1
|
Wang Y, Tang L, Wang J, Li W, Wang M, Chen Q, Yang Z, Li Z, Wang Z, Wu G, Zhang P. Disruption of network hierarchy pattern in bulimia nervosa reveals brain information integration disorder. Appetite 2024; 203:107694. [PMID: 39341080 DOI: 10.1016/j.appet.2024.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The human brain works as a hierarchical organization that is a continuous axis spanning sensorimotor cortex to transmodal cortex (referring to cortex that integrates multimodal sensory information and participates in complex cognitive functions). Previous studies have demonstrated abnormalities in several specific networks that may account for their multiple behavioral deficits in patients with bulimia nervosa (BN), but whether and how the network hierarchical organization changes in BN remain unknown. This study aimed to investigate alterations of the hierarchy organization in BN network and their clinical relevance. Connectome gradient analyses were applied to depict the network hierarchy patterns of fifty-nine patients with BN and thirty-nine healthy controls (HCs). Then, we evaluated the network- and voxel-level gradient alterations of BN by comparing gradient values in each network and each voxel between patients with BN and HCs. Finally, the association between altered gradient values and clinical variables was explored. In the principal gradient, patients with BN exhibited reduced gradient values in dorsal attention network and increased gradient values in subcortical regions compared to HCs. In the secondary gradient, patients with BN showed decreased gradient values in ventral attention network and increased gradient values in limbic network. Regionally, the areas with altered principal or secondary gradient values in BN group were mainly located in transmodal networks, i.e., the default-mode and frontoparietal network. In BN group, the principal gradient values of right inferior frontal gyrus were negatively associated with external eating behavior. This study revealed the disordered network hierarchy patterns in patients with BN, which suggested a disturbance of brain information integration from attention network and subcortical regions to transmodal networks in these patients. These findings may provide insight into the neurobiological underpinnings of BN.
Collapse
Affiliation(s)
- Yiling Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Lirong Tang
- Beijing Anding Hospital Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China; The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China
| | - Jiani Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Weihua Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Miao Wang
- Peking University, No.5 Summer Palace Road, Haidian District, Beijing, 100871, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Zhanjiang Li
- Beijing Anding Hospital Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China; The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China.
| | - Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No.16 Lincui Road, Chaoyang District, Beijing, 100020, China.
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
2
|
Cabalo DG, DeKraker J, Royer J, Xie K, Tavakol S, Rodríguez-Cruces R, Bernasconi A, Bernasconi N, Weil A, Pana R, Frauscher B, Caciagli L, Jefferies E, Smallwood J, Bernhardt BC. Differential reorganization of episodic and semantic memory systems in epilepsy-related mesiotemporal pathology. Brain 2024; 147:3918-3932. [PMID: 39054915 PMCID: PMC11531848 DOI: 10.1093/brain/awae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, whereas semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE and 60 age- and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient-mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, in both the MTL and neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, in contrast, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, whereas hippocampal functional topographies were unaffected. Furthermore, leveraging MRI proxies of MTL pathology, we observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic memory, but again not in semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, whereas episodic processes are supported by a network involving both the hippocampus and the neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.
Collapse
Affiliation(s)
- Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Weil
- Research Centre, CHU St Justine, Montreal, QC H3T 1C5, Canada
| | - Raluca Pana
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
3
|
Nashed JY, Gale DJ, Gallivan JP, Cook DJ. Changes in cortical manifold structure following stroke and its relation to behavioral recovery in the male macaque. Nat Commun 2024; 15:9005. [PMID: 39424864 PMCID: PMC11489416 DOI: 10.1038/s41467-024-53365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Stroke, a major cause of disability, disrupts brain function and motor skills. Previous research has mainly focused on reorganization of the motor system post-stroke, but the effects on other brain areas and their influence on recovery is poorly understood. Here, we use functional neuroimaging in a nonhuman primate model (23 male Cynomolgus Macaques), we explore how ischemic stroke affects whole-brain cortical architecture and its relation to spontaneous behavioral recovery. By projecting patterns of cortical functional connectivity onto a low-dimensional manifold space, we find that several regions in both sensorimotor cortex and higher-order transmodal cortex exhibit significant shifts in their manifold embedding from pre- to post-stroke. Furthermore, we observe that changes in default mode and limbic network regions, and not preserved sensorimotor cortical regions, are associated with animal behavioral recovery post-stroke. These results establish the whole-brain functional changes associated with stroke, and suggest an important role for higher-order transmodal cortex in post-stroke outcomes.
Collapse
Affiliation(s)
- Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
- School of Medicine, Queen's University, Kingston, ON, Canada.
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- School of Medicine, Queen's University, Kingston, ON, Canada
- Division of Neurosurgery, Department of Surgery, Queen's University, Kingston, ON, Canada
| |
Collapse
|
4
|
Chakraborty S, Haast RAM, Onuska KM, Kanel P, Prado MAM, Prado VF, Khan AR, Schmitz TW. Multimodal gradients of basal forebrain connectivity across the neocortex. Nat Commun 2024; 15:8990. [PMID: 39420185 PMCID: PMC11487139 DOI: 10.1038/s41467-024-53148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Cortical cholinergic projections originate from subregions of the basal forebrain (BF). To examine its organization in humans, we computed multimodal gradients of BF connectivity by combining 7 T diffusion and resting state functional MRI. Moving from anteromedial to posterolateral BF, we observe reduced tethering between structural and functional connectivity gradients, with the lowest tethering in the nucleus basalis of Meynert. In the neocortex, this gradient is expressed by progressively reduced tethering from unimodal sensory to transmodal cortex, with the lowest tethering in the midcingulo-insular network, and is also spatially correlated with the molecular concentration of VAChT, measured by [18F]fluoroethoxy-benzovesamicol (FEOBV) PET. In mice, viral tracing of BF cholinergic projections and [18F]FEOBV PET confirm a gradient of axonal arborization. Altogether, our findings reveal that BF cholinergic neurons vary in their branch complexity, with certain subpopulations exhibiting greater modularity and others greater diffusivity in the functional integration with their cortical targets.
Collapse
Affiliation(s)
- Sudesna Chakraborty
- Neuroscience Graduate Program, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Department of Integrated Information Technology, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan.
| | - Roy A M Haast
- Robarts Research Institute, Western University, London, Ontario, Canada
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Kate M Onuska
- Neuroscience Graduate Program, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Morris K.Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Marco A M Prado
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Ali R Khan
- Neuroscience Graduate Program, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Taylor W Schmitz
- Neuroscience Graduate Program, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Lawson Health Research Institute, Western University, London, Ontario, Canada.
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.
| |
Collapse
|
5
|
Pas KE, Saleem KS, Basser PJ, Avram AV. Direct segmentation of cortical cytoarchitectonic domains using ultra-high-resolution whole-brain diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618245. [PMID: 39464056 PMCID: PMC11507751 DOI: 10.1101/2024.10.14.618245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We assess the potential of detecting cortical laminar patterns and areal borders by directly clustering voxel values of microstructural parameters derived from high-resolution mean apparent propagator (MAP) magnetic resonance imaging (MRI), as an alternative to conventional template-warping-based cortical parcellation methods. We acquired MAP-MRI data with 200μm resolution in a fixed macaque monkey brain. To improve the sensitivity to cortical layers, we processed the data with a local anisotropic Gaussian filter determined voxel-wise by the plane tangent to the cortical surface. We directly clustered all cortical voxels using only the MAP-derived microstructural imaging biomarkers, with no information regarding their relative spatial location or dominant diffusion orientations. MAP-based 3D cytoarchitectonic segmentation revealed laminar patterns similar to those observed in the corresponding histological images. Moreover, transition regions between these laminar patterns agreed more accurately with histology than the borders between cortical areas estimated using conventional atlas/template-warping cortical parcellation. By cross-tabulating all cortical labels in the atlas- and MAP-based segmentations, we automatically matched the corresponding MAP-derived clusters (i.e., cytoarchitectonic domains) across the left and right hemispheres. Our results demonstrate that high-resolution MAP-MRI biomarkers can effectively delineate three-dimensional cortical cytoarchitectonic domains in single individuals. Their intrinsic tissue microstructural contrasts enable the construction of whole-brain mesoscopic cortical atlases.
Collapse
Affiliation(s)
- Kristofor E. Pas
- National Institutes of Health, Bethesda, MD, USA
- Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kadharbatcha S. Saleem
- National Institutes of Health, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
| | | | - Alexandru V. Avram
- National Institutes of Health, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
| |
Collapse
|
6
|
Hansen JY, Cauzzo S, Singh K, García-Gomar MG, Shine JM, Bianciardi M, Misic B. Integrating brainstem and cortical functional architectures. Nat Neurosci 2024:10.1038/s41593-024-01787-0. [PMID: 39414973 DOI: 10.1038/s41593-024-01787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
The brainstem is a fundamental component of the central nervous system, yet it is typically excluded from in vivo human brain mapping efforts, precluding a complete understanding of how the brainstem influences cortical function. In this study, we used high-resolution 7-Tesla functional magnetic resonance imaging to derive a functional connectome encompassing cortex and 58 brainstem nuclei spanning the midbrain, pons and medulla. We identified a compact set of integrative hubs in the brainstem with widespread connectivity with cerebral cortex. Patterns of connectivity between brainstem and cerebral cortex manifest as neurophysiological oscillatory rhythms, patterns of cognitive functional specialization and the unimodal-transmodal functional hierarchy. This persistent alignment between cortical functional topographies and brainstem nuclei is shaped by the spatial arrangement of multiple neurotransmitter receptors and transporters. We replicated all findings using 3-Tesla data from the same participants. Collectively, this work demonstrates that multiple organizational features of cortical activity can be traced back to the brainstem.
Collapse
Affiliation(s)
- Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard University, Boston, MA, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
7
|
Wang D, Li Z, Zhao K, Chen P, Yang F, Yao H, Zhou B, Wei Y, Lu J, Chen Y, Zhang X, Han Y, Wang P, Liu Y. Macroscale Gradient Dysfunction in Alzheimer's Disease: Patterns With Cognition Terms and Gene Expression Profiles. Hum Brain Mapp 2024; 45:e70046. [PMID: 39449114 PMCID: PMC11502409 DOI: 10.1002/hbm.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Macroscale functional gradient techniques provide a continuous coordinate system that extends from unimodal regions to transmodal higher-order networks. However, the alterations of these functional gradients in AD and their correlations with cognitive terms and gene expression profiles remain to be established. In the present study, we directly studied the functional gradients with functional MRI data from seven scanners. We adopted data-driven meta-analytic techniques to unveil AD-associated changes in the functional gradients. The principal primary-to-transmodal gradient was suppressed in AD. Compared to NCs, AD patients exhibited global connectome gradient alterations, including reduced gradient range and gradient variation, increased gradient scores in the somatomotor, ventral attention, and frontoparietal regions, and decreased in the default mode network. More importantly, the Gene Ontology terms of biological processes were significantly enriched in the potassium ion transport and protein-containing complex remodeling. Our compelling evidence provides a new perspective in understanding the connectome alterations in AD.
Collapse
Affiliation(s)
- Dawei Wang
- Department of RadiologyQilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong UniversityJinanChina
- Research Institute of Shandong UniversityMagnetic Field‐Free Medicine & Functional ImagingJinanChina
- Shandong Key Laboratory: Magnetic Field‐Free Medicine & Functional Imaging (MF)JinanChina
| | - Zhuangzhuang Li
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
| | - Kun Zhao
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Pindong Chen
- School of Artificial IntelligenceUniversity of Chinese Academy of Sciences, & Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Fan Yang
- CAS Key Laboratory of Molecular ImagingInstitute of AutomationBeijingChina
| | - Hongxiang Yao
- Department of Radiology, the Second Medical CentreNational Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Bo Zhou
- Department of Neurology, the Second Medical CentreNational Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Yongbin Wei
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Jie Lu
- Department of RadiologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yuqi Chen
- Affiliated HospitalBeijing University of Posts and TelecommunicationsBeijingChina
| | - Xi Zhang
- Department of Neurology, the Second Medical CentreNational Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Ying Han
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- School of Biomedical EngineeringHainan UniversityHaikouChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
| | - Pan Wang
- Department of NeurologyTianjin Huanhu HospitalTianjinChina
| | - Yong Liu
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
| |
Collapse
|
8
|
Zhao K, Wang D, Wang D, Chen P, Wei Y, Tu L, Chen Y, Tang Y, Yao H, Zhou B, Lu J, Wang P, Liao Z, Chen Y, Han Y, Zhang X, Liu Y. Macroscale connectome topographical structure reveals the biomechanisms of brain dysfunction in Alzheimer's disease. SCIENCE ADVANCES 2024; 10:eado8837. [PMID: 39392880 DOI: 10.1126/sciadv.ado8837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
The intricate spatial configurations of brain networks offer essential insights into understanding the specific patterns of brain abnormalities and the underlying biological mechanisms associated with Alzheimer's disease (AD), normal aging, and other neurodegenerative disorders. This study investigated alterations in the topographical structure of the brain related to aging and neurodegenerative diseases by analyzing brain gradients derived from structural MRI data across multiple cohorts (n = 7323). The analysis identified distinct gradient patterns in AD, aging, and other neurodegenerative conditions. Gene enrichment analysis indicated that inorganic ion transmembrane transport was the most significant term in normal aging, while chemical synaptic transmission is a common enrichment term across various neurodegenerative diseases. Moreover, the findings show that each disorder exhibits unique dysfunctional neurophysiological characteristics. These insights are pivotal for elucidating the distinct biological mechanisms underlying AD, thereby enhancing our understanding of its unique clinical phenotypes in contrast to normal aging and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
- Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging, Jinan, China
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Jinan, China
| | - Dong Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Pindong Chen
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Center, Chinese Academy of Sciences, Beijing, China
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Liyun Tu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yuqi Chen
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yi Tang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongxiang Yao
- Department of Radiology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Zhou
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhengluan Liao
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yan Chen
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Xi Zhang
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Center, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Kim JZ, Larsen B, Parkes L. Shaping dynamical neural computations using spatiotemporal constraints. Biochem Biophys Res Commun 2024; 728:150302. [PMID: 38968771 DOI: 10.1016/j.bbrc.2024.150302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 07/07/2024]
Abstract
Dynamics play a critical role in computation. The principled evolution of states over time enables both biological and artificial networks to represent and integrate information to make decisions. In the past few decades, significant multidisciplinary progress has been made in bridging the gap between how we understand biological versus artificial computation, including how insights gained from one can translate to the other. Research has revealed that neurobiology is a key determinant of brain network architecture, which gives rise to spatiotemporally constrained patterns of activity that underlie computation. Here, we discuss how neural systems use dynamics for computation, and claim that the biological constraints that shape brain networks may be leveraged to improve the implementation of artificial neural networks. To formalize this discussion, we consider a natural artificial analog of the brain that has been used extensively to model neural computation: the recurrent neural network (RNN). In both the brain and the RNN, we emphasize the common computational substrate atop which dynamics occur-the connectivity between neurons-and we explore the unique computational advantages offered by biophysical constraints such as resource efficiency, spatial embedding, and neurodevelopment.
Collapse
Affiliation(s)
- Jason Z Kim
- Department of Physics, Cornell University, Ithaca, NY, 14853, USA.
| | - Bart Larsen
- Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, USA
| | - Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
10
|
Fotiadis P, Parkes L, Davis KA, Satterthwaite TD, Shinohara RT, Bassett DS. Structure-function coupling in macroscale human brain networks. Nat Rev Neurosci 2024; 25:688-704. [PMID: 39103609 DOI: 10.1038/s41583-024-00846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure-function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
11
|
Qu J, Zhu R, Wu Y, Xu G, Wang D. Abnormal structural‒functional coupling patterning in progressive supranuclear palsy is associated with diverse gradients and histological features. Commun Biol 2024; 7:1195. [PMID: 39341965 PMCID: PMC11439051 DOI: 10.1038/s42003-024-06877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The anatomy of the brain supports inherent processes, fostering mental abilities and eventually facilitating adaptive behavior. Recent studies have shown that progressive supranuclear palsy (PSP) is accompanied by alterations in functional and structural networks. However, how the structure and function of PSP coordinates change is not clear, and the relationships between structural‒functional coupling (SFC) and the gradient of hierarchical structure and cellular histology remain largely unknown. Here, we use neuroimaging data from two independent cohorts and a public histological dataset to investigate the relationships among the cellular histology, hierarchical structure, and SFC of PSP patients. We find that the SFC of the entire cortex in PSP is severely disrupted, with higher coupling in the visual network (VN). Moreover, coupling differences in PSP follow a macroscopic organizational principle from unimodal to transmodal gradients. Finally, we elucidate greater laminar differentiation in VN regions sensitive to SFC changes in PSP, which is related mainly to the higher cellular density and smaller size of the internal-granular layer. In conclusion, our findings provide an interpretable framework for understanding SFC changes in PSP and provide new insights into the consistency of structural and functional changes in PSP regarding hierarchical structure and cellular histology.
Collapse
Affiliation(s)
- Junyu Qu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Rui Zhu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Yongsheng Wu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Guihua Xu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China.
- Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging, Jinan, China.
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Jinan, China.
| |
Collapse
|
12
|
Hu S, Li C, Wang Y, Wei T, Wang X, Dong T, Yang Y, Ding Y, Qiu B, Yang W. Structural lesions and transcriptomic specializations shape gradient perturbations in Wilson disease. Brain Commun 2024; 6:fcae329. [PMID: 39372139 PMCID: PMC11450269 DOI: 10.1093/braincomms/fcae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Functional dysregulations in multiple regions are caused by excessive copper deposition in the brain in Wilson disease (WD) patients. The genetic mechanism of WD is thought to involve the abnormal expression of ATP7B in the liver, whereas the biological and molecular processes involved in functional dysregulation within the brain remain unexplored. The objective of this study was to unravel the underpinnings of functional gradient perturbations underlying structural lesions and transcriptomic specializations in WD. In this study, we included 105 WD patients and 93 healthy controls who underwent structural and functional MRI assessments. We used the diffusion mapping embedding model to derive the functional connectome gradient and further employed gray matter volume to uncover structure-function decoupling for WD. Then, we used Neurosynth, clinical data, and whole-brain gene expression data to examine the meta-analytic cognitive function, clinical phenotypes, and transcriptomic specializations related to WD gradient alterations. Compared with controls, WD patients exhibited global topographic changes in the principal pramary-to-transmodal gradient. Meta-analytic terms and clinical characteristics were correlated with these gradient alterations in motor-related processing, higher-order cognition, neurological symptoms, and age. Spatial correlations revealed structure-function decoupling in multiple networks, especially in subcortical and visual networks. Within the cortex, the spatial association between gradient alterations and gene expression profiles has revealed transcriptomic specilizations in WD that display properties indicative of ion homeostasis, neural development, and motor control. Furthermore, for the first time, we characterized the role of the ATP7B gene in impacting subcortical function. The transcriptomic specializations of WD were also associated with other neurological and psychiatric disorders. Finally, we revealed that structural lesions and gradient perturbations may share similar transcriptomic specializations in WD. In conclusion, these findings bridged functional gradient perturbations to structural lesions and gene expression profiles in WD patients, possibly promoting our understanding of the neurobiological mechanisms underlying the emergence of complex neurological and psychiatric phenotypes.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230094, China
- School of Medical Information Engineering, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230012, China
| | - Chuanfu Li
- Medical Imaging Center, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yanming Wang
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Taohua Wei
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Xiaoxiao Wang
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ting Dong
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yulong Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yufeng Ding
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, Medical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230094, China
| | - Wenming Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
- Key Laboratory of Xinan Medicine of the Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230031, China
| |
Collapse
|
13
|
Weber CF, Kebets V, Benkarim O, Lariviere S, Wang Y, Ngo A, Jiang H, Chai X, Park BY, Milham MP, Di Martino A, Valk S, Hong SJ, Bernhardt BC. Contracted functional connectivity profiles in autism. Mol Autism 2024; 15:38. [PMID: 39261969 PMCID: PMC11391747 DOI: 10.1186/s13229-024-00616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes. METHODS We studied 211 males from three sites of the ABIDE-I dataset comprising 103 participants with an ASD diagnosis (mean ± SD age = 20.8 ± 8.1 years) and 108 neurotypical controls (NT, 19.2 ± 7.2 years). For each participant, we computed cortex-wide connectivity distance (CD) measures by combining geodesic distance mapping with resting-state functional connectivity profiling. We compared CD between ASD and NT participants using surface-based linear models, and studied associations with age, symptom severity, and intelligence scores. We contextualized CD alterations relative to canonical networks and explored spatial associations with functional and microstructural cortical gradients as well as cytoarchitectonic cortical types. RESULTS Compared to NT, ASD participants presented with widespread reductions in CD, generally indicating shorter average connection length and thus suggesting reduced long-range connectivity but increased short-range connections. Peak reductions were localized in transmodal systems (i.e., heteromodal and paralimbic regions in the prefrontal, temporal, and parietal and temporo-parieto-occipital cortex), and effect sizes correlated with the sensory-transmodal gradient of brain function. ASD-related CD reductions appeared consistent across inter-individual differences in age and symptom severity, and we observed a positive correlation of CD to IQ scores. LIMITATIONS Despite rigorous harmonization across the three different acquisition sites, heterogeneity in autism poses a potential limitation to the generalizability of our results. Additionally, we focussed male participants, warranting future studies in more balanced cohorts. CONCLUSIONS Our study showed reductions in CD as a relatively stable imaging phenotype of ASD that preferentially impacted paralimbic and heteromodal association systems. CD reductions in ASD corroborate previous reports of ASD-related imbalance between short-range overconnectivity and long-range underconnectivity.
Collapse
Affiliation(s)
- Clara F Weber
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Valeria Kebets
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sara Lariviere
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hongxiu Jiang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, USA
| | | | - Sofie Valk
- Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
14
|
Serio B, Hettwer MD, Wiersch L, Bignardi G, Sacher J, Weis S, Eickhoff SB, Valk SL. Sex differences in functional cortical organization reflect differences in network topology rather than cortical morphometry. Nat Commun 2024; 15:7714. [PMID: 39231965 PMCID: PMC11375086 DOI: 10.1038/s41467-024-51942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Differences in brain size between the sexes are consistently reported. However, the consequences of this anatomical difference on sex differences in intrinsic brain function remain unclear. In the current study, we investigate whether sex differences in intrinsic cortical functional organization may be associated with differences in cortical morphometry, namely different measures of brain size, microstructure, and the geodesic distance of connectivity profiles. For this, we compute a low dimensional representation of functional cortical organization, the sensory-association axis, and identify widespread sex differences. Contrary to our expectations, sex differences in functional organization do not appear to be systematically associated with differences in total surface area, microstructural organization, or geodesic distance, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis are associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.
Collapse
Affiliation(s)
- Bianca Serio
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Meike D Hettwer
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lisa Wiersch
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Brain-Based Predictive Modeling Lab, Feinstein Institutes for Medical Research, Glen Oaks, New York, NY, USA
| | - Giacomo Bignardi
- Max Planck School of Cognition, Leipzig, Germany
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Julia Sacher
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig Center for Female Health & Gender Medicine, Medical Faculty, University Clinic Leipzig, Leipzig, Germany
- Clinic for Cognitive Neurology, University Medical Center Leipzig, Leipzig, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
15
|
Küchenhoff S, Bayrak Ş, Zsido RG, Saberi A, Bernhardt BC, Weis S, Schaare HL, Sacher J, Eickhoff S, Valk SL. Relating sex-bias in human cortical and hippocampal microstructure to sex hormones. Nat Commun 2024; 15:7279. [PMID: 39179555 PMCID: PMC11344136 DOI: 10.1038/s41467-024-51459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
Determining sex-bias in brain structure is of great societal interest to improve diagnostics and treatment of brain-related disorders. So far, studies on sex-bias in brain structure predominantly focus on macro-scale measures, and often ignore factors determining this bias. Here we study sex-bias in cortical and hippocampal microstructure in relation to sex hormones. Investigating quantitative intracortical profiling in-vivo using the T1w/T2w ratio in 1093 healthy females and males of the cross-sectional Human Connectome Project young adult sample, we find that regional cortical and hippocampal microstructure differs between males and females and that the effect size of this sex-bias varies depending on self-reported hormonal status in females. Microstructural sex-bias and expression of sex hormone genes, based on an independent post-mortem sample, are spatially coupled. Lastly, sex-bias is most pronounced in paralimbic areas, with low laminar complexity, which are predicted to be most plastic based on their cytoarchitectural properties. Albeit correlative, our study underscores the importance of incorporating sex hormone variables into the investigation of brain structure and plasticity.
Collapse
Affiliation(s)
- Svenja Küchenhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany.
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Şeyma Bayrak
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rachel G Zsido
- Cognitive Neuroendocrinology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amin Saberi
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Susanne Weis
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - H Lina Schaare
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Julia Sacher
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Leipzig, Germany
| | - Simon Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany.
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
16
|
Royer J, Kebets V, Piguet C, Chen J, Ooi LQR, Kirschner M, Siffredi V, Misic B, Yeo BTT, Bernhardt BC. MULTIMODAL NEURAL CORRELATES OF CHILDHOOD PSYCHOPATHOLOGY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530821. [PMID: 39185226 PMCID: PMC11343159 DOI: 10.1101/2023.03.02.530821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples, supporting generalizability, and robust to variations in analytical parameters. Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.
Collapse
Affiliation(s)
- Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Valeria Kebets
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Camille Piguet
- Young Adult Unit, Psychiatric Specialities Division, Geneva University Hospitals and Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Adolescent Unit, Division of General Paediatric, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals
| | - Jianzhong Chen
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Leon Qi Rong Ooi
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Matthias Kirschner
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - B T Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Collins E, Chishti O, Obaid S, McGrath H, King A, Shen X, Arora J, Papademetris X, Constable RT, Spencer DD, Zaveri HP. Mapping the structure-function relationship along macroscale gradients in the human brain. Nat Commun 2024; 15:7063. [PMID: 39152127 PMCID: PMC11329792 DOI: 10.1038/s41467-024-51395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Functional coactivation between human brain regions is partly explained by white matter connections; however, how the structure-function relationship varies by function remains unclear. Here, we reference large data repositories to compute maps of structure-function correspondence across hundreds of specific functions and brain regions. We use natural language processing to accurately predict structure-function correspondence for specific functions and to identify macroscale gradients across the brain that correlate with structure-function correspondence as well as cortical thickness. Our findings suggest structure-function correspondence unfolds along a sensory-fugal organizational axis, with higher correspondence in primary sensory and motor cortex for perceptual and motor functions, and lower correspondence in association cortex for cognitive functions. Our study bridges neuroscience and natural language to describe how structure-function coupling varies by region and function in the brain, offering insight into the diversity and evolution of neural network properties.
Collapse
Affiliation(s)
- Evan Collins
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Omar Chishti
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Max Planck School of Cognition, Leipzig, Germany
| | - Sami Obaid
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Neurosurgery Service, University of Montreal Hospital Center (CHUM), Montreal, Quebec, Canada
| | - Hari McGrath
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alex King
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jagriti Arora
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Xenophon Papademetris
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Dennis D Spencer
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Hitten P Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Shang G, Zhou T, Yu X, Yan X, He K, Liu B, Feng Z, Xu J, Zhang Y, Yu X. Chronic hypercortisolism disrupts the principal functional gradient in Cushing's disease: A multi-scale connectomics and transcriptomics study. Neuroimage Clin 2024; 43:103652. [PMID: 39146836 PMCID: PMC11367515 DOI: 10.1016/j.nicl.2024.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Cushing's disease (CD) represents a state of cortisol excess, serving as a model to investigate the effects of prolonged hypercortisolism on functional brain. Potential alterations in the functional connectome of the brain may explain frequently reported cognitive deficits and affective disorders in CD patients. This study aims to elucidate the effects of chronic hypercortisolism on the principal functional gradient, which represents a hierarchical architecture with gradual transitions across cognitive processes, by integrating connectomics and transcriptomics approaches. Utilizing resting-state functional magnetic resonance imaging data from 140 participants (86 CD patients, 54 healthy controls) recruited at a single center, we explored the alterations in the principal gradient in CD patients. Further, we thoroughly explored the underlying associative mechanisms of the observed characteristic alterations with cognitive function domains, biological attributes, and neuropsychiatric representations, as well as gene expression profiles. Compared to healthy controls, CD patients demonstrated changes in connectome patterns in both primary and higher-order networks, exhibiting an overall converged trend along the principal gradient axis. The gradient values in CD patients' right prefrontal cortex and bilateral sensorimotor cortices exhibited a significant correlation with cortisol levels. Moreover, the cortical regions showing gradient alterations were principally associated with sensory information processing and higher-cognitive functions, as well as correlated with the gene expression patterns which involved synaptic components and function. The findings suggest that converged alterations in the principal gradient in CD patients may mediate the relationship between hypercortisolism and cognitive impairments, potentially involving genes regulating synaptic components and function.
Collapse
Affiliation(s)
- Guosong Shang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China
| | - Xiaoteng Yu
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Xinyuan Yan
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kunyu He
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Bin Liu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Zhebin Feng
- Department of Neurosurgery, PLA 942 Hospital, Yinchuan, Ningxia, China
| | - Junpeng Xu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
19
|
Parkes L, Kim JZ, Stiso J, Brynildsen JK, Cieslak M, Covitz S, Gur RE, Gur RC, Pasqualetti F, Shinohara RT, Zhou D, Satterthwaite TD, Bassett DS. A network control theory pipeline for studying the dynamics of the structural connectome. Nat Protoc 2024:10.1038/s41596-024-01023-w. [PMID: 39075309 DOI: 10.1038/s41596-024-01023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/16/2024] [Indexed: 07/31/2024]
Abstract
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.
Collapse
Affiliation(s)
- Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jason Z Kim
- Department of Physics, Cornell University, Ithaca, NY, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Cieslak
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Covitz
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raquel E Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, PA, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dale Zhou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
20
|
Hettwer MD, Dorfschmidt L, Puhlmann LMC, Jacob LM, Paquola C, Bethlehem RAI, Bullmore ET, Eickhoff SB, Valk SL. Longitudinal variation in resilient psychosocial functioning is associated with ongoing cortical myelination and functional reorganization during adolescence. Nat Commun 2024; 15:6283. [PMID: 39075054 PMCID: PMC11286871 DOI: 10.1038/s41467-024-50292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Adolescence is a period of dynamic brain remodeling and susceptibility to psychiatric risk factors, mediated by the protracted consolidation of association cortices. Here, we investigated whether longitudinal variation in adolescents' resilience to psychosocial stressors during this vulnerable period is associated with ongoing myeloarchitectural maturation and consolidation of functional networks. We used repeated myelin-sensitive Magnetic Transfer (MT) and resting-state functional neuroimaging (n = 141), and captured adversity exposure by adverse life events, dysfunctional family settings, and socio-economic status at two timepoints, one to two years apart. Development toward more resilient psychosocial functioning was associated with increasing myelination in the anterolateral prefrontal cortex, which showed stabilized functional connectivity. Studying depth-specific intracortical MT profiles and the cortex-wide synchronization of myeloarchitectural maturation, we further observed wide-spread myeloarchitectural reconfiguration of association cortices paralleled by attenuated functional reorganization with increasingly resilient outcomes. Together, resilient/susceptible psychosocial functioning showed considerable intra-individual change associated with multi-modal cortical refinement processes at the local and system-level.
Collapse
Affiliation(s)
- Meike D Hettwer
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Lena Dorfschmidt
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lara M C Puhlmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Linda M Jacob
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Casey Paquola
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
| | | | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
21
|
Wu X, Zhang Y, Xue M, Li J, Li X, Cui Z, Gao JH, Yang G. Heritability of functional gradients in the human subcortico-cortical connectivity. Commun Biol 2024; 7:854. [PMID: 38997510 PMCID: PMC11245549 DOI: 10.1038/s42003-024-06551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
The human subcortex plays a pivotal role in cognition and is widely implicated in the pathophysiology of many psychiatric disorders. However, the heritability of functional gradients based on subcortico-cortical functional connectivity remains elusive. Here, leveraging twin functional MRI (fMRI) data from both the Human Connectome Project (n = 1023) and the Adolescent Brain Cognitive Development study (n = 936) datasets, we construct large-scale subcortical functional gradients and delineate an increased principal functional gradient pattern from unimodal sensory/motor networks to transmodal association networks. We observed that this principal functional gradient is heritable, and the strength of heritability exhibits a heterogeneous pattern along a hierarchical unimodal-transmodal axis in subcortex for both young adults and children. Furthermore, employing a machine learning framework, we show that this heterogeneous pattern of the principal functional gradient in subcortex can accurately discern the relationship between monozygotic twin pairs and dizygotic twin pairs with an accuracy of 76.2% (P < 0.001). The heritability of functional gradients is associated with the anatomical myelin proxied by MRI-derived T1-weighted/T2-weighted (T1w/T2w) ratio mapping in subcortex. This study provides new insights into the biological basis of subcortical functional hierarchy by revealing the structural and genetic properties of the subcortical functional gradients.
Collapse
Affiliation(s)
- Xinyu Wu
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Yu Zhang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Mufan Xue
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Jinlong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- McGovern Institute for Brain Research, Peking University, Beijing, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Guoyuan Yang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
22
|
Larivière S, Park BY, Royer J, DeKraker J, Ngo A, Sahlas E, Chen J, Rodríguez-Cruces R, Weng Y, Frauscher B, Liu R, Wang Z, Shafiei G, Mišić B, Bernasconi A, Bernasconi N, Fox MD, Zhang Z, Bernhardt BC. Connectome reorganization associated with temporal lobe pathology and its surgical resection. Brain 2024; 147:2483-2495. [PMID: 38701342 PMCID: PMC11224603 DOI: 10.1093/brain/awae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.
Collapse
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Bo-yong Park
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 34126, Republic of Korea
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ella Sahlas
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Judy Chen
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ruoting Liu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Zhengge Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bratislav Mišić
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
23
|
Wang X, Xue L, Hua L, Shao J, Yan R, Yao Z, Lu Q. Structure-function coupling and hierarchy-specific antidepressant response in major depressive disorder. Psychol Med 2024; 54:2688-2697. [PMID: 38571298 DOI: 10.1017/s0033291724000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Extensive research has explored altered structural and functional networks in major depressive disorder (MDD). However, studies examining the relationships between structure and function yielded heterogeneous and inconclusive results. Recent work has suggested that the structure-function relationship is not uniform throughout the brain but varies across different levels of functional hierarchy. This study aims to investigate changes in structure-function couplings (SFC) and their relevance to antidepressant response in MDD from a functional hierarchical perspective. METHODS We compared regional SFC between individuals with MDD (n = 258) and healthy controls (HC, n = 99) using resting-state functional magnetic resonance imaging and diffusion tensor imaging. We also compared antidepressant non-responders (n = 55) and responders (n = 68, defined by a reduction in depressive severity of >50%). To evaluate variations in altered and response-associated SFC across the functional hierarchy, we ranked significantly different regions by their principal gradient values and assessed patterns of increase or decrease along the gradient axis. The principal gradient value, calculated from 219 healthy individuals in the Human Connectome Project, represents a region's position along the principal gradient axis. RESULTS Compared to HC, MDD patients exhibited increased SFC in unimodal regions (lower principal gradient) and decreased SFC in transmodal regions (higher principal gradient) (p < 0.001). Responders primarily had higher SFC in unimodal regions and lower SFC in attentional networks (median principal gradient) (p < 0.001). CONCLUSIONS Our findings reveal opposing SFC alterations in low-level unimodal and high-level transmodal networks, underscoring spatial variability in MDD pathology. Moreover, hierarchy-specific antidepressant effects provide valuable insights into predicting treatment outcomes.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Park Y, Namgung JY, Kim CY, Park Y, Park BY. Differences in cortical microstructure according to body mass index in neurologically healthy populations using structural magnetic resonance imaging. Heliyon 2024; 10:e33134. [PMID: 38984310 PMCID: PMC11231607 DOI: 10.1016/j.heliyon.2024.e33134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Associations between brain structure and body mass index (BMI) are increasingly gaining attention. Although BMI-related regional alterations in brain morphology have been previously reported, the effect of BMI on the microstructural profiles, which provide information on the proxy of neuronal density within the cortex, is unexplored. In this study, we investigated the links between cortical layer-specific microstructural profiles and BMI in 302 neurologically healthy young adults. Using the microstructure-sensitive proxy based on the T1-and T2-weighted ratio, we estimated microstructural profile covariance (MPC) by calculating linear correlations of cortical depth-wise intensity profiles between different brain regions. Then, low-dimensional gradients of the MPC matrix were estimated using dimensionality reduction techniques, and the gradients were associated with BMI. Significant effects in the heteromodal association areas were observed. The BMI-gradient association map was related to the geodesic distance along the cortical surface, curvature, and sulcal depth, suggesting that the microstructural alterations occurred along the cortical topology. The BMI-gradient association map was further linked to cognitive states related to negative emotions. Our findings may provide insights into understanding the atypical cortical microstructure associated with BMI.
Collapse
Affiliation(s)
- Yunseo Park
- Department of Data Science, Inha University, Incheon, Republic of Korea
| | | | - Chae Yeon Kim
- Department of Data Science, Inha University, Incheon, Republic of Korea
| | - Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, Republic of Korea
- Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| |
Collapse
|
25
|
Nick Q, Gale DJ, Areshenkoff C, De Brouwer A, Nashed J, Wammes J, Zhu T, Flanagan R, Smallwood J, Gallivan J. Reconfigurations of cortical manifold structure during reward-based motor learning. eLife 2024; 12:RP91928. [PMID: 38916598 PMCID: PMC11198988 DOI: 10.7554/elife.91928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Adaptive motor behavior depends on the coordinated activity of multiple neural systems distributed across the brain. While the role of sensorimotor cortex in motor learning has been well established, how higher-order brain systems interact with sensorimotor cortex to guide learning is less well understood. Using functional MRI, we examined human brain activity during a reward-based motor task where subjects learned to shape their hand trajectories through reinforcement feedback. We projected patterns of cortical and striatal functional connectivity onto a low-dimensional manifold space and examined how regions expanded and contracted along the manifold during learning. During early learning, we found that several sensorimotor areas in the dorsal attention network exhibited increased covariance with areas of the salience/ventral attention network and reduced covariance with areas of the default mode network (DMN). During late learning, these effects reversed, with sensorimotor areas now exhibiting increased covariance with DMN areas. However, areas in posteromedial cortex showed the opposite pattern across learning phases, with its connectivity suggesting a role in coordinating activity across different networks over time. Our results establish the neural changes that support reward-based motor learning and identify distinct transitions in the functional coupling of sensorimotor to transmodal cortex when adapting behavior.
Collapse
Affiliation(s)
- Qasem Nick
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Corson Areshenkoff
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Anouk De Brouwer
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Joseph Nashed
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Medicine, Queen's UniversityKingstonCanada
| | - Jeffrey Wammes
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Tianyao Zhu
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Randy Flanagan
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Jonny Smallwood
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Jason Gallivan
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| |
Collapse
|
26
|
Boring MJ, Richardson RM, Ghuman AS. Interacting ventral temporal gradients of timescales and functional connectivity and their relationships to visual behavior. iScience 2024; 27:110003. [PMID: 38868193 PMCID: PMC11166696 DOI: 10.1016/j.isci.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Cortical gradients in endogenous and stimulus-evoked neurodynamic timescales, and long-range cortical interactions, provide organizational constraints to the brain and influence neural populations' roles in cognition. It is unclear how these functional gradients interrelate and which influence behavior. Here, intracranial recordings from 4,090 electrode contacts in 35 individuals map gradients of neural timescales and functional connectivity to assess their interactions along category-selective ventral temporal cortex. Endogenous and stimulus-evoked information processing timescales were not significantly correlated with one another suggesting that local neural timescales are context dependent and may arise through distinct neurophysiological mechanisms. Endogenous neural timescales correlated with functional connectivity even after removing the effects of shared anatomical gradients. Neural timescales and functional connectivity correlated with how strongly a population's activity predicted behavior in a simple visual task. These results suggest both interrelated and distinct neurophysiological processes give rise to different functional connectivity and neural timescale gradients, which together influence behavior.
Collapse
Affiliation(s)
- Matthew J. Boring
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R. Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Avniel Singh Ghuman
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Feng G, Wang Y, Huang W, Chen H, Cheng J, Shu N. Spatial and temporal pattern of structure-function coupling of human brain connectome with development. eLife 2024; 13:RP93325. [PMID: 38900563 PMCID: PMC11189631 DOI: 10.7554/elife.93325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7-21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC-FC coupling. Our findings revealed that SC-FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC-FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC-FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC-FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC-FC coupling in typical development.
Collapse
Affiliation(s)
- Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Yiwen Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang UniversityBeijingChina
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- BABRI Centre, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| |
Collapse
|
28
|
Noh E, Namgung JY, Park Y, Jang Y, Lee MJ, Park BY. Shifts in structural connectome organization in the limbic and sensory systems of patients with episodic migraine. J Headache Pain 2024; 25:99. [PMID: 38862883 PMCID: PMC11165833 DOI: 10.1186/s10194-024-01806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Migraine is a complex neurological condition characterized by recurrent headaches, which is often accompanied by various neurological symptoms. Magnetic resonance imaging (MRI) is a powerful tool for investigating whole-brain connectivity patterns; however, systematic assessment of structural connectome organization has rarely been performed. In the present study, we aimed to examine the changes in structural connectivity in patients with episodic migraines using diffusion MRI. First, we computed structural connectivity using diffusion MRI tractography, after which we applied dimensionality reduction techniques to the structural connectivity and generated three low-dimensional eigenvectors. We subsequently calculated the manifold eccentricity, defined as the Euclidean distance between each data point and the center of the data in the manifold space. We then compared the manifold eccentricity between patients with migraines and healthy controls, revealing significant between-group differences in the orbitofrontal cortex, temporal pole, and sensory/motor regions. Between-group differences in subcortico-cortical connectivity further revealed significant changes in the amygdala, accumbens, and caudate nuclei. Finally, supervised machine learning effectively classified patients with migraines and healthy controls using cortical and subcortical structural connectivity features, highlighting the importance of the orbitofrontal and sensory cortices, in addition to the caudate, in distinguishing between the groups. Our findings confirmed that episodic migraine is related to the structural connectome changes in the limbic and sensory systems, suggesting its potential utility as a diagnostic marker for migraine.
Collapse
Affiliation(s)
- Eunchan Noh
- College of Medicine, Inha University, Incheon, Republic of Korea
| | | | - Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yurim Jang
- Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea
| | - Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, Republic of Korea.
- Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
| |
Collapse
|
29
|
Hu J, Chen G, Zeng Z, Ran H, Zhang R, Yu Q, Xie Y, He Y, Wang F, Li X, Huang K, Liu H, Zhang T. Systematically altered connectome gradient in benign childhood epilepsy with centrotemporal spikes: Potential effect on cognitive function. Neuroimage Clin 2024; 43:103628. [PMID: 38850833 PMCID: PMC11201345 DOI: 10.1016/j.nicl.2024.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE Benign childhood epilepsy with centrotemporal spikes (BECTS) affects brain network hierarchy and cognitive function; however, itremainsunclearhowhierarchical changeaffectscognition in patients with BECTS. A major aim of this study was to examine changes in the macro-network function hierarchy in BECTS and its potential contribution to cognitive function. METHODS Overall, the study included 50 children with BECTS and 69 healthy controls. Connectome gradient analysis was used to determine the brain network hierarchy of each group. By comparing gradient scores at each voxel level and network between groups, we assessed changes in whole-brain voxel-level and network hierarchy. Functional connectivity was used to detect the functional reorganization of epilepsy caused by these abnormal brain regions based on these aberrant gradients. Lastly, we explored the relationships between the change gradient and functional connectivity values and clinical variables and further predicted the cognitive function associated with BECTS gradient changes. RESULTS In children with BECTS, the gradient was extended at different network and voxel levels. The gradient scores frontoparietal network was increased in the principal gradient of patients with BECTS. The left precentral gyrus (PCG) and right angular gyrus gradient scores were significantly increased in the principal gradient of children with BECTS. Moreover, in regions of the brain with abnormal principal gradients, functional connectivity was disrupted. The left PCG gradient score of children with BECTS was correlated with the verbal intelligence quotient (VIQ), and the disruption of functional connectivity in brain regions with abnormal principal gradients was closely related to cognitive function. VIQ was significantly predicted by the principal gradient map of patients. SIGNIFICANCE The results indicate connectome gradient disruption in children with BECTS and its relationship to cognitive function, thereby increasing our understanding of the functional connectome hierarchy and providing potential biomarkers for cognitive function of children with BECTS.
Collapse
Affiliation(s)
- Jie Hu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China; Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guiqin Chen
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China; Department of Radiology, The Second Affiliated Hospital of Guizhou University of TCM, Guiyang 550001, China
| | - Zhen Zeng
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Haifeng Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Ruoxi Zhang
- Department of Radiology, The Second Affiliated Hospital of Guizhou University of TCM, Guiyang 550001, China
| | - Qiane Yu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Yuxin Xie
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Yulun He
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Fuqin Wang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Xuhong Li
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Kexing Huang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Heng Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China.
| | - Tijiang Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China.
| |
Collapse
|
30
|
Qiu X, Yang J, Hu X, Li J, Zhao M, Ren F, Weng X, Edden RAE, Gao F, Wang J. Association between hearing ability and cortical morphology in the elderly: multiparametric mapping, cognitive relevance, and neurobiological underpinnings. EBioMedicine 2024; 104:105160. [PMID: 38788630 PMCID: PMC11140565 DOI: 10.1016/j.ebiom.2024.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Hearing impairment is a common condition in the elderly. However, a comprehensive understanding of its neural correlates is still lacking. METHODS We recruited 284 elderly adults who underwent structural MRI, magnetic resonance spectroscopy, audiometry, and cognitive assessments. Individual hearing abilities indexed by pure tone average (PTA) were correlated with multiple structural MRI-derived cortical morphological indices. For regions showing significant correlations, mediation analyses were performed to examine their role in the relationship between hearing ability and cognitive function. Finally, the correlation maps between hearing ability and cortical morphology were linked with publicly available connectomic gradient, transcriptomic, and neurotransmitter maps. FINDINGS Poorer hearing was related to cortical thickness (CT) reductions in widespread regions and gyrification index (GI) reductions in the right Area 52 and Insular Granular Complex. The GI in the right Area 52 mediated the relationship between hearing ability and executive function. This mediating effect was further modulated by glutamate and N-acetylaspartate levels in the right auditory region. The PTA-CT correlation map followed microstructural connectomic hierarchy, were related to genes involved in certain biological processes (e.g., glutamate metabolic process), cell types (e.g., excitatory neurons and astrocytes), and developmental stages (i.e., childhood to young adulthood), and covaried with dopamine receptor 1, dopamine transporter, and fluorodopa. The PTA-GI correlation map was related to 5-hydroxytryptamine receptor 2a. INTERPRETATION Poorer hearing is associated with cortical thinning and folding reductions, which may be engaged in the relationship between hearing impairment and cognitive decline in the elderly and have different neurobiological substrates. FUNDING See the Acknowledgements section.
Collapse
Affiliation(s)
- Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jing Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China.
| |
Collapse
|
31
|
Dear R, Wagstyl K, Seidlitz J, Markello RD, Arnatkevičiūtė A, Anderson KM, Bethlehem RAI, Raznahan A, Bullmore ET, Vértes PE. Cortical gene expression architecture links healthy neurodevelopment to the imaging, transcriptomics and genetics of autism and schizophrenia. Nat Neurosci 2024; 27:1075-1086. [PMID: 38649755 PMCID: PMC11156586 DOI: 10.1038/s41593-024-01624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Human brain organization involves the coordinated expression of thousands of genes. For example, the first principal component (C1) of cortical transcription identifies a hierarchy from sensorimotor to association regions. In this study, optimized processing of the Allen Human Brain Atlas revealed two new components of cortical gene expression architecture, C2 and C3, which are distinctively enriched for neuronal, metabolic and immune processes, specific cell types and cytoarchitectonics, and genetic variants associated with intelligence. Using additional datasets (PsychENCODE, Allen Cell Atlas and BrainSpan), we found that C1-C3 represent generalizable transcriptional programs that are coordinated within cells and differentially phased during fetal and postnatal development. Autism spectrum disorder and schizophrenia were specifically associated with C1/C2 and C3, respectively, across neuroimaging, differential expression and genome-wide association studies. Evidence converged especially in support of C3 as a normative transcriptional program for adolescent brain development, which can lead to atypical supragranular cortical connectivity in people at high genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Richard Dear
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | | | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross D Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | | | | | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | | | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Lapate RC, Heckner MK, Phan AT, Tambini A, D'Esposito M. Information-based TMS to mid-lateral prefrontal cortex disrupts action goals during emotional processing. Nat Commun 2024; 15:4294. [PMID: 38769359 PMCID: PMC11106324 DOI: 10.1038/s41467-024-48015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
The ability to respond to emotional events in a context-sensitive and goal-oriented manner is essential for adaptive functioning. In models of behavioral and emotion regulation, the lateral prefrontal cortex (LPFC) is postulated to maintain goal-relevant representations that promote cognitive control, an idea rarely tested with causal inference. Here, we altered mid-LPFC function in healthy individuals using a putatively inhibitory brain stimulation protocol (continuous theta burst; cTBS), followed by fMRI scanning. Participants performed the Affective Go/No-Go task, which requires goal-oriented action during affective processing. We targeted mid-LPFC (vs. a Control site) based on the individualized location of action-goal representations observed during the task. cTBS to mid-LPFC reduced action-goal representations in mid-LPFC and impaired goal-oriented action, particularly during processing of negative emotional cues. During negative-cue processing, cTBS to mid-LPFC reduced functional coupling between mid-LPFC and nodes of the default mode network, including frontopolar cortex-a region thought to modulate LPFC control signals according to internal states. Collectively, these results indicate that mid-LPFC goal-relevant representations play a causal role in governing context-sensitive cognitive control during emotional processing.
Collapse
Affiliation(s)
- R C Lapate
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - M K Heckner
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
| | - A T Phan
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - A Tambini
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - M D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
33
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. Prog Neurobiol 2024; 236:102604. [PMID: 38604584 DOI: 10.1016/j.pneurobio.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thaera Arafat
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology, Duke University School of Medicine and Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27705, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3 BG, United Kingdom
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Queretaro, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
34
|
Park Y, Lee MJ, Yoo S, Kim CY, Namgung JY, Park Y, Park H, Lee EC, Yoon YD, Paquola C, Bernhardt BC, Park BY. GAN-MAT: Generative adversarial network-based microstructural profile covariance analysis toolbox. Neuroimage 2024; 291:120595. [PMID: 38554782 DOI: 10.1016/j.neuroimage.2024.120595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community and is openly accessible at https://github.com/CAMIN-neuro/GAN-MAT.
Collapse
Affiliation(s)
- Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Chae Yeon Kim
- Department of Data Science, Inha University, Incheon, South Korea
| | | | - Yunseo Park
- Department of Data Science, Inha University, Incheon, South Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | | | | | - Casey Paquola
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Department of Statistics and Data Science, Inha University, Incheon, South Korea.
| |
Collapse
|
35
|
Fernandino L, Binder JR. How does the "default mode" network contribute to semantic cognition? BRAIN AND LANGUAGE 2024; 252:105405. [PMID: 38579461 PMCID: PMC11135161 DOI: 10.1016/j.bandl.2024.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
This review examines whether and how the "default mode" network (DMN) contributes to semantic processing. We review evidence implicating the DMN in the processing of individual word meanings and in sentence- and discourse-level semantics. Next, we argue that the areas comprising the DMN contribute to semantic processing by coordinating and integrating the simultaneous activity of local neuronal ensembles across multiple unimodal and multimodal cortical regions, creating a transient, global neuronal ensemble. The resulting ensemble implements an integrated simulation of phenomenological experience - that is, an embodied situation model - constructed from various modalities of experiential memory traces. These situation models, we argue, are necessary not only for semantic processing but also for aspects of cognition that are not traditionally considered semantic. Although many aspects of this proposal remain provisional, we believe it provides new insights into the relationships between semantic and non-semantic cognition and into the functions of the DMN.
Collapse
Affiliation(s)
- Leonardo Fernandino
- Department of Neurology, Medical College of Wisconsin, USA; Department of Biomedical Engineering, Medical College of Wisconsin, USA.
| | - Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, USA; Department of Biophysics, Medical College of Wisconsin, USA
| |
Collapse
|
36
|
Namgung JY, Park Y, Park Y, Kim CY, Park BY. Diffusion time-related structure-function coupling reveals differential association with inter-individual variations in body mass index. Neuroimage 2024; 291:120590. [PMID: 38548036 DOI: 10.1016/j.neuroimage.2024.120590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Body mass index (BMI) is an indicator of obesity, and recent neuroimaging studies have demonstrated that inter-individual variations in BMI are associated with altered brain structure and function. However, the mechanism underlying the alteration of structure-function correspondence according to BMI is under-investigated. In this study, we studied structural and functional connectivity derived from diffusion MRI tractography and inter-regional correlations of functional MRI time series, respectively. We combined the structural and functional connectivity information using the Riemannian optimization approach. First, the low-dimensional principal eigenvectors (i.e., gradients) of the structural connectivity were generated by applying diffusion map embedding with varying diffusion times. A transformation was identified so that the structural and functional embeddings share the same coordinate system, and subsequently, the functional connectivity matrix was simulated. Then, we generated gradients from the simulated functional connectivity matrix. We found the most apparent cortical hierarchical organization differentiating between low-level sensory and higher-order transmodal regions in the middle of the diffusion time, indicating that the hierarchical organization of the brain may reflect the intermediate mechanisms of mono- and polysynaptic communications. Associations between the functional gradients and BMI were strongest when the hierarchical structure was the most evident. Moreover, the gradient-BMI association map was related to the microstructural features, and the findings indicated that the BMI-related structure-function coupling was significantly associated with brain microstructure, particularly in higher-order transmodal areas. Finally, transcriptomic association analysis revealed the potential biological underpinnings specifying gene enrichment in the striatum, hypothalamus, and cortical cells. Our findings provide evidence that structure-function correspondence is strongly coupled with BMI when hierarchical organization is the most apparent and that the associations are related to the multiscale properties of the brain, leading to an advanced understanding of the neural mechanisms related to BMI.
Collapse
Affiliation(s)
| | - Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yunseo Park
- Department of Data Science, Inha University, Incheon, Republic of Korea
| | - Chae Yeon Kim
- Department of Data Science, Inha University, Incheon, Republic of Korea
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, Republic of Korea; Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
| |
Collapse
|
37
|
Yang Y, Zhen Y, Wang X, Liu L, Zheng Y, Zheng Z, Zheng H, Tang S. Altered asymmetry of functional connectome gradients in major depressive disorder. Front Neurosci 2024; 18:1385920. [PMID: 38745933 PMCID: PMC11092381 DOI: 10.3389/fnins.2024.1385920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a debilitating disease involving sensory and higher-order cognitive dysfunction. Previous work has shown altered asymmetry in MDD, including abnormal lateralized activation and disrupted hemispheric connectivity. However, it remains unclear whether and how MDD affects functional asymmetries in the context of intrinsic hierarchical organization. Methods Here, we evaluate intra- and inter-hemispheric asymmetries of the first three functional gradients, characterizing unimodal-transmodal, visual-somatosensory, and somatomotor/default mode-multiple demand hierarchies, to study MDD-related alterations in overarching system-level architecture. Results We find that, relative to the healthy controls, MDD patients exhibit alterations in both primary sensory regions (e.g., visual areas) and transmodal association regions (e.g., default mode areas). We further find these abnormalities are woven in heterogeneous alterations along multiple functional gradients, associated with cognitive terms involving mind, memory, and visual processing. Moreover, through an elastic net model, we observe that both intra- and inter-asymmetric features are predictive of depressive traits measured by BDI-II scores. Discussion Altogether, these findings highlight a broad and mixed effect of MDD on functional gradient asymmetry, contributing to a richer understanding of the neurobiological underpinnings in MDD.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Zhiming Zheng
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| |
Collapse
|
38
|
Janet R, Smallwood J, Hutcherson CA, Plassmann H, Mckeown B, Tusche A. Body mass index-dependent shifts along large-scale gradients in human cortical organization explain dietary regulatory success. Proc Natl Acad Sci U S A 2024; 121:e2314224121. [PMID: 38648482 PMCID: PMC11067012 DOI: 10.1073/pnas.2314224121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Making healthy dietary choices is essential for keeping weight within a normal range. Yet many people struggle with dietary self-control despite good intentions. What distinguishes neural processing in those who succeed or fail to implement healthy eating goals? Does this vary by weight status? To examine these questions, we utilized an analytical framework of gradients that characterize systematic spatial patterns of large-scale neural activity, which have the advantage of considering the entire suite of processes subserving self-control and potential regulatory tactics at the whole-brain level. Using an established laboratory food task capturing brain responses in natural and regulatory conditions (N = 123), we demonstrate that regulatory changes of dietary brain states in the gradient space predict individual differences in dietary success. Better regulators required smaller shifts in brain states to achieve larger goal-consistent changes in dietary behaviors, pointing toward efficient network organization. This pattern was most pronounced in individuals with lower weight status (low-BMI, body mass index) but absent in high-BMI individuals. Consistent with prior work, regulatory goals increased activity in frontoparietal brain circuits. However, this shift in brain states alone did not predict variance in dietary success. Instead, regulatory success emerged from combined changes along multiple gradients, showcasing the interplay of different large-scale brain networks subserving dietary control and possible regulatory strategies. Our results provide insights into how the brain might solve the problem of dietary control: Dietary success may be easier for people who adopt modes of large-scale brain activation that do not require significant reconfigurations across contexts and goals.
Collapse
Affiliation(s)
- Rémi Janet
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Cendri A. Hutcherson
- Department of Psychology, University of Toronto, Toronto, ONM5S 2E5, Canada
- Department of Marketing, Rotman School of Management, University of Toronto, Toronto, ONM5S 3E6, Canada
| | - Hilke Plassmann
- Marketing Area, INSEAD, FontainebleauF-77300, France
- Control-Interoception-Attention Team, Paris Brain Institute (ICM), Sorbonne University, Paris75013, France
| | - Bronte Mckeown
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Anita Tusche
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
39
|
Popp JL, Thiele JA, Faskowitz J, Seguin C, Sporns O, Hilger K. Structural-functional brain network coupling predicts human cognitive ability. Neuroimage 2024; 290:120563. [PMID: 38492685 DOI: 10.1016/j.neuroimage.2024.120563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/14/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Individual differences in general cognitive ability (GCA) have a biological basis within the structure and function of the human brain. Network neuroscience investigations revealed neural correlates of GCA in structural as well as in functional brain networks. However, whether the relationship between structural and functional networks, the structural-functional brain network coupling (SC-FC coupling), is related to individual differences in GCA remains an open question. We used data from 1030 adults of the Human Connectome Project, derived structural connectivity from diffusion weighted imaging, functional connectivity from resting-state fMRI, and assessed GCA as a latent g-factor from 12 cognitive tasks. Two similarity measures and six communication measures were used to model possible functional interactions arising from structural brain networks. SC-FC coupling was estimated as the degree to which these measures align with the actual functional connectivity, providing insights into different neural communication strategies. At the whole-brain level, higher GCA was associated with higher SC-FC coupling, but only when considering path transitivity as neural communication strategy. Taking region-specific variations in the SC-FC coupling strategy into account and differentiating between positive and negative associations with GCA, allows for prediction of individual cognitive ability scores in a cross-validated prediction framework (correlation between predicted and observed scores: r = 0.25, p < .001). The same model also predicts GCA scores in a completely independent sample (N = 567, r = 0.19, p < .001). Our results propose structural-functional brain network coupling as a neurobiological correlate of GCA and suggest brain region-specific coupling strategies as neural basis of efficient information processing predictive of cognitive ability.
Collapse
Affiliation(s)
- Johanna L Popp
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany.
| | - Jonas A Thiele
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Kirsten Hilger
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany.
| |
Collapse
|
40
|
De Rosa AP, d'Ambrosio A, Bisecco A, Altieri M, Cirillo M, Gallo A, Esposito F. Functional gradients reveal cortical hierarchy changes in multiple sclerosis. Hum Brain Mapp 2024; 45:e26678. [PMID: 38647001 PMCID: PMC11033924 DOI: 10.1002/hbm.26678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Functional gradient (FG) analysis represents an increasingly popular methodological perspective for investigating brain hierarchical organization but whether and how network hierarchy changes concomitant with functional connectivity alterations in multiple sclerosis (MS) has remained elusive. Here, we analyzed FG components to uncover possible alterations in cortical hierarchy using resting-state functional MRI (rs-fMRI) data acquired in 122 MS patients and 97 healthy control (HC) subjects. Cortical hierarchy was assessed by deriving regional FG scores from rs-fMRI connectivity matrices using a functional parcellation of the cerebral cortex. The FG analysis identified a primary (visual-to-sensorimotor) and a secondary (sensory-to-transmodal) component. Results showed a significant alteration in cortical hierarchy as indexed by regional changes in FG scores in MS patients within the sensorimotor network and a compression (i.e., a reduced standard deviation across all cortical parcels) of the sensory-transmodal gradient axis, suggesting disrupted segregation between sensory and cognitive processing. Moreover, FG scores within limbic and default mode networks were significantly correlated (ρ = 0.30 $$ \rho =0.30 $$ , p < .005 after Bonferroni correction for both) with the symbol digit modality test (SDMT) score, a measure of information processing speed commonly used in MS neuropsychological assessments. Finally, leveraging supervised machine learning, we tested the predictive value of network-level FG features, highlighting the prominent role of the FG scores within the default mode network in the accurate prediction of SDMT scores in MS patients (average mean absolute error of 1.22 ± 0.07 points on a hold-out set of 24 patients). Our work provides a comprehensive evaluation of FG alterations in MS, shedding light on the hierarchical organization of the MS brain and suggesting that FG connectivity analysis can be regarded as a valuable approach in rs-fMRI studies across different MS populations.
Collapse
Affiliation(s)
- Alessandro Pasquale De Rosa
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Alessandro d'Ambrosio
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Alvino Bisecco
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Manuela Altieri
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Mario Cirillo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Antonio Gallo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Fabrizio Esposito
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| |
Collapse
|
41
|
Greaves MD, Novelli L, Razi A. Structurally informed resting-state effective connectivity recapitulates cortical hierarchy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587831. [PMID: 38617335 PMCID: PMC11014588 DOI: 10.1101/2024.04.03.587831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Interregional brain communication is mediated by the brain's physical wiring (i.e., structural connectivity). Yet, it remains unclear whether models describing directed, functional interactions between latent neuronal populations-effective connectivity-benefit from incorporating macroscale structural connectivity. Here, we assess a hierarchical empirical Bayes method: structural connectivity-based priors constrain the inversion of group-level resting-state effective connectivity, using subject-level posteriors as input; subsequently, group-level posteriors serve as empirical priors for re-evaluating subject-level effective connectivity. This approach permits knowledge of the brain's structure to inform inference of (multilevel) effective connectivity. In 17 resting-state brain networks, we find that a positive, monotonic relationship between structural connectivity and the prior probability of group-level effective connectivity generalizes across sessions and samples. Providing further validation, we show that inter-network differences in the coupling between structural and effective connectivity recapitulate a well-known unimodal-transmodal hierarchy. Thus, our results provide support for the use of our method over structurally uninformed alternatives.
Collapse
Affiliation(s)
- Matthew D. Greaves
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3800, Australia
- Monash Biomedical Imaging, Monash University, Clayton, 3800, Australia
| | - Leonardo Novelli
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3800, Australia
- Monash Biomedical Imaging, Monash University, Clayton, 3800, Australia
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3800, Australia
- Monash Biomedical Imaging, Monash University, Clayton, 3800, Australia
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3AR, United Kingdom
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, M5G 1M1, Canada
| |
Collapse
|
42
|
Chakraborty S, Lee SK, Arnold SM, Haast RAM, Khan AR, Schmitz TW. Focal acetylcholinergic modulation of the human midcingulo-insular network during attention: Meta-analytic neuroimaging and behavioral evidence. J Neurochem 2024; 168:397-413. [PMID: 37864501 DOI: 10.1111/jnc.15990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
The basal forebrain cholinergic neurons provide acetylcholine to the cortex via large projections. Recent molecular imaging work in humans indicates that the cortical cholinergic innervation is not uniformly distributed, but rather may disproportionately innervate cortical areas relevant to supervisory attention. In this study, we therefore reexamined the spatial relationship between acetylcholinergic modulation and attention in the human cortex using meta-analytic strategies targeting both pharmacological and non-pharmacological neuroimaging studies. We found that pharmaco-modulation of acetylcholine evoked both increased activity in the anterior cingulate and decreased activity in the opercular and insular cortex. In large independent meta-analyses of non-pharmacological neuroimaging research, we demonstrate that during attentional engagement these cortical areas exhibit (1) task-related co-activation with the basal forebrain, (2) task-related co-activation with one another, and (3) spatial overlap with dense cholinergic innervations originating from the basal forebrain, as estimated by multimodal positron emission tomography and magnetic resonance imaging. Finally, we provide meta-analytic evidence that pharmaco-modulation of acetylcholine also induces a speeding of responses to targets with no apparent tradeoff in accuracy. In sum, we demonstrate in humans that acetylcholinergic modulation of midcingulo-insular hubs of the ventral attention/salience network via basal forebrain afferents may coordinate selection of task relevant information, thereby facilitating cognition and behavior.
Collapse
Affiliation(s)
- Sudesna Chakraborty
- Neuroscience Graduate Program, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Sun Kyun Lee
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Sarah M Arnold
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Roy A M Haast
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- CRMBM, CNRS UMR 7339, Aix-Marseille University, Marseille, France
| | - Ali R Khan
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Taylor W Schmitz
- Robarts Research Institute, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
43
|
Luppi AI, Rosas FE, Mediano PAM, Menon DK, Stamatakis EA. Information decomposition and the informational architecture of the brain. Trends Cogn Sci 2024; 28:352-368. [PMID: 38199949 DOI: 10.1016/j.tics.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024]
Abstract
To explain how the brain orchestrates information-processing for cognition, we must understand information itself. Importantly, information is not a monolithic entity. Information decomposition techniques provide a way to split information into its constituent elements: unique, redundant, and synergistic information. We review how disentangling synergistic and redundant interactions is redefining our understanding of integrative brain function and its neural organisation. To explain how the brain navigates the trade-offs between redundancy and synergy, we review converging evidence integrating the structural, molecular, and functional underpinnings of synergy and redundancy; their roles in cognition and computation; and how they might arise over evolution and development. Overall, disentangling synergistic and redundant information provides a guiding principle for understanding the informational architecture of the brain and cognition.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
44
|
Chu C, Li W, Shi W, Wang H, Wang J, Liu Y, Liu B, Elmenhorst D, Eickhoff SB, Fan L, Jiang T. Co-representation of Functional Brain Networks Is Shaped by Cortical Myeloarchitecture and Reveals Individual Behavioral Ability. J Neurosci 2024; 44:e0856232024. [PMID: 38290847 PMCID: PMC10977027 DOI: 10.1523/jneurosci.0856-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
Large-scale functional networks are spatially distributed in the human brain. Despite recent progress in differentiating their functional roles, how the brain navigates the spatial coordination among them and the biological relevance of this coordination is still not fully understood. Capitalizing on canonical individualized networks derived from functional MRI data, we proposed a new concept, that is, co-representation of functional brain networks, to delineate the spatial coordination among them. To further quantify the co-representation pattern, we defined two indexes, that is, the co-representation specificity (CoRS) and intensity (CoRI), for separately measuring the extent of specific and average expression of functional networks at each brain location by using the data from both sexes. We found that the identified pattern of co-representation was anchored by cortical regions with three types of cytoarchitectural classes along a sensory-fugal axis, including, at the first end, primary (idiotypic) regions showing high CoRS, at the second end, heteromodal regions showing low CoRS and high CoRI, at the third end, paralimbic regions showing low CoRI. Importantly, we demonstrated the critical role of myeloarchitecture in sculpting the spatial distribution of co-representation by assessing the association with the myelin-related neuroanatomical and transcriptomic profiles. Furthermore, the significance of manifesting the co-representation was revealed in its prediction of individual behavioral ability. Our findings indicated that the spatial coordination among functional networks was built upon an anatomically configured blueprint to facilitate neural information processing, while advancing our understanding of the topographical organization of the brain by emphasizing the assembly of functional networks.
Collapse
Affiliation(s)
- Congying Chu
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Wen Li
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Forschungszentrum Jülich, Jülich 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf 40204, Germany
| | - Lingzhong Fan
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzi Jiang
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100049, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China
| |
Collapse
|
45
|
Pedersen R, Johansson J, Nordin K, Rieckmann A, Wåhlin A, Nyberg L, Bäckman L, Salami A. Dopamine D1-Receptor Organization Contributes to Functional Brain Architecture. J Neurosci 2024; 44:e0621232024. [PMID: 38302439 PMCID: PMC10941071 DOI: 10.1523/jneurosci.0621-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/01/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
Recent work has recognized a gradient-like organization in cortical function, spanning from primary sensory to transmodal cortices. It has been suggested that this axis is aligned with regional differences in neurotransmitter expression. Given the abundance of dopamine D1-receptors (D1DR), and its importance for modulation and neural gain, we tested the hypothesis that D1DR organization is aligned with functional architecture, and that inter-regional relationships in D1DR co-expression modulate functional cross talk. Using the world's largest dopamine D1DR-PET and MRI database (N = 180%, 50% female), we demonstrate that D1DR organization follows a unimodal-transmodal hierarchy, expressing a high spatial correspondence to the principal gradient of functional connectivity. We also demonstrate that individual differences in D1DR density between unimodal and transmodal regions are associated with functional differentiation of the apices in the cortical hierarchy. Finally, we show that spatial co-expression of D1DR primarily modulates couplings within, but not between, functional networks. Together, our results show that D1DR co-expression provides a biomolecular layer to the functional organization of the brain.
Collapse
Affiliation(s)
- Robin Pedersen
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Jarkko Johansson
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Kristin Nordin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Department of Radiation Sciences, Umeå University, Umeå S-90197, Sweden
- Max-Planck-Institut für Sozialrecht und Sozialpolitik, Munich 80799, Germany
| | - Anders Wåhlin
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Department of Radiation Sciences, Umeå University, Umeå S-90197, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| | - Alireza Salami
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| |
Collapse
|
46
|
Feng G, Wang Y, Huang W, Chen H, Cheng J, Shu N. Spatial and temporal pattern of structure-function coupling of human brain connectome with development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557107. [PMID: 38559278 PMCID: PMC10979860 DOI: 10.1101/2023.09.11.557107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7 to 21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC-FC coupling. Our findings revealed that SC-FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC-FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC-FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC-FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC-FC coupling in typical development.
Collapse
Affiliation(s)
- Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yiwen Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
47
|
Luppi AI, Uhrig L, Tasserie J, Signorelli CM, Stamatakis EA, Destexhe A, Jarraya B, Cofre R. Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain. Nat Commun 2024; 15:2171. [PMID: 38462641 PMCID: PMC10925605 DOI: 10.1038/s41467-024-46382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
A central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales. We report that distributed brain activity under anaesthesia is increasingly constrained by brain structure across scales, coinciding with anaesthetic-induced collapse of multiple dimensions of hierarchical cortical organisation. These distributed signatures are observed across different anaesthetics, and they are reversed by electrical stimulation of the central thalamus, coinciding with recovery of behavioural markers of arousal. No such effects were observed upon stimulating the ventral lateral thalamus, demonstrating specificity. Overall, we identify consistent distributed signatures of consciousness that are orchestrated by specific thalamic nuclei.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Camilo M Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Computer Science, University of Oxford, Oxford, 7 Parks Rd, Oxford, OX1 3QG, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Neurology, Hopital Foch, 92150, Suresnes, France
| | - Rodrigo Cofre
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| |
Collapse
|
48
|
Xu M, Li X, Teng T, Huang Y, Liu M, Long Y, Lv F, Zhi D, Li X, Feng A, Yu S, Calhoun V, Zhou X, Sui J. Reconfiguration of Structural and Functional Connectivity Coupling in Patient Subgroups With Adolescent Depression. JAMA Netw Open 2024; 7:e241933. [PMID: 38470418 PMCID: PMC10933730 DOI: 10.1001/jamanetworkopen.2024.1933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Importance Adolescent major depressive disorder (MDD) is associated with serious adverse implications for brain development and higher rates of self-injury and suicide, raising concerns about its neurobiological mechanisms in clinical neuroscience. However, most previous studies regarding the brain alterations in adolescent MDD focused on single-modal images or analyzed images of different modalities separately, ignoring the potential role of aberrant interactions between brain structure and function in the psychopathology. Objective To examine alterations of structural and functional connectivity (SC-FC) coupling in adolescent MDD by integrating both diffusion magnetic resonance imaging (MRI) and resting-state functional MRI data. Design, Setting, and Participants This cross-sectional study recruited participants aged 10 to 18 years from January 2, 2020, to December 28, 2021. Patients with first-episode MDD were recruited from the outpatient psychiatry clinics at The First Affiliated Hospital of Chongqing Medical University. Healthy controls were recruited by local media advertisement from the general population in Chongqing, China. The sample was divided into 5 subgroup pairs according to different environmental stressors and clinical characteristics. Data were analyzed from January 10, 2022, to February 20, 2023. Main Outcomes and Measures The SC-FC coupling was calculated for each brain region of each participant using whole-brain SC and FC. Primary analyses included the group differences in SC-FC coupling and clinical symptom associations between SC-FC coupling and participants with adolescent MDD and healthy controls. Secondary analyses included differences among 5 types of MDD subgroups: with or without suicide attempt, with or without nonsuicidal self-injury behavior, with or without major life events, with or without childhood trauma, and with or without school bullying. Results Final analyses examined SC-FC coupling of 168 participants with adolescent MDD (mean [mean absolute deviation (MAD)] age, 16.0 [1.7] years; 124 females [73.8%]) and 101 healthy controls (mean [MAD] age, 15.1 [2.4] years; 61 females [60.4%]). Adolescent MDD showed increased SC-FC coupling in the visual network, default mode network, and insula (Cohen d ranged from 0.365 to 0.581; false discovery rate [FDR]-corrected P < .05). Some subgroup-specific alterations were identified via subgroup analyses, particularly involving parahippocampal coupling decrease in participants with suicide attempt (partial η2 = 0.069; 90% CI, 0.025-0.121; FDR-corrected P = .007) and frontal-limbic coupling increase in participants with major life events (partial η2 ranged from 0.046 to 0.068; FDR-corrected P < .05). Conclusions and Relevance Results of this cross-sectional study suggest increased SC-FC coupling in adolescent MDD, especially involving hub regions of the default mode network, visual network, and insula. The findings enrich knowledge of the aberrant brain SC-FC coupling in the psychopathology of adolescent MDD, underscoring the vulnerability of frontal-limbic SC-FC coupling to external stressors and the parahippocampal coupling in shaping future-minded behavior.
Collapse
Affiliation(s)
- Ming Xu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yicheng Long
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongmei Zhi
- International Data Group (IDG)/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xiang Li
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Aichen Feng
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Shan Yu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Emory University and Georgia State University, Atlanta, Georgia
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Sui
- International Data Group (IDG)/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
49
|
Yoo S, Jang Y, Hong SJ, Park H, Valk SL, Bernhardt BC, Park BY. Whole-brain structural connectome asymmetry in autism. Neuroimage 2024; 288:120534. [PMID: 38340881 DOI: 10.1016/j.neuroimage.2024.120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Autism spectrum disorder is a common neurodevelopmental condition that manifests as a disruption in sensory and social skills. Although it has been shown that the brain morphology of individuals with autism is asymmetric, how this differentially affects the structural connectome organization of each hemisphere remains under-investigated. We studied whole-brain structural connectivity-based brain asymmetry in individuals with autism using diffusion magnetic resonance imaging obtained from the Autism Brain Imaging Data Exchange initiative. By leveraging dimensionality reduction techniques, we constructed low-dimensional representations of structural connectivity and calculated their asymmetry index. Comparing the asymmetry index between individuals with autism and neurotypical controls, we found atypical structural connectome asymmetry in the sensory and default-mode regions, particularly showing weaker asymmetry towards the right hemisphere in autism. Network communication provided topological underpinnings by demonstrating that the inferior temporal cortex and limbic and frontoparietal regions showed reduced global network communication efficiency and decreased send-receive network navigation in the inferior temporal and lateral visual cortices in individuals with autism. Finally, supervised machine learning revealed that structural connectome asymmetry could be used as a measure for predicting communication-related autistic symptoms and nonverbal intelligence. Our findings provide insights into macroscale structural connectome alterations in autism and their topological underpinnings.
Collapse
Affiliation(s)
- Seulki Yoo
- Convergence Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yurim Jang
- Artificial Intelligence Convergence Research Center, Inha University, Incheon, Republic of Korea
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sofie L Valk
- Forschungszentrum Julich, Germany; Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Systems Neuroscience, Heinrich Heine University, Duesseldorf, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Data Science, Inha University, Incheon, Republic of Korea; Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
50
|
Galdi P, Cabez MB, Farrugia C, Vaher K, Williams LZJ, Sullivan G, Stoye DQ, Quigley AJ, Makropoulos A, Thrippleton MJ, Bastin ME, Richardson H, Whalley H, Edwards AD, Bajada CJ, Robinson EC, Boardman JP. Feature similarity gradients detect alterations in the neonatal cortex associated with preterm birth. Hum Brain Mapp 2024; 45:e26660. [PMID: 38488444 PMCID: PMC10941526 DOI: 10.1002/hbm.26660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The early life environment programmes cortical architecture and cognition across the life course. A measure of cortical organisation that integrates information from multimodal MRI and is unbound by arbitrary parcellations has proven elusive, which hampers efforts to uncover the perinatal origins of cortical health. Here, we use the Vogt-Bailey index to provide a fine-grained description of regional homogeneities and sharp variations in cortical microstructure based on feature gradients, and we investigate the impact of being born preterm on cortical development at term-equivalent age. Compared with term-born controls, preterm infants have a homogeneous microstructure in temporal and occipital lobes, and the medial parietal, cingulate, and frontal cortices, compared with term infants. These observations replicated across two independent datasets and were robust to differences that remain in the data after matching samples and alignment of processing and quality control strategies. We conclude that cortical microstructural architecture is altered in preterm infants in a spatially distributed rather than localised fashion.
Collapse
Affiliation(s)
- Paola Galdi
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- School of InformaticsUniversity of EdinburghEdinburghUK
| | | | - Christine Farrugia
- Faculty of EngineeringUniversity of MaltaVallettaMalta
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
| | - Kadi Vaher
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - Logan Z. J. Williams
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - Gemma Sullivan
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - David Q. Stoye
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | | | | | | | - Mark E. Bastin
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Hilary Richardson
- School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| | - Heather Whalley
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for Genomic and Experimental MedicineUniversity of EdinburghEdinburghUK
| | - A. David Edwards
- Centre for the Developing BrainKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Claude J. Bajada
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
- Department of Physiology and Biochemistry, Faculty of Medicine and SurgeryUniversity of MaltaVallettaMalta
| | - Emma C. Robinson
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - James P. Boardman
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|