environ Health 2016; 15:94. [PMID: 27586245 PMCID: PMC5009709 DOI: 10.1186/s12940-016-0173-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 08/23/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Children with asthma experience increased susceptibility to airborne pollutants. Exposure to traffic and industrial activity have been positively associated with exacerbation of symptoms as well as emergency room visits and hospitalisations. The effect of trace metals contained in fine particulate matter (aerodynamic diameter 2.5 μm and lower, PM2.5) on acute health effects amongst asthmatic children has not been well investigated. The objective of this panel study in asthmatic children was to determine the association between personal daily exposure to ambient trace metals and airway inflammation, as measured by fractional exhaled nitric oxide (FeNO). METHODS Daily concentrations of trace metals contained on PM2.5 were determined from personal samples (n = 217) collected from 70 asthmatic school aged children in Montreal, Canada, over ten consecutive days. FeNO was measured daily using standard techniques. RESULTS A positive association was found between FeNO and children's exposure to an indicator of vehicular non-tailpipe emissions (8.9 % increase for an increase in the interquartile range (IQR) in barium, 95 % confidence interval (CI): 2.8, 15.4) as well as exposure to an indicator of industrial emissions (7.6 % increase per IQR increase in vanadium, 95 % CI: 0.1, 15.8). Elevated FeNO was also suggested for other metals on the day after the exposure: 10.3 % increase per IQR increase in aluminium (95 % CI: 4.2, 16.6) and 7.5 % increase per IQR increase in iron (95 % CI: 1.5, 13.9) at a 1-day lag period. CONCLUSIONS Exposures to ambient PM2.5 containing trace metals that are markers of traffic and industrial-derived emissions were associated in asthmatic children with an enhanced FeNO response.
Collapse
Affiliation(s)
- Krystal J. Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 149D Goessman Lab, 686 North Pleasant Street, Amherst, MA 01003 USA
| | - Caitlin L. Maikawa
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 149D Goessman Lab, 686 North Pleasant Street, Amherst, MA 01003 USA
| | - Amanda J. Wheeler
- Health Canada, Air Health Science Division, Ottawa, ON Canada
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, TAS 7000 Australia
| | - Scott Weichenthal
- Health Canada, Air Health Science Division, Ottawa, ON Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC Canada
| | - Nina A. Dobbin
- Health Canada, Air Health Science Division, Ottawa, ON Canada
| | - Ling Liu
- Health Canada, Population Studies Division, Ottawa, ON Canada
| | - Mark S. Goldberg
- Department of Medicine, Division of Clinical Epidemiology, Research Institute, McGill University Health Centre, McGill University, Montreal, Canada
| |
Collapse
|