1
|
Olivas-Martínez A, Ventura-Wischner PS, Fernandez MF, Freire C. Influence of exposure to endocrine disruptors and other environmental chemicals on breast development in girls: A systematic review of human studies. Int J Hyg Environ Health 2025; 263:114487. [PMID: 39566420 DOI: 10.1016/j.ijheh.2024.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Age at thelarche has decreased over recent decades. This change in female puberty timing may be influenced by exposure to endocrine disrupting chemicals (EDCs) during critical periods of development. OBJECTIVE To review the scientific literature for evidence on the association of exposure to EDCs and other environmental chemicals with the timing of thelarche in girls. METHODS A systematic search for original peer-reviewed articles published up to July 2023 was conducted in three databases (Medline/PubMed, Scopus, and Web of Science), following the PECO strategy and PRISMA guidelines. The quality of evidence and reporting and the risk of bias were evaluated using GRADE, STROBE, and ROBINS-E tools. RESULTS Out of 3094 articles retrieved in the search, 67 met the review inclusion criteria. Data from 10 out of the 14 studies offering high-quality suggest that in utero and/or childhood exposure to certain synthetic and natural chemicals is associated with earlier breast development in girls; 8 of these 10 studies described a relationship with exposure to organohalogenated compounds in utero and to phthalates in childhood. CONCLUSIONS This systematic review provides the first overview of available human data on the association of EDCs/environmental chemicals with the timing of thelarche. Further high-quality research is urgently needed to fully elucidate the influence of this exposure on breast development timing in girls.
Collapse
Affiliation(s)
- Alicia Olivas-Martínez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Paula Sol Ventura-Wischner
- Institut D'Investigació en Ciències de La Salut Germans Trias I Pujol, 08916, Badalona, Barcelona, Spain; Servicio de Pediatria, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain
| | - Mariana F Fernandez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
2
|
Choe Y, Kim KN, Lee YJ, Kim JI, Kim BN, Lim YH, Hong YC, Shin CH, Lee YA. Prenatal and childhood exposure to endocrine-disrupting chemicals and early thelarche in 8-year-old girls: A prospective study using Bayesian kernel regression. ENVIRONMENTAL RESEARCH 2024; 263:120056. [PMID: 39343343 DOI: 10.1016/j.envres.2024.120056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Studies on the combined effects of persistent and non-persistent endocrine-disrupting chemicals (EDCs) on puberty are insufficient. To date, no studies have analyzed breast development at age 8 years, a key criterion for determining precocious puberty. We investigated the relationship between prenatal or childhood exposure to EDC mixtures and early thelarche, defined as breast development before age 8 years in girls. METHODS This prospective study included 211 girls with data on prenatal and 8-year-old exposure of cadmium (Cd), lead, mercury, bisphenol-A (BPA), 3-phenoxybenzoic acid, and three phthalate metabolites from the Environment and Development of Children cohort. Prenatal exposure was assessed through samples from pregnant women at 14-27th weeks of gestation. Tanner staging was assessed by a pediatric endocrinologist. The relationship between single and mixed chemical exposures and outcomes was assessed using logistic regression, generalized additive models (GAM), and Bayesian kernel machine regression (BKMR) models. RESULTS Early thelarche was observed in 42 (19.9%) girls at age 8 years. In the logistic regression models, the risk of early thelarche increased with increased exposure to Cd in their mothers (adjusted odds ratio [aOR] per interquartile range [IQR] = 1.80, 95% confidence interval [CI] 1.23-2.65) but decreased with prenatal BPA exposure (aOR per IQR = 0.57, 95% CI 0.35-0.92). None of the 8-year-old chemical exposures was associated with early thelarche. In the GAM, early thelarche was positively correlated with prenatal Cd and inversely associated with prenatal BPA exposure (p = 0.004 for Cd and p = 0.036 for BPA). In the BKMR models, an increase in log-transformed prenatal Cd concentrations from the 25th to 75th percentile was associated with an increase in the estimated probability of early thelarche at age 8 years (risk difference: 0.46 [95% credible interval: 0.04-0.88]) when other chemicals were set at their median values. CONCLUSIONS Considering the combined effects of persistent and non-persistent chemical mixtures, maternal Cd exposure during the second trimester may be associated with early thelarche in 8-year-old girls.
Collapse
Affiliation(s)
- Yunsoo Choe
- Department of Pediatrics, Hanyang University Guri Hospital, Guri, South Korea; Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Kyoung-Nam Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, South Korea
| | - Bung-Nyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea; Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Rousseau-Ralliard D, Bozec J, Ouidir M, Jovanovic N, Gayrard V, Mellouk N, Dieudonné MN, Picard-Hagen N, Flores-Sanabria MJ, Jammes H, Philippat C, Couturier-Tarrade A. Short-Half-Life Chemicals: Maternal Exposure and Offspring Health Consequences-The Case of Synthetic Phenols, Parabens, and Phthalates. TOXICS 2024; 12:710. [PMID: 39453131 PMCID: PMC11511413 DOI: 10.3390/toxics12100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Phenols, parabens, and phthalates (PPPs) are suspected or known endocrine disruptors. They are used in consumer products that pregnant women and their progeny are exposed to daily through the placenta, which could affect offspring health. This review aims to compile data from cohort studies and in vitro and in vivo models to provide a summary regarding placental transfer, fetoplacental development, and the predisposition to adult diseases resulting from maternal exposure to PPPs during the gestational period. In humans, using the concentration of pollutants in maternal urine, and taking the offspring sex into account, positive or negative associations have been observed concerning placental or newborn weight, children's BMI, blood pressure, gonadal function, or age at puberty. In animal models, without taking sex into account, alterations of placental structure and gene expression linked to hormones or DNA methylation were related to phenol exposure. At the postnatal stage, pollutants affect the bodyweight, the carbohydrate metabolism, the cardiovascular system, gonadal development, the age of puberty, sex/thyroid hormones, and gamete quality, but these effects depend on the age and sex. Future challenges will be to explore the effects of pollutants in mixtures using models and to identify the early signatures of in utero exposure capable of predicting the health trajectory of the offspring.
Collapse
Affiliation(s)
- Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marion Ouidir
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Marie-Noëlle Dieudonné
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31062 Toulouse, France
| | - Maria-José Flores-Sanabria
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
4
|
Hajjar R, Hatoum S, Mattar S, Moawad G, Ayoubi JM, Feki A, Ghulmiyyah L. Endocrine Disruptors in Pregnancy: Effects on Mothers and Fetuses-A Review. J Clin Med 2024; 13:5549. [PMID: 39337036 PMCID: PMC11432155 DOI: 10.3390/jcm13185549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Endocrine disruptors are ubiquitous agents in the environment and are present in everyday consumer products. These agents can interfere with the endocrine system, and subsequently the reproductive system, especially in pregnancy. An increasing number of studies have been conducted to discover and describe the health effects of these agents on humans, including pregnant women, their fetuses, and the placenta. This review discusses prenatal exposure to various endocrine disruptors, focusing on bisphenols, phthalates, organophosphates, and perfluoroalkyl substances, and their effects on pregnancy and fetal development. Methods: We reviewed the literature via the PubMed and EBSCO databases and included the most relevant studies. Results: Our findings revealed that several negative health outcomes were linked to endocrine disruptors. However, despite the seriousness of this topic and the abundance of research on these agents, it remains challenging to draw strong conclusions about their effects from the available studies. This does not allow for strong, universal guidelines and might result in poor patient counseling and heterogeneous approaches to regulating endocrine disruptors. Conclusions: The seriousness of this matter calls for urgent efforts, and more studies are needed in this realm, to protect pregnant patients, and ultimately, in the long term, society.
Collapse
Affiliation(s)
- Rima Hajjar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sana Hatoum
- Foundation for Research and Education Excellence, Vestavia, AL 35243, USA
| | - Serge Mattar
- Fertility & IVF Clinic, Dubai P.O. Box 72960, United Arab Emirates
| | - Gaby Moawad
- Department of Obstetrics and Gynecology, The George Washington University Hospital, Washington, DC 20037, USA
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hôpital Foch-Faculté de Médecine, Suresnes, 92150 Paris, France
| | - Anis Feki
- Department of Obstetrics and Gynecology and Reproductive Medicine, HFR-Hopital Fribourgeois, Chemin des Pensionnats 2-6, 1708 Fribourg, Switzerland
| | - Labib Ghulmiyyah
- Women's Specialty Care of Florida, Pediatrix Medical Group, Fort Lauderdale, FL 33316, USA
| |
Collapse
|
5
|
Yesildemir O, Celik MN. The Effect of Various Environmental Pollutants on the Reproductive Health in Children: A Brief Review of the Literature. Curr Nutr Rep 2024; 13:382-392. [PMID: 38935249 PMCID: PMC11327209 DOI: 10.1007/s13668-024-00557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Environmental pollutants in air, water, soil, and food are a significant concern due to their potential adverse effects on fetuses, newborns, babies, and children. These chemicals, which pass to fetuses and babies through trans-placental transfer, breast milk, infant formula, dermal transfer, and non-nutritive ingestion, can cause health problems during childhood. This review aims to discuss how exposure to various environmental pollutants in early life stages can disrupt reproductive health in children. RECENT FINDINGS Environmental pollutants can affect Leydig cell proliferation and differentiation, decreasing testosterone production throughout life. This may result in cryptorchidism, hypospadias, impaired semen parameters, and reduced fertility. Although many studies on female reproductive health cannot be interpreted to support causal relationships, exposure to pollutants during critical windows may subsequently induce female reproductive diseases, including early or delayed puberty, polycystic ovary syndrome, endometriosis, and cancers. There is growing evidence that fetal and early-life exposure to environmental pollutants could affect reproductive health in childhood. Although diet is thought to be the primary route by which humans are exposed to various pollutants, there are no adopted nutritional interventions to reduce the harmful effects of pollutants on children's health. Therefore, understanding the impact of environmental contaminants on various health outcomes may inform the design of future human nutritional studies.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Türkiye.
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayis University, 55200, Samsun, Türkiye
| |
Collapse
|
6
|
Jurikova M, Dvorakova D, Bechynska K, Pulkrabova J. Bisphenols in daily clothes from conventional and recycled material: evaluation of dermal exposure to potentially toxic substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55663-55675. [PMID: 39240436 DOI: 10.1007/s11356-024-34904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Given the increasing concern about chemical exposure from textiles, our study examines the risks of dermal exposure to bisphenol A (BPA), bisphenol S (BPS), bisphenol B (BPB) and bisphenol F (BPF) from conventional and recycled textiles for adults, aiming to obtain new data, assess exposure, and evaluate the impact of washing on bisphenol levels. A total of 57 textile samples (33 from recycled and 24 from conventional material) were subjected to ultrasound-assisted extraction (UAE) followed by ultra-high performance liquid chromatography with tandem mass spectrometry analysis (UHPLC-MS/MS). The BPA and BPS concentrations varied widely (BPA: < 0.050 to 625 ng/g, BPS: 0.277-2,474 ng/g). The median BPA content in recycled textiles (13.5 ng/g) was almost twice as high as that of 7.66 ng/g in conventional textiles. BPS showed a median of 1.85 ng/g in recycled textiles and 3.42 ng/g in conventional textiles, indicating a shift from BPA to BPS in manufacturing practices. Simulated laundry experiments showed an overall reduction in bisphenols concentrations after washing. The study also assessed potential health implications via dermal exposure to dry and sweat-wet textiles compared to a tolerable daily intake (TDI) of 0.2 ng/kg bw/day for BPA set by the European Food Safety Authority (EFSA). Exposure from dry textiles remained below this threshold, while exposure from wet textiles often exceeded it, indicating an increased risk under conditions that simulate sweating or humidity. By finding the widespread presence of bisphenols in textiles, our study emphasises the importance of being aware of the potential risks associated with recycling materials as well as the benefits.
Collapse
Affiliation(s)
- Martina Jurikova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia
| | - Darina Dvorakova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia
| | - Kamila Bechynska
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia
| | - Jana Pulkrabova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia.
| |
Collapse
|
7
|
Calcaterra V, Cena H, Loperfido F, Rossi V, Grazi R, Quatrale A, De Giuseppe R, Manuelli M, Zuccotti G. Evaluating Phthalates and Bisphenol in Foods: Risks for Precocious Puberty and Early-Onset Obesity. Nutrients 2024; 16:2732. [PMID: 39203868 PMCID: PMC11357315 DOI: 10.3390/nu16162732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Recent scientific results indicate that diet is the primary source of exposure to endocrine-disrupting chemicals (EDCs) due to their use in food processing, pesticides, fertilizers, and migration from packaging to food, particularly in plastic or canned foods. Although EDCs are not listed on nutrition labels, their migration from packaging to food could inadvertently lead to food contamination, affecting individuals by inhalation, ingestion, and direct contact. The aim of our narrative review is to investigate the role of phthalates and bisphenol A (BPA) in foods, assessing their risks for precocious puberty (PP) and early-onset obesity, which are two clinical entities that are often associated and that share common pathogenetic mechanisms. The diverse outcomes observed across different studies highlight the complexity of phthalates and BPA effects on the human body, both in terms of early puberty, particularly in girls, and obesity with its metabolic disruptions. Moreover, obesity, which is independently linked to early puberty, might confound the relationship between exposure to these EDCs and pubertal timing. Given the potential public health implications, it is crucial to adopt a precautionary approach, minimizing exposure to these EDCs, especially in vulnerable populations such as children.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Roberta Grazi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Matteo Manuelli
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy;
| |
Collapse
|
8
|
Khodasevich D, Holland N, Harley KG, Eskenazi B, Barcellos LF, Cardenas A. Prenatal exposure to environmental phenols and phthalates and altered patterns of DNA methylation in childhood. ENVIRONMENT INTERNATIONAL 2024; 190:108862. [PMID: 38972116 PMCID: PMC11620025 DOI: 10.1016/j.envint.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Epigenetic marks are key biomarkers linking the prenatal environment to health and development. However, DNA methylation associations and persistence of marks for prenatal exposure to multiple Endocrine Disrupting Chemicals (EDCs) in human populations have not been examined in great detail. METHODS We measured Bisphenol-A (BPA), triclosan, benzophenone-3 (BP3), methyl-paraben, propyl-paraben, and butyl-paraben, as well as 11 phthalate metabolites, in two pregnancy urine samples, at approximately 13 and 26 weeks of gestation in participants of the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study (N = 309). DNA methylation of cord blood at birth and child peripheral blood at ages 9 and 14 years was measured with 450K and EPIC arrays. Robust linear regression was used to identify differentially methylated probes (DMPs), and comb-p was used to identify differentially methylated regions (DMRs) in association with pregnancy-averaged EDC concentrations. Quantile g-computation was used to assess associations of the whole phenol/phthalate mixture with DMPs and DMRs. RESULTS Prenatal BPA exposure was associated with 1 CpG among males and Parabens were associated with 10 CpGs among females at Bonferroni-level significance in cord blood. Other suggestive DMPs (unadjusted p-value < 1 × 10-6) and several DMRs associated with the individual phenols and whole mixture were also identified. A total of 10 CpG sites at least suggestively associated with BPA, Triclosan, BP3, Parabens, and the whole mixture in cord blood were found to persist into adolescence in peripheral blood. CONCLUSIONS We found sex-specific associations between prenatal phenol exposure and DNA methylation, particularly with BPA in males and Parabens in females. Additionally, we found several DMPs that maintained significant associations with prenatal EDC exposures at age 9 and age 14 years.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Division of Environmental Health Sciences, Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kim G Harley
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Lisa F Barcellos
- Division of Epidemiology, Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Freire C, Castiello F, Babarro I, Anguita-Ruiz A, Casas M, Vrijheid M, Sarzo B, Beneito A, Kadawathagedara M, Philippat C, Thomsen C, Sakhi AK, Lopez-Espinosa MJ. Association of prenatal exposure to phthalates and synthetic phenols with pubertal development in three European cohorts. Int J Hyg Environ Health 2024; 261:114418. [PMID: 38968838 DOI: 10.1016/j.ijheh.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND There is limited epidemiological evidence on the association of prenatal exposure to phthalates and synthetic phenols with altered pubertal timing. OBJECTIVE To examine the association of prenatal exposure to phthalates, bisphenol A (BPA), parabens, benzophenone 3 (BP-3), and triclosan (TCS) with pubertal development in girls and boys from three European cohorts. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP), BPA, methyl- (MePB), ethyl- (EtPB), propyl- (PrPB), and butyl-paraben (BuPB), BP-3, and TCS were quantified in one or two (1st and 3rd trimester) urine samples collected during pregnancy (1999-2008) from mothers in three birth cohorts: INMA (Spain), EDEN (France), and MoBa (Norway). Pubertal development of their children was assessed at a single visit at age 7-12 years (579 girls, 644 boys) using the parent-reported Pubertal Development Scale (PDS). Mixed-effect Poisson and g-computation and Bayesian Kernel Machine Regression (BKMR) were employed to examine associations of individual and combined prenatal chemical exposure, respectively, with the probability of overall pubertal onset, adrenarche, and gonadarche (stage 2+) in girls and boys. Effect modification by child body mass index (BMI) was also assessed. RESULTS Maternal concentrations of the molar sum of DEHP and of DiNP metabolites were associated with a slightly higher probability of having started puberty in boys (relative risk, RR [95% CI] = 1.13 [0.98-1.30] and 1.20 [1.06-1.34], respectively, for a two-fold increase in concentrations), with a stronger association for DiNP in boys with overweight or obesity. In contrast, BPA, BuPB, EtPB, and PrPB were associated with a lower probability of pubertal onset, adrenarche, and/or gonadarche in all boys (e.g. overall puberty, BPA: RR [95% CI] = 0.93 [0.85-1.01] and BuPB: 0.95 [0.90-1.00], respectively), and the association with BPA was stronger in boys with underweight/normal weight. In girls, MEHP and BPA were associated with delayed gonadarche in those with underweight/normal weight (RR [95% CI] = 0.86 [0.77-0.95] and 0.90 [0.84-0.97], respectively). Most of these associations were trimester specific. However, the chemical mixture was not associated with any pubertal outcome in boys or girls. CONCLUSIONS Prenatal exposure to certain phthalates and synthetic phenols such as BPA may impact the pubertal development of boys, and weight status may modify this effect. BPA may also alter the pubertal development of girls.
Collapse
Affiliation(s)
- Carmen Freire
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Francesca Castiello
- Pediatric Unit, Germans Trias I Pujol University Hospital, 08916, Badalona, Spain
| | - Izaro Babarro
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EU), 20014, Donostia/San Sebastián, Spain; Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastián, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, 08036, Barcelona, Spain; CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maribel Casas
- ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Martine Vrijheid
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Blanca Sarzo
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, 75004, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Maria-Jose Lopez-Espinosa
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
10
|
Charkiewicz AE, Omeljaniuk WJ, Nikliński J. Bisphenol A-What Do We Know? A Global or Local Approach at the Public Health Risk Level. Int J Mol Sci 2024; 25:6229. [PMID: 38892416 PMCID: PMC11172700 DOI: 10.3390/ijms25116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
BPA has demonstrated enormous multisystem and multi-organ toxicity shown mainly in animal models. Meanwhile, the effects of its exposure in humans still require years of observation, research, and answers to many questions. Even minimal and short-term exposure contributes to disorders or various types of dysfunction. It is released directly or indirectly into the environment at every stage of the product life cycle, demonstrating its ease of penetration into the body. The ubiquity and general prevalence of BPA influenced the main objective of the study, which was to assess the toxicity and health effects of BPA and its derivatives based on the available literature. In addition, the guidelines of various international institutions or regions of the world in terms of its reduction in individual products were checked. Bisphenol A is the most widely known chemical and perhaps even the most studied by virtually all international or national organizations, but nonetheless, it is still controversial. In general, the level of BPA biomonitoring is still too high and poses a potential threat to public health. It is beginning to be widely argued that future toxicity studies should focus on molecular biology and the assessment of human exposure to BPA, as well as its substitutes. The effects of its exposure still require years of observation, extensive research, and answers to many questions. It is necessary to continue to deepen the knowledge and interest of many organizations, companies, and consumers around the world in order to make rational purchases as well as future choices, not only consumer ones.
Collapse
Affiliation(s)
| | - Wioleta Justyna Omeljaniuk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
11
|
Svingen T, Andersson AM, Angelova J, Axelstad M, Bakker J, Baumann L, Beronius A, Bouftas N, Chalmel F, Christiansen S, Cornil C, Damdimopoulou P, Deepika D, Dollé MET, Draskau MK, Fischer MB, Hagen CP, Hessel E, Holmer ML, Hughes S, Jensen G, Johansson HKL, Juul A, Kumar V, Kumar S, Lardenois A, Main KM, Mazaud-Guittot S, Moe SJ, Mola G, Parent AS, Pineda R, Rolland A, Rosenmai AK, Song Y, Suglia A, Tena-Sempere M, Wehrli L, Zilliacus J, van Duursen M. Enhanced identification of endocrine disruptors through integration of science-based regulatory practices and innovative methodologies: The MERLON Project. OPEN RESEARCH EUROPE 2024; 4:68. [PMID: 38883262 PMCID: PMC11179054 DOI: 10.12688/openreseurope.17319.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
The prevalence of hormone-related health issues caused by exposure to endocrine disrupting chemicals (EDCs) is a significant, and increasing, societal challenge. Declining fertility rates together with rising incidence rates of reproductive disorders and other endocrine-related diseases underscores the urgency in taking more action. Addressing the growing threat of EDCs in our environment demands robust and reliable test methods to assess a broad variety of endpoints relevant for endocrine disruption. EDCs also require effective regulatory frameworks, especially as the current move towards greater reliance on non-animal methods in chemical testing puts to test the current paradigm for EDC identification, which requires that an adverse effect is observed in an intact organism. Although great advances have been made in the field of predictive toxicology, disruption to the endocrine system and subsequent adverse health effects may prove particularly difficult to predict without traditional animal models. The MERLON project seeks to expedite progress by integrating multispecies molecular research, new approach methodologies (NAMs), human clinical epidemiology, and systems biology to furnish mechanistic insights and explore ways forward for NAM-based identification of EDCs. The focus is on sexual development and function, from foetal sex differentiation of the reproductive system through mini-puberty and puberty to sexual maturity. The project aims are geared towards closing existing knowledge gaps in understanding the effects of EDCs on human health to ultimately support effective regulation of EDCs in the European Union and beyond.
Collapse
Affiliation(s)
- Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Region Hovedstaden, 2800, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Region Hovedstaden, 2800, Denmark
| | - Julie Bakker
- Neuroendocrinology Laboratory, GIGA-Neurosciences, University of Liege, Liege, Belgium
| | - Lisa Baumann
- Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, North Holland, 2800, The Netherlands
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Nora Bouftas
- Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, North Holland, 2800, The Netherlands
| | - Frederic Chalmel
- Univ Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail), Rennes, F-25000, France
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Region Hovedstaden, 2800, Denmark
| | - Charlotte Cornil
- Neuroendocrinology Laboratory, GIGA-Neurosciences, University of Liege, Liege, Belgium
| | - Pauliina Damdimopoulou
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, 14186, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska Institutet, Huddinge, 14186, Sweden
| | - Deepika Deepika
- IISPV, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, 43007, Spain
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Monica Kam Draskau
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Region Hovedstaden, 2800, Denmark
| | - Margit Bistrup Fischer
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Casper P Hagen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Ellen Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marie Louise Holmer
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Region Hovedstaden, 2800, Denmark
| | - Samantha Hughes
- Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, North Holland, 2800, The Netherlands
| | - Genon Jensen
- Health and Environment Alliance (HEAL), Brussels, Belgium
| | | | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Vikas Kumar
- IISPV, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, 43007, Spain
| | - Saurav Kumar
- IISPV, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, 43007, Spain
| | - Aurélie Lardenois
- Univ Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail), Rennes, F-25000, France
| | - Katharina M Main
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Severine Mazaud-Guittot
- Univ Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail), Rennes, F-25000, France
| | - S Jannicke Moe
- Norwegian Institute for Water Research (NIVA), Oslo, 0579, Norway
| | - Gylli Mola
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Laboratory, GIGA-Neurosciences, University of Liege, Liege, Belgium
| | - Rafael Pineda
- Department of Cell Biology, Physiology and Immunology / IMIBIC., University of Cordoba, Cordoba, 14012, Spain
| | - Antoine Rolland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Anna Kjerstine Rosenmai
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Region Hovedstaden, 2800, Denmark
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, 0579, Norway
| | - Antonio Suglia
- Univ Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail), Rennes, F-25000, France
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology / IMIBIC., University of Cordoba, Cordoba, 14012, Spain
| | - Lydia Wehrli
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, 14186, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska Institutet, Huddinge, 14186, Sweden
| | - Johanna Zilliacus
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Majorie van Duursen
- Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, North Holland, 2800, The Netherlands
| |
Collapse
|
12
|
Sieck NE, Bruening M, van Woerden I, Whisner C, Payne-Sturges DC. Effects of Behavioral, Clinical, and Policy Interventions in Reducing Human Exposure to Bisphenols and Phthalates: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:36001. [PMID: 38477609 PMCID: PMC10936218 DOI: 10.1289/ehp11760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is growing interest in evidence-based interventions, programs, and policies to mitigate exposures to bisphenols and phthalates and in using implementation science frameworks to evaluate hypotheses regarding the importance of specific approaches to individual or household behavior change or institutions adopting interventions. OBJECTIVES This scoping review aimed to identify, categorize, and summarize the effects of behavioral, clinical, and policy interventions focused on exposure to the most widely used and studied bisphenols [bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)] and phthalates with an implementation science lens. METHODS A comprehensive search of all individual behavior, clinical, and policy interventions to reduce exposure to bisphenols and phthalates was conducted using PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Google Scholar. We included studies published between January 2000 and November 2022. Two reviewers screened references in CADIMA, then extracted data (population characteristics, intervention design, chemicals assessed, and outcomes) for studies meeting inclusion criteria for the present review. RESULTS A total of 58 interventions met the inclusion criteria. We classified interventions as dietary (n = 27 ), clinical (n = 13 ), policy (n = 14 ), and those falling outside of these three categories as "other" (n = 4 ). Most interventions (81%, 47/58) demonstrated a decrease in exposure to bisphenols and/or phthalates, with policy level interventions having the largest magnitude of effect. DISCUSSION Studies evaluating policy interventions that targeted the reduction of phthalates and BPA in goods and packaging showed widespread, long-term impact on decreasing exposure to bisphenols and phthalates. Clinical interventions removing bisphenol and phthalate materials from medical devices and equipment showed overall reductions in exposure biomarkers. Dietary interventions tended to lower exposure with the greatest magnitude of effect in trials where fresh foods were provided to participants. The lower exposure reductions observed in pragmatic nutrition education trials and the lack of diversity (sociodemographic backgrounds) present limitations for generalizability to all populations. https://doi.org/10.1289/EHP11760.
Collapse
Affiliation(s)
- Nicole E. Sieck
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Meg Bruening
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irene van Woerden
- Department of Community and Public Health, Idaho State University, Pocatello, Idaho, USA
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
13
|
Yue M, Zhang L. Exploring the Mechanistic Interplay between Gut Microbiota and Precocious Puberty: A Narrative Review. Microorganisms 2024; 12:323. [PMID: 38399733 PMCID: PMC10892899 DOI: 10.3390/microorganisms12020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The gut microbiota has been implicated in the context of sexual maturation during puberty, with discernible differences in its composition before and after this critical developmental stage. Notably, there has been a global rise in the prevalence of precocious puberty in recent years, particularly among girls, where approximately 90% of central precocious puberty cases lack a clearly identifiable cause. While a link between precocious puberty and the gut microbiota has been observed, the precise causality and underlying mechanisms remain elusive. This narrative review aims to systematically elucidate the potential mechanisms that underlie the intricate relationship between the gut microbiota and precocious puberty. Potential avenues of exploration include investigating the impact of the gut microbiota on endocrine function, particularly in the regulation of hormones, such as gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Additionally, this review will delve into the intricate interplay between the gut microbiome, metabolism, and obesity, considering the known association between obesity and precocious puberty. This review will also explore how the microbiome's involvement in nutrient metabolism could impact precocious puberty. Finally, attention is given to the microbiota's ability to produce neurotransmitters and neuroactive compounds, potentially influencing the central nervous system components involved in regulating puberty. By exploring these mechanisms, this narrative review seeks to identify unexplored targets and emerging directions in understanding the role of the gut microbiome in relation to precocious puberty. The ultimate goal is to provide valuable insights for the development of non-invasive diagnostic methods and innovative therapeutic strategies for precocious puberty in the future, such as specific probiotic therapy.
Collapse
Affiliation(s)
- Min Yue
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Zhang
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
14
|
Luo L, Chen Y, Ma Q, Huang Y, Xu L, Shu K, Zhang Z, Liu Z. Ginger volatile oil inhibits the growth of MDA-MB-231 in the bisphenol A environment by altering gut microbial diversity. Heliyon 2024; 10:e24388. [PMID: 38298688 PMCID: PMC10828689 DOI: 10.1016/j.heliyon.2024.e24388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
To examine the impact of ginger volatile oil (GVO) on the growth of MDA-MB-231 breast cancer cells in the presence of bisphenol A (BPA) by modulating the diversity of gut microbiota. METHODS MDA-MB-231 breast cancer cells were injected subcutaneously into the right armpit of female BALB/c Nude (nu/nu) mice to create a triple negative breast cancer model. Thirty nude mice were randomly divided into 5 groups: control group (distilled water every day), BPA control group (distilled PEG-400+ DMSO + cyclodextrin every day), BPA + GVO (0.25 mL/kg) group, BPA + GVO (0.5 mL/kg) group, BPA + GVO (1 mL/kg) group, 6 mice in each group; The drug was given by gavage once a day for 4 weeks. At the end of the experiment, the changes of tumor mass and tumor volume were observed and compared in 5 groups of tumor-bearing mice. High-throughput sequencing (16S rRNA) was used to detect the changes of gut microflora in each group. RESULTS The volume and weight of breast cancer decreased in the low, medium and high dose groups of GVO. Among them, the difference between the high-dose group and the BPA group reached a significant level (P < 0.05). The species and abundance of gut flora decreased following BPA treatment, but increased after combined treatment of BPA with GVO. In the tumor control group, the ratio of Firmicutes(F) and Bacteroidea(B) respectively was 0.10:0.79 at the phylum level, while the ratio of BPA group further decreased (0.04:0.88). After feeding GVO, the number of Firmicutes and Bacteroidea increased, the F/B ratio increased, and the level of Lactobacillus and alistipes increased. In the BPA and GVO treatment group, the predominant gut microflora functions are cell membrane biogenesis, carbohydrate transport and metabolism. This is followed by amino acid transport and metabolism, and transcription function. After GVO administration, the Gram-positive bacteria (G+) ratio had an increasing trend and the Gram-negative bacteria (G-)ratio had a decreasing trend. CONCLUSION The species and abundance of gut flora decreased following BPA treatment, but increased after combined treatment of BPA with GVO.
Collapse
Affiliation(s)
- Liming Luo
- Jiangxi University of Chinese medicine, Nanchang, Jiangxi, 330004, China
| | - Yuran Chen
- Jiangxi University of Chinese medicine, Nanchang, Jiangxi, 330004, China
| | - Qiuting Ma
- Jiangxi University of Chinese medicine, Nanchang, Jiangxi, 330004, China
| | - Yun Huang
- Jiangxi University of Chinese medicine, Nanchang, Jiangxi, 330004, China
| | - Lei Xu
- Jiangxi University of Chinese medicine, Nanchang, Jiangxi, 330004, China
| | - Kun Shu
- Jiangxi University of Chinese medicine, Nanchang, Jiangxi, 330004, China
| | - Zhongfa Zhang
- The second affiliated hospital of Nanchang university, Nanchang, Jiangxi, 330006, China
| | - Zhiyong Liu
- Jiangxi University of Chinese medicine, Nanchang, Jiangxi, 330004, China
- Key Laboratory of Experimental Animal Pathology Research of Nanchang, Nanchang Jiangxi, 330004, China
| |
Collapse
|
15
|
Liu J, Gao D, Wang H, Li Y, Chen M, Ma Q, Wang X, Cui M, Chen L, Zhang Y, Guo T, Yuan W, Ma T, Jiang J, Dong Y, Zou Z, Ma J. Long-term exposure to exogenous phthalate, masculinity and femininity trait, and gender identity in children: a Chinese 3-year longitudinal cohort study. Environ Health 2023; 22:81. [PMID: 38012654 PMCID: PMC10683128 DOI: 10.1186/s12940-023-01031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Phthalate esters (PAEs) are known to have hormone-like properties, and there is a growing trend of children expressing a gender identity different from assigned sex. However, there has been limited research in the potential links between PAEs exposure and gender identity. METHODS A total of 571 children (278 boys) completed the follow-up from Oct 2017 to Oct 2020 in Childhood Blood Pressure and Environmental Factors (CBPEF) cohort in Xiamen, China. Urinary PAE metabolites were measured at three time of visits using ultraperformance liquid chromatography-tandem mass spectrometry. The Children's Sex Role Inventory scale was used to assess gender identity (masculinity, femininity, androgyny and undifferentiated), and Tanner definition was used to define puberty timing. Generalized linear models and log-binomial regression were used to assess the relationships between PAEs exposure, gender trait scores and gender identity. RESULTS Overall, the concentration of most PAEs in more than 90% of participants was above the limit of detection values. In visit 1, there were 10.1% boys with femininity and 11.3% girls with masculinity; while these figures increased to 10.8% and 12.3% during follow-up, respectively. Early puberty onset accounted for 24.8% and 25.6% among boys and girls. Long-term exposure to mono-2-ethylhexyl phthalate (MEHP) (β = 1.20, 95%CI = 0.13, 2.28), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) (β = 1.25, 95%CI = 0.22, 2.28) and mono-2-ethyl-5-oxohexyl phthalate (MEOHP) (β = 1.40, 95%CI = 0.24, 2.56) was associated with the increased differences of femininity trait scores in boys who enter puberty earlier, prolonged exposure to di(2-ethylhexyl) phthalate (DEHP) might also have such a positive impact (β = 1.38, 95%CI = 0.36, 2.41). For gender identity, persistent exposure to low molecular weight phthalates (LMWP) was negatively associated with undifferentiated type among boys entering puberty earlier (RR = 0.18, 95%CI = 0.05, 0.75, P < 0.05), and most of the PAE metabolites exposures showed risk ratios > 1 for their femininity. CONCLUSION Long-term exposure to PAEs increase the femininity trait scores in boys with early onset of puberty. Although the mechanisms remain to be determined, environmental pollution might have subtle, yet measurable effects on childhood gender identity. Reducing these chemicals exposure has important public implications on gender development.
Collapse
Affiliation(s)
- Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Di Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Huan Wang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Yanhui Li
- School of Nursing, Peking University, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Xinxin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Mengjie Cui
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China.
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Xueyuan Road 38, Beijing, China
| |
Collapse
|
16
|
Bigambo FM, Wang D, Sun J, Ding X, Li X, Gao B, Wu D, Gu W, Zhang M, Wang X. Association between Urinary BPA Substitutes and Precocious Puberty among Girls: A Single-Exposure and Mixed Exposure Approach from a Chinese Case-Control Study. TOXICS 2023; 11:905. [PMID: 37999557 PMCID: PMC10675366 DOI: 10.3390/toxics11110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
There is an argument that BPA substitutes may have the same or more deleterious health effects as BPA due to their structural similarity. This study explored the association between urinary BPA substitutes and precocious puberty among girls by including 120 girls with precocious puberty (cases) aged 2-10 years enrolled at Nanjing Children's Hospital Department of Endocrinology in China between April 2021 to September 2021 and 145 healthy girls (controls) recruited from a primary school. Logistic regression was used to evaluate the effect of single exposures, and Bayesian kernel machine regression (BKMR) and quantile-based g-computation were used for the mixed effect. In the multivariate logistic regression, BPS (bisphenol S), TBBPA (tetrabromobisphenol A), and BPFL (bisphenol-FL) were significantly associated with increased risk of precocious puberty (odds ratio (OR) = 1.75, 95% confidence interval (CI): 1.13, 2.76, p = 0.014), (OR = 1.46, CI: 1.06, 2.05; p = 0.023), and (OR = 1.47, CI: 1.01, 2.18; p = 0.047), respectively. The BMKR and quantile-based g-computation models revealed consistent associations for single exposures and there was insufficient evidence for the associations of the mixed exposure of bisphenols with precocious puberty. In conclusion, BPA substitutes such as BPS, TBBPA, and BPFL may be associated with an increased risk of precocious puberty in girls.
Collapse
Affiliation(s)
- Francis Manyori Bigambo
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China; (F.M.B.); (D.W.); (W.G.)
| | - Dandan Wang
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China; (F.M.B.); (D.W.); (W.G.)
| | - Jian Sun
- Department of Emergency, Pediatric Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China;
| | - Xinliang Ding
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.D.); (X.L.); (B.G.); (D.W.)
- Wuxi Center for Disease Control and Prevention, The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University, Wuxi 214023, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Xiuzhu Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.D.); (X.L.); (B.G.); (D.W.)
- Wuxi Center for Disease Control and Prevention, The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University, Wuxi 214023, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Beibei Gao
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.D.); (X.L.); (B.G.); (D.W.)
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Di Wu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.D.); (X.L.); (B.G.); (D.W.)
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China; (F.M.B.); (D.W.); (W.G.)
| | - Mingzhi Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.D.); (X.L.); (B.G.); (D.W.)
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xu Wang
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China; (F.M.B.); (D.W.); (W.G.)
| |
Collapse
|
17
|
Taylor KW, Howdeshell KL, Bommarito PA, Sibrizzi CA, Blain RB, Magnuson K, Lemeris C, Tracy W, Baird DD, Jackson CL, Gaston SA, Rider CV, Walker VR, Rooney AA. Systematic evidence mapping informs a class-based approach to assessing personal care products and pubertal timing. ENVIRONMENT INTERNATIONAL 2023; 181:108307. [PMID: 37948866 DOI: 10.1016/j.envint.2023.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Personal care products (PCPs) contain many different compounds and are a source of exposure to endocrine disrupting chemicals (EDCs), including phthalates and phenols. Early-life exposure to EDCs commonly found in PCPs has been linked to earlier onset of puberty. OBJECTIVE To characterize the human and animal evidence on the association between puberty-related outcomes and exposure to PCPs and their chemical constituents and, if there is sufficient evidence, identify groups of chemicals and outcomes to support a systematic review for a class-based hazard or risk assessment. METHODS We followed the OHAT systematic review framework to characterize the human and animal evidence on the association between puberty-related health outcomes and exposure to PCPs and their chemical constituents. RESULTS Ninety-eight human and 299 animal studies that evaluated a total of 96 different chemicals were identified and mapped by key concepts including chemical class, data stream, and puberty-related health outcome. Among these studies, phthalates and phenols were the most well-studied chemical classes. Most of the phthalate and phenol studies examined secondary sex characteristics and changes in estradiol and testosterone levels. Studies evaluating PCP use and other chemical classes (e.g., parabens) had less data. CONCLUSIONS This systematic evidence map identified and mapped the published research evaluating the association between exposure to PCPs and their chemical constituents and puberty-related health outcomes. The resulting interactive visualization allows researchers to make evidence-based decisions on the available research by enabling them to search, sort, and filter the literature base of puberty-related studies by key concepts. This map can be used by researchers and regulators to prioritize and target future research and funding to reduce uncertainties and address data gaps. It also provides information to inform a class-based hazard or risk assessment on the association between phthalate and phenol exposures and puberty-related health outcomes.
Collapse
Affiliation(s)
- Kyla W Taylor
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | - Kembra L Howdeshell
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Paige A Bommarito
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | - Donna D Baird
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Chandra L Jackson
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; National Institute on Minority Health and Health Disparities, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Symielle A Gaston
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cynthia V Rider
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Vickie R Walker
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Andrew A Rooney
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
18
|
Lan H, Hu Z, Gan H, Wu L, Xie S, Jiang Y, Ye D, Ye X. Association between exposure to persistent organic pollutants and pubertal timing in boys and girls: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115540. [PMID: 37801753 DOI: 10.1016/j.ecoenv.2023.115540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
In recent years, the phenomenon of abnormal pubertal timing in children has become increasingly common worldwide. Persistent organic pollutants (POPs) may be one of the risk factors contributing to this phenomenon, but the relationship between them is unclear based on current evidence. The purpose of this study was to determine the association of POPs exposure with pubertal timing in girls and boys by conducting a systematic review and meta-analysis. We searched PubMed and Embase databases for studies before June 1, 2023. Meta-analysis was performed by pooling relative risk (RR) or odds ratio (OR) or prevalence ratio (PR) or hazard ratio (HR) estimates with 95 % confidence intervals (CIs). Subgroup analysis, publication bias assessment and sensitivity analysis were also carried out. A total of 21 studies were included, involving 2479 boys and 8718 girls. The results of meta-analysis showed that exposure to POPs was significantly associated with delayed pubertal timing in girls (RR: 0.85; 95 % CI: 0.79-0.91; p < 0.001). There was no statistically significant association between exposure to POPs and pubertal timing in boys (RR: 1.18; 95 % CI: 0.99-1.40; p = 0.070). Subgroup analysis showed that there may be gender differences in the effects of exposure to POPs on pubertal timing. Our results suggested that exposure to POPs could delay pubertal timing in girls. However, based on current evidence, no significant association was found between POPs exposure and pubertal timing in boys.
Collapse
Affiliation(s)
- Huili Lan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiqin Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lixiang Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shushu Xie
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Jiang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ding Ye
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
19
|
Burns JS, Bather JR, Sergeyev O, Lee MM, Korrick SA, Sokolov S, Kovalev S, Koch HM, Lebedev AT, Mínguez-Alarcón L, Hauser R, Williams PL. Longitudinal association of prepubertal urinary phthalate metabolite concentrations with pubertal progression among a cohort of boys. ENVIRONMENTAL RESEARCH 2023; 233:116330. [PMID: 37348639 PMCID: PMC10575624 DOI: 10.1016/j.envres.2023.116330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/19/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Epidemiological studies have reported associations of anti-androgenic phthalate metabolite concentrations with later onset of male puberty, but few have assessed associations with progression. OBJECTIVES We examined the association of prepubertal urinary phthalate metabolite concentrations with trajectories of pubertal progression among Russian boys. METHODS At enrollment (ages 8-9 years), medical history, dietary, and demographic information were collected. At entry and annually to age 19 years, physical examinations including testicular volume (TV) were performed and spot urines collected. Each boy's prepubertal urine samples were pooled, and 15 phthalate metabolites were quantified by isotope dilution LC-MS/MS at Moscow State University. Metabolites of anti-androgenic parent phthalates were included: butylbenzyl (BBzP), di-n-butyl (DnBP), diisobutyl (DiBP), di(2-ethylhexyl) (DEHP) and diisononyl (DiNP) phthalates. We calculated the molar sums of DEHP, DiNP, and all AAP metabolites. We used group-based trajectory models (GBTMs) to identify subgroups of boys who followed similar pubertal trajectories from ages 8-19 years based on annual TV. We used multinomial and ordinal regression models to evaluate whether prepubertal log-transformed phthalate metabolite concentrations were associated with slower or faster pubertal progression trajectories, adjusting for covariates. RESULTS 304 boys contributed a total of 752 prepubertal urine samples (median 2, range: 1-6) for creation of individual pools. The median length of follow-up was 10.0 years; 79% of boys were followed beyond age 15. We identified three pubertal progression groups: slower (34%), moderate (43%), and faster (23%) progression. A standard deviation increase in urinary log-monobenzyl phthalate (MBzP) concentrations was associated with higher adjusted odds of being in the slow versus faster pubertal progression trajectory (aOR 1.47, 95% CI 1.06-2.04). None of the other phthalate metabolites were associated with pubertal progression. CONCLUSIONS On average, boys with higher concentrations of prepubertal urinary MBzP had a slower tempo of pubertal progression, perhaps attributable to the disruption of androgen-dependent biological pathways.
Collapse
Affiliation(s)
- J S Burns
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, 14th Floor, Boston, MA, 02115, USA.
| | - J R Bather
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 2, 4th Floor, Boston, MA, 02115, USA
| | - O Sergeyev
- Group of Epigenetic Epidemiology, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Room 322, 119992, Moscow, Russia
| | - M M Lee
- Nemours Children's Health/Sidney Kimmel Medical School, Jefferson University, 1600 Rockland Road, Wilmington, DE, USA
| | - S A Korrick
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, 14th Floor, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 401 Park Drive, 3rd Floor West, Boston, MA, 02215, USA
| | - S Sokolov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russia
| | - S Kovalev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russia
| | - H M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - A T Lebedev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russia
| | - L Mínguez-Alarcón
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, 14th Floor, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 401 Park Drive, 3rd Floor West, Boston, MA, 02215, USA
| | - R Hauser
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, 14th Floor, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health Kresge Building, 9th Floor, Boston, MA, 02115, USA
| | - P L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 2, 4th Floor, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health Kresge Building, 9th Floor, Boston, MA, 02115, USA
| |
Collapse
|
20
|
Casey JA, Daouda M, Babadi RS, Do V, Flores NM, Berzansky I, González DJ, Van Horne YO, James-Todd T. Methods in Public Health Environmental Justice Research: a Scoping Review from 2018 to 2021. Curr Environ Health Rep 2023; 10:312-336. [PMID: 37581863 PMCID: PMC10504232 DOI: 10.1007/s40572-023-00406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE OF REVIEW The volume of public health environmental justice (EJ) research produced by academic institutions increased through 2022. However, the methods used for evaluating EJ in exposure science and epidemiologic studies have not been catalogued. Here, we completed a scoping review of EJ studies published in 19 environmental science and epidemiologic journals from 2018 to 2021 to summarize research types, frameworks, and methods. RECENT FINDINGS We identified 402 articles that included populations with health disparities as a part of EJ research question and met other inclusion criteria. Most studies (60%) evaluated EJ questions related to socioeconomic status (SES) or race/ethnicity. EJ studies took place in 69 countries, led by the US (n = 246 [61%]). Only 50% of studies explicitly described a theoretical EJ framework in the background, methods, or discussion and just 10% explicitly stated a framework in all three sections. Among exposure studies, the most common area-level exposure was air pollution (40%), whereas chemicals predominated personal exposure studies (35%). Overall, the most common method used for exposure-only EJ analyses was main effect regression modeling (50%); for epidemiologic studies the most common method was effect modification (58%), where an analysis evaluated a health disparity variable as an effect modifier. Based on the results of this scoping review, current methods in public health EJ studies could be bolstered by integrating expertise from other fields (e.g., sociology), conducting community-based participatory research and intervention studies, and using more rigorous, theory-based, and solution-oriented statistical research methods.
Collapse
Affiliation(s)
- Joan A. Casey
- University of Washington School of Public Health, Seattle, WA USA
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Misbath Daouda
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Ryan S. Babadi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Vivian Do
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Nina M. Flores
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Isa Berzansky
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - David J.X. González
- Department of Environmental Science, Policy & Management and School of Public Health, University of California, Berkeley, Berkeley, CA 94720 USA
| | | | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
21
|
Cox B, Wauters N, Rodríguez-Carrillo A, Portengen L, Gerofke A, Kolossa-Gehring M, Lignell S, Lindroos AK, Fabelova L, Murinova LP, Desalegn A, Iszatt N, Schillemans T, Åkesson A, Colles A, Den Hond E, Koppen G, Van Larebeke N, Schoeters G, Govarts E, Remy S. PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies. TOXICS 2023; 11:711. [PMID: 37624216 PMCID: PMC10459167 DOI: 10.3390/toxics11080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). Evidence for the association between PFAS and phthalate exposure and menarche onset, however, is inconsistent. We studied the association between PFAS and phthalate/DINCH exposure and age at menarche using data of 514 teenagers (12 to 18 years) from four aligned studies of the Human Biomonitoring for Europe initiative (HBM4EU): Riksmaten Adolescents 2016-2017 (Sweden), PCB cohort (follow-up; Slovakia), GerES V-sub (Germany), and FLEHS IV (Belgium). PFAS concentrations were measured in blood, and phthalate/DINCH concentrations in urine. We assessed the role of each individual pollutant within the context of the others, by using different multi-pollutant approaches, adjusting for age, age- and sex-standardized body mass index z-score and household educational level. Exposure to di(2-ethylhexyl) phthalate (DEHP), especially mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), was associated with an earlier age at menarche, with estimates per interquartile fold change in 5OH-MEHP ranging from -0.34 to -0.12 years in the different models. Findings from this study indicated associations between age at menarche and some specific EDCs at concentrations detected in the general European population, but due to the study design (menarche onset preceded the chemical measurements), caution is needed in the interpretation of causality.
Collapse
Affiliation(s)
- Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
- Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610 Wilrijk, Belgium
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Antje Gerofke
- German Environment Agency, Umweltbundesamt (UBA), 14195 Berlin, Germany; (A.G.); (M.K.-G.)
| | - Marike Kolossa-Gehring
- German Environment Agency, Umweltbundesamt (UBA), 14195 Berlin, Germany; (A.G.); (M.K.-G.)
| | - Sanna Lignell
- Swedish Food Agency, 751 26 Uppsala, Sweden; (S.L.); (A.K.L.)
| | | | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 01 Bratislava, Slovakia; (L.F.); (L.P.M.)
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 01 Bratislava, Slovakia; (L.F.); (L.P.M.)
| | - Anteneh Desalegn
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.D.); (N.I.)
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.D.); (N.I.)
| | - Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (T.S.); (A.Å.)
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (T.S.); (A.Å.)
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Elly Den Hond
- Provincial Institute of Hygiene, Provincial Research Centre for Environment and Health, 2023 Antwerp, Belgium;
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Nicolas Van Larebeke
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| |
Collapse
|
22
|
Khodasevich D, Holland N, Hubbard A, Harley K, Deardorff J, Eskenazi B, Cardenas A. Associations between prenatal phthalate exposure and childhood epigenetic age acceleration. ENVIRONMENTAL RESEARCH 2023; 231:116067. [PMID: 37149020 PMCID: PMC10330458 DOI: 10.1016/j.envres.2023.116067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Phthalates, a group of pervasive endocrine-disrupting chemicals found in plastics and personal care products, have been associated with a wide range of developmental and health outcomes. However, their impact on biomarkers of aging has not been characterized. We tested associations between prenatal exposure to 11 phthalate metabolites on epigenetic aging in children at birth, 7, 9, and 14 years of age. We hypothesized that prenatal phthalate exposure will be associated with epigenetic age acceleration measures at birth and in early childhood, with patterns dependent on sex and timing of DNAm measurement. METHODS Among 385 mother-child pairs from the CHAMACOS cohort, we measured DNAm at birth, 7, 9, and 14 years of age, and utilized adjusted linear regression to assess the association between prenatal phthalate exposure and Bohlin's Gestational Age Acceleration (GAA) at birth and Intrinsic Epigenetic Age Acceleration (IEAA) throughout childhood. Additionally, quantile g-computation was utilized to assess the effect of the phthalate mixture on GAA at birth and IEAA throughout childhood. RESULTS We found a negative association between prenatal di (2-ethylhexyl) phthalate (DEHP) exposure and IEAA among males at age 7 (-0.62 years; 95% CI:-1.06 to -0.18), and a marginal negative association between the whole phthalate mixture and GAA among males at birth (-1.54 days, 95% CI: -2.79 to -0.28), while most other associations were nonsignificant. CONCLUSIONS Our results suggest that prenatal exposure to certain phthalates is associated with epigenetic aging in children. Additionally, our findings suggest that the influence of prenatal exposures on epigenetic age may only manifest during specific periods of child development, and studies relying on DNAm measurements solely from cord blood or single time points may overlook potential relationships.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Alan Hubbard
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Kim Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Molina-López AM, Bujalance-Reyes F, Ayala-Soldado N, Mora-Medina R, Lora-Benítez A, Moyano-Salvago R. An Overview of the Health Effects of Bisphenol A from a One Health Perspective. Animals (Basel) 2023; 13:2439. [PMID: 37570248 PMCID: PMC10417040 DOI: 10.3390/ani13152439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a chemical compound, considered as an "emerging pollutant", that appears ubiquitously, contaminating the environment and food. It is an endocrine disruptor, found in a multitude of consumer products, as it is a constituent of polycarbonate used in the manufacture of plastics and epoxy resins. Many studies have evaluated the effects of BPA, using a wide range of doses and animal models. In this work, we carried out a review of relevant research related to the effects of BPA on health, through studies performed at different doses, in different animal models, and in human monitoring studies. Numerous effects of BPA on health have been described; in different animal species, it has been reported that it interferes with fertility in both females and males and causes alterations in their offspring, as well as being associated with an increase in hormone-dependent pathologies. Similarly, exposure to BPA has been related to other diseases of great relevance in public health such as obesity, hypertension, diabetes, or neurodevelopmental disorders. Its ubiquity and nonmonotonic behavior, triggering effects at exposure levels considered "safe", make it especially relevant when both animal and human populations are constantly and inadvertently exposed to this compound. Its effects at low exposure levels make it essential to establish safe exposure levels, and research into the effects of BPA must continue and be focused from a "One Health" perspective to take into account all the factors that could intervene in the development of a disease in any exposed organism.
Collapse
Affiliation(s)
- Ana M. Molina-López
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain;
| | - Francisca Bujalance-Reyes
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Nahúm Ayala-Soldado
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Rafael Mora-Medina
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Antonio Lora-Benítez
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Rosario Moyano-Salvago
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain;
| |
Collapse
|
24
|
Anastasiadis X, Matsas A, Panoskaltsis T, Bakas P, Papadimitriou DT, Christopoulos P. Impact of Chemicals on the Age of Menarche: A Literature Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1234. [PMID: 37508731 PMCID: PMC10378553 DOI: 10.3390/children10071234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
A growing body of evidence suggests that chemicals interfere with the age of onset of menarche. We conducted a review in order to demonstrate the relationship between several categories of chemicals and menarche. We searched for English language papers using the Medline/PubMed database until April 2023. The chemical factors found to affect menarche were prenatal and antenatal smoke, phthalates, phenols, organochlorines, perfluoroalkyls and polyfluoroalkyls, metals, air pollutants and polybrominated diphenyl ethers. Low or high exposure to each chemical compound could affect the age of menarche, leading to early or delayed menarche. Furthermore, the results show that intrauterine exposure may have a different impact from antenatal exposure. There is evidence that endocrine-disrupting chemicals affect the age of menarche, but more research needs to be conducted.
Collapse
Affiliation(s)
- Xristos Anastasiadis
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Alkis Matsas
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Theodoros Panoskaltsis
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Panagiotis Bakas
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitrios T Papadimitriou
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
25
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
26
|
Liu J, Gao D, Li Y, Song X, Chen M, Ma Q, Wang X, Cui M, Guo T, Chen L, Zhang Y, Yuan W, Ma T, Jiang J, Dong Y, Zou Z, Ma J. Persistent high exposure to exogenous phthalates and endogenous sex hormones associated with early pubertal onset among children: A 3.5-year longitudinal cohort study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115199. [PMID: 37390727 DOI: 10.1016/j.ecoenv.2023.115199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Early onset of puberty could have significant impacts on childhood health, but the extent to which it was affected by phthalate esters (PAEs) and sex hormone disruption was not understood. The aim of this study is to investigate the associations between exposure to PAEs and sex hormone disruption and early onset of puberty in children. METHODS A longitudinal cohort study was conducted in China from May 2017 to Oct 2020, involving 740 children during consecutive visits. The onset of puberty was evaluated using Tanner definition, and early puberty was defined as an onset age less than the first 25 %, with cut-offs of 10.33 and 8.97 years for boys and girls, respectively. Serum testosterone (TT), estradiol (E2) and urinary PAE metabolites were measured during three visits. Generalized linear models were used to explore the associations between PAE and sex hormones with the age of puberty onset, while log-binomial regressions were applied to assess the associations of persistent exposure to PAEs and sex hormones with early pubertal onset. RESULTS Approximately 86.0 % of boys and 90.2 % of girls completed puberty onset from pre-puberty, and more than 95 % of participants had PAE concentrations higher than the limit of detection. Boys showed higher exposure to PAE pollutants and higher TT levels. Persistent exposure to PAEs was positively associated with early pubertal onset in girls (ARR = 1.97, 95 %CI = 1.12, 3.46). Moreover, persistent exposure to PAEs and E2 had synergistic associations with early pubertal onset in both boys (ARR = 4.77, 95 %CI = 1.06, 21.54) and girls (ARR = 7.07, 95 %CI = 1.51, 33.10). However, PAEs and TT had antagonistic associations only in boys (ARR = 0.44, 95 %CI = 0.07, 2.58). CONCLUSION Long-term exposure to PAEs might increase the risk of early pubertal onset, and it appears to work in synergy with E2, while in antagonism with TT in boys' early pubertal onset. Reducing PAEs exposure might promote pubertal health.
Collapse
Affiliation(s)
- Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Di Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yanhui Li
- School of Nursing, Peking University, Beijing, China
| | - Xinli Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xinxin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Mengjie Cui
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| |
Collapse
|
27
|
Zheng X, Su H, Huang S, Su W, Zheng R, Shang Y, Su Q, Zhou L, Yao Y, Su Z. Secondary oxidized di-2-ethylhexyl phthalate metabolites may be associated with progression from isolated premature thelarche to central precocious or early puberty. Sci Rep 2023; 13:5560. [PMID: 37019965 PMCID: PMC10076281 DOI: 10.1038/s41598-023-32768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Phthalate esters (PAEs) may act as estrogen receptor agonists, and their relationship with precocious puberty is a global health concern. However, their role in isolated premature thelarche (IPT) progression remains unclear. We conducted a cohort study investigating the relationship between IPT progression and urinary PAE metabolites. Girls with IPT aged 6-8 years were regularly followed up every three months for one year. Clinical data and urine PAE metabolite levels were collected. Participants who progressed to central precocious puberty (CPP) or early puberty (EP) had significantly higher ovarian volume, breast Tanner stage, and levels of the creatinine-adjusted urinary secondary oxidized di-2-ethylhexyl phthalate (DEHP) metabolites (Σ4DEHP). Breast Tanner stage (odds ratio [OR] = 7.041, p = 0.010), ovarian volume (OR = 3.603, p = 0.019), and Σ4DEHP (OR = 1.020, p = 0.005) were independent risk factors for IPT progression. For each 10 µg/g/Cr increase in the urine level of Σ4DEHP, the risk of progression from IPT to CPP/EP within one year increased by 20%. This study demonstrated that the breast Tanner stage, ovarian volume, and Σ4DEHP in urine were independent risk factors for IPT progression, and Σ4DEHP may be associated with the progression of IPT to CPP or EP.
Collapse
Affiliation(s)
- Xiuxin Zheng
- Department of Endocrinology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
- Department of Endocrinology, Fujian Children's Hospital, Fuzhou, Fujian, China
| | - Huiping Su
- Department of Endocrinology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Shurong Huang
- Department of Endocrinology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei Su
- Department of Endocrinology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Rongfei Zheng
- Department of Endocrinology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yue Shang
- Department of Endocrinology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiru Su
- Department of Clinical Research, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Li Zhou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yao Yao
- Central Laboratory, Longgang District Maternal and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Zhe Su
- Department of Endocrinology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
28
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
29
|
Etzel TM, Kuiper JR, Wang X, Mueller NT, Calafat AM, Cecil KM, Chen A, Lanphear BP, Yolton K, Kalkwarf HJ, Braun JM, Buckley JP. Associations of early life phthalate exposures with adolescent lipid levels and insulin resistance: The HOME Study. Int J Hyg Environ Health 2023; 248:114102. [PMID: 36527833 PMCID: PMC9898157 DOI: 10.1016/j.ijheh.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Early-life phthalate exposures may disrupt metabolic processes; however few prospective studies have assessed whether these associations extend to cardiometabolic outcomes during adolescence. METHODS Among 183 mother-adolescent pairs in a prospective cohort study that enrolled pregnant women in Cincinnati, OH (2003-2006), we quantified nine phthalate metabolites in spot urine samples collected twice from mothers during pregnancy and up to seven times from children. At age 12 years, we assessed triglycerides, high-density (HDL) and low-density (LDL) lipoprotein cholesterol, insulin, and glucose from fasting serum samples and calculated homeostatic model assessment of insulin resistance (HOMA-IR). Using multiple informant models, we estimated covariate-adjusted associations between urinary phthalate concentrations at each time period and cardiometabolic biomarkers at age 12 years, including modification by child sex. RESULTS Although most associations were weak or null, monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), and monobenzyl phthalate (MBzP) concentrations were generally associated with lower LDL at age 12 years. A 10-fold increase in 4- and 12-year MEP was associated with -15.3 mg/dL (95% CI: 27.5, -3.13 mg/dL) and -11.8 mg/dL (-22.0, -1.51 mg/dL) lower LDL, respectively. Discrepant associations were observed in females versus males: a 10-fold increase in 3-year MEP concentrations was associated with 12.0 mg/dL (95% CI: 7.11, 31.1 mg/dL) higher LDL levels in males and -30.4 mg/dL (95% CI: 50.9, -9.8 mg/dL) lower LDL levels in females. Some urinary phthalate concentrations were cross-sectionally associated with HOMA-IR. CONCLUSIONS Early-life phthalate biomarker concentrations may be inversely associated with LDL during early adolescence in an exposure-period and sex-dependent manner.
Collapse
Affiliation(s)
- Taylor M Etzel
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jordan R Kuiper
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Xiaobin Wang
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Noel T Mueller
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Kim M Cecil
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Aimin Chen
- University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Kimberly Yolton
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Heidi J Kalkwarf
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | - Jessie P Buckley
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
30
|
Kataria N, Bhushan D, Gupta R, Rajendran S, Teo MYM, Khoo KS. Current progress in treatment technologies for plastic waste (bisphenol A) in aquatic environment: Occurrence, toxicity and remediation mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120319. [PMID: 36183872 DOI: 10.1016/j.envpol.2022.120319] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol-A (BPA) is a type of endocrine disrupting compound (EDC) that is being widely used in the production of polycarbonate and epoxy resins. In the last few years, human exposure to BPA has been extensively high due to the continuous increment in the Annual Growth Rate (AGR) of the BPA global market. The presence and transportation of BPA in the environment could cause serious damage to aquatic life and human health. This paper reviewed the literature on the exposure and toxicity mechanisms of BPA and advanced analytical techniques for the detection of BPA in the environment and human beings. The study indicated that BPA can cause damaging effects on numerous tissues and organs, including the reproductive system, metabolic dysfunction, respiratory system, immune system and central nervous system. On the basis of reported studies on animals, it appears that the exposure of BPA can be carcinogenic and responsible for causing a variety of cancers like ovarian cancer, uterine cancer, prostate cancer, testicular cancer, and liver cancer. This review paper focused mainly on the current progress in BPA removal technologies within last ten years (2012-2022). This paper presents a comprehensive overview of individual removal technologies, including adsorption, photocatalysis/photodegradation, ozonation/advance oxidation, photo-fenton, membranes/nanofilters, and biodegradation, along with removal mechanisms. The extensive literature study shows that each technology has its own removal mechanism and their respective limitations in BPA treatment. In adsorption and membrane separation process, most of BPA has been treated by electrostatic interaction, hydrogen boning and π-π interations mechanism. Whereas in the degradation mechanism, O* and OH* species have played a major role in BPA removal. Some factors could alter the removal potential and efficiency of BPA removal. This review paper will provide a useful guide in providing directions for future investigation to address the problem of BPA-containing wastewater treatment.
Collapse
Affiliation(s)
- Navish Kataria
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Divya Bhushan
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Renuka Gupta
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Michelle Yee Mun Teo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
31
|
Kay JE, Cardona B, Rudel RA, Vandenberg LN, Soto AM, Christiansen S, Birnbaum LS, Fenton SE. Chemical Effects on Breast Development, Function, and Cancer Risk: Existing Knowledge and New Opportunities. Curr Environ Health Rep 2022; 9:535-562. [PMID: 35984634 PMCID: PMC9729163 DOI: 10.1007/s40572-022-00376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Population studies show worrisome trends towards earlier breast development, difficulty in breastfeeding, and increasing rates of breast cancer in young women. Multiple epidemiological studies have linked these outcomes with chemical exposures, and experimental studies have shown that many of these chemicals generate similar effects in rodents, often by disrupting hormonal regulation. These endocrine-disrupting chemicals (EDCs) can alter the progression of mammary gland (MG) development, impair the ability to nourish offspring via lactation, increase mammary tissue density, and increase the propensity to develop cancer. However, current toxicological approaches to measuring the effects of chemical exposures on the MG are often inadequate to detect these effects, impairing our ability to identify exposures harmful to the breast and limiting opportunities for prevention. This paper describes key adverse outcomes for the MG, including impaired lactation, altered pubertal development, altered morphology (such as increased mammographic density), and cancer. It also summarizes evidence from humans and rodent models for exposures associated with these effects. We also review current toxicological practices for evaluating MG effects, highlight limitations of current methods, summarize debates related to how effects are interpreted in risk assessment, and make recommendations to strengthen assessment approaches. Increasing the rigor of MG assessment would improve our ability to identify chemicals of concern, regulate those chemicals based on their effects, and prevent exposures and associated adverse health effects.
Collapse
Affiliation(s)
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
32
|
Deepika D, Sharma RP, Schuhmacher M, Sakhi AK, Thomsen C, Chatzi L, Vafeiadi M, Quentin J, Slama R, Grazuleviciene R, Andrušaitytė S, Waiblinger D, Wright J, Yang TC, Urquiza J, Vrijheid M, Casas M, Domingo JL, Kumar V. Unravelling sex-specific BPA toxicokinetics in children using a pediatric PBPK model. ENVIRONMENTAL RESEARCH 2022; 215:114074. [PMID: 35995217 DOI: 10.1016/j.envres.2022.114074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a widely known endocrine disruptor (ED) found in many children's products such as toys, feeding utensils, and teething rings. Recent epidemiology association studies have shown postnatal BPA exposure resulted in developing various diseases such as diabetes, obesity, and neurodegeneration, etc., later in their lives. However, little is known about its sex-specific metabolism and consequently internal exposure. The aim of this study was to develop a sex-specific pediatric physiologically based pharmacokinetic model (PBPK) for BPA to compare their toxicokinetic differences. First, the published adult PBPK model was re-validated, and then this model was extended by interpolation to incorporate pediatric sex specific physiological and biochemical parameters. We used both the classical body weight and ontogeny-based scaling approach to interpolate the metabolic process. Then, the pharmacokinetic attributes of the models using the two-scaling approach mentioned above were compared with adult model. Further, a sex-specific PBPK model with an ontogeny scaling approach was preferred to evaluate the pharmacokinetic differences. Moreover, this model was used to reconstruct the BPA exposure from two cohorts (Helix and PBAT Cohort) from 7 EU countries. The half-life of BPA was found to be almost the same in boys and girls at the same exposure levels. Our model estimated BPA children's exposure to be about 1500 times higher than the tolerable daily intake (TDI) recently set by European Food Safety Authority (EFSA) i.e., 0.04 ng/kg BW/day. The model demonstrated feasibility of extending the adult PBPK to sex-specific pediatric, thus investigate a gender-specific health risk assessment.
Collapse
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Raju Prasad Sharma
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | | | | | - Leda Chatzi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Joane Quentin
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | - Remy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | | | - Sandra Andrušaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Dagmar Waiblinger
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Reus, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament D' Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
33
|
Devillers MM, Mhaouty-Kodja S, Guigon CJ. Deciphering the Roles & Regulation of Estradiol Signaling during Female Mini-Puberty: Insights from Mouse Models. Int J Mol Sci 2022; 23:ijms232213695. [PMID: 36430167 PMCID: PMC9693133 DOI: 10.3390/ijms232213695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Mini-puberty of infancy is a short developmental phase occurring in humans and other mammals after birth. In females, it corresponds to transient and robust activation of the hypothalamo-pituitary-ovarian (HPO) axis revealed by high levels of gonadotropin hormones, follicular growth, and increased estradiol production by the ovary. The roles of estradiol signaling during this intriguing developmental phase are not yet well known, but accumulating data support the idea that it aids in the implementation of reproductive function. This review aims to provide in-depth information on HPO activity during this particular developmental phase in several mammal species, including humans, and to propose emerging hypotheses on the putative effect of estradiol signaling on the development and function of organs involved in female reproduction.
Collapse
Affiliation(s)
- Marie M. Devillers
- Sorbonne Paris Cité, Université de Paris Cité, CNRS, Inserm, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l’Axe Gonadotrope U1133, CEDEX 13, 75205 Paris, France
| | - Sakina Mhaouty-Kodja
- Neuroscience Paris Seine—Institut de Biologie Paris Seine, Sorbonne Université, CNRS UMR 8246, INSERM U1130, 75005 Paris, France
| | - Céline J. Guigon
- Sorbonne Paris Cité, Université de Paris Cité, CNRS, Inserm, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l’Axe Gonadotrope U1133, CEDEX 13, 75205 Paris, France
- Correspondence:
| |
Collapse
|
34
|
Freire C, Castiello F, Lopez-Espinosa MJ, Beneito A, Lertxundi A, Jimeno-Romero A, Vrijheid M, Casas M. Association of prenatal phthalate exposure with pubertal development in Spanish boys and girls. ENVIRONMENTAL RESEARCH 2022; 213:113606. [PMID: 35716812 DOI: 10.1016/j.envres.2022.113606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phthalates are widespread, anti-androgenic chemicals known to alter early development, with possible impact on puberty timing. AIM To investigate the association of prenatal phthalate exposure with pubertal development in boys and girls. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and non-phthalate plasticizer DINCH® were quantified in two urine samples collected during pregnancy from mothers participating in the INMA Spanish cohort study. Pubertal assessment of their children at age 7-10 years (409 boys, 379 girls) was conducted using the parent-reported Pubertal Development Scale. Modified Poisson and Weighted Quantile Sum (WQS) regression was employed to examine associations between prenatal phthalates and risk of puberty onset, adrenarche, and gonadarche. Effect modification by child weight status was explored by stratified analysis. RESULTS Prenatal exposure to DEHP was associated with higher risk of puberty onset (relative risk [RR] = 1.32, 95% CI = 1.09-1.59 per each log-unit increase in concentrations) and gonadarche (RR = 1.23, 95% CI = 1.00-1.50) in boys and higher risk of adrenarche (RR = 1.25, 95% CI = 1.03-1.51) in girls at age 7-10 years. In boys, prenatal exposure to DEP, DnBP, and DEHP was also associated with higher risk of adrenarche or gonadarche (RRs = 1.49-1.80) in those with normal weight, and BBzP and DINCH® exposure with lower risk of adrenarche (RR = 0.49, 95% CI = 0.27-0.89 and RR = 0.47, 95% CI = 0.24-0.90, respectively) in those with overweight/obesity. In girls, DiBP, DnBP, and DINCH® were associated with slightly higher risk of gonadarche (RRs = 1.14-1.19) in those with overweight/obesity. In the WQS model, the phthalate mixture was not associated with puberty in boys or girls. CONCLUSION Prenatal exposure to certain phthalates was associated with pubertal development at age 7-10 years, especially earlier puberty in boys with normal weight and girls with overweight/obesity. However, there was no evidence of effect of the phthalate mixture on advancing or delaying puberty in boys or girls.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Francesca Castiello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Pediatrics Unit, San Cecilio University Hospital, 18016, Granada, Spain.
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain.
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain.
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Alba Jimeno-Romero
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| |
Collapse
|
35
|
Blaauwendraad SM, Jaddoe VW, Santos S, Kannan K, Dohle GR, Trasande L, Gaillard R. Associations of maternal urinary bisphenol and phthalate concentrations with offspring reproductive development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119745. [PMID: 35820574 DOI: 10.1016/j.envpol.2022.119745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Fetal exposure to bisphenols and phthalates may influence development of the reproductive system. In a population-based, prospective cohort study of 1059 mother-child pairs, we examined the associations of maternal gestational urinary bisphenols and phthalates concentrations with offspring reproductive development from infancy until 13 years. We measured urinary bisphenol and phthalate concentrations in each trimester. We obtained information on cryptorchidism or hypospadias after birth from medical records. At 9.7 years, we measured testicular and ovarian volume by MRI. At 13.5 years, we measured child Tanner stages and menstruation through questionnaire. We performed linear or logistic regression models for boys and girls to assess the associations of maternal urinary average and trimester-specific bisphenols and phthalates with child reproductive outcomes. Next, to further explore potential synergistic or additive effects of exposures together, we performed mixed exposure models using a quantile g computation approach. Models were adjusted for maternal age, ethnicity, body-mass index, education, parity, energy intake, smoking and alcohol use, and child's gestational age at birth, birthweight and body-mass index. In boys, no associations of maternal gestational phthalate or bisphenol with offspring cryptorchidism and hypospadias were found. Higher maternal high-molecular-weight phthalate and total bisphenol, but not phthalic acid or low-molecular-weight phthalate, were associated with larger child testicular volume at 10 years. Higher maternal phthalic acid and total bisphenol were associated with earlier genital and pubic hair development at 13 years, respectively (p-values<0.05). In girls, we found no associations of maternal urinary bisphenol and phthalate with ovarian volume or menstrual age. Only higher maternal urinary high-molecular-weight phthalate was associated with earlier pubic hair development at 13 years (p-values <0.05). Higher mixture exposure was associated with earlier pubic hair development in both sexes. In conclusion, higher maternal gestational urinary bisphenol and phthalate concentrations were associated with alterations in offspring reproductive development, mainly in boys.
Collapse
Affiliation(s)
- Sophia M Blaauwendraad
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Vincent Wv Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Kurunthachalam Kannan
- Department of Paediatrics, New York University School of Medicine, New York City, NY, 10016, USA; Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA
| | - Gert R Dohle
- Department of Urology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Paediatrics, New York University School of Medicine, New York City, NY, 10016, USA; Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA; Department of Population Health, New York University School of Medicine, New York City, NY, USA; New York University Wagner School of Public Service, New York City, NY, 10016, USA; New York University College of Global Public Health, New York City, NY, 10016, USA
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
36
|
Burns JS, Sergeyev O, Lee MM, Williams PL, Mínguez-Alarcón L, Plaku-Alakbarova B, Sokolov S, Kovalev S, Koch HM, Lebedev AT, Hauser R, Korrick SA. Associations of prepubertal urinary phthalate metabolite concentrations with pubertal onset among a longitudinal cohort of boys. ENVIRONMENTAL RESEARCH 2022; 212:113218. [PMID: 35390299 PMCID: PMC9310051 DOI: 10.1016/j.envres.2022.113218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Although phthalate exposures have been associated with adverse effects on male reproductive health, few studies have explored longitudinal associations with male pubertal development. OBJECTIVES We examined the association of prepubertal urinary concentrations of phthalate metabolites with age at pubertal onset in a prospective cohort of Russian boys. METHODS At enrollment at ages 8-9 years, medical history, dietary, and demographic information was collected. At entry and annually, physical examinations and pubertal staging [Genitalia (G), Pubarche (P), and testicular volume (TV, in ml)] were conducted and spot urines were collected. Prepubertal urine samples (defined as either TV = 1, 2 and G = 1, 2 or TV = 3 and G = 1) were pooled for each boy and phthalate metabolite concentrations were quantified using isotope dilution LC-MS/MS at Moscow State University. We measured 15 metabolites including those from anti-androgenic parent phthalates (AAPs) such as di (2-ethylhexyl) (DEHP) and di-isononyl (DiNP) phthalates as well as monobenzyl (MBzP), mono-n-butyl (MnBP), and mono-isobutyl (MiBP) metabolites. We calculated the molar sums of DEHP (∑DEHP), DiNP (∑DiNP), and AAP (∑AAP) metabolites. Separate interval-censored models were used to assess associations of quartiles of prepubertal phthalate metabolites with each pubertal onset indicator, G2+, P2+ and TV > 3 mL, adjusted for covariates and urine specific gravity. RESULTS 304 boys had 752 prepubertal urine samples (median 2, range: 1-6) for pooling. In adjusted models, higher urinary AAPs were consistently associated with later pubertal onset (P2) with mean shifts ranging from 8.4 to 14.2 months for the highest versus lowest quartiles. Significantly later onset for G2 and TV > 3 mL was observed for higher versus lower quartiles of MiBP, MBzP, ∑DEHP and ∑DiNP. CONCLUSIONS On average, boys with higher concentrations of prepubertal urinary AAPs had later pubertal onset by six months to over a year. The impact of AAPs on timing of male puberty may be attributable to disruption of androgen-dependent biological pathways.
Collapse
Affiliation(s)
- Jane S Burns
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA.
| | - Oleg Sergeyev
- Group of Epigenetic Epidemiology, Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Room 322, 119992, Moscow, Russia; Chapaevsk Medical Association, Meditsinskaya Str., 3a, Chapaevsk, Samara Region, 446100, Russia
| | - Mary M Lee
- Nemours Children's Health, 1600 Rockland Road, Wilmington, 19803, USA; Department of Pediatrics, Sidney Kimmel Medical School, Jefferson University, Philadelphia, PA, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 2, Room 443, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Kresge Building, 9th Floor, Boston, MA, 02115, USA
| | - Lidia Mínguez-Alarcón
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 401 Park Drive, 3rd Floor West, Boston, MA, 02215, USA
| | - Bora Plaku-Alakbarova
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Epidemiology Division, Optuminsight Life Sciences, Boston, MA, USA
| | - Sergey Sokolov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russian Federation
| | - Sergey Kovalev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russian Federation
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Albert T Lebedev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russian Federation
| | - Russ Hauser
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Kresge Building, 9th Floor, Boston, MA, 02115, USA
| | - Susan A Korrick
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 401 Park Drive, 3rd Floor West, Boston, MA, 02215, USA
| |
Collapse
|
37
|
Etzel TM, Braun JM, Kuiper JR, Calafat AM, Cecil KM, Chen A, Lanphear BP, Yolton K, Kalkwarf HJ, Buckley JP. Gestational and childhood phthalate exposures and adolescent body composition: The HOME study. ENVIRONMENTAL RESEARCH 2022; 212:113320. [PMID: 35461845 PMCID: PMC9233110 DOI: 10.1016/j.envres.2022.113320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Early life phthalate exposures may disrupt metabolism but results from human studies are inconsistent and few have examined body composition during adolescence. We investigated associations of gestational and childhood urinary phthalate biomarker concentrations with body composition at age 12 years. METHODS We used data from 206 mother-child pairs in a prospective pregnancy and birth cohort enrolled in Cincinnati, OH from 2003 to 2006. We measured nine phthalate metabolites in spot urine samples collected twice from mothers during pregnancy and up to seven times from children at 1, 2, 3, 4, 5, 8, and 12 years. At age 12 years, we assessed fat and lean mass of the whole body and android and gynoid subregions, and visceral fat area with dual x-ray absorptiometry, and calculated android to gynoid %fat ratio and age- and sex-standardized fat and lean mass index z-scores. Using a multiple informant model, we estimated covariate-adjusted associations between urinary phthalate biomarker concentrations at each time period and outcomes at age 12 years. We assessed effect measure modification by child sex using stratified models. RESULTS Generally, urinary mono-benzyl phthalate (MBzP) concentrations were modestly associated with lower fat and lean mass. Each 10-fold increase in urinary MBzP concentrations during gestation and at ages 5 and 8 years was associated with a -0.34 (95%CI: -0.72, 0.05), -0.44 (95% CI: -0.83, -0.05), and -0.35 (95% CI: -0.71, 0.00) z-score difference in lean body mass index, respectively. Urinary monoethyl phthalate, mono-(3-carboxypropyl) phthalate, and summed di(2-ethylhexyl) phthalate metabolites were associated with greater lean mass at some exposure periods. Slightly weaker but similar patterns of association were found with other body composition measures; associations did not differ by child sex. CONCLUSION While most associations were weak, exposure to certain phthalates during gestation and childhood may be associated with adolescent body composition, particularly lean mass.
Collapse
Affiliation(s)
- Taylor M Etzel
- Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA.
| | - Joseph M Braun
- Brown University, 121 S. Main St, Providence, RI, 02903, USA.
| | - Jordan R Kuiper
- Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA.
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE Atlanta, GA, 30341, USA.
| | - Kim M Cecil
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA; University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA.
| | - Aimin Chen
- University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Bruce P Lanphear
- Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada.
| | - Kimberly Yolton
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA; University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA.
| | - Heidi J Kalkwarf
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA; University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA.
| | - Jessie P Buckley
- Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA.
| |
Collapse
|
38
|
Iribarne-Durán LM, Serrano L, Peinado FM, Peña-Caballero M, Hurtado JA, Vela-Soria F, Fernández MF, Freire C, Artacho-Cordón F, Olea N. Biomonitoring bisphenols, parabens, and benzophenones in breast milk from a human milk bank in Southern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154737. [PMID: 35337871 DOI: 10.1016/j.scitotenv.2022.154737] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Human breast milk is considered the optimal source of nutrition for infants. Milk from breast milk banks offers an alternative to infant formulas for vulnerable hospitalized neonates most likely to benefit from exclusive human milk feeding. However, breast milk can also be a source of exposure to environmental contaminants, including endocrine-disrupting chemicals (EDCs). AIM To evaluate concentrations of phenolic EDCs, including bisphenols, parabens (PBs), and benzophenones (BPs), in samples from a human milk bank in Granada, Southern Spain and to explore sociodemographic, reproductive, and lifestyle factors related to their concentrations in the milk. METHODS Concentrations of three bisphenols [bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS)], four PBs [methyl- (MeP), ethyl- (EtP), propyl- (n-PrP), and butyl-paraben (n-BuP)], and six BPs [BP-1, BP-2, BP-3, BP-6, BP-8, and 4-hydroxy-BP] were determined in milk samples from 83 donors. Information on potential explanatory variables was gathered using the milk bank donor form and an ad hoc questionnaire. Multiple linear and logistic regression models were fitted. RESULTS Detectable concentrations were found of at least one of the analyzed compounds in all donor breast milk samples and at least five compounds in one-fifth of them. The most frequently detected compounds were MeP (90.5%), BP-3 (75.0%), EtP (51.2%), n-PrP (46.4%), and BPA (41.7%). Median concentrations ranged between <0.10 ng/mL (n-PrP, n-BuP, BP-1) and 0.59 ng/mL (BP-3). No sample contained detectable concentrations of BPF, BPS, or most BPs (BP-2, BP-6, BP-8, and 4- hydroxy-BP). Breast milk phenol concentrations were associated with parity, the utilization of deodorants, mouthwash, skin care products, and cosmetics, and the intake of nutritional supplements. CONCLUSIONS Results reveal the widespread presence of BPA, PBs, and BP-3 in donor breast milk samples, highlighting the need for preventive measures to enhance the benefits of breast milk from milk banks and from breastfeeding women in general.
Collapse
Affiliation(s)
- L M Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - L Serrano
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, E-18012 Granada, Spain
| | - F M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - M Peña-Caballero
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, E-18012 Granada, Spain
| | - J A Hurtado
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, E-18012 Granada, Spain
| | - F Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - M F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Department of Radiology and Physical Medicine, University of Granada, E-18016 Granada, Spain
| | - C Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain.
| | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Department of Radiology and Physical Medicine, University of Granada, E-18016 Granada, Spain.
| | - N Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Department of Radiology and Physical Medicine, University of Granada, E-18016 Granada, Spain; Nuclear Medicine Unit, San Cecilio University Hospital, E-18016 Granada, Spain
| |
Collapse
|
39
|
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum Reprod Update 2022; 28:346-375. [PMID: 35187579 PMCID: PMC9071071 DOI: 10.1093/humupd/dmac005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - David García-Galiano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
40
|
Predieri B, Alves CAD, Iughetti L. New insights on the effects of endocrine-disrupting chemicals on children. J Pediatr (Rio J) 2022; 98 Suppl 1:S73-S85. [PMID: 34921754 PMCID: PMC9510934 DOI: 10.1016/j.jped.2021.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Endocrine disrupting chemicals (EDCs) are present in many areas and materials of the common life, and exposure to these chemicals can occur from products to personal care, from air and food. This review aims to summarize the more recent epidemiological findings for the impact of EDCs on endocrine system health in children, including effects in growth, metabolism, sexual development, and reproduction. SOURCES The MEDLINE database (PubMed) was searched on August 24th, 2021, filtering for EDCs, endocrine disruptors, children, and humans. SUMMARY OF THE FINDINGS Intrauterine exposure of EDCs can have transgenerational effects, thus laying the foundation for disease in later life. The dose-response relationship may not always be predictable as even low-level exposures that may occur in everyday life can have significant effects on a susceptible individual. Although individual compounds have been studied in detail, the effects of a combination of these chemicals are yet to be studied to understand the real-life situation where human beings are exposed to a "cocktail effect" of these EDCs. Epidemiological studies in humans suggest EDCs' effects on prenatal growth, thyroid function, glucose metabolism, obesity, puberty, and fertility mainly through epigenetic mechanisms. CONCLUSIONS EDCs cause adverse effects in animals, and their effects on human health are now known and irrefutable. Because people are typically exposed to multiple endocrine disruptors, assessing public health effects is difficult. Legislation to ban EDCs and protect especially pregnant women and young children is required and needs to be revised and adjusted to new developments on a regular basis.
Collapse
Affiliation(s)
- Barbara Predieri
- University of Modena and Reggio Emilia, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, Modena, Italy
| | - Crésio A D Alves
- Universidade Federal da Bahia (UFBA), Faculdade de Medicina, Hospital Universitário Prof. Edgard Santos, Unidade de Endocrinologia Pediátrica, Salvador, BA, Brazil
| | - Lorenzo Iughetti
- University of Modena and Reggio Emilia, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, Modena, Italy.
| |
Collapse
|
41
|
Zhao Y, Song X, Ding S, Qi W, Zhang Y, Xu Q, Zhao T, Zhang X, Li X, Wu F, Ye L. The associations of urinary DEHP metabolite levels, serum thyroid hormones, and thyroid-related genes among the adolescent students from China: a cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19081-19097. [PMID: 34708313 DOI: 10.1007/s11356-021-16909-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Our study aimed to investigate the associations between DEHP exposure and serum thyroid hormone levels in 347 adolescents and young adults. We measured DEHP metabolites including mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), and mono(2-carboxymethyl)hexyl phthalate (MCMHP) in their urine. Total thyroxine (TT4), total triiodothyronine, free triiodothyronine, free thyroxine (FT4), thyroid-stimulating hormone and the mRNA levels of thyroid peroxidase (TPO), thyroglobulin (TG), sodium iodide symporter (NIS), thyroid transcription factor 1 (TTF-1), and paired box gene 8 (PAX-8) in serum were measured. The results of statistical analysis showed that urinary DEHP metabolites were generally negatively associated with TT4 levels in serum. In the males, the FT4 levels showed positive associations with urinary MEHP, MECPP, MCMHP, and ∑DEHP. The mRNA level of TG was significantly positively correlated with the levels of MECPP, MCMHP, and ∑DEHP, while the levels of TTF-1 and PAX-8 mRNA were significantly positively correlated with the levels of DEHP metabolites. Taken together, DEHP may affect the synthesis of TG by altering the normal transcription of TTF-1 and PAX-8, leading to decreased TT4 levels in Chinese adolescents.
Collapse
Affiliation(s)
- Yaming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xinyue Song
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Shuang Ding
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Fuju Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
42
|
Rao R, McDonald JA, Barrett ES, Greenberg P, Teteh DK, Montgomery SB, Qin B, Lin Y, Hong CC, Ambrosone CB, Demissie K, Bandera EV, Llanos AAM. Associations of hair dye and relaxer use with breast tumor clinicopathologic features: Findings from the Women's circle of Health Study. ENVIRONMENTAL RESEARCH 2022; 203:111863. [PMID: 34390715 PMCID: PMC8616798 DOI: 10.1016/j.envres.2021.111863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 06/07/2023]
Abstract
BACKGROUND Building upon our earlier findings of significant associations between hair dye and relaxer use with increased breast cancer risk, we evaluated associations of select characteristics of use with breast tumor clinicopathology. METHODS Using multivariable-adjusted models we examined the associations of interest in a case-only study of 2998 women with breast cancer, overall and stratified by race and estrogen receptor (ER) status, addressing multiple comparisons using Bonferroni correction. RESULTS Compared to salon application of permanent hair dye, home kit and combination application (both salon and home kit application) were associated with increased odds of poorly differentiated tumors in the overall sample. This association was consistent among Black (home kit: OR 2.22, 95 % CI: 1.21-5.00; combination: OR 2.46, 95 % CI: 1.21-5.00), but not White women, and among ER+ (home kit: OR 1.47, 95 % CI: 0.82-2.63; combination: OR 2.98, 95 % CI: 1.62-5.49) but not ER-cases. Combination application of relaxers was associated with increased odds of tumors >2.0 cm vs. <1.0 cm (OR = 1.82, 95 % CI: 1.23-2.69). Longer duration and earlier use of relaxers and combination application of permanent hair dyes and relaxers were associated with breast tumor features including higher tumor grade and larger tumor size, which often denote more aggressive phenotypes, although the findings did not maintain significance with Bonferroni correction. CONCLUSIONS These novel data support reported associations between hair dye and relaxer use with breast cancer, showing for the first time, associations with breast tumor clinicopathologic features. Improved hair product exposure measurement is essential for fully understanding the impact of these environmental exposure with breast cancer and to guide risk reduction strategies in the future.
Collapse
Affiliation(s)
- Rohan Rao
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jasmine A McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Patricia Greenberg
- Rutgers University Biostatics & Epidemiology Services (RUBIES), Rutgers School of Public Health and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Dede K Teteh
- Department of Population Sciences, Division of Health Equities, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Susanne B Montgomery
- Behavioral Health Institute, School of Behavioral Health, Loma Linda University, Loma Linda, CA, USA
| | - Bo Qin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Yong Lin
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, NY, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Adana A M Llanos
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
43
|
Smith AR, Kogut KR, Parra K, Bradman A, Holland N, Harley KG. Dietary intake and household exposures as predictors of urinary concentrations of high molecular weight phthalates and bisphenol A in a cohort of adolescents. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:37-47. [PMID: 33619365 PMCID: PMC8380263 DOI: 10.1038/s41370-021-00305-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Phthalates and bisphenol A (BPA) are endocrine disrupting chemicals used in consumer products, building materials, and food processing and packaging materials. They are associated with adverse health outcomes, especially when exposure occurs during heightened windows of susceptibility. OBJECTIVE We evaluated the relationship between housing and dietary characteristics and the concentration of several high-molecular-weight (HMW) phthalate metabolites and BPA in a cohort of Latina adolescents. METHODS We collected information on recent food consumption and housing characteristics and quantified the concentration of HMW phthalate and BPA metabolites in urine collected at two different time points. We used generalized estimating equations (GEE) to assess predictors of each metabolite. RESULTS No significant associations were observed between housing and dietary characteristics and metabolites of di(2-ethylhexyl) phthalate (DEHP) or BPA. In contrast, higher urinary monobenzyl phthalate (MBzP) concentration was associated with living in a home with vinyl or linoleum flooring (66.7% change, p-value <0.01), while higher urinary mono(3-carboxypropyl) phthalate (MCPP) concentration was associated with recent consumption of coffee (47.2% change, p-value <0.01), and fast food (30.3% change, p-value <0.05). SIGNIFICANCE These findings may be useful in targeting interventions that reduce phthalate uptake in young adults.
Collapse
Affiliation(s)
- Anna R Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| | - Katherine R Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kimberly Parra
- Department of Epidemiology and Biostatistics, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Public Health, School of Social Sciences, Humanities and Arts, University of California, Merced, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
44
|
Uldbjerg CS, Koch T, Lim YH, Gregersen LS, Olesen CS, Andersson AM, Frederiksen H, Coull BA, Hauser R, Juul A, Bräuner EV. OUP accepted manuscript. Hum Reprod Update 2022; 28:687-716. [PMID: 35466359 PMCID: PMC9434240 DOI: 10.1093/humupd/dmac013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Globally, the ages at pubertal onset for girls and boys have been decreasing during recent decades, partly attributed to excess body fat accumulation. However, a growing body of literature has recognized that endocrine disrupting chemicals (EDCs) may play an important role in this global trend, but the association has not yet been fully established. OBJECTIVE AND RATIONALE EDCs can interfere with normal hormone function and metabolism and play a role in pubertal onset. We aimed to systematically identify and evaluate the current evidence on the timing of pubertal onset in girls and boys following prenatal or postnatal exposures to xenobiotic EDCs. SEARCH METHODS Following PRISMA guidelines, we performed a systematic literature search of original peer-reviewed publications in the PubMed database through a block search approach using a combination of index MeSH and free text search terms. Publications were considered if they covered biomarkers of prenatal or postnatal exposures to xenobiotic EDCs (European Commission's list of category 1 EDCs) measured in maternal or child biospecimen and pubertal onset defined by the progression of the following milestones (and assessed in terms of the following measures): menarche (age), thelarche (Tanner staging) and pubarche (Tanner staging), in girls, and genital stage (Tanner staging), testicular volume (ml) and pubarche (Tanner staging), in boys. OUTCOMES The literature search resulted in 703 references, of which we identified 52 publications fulfilling the eligibility criteria for the qualitative trend synthesis and 23 publications for the meta-analysis. The qualitative trend synthesis provided data on 103 combinations of associations between prenatal or postnatal exposure to EDC compounds groups and puberty outcomes and the meta-analysis enabled 18 summary risk estimates of meta-associations. WIDER IMPLICATIONS Statistically significant associations in the qualitative trend synthesis suggested that postnatal exposure to phthalates may be associated with earlier thelarche and later pubarche. However, we did not find consistent evidence in the meta-analysis for associations between timing of pubertal onset in girls and boys and exposures to any of the studied xenobiotic EDCs. We were not able to identify specific pre- or postnatal windows of exposure as particularly critical and susceptible for effects of EDCs. Current evidence is subject to several methodological challenges and inconsistencies and evidence on specific exposure-outcome associations remains too scarce to firmly confirm EDC exposure as a risk factor for changes in age of pubertal onset in the general child population. To create a more uniform foundation for future comparison of evidence and to strengthen pooled studies, we recommend the use of more standardized approaches in the choice of statistical analyses, with exposure transformations, and in the definitions and assessments of puberty outcomes. The impact of mixtures of EDC exposures on the association also remains unestablished and would be valuable to elucidate for prenatal and postnatal windows of exposure. Future large, longitudinal epidemiological studies are needed to clarify the overall association.
Collapse
Affiliation(s)
| | | | - Y -H Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - L S Gregersen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - C S Olesen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - A -M Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - H Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - B A Coull
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| | - R Hauser
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| | - A Juul
- Correspondence address. Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. Tel: +45-3545-5085; E-mail: (A.J.); Tel: +45-4242-8550; E-mail: (E.V.B.)
| | - E V Bräuner
- Correspondence address. Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. Tel: +45-3545-5085; E-mail: (A.J.); Tel: +45-4242-8550; E-mail: (E.V.B.)
| |
Collapse
|
45
|
Faienza MF, Urbano F, Moscogiuri LA, Chiarito M, De Santis S, Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne) 2022; 13:1019468. [PMID: 36619551 PMCID: PMC9813382 DOI: 10.3389/fendo.2022.1019468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The pubertal development onset is controlled by a network of genes that regulate the gonadotropin releasing hormone (GnRH) pulsatile release and the subsequent increase of the circulating levels of pituitary gonadotropins that activate the gonadal function. Although the transition from pre-pubertal condition to puberty occurs physiologically in a delimited age-range, the inception of pubertal development can be anticipated or delayed due to genetic and epigenetic changes or environmental conditions. Most of the genetic and epigenetic alterations concern genes which encode for kisspeptin, GnRH, LH, FSH and their receptor, which represent crucial factors of the hypothalamic-pituitary-gonadal (HPG) axis. Recent data indicate a central role of the epigenome in the regulation of genes in the hypothalamus and pituitary that could mediate the flexibility of pubertal timing. Identification of epigenetically regulated genes, such as Makorin ring finger 3 (MKRN3) and Delta-like 1 homologue (DLK1), respectively responsible for the repression and the activation of pubertal development, provides additional evidence of how epigenetic variations affect pubertal timing. This review aims to investigate genetic, epigenetic, and environmental factors responsible for the regulation of precocious and delayed puberty.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- *Correspondence: Maria Felicia Faienza,
| | | | | | | | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Giordano
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
46
|
Calcaterra V, Verduci E, Magenes VC, Pascuzzi MC, Rossi V, Sangiorgio A, Bosetti A, Zuccotti G, Mameli C. The Role of Pediatric Nutrition as a Modifiable Risk Factor for Precocious Puberty. Life (Basel) 2021; 11:1353. [PMID: 34947884 PMCID: PMC8706413 DOI: 10.3390/life11121353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Puberty is a critical phase of growth and development characterized by a complex process regulated by the neuroendocrine system. Precocious puberty (PP) is defined as the appearance of physical and hormonal signs of pubertal development at an earlier age than is considered normal. The timing of puberty has important public health, clinical, and social implications. In fact, it is crucial in psychological and physical development and can impact future health. Nutritional status is considered as one of the most important factors modulating pubertal development. This narrative review presents an overview on the role of nutritional factors as determinants of the timing of sexual maturation, focusing on early-life and childhood nutrition. As reported, breast milk seems to have an important protective role against early puberty onset, mainly due to its positive influence on infant growth rate and childhood overweight prevention. The energy imbalance, macro/micronutrient food content, and dietary patterns may modulate the premature activation of the hypothalamic-pituitary-gonadal axis, inducing precocious activation of puberty. An increase in knowledge on the mechanism whereby nutrients may influence puberty will be useful in providing adequate nutritional recommendations to prevent PP and related complications.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.); (V.C.M.); (M.C.P.); (V.R.); (A.S.); (A.B.); (G.Z.); (C.M.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elvira Verduci
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.); (V.C.M.); (M.C.P.); (V.R.); (A.S.); (A.B.); (G.Z.); (C.M.)
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Vittoria Carlotta Magenes
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.); (V.C.M.); (M.C.P.); (V.R.); (A.S.); (A.B.); (G.Z.); (C.M.)
| | - Martina Chiara Pascuzzi
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.); (V.C.M.); (M.C.P.); (V.R.); (A.S.); (A.B.); (G.Z.); (C.M.)
| | - Virginia Rossi
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.); (V.C.M.); (M.C.P.); (V.R.); (A.S.); (A.B.); (G.Z.); (C.M.)
| | - Arianna Sangiorgio
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.); (V.C.M.); (M.C.P.); (V.R.); (A.S.); (A.B.); (G.Z.); (C.M.)
| | - Alessandra Bosetti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.); (V.C.M.); (M.C.P.); (V.R.); (A.S.); (A.B.); (G.Z.); (C.M.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.); (V.C.M.); (M.C.P.); (V.R.); (A.S.); (A.B.); (G.Z.); (C.M.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| | - Chiara Mameli
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.); (V.C.M.); (M.C.P.); (V.R.); (A.S.); (A.B.); (G.Z.); (C.M.)
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milan, 20157 Milan, Italy
| |
Collapse
|
47
|
Adam N, Mhaouty-Kodja S. [Disruption of sexual behavior by phthalates in mice: Females are more vulnerable than males]. Med Sci (Paris) 2021; 37:973-976. [PMID: 34851270 DOI: 10.1051/medsci/2021135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nolwenn Adam
- Sorbonne Université, CNRS UMR 8246, Inserm U1130, Neuroscience Paris Seine - Institut de biologie Paris Seine, 7 quai Saint-Bernard, 75005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, Inserm U1130, Neuroscience Paris Seine - Institut de biologie Paris Seine, 7 quai Saint-Bernard, 75005 Paris, France
| |
Collapse
|
48
|
Tait S, Carli F, Busani L, Ciociaro D, Della Latta V, Deodati A, Fabbrizi E, Pala AP, Maranghi F, Tassinari R, Toffol G, Cianfarani S, Gastaldelli A, La Rocca C. Italian Children Exposure to Bisphenol A: Biomonitoring Data from the LIFE PERSUADED Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211846. [PMID: 34831602 PMCID: PMC8621164 DOI: 10.3390/ijerph182211846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
A human biomonitoring (HBM) study on bisphenol A (BPA) in Italian children and adolescents was performed within the LIFE PERSUADED project, considering the residing areas, sex and age. The median urinary BPA level was 7.02 µg/L, with children living in the South of Italy or in urban areas having higher levels than those residing in the North or in rural areas. Children aged 4–6 years had higher BPA levels than those aged 7–10 and 11–14 years, but no differences were detected between sexes. The exposure in Italian children was higher compared to children from other countries, but lower than the HBM guidance value (135 µg/L). The estimated daily intake was 0.17 μg/kg body weight (bw) per day, about 24-fold below the temporary Tolerable Daily Intake of 4 μg/kg bw per day established by the European Food Safety Authority. However, this threshold was exceeded in 1.44% of the enrolled children, raising concern about the overall exposure of Italian young population.
Collapse
Affiliation(s)
- Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Fabrizia Carli
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Luca Busani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Demetrio Ciociaro
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Veronica Della Latta
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Annalisa Deodati
- Dipartimento Pediatrico, Universitario Ospedaliero “Bambino Gesù” Children’s Hospital, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy; (A.D.); (S.C.)
| | - Enrica Fabbrizi
- Unità Operativa Complessa Pediatria e Neonatologia, Ospedale Civile Augusto Murri, Via Augusto Murri, 21, 63900 Fermo, Italy;
- Civitanova Marche Hospital, ASUR MARCHE Area Vasta 3, 62012 Civitanova Marche, Italy
| | - Anna Paola Pala
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Francesca Maranghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Roberta Tassinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Giacomo Toffol
- Associazione Culturale Pediatri, Via Montiferru, 6, 09070 Narbolia, Italy;
| | - Stefano Cianfarani
- Dipartimento Pediatrico, Universitario Ospedaliero “Bambino Gesù” Children’s Hospital, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy; (A.D.); (S.C.)
- Department of Systems Medicine, University of Rome Tor Vergata, Via Cracovia, 50, 00133 Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Amalia Gastaldelli
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Cinzia La Rocca
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
- Correspondence: ; Tel.: +39-06-4990-2992
| | | |
Collapse
|
49
|
Association of phthalates and early menarche in Korean adolescent girls from Korean National Environmental Health Survey (KoNEHS) 2015-2017. Ann Occup Environ Med 2021; 33:e4. [PMID: 34754465 PMCID: PMC7952777 DOI: 10.35371/aoem.2021.33.e4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Phthalates are one of renowned endocrine-disrupting chemicals, although inconsistent results are present around their effect on onset of menarche. Our hypothesis is that pre-pubertal exposure to phthalates is associated with acceleration of menarche. Methods We analyzed a total of 236 middle school (7th to 9th grade) girls from Korean National Environmental Health Survey 2015-2017. We used multiple linear regression to investigate impact of eight phthalate metabolites on age of menarche. We also conducted logistic regression to evaluate association between phthalate metabolite concentrations and early onset of menarche, adjusting for grade, maternal age of menarche and body mass index (BMI). Results In linear regression analysis, no significant association was found for any phthalate metabolites. In logistic regression analysis, however, odds ratios (ORs) of early menarche were significantly increased for mono-n-butyl phthalate (MnBP) and for sum of all phthalates. When compared to group with the lowest level, high concentration group for MnBP presented significantly increased odds of early menarche (OR: 2.09; 95% confidence interval [CI]: 1.03, 4.23) after adjusting for grade, maternal age of menarche and BMI. Furthermore, high concentrations of sum of all phthalates were associated with significant increase of OR of early menarche (OR: 2.22; 95% CI: 1.10, 4.49) after adjustment, compared to the lowest concentration group. Conclusions Results of our study suggest that exposure to phthalates around puberty may be associated with increased risk of early menarche.
Collapse
|
50
|
Zulkifli S, Rahman AA, Kadir SHSA, Nor NSM. Bisphenol A and its effects on the systemic organs of children. Eur J Pediatr 2021; 180:3111-3127. [PMID: 33893858 DOI: 10.1007/s00431-021-04085-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023]
Abstract
For the past two decades, growing research has been pointing to multiple repercussions of bisphenol A (BPA) exposure to human health. BPA is a synthetic oestrogen which primarily targets the endocrine system; however, the compound also disturbs other systemic organ functions, in which the magnitude of impacts in those other systems is as comparable to those in the endocrine system. To date, the discoveries on the association between BPA and health outcomes mainly came from animal and in vitro studies, with limited human studies which emphasised on children's health. In this comprehensive review, we summarised studies on human, in vivo and in vitro models to understand the consequences of pre-, post- and perinatal BPA exposure on the perinatal, children and adult health, encompassing cardiovascular, neurodevelopmental, endocrine and reproductive effects.Conclusion: Evidence from in vitro and animal studies may provide further support and better understanding on the correlation between environmental BPA exposure and its detrimental effects in humans and child development, despite the difficulties to draw direct causal relations of BPA effects on the pathophysiology of the diseases/syndromes in children, due to differences in body system complexity between children and adults, as well as between animal and in vitro models and humans. What is known: • Very limited reviews are available on how BPA adversely affects children's health. • Previous papers mainly covered two systems in children. What is new: • Comprehensive review on the detrimental effects of BPA on children health outcomes, including expectations on adult health outcomes following perinatal BPA exposure, as well as covering a small part of BPA alternatives. • Essentially, BPA exposure during pregnancy has huge impacts on the foetus in which it may cause changes in foetal epigenetic programming, resulting in disease onsets during childhood as well as adulthood.
Collapse
Affiliation(s)
- Sarah Zulkifli
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia. .,Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
| |
Collapse
|