1
|
Malheiros JM, Reolon HG, Bosquini BG, Baldi F, Lourenco D, Fragomeni BO, Silva RMO, Paz CCP, Stafuzza NB. Identification of biological pathways and putative candidate genes for residual feed intake in a tropically adapted beef cattle breed by plasma proteome analysis. J Proteomics 2025; 312:105361. [PMID: 39638144 DOI: 10.1016/j.jprot.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This study identified potential biomarkers for feed efficiency by blood plasma proteome analysis of a tropically adapted beef cattle breed. Two experimental groups were selected based on residual feed intake (RFI). The proteome was investigated by LC-MS/MS in a data-dependent acquisition mode. After quality control, 123 differentially abundant proteins (DAPs) were identified between the two experimental groups. Among DAPs with the highest absolute log-fold change values, the PRDM2, KRT5, UGGT1, DENND5B, B2M, SLC44A2, SLC7A2, PTPRC, and FETUB were highlighted as potential biomarkers because of their functions that may contribute to RFI. Furthermore, functional enrichment analysis revealed several biological processes, molecular functions and pathways that contributes to RFI, such as cell signaling, cellular responses to stimuli, immune system, calcium, hormones, metabolism and functions of proteins, lipids and carbohydrates. Protein-protein interaction analysis identified 32 and 11 DAPs as important nodes based on their interactions in the high- and low-RFI groups, respectively. This study represents the first comprehensive profiling of the blood plasma proteome of a tropically adapted beef cattle breed and provides valuable insights into the potential roles of these DAPs in key biological processes and pathways, contributing to our understanding of the mechanisms underlying feed efficiency in tropically adapted beef cattle. SIGNIFICANCE: LC-MS/MS analysis was performed to investigate changes in the blood plasma proteome associated with residual feed intake (RFI) in a tropically adapted beef cattle breed (Bos taurus taurus). Some putative biomarkers were identified to distinguish the high-RFI to low-RFI animals, based on their log-fold change value or on their protein-protein interaction network, which provide helpful sources in developing novel selection strategies for breeding programs. Our findings also revealed valuable insights into the metabolic pathways and biological processes that contribute to RFI in beef cattle, such as those closely linked to cell signaling, cellular responses to stimuli, immune system, calcium, hormones, metabolism and functions of proteins, lipids and carbohydrates.
Collapse
Affiliation(s)
- Jessica M Malheiros
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Henrique G Reolon
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Bruna G Bosquini
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University, 14884-900 Jaboticabal, SP, Brazil
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, 30602 Athens, GA, USA.
| | - Breno O Fragomeni
- Department of Animal Science, University of Connecticut, 06269 Storrs, CT, USA.
| | | | - Claudia C P Paz
- Sustainable Livestock Research Center, Animal Science Institute, 15130-000 São José do Rio Preto, SP, Brazil
| | - Nedenia B Stafuzza
- Beef Cattle Research Center, Animal Science Institute, 14174-000 Sertãozinho, SP, Brazil.
| |
Collapse
|
2
|
Huzar J, Coreas R, Landry MP, Tikhomirov G. AI-Based Prediction of Protein Corona Composition on DNA Nanostructures. ACS NANO 2025. [PMID: 39772513 DOI: 10.1021/acsnano.4c12259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
DNA nanotechnology has emerged as a powerful approach to engineering biophysical tools, therapeutics, and diagnostics because it enables the construction of designer nanoscale structures with high programmability. Based on DNA base pairing rules, nanostructure size, shape, surface functionality, and structural reconfiguration can be programmed with a degree of spatial, temporal, and energetic precision that is difficult to achieve with other methods. However, the properties and structure of DNA constructs are greatly altered in vivo due to spontaneous protein adsorption from biofluids. These adsorbed proteins, referred to as the protein corona, remain challenging to control or predict, and subsequently, their functionality and fate in vivo are difficult to engineer. To address these challenges, we prepared a library of diverse DNA nanostructures and investigated the relationship between their design features and the composition of their protein corona. We identified protein characteristics important for their adsorption to DNA nanostructures and developed a machine-learning model that predicts which proteins will be enriched on a DNA nanostructure based on the DNA structures' design features and protein properties. Our work will help to understand and program the function of DNA nanostructures in vivo for biophysical and biomedical applications.
Collapse
Affiliation(s)
- Jared Huzar
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, California 94720, United States
| | - Roxana Coreas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Grigory Tikhomirov
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Dong W, Yang C, Guo D, Jia M, Wang Y, Wang J. PTX3-assembled pericellular hyaluronan matrix enhances endochondral ossification during fracture healing and heterotopic ossification. Bone 2024; 192:117385. [PMID: 39732447 DOI: 10.1016/j.bone.2024.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Endochondral ossification (EO) is a pivotal process during fracture healing and traumatic heterotopic ossification (HO), involving the cartilaginous matrix synthesis and mineralization. Unlike the extracellular matrix, the hyaluronan (HA)-rich pericellular matrix (PCM) directly envelops chondrocytes, serving as the frontline for extracellular signal reception and undergoing dynamic remodeling. Pentraxin 3 (PTX3), a secreted glycoprotein, facilitates HA matrix assembly and remodeling. However, it remains unclear whether PTX3 affects EO by regulating HA-rich PCM assembly of chondrocytes, thereby impacting fracture healing and traumatic HO. This study demonstrates that PTX3 deficiency impairs fracture healing and inhibits traumatic HO, but dose not affect growth plate development in mice. PTX3 expression is up-regulated during chondrocyte matrix synthesis and maturation and is localized in the HA-rich PCM. PTX3 promotes the assembly of HA-rich PCM in a serum- and TSG6-dependent manner, fostering CD44 receptor clustering, activating the FAK/AKT signaling pathway, and promoting chondrocyte matrix synthesis and maturation. Local injection of PTX3/TSG6 matrix protein mixture effectively promotes fracture healing in mice. In conclusion, PTX3-assembled HA-rich PCM promotes chondrocyte matrix synthesis and maturation via CD44/FAK/AKT signaling. This mechanism facilitates EO during fracture healing and traumatic HO in mice.
Collapse
Affiliation(s)
- Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Donghua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Meie Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Schoeman EM, Bringans S, Peters K, Casey T, Andronis C, Chen L, Duong M, Girling JE, Healey M, Boughton BA, Ismail D, Ito J, Laming C, Lim H, Mead M, Raju M, Tan P, Lipscombe R, Holdsworth-Carson S, Rogers PAW. Identification of plasma protein biomarkers for endometriosis and the development of statistical models for disease diagnosis. Hum Reprod 2024:deae278. [PMID: 39719050 DOI: 10.1093/humrep/deae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/12/2024] [Indexed: 12/26/2024] Open
Abstract
STUDY QUESTION Can a panel of plasma protein biomarkers be identified to accurately and specifically diagnose endometriosis? SUMMARY ANSWER A novel panel of 10 plasma protein biomarkers was identified and validated, demonstrating strong predictive accuracy for the diagnosis of endometriosis. WHAT IS KNOWN ALREADY Endometriosis poses intricate medical challenges for affected individuals and their physicians, yet diagnosis currently takes an average of 7 years and normally requires invasive laparoscopy. Consequently, the need for a simple, accurate non-invasive diagnostic tool is paramount. STUDY DESIGN, SIZE, DURATION This study compared 805 participants across two independent clinical populations, with the status of all endometriosis and symptomatic control samples confirmed by laparoscopy. A proteomics workflow was used to identify and validate plasma protein biomarkers for the diagnosis of endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS A proteomics discovery experiment identified candidate biomarkers before a targeted mass spectrometry assay was developed and used to compare plasma samples from 464 endometriosis cases, 153 general population controls, and 132 symptomatic controls. Three multivariate models were developed: Model 1 (logistic regression) for endometriosis cases versus general population controls, Model 2 (logistic regression) for rASRM stage II to IV (mild to severe) endometriosis cases versus symptomatic controls, and Model 3 (random forest) for stage IV (severe) endometriosis cases versus symptomatic controls. MAIN RESULTS AND THE ROLE OF CHANCE A panel of 10 protein biomarkers were identified across the three models which added significant value to clinical factors. Model 3 (severe endometriosis vs symptomatic controls) performed the best with an area under the receiver operating characteristic curve (AUC) of 0.997 (95% CI 0.994-1.000). This model could also accurately distinguish symptomatic controls from early-stage endometriosis when applied to the remaining dataset (AUCs ≥0.85 for stage I to III endometriosis). Model 1 also demonstrated strong predictive performance with an AUC of 0.993 (95% CI 0.988-0.998), while Model 2 achieved an AUC of 0.729 (95% CI 0.676-0.783). LIMITATIONS, REASONS FOR CAUTION The study participants were mostly of European ethnicity and the results may be biased from undiagnosed endometriosis in controls. Further analysis is required to enable the generalizability of the findings to other populations and settings. WIDER IMPLICATIONS OF THE FINDINGS In combination, these plasma protein biomarkers and resulting diagnostic models represent a potential new tool for the non-invasive diagnosis of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) Subject recruitment at The Royal Women's Hospital, Melbourne, was supported in part by funding from the Australian National Health and Medical Research Council (NHMRC) project grants GNT1105321 and GNT1026033 and Australian Medical Research Future Fund grant no. MRF1199715 (P.A.W.R., S.H.-C., and M.H.). Proteomics International has filed patent WO 2021/184060 A1 that relates to endometriosis biomarkers described in this manuscript; S.B., R.L., and T.C. declare an interest in this patent. J.I., S.B., C.L., D.I., H.L., K.P., M.D., M.M., M.R., P.T., R.L., and T.C. are shareholders in Proteomics International. Otherwise, the authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- E M Schoeman
- Proteomics International, Nedlands, WA, Australia
| | - S Bringans
- Proteomics International, Nedlands, WA, Australia
| | - K Peters
- Proteomics International, Nedlands, WA, Australia
| | - T Casey
- Proteomics International, Nedlands, WA, Australia
| | - C Andronis
- Proteomics International, Nedlands, WA, Australia
| | - L Chen
- Proteomics International, Nedlands, WA, Australia
| | - M Duong
- Proteomics International, Nedlands, WA, Australia
| | - J E Girling
- Department of Obstetrics and Gynecology, University of Melbourne and Gynecology Research Centre, Royal Women's Hospital, Melbourne, VIC, Australia
- Department of Anatomy, School of Biological Sciences, University of Otago, Dunedin, New Zealand
| | - M Healey
- Department of Obstetrics and Gynecology, University of Melbourne and Gynecology Research Centre, Royal Women's Hospital, Melbourne, VIC, Australia
| | - B A Boughton
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - D Ismail
- Proteomics International, Nedlands, WA, Australia
| | - J Ito
- Proteomics International, Nedlands, WA, Australia
| | - C Laming
- Proteomics International, Nedlands, WA, Australia
| | - H Lim
- Proteomics International, Nedlands, WA, Australia
| | - M Mead
- Proteomics International, Nedlands, WA, Australia
| | - M Raju
- Proteomics International, Nedlands, WA, Australia
| | - P Tan
- Proteomics International, Nedlands, WA, Australia
| | - R Lipscombe
- Proteomics International, Nedlands, WA, Australia
| | - S Holdsworth-Carson
- Department of Obstetrics and Gynecology, University of Melbourne and Gynecology Research Centre, Royal Women's Hospital, Melbourne, VIC, Australia
- Julia Argyrou Endometriosis Centre, Epworth HealthCare, Melbourne, VIC, Australia
| | - P A W Rogers
- Department of Obstetrics and Gynecology, University of Melbourne and Gynecology Research Centre, Royal Women's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Durak AT, Akyıldız HY, Çelik PA, Aytekin M. The role of hyaluronan modification in the etiopathogenesis of gastric cancer. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20241087. [PMID: 39699484 DOI: 10.1590/1806-9282.20241087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/04/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVE Gastric cancer is the second most common cancer in the world, accounting for 650,000 deaths per year, and is observed in approximately 10% of the patients diagnosed. Extracellular matrix abnormalities have been documented in gastric cancer patients. The aim of our study was to understand the role of high levels of hyaluronan, an extracellular matrix glycosaminoglycan, and its mechanistic role in gastric cancer pathobiology. METHODS Blood samples were collected from 82 gastric cancer patients and 41 healthy volunteers. Hyaluronan measurements were performed with the help of commercially purchased enzyme-linked immunosorbent assay kits. Gastric cancer (n=27) and healthy (n=29) tissue specimens were obtained after surgery and aliquoted for Western blot, immunofluorescence, and messenger RNA expression analysis. RESULTS Increased hyaluronan levels were detected in the blood of cancer patients compared to controls [plasma hyaluronan levels mg/dL (mean±SD): gastric cancer (n=82) 549.80±155.68, and healthy control (n=41) 27.21±4.95 (p<0.044)]. In addition, intense hyaluronan binding protein staining was observed in gastric cancer tissues, while tumor necrosis factor-inducible gene 6 messenger RNA expression was found to be significantly increased in gastric cancer tissues compared to healthy controls [tumor necrosis factor-inducible gene 6 messenger RNA expression: gastric cancer (n=27) 7.09±1.94 and healthy control (n=29) 3.20±0.67 (p=0.048)] according to the immunofluorescence staining. CONCLUSION The high hyaluronan levels in gastric cancer patients and the detection of increased messenger RNA levels of the tumor necrosis factor-inducible gene 6 enzyme in gastric cancer tissue, supporting a possible hyaluronan modification, suggest that this abnormality may have an important role in the formation of gastric cancer.
Collapse
Affiliation(s)
- Ahmet Turan Durak
- T.R. Ministry of Health Abant İzzet Baysal State Hospital, Department of General Surgery - Bursa, Turkey
| | | | | | - Metin Aytekin
- Cleveland Clinic, Department of Pathobiology - Cleveland (OH), United States
| |
Collapse
|
6
|
Aradillas-Pérez M, Espinosa-López EM, Ortiz-Guisado B, Martín-Suárez EM, Gómez-Baena G, Galán-Rodríguez A. Quantitative proteomics analysis of cerebrospinal fluid reveals putative protein biomarkers for canine non-infectious meningoencephalomyelitis. Vet J 2024; 309:106285. [PMID: 39662837 DOI: 10.1016/j.tvjl.2024.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Accurate ante-mortem diagnosis of non-infectious meningoencephalomyelitis (NIME) in dogs is challenging due to the similarity of clinical presentations, imaging findings, and cerebrospinal fluid (CSF) analysis results with other diseases. This study aimed to apply state-of-the-art quantitative proteomic technology to identify novel biomarkers for NIME. Serum and CSF samples from 11 dogs were included, with the control group consisting of patients presenting with intervertebral disc disease (IVDD, n = 6) and the study group consisting of dogs suffering from NIME (n = 5). Mass spectrometry-based quantitative proteomics revealed a set of 36 proteins with significant differential abundance in CSF samples. Up-regulated proteins in NIME CSF included immunoglobulins, inter-alpha-trypsin inhibitor heavy chain 2, acid sphingomyelinase-like phosphodiesterase, and chitinase 3-like protein 1, all associated with immune response and inflammation. Conversely, significantly down-regulated proteins included neural cell adhesion molecule, contactin-1, and procollagen C-endopeptidase enhancer, which are involved in neurodevelopment and synaptic plasticity. No differences in serum profiles were observed among the groups. This study identified a panel of CSF protein biomarker candidates for NIME and provided new insights into the pathogenesis of the disease, suggesting that neuronal dysfunction and immune dysregulation may be involved.
Collapse
Affiliation(s)
- M Aradillas-Pérez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - E M Espinosa-López
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - B Ortiz-Guisado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - E M Martín-Suárez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain
| | - G Gómez-Baena
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain.
| | - A Galán-Rodríguez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, University of Córdoba, Campus Universitario de Rabanales, Córdoba 14014, Spain.
| |
Collapse
|
7
|
Karmaus PWF, Gordon SM, Chen MY, Motsinger-Reif AA, Snyder RW, Fennell TR, Waidyanatha S, Fernando RA, Remaley AT, Fessler MB. Untargeted lipidomics reveals novel HDL metabotypes and lipid-clinical correlates. J Lipid Res 2024; 65:100678. [PMID: 39490932 PMCID: PMC11617998 DOI: 10.1016/j.jlr.2024.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Plasma high-density lipoprotein (HDL), originally studied for its role in lipid transport, is now appreciated to have wide-ranging biological functions that become defective during disease. While >200 lipids have collectively been detected in HDL, published HDL lipidomic analyses in different diseases have commonly been targeted to prespecified subsets of lipids. Here, we report the results of untargeted lipidomic analysis of HDL isolated from 101 subjects referred for computed tomographic coronary imaging for whom multiple additional clinical and lipoprotein metadata were measured. Unsupervised clustering of the total HDL lipidome revealed that the subjects fell into one of two discrete groups, herein referred to as HDL "metabotypes." Patients in metabotype 1 were likelier to be female and tended to have a less atherogenic lipoprotein profile, higher HDL cholesterol efflux capacity (CEC), and lower-grade non-calcified burden on coronary imaging than metabotype 2 counterparts. Specific lipids were relatively enriched in metabotype 1 HDL. Linear modeling revealed that several of these lipids were positively associated with CEC, statin use, HDL size, and HDL particle number, and positively correlated with HDL apolipoprotein A-1, suggesting that they may be informative HDL biomarkers. Taken together, we posit a novel, clinically relevant categorization for HDL revealed by systems biology.
Collapse
Affiliation(s)
- Peer W F Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Scott M Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Marcus Y Chen
- Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Alison A Motsinger-Reif
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | - Suramya Waidyanatha
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
8
|
Liang Z, Hu C, Pang H, Sha Y, Yao L, Liu F. Identifying therapeutic targets for kidney stone disease through proteome-wide Mendelian randomization and colocalization analysis. Urolithiasis 2024; 52:167. [PMID: 39585470 DOI: 10.1007/s00240-024-01669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Kidney stone disease (KSD) is facing rising global prevalence and recurrence rates. Mendelian randomization aids in drug repurposing and the discovery of therapeutic targets. This study utilized Mendelian randomization (MR) to identify protein targets for KSD treatment and assess potential adverse drug reactions. A proteome-wide MR study assessed plasma proteins' causal relationship with KSD risk. Data from UK Biobank Proteomics Profiling Project (2940 proteins) and FinnGen R10 for KSD (10,556 cases, 400,681 controls) were analyzed. Colocalization analysis identified shared causal variants. Additionally, a Phenome-wide association study (PheWAS) used the FinnGen to explore adverse reactions of druggable proteins. MR study found ITIH4, F12, FKBPL positively correlated with KSD risk, while DAG1, ITIH1, LTB, CACYBP negatively correlated (Pfdr < 0.05). Colocalization analysis and PheWAS identified CACYBP as the most promising druggable protein for the prevention or treatment of nephrolithiasis recurrence. This study identified genetic protein biomarkers for KSD risk and explored potential drug side effects, offering new insights and targets for prevention and treatment.
Collapse
Affiliation(s)
- Zilong Liang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Graduate Department, Xi'an Medical University, Xi'an, 710021, China
| | - Conglei Hu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Haofeng Pang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Graduate Department, Xi'an Medical University, Xi'an, 710021, China
| | - Yi Sha
- Graduate Department, Xi'an Medical University, Xi'an, 710021, China
| | - Liping Yao
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China.
| | - Fei Liu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
de Freitas AC, Reolon HG, Abduch NG, Baldi F, Silva RMO, Lourenco D, Fragomeni BO, Paz CCP, Stafuzza NB. Proteomic identification of potential biomarkers for heat tolerance in Caracu beef cattle using high and low thermotolerant groups. BMC Genomics 2024; 25:1079. [PMID: 39538142 PMCID: PMC11562314 DOI: 10.1186/s12864-024-11021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Heat stress has deleterious effects on physiological and performance traits in livestock. Within this context, using tropically adapted cattle breeds in pure herds or terminal crossbreeding schemes to explore heterosis is attractive for increasing animal production in warmer climate regions. This study aimed to identify biological processes, pathways, and potential biomarkers related to thermotolerance in Caracu, a tropically adapted beef cattle breed, by proteomic analysis of blood plasma. To achieve this goal, 61 bulls had their thermotolerance evaluated through a heat tolerance index. A subset of 14 extreme animals, including the seven most thermotolerant (HIGH group) and the seven least thermotolerant (LOW group), had their blood plasma samples used for proteomic analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The differentially regulated proteins detected between HIGH and LOW groups were used to perform functional enrichment analysis and a protein-protein interaction network analysis. RESULTS A total of 217 proteins were detected only in the HIGH thermotolerant group and 51 only in the LOW thermotolerant group. In addition, 81 and 87 proteins had significantly higher and lower abundancies in the HIGH group, respectively. Regarding proteins with the highest absolute log-fold change values, we highlighted those encoded by DUSP5, IGFALS, ROCK2, RTN4, IRAG1, and NNT genes based on their functions. The functional enrichment analysis detected several biological processes, molecular functions, and pathways related to cellular responses to stress, immune system, complement system, and hemostasis in both HIGH and LOW groups, in addition to terms and pathways related to lipids and calcium only in the HIGH group. Protein-protein interaction (PPI) network revealed as important nodes many proteins with roles in response to stress, hemostasis, immune system, inflammation, and homeostasis. Additionally, proteins with high absolute log-fold change values and proteins detected as essential nodes by PPI analysis highlighted herein are potential biomarkers for thermotolerance, such as ADRA1A, APOA1, APOB, APOC3, C4BPA, CAT, CFB, CFH, CLU, CXADR, DNAJB1, DNAJC13, DUSP5, FGA, FGB, FGG, HBA, HBB, HP, HSPD1, IGFALS, IRAG1, KNG1, NNT, OSGIN1, PROC, PROS1, ROCK2, RTN4, RYR1, TGFB2, VLDLR, VTN, and VWF. CONCLUSIONS Identifying potential biomarkers, molecular mechanisms and pathways that act in response to heat stress in tropically adapted beef cattle contributes to developing strategies to improve performance and welfare traits in livestock under tropical climates.
Collapse
Affiliation(s)
- Ana Claudia de Freitas
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
- Agricultural Research Agency of the State of Minas Gerais (EPAMIG), Patos de Minas, MG, 38709-899, Brazil
| | - Henrique G Reolon
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Natalya G Abduch
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | | | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | | | - Claudia C P Paz
- Sustainable Livestock Research Center, Animal Science Institute, São José do Rio Preto, SP, 15130-000, Brazil
| | - Nedenia B Stafuzza
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil.
| |
Collapse
|
10
|
Johansson L, Ringmark S, Bergquist J, Skiöldebrand E, Widgren A, Jansson A. A proteomics perspective on 2 years of high-intensity training in horses: a pilot study. Sci Rep 2024; 14:23684. [PMID: 39390056 PMCID: PMC11467344 DOI: 10.1038/s41598-024-75266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
The human plasma proteome is rather well studied, but not that of other species, including horses. The aims of this study were to (1), explore differences in plasma proteomic profile of young elite harness trotters kept under standardised conditions and subjected to two different training programmes for 2 years and (2) explore changes in proteomic profile over time during the training period. From September at age 1.5 year to March at age 2 years, 16 Standardbred horses were exposed to the same training programme. In March, high-intensity training was introduced and the horses were divided into two training groups (High and Low). Blood samples were collected at rest in December as 1.5-year-olds, July as 2-year-olds, December as 2.5-year-olds and December as 3.5-year-olds. Untargeted proteomics was performed and a hypothesis-generating approach was used in statistical analysis (t-tests). At the age of 2.5 years, the level of serotransferrin was higher in the High group (P = 0.01) and at least at one sampling occasion, proteins associated with fat metabolism, oxidant/antioxidant processes, cardiovascular responses, bone formation and inflammation were lower in High group compared to Low (P < 0.05). Analyses of changes over time revealed that levels of proteins involved in energy metabolism, red cell metabolism, circulation, oxidant/antioxidant activity, bone formation, inflammation, immune modulation and cellular and vascular damage changed (P < 0.05). The results indicate that proteomics analysis of blood plasma could be a viable tool for evaluation of exercise adaptations, performance and for health monitoring, with several potential biomarkers identified in this study.
Collapse
Affiliation(s)
- L Johansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
| | - S Ringmark
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
| | - J Bergquist
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, P. O. Box 599, Uppsala, 751 24, Sweden
| | - E Skiöldebrand
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
| | - A Widgren
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, P. O. Box 599, Uppsala, 751 24, Sweden
| | - A Jansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden.
| |
Collapse
|
11
|
Song S, Qiao J, Zhao R, Lu YJ, Wang C, Chang MJ, Zhang HY, Li XF, Wang CH. Identification of novel drug targets for osteoarthritis by integrating genetics and proteomes from blood. J Orthop Surg Res 2024; 19:559. [PMID: 39261869 PMCID: PMC11389225 DOI: 10.1186/s13018-024-05034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative osteoarticular disease, involving genetic predisposition. How the risk variants confer the risk of OA through their effects on proteins remains largely unknown. Therefore, we aimed to discover new and effective drug targets for OA and its subtypes. METHODS A proteome-wide association study (PWAS) was performed based on OA and its subtypes genome-wide association studies (GWAS) summary datasets and the protein quantitative trait loci (pQTL) data. Subsequently, Mendelian randomization (MR) and colocalization analysis was conducted to estimate the associations between protein and OA risk. The replication analysis was performed in an independent dataset of human plasma pQTL data. RESULTS The abundance of seven proteins was causally related to OA, two proteins to knee OA and six proteins to hip OA, respectively. We replicated 2 of these proteins using an independent pQTL dataset. With the further support of colocalization, and higher ECM1 level was causally associated with a higher risk of OA and hip OA. Higher PCSK1 level was causally associated with a lower risk of OA. And higher levels of ITIH1, EFEMP1, and ERLEC1 were associated with decreased risk of hip OA. CONCLUSION Our study provides new insights into the genetic component of protein abundance in OA and a promising therapeutic target for future drug development.
Collapse
Affiliation(s)
- Shan Song
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Ministry of Education Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
| | - Jun Qiao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Ministry of Education Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
| | - Rong Zhao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Ministry of Education Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
| | - Yu-Jie Lu
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Ministry of Education Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
| | - Can Wang
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Min-Jing Chang
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - He-Yi Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Ministry of Education Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
| | - Xiao-Feng Li
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Ministry of Education Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
| | - Cai-Hong Wang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
12
|
Sessler TM, Beier JP, Villwock S, Jonigk D, Dahl E, Ruhl T. Genetic deletion of ITIH5 leads to increased development of adipose tissue in mice. Biol Res 2024; 57:58. [PMID: 39198923 PMCID: PMC11360682 DOI: 10.1186/s40659-024-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Adipocytokines play a pivotal role in maintaining adipose tissue homeostasis by regulating cellular metabolism, proliferation, differentiation, and secretory activity. These soluble factors are relevant components for healthy adipose tissue, while their deficiency is closely associated with the development of obesity and related metabolic diseases, e.g., chronic inflammation. In human adipose tissue, inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is expressed in proportion to the development of adipose tissue, i.e., the individual's BMI. Thus, ITIH5 has been proposed to be an inert marker of human obesity. However, when applied to adipose stem cells in vitro, recombinant (r)ITIH5 protein inhibited proliferation and adipogenesis, suggesting that ITIH5 negatively affects the development of fat mass. We now tested the role of ITIH5 in vivo and compared ITIH5+/+ wildtype with ITIH5-/- knockout mice. RESULTS Genetic deletion of ITIH5 significantly increased adipose tissue mass relative to animal bodyweight (p < 0.05). Next, we characterized adipose stem cells (ASCs) from both genotypes in vitro. ITIH5-/- cells exhibited increased proliferation and adipogenic differentiation (p < 0.001), which could explain the increase in adipose tissue in vivo. Furthermore, ASCs from ITIH5-/- animals were more responsive to stimulation with inflammatory mediators, i.e., these cells released greater amounts of IL-6 and MCP-1 (p < 0.001). Importantly, the application of the rITIH5 protein reversed the observed knockout effects in ASCs. CONCLUSIONS Our data suggest that ITIH5 potently regulates adipose tissue development and homeostasis by modulating ASC biology in mice. In addition, the effect of the rITIH5 protein underscores its potential as a therapeutic agent to correct the adipose tissue dysregulation often associated with obesity and metabolic disorders.
Collapse
Affiliation(s)
- Thomas M Sessler
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophia Villwock
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Danny Jonigk
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hanover, Germany
| | - Edgar Dahl
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
13
|
Huzar J, Coreas R, Landry MP, Tikhomirov G. AI-based Prediction of Protein Corona Composition on DNA Nanostructures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.25.609594. [PMID: 39253427 PMCID: PMC11383312 DOI: 10.1101/2024.08.25.609594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DNA nanotechnology has emerged as a powerful approach to engineering biophysical tools, therapeutics, and diagnostics because it enables the construction of designer nanoscale structures with high programmability. Based on DNA base pairing rules, nanostructure size, shape, surface functionality, and structural reconfiguration can be programmed with a degree of spatial, temporal, and energetic precision that is difficult to achieve with other methods. However, the properties and structure of DNA constructs are greatly altered in vivo due to spontaneous protein adsorption from biofluids. These adsorbed proteins, referred to as the protein corona, remain challenging to control or predict, and subsequently, their functionality and fate in vivo are difficult to engineer. To address these challenges, we prepared a library of diverse DNA nanostructures and investigated the relationship between their design features and the composition of their protein corona. We identified protein characteristics important for their adsorption to DNA nanostructures and developed a machine-learning model that predicts which proteins will be enriched on a DNA nanostructure based on the DNA structures' design features and protein properties. Our work will help to understand and program the function of DNA nanostructures in vivo for biophysical and biomedical applications.
Collapse
Affiliation(s)
- Jared Huzar
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA
| | - Roxana Coreas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA
- Innovative Genomics Institute, Berkeley, CA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Grigory Tikhomirov
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA
| |
Collapse
|
14
|
Zhang XF, Zhang XL, Guo L, Bai YP, Tian Y, Luo HY. The function of the inter-alpha-trypsin inhibitors in the development of disease. Front Med (Lausanne) 2024; 11:1432224. [PMID: 39149600 PMCID: PMC11325723 DOI: 10.3389/fmed.2024.1432224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Through the formation of covalent connections with hyaluronic acid (HA), the inter-α-trypsin inhibitor (IαI) family collaborates to preserve the stability of the extracellular matrix (ECM). The five distinct homologous heavy chains (ITIH) and one type of light chain make up the IαI family. ITIH alone or in combination with bikunin (BK) has been proven to have important impacts in a number of earlier investigations. This implies that BK and ITIH might be crucial to both physiological and pathological processes. The functions of BK and ITIH in various pathophysiological processes are discussed independently in this paper. In the meanwhile, this study offers suggestions for further research on the roles of BK and ITIH in the course of disease and summarizes the plausible mechanisms of the previous studies.
Collapse
Affiliation(s)
- Xin-Feng Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Li Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Guo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun-Ping Bai
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua-You Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Elizazu J, Artetxe-Zurutuza A, Otaegi-Ugartemendia M, Moncho-Amor V, Moreno-Valladares M, Matheu A, Carrasco-Garcia E. Identification of a novel gene signature related to prognosis and metastasis in gastric cancer. Cell Oncol (Dordr) 2024; 47:1355-1373. [PMID: 38480611 PMCID: PMC11322236 DOI: 10.1007/s13402-024-00932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Gastric Cancer (GC) presents poor outcome, which is consequence of the high incidence of recurrence and metastasis at early stages. GC patients presenting recurrent or metastatic disease display a median life expectancy of only 8 months. The mechanisms underlying GC progression remain poorly understood. METHODS We took advantage of public available GC datasets from TCGA using GEPIA, and identified the matched genes among the 100 genes most significantly associated with overall survival (OS) and disease free survival (DFS). Results were confirmed in ACRG cohort and in over 2000 GC cases obtained from several cohorts integrated using our own analysis pipeline. The Kaplan-Meier method and multivariate Cox regression analyses were used for prognostic significance and linear modelling and correlation analyses for association with clinic-pathological parameters and biological hallmarks. In vitro and in vivo functional studies were performed in GC cells with candidate genes and the related molecular pathways were studied by RNA sequencing. RESULTS High expression of ANKRD6, ITIH3, SORCS3, NPY1R and CCDC178 individually and as a signature was associated with poor prognosis and recurrent disease in GC. Moreover, the expression of ANKRD6 and ITIH3 was significantly higher in metastasis and their levels associated to Epithelial to Mesenchymal Transition (EMT) and stemness markers. In line with this, RNAseq analysis revealed genes involved in EMT differentially expressed in ANKRD6 silencing cells. Finally, ANKRD6 silencing in GC metastatic cells showed impairment in GC tumorigenic and metastatic traits in vitro and in vivo. CONCLUSIONS Our study identified a novel signature involved in GC malignancy and prognosis, and revealed a novel pro-metastatic role of ANKRD6 in GC.
Collapse
Affiliation(s)
- Joseba Elizazu
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, San Sebastian, 20014, Spain
| | - Aizpea Artetxe-Zurutuza
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, San Sebastian, 20014, Spain
| | - Maddalen Otaegi-Ugartemendia
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, San Sebastian, 20014, Spain
| | - Veronica Moncho-Amor
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, San Sebastian, 20014, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, 28029, Spain
| | - Manuel Moreno-Valladares
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, San Sebastian, 20014, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, 28029, Spain
- Pathology Department, Donostia University Hospital, San Sebastian, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, San Sebastian, 20014, Spain.
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, 28029, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.
| | - Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, San Sebastian, 20014, Spain.
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, 28029, Spain.
| |
Collapse
|
16
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Ávila G, Ceciliani F, Viala D, Dejean S, Sala G, Lecchi C, Bonnet M. Conjugated linoleic acid (CLA) modulates bovine peripheral blood mononuclear cells (PBMC) proteome in vitro. J Proteomics 2024; 304:105232. [PMID: 38909954 DOI: 10.1016/j.jprot.2024.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Conjugated linoleic acid (CLA) is a group of natural isomers of the n-6 polyunsaturated fatty acid (PUFA) linoleic acid, exerting biological effects on cow physiology. This study assessed the impact of the mixture 50:50 (vol:vol) of CLA isomers (cis-9, trans-11 and trans-10, cis-12) on bovine peripheral blood mononuclear cells (PBMC) proteome, identifying 1608 quantifiable proteins. A supervised multivariate statistical analysis, sparse variant partial least squares - discriminant analysis (sPLS-DA) for paired data identified 407 discriminant proteins (DP), allowing the clustering between the CLA and controls. The ProteINSIDE workflow found that DP with higher abundance in the CLA group included proteins related to innate immune defenses (PLIN2, CD36, C3, C4, and AGP), with antiapoptotic (SERPINF2 and ITIH4) and antioxidant effects (HMOX1). These results demonstrated that CLA modulates the bovine PBMC proteome, supports the antiapoptotic and immunomodulatory effects observed in previous in vitro studies on bovine PBMC, and suggests a cytoprotective role against oxidative stress. SIGNIFICANCE: In this study, we report for the first time that the mixture 50:50 (vol:vol) of cis-9, trans-11, and trans-10, cis-12-CLA isomers modulates the bovine PBMC proteome. Our results support the immunomodulatory and antiapoptotic effects observed in bovine PBMC in vitro. In addition, the present study proposes a cytoprotective role of CLA mixture against oxidative stress. We suggest a molecular signature of CLA treatment based on combining a multivariate sparse discriminant analysis and a clustering method. This demonstrates the great value of sPLS-DA as an alternative option to identify discriminant proteins with relevant biological significance.
Collapse
Affiliation(s)
- G Ávila
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - F Ceciliani
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy.
| | - D Viala
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France; INRAE, Metabolomic and Proteomic Exploration Facility (PFEM), F-63122 Saint-Genès-Champanelle, France
| | - S Dejean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, UMR 5219, 31062 Toulouse, France
| | - G Sala
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - C Lecchi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - M Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
18
|
Li W, Wang X, An H. Linkage of serum ITIH4 with Th2 signature cytokine, inflammation, exacerbation risk and severity in childhood asthma. Biomark Med 2024; 18:593-602. [PMID: 39011671 PMCID: PMC11370966 DOI: 10.1080/17520363.2024.2366149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/13/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: ITIH4 has anti-inflammatory properties toward eosinophilic/neutrophilic inflammation. This study aimed to explore clinical value of ITIH4 in childhood asthma.Materials & methods: Serum ITIH4 and inflammatory cytokines were determined in 120 childhood asthma patients by enzyme-linked immunosorbent assay.Results: In the entire and acute exacerbation patients, ITIH4 positively associated with IFN-γ, but negatively related to proinflammatory cytokines. ITIH4 was lowest in patients with acute exacerbation, followed by chronic persistent, and highest in clinical remission. By receiver-operating characteristic analysis, ITIH4 potentially estimated acute exacerbation asthma risk. Moreover, ITIH4 negatively related to exacerbation severity in acute exacerbation patients.Conclusion: Serum ITIH4 negatively links with Th2 cell signature cytokine, proinflammatory cytokines, exacerbation risk and severity in childhood asthma.
Collapse
Affiliation(s)
- Weina Li
- Second Department of Pediatrics, Xingtai People’s Hospital, Xingtai, 054001, Hebei, China
| | - Xiaoxue Wang
- Second Department of Pediatrics, Xingtai People’s Hospital, Xingtai, 054001, Hebei, China
| | - Hong An
- Second Department of Pediatrics, Xingtai People’s Hospital, Xingtai, 054001, Hebei, China
| |
Collapse
|
19
|
López-Valverde L, Vázquez-Mosquera ME, Colón-Mejeras C, Bravo SB, Barbosa-Gouveia S, Álvarez JV, Sánchez-Martínez R, López-Mendoza M, López-Rodríguez M, Villacorta-Argüelles E, Goicoechea-Diezhandino MA, Guerrero-Márquez FJ, Ortolano S, Leao-Teles E, Hermida-Ameijeiras Á, Couce ML. Characterization of the plasma proteomic profile of Fabry disease: Potential sex- and clinical phenotype-specific biomarkers. Transl Res 2024; 269:47-63. [PMID: 38395389 DOI: 10.1016/j.trsl.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Fabry disease (FD) is a X-linked rare lysosomal storage disorder caused by deficient α-galactosidase A (α-GalA) activity. Early diagnosis and the prediction of disease course are complicated by the clinical heterogeneity of FD, as well as by the frequently inconclusive biochemical and genetic test results that do not correlate with clinical course. We sought to identify potential biomarkers of FD to better understand the underlying pathophysiology and clinical phenotypes. We compared the plasma proteomes of 50 FD patients and 50 matched healthy controls using DDA and SWATH-MS. The >30 proteins that were differentially expressed between the 2 groups included proteins implicated in processes such as inflammation, heme and haemoglobin metabolism, oxidative stress, coagulation, complement cascade, glucose and lipid metabolism, and glycocalyx formation. Stratification by sex revealed that certain proteins were differentially expressed in a sex-dependent manner. Apolipoprotein A-IV was upregulated in FD patients with complications, especially those with chronic kidney disease, and apolipoprotein C-III and fetuin-A were identified as possible markers of FD with left ventricular hypertrophy. All these proteins had a greater capacity to identify the presence of complications in FD patients than lyso-GB3, with apolipoprotein A-IV standing out as being more sensitive and effective in differentiating the presence and absence of chronic kidney disease in FD patients than renal markers such as creatinine, glomerular filtration rate and microalbuminuria. Identification of these potential biomarkers can help further our understanding of the pathophysiological processes that underlie the heterogeneous clinical manifestations associated with FD.
Collapse
Affiliation(s)
- Laura López-Valverde
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - María E Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Cristóbal Colón-Mejeras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Susana B Bravo
- Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Proteomic Platform, University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Sofía Barbosa-Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - J Víctor Álvarez
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Rosario Sánchez-Martínez
- Internal Medicine Department, Alicante General University Hospital-Alicante Institute of Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante 03010, Spain
| | - Manuel López-Mendoza
- Department of Nephrology, Hospital Universitario Virgen del Rocío, Manuel Siurot s/n, Sevilla 41013, Spain
| | - Mónica López-Rodríguez
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, Colmenar Viejo, Madrid 28034, Spain; Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), Av. de Madrid, Alcalá de Henares 28871, Spain
| | - Eduardo Villacorta-Argüelles
- Department of Cardiology, Complejo Asistencial Universitario de Salamanca, P°. de San Vicente 58, Salamanca 37007, Spain
| | | | - Francisco J Guerrero-Márquez
- Department of Cardiology, Internal Medicine Service, Hospital de la Serranía, San Pedro, Ronda, Málaga 29400, Spain
| | - Saida Ortolano
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute-SERGAS-UVIGO, Clara Campoamor 341, Vigo 36213, Spain
| | - Elisa Leao-Teles
- Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de São João, Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Álvaro Hermida-Ameijeiras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| | - María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| |
Collapse
|
20
|
Melrose J. CNS/PNS proteoglycans functionalize neuronal and astrocyte niche microenvironments optimizing cellular activity by preserving membrane polarization dynamics, ionic microenvironments, ion fluxes, neuronal activation, and network neurotransductive capacity. J Neurosci Res 2024; 102:e25361. [PMID: 39034899 DOI: 10.1002/jnr.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
21
|
Niksirat H, Siino V, Steinbach C, Levander F. The quantification of zebrafish ocular-associated proteins provides hints for sex-biased visual impairments and perception. Heliyon 2024; 10:e33057. [PMID: 38994070 PMCID: PMC11238053 DOI: 10.1016/j.heliyon.2024.e33057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Biochemical differences between sexes can also be seen in non-sexual organs and may affect organ functions and susceptibility to diseases. It has been shown that there are sex-biased visual perceptions and impairments. Abundance differences of eye proteins could provide explanations for some of these. Exploration of the ocular proteome was performed to find sex-based protein abundance differences in zebrafish Danio rerio. A label-free protein quantification workflow using high-resolution mass spectrometry was employed to find proteins with significant differences between the sexes. In total, 3740 unique master proteins were identified and quantified, and 49 proteins showed significant abundance differences between the eyes of male and female zebrafish. Those proteins belong to lipoproteins, immune system, blood coagulation, antioxidants, iron and heme-binding proteins, ion channels, pumps and exchangers, neuronal and photoreceptor proteins, and the cytoskeleton. An extensive literature review provided clues for the possible links between the sex-biased level of proteins and visual perception and impairments. In conclusion, sexual dimorphism at the protein level was discovered for the first time in the eye of zebrafish and should be accounted for in ophthalmological studies. Data are available via ProteomeXchange with identifier PXD033338.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Schroeter CB, Nelke C, Stascheit F, Huntemann N, Preusse C, Dobelmann V, Theissen L, Pawlitzki M, Räuber S, Willison A, Vogelsang A, Marina AD, Hartung HP, Melzer N, Konen FF, Skripuletz T, Hentschel A, König S, Schweizer M, Stühler K, Poschmann G, Roos A, Stenzel W, Meisel A, Meuth SG, Ruck T. Inter-alpha-trypsin inhibitor heavy chain H3 is a potential biomarker for disease activity in myasthenia gravis. Acta Neuropathol 2024; 147:102. [PMID: 38888758 PMCID: PMC11195637 DOI: 10.1007/s00401-024-02754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Myasthenia gravis is a chronic antibody-mediated autoimmune disease disrupting neuromuscular synaptic transmission. Informative biomarkers remain an unmet need to stratify patients with active disease requiring intensified monitoring and therapy; their identification is the primary objective of this study. We applied mass spectrometry-based proteomic serum profiling for biomarker discovery. We studied an exploration and a prospective validation cohort consisting of 114 and 140 anti-acetylcholine receptor antibody (AChR-Ab)-positive myasthenia gravis patients, respectively. For downstream analysis, we applied a machine learning approach. Protein expression levels were confirmed by ELISA and compared to other myasthenic cohorts, in addition to myositis and neuropathy patients. Anti-AChR-Ab levels were determined by a radio receptor assay. Immunohistochemistry and immunofluorescence of intercostal muscle biopsies were employed for validation in addition to interactome studies of inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3). Machine learning identified ITIH3 as potential serum biomarker reflective of disease activity. Serum levels correlated with disease activity scores in the exploration and validation cohort and were confirmed by ELISA. Lack of correlation between anti-AChR-Ab levels and clinical scores underlined the need for biomarkers. In a subgroup analysis, ITIH3 was indicative of treatment responses. Immunostaining of muscle specimens from these patients demonstrated ITIH3 localization at the neuromuscular endplates in myasthenia gravis but not in controls, thus providing a structural equivalent for our serological findings. Immunoprecipitation of ITIH3 and subsequent proteomics lead to identification of its interaction partners playing crucial roles in neuromuscular transmission. This study provides data on ITIH3 as a potential pathophysiological-relevant biomarker of disease activity in myasthenia gravis. Future studies are required to facilitate translation into clinical practice.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Frauke Stascheit
- Department of Neurology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Bonhoefferweg 3, 10117, Berlin, Germany
| | - Vera Dobelmann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Lukas Theissen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Alice Willison
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Anna Vogelsang
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Adela Della Marina
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, 94 Mallett St, Sydney, Australia
- Department of Neurology, Palacky University Olomouc, Nová Ulice, 779 00, Olomouc, Czech Republic
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Felix F Konen
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V, 44227, Dortmund, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, 48149, Münster, Germany
| | - Michaela Schweizer
- Electron Microscopy Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich Heine University, Universitätsstr 1, 40225, Duesseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Bonhoefferweg 3, 10117, Berlin, Germany
| | - Andreas Meisel
- Department of Neurology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
23
|
Marrero AD, Cárdenas C, Castilla L, Ortega-Vidal J, Quesada AR, Martínez-Poveda B, Medina MÁ. Antiangiogenic Potential of an Olive Oil Extract: Insights from a Proteomic Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13023-13038. [PMID: 38809962 PMCID: PMC11181319 DOI: 10.1021/acs.jafc.3c08851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Extra virgin olive oil (EVOO), a staple of the Mediterranean diet, is rich in phenolic compounds recognized for their potent bioactive effects, including anticancer and anti-inflammatory properties. However, its effects on vascular health remain relatively unexplored. In this study, we examined the impact of a "picual" EVOO extract from Jaén, Spain, on endothelial cells. Proteomic analysis revealed the modulation of angiogenesis-related processes. In subsequent in vitro experiments, the EVOO extract inhibited endothelial cell migration, adhesion, invasion, ECM degradation, and tube formation while inducing apoptosis. These results provide robust evidence of the extract's antiangiogenic potential. Our findings highlight the potential of EVOO extracts in mitigating angiogenesis-related pathologies, such as cancer, macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Ana Dácil Marrero
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| | - Casimiro Cárdenas
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Servicios
Centrales de Apoyo a la Investigación (SCAI), Universidad de Málaga, E-29071 Málaga, Spain
| | - Laura Castilla
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Juan Ortega-Vidal
- Departamento
de Química Inorgánica y Orgánica, Campus de Excelencia
Internacional Agroalimentaria ceiA3, Universidad
de Jaén, Jaén E- 23071, Spain
| | - Ana R. Quesada
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de
Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
24
|
Kalaidopoulou Nteak S, Völlmy F, Lukassen MV, van den Toorn H, den Boer MA, Bondt A, van der Lans SPA, Haas PJ, van Zuilen AD, Rooijakkers SHM, Heck AJR. Longitudinal Fluctuations in Protein Concentrations and Higher-Order Structures in the Plasma Proteome of Kidney Failure Patients Subjected to a Kidney Transplant. J Proteome Res 2024; 23:2124-2136. [PMID: 38701233 PMCID: PMC11165583 DOI: 10.1021/acs.jproteome.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Using proteomics and complexome profiling, we evaluated in a year-long study longitudinal variations in the plasma proteome of kidney failure patients, prior to and after a kidney transplantation. The post-transplant period was complicated by bacterial infections, resulting in dramatic changes in the proteome, attributed to an acute phase response (APR). As positive acute phase proteins (APPs), being elevated upon inflammation, we observed the well-described C-reactive protein and Serum Amyloid A (SAA), but also Fibrinogen, Haptoglobin, Leucine-rich alpha-2-glycoprotein, Lipopolysaccharide-binding protein, Alpha-1-antitrypsin, Alpha-1-antichymotrypsin, S100, and CD14. As negative APPs, being downregulated upon inflammation, we identified the well-documented Serotransferrin and Transthyretin, but added Kallistatin, Heparin cofactor 2, and interalpha-trypsin inhibitor heavy chain H1 and H2 (ITIH1, ITIH2). For the patient with the most severe APR, we performed plasma complexome profiling by SEC-LC-MS on all longitudinal samples. We observed that several plasma proteins displaying alike concentration patterns coelute and form macromolecular complexes. By complexome profiling, we expose how SAA1 and SAA2 become incorporated into high-density lipid particles, replacing largely Apolipoprotein (APO)A1 and APOA4. Overall, our data highlight that the combination of in-depth longitudinal plasma proteome and complexome profiling can shed further light on correlated variations in the abundance of several plasma proteins upon inflammatory events.
Collapse
Affiliation(s)
- Sofia Kalaidopoulou Nteak
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Utrecht 3584 CH, The Netherlands
| | - Franziska Völlmy
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Utrecht 3584 CH, The Netherlands
| | - Marie V. Lukassen
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Utrecht 3584 CH, The Netherlands
| | - Henk van den Toorn
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Utrecht 3584 CH, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Utrecht 3584 CH, The Netherlands
| | - Albert Bondt
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Utrecht 3584 CH, The Netherlands
| | - Sjors P. A. van der Lans
- Department
of Medical Microbiology, University Medical
Center Utrecht, Utrecht 3584 CH, The Netherlands
| | - Pieter-Jan Haas
- Department
of Medical Microbiology, University Medical
Center Utrecht, Utrecht 3584 CH, The Netherlands
| | - Arjan D. van Zuilen
- Department
of Nephrology and Hypertension, University
Medical Center Utrecht, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Suzan H. M. Rooijakkers
- Department
of Medical Microbiology, University Medical
Center Utrecht, Utrecht 3584 CH, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
25
|
Niu P, Zhang R, Zhang C, Li S, Li Y. Identifying novel proteins for migraine by integrating proteomes from blood and CSF with genome-wide association data. CNS Neurosci Ther 2024; 30:e14817. [PMID: 38898596 PMCID: PMC11186850 DOI: 10.1111/cns.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Proteome-wide Mendelian randomization studies have been increasingly utilized to identify potential drug targets for diseases. We aimed to identify potential therapeutic targets for migraine and its subtypes through the application of Mendelian randomization and co-localization analysis methods. METHODS We utilized cis-protein quantitative trait loci data for 1378 plasma proteins available from two studies with 7213 individuals and 35,559 individuals, respectively. Summary data for migraine and its subtypes were obtained from a genetic study involving up to 1,339,303 individuals. Proteins that passed both the discovery and validation Mendelian randomization analysis, sensitivity analysis, heterogeneity test, and pleiotropy test, were associated with ≥2 outcomes, and received strong support from co-localization analysis (PP.H4.abf ≥0.80) and were classified as tier 1 proteins. RESULTS We identified three tier 1 proteins (LRP11, ITIH1, and ADGRF5), whose genes have not been previously identified as causal genes for migraine in genetic studies. LRP11 was significantly associated with the risk of any migraine (OR [odds ratio] = 0.968, 95% CI [confidence interval] = 0.955-0.981, p = 1.27 × 10-6) and significantly/suggestively associated with three migraine subtypes. ITIH1 was significantly associated with the risk of any migraine (OR = 1.044, 95% CI = 1.024-1.065, p = 1.08 × 10-5) and migraine with visual disturbances. ADGRF5 was significantly associated with the risk of any migraine (OR = 0.964, 95% CI = 0.946-0.982, p = 8.74 × 10-5) and suggestively associated with migraine with aura. The effects of LRP11 and ADGRF5 were further replicated using cerebrospinal fluid protein data. Apart from ADGRF5, there was no evidence of potential adverse consequences when modulating the plasma levels. We also identified another four proteins (PLCG1, ARHGAP25, CHGA, and MANBA) with no potential adverse consequences when modulating the plasma levels, and their genes were not reported by previous genetic studies. CONCLUSIONS We found compelling evidence for two proteins and suggestive evidence for four proteins that could be promising targets for migraine treatment without significant adverse consequences. The corresponding genes were not reported in previous genetic studies. Future studies are needed to confirm the causal role of these proteins and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Peng‐Peng Niu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Rui Zhang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chan Zhang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shuo Li
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yu‐Sheng Li
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
26
|
Subramaniyam K, Harihar S. An Overview on the Emerging Role of the Plasma Protease Inhibitor Protein ITIH5 as a Metastasis Suppressor. Cell Biochem Biophys 2024; 82:399-409. [PMID: 38355846 DOI: 10.1007/s12013-024-01227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Most cancers are not detected until they have progressed to the point of becoming malignant and life-threatening. Chemotherapy and conventional medicines are often ineffective against cancer. Although we have made significant progress, new conceptual discoveries are still required to investigate new treatments. The role of metastasis suppressor genes as a therapeutic option for limiting tumor progression and metastasis has been on the anvil for some time. In this review, we discuss the role of ITIH5 as a metastasis suppressor gene and catalog its involvement in different cancers. We further shed light on the mode of action of ITIH5 based on the available data. The review will provide a new perspective on ITIH5 as an anti-metastatic protein and hopefully serve as an impetus for future studies towards the application of ITIH5 for clinical intervention in targeting metastatic cancers.
Collapse
Affiliation(s)
- Krishnaveni Subramaniyam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed to be) University, Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
27
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
28
|
Kasper R, Rodriguez-Alfonso A, Ständker L, Wiese S, Schneider EM. Major endothelial damage markers identified from hemadsorption filters derived from treated patients with septic shock - endoplasmic reticulum stress and bikunin may play a role. Front Immunol 2024; 15:1359097. [PMID: 38698864 PMCID: PMC11063272 DOI: 10.3389/fimmu.2024.1359097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction In septic patients the damage of the endothelial barrier is decisive leading to circulatory septic shock with disseminated vascular coagulation, edema and multiorgan failure. Hemadsorption therapy leads to rapid resolution of clinical symptoms. We propose that the isolation of proteins adsorbed to hemadsorption devices contributes to the identification of mediators responsible for endothelial barrier dysfunction. Material and methods Plasma materials enriched to hemadsorption filters (CytoSorb®) after therapy of patients in septic shock were fractionated and functionally characterized for their effect on cell integrity, viability, proliferation and ROS formation by human endothelial cells. Fractions were further studied for their contents of oxidized nucleic acids as well as peptides and proteins by mass spectrometry. Results Individual fractions exhibited a strong effect on endothelial cell viability, the endothelial layer morphology, and ROS formation. Fractions with high amounts of DNA and oxidized DNA correlated with ROS formation in the target endothelium. In addition, defined proteins such as defensins (HNP-1), SAA1, CXCL7, and the peptide bikunin were linked to the strongest additive effects in endothelial damage. Conclusion Our results indicate that hemadsorption is efficient to transiently remove strong endothelial damage mediators from the blood of patients with septic shock, which explains a rapid clinical improvement of inflammation and endothelial function. The current work indicates that a combination of stressors leads to the most detrimental effects. Oxidized ssDNA, likely derived from mitochondria, SAA1, the chemokine CXCL7 and the human neutrophil peptide alpha-defensin 1 (HNP-1) were unique for their significant negative effect on endothelial cell viability. However, the strongest damage effect occurred, when, bikunin - cleaved off from alpha-1-microglobulin was present in high relative amounts (>65%) of protein contents in the most active fraction. Thus, a relevant combination of stressors appears to be removed by hemadsorption therapy which results in fulminant and rapid, though only transient, clinical restitution.
Collapse
Affiliation(s)
- Robin Kasper
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | - Armando Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics (CUMP), Ulm University, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics (CUMP), Ulm University, Ulm, Germany
| | - E. Marion Schneider
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
29
|
Zhang W, Ma L, Zhou Q, Gu T, Zhang X, Xing H. Therapeutic Targets for Diabetic Kidney Disease: Proteome-Wide Mendelian Randomization and Colocalization Analyses. Diabetes 2024; 73:618-627. [PMID: 38211557 PMCID: PMC10958583 DOI: 10.2337/db23-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
At present, safe and effective treatment drugs are urgently needed for diabetic kidney disease (DKD). Circulating protein biomarkers with causal genetic evidence represent promising drug targets, which provides an opportunity to identify new therapeutic targets. Summary data from two protein quantitative trait loci studies are presented, one involving 4,907 plasma proteins data from 35,559 individuals and the other encompassing 4,657 plasma proteins among 7,213 European Americans. Summary statistics for DKD were obtained from a large genome-wide association study (3,345 cases and 2,372 controls) and the FinnGen study (3,676 cases and 283,456 controls). Mendelian randomization (MR) analysis was conducted to examine the potential targets for DKD. The colocalization analysis was used to detect whether the potential proteins exist in the shared causal variants. To enhance the credibility of the results, external validation was conducted. Additionally, enrichment analysis, assessment of protein druggability, and the protein-protein interaction networks were used to further enrich the research findings. The proteome-wide MR analyses identified 21 blood proteins that may causally be associated with DKD. Colocalization analysis further supported a causal relationship between 12 proteins and DKD, with external validation confirming 4 of these proteins, and TGFBI was affirmed through two separate group data sets. These results indicate that targeting these four proteins could be a promising approach for treating DKD, and warrant further clinical investigations. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Leilei Ma
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qianyi Zhou
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Tianjiao Gu
- Department of Endocrinology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haitao Xing
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
30
|
Tang F, Reeves SR, Brune JE, Chang MY, Chan CK, Waldron P, Drummond SP, Milner CM, Alonge KM, Garantziotis S, Day AJ, Altemeier WA, Frevert CW. Inter-alpha-trypsin inhibitor (IαI) and hyaluronan modifications enhance the innate immune response to influenza virus in the lung. Matrix Biol 2024; 126:25-42. [PMID: 38232913 DOI: 10.1016/j.matbio.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/19/2024]
Abstract
The inter-alpha-trypsin inhibitor (IαI) complex is composed of the bikunin core protein with a single chondroitin sulfate (CS) attached and one or two heavy chains (HCs) covalently linked to the CS chain. The HCs from IαI can be transferred to hyaluronan (HA) through a TNFα-stimulated gene-6 (TSG-6) dependent process to form an HC•HA matrix. Previous studies reported increased IαI, HA, and HC•HA complexes in mouse bronchoalveolar lavage fluid (BALF) post-influenza infection. However, the expression and incorporation of HCs into the HA matrix of the lungs during the clinical course of influenza A virus (IAV) infection and the biological significance of the HC•HA matrix are poorly understood. The present study aimed to better understand the composition of HC•HA matrices in mice infected with IAV and how these matrices regulate the host pulmonary immune response. In IAV infected mice bikunin, HC1-3, TSG-6, and HAS1-3 all show increased gene expression at various times during a 12-day clinical course. The increased accumulation of IαI and HA was confirmed in the lungs of infected mice using immunohistochemistry and quantitative digital pathology. Western blots confirmed increases in the IαI components in BALF and lung tissue at 6 days post-infection (dpi). Interestingly, HCs and bikunin recovered from BALF and plasma from mice 6 dpi with IAV, displayed differences in the HC composition by Western blot analysis and differences in bikunin's CS chain sulfation patterns by mass spectrometry analysis. This strongly suggests that the IαI components were synthesized in the lungs rather than translocated from the vascular compartment. HA was significantly increased in BALF at 6 dpi, and the HA recovered in BALF and lung tissues were modified with HCs indicating the presence of an HC•HA matrix. In vitro experiments using polyinosinic-polycytidylic acid (poly(I:C)) treated mouse lung fibroblasts (MLF) showed that modification of HA with HCs increased cell-associated HA, and that this increase was due to the retention of HA in the MLF glycocalyx. In vitro studies of leukocyte adhesion showed differential binding of lymphoid (Hut78), monocyte (U937), and neutrophil (dHL60) cell lines to HA and HC•HA matrices. Hut78 cells adhered to immobilized HA in a size and concentration-dependent manner. In contrast, the binding of dHL60 and U937 cells depended on generating a HC•HA matrix by MLF. Our in vivo findings, using multiple bronchoalveolar lavages, correlated with our in vitro findings in that lymphoid cells bound more tightly to the HA-glycocalyx in the lungs of influenza-infected mice than neutrophils and mononuclear phagocytes (MNPs). The neutrophils and MNPs were associated with a HC•HA matrix and were more readily lavaged from the lungs. In conclusion, this work shows increased IαI and HA accumulation and the formation of a HC•HA matrix in mouse lungs post-IAV infection. The formation of HA and HC•HA matrices could potentially create specific microenvironments in the lungs for immune cell recruitment and activation during IAV infection.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA.
| | - Stephen R Reeves
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jourdan E Brune
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Mary Y Chang
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Christina K Chan
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Peter Waldron
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Sheona P Drummond
- Welcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Caroline M Milner
- Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Kimberly M Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Anthony J Day
- Welcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - William A Altemeier
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Charles W Frevert
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Erxleben DA, Dodd RJ, Day AJ, Green DE, DeAngelis PL, Poddar S, Enghild JJ, Huebner JL, Kraus VB, Watkins AR, Reesink HL, Rahbar E, Hall AR. Targeted Analysis of the Size Distribution of Heavy Chain-Modified Hyaluronan with Solid-State Nanopores. Anal Chem 2024; 96:1606-1613. [PMID: 38215004 PMCID: PMC11037269 DOI: 10.1021/acs.analchem.3c04387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The glycosaminoglycan hyaluronan (HA) plays important roles in diverse physiological functions where the distribution of its molecular weight (MW) can influence its behavior and is known to change in response to disease conditions. During inflammation, HA undergoes a covalent modification in which heavy chain subunits of the inter-alpha-inhibitor family of proteins are transferred to its structure, forming heavy chain-HA (HC•HA) complexes. While limited assessments of HC•HA have been performed previously, determining the size distribution of its HA component remains a challenge. Here, we describe a selective method for extracting HC•HA from mixtures that yields material amenable to MW analysis with a solid-state nanopore sensor. After demonstrating the approach in vitro, we validate extraction of HC•HA from osteoarthritic human synovial fluid as a model complex biological matrix. Finally, we apply our technique to pathophysiology by measuring the size distributions of HC•HA and total HA in an equine model of synovitis.
Collapse
Affiliation(s)
- Dorothea A. Erxleben
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Rebecca J. Dodd
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Anthony J. Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Suruchi Poddar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, C 8000, Denmark
| | - Janet L. Huebner
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda R. Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Elaheh Rahbar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Adam R. Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
32
|
Ruhl T, Sessler TM, Keimes JM, Beier JP, Villwock S, Rose M, Dahl E. ITIH5 inhibits proliferation, adipogenic differentiation, and secretion of inflammatory cytokines of human adipose stem cells-A new key in treating obesity? FASEB J 2024; 38:e23352. [PMID: 38095340 DOI: 10.1096/fj.202301366r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/26/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is widely expressed in the human body, and it is detected to be particularly abundant in adipose tissue. ITIH5 expression is increased in people with obesity compared to lean persons and is decreased by diet-induced weight loss. This suggests that ITIH5 may be involved in the development of adiposity and clinical metabolic variables, although its exact function remains unknown. We measured the protein concentration of ITIH5 in adipose samples from patients undergoing abdominoplasty and tested for correlation with the subjects' BMI as well as inflammatory mediators. We stimulated human adipose stem cells (ASCs) with recombinant (r)ITIH5 protein and tested for an effect on proliferation, differentiation, and immunosuppressive properties when the cells were exposed to an artificial inflammatory environment. We found positive correlations between ITIH5 levels and the BMI (p < .001) as well as concentrations of inflammatory cytokines (TNF-α, IL-6, and MCP-1) in adipose tissue (p < .01). Application of the rITIH5 protein inhibited both proliferation (p < .001) and differentiation of ASCs. Especially, the development of mature adipocytes was reduced by over 50%. Moreover, rITIH5 decreased the release of IL-6 and MCP-1 when the cells were exposed to TNF-α and IL-1β (p < .001). Our data suggest that ITIH5 is an adipokine that is increasingly released during human adipose tissue development, acting as a regulator that inhibits proliferation and adipogenic differentiation of ASCs. ITIH5 thus presents itself as a positive regulator of adipose tissue homeostasis, possibly protecting against both hyperplasia and hypertrophy of adipose tissue and the associated chronic inflammation.
Collapse
Affiliation(s)
- Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Thomas M Sessler
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Jana M Keimes
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Sophia Villwock
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Rose
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
33
|
Mukhopadhyay A, Deshpande SN, Bhatia T, Thelma BK. Significance of an altered lncRNA landscape in schizophrenia and cognition: clues from a case-control association study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1677-1691. [PMID: 37009928 DOI: 10.1007/s00406-023-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Genetic etiology of schizophrenia is poorly understood despite large genome-wide association data. Long non-coding RNAs (lncRNAs) with a probable regulatory role are emerging as important players in neuro-psychiatric disorders including schizophrenia. Prioritising important lncRNAs and analyses of their holistic interaction with their target genes may provide insights into disease biology/etiology. Of the 3843 lncRNA SNPs reported in schizophrenia GWASs extracted using lincSNP 2.0, we prioritised n = 247 based on association strength, minor allele frequency and regulatory potential and mapped them to lncRNAs. lncRNAs were then prioritised based on their expression in brain using lncRBase, epigenetic role using 3D SNP and functional relevance to schizophrenia etiology. 18 SNPs were finally tested for association with schizophrenia (n = 930) and its endophenotypes-tardive dyskinesia (n = 176) and cognition (n = 565) using a case-control approach. Associated SNPs were characterised by ChIP seq, eQTL, and transcription factor binding site (TFBS) data using FeatSNP. Of the eight SNPs significantly associated, rs2072806 in lncRNA hsaLB_IO39983 with regulatory effect on BTN3A2 was associated with schizophrenia (p = 0.006); rs2710323 in hsaLB_IO_2331 with role in dysregulation of ITIH1 with tardive dyskinesia (p < 0.05); and four SNPs with significant cognition score reduction (p < 0.05) in cases. Two of these with two additional variants in eQTL were observed among controls (p < 0.05), acting likely as enhancer SNPs and/or altering TFBS of eQTL mapped downstream genes. This study highlights important lncRNAs in schizophrenia and provides a proof of concept of novel interactions of lncRNAs with protein-coding genes to elicit alterations in immune/inflammatory pathways of schizophrenia.
Collapse
Affiliation(s)
- Anirban Mukhopadhyay
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Smita N Deshpande
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Triptish Bhatia
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
34
|
Sun Z, Zhang Y, Zhou H, Li J, Zhou Y, Wang L. Serum interα-trypsin inhibitor heavy chain H4 may be an anti-inflammatory marker reflecting disease risk, activity and treatment outcome of ankylosing spondylitis. Scand J Clin Lab Invest 2023; 83:540-547. [PMID: 38156824 DOI: 10.1080/00365513.2023.2250986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/28/2023] [Accepted: 08/19/2023] [Indexed: 01/03/2024]
Abstract
Interα-trypsin inhibitor heavy chain H4 (ITIH4) modulates inflammation and immunity, which take part in the pathogenesis of ankylosing spondylitis (AS). The current research intended to discover the clinical value of serum ITIH4 quantification for AS management. Serum ITIH4 among 80 AS patients before current treatment initiation (baseline) at weeks (W) 4, 8 and 12 after treatment was detected by ELISA. Serum ITIH4 from 20 disease controls (DCs) and 20 healthy controls (HCs) was detected. ITIH4 expression was lower in AS patients than in DCs (p = 0.002) and HCs (p < 0.001). Among AS patients, ITIH4 was negatively associated with C-reactive protein (CRP) (r = -0.311, p = 0.005), bath AS disease activity index (BASDAI) (r = -0.223, p = 0.047), total pack pain (r = -0.273, p = 0.014) and AS disease activity score (ASDAS) (CRP) (r = -0.265, p = 0.018). Meanwhile, ITIH4 was negatively related to tumor necrosis factor (TNF)-α (r = -0.364, p = 0.001), interleukin (IL)-1β (r = -0.251, p = 0.025), IL-6 (r = -0.292, p = 0.009) and IL-17A (r = -0.254, p = 0.023). After treatment, the assessment of the spondylitis arthritis international society 40 response rate was 28.7% at W4, 46.3% at W8 and 55.0% at W12; ITIH4 showed an increasing trend from baseline to W12 (p < 0.001). Furthermore, ITIH4 at W8 (p = 0.020) and W12 (p = 0.035), but not at baseline or W4 (both p > 0.05), was enhanced in response patients vs. nonresponse patients. Additionally, ITIH4 at W12 was increased in AS patients receiving TNF inhibitors vs. those receiving nonsteroidal anti-inflammatory drugs (NSAIDs) (p = 0.024). Serum ITIH4 increases after treatment, and its augmentation is correlated with lower disease activity, decreased inflammation and enhanced treatment response in AS patients.
Collapse
Affiliation(s)
- Zhumin Sun
- Department of Rheumatology and Immunology, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| | - Yang Zhang
- Department of Rheumatology and Immunology, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| | - Haiyan Zhou
- Department of Rheumatology and Immunology, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| | - Jingyun Li
- Department of Rheumatology and Immunology, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| | - Yue Zhou
- Department of Rheumatology and Immunology, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| | - Liyun Wang
- Department of Pharmacy, Shuyang County Hospital of Traditional Chinese Medicine, Suqian, P.R. China
| |
Collapse
|
35
|
Xu H, Qin H, Hua Y, Dalbeth N. Contributions of joint damage-related events to gout pathogenesis: new insights from laboratory research. Ann Rheum Dis 2023; 82:1511-1515. [PMID: 37586760 DOI: 10.1136/ard-2023-224679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Epidemiological and imaging findings indicate that gout frequently affects damaged joints. Recent studies suggest that the relationship between gout and joint damage may be more complex than a simple unidirectional link and that joint damage may promote the development of gout at affected sites. In this article, we review the clinical associations and recent laboratory research identifying events in the setting of osteoarthritis or joint injury that can alter the intraarticular microenvironment and locally regulate monosodium urate crystallisation and deposition or amplify the inflammatory response to deposited crystals. This includes cartilage matrix proteins or fibres released into the articular space that accelerates the crystallisation process, as well as the lack of lubricin and fibroblast priming that enhances the immune response towards the deposited crystals. These findings provide new insights into gout pathogenesis and offer a possible explanation for the site preference of gout in the damaged joint.
Collapse
Affiliation(s)
- HanLin Xu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Medicine, The University of Auckland, Auckland, New Zealand
| | - Hengwei Qin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - YingHui Hua
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Nicola Dalbeth
- Department of Medicine, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Massimino AM, Colella FE, Bottazzi B, Inforzato A. Structural insights into the biological functions of the long pentraxin PTX3. Front Immunol 2023; 14:1274634. [PMID: 37885881 PMCID: PMC10598717 DOI: 10.3389/fimmu.2023.1274634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Soluble pattern recognition molecules (PRMs) are a heterogenous group of proteins that recognize pathogen- and danger-associated molecular patterns (PAMPs and DAMPs, respectively), and cooperate with cell-borne receptors in the orchestration of innate and adaptive immune responses to pathogenic insults and tissue damage. Amongst soluble PRMs, pentraxins are a family of highly conserved proteins with distinctive structural features. Originally identified in the early 1990s as an early inflammatory gene, PTX3 is the prototype of long pentraxins. Unlike the short pentraxin C reactive protein (CRP), whose expression is mostly confined to the liver, PTX3 is made by several immune and non-immune cells at sites of infection and inflammation, where it intercepts fundamental aspects of infection immunity, inflammation, and tissue remodeling. Of note, PTX3 cross talks to components of the complement system to control cancer-related inflammation and disposal of pathogens. Also, it is an essential component of inflammatory extracellular matrices (ECMs) through crosslinking of hyaluronic acid and turn-over of provisional fibrin networks that assemble at sites of tissue injury. This functional diversity is mediated by unique structural characteristics whose fine details have been unveiled only recently. Here, we revisit the structure/function relationships of this long pentraxin in light of the most recent advances in its structural biology, with a focus on the interplay with complement and the emerging roles as a component of the ECM. Differences to and similarities with the short pentraxins are highlighted and discussed.
Collapse
Affiliation(s)
| | | | - Barbara Bottazzi
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
37
|
Moreno IY, Parsaie A, Gesteira TF, Coulson-Thomas VJ. Characterization of the Limbal Epithelial Stem Cell Niche. Invest Ophthalmol Vis Sci 2023; 64:48. [PMID: 37906057 PMCID: PMC10619699 DOI: 10.1167/iovs.64.13.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose Limbal epithelial stem cells (LESCs) reside within a LSC niche (LSCN). We recently identified that hyaluronan (HA) is a major constituent of the LSCN, and that HA is necessary for maintaining LESCs in the "stem cell" state, both in vitro and in vivo. Herein, we characterized the LSCN to identify key components of the HA-specific LSCN. Methods The cornea and limbal rim were dissected from mouse corneas, subjected to mRNA extraction, and sequenced using a NextSeq 500 (Illumina) and data processed using CLC Genomics Workbench 20 (Qiagen) and the STRING database to identify key components of the LSCN. Their expression was confirmed by real-time PCR, Western blotting, and immunohistochemistry. Furthermore, the differential expression of key compounds in different corneal cell types were determined with single-cell RNA sequencing. Results We identified that the hyaladherins inter-alpha-inhibitor (IαI), TSG-6 and versican are highly expressed in the limbus. Specifically, HA/HC complexes are present in the LSCN, in the stroma underlying the limbal epithelium, and surrounding the limbal vasculature. For IαI, heavy chains 5 and 2 (HC5 and HC2) were found to be the most highly expressed HCs in the mouse and human limbus and were associate with HA-forming HA/HC-specific matrices. Conclusions The LSCN contains HA/HC complexes, which have been previously correlated with stem cell niches. The identification of HA/HC complexes in the LSCN could serve as a new therapeutic avenue for treating corneal pathology. Additionally, HA/HC complexes could be used as a substrate for culturing LESCs before LESC transplantation.
Collapse
Affiliation(s)
- Isabel Y. Moreno
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Arian Parsaie
- College of Optometry, University of Houston, Houston, Texas, United States
- College of Natural Science and Mathematics, University of Houston, Houston, Texas, United States
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
38
|
Farrugia BL, Melrose J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int J Mol Sci 2023; 24:14101. [PMID: 37762403 PMCID: PMC10531531 DOI: 10.3390/ijms241814101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.
Collapse
Affiliation(s)
- Brooke L. Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School (Northern), University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
39
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
40
|
Elsaid K, Merriman TR, Rossitto LA, Liu-Bryan R, Karsh J, Phipps-Green A, Jay GD, Elsayed S, Qadri M, Miner M, Cadzow M, Dambruoso TJ, Schmidt TA, Dalbeth N, Chhana A, Höglund J, Ghassemian M, Campeau A, Maltez N, Karlsson NG, Gonzalez DJ, Terkeltaub R. Amplification of Inflammation by Lubricin Deficiency Implicated in Incident, Erosive Gout Independent of Hyperuricemia. Arthritis Rheumatol 2023; 75:794-805. [PMID: 36457235 PMCID: PMC10191887 DOI: 10.1002/art.42413] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE In gout, hyperuricemia promotes urate crystal deposition, which stimulates the NLRP3 inflammasome and interleukin-1β (IL-1β)-mediated arthritis. Incident gout without background hyperuricemia is rarely reported. To identify hyperuricemia-independent mechanisms driving gout incidence and progression, we characterized erosive urate crystalline inflammatory arthritis in a young female patient with normouricemia diagnosed as having sufficient and weighted classification criteria for gout according to the American College of Rheumatology (ACR)/EULAR gout classification criteria (the proband). METHODS We conducted whole-genome sequencing, quantitative proteomics, whole-blood RNA-sequencing analysis using serum samples from the proband. We used a mouse model of IL-1β-induced knee synovitis to characterize proband candidate genes, biomarkers, and pathogenic mechanisms of gout. RESULTS Lubricin level was attenuated in human proband serum and associated with elevated acute-phase reactants and inflammatory whole-blood transcripts and transcriptional pathways. The proband had predicted damaging gene variants of NLRP3 and of inter-α trypsin inhibitor heavy chain 3, an inhibitor of lubricin-degrading cathepsin G. Changes in the proband's serum protein interactome network supported enhanced lubricin degradation, with cathepsin G activity increased relative to its inhibitors, SERPINB6 and thrombospondin 1. Activation of Toll-like receptor 2 (TLR-2) suppressed levels of lubricin mRNA and lubricin release in cultured human synovial fibroblasts (P < 0.01). Lubricin blunted urate crystal precipitation and IL-1β induction of xanthine oxidase and urate in cultured macrophages (P < 0.001). In lubricin-deficient mice, injection of IL-1β in knees increased xanthine oxidase-positive synovial resident M1 macrophages (P < 0.05). CONCLUSION Our findings linked normouricemic erosive gout to attenuated lubricin, with impaired control of cathepsin G activity, compounded by deleterious NLRP3 variants. Lubricin suppressed monosodium urate crystallization and blunted IL-1β-induced increases in xanthine oxidase and urate in macrophages. The collective activities of articular lubricin that could limit incident and erosive gouty arthritis independently of hyperuricemia are subject to disruption by inflammation, activated cathepsin G, and synovial fibroblast TLR-2 signaling.
Collapse
Affiliation(s)
- Khaled Elsaid
- Chapman University School of Pharmacy, Irvine, California
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Leigh-Ana Rossitto
- Department of Pharmacology, School of Medicine, and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, California
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, San Diego, and Department of Medicine, UC San Diego, La Jolla, California
| | - Jacob Karsh
- The Ottawa Hospital, Division of Rheumatology, University of Ottawa, Canada
| | | | - Gregory D Jay
- Department of Emergency Medicine, Alpert School of Medicine, and Division of Biomedical Engineering, School of Engineering, Brown University, Rhode, Island
| | - Sandy Elsayed
- Chapman University School of Pharmacy, Irvine, California
| | | | - Marin Miner
- VA San Diego Healthcare System, San Diego, California
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Talia J Dambruoso
- Division of Biomedical Engineering, School of Engineering, Brown University, Rhode, Island
| | - Tannin A Schmidt
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, Connecticut
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Ashika Chhana
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Jennifer Höglund
- Department of Medical Biochemistry, Institute for Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, Department of Chemistry/Biochemistry, UC San Diego
| | - Anaamika Campeau
- Department of Pharmacology, School of Medicine, and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, California
| | - Nancy Maltez
- The Ottawa Hospital, Division of Rheumatology, University of Ottawa, Canada
| | - Niclas G Karlsson
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway, and Department of Medical Biochemistry, Institute for Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - David J Gonzalez
- Department of Pharmacology, School of Medicine, and Skaggs School of Pharmacy and Pharmaceutical Sciences, Collaborative Center for Multiplexed Proteomics, Program for Integrative Omics and Data Science in Disease Prevention and Therapeutics, UC San Diego, La Jolla, California
| | - Robert Terkeltaub
- VA San Diego Healthcare System and Department of Medicine, UC San Diego
| |
Collapse
|
41
|
Mahapatra C, Naik P, Swain SK, Mohapatra PP. Unravelling the limb regeneration mechanisms of Polypedates maculatus, a sub-tropical frog, by transcriptomics. BMC Genomics 2023; 24:122. [PMID: 36927452 PMCID: PMC10022135 DOI: 10.1186/s12864-023-09205-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Regeneration studies help to understand the strategies that replace a lost or damaged organ and provide insights into approaches followed in regenerative medicine and engineering. Amphibians regenerate their limbs effortlessly and are indispensable models to study limb regeneration. Xenopus and axolotl are the key models for studying limb regeneration but recent studies on non-model amphibians have revealed species specific differences in regeneration mechanisms. RESULTS The present study describes the de novo transcriptome of intact limbs and three-day post-amputation blastemas of tadpoles and froglets of the Asian tree frog Polypedates maculatus, a non-model amphibian species commonly found in India. Differential gene expression analysis between early tadpole and froglet limb blastemas discovered species-specific novel regulators of limb regeneration. The present study reports upregulation of proteoglycans, such as epiphycan, chondroadherin, hyaluronan and proteoglycan link protein 1, collagens 2,5,6, 9 and 11, several tumour suppressors and methyltransferases in the P. maculatus tadpole blastemas. Differential gene expression analysis between tadpole and froglet limbs revealed that in addition to the expression of larval-specific haemoglobin and glycoproteins, an upregulation of cysteine and serine protease inhibitors and downregulation of serine proteases, antioxidants, collagenases and inflammatory genes in the tadpole limbs were essential for creating an environment that would support regeneration. Dermal myeloid cells were GAG+, EPYC+, INMT+, LEF1+ and SALL4+ and seemed to migrate from the unamputated regions of the tadpole limb to the blastema. On the other hand, the myeloid cells of the froglet limb blastemas were few and probably contributed to sustained inflammation resulting in healing. CONCLUSIONS Studies on non-model amphibians give insights into alternate tactics for limb regeneration which can help devise a plethora of methods in regenerative medicine and engineering.
Collapse
Affiliation(s)
- Cuckoo Mahapatra
- P.G. Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, 757003, India.
| | - Pranati Naik
- P.G. Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, 757003, India
| | - Sumanta Kumar Swain
- P.G. Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, 757003, India
| | | |
Collapse
|
42
|
Sánchez-López L, Ropero de Torres N, Chico B, Soledad Fagali N, de los Ríos V, Escudero ML, García-Alonso MC, Lozano RM. Effect of Wear-Corrosion of Reduced Graphene Oxide Functionalized with Hyaluronic Acid on Inflammatory and Proteomic Response of J774A.1 Macrophages. METALS 2023; 13:598. [DOI: 10.3390/met13030598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The presence of a worn surface in the implanted material, as in the case of a replacement of a damaged osteoarticular joint, is the normal condition after implantation. This manuscript focuses precisely on the comparative study of the cellular behavior on worn CoCr surfaces, analyzing the effect of different surface modifications on macrophages’ responses. CoCr surfaces were modified by the deposition of electrochemically reduced graphene oxide (CoCrErGO), followed by additional surface functionalization with hyaluronic acid (CoCrErGOHA). After the wear corrosion processes, the macrophage response was studied. In addition, macrophage supernatants exposed to the surfaces, before and after wear, were also evaluated for osteoblast response through the analysis of the metabolic activity, plasma membrane damage, and phosphatase alkaline activity (ALP). The proteomic analysis and the quantitative TNF-α/IL-10 ratios of the J774A.1 macrophages exposed to the surfaces under study showed a polarization shift from M0 (basal state) to M1, associated with the pro-inflammatory response of all surfaces. A lower M1 polarization was observed upon exposure to the surface modification with ErGO, whereas posterior HA functionalization attenuated, even more, the M1 polarization. The wear corrosion process contributed to inflammation and exacerbated the M1 polarization response on macrophages to CoCr, which was diminished for the ErGO and attenuated the most for the ErGOHA surfaces. Comparative proteomics showed that the pathways related to M1 polarization were downregulated on the surfaces of CoCrErGOHA, which suggests mechanisms for the observed attenuation of M1 polarization. The suitable immuno-modulatory potential induced by the ErGOHA surface, with and without wear, together with the stimulation of ALP activity in osteoblasts induced by macrophage supernatants, promotes the mineralization processes necessary for bone repair. This makes it feasible to consider the adsorption of ErGOHA on CoCr as a recommended surface treatment for the use of biomaterials in osseous joint applications.
Collapse
Affiliation(s)
- Luna Sánchez-López
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- PhD Program in Advanced Materials and Nanotechnology, Doctoral School, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Noelia Ropero de Torres
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Belén Chico
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Natalia Soledad Fagali
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Vivian de los Ríos
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - María Lorenza Escudero
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - María Cristina García-Alonso
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Rosa María Lozano
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
43
|
Zhao X, Guo Y, Li L, Li Y. Longitudinal change of serum inter-alpha-trypsin inhibitor heavy chain H4, and its correlation with inflammation, multiorgan injury, and death risk in sepsis. J Clin Lab Anal 2023; 37:e24834. [PMID: 36725250 PMCID: PMC9978082 DOI: 10.1002/jcla.24834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) inhibits infection-induced inflammation and multiorgan injury through several methods. The present study aimed to estimate the association of serum ITIH4 with inflammatory cytokines, multiorgan injury, and death risk in sepsis patients. METHODS Serum samples were collected to detect ITIH4 by enzyme-linked immunosorbent assay in 127 sepsis patients at admission (baseline), day (D)1, D3, and D7 after admission, as well as in 30 healthy controls (HCs). Additionally, 28-day mortality was recorded in sepsis patients. RESULTS ITIH4 was reduced in sepsis patients versus HCs (median [interquartile range]: 147.9 [78.2-208.8] vs. 318.8 [237.2-511.4] ng/ml) (p < 0.001). In sepsis patients, ITIH4 was associated with the absence of cardiovascular and cerebrovascular disease history (p = 0.021). Additionally, ITIH4 was negatively correlated with tumor necrosis factor-α (p < 0.001), interleukin (IL)-1β (p < 0.001), IL-6 (p = 0.019), IL-17A (p = 0.002), and C-reactive protein (p = 0.001), but positively related to IL-10 (p = 0.007). Moreover, ITIH4 was also inversely associated with Acute Physiology and Chronic Health Evaluation II score (p = 0.002), Sequential Organ Failure Assessment (SOFA) score (p < 0.001), SOFA-respiratory system score (p = 0.023), and SOFA-renal system score (p = 0.007). Interestingly, ITIH4 gradually increased from baseline to D7 (p < 0.001); besides, ITIH4 at baseline (p = 0.009), D1 (p = 0.002), D3 (p < 0.001), and D7 (p = 0.015) were all decreased in sepsis deaths versus sepsis survivors. CONCLUSION Serum ITIH4 is raised from baseline to D7 after disease onset, and it reflects the reduction of systemic inflammation, disease severity, and 28-day mortality for sepsis. However, further verification is required.
Collapse
Affiliation(s)
- Xiangwang Zhao
- Department of Emergency Medicine, Shanghai East Hospital, Shanghai, China
| | - Yong Guo
- Department of Intensive Care Medicine, The Third People's Hospital, Qingdao, China
| | - Lingyu Li
- Department of Emergency Medicine, Shanghai East Hospital, Shanghai, China
| | - Yusheng Li
- Department of Emergency Medicine, Shanghai East Hospital, Shanghai, China
| |
Collapse
|
44
|
Barnes HW, Demirdjian S, Haddock NL, Kaber G, Martinez HA, Nagy N, Karmouty-Quintana H, Bollyky PL. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol 2023; 116:49-66. [PMID: 36750167 PMCID: PMC9899355 DOI: 10.1016/j.matbio.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as the cause of a global pandemic. Infection with SARS-CoV-2 can result in COVID-19 with both acute and chronic disease manifestations that continue to impact many patients long after the resolution of viral replication. There is therefore great interest in understanding the host factors that contribute to COVID-19 pathogenesis. In this review, we address the role of hyaluronan (HA), an extracellular matrix polymer with roles in inflammation and cellular metabolism, in COVID-19 and critically evaluate the hypothesis that HA promotes COVID-19 pathogenesis. We first provide a brief overview of COVID-19 infection. Then we briefly summarize the known roles of HA in airway inflammation and immunity. We then address what is known about HA and the pathogenesis of COVID-19 acute respiratory distress syndrome (COVID-19 ARDS). Next, we examine potential roles for HA in post-acute SARS-CoV-2 infection (PASC), also known as "long COVID" as well as in COVID-associated fibrosis. Finally, we discuss the potential therapeutics that target HA as a means to treat COVID-19, including the repurposed drug hymecromone (4-methylumbelliferone). We conclude that HA is a promising potential therapeutic target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Henry W Barnes
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Sally Demirdjian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Hunter A Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
46
|
Rizzo G, Rubbino F, Elangovan S, Sammarco G, Lovisa S, Restelli S, Pineda Chavez SE, Massimino L, Lamparelli L, Paulis M, Maroli A, Roda G, Shalaby M, Carvello M, Foppa C, Drummond SP, Spaggiari P, Ungaro F, Spinelli A, Malesci A, Repici A, Day AJ, Armuzzi A, Danese S, Vetrano S. Dysfunctional Extracellular Matrix Remodeling Supports Perianal Fistulizing Crohn's Disease by a Mechanoregulated Activation of the Epithelial-to-Mesenchymal Transition. Cell Mol Gastroenterol Hepatol 2022; 15:741-764. [PMID: 36521659 PMCID: PMC9898761 DOI: 10.1016/j.jcmgh.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Perianal fistula represents one of the most disabling manifestations of Crohn's disease (CD) due to complete destruction of the affected mucosa, which is replaced by granulation tissue and associated with changes in tissue organization. To date, the molecular mechanisms underlying perianal fistula formation are not well defined. Here, we dissected the tissue changes in the fistula area and addressed whether a dysregulation of extracellular matrix (ECM) homeostasis can support fistula formation. METHODS Surgical specimens from perianal fistula tissue and the surrounding region of fistulizing CD were analyzed histologically and by RNA sequencing. Genes significantly modulated were validated by real-time polymerase chain reaction, Western blot, and immunofluorescence assays. The effect of the protein product of TNF-stimulated gene-6 (TSG-6) on cell morphology, phenotype, and ECM organization was investigated with endogenous lentivirus-induced overexpression of TSG-6 in Caco-2 cells and with exogenous addition of recombinant human TSG-6 protein to primary fibroblasts from region surrounding fistula. Proliferative and migratory assays were performed. RESULTS A markedly different organization of ECM was found across fistula and surrounding fistula regions with an increased expression of integrins and matrix metalloproteinases and hyaluronan (HA) staining in the fistula, associated with increased newly synthesized collagen fibers and mechanosensitive proteins. Among dysregulated genes associated with ECM, TNFAI6 (gene encoding for TSG-6) was as significantly upregulated in the fistula compared with area surrounding fistula, where it promoted the pathological formation of complexes between heavy chains from inter-alpha-inhibitor and HA responsible for the formation of a crosslinked ECM. There was a positive correlation between TNFAI6 expression and expression of mechanosensitive genes in fistula tissue. The overexpression of TSG-6 in Caco-2 cells promoted migration, epithelial-mesenchymal transition, transcription factor SNAI1, and HA synthase (HAs) levels, while in fibroblasts, isolated from the area surrounding the fistula, it promoted an activated phenotype. Moreover, the enrichment of an HA scaffold with recombinant human TSG-6 protein promoted collagen release and increase of SNAI1, ITGA4, ITGA42B, and PTK2B genes, the latter being involved in the transduction of responses to mechanical stimuli. CONCLUSIONS By mediating changes in the ECM organization, TSG-6 triggers the epithelial-mesenchymal transition transcription factor SNAI1 through the activation of mechanosensitive proteins. These data point to regulators of ECM as new potential targets for the treatment of CD perianal fistula.
Collapse
Affiliation(s)
- Giulia Rizzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Giusy Sammarco
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Silvia Restelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | - Luca Massimino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy; Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luigi Lamparelli
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Marianna Paulis
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Institute of Genetic and Biomedical Research, UOS Milan, National Research Council of Italy, Milan, Italy
| | - Annalisa Maroli
- Colon and Rectal Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giulia Roda
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Mohammad Shalaby
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Michele Carvello
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Colon and Rectal Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Caterina Foppa
- Colon and Rectal Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Sheona P Drummond
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Paola Spaggiari
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy; Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milan, Italy; Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Colon and Rectal Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Alberto Malesci
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy; Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Digestive Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Alessandro Armuzzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy; Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milan, Italy; Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy.
| |
Collapse
|
47
|
Cavallero GJ, Wang Y, Nwosu C, Gu S, Meiyappan M, Zaia J. O-Glycoproteomic analysis of engineered heavily glycosylated fusion proteins using nanoHILIC-MS. Anal Bioanal Chem 2022; 414:7855-7863. [PMID: 36136114 PMCID: PMC9568489 DOI: 10.1007/s00216-022-04318-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
Recombinant protein engineering design affects therapeutic properties including protein efficacy, safety, and immunogenicity. Importantly, glycosylation modulates glycoprotein therapeutic pharmacokinetics, pharmacodynamics, and effector functions. Furthermore, the development of fusion proteins requires in-depth characterization of the protein integrity and its glycosylation to evaluate their critical quality attributes. Fc-fusion proteins can be modified by complex glycosylation on the active peptide, the fragment crystallizable (Fc) domain, and the linker peptides. Moreover, the type of glycosylation and the glycan distribution at a given glycosite depend on the host cell line and the expression system conditions that significantly impact safety and efficacy. Because of the inherent heterogeneity of glycosylation, it is necessary to assign glycan structural detail for glycoprotein quality control. Using conventional reversed-phase LC-MS methods, the different glycoforms at a given glycosite elute over a narrow retention time window, and glycopeptide ionization is suppressed by co-eluting non-modified peptides. To overcome this drawback, we used nanoHILIC-MS to characterize the complex glycosylation of UTI-Fc, a fusion protein that greatly increases the half-life of ulinastatin. By this methodology, we identified and characterized ulinastatin glycopeptides at the Fc domain and linker peptide. The results described herein demonstrate the advantages of nanoHILIC-MS to elucidate glycan features on glycotherapeutics that fail to be detected using traditional reversed-phase glycoproteomics.
Collapse
Affiliation(s)
- Gustavo J Cavallero
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yan Wang
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Charles Nwosu
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Sheng Gu
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Muthuraman Meiyappan
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
48
|
Nishibori M. Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19. J Pharmacol Sci 2022; 150:9-20. [PMID: 35926948 PMCID: PMC9197787 DOI: 10.1016/j.jphs.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, sepsis was newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis remains one of the crucial medical problems to be solved worldwide. Although the world health organization has made sepsis a global health priority, there remain no specific and effective therapy for sepsis so far. Indeed, over the previous decades almost all attempts to develop novel drugs have failed. This may be partly ascribable to the multifactorial complexity of the septic cascade and the resultant difficulties of identifying drug targets. In addition, there might still be missing links among dysregulated host responses in vital organs. In this review article, recent advances in understanding of the complex pathophysiology of sepsis are summarized, with a focus on neutrophil extracellular traps (NETs), the significant role of NETs in thrombosis/embolism, and the functional roles of plasma proteins, histidine-rich glycoprotein (HRG) and inter-alpha-inhibitor proteins (IAIPs). The specific plasma proteins that are markedly decreased in the acute phase of sepsis may play important roles in the regulation of blood cells, vascular endothelial cells and coagulation. The accumulating evidence may provide us with insights into a novel aspect of the pathophysiology of sepsis and septic ARDS, including that in COVID-19.
Collapse
Affiliation(s)
- M Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
49
|
Mead TJ, Bhutada S, Martin DR, Apte SS. Proteolysis: a key post-translational modification regulating proteoglycans. Am J Physiol Cell Physiol 2022; 323:C651-C665. [PMID: 35785985 PMCID: PMC9448339 DOI: 10.1152/ajpcell.00215.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
Proteoglycans are composite molecules comprising a protein backbone, i.e., the core protein, with covalently attached glycosaminoglycan chains of distinct chemical types. Most proteoglycans are secreted or attached to the cell membrane. Their specialized structures, binding properties, and biophysical attributes underlie diverse biological roles, which include modulation of tissue mechanics, cell adhesion, and the sequestration and regulated release of morphogens, growth factors, and cytokines. As an irreversible post-translational modification, proteolysis has a profound impact on proteoglycan function, abundance, and localization. Proteolysis is required for molecular maturation of some proteoglycans, clearance of extracellular matrix proteoglycans during tissue remodeling, generation of bioactive fragments from proteoglycans, and ectodomain shedding of cell-surface proteoglycans. Genetic evidence shows that proteoglycan core protein proteolysis is essential for diverse morphogenetic events during embryonic development. In contrast, dysregulated proteoglycan proteolysis contributes to osteoarthritis, cardiovascular disorders, cancer, and inflammation. Proteolytic fragments of perlecan, versican, aggrecan, brevican, collagen XVIII, and other proteoglycans are associated with independent biological activities as so-called matrikines. Yet, proteoglycan proteolysis has been investigated to only a limited extent to date. Here, we review the actions of proteases on proteoglycans and illustrate their functional impact with several examples. We discuss the applications and limitations of strategies used to define cleavage sites in proteoglycans and explain how proteoglycanome-wide proteolytic mapping, which is desirable to fully understand the impact of proteolysis on proteoglycans, can be facilitated by integrating classical proteoglycan isolation methods with mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
50
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|