1
|
Wu Y, Sun T, Medina P, Narasimhan P, Stevenson DK, Von Versen-Höynck F, Armstrong J, Wu JC, Sayed N, Winn VD. A Novel Stem Cell Model to Study Preeclampsia Endothelial Dysfunction. Reprod Sci 2024; 31:2993-3003. [PMID: 39179924 PMCID: PMC11438721 DOI: 10.1007/s43032-024-01590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/08/2024] [Indexed: 08/26/2024]
Abstract
Preeclampsia is a common pregnancy complication affecting 5% to 7% of all pregnancies worldwide annually. While the pathogenesis is not fully understood, maternal endothelium dysfunction is thought to be a central component to preeclampsia development. Studies to dissect maternal endothelial dysfunction, particularly on a patient-specific basis, are hampered by limited access to systemic primary endothelial cells (ECs). The objective of this study was to establish a replenishable, patient-specific in vitro EC model to allow robust mechanistic studies to dissect endothelial dysfunction in preeclampsia. Induced pluripotent stem cells (iPSCs) from three women with a history of normotensive pregnancies were differentiated into ECs. The established ECs were exposed to pooled sera from normotensive pregnancies, preeclamptic pregnancies, normotensive postpartum for non-pregnant comparison and controls. Endothelial functions including nitric oxide (NO) release, cell migration, tube formation and viability were evaluated. Levels of NO release were significantly lower after incubation with preeclamptic sera compared to the fetal bovine serum (FBS) control, and normotensive and non-pregnant (postpartum) sera treatments were also lower than FBS but higher than preeclamptic sera treatments. Tube formation and cell migration were also impaired with preeclamptic sera compared to FBS controls. Cell viabilities remained unaffected by any sera treatment. Consistent outcomes were obtained across all three patient-specific lines treated with the same pooled sera. Establishment of patient-derived iPSC-ECs treated with pregnancy sera serves as a novel model to explore the interplay between individual maternal endothelial health and circulating factors that lead to endothelial dysfunction in preeclampsia.
Collapse
Affiliation(s)
- Yanming Wu
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tianyanxin Sun
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pedro Medina
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Purnima Narasimhan
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Frauke Von Versen-Höynck
- Department of Obstetrics, Gynecology and Reproductive Sciences, Hannover Medical School, Hannover, Germany
| | - Jennifer Armstrong
- Department of Pediatrics, Section of Neurology and Department of Obstetrics and Gynecology, Division of Basic Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Yagi M, Horng JE, Hochedlinger K. Manipulating cell fate through reprogramming: approaches and applications. Development 2024; 151:dev203090. [PMID: 39348466 PMCID: PMC11463964 DOI: 10.1242/dev.203090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024]
Abstract
Cellular plasticity progressively declines with development and differentiation, yet these processes can be experimentally reversed by reprogramming somatic cells to induced pluripotent stem cells (iPSCs) using defined transcription factors. Advances in reprogramming technology over the past 15 years have enabled researchers to study diseases with patient-specific iPSCs, gain fundamental insights into how cell identity is maintained, recapitulate early stages of embryogenesis using various embryo models, and reverse aspects of aging in cultured cells and animals. Here, we review and compare currently available reprogramming approaches, including transcription factor-based methods and small molecule-based approaches, to derive pluripotent cells characteristic of early embryos. Additionally, we discuss our current understanding of mechanisms that resist reprogramming and their role in cell identity maintenance. Finally, we review recent efforts to rejuvenate cells and tissues with reprogramming factors, as well as the application of iPSCs in deriving novel embryo models to study pre-implantation development.
Collapse
Affiliation(s)
- Masaki Yagi
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joy E. Horng
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Kim SK, Seo S, Stein-O'Brien G, Jaishankar A, Ogawa K, Micali N, Luria V, Karger A, Wang Y, Kim H, Hyde TM, Kleinman JE, Voss T, Fertig EJ, Shin JH, Bürli R, Cross AJ, Brandon NJ, Weinberger DR, Chenoweth JG, Hoeppner DJ, Sestan N, Colantuoni C, McKay RD. Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells. Stem Cell Reports 2024; 19:1336-1350. [PMID: 39151428 PMCID: PMC11411333 DOI: 10.1016/j.stemcr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/19/2024] Open
Abstract
Variability between human pluripotent stem cell (hPSC) lines remains a challenge and opportunity in biomedicine. In this study, hPSC lines from multiple donors were differentiated toward neuroectoderm and mesendoderm lineages. We revealed dynamic transcriptomic patterns that delineate the emergence of these lineages, which were conserved across lines, along with individual line-specific transcriptional signatures that were invariant throughout differentiation. These transcriptomic signatures predicted an antagonism between SOX21-driven forebrain fates and retinoic acid-induced hindbrain fates. Replicate lines and paired adult tissue demonstrated the stability of these line-specific transcriptomic traits. We show that this transcriptomic variation in lineage bias had both genetic and epigenetic origins, aligned with the anterior-to-posterior structure of early mammalian development, and was present across a large collection of hPSC lines. These findings contribute to developing systematic analyses of PSCs to define the origin and consequences of variation in the early events orchestrating individual human development.
Collapse
Affiliation(s)
- Suel-Kee Kim
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Seungmae Seo
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | | | - Amritha Jaishankar
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Kazuya Ogawa
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Nicola Micali
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Hyojin Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ty Voss
- Division of Preclinical Innovation, Nation Center for Advancing Translational Science, NIH, Bethesda, MD 20892, USA
| | - Elana J Fertig
- Departments of Oncology, Biomedical Engineering, and Applied Mathematics and Statistics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joo-Heon Shin
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Roland Bürli
- Astra-Zeneca Neuroscience iMED., 141 Portland Street, Cambridge, MA 01239, USA
| | - Alan J Cross
- Astra-Zeneca Neuroscience iMED., 141 Portland Street, Cambridge, MA 01239, USA
| | - Nicholas J Brandon
- Astra-Zeneca Neuroscience iMED., 141 Portland Street, Cambridge, MA 01239, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joshua G Chenoweth
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Daniel J Hoeppner
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Genetics, Psychiatry, and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Carlo Colantuoni
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Ronald D McKay
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Song C, Zhang Z, Leng D, He Z, Wang X, Liu W, Zhang W, Wu Q, Zhao Q, Chen G. ERK5 promotes autocrine expression to sustain mitogenic balance for cell fate specification in human pluripotent stem cells. Stem Cell Reports 2024; 19:1320-1335. [PMID: 39151429 PMCID: PMC11411316 DOI: 10.1016/j.stemcr.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
The homeostasis of human pluripotent stem cells (hPSCs) requires the signaling balance of extracellular factors. Exogenous regulators from cell culture medium have been widely reported, but little attention has been paid to the autocrine factor from hPSCs themselves. In this report, we demonstrate that extracellular signal-related kinase 5 (ERK5) regulates endogenous autocrine factors essential for pluripotency and differentiation. ERK5 inhibition leads to erroneous cell fate specification in all lineages even under lineage-specific induction. hPSCs can self-renew under ERK5 inhibition in the presence of fibroblast growth factor 2 (FGF2) and transforming growth factor β (TGF-β), although NANOG expression is partially suppressed. Further analysis demonstrates that ERK5 promotes the expression of autocrine factors such as NODAL, FGF8, and WNT3. The addition of NODAL protein rescues NANOG expression and differentiation phenotypes under ERK5 inhibition. We demonstrate that constitutively active ERK5 pathway allows self-renewal even without essential growth factors FGF2 and TGF-β. This study highlights the essential contribution of autocrine pathways to proper maintenance and differentiation.
Collapse
Affiliation(s)
- Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhaoying Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dongliang Leng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ziqing He
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xuepeng Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China; CAM-SU Genomic Resource Center, Soochow University, Suzhou, Jiangsu, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Biological Imaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wensheng Zhang
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, Jiangsu, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Qi Zhao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, China.
| |
Collapse
|
5
|
Benazzato C, Lojudice F, Pöehlchen F, Leite PEC, Manucci AC, Van der Linden V, Jungmann P, Sogayar MC, Bruni-Cardoso A, Russo FB, Beltrão-Braga P. Zika virus vertical transmission induces neuroinflammation and synapse impairment in brain cells derived from children born with Congenital Zika Syndrome. Sci Rep 2024; 14:18002. [PMID: 39097642 PMCID: PMC11297915 DOI: 10.1038/s41598-024-65392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/18/2024] [Indexed: 08/05/2024] Open
Abstract
Zika virus (ZIKV) infection was first reported in 2015 in Brazil as causing microcephaly and other developmental abnormalities in newborns, leading to the identification of Congenital Zika Syndrome (CZS). Viral infections have been considered an environmental risk factor for neurodevelopmental disorders outcome, such as Autism Spectrum Disorder (ASD). Moreover, not only the infection per se, but maternal immune system activation during pregnancy, has been linked to fetal neurodevelopmental disorders. To understand the impact of ZIKV vertical infection on brain development, we derived induced pluripotent stem cells (iPSC) from Brazilian children born with CZS, some of the patients also being diagnosed with ASD. Comparing iPSC-derived neurons from CZS with a control group, we found lower levels of pre- and postsynaptic proteins and reduced functional synapses by puncta co-localization. Furthermore, neurons and astrocytes derived from the CZS group showed decreased glutamate levels. Additionally, the CZS group exhibited elevated levels of cytokine production, one of which being IL-6, already associated with the ASD phenotype. These preliminary findings suggest that ZIKV vertical infection may cause long-lasting disruptions in brain development during fetal stages, even in the absence of the virus after birth. These disruptions could contribute to neurodevelopmental disorders manifestations such as ASD. Our study contributes with novel knowledge of the CZS outcomes and paves the way for clinical validation and the development of potential interventions to mitigate the impact of ZIKV vertical infection on neurodevelopment.
Collapse
Affiliation(s)
- Cecilia Benazzato
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil
| | - Fernando Lojudice
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo-SP, 01246-903, Brazil
| | - Felizia Pöehlchen
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil
- Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Paulo Emílio Corrêa Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Federal Fluminense University, Rio de Janeiro, 24220-900, Brazil
| | - Antonio Carlos Manucci
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Patricia Jungmann
- Pathology Department, University of Pernambuco, Recife, 50670-901, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo-SP, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Alexandre Bruni-Cardoso
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Fabiele B Russo
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil.
| | - Patricia Beltrão-Braga
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil.
- Institute Pasteur of São Paulo, Av. Prof. Lucio Martins Rodrigues 370, A-Building, 4Th Floor, São Paulo-SP, 05508-020, Brazil.
| |
Collapse
|
6
|
Edenhofer FC, Térmeg A, Ohnuki M, Jocher J, Kliesmete Z, Briem E, Hellmann I, Enard W. Generation and characterization of inducible KRAB-dCas9 iPSCs from primates for cross-species CRISPRi. iScience 2024; 27:110090. [PMID: 38947524 PMCID: PMC11214527 DOI: 10.1016/j.isci.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Comparisons of molecular phenotypes across primates provide unique information to understand human biology and evolution, and single-cell RNA-seq CRISPR interference (CRISPRi) screens are a powerful approach to analyze them. Here, we generate and validate three human, three gorilla, and two cynomolgus iPS cell lines that carry a dox-inducible KRAB-dCas9 construct at the AAVS1 locus. We show that despite variable expression levels of KRAB-dCas9 among lines, comparable downregulation of target genes and comparable phenotypic effects are observed in a single-cell RNA-seq CRISPRi screen. Hence, we provide valuable resources for performing and further extending CRISPRi in human and non-human primates.
Collapse
Affiliation(s)
- Fiona C. Edenhofer
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Anita Térmeg
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Mari Ohnuki
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
- Hakubi Center, Kyoto University, Kyoto 606-8501, Japan
| | - Jessica Jocher
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Zane Kliesmete
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Ines Hellmann
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| |
Collapse
|
7
|
Sawada T, Barbosa AR, Araujo B, McCord AE, D’Ignazio L, Benjamin KJM, Sheehan B, Zabolocki M, Feltrin A, Arora R, Brandtjen AC, Kleinman JE, Hyde TM, Bardy C, Weinberger DR, Paquola ACM, Erwin JA. Recapitulation of Perturbed Striatal Gene Expression Dynamics of Donors' Brains With Ventral Forebrain Organoids Derived From the Same Individuals With Schizophrenia. Am J Psychiatry 2024; 181:493-511. [PMID: 37915216 PMCID: PMC11209846 DOI: 10.1176/appi.ajp.20220723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Schizophrenia is a brain disorder that originates during neurodevelopment and has complex genetic and environmental etiologies. Despite decades of clinical evidence of altered striatal function in affected patients, studies examining its cellular and molecular mechanisms in humans are limited. To explore neurodevelopmental alterations in the striatum associated with schizophrenia, the authors established a method for the differentiation of induced pluripotent stem cells (iPSCs) into ventral forebrain organoids (VFOs). METHODS VFOs were generated from postmortem dural fibroblast-derived iPSCs of four individuals with schizophrenia and four neurotypical control individuals for whom postmortem caudate genotypes and transcriptomic data were profiled in the BrainSeq neurogenomics consortium. Individuals were selected such that the two groups had nonoverlapping schizophrenia polygenic risk scores (PRSs). RESULTS Single-cell RNA sequencing analyses of VFOs revealed differences in developmental trajectory between schizophrenia and control individuals in which inhibitory neuronal cells from the patients exhibited accelerated maturation. Furthermore, upregulated genes in inhibitory neurons in schizophrenia VFOs showed a significant overlap with upregulated genes in postmortem caudate tissue of individuals with schizophrenia compared with control individuals, including the donors of the iPSC cohort. CONCLUSIONS The findings suggest that striatal neurons derived from high-PRS individuals with schizophrenia carry abnormalities that originated during early brain development and that the VFO model can recapitulate disease-relevant cell type-specific neurodevelopmental phenotypes in a dish.
Collapse
Affiliation(s)
- Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Bruno Araujo
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Laura D’Ignazio
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kynon J. M. Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bonna Sheehan
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Michael Zabolocki
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders University, Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Adelaide, SA, Australia
| | - Arthur Feltrin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Ria Arora
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Joel E. Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders University, Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Adelaide, SA, Australia
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Apuā C. M. Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer A. Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Yin X, Li Q, Shu Y, Wang H, Thomas B, Maxwell JT, Zhang Y. Exploiting urine-derived induced pluripotent stem cells for advancing precision medicine in cell therapy, disease modeling, and drug testing. J Biomed Sci 2024; 31:47. [PMID: 38724973 PMCID: PMC11084032 DOI: 10.1186/s12929-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
The field of regenerative medicine has witnessed remarkable advancements with the emergence of induced pluripotent stem cells (iPSCs) derived from a variety of sources. Among these, urine-derived induced pluripotent stem cells (u-iPSCs) have garnered substantial attention due to their non-invasive and patient-friendly acquisition method. This review manuscript delves into the potential and application of u-iPSCs in advancing precision medicine, particularly in the realms of drug testing, disease modeling, and cell therapy. U-iPSCs are generated through the reprogramming of somatic cells found in urine samples, offering a unique and renewable source of patient-specific pluripotent cells. Their utility in drug testing has revolutionized the pharmaceutical industry by providing personalized platforms for drug screening, toxicity assessment, and efficacy evaluation. The availability of u-iPSCs with diverse genetic backgrounds facilitates the development of tailored therapeutic approaches, minimizing adverse effects and optimizing treatment outcomes. Furthermore, u-iPSCs have demonstrated remarkable efficacy in disease modeling, allowing researchers to recapitulate patient-specific pathologies in vitro. This not only enhances our understanding of disease mechanisms but also serves as a valuable tool for drug discovery and development. In addition, u-iPSC-based disease models offer a platform for studying rare and genetically complex diseases, often underserved by traditional research methods. The versatility of u-iPSCs extends to cell therapy applications, where they hold immense promise for regenerative medicine. Their potential to differentiate into various cell types, including neurons, cardiomyocytes, and hepatocytes, enables the development of patient-specific cell replacement therapies. This personalized approach can revolutionize the treatment of degenerative diseases, organ failure, and tissue damage by minimizing immune rejection and optimizing therapeutic outcomes. However, several challenges and considerations, such as standardization of reprogramming protocols, genomic stability, and scalability, must be addressed to fully exploit u-iPSCs' potential in precision medicine. In conclusion, this review underscores the transformative impact of u-iPSCs on advancing precision medicine and highlights the future prospects and challenges in harnessing this innovative technology for improved healthcare outcomes.
Collapse
Affiliation(s)
- Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Biju Thomas
- Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joshua T Maxwell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
9
|
Gu CC, Matter A, Turner A, Aggarwal P, Yang W, Sun X, Hunt SC, Lewis CE, Arnett DK, Anson B, Kattman S, Broeckel U. Transcriptional Variabilities in Human hiPSC-derived Cardiomyocytes: All Genes Are Not Equal and Their Robustness May Foretell Donor's Disease Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.584138. [PMID: 38659937 PMCID: PMC11042381 DOI: 10.1101/2024.04.18.584138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Human induced pluripotent stem cells (hiPSCs) are frequently used to study disease-associated variations. We characterized transcriptional variability from a hiPSC-derived cardiomyocyte (hiPSC-CM) study of left ventricular hypertrophy (LVH) using donor samples from the HyperGEN study. Multiple hiPSC-CM differentiations over reprogramming events (iPSC generation) across 7 donors were used to assess variabilities from reprogramming, differentiation, and donor LVH status. Variability arising from pathological alterations was assessed using a cardiac stimulant applied to the hiPSC-CMs to trigger hypertrophic responses. We found that for most genes (73.3%~85.5%), technical variability was smaller than biological variability. Further, we identified and characterized lists of "noise" genes showing greater technical variability and "signal" genes showing greater biological variability. Together, they support a "genetic robustness" hypothesis of disease-modeling whereby cellular response to relevant stimuli in hiPSC-derived somatic cells from diseased donors tends to show more transcriptional variability. Our findings suggest that hiPSC-CMs can provide a valid model for cardiac hypertrophy and distinguish between technical and disease-relevant transcriptional changes.
Collapse
|
10
|
Lépine S, Nauleau-Javaudin A, Deneault E, Chen CXQ, Abdian N, Franco-Flores AK, Haghi G, Castellanos-Montiel MJ, Maussion G, Chaineau M, Durcan TM. Homozygous ALS-linked mutations in TARDBP/TDP-43 lead to hypoactivity and synaptic abnormalities in human iPSC-derived motor neurons. iScience 2024; 27:109166. [PMID: 38433895 PMCID: PMC10905001 DOI: 10.1016/j.isci.2024.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Cytoplasmic mislocalization and aggregation of the RNA-binding protein TDP-43 is a pathological hallmark of the motor neuron (MN) disease amyotrophic lateral sclerosis (ALS). Furthermore, while mutations in TARDBP (encoding TDP-43) have been associated with ALS, the pathogenic consequences of these mutations remain poorly understood. Using CRISPR-Cas9, we engineered two homozygous knock-in induced pluripotent stem cell lines carrying mutations in TARDBP encoding TDP-43A382T and TDP-43G348C, two common yet understudied ALS TDP-43 variants. Motor neurons (MNs) differentiated from knock-in iPSCs had normal viability and displayed no significant changes in TDP-43 subcellular localization, phosphorylation, solubility, or aggregation compared with isogenic control MNs. However, our results highlight synaptic impairments in both TDP-43A382T and TDP-43G348C MN cultures, as reflected in synapse abnormalities and alterations in spontaneous neuronal activity. Collectively, our findings suggest that MN dysfunction may precede the occurrence of TDP-43 pathology and neurodegeneration in ALS and further implicate synaptic and excitability defects in the pathobiology of this disease.
Collapse
Affiliation(s)
- Sarah Lépine
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Angela Nauleau-Javaudin
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric Deneault
- Centre for Oncology, Radiopharmaceuticals and Research; Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carol X.-Q. Chen
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Narges Abdian
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Anna Krystina Franco-Flores
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Ghazal Haghi
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - María José Castellanos-Montiel
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Gilles Maussion
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mathilde Chaineau
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Thomas Martin Durcan
- Early Drug Discovery Unit (EDDU), The Neuro-Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
11
|
Kumar S, Granados J, Aceves M, Peralta J, Leandro AC, Thomas J, Williams-Blangero S, Curran JE, Blangero J. Pre-Infection Innate Immunity Attenuates SARS-CoV-2 Infection and Viral Load in iPSC-Derived Alveolar Epithelial Type 2 Cells. Cells 2024; 13:369. [PMID: 38474333 PMCID: PMC10931100 DOI: 10.3390/cells13050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
A large portion of the heterogeneity in coronavirus disease 2019 (COVID-19) susceptibility and severity of illness (SOI) remains poorly understood. Recent evidence suggests that SARS-CoV-2 infection-associated damage to alveolar epithelial type 2 cells (AT2s) in the distal lung may directly contribute to disease severity and poor prognosis in COVID-19 patients. Our in vitro modeling of SARS-CoV-2 infection in induced pluripotent stem cell (iPSC)-derived AT2s from 10 different individuals showed interindividual variability in infection susceptibility and the postinfection cellular viral load. To understand the underlying mechanism of the AT2's capacity to regulate SARS-CoV-2 infection and cellular viral load, a genome-wide differential gene expression analysis between the mock and SARS-CoV-2 infection-challenged AT2s was performed. The 1393 genes, which were significantly (one-way ANOVA FDR-corrected p ≤ 0.05; FC abs ≥ 2.0) differentially expressed (DE), suggest significant upregulation of viral infection-related cellular innate immune response pathways (p-value ≤ 0.05; activation z-score ≥ 3.5), and significant downregulation of the cholesterol- and xenobiotic-related metabolic pathways (p-value ≤ 0.05; activation z-score ≤ -3.5). Whilst the effect of post-SARS-CoV-2 infection response on the infection susceptibility and postinfection viral load in AT2s is not clear, interestingly, pre-infection (mock-challenged) expression of 238 DE genes showed a high correlation with the postinfection SARS-CoV-2 viral load (FDR-corrected p-value ≤ 0.05 and r2-absolute ≥ 0.57). The 85 genes whose expression was negatively correlated with the viral load showed significant enrichment in viral recognition and cytokine-mediated innate immune GO biological processes (p-value range: 4.65 × 10-10 to 2.24 × 10-6). The 153 genes whose expression was positively correlated with the viral load showed significant enrichment in cholesterol homeostasis, extracellular matrix, and MAPK/ERK pathway-related GO biological processes (p-value range: 5.06 × 10-5 to 6.53 × 10-4). Overall, our results strongly suggest that AT2s' pre-infection innate immunity and metabolic state affect their susceptibility to SARS-CoV-2 infection and viral load.
Collapse
Affiliation(s)
- Satish Kumar
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Jose Granados
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Miriam Aceves
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Juan Peralta
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Ana C. Leandro
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - John Thomas
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Sarah Williams-Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Joanne E. Curran
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - John Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| |
Collapse
|
12
|
Edwards MM, Wang N, Massey DJ, Bhatele S, Egli D, Koren A. Incomplete reprogramming of DNA replication timing in induced pluripotent stem cells. Cell Rep 2024; 43:113664. [PMID: 38194345 PMCID: PMC11231959 DOI: 10.1016/j.celrep.2023.113664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/27/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) are the foundation of cell therapy. Differences in gene expression, DNA methylation, and chromatin conformation, which could affect differentiation capacity, have been identified between iPSCs and embryonic stem cells (ESCs). Less is known about whether DNA replication timing, a process linked to both genome regulation and genome stability, is efficiently reprogrammed to the embryonic state. To answer this, we compare genome-wide replication timing between ESCs, iPSCs, and cells reprogrammed by somatic cell nuclear transfer (NT-ESCs). While NT-ESCs replicate their DNA in a manner indistinguishable from ESCs, a subset of iPSCs exhibits delayed replication at heterochromatic regions containing genes downregulated in iPSCs with incompletely reprogrammed DNA methylation. DNA replication delays are not the result of gene expression or DNA methylation aberrations and persist after cells differentiate to neuronal precursors. Thus, DNA replication timing can be resistant to reprogramming and influence the quality of iPSCs.
Collapse
Affiliation(s)
- Matthew M Edwards
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ning Wang
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Sakshi Bhatele
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA.
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
13
|
Janz A, Walz K, Cirnu A, Surjanto J, Urlaub D, Leskien M, Kohlhaas M, Nickel A, Brand T, Nose N, Wörsdörfer P, Wagner N, Higuchi T, Maack C, Dudek J, Lorenz K, Klopocki E, Ergün S, Duff HJ, Gerull B. Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes. Mol Metab 2024; 79:101859. [PMID: 38142971 PMCID: PMC10792641 DOI: 10.1016/j.molmet.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. METHODS We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca2+ kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tvHeLa). RESULTS Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca2+ concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. CONCLUSIONS Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca2+ kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.
Collapse
Affiliation(s)
- Anna Janz
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Walz
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Alexandra Cirnu
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Jessica Surjanto
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Urlaub
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Miriam Leskien
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Naoko Nose
- Comprehensive Heart Failure Center, Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center, Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany; Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Eva Klopocki
- Institute for Human Genetics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Henry J Duff
- Department of Cardiac Sciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Brenda Gerull
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany; Department of Medicine I, University Hospital Würzburg, Würzburg, Germany; Department of Cardiac Sciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
14
|
Pance A, Ng BL, Mwikali K, Koutsourakis M, Agu C, Rouhani FJ, Montandon R, Law F, Ponstingl H, Rayner JC. Novel stem cell technologies are powerful tools to understand the impact of human factors on Plasmodium falciparum malaria. Front Cell Infect Microbiol 2023; 13:1287355. [PMID: 38173794 PMCID: PMC10762799 DOI: 10.3389/fcimb.2023.1287355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Plasmodium falciparum parasites have a complex life cycle, but the most clinically relevant stage of the disease is the invasion of erythrocytes and the proliferation of the parasite in the blood. The influence of human genetic traits on malaria has been known for a long time, however understanding the role of the proteins involved is hampered by the anuclear nature of erythrocytes that makes them inaccessible to genetic tools. Here we overcome this limitation using stem cells to generate erythroid cells with an in-vitro differentiation protocol and assess parasite invasion with an adaptation of flow cytometry to detect parasite hemozoin. We combine this strategy with reprogramming of patient cells to Induced Pluripotent Stem Cells and genome editing to understand the role of key genes and human traits in malaria infection. We show that deletion of basigin ablates invasion while deletion of ATP2B4 has a minor effect and that erythroid cells from reprogrammed patient-derived HbBart α-thalassemia samples poorly support infection. The possibility to obtain patient-secific and genetically modifed erythoid cells offers an unparalleled opportunity to study the role of human genes and polymorphisms in malaria allowing preservation of the genomic background to demonstrate their function and understand their mechanisms.
Collapse
Affiliation(s)
- Alena Pance
- Wellcome Sanger Institute, Cambridge, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Bee L. Ng
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Chukwuma Agu
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Ruddy Montandon
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances Law
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Julian C. Rayner
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Nath SC, Menendez L, Friedrich Ben-Nun I. Overcoming the Variability of iPSCs in the Manufacturing of Cell-Based Therapies. Int J Mol Sci 2023; 24:16929. [PMID: 38069252 PMCID: PMC10706975 DOI: 10.3390/ijms242316929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Various factors are known to contribute to the diversity of human induced pluripotent stem cells (hiPSCs). Among these are the donor's genetic background and family history, the somatic cell source, the iPSC reprogramming method, and the culture system of choice. Moreover, variability is seen even in iPSC clones, generated in a single reprogramming event, where the donor, somatic cell type, and reprogramming platform are the same. The diversity seen in iPSC lines often translates to epigenetic differences, as well as to differences in the expansion rate, iPSC line culture robustness, and their ability to differentiate into specific cell types. As such, the diversity of iPSCs presents a hurdle to standardizing iPSC-based cell therapy manufacturing. In this review, we will expand on the various factors that impact iPSC diversity and the strategies and tools that could be taken by the industry to overcome the differences amongst various iPSC lines, therefore enabling robust and reproducible iPSC-based cell therapy manufacturing processes.
Collapse
Affiliation(s)
- Suman C. Nath
- Cell Therapy Process Department, Lonza Inc., Houston, TX 77047, USA; (S.C.N.); (L.M.)
| | - Laura Menendez
- Cell Therapy Process Department, Lonza Inc., Houston, TX 77047, USA; (S.C.N.); (L.M.)
| | | |
Collapse
|
16
|
Ohno T, Nakane T, Akase T, Kurasawa H, Aizawa Y. Development of an isogenic human cell trio that models polyglutamine disease. Genes Genet Syst 2023; 98:179-189. [PMID: 37821389 DOI: 10.1266/ggs.22-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Polyglutamine (polyQ) diseases are rare autosomal-dominant neurodegenerative diseases associated with the expansion of glutamine-encoding triplet repeats in certain genes. To investigate the functional influence of repeat expansion on disease mechanisms, we applied a biallelic genome-engineering platform that we recently established, called Universal Knock-in System or UKiS, to develop a human cell trio, a set of three isogenic cell lines that are homozygous for two different numbers of repeats (first and second lines) or heterozygous for the two repeat numbers (third line). As an example of a polyQ disease, we chose spinocerebellar ataxia type 2 (SCA2). In a pseudodiploid human cell line, both alleles of the glutamine-encoding triplet repeat in the SCA2-causing gene, ataxin 2 or ATXN2, were first knocked in with a donor sequence encoding both thymidine kinase and either puromycin or blasticidin resistance proteins under dual drug selection. The knocked-in donor alleles were then substituted with a payload having either 22 or 76 triplet repeats in ATXN2 by ganciclovir negative selection. The two-step substitution and subsequent SNP typing and genomic sequencing confirmed that the SCA2-modeling isogenic cell trio was obtained: three clones of 22-repeat homozygotes, two clones of 22/76-repeat heterozygotes and two clones of 76-repeat homozygotes. Finally, RT-PCR and immunoblotting using the obtained clones showed that, consistent with previous observations, glutamine tract expansion reduced transcriptional and translational expression of ATXN2. The cell clones with homozygous long-repeat alleles, which are rarely obtained from patients with SCA2, showed more drastic reduction of ATXN2 expression than the heterozygous clones. This study thus demonstrates the potential of UKiS, which is a beneficial platform for the efficient development of cell models not only for polyQ diseases but also for any other genetic diseases, which may accelerate our deeper understanding of disease mechanisms and cell-based screening for therapeutic drugs.
Collapse
Affiliation(s)
- Tomoyuki Ohno
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Takeshi Nakane
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Taichi Akase
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Hikaru Kurasawa
- School of Life Science and Technology, Tokyo Institute of Technology
- Kanagawa Institute of Industrial Science and Technology
| | - Yasunori Aizawa
- School of Life Science and Technology, Tokyo Institute of Technology
- Kanagawa Institute of Industrial Science and Technology
| |
Collapse
|
17
|
Gilmore RB, Liu Y, Stoddard CE, Chung MS, Carmichael GG, Cotney J. Identifying key underlying regulatory networks and predicting targets of orphan C/D box SNORD116 snoRNAs in Prader-Willi syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560773. [PMID: 37873184 PMCID: PMC10592975 DOI: 10.1101/2023.10.03.560773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder characterized principally by initial symptoms of neonatal hypotonia and failure-to-thrive in infancy, followed by hyperphagia and obesity. It is well established that PWS is caused by loss of paternal expression of the imprinted region on chromosome 15q11-q13. While most PWS cases exhibit megabase-scale deletions of the paternal chromosome 15q11-q13 allele, several PWS patients have been identified harboring a much smaller deletion encompassing primarily SNORD116. This finding suggests SNORD116 is a direct driver of PWS phenotypes. The SNORD116 gene cluster is composed of 30 copies of individual SNORD116 C/D box small nucleolar RNAs (snoRNAs). Many C/D box snoRNAs have been shown to guide chemical modifications of other RNA molecules, often ribosomal RNA (rRNA). However, SNORD116 snoRNAs are termed 'orphans' because no verified targets have been identified and their sequences show no significant complementarity to rRNA. It is crucial to identify the targets and functions of SNORD116 snoRNAs because all reported PWS cases lack their expression. To address this, we engineered two different deletions modelling PWS in two distinct human embryonic stem cell (hESC) lines to control for effects of genetic background. Utilizing an inducible expression system enabled quick, reproducible differentiation of these lines into neurons. Systematic comparisons of neuronal gene expression across deletion types and genetic backgrounds revealed a novel list of 42 consistently dysregulated genes. Employing the recently described computational tool snoGloBe, we discovered these dysregulated genes are significantly enriched for predicted SNORD116 targeting versus multiple control analyses. Importantly, our results showed it is critical to use multiple isogenic cell line pairs, as this eliminated many spuriously differentially expressed genes. Our results indicate a novel gene regulatory network controlled by SNORD116 is likely perturbed in PWS patients.
Collapse
Affiliation(s)
- Rachel B. Gilmore
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Yaling Liu
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Christopher E. Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Michael S. Chung
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Gordon G. Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
18
|
Pollen AA, Kilik U, Lowe CB, Camp JG. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat Rev Genet 2023; 24:687-711. [PMID: 36737647 PMCID: PMC9897628 DOI: 10.1038/s41576-022-00568-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/05/2023]
Abstract
Our ancestors acquired morphological, cognitive and metabolic modifications that enabled humans to colonize diverse habitats, develop extraordinary technologies and reshape the biosphere. Understanding the genetic, developmental and molecular bases for these changes will provide insights into how we became human. Connecting human-specific genetic changes to species differences has been challenging owing to an abundance of low-effect size genetic changes, limited descriptions of phenotypic differences across development at the level of cell types and lack of experimental models. Emerging approaches for single-cell sequencing, genetic manipulation and stem cell culture now support descriptive and functional studies in defined cell types with a human or ape genetic background. In this Review, we describe how the sequencing of genomes from modern and archaic hominins, great apes and other primates is revealing human-specific genetic changes and how new molecular and cellular approaches - including cell atlases and organoids - are enabling exploration of the candidate causal factors that underlie human-specific traits.
Collapse
Affiliation(s)
- Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Umut Kilik
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Yu C, Zhang M, Xiong Y, Wang Q, Wang Y, Wu S, Hussain S, Wang Y, Zhang Z, Rao N, Zhang S, Zhang X. Comparison of miRNA transcriptome of exosomes in three categories of somatic cells with derived iPSCs. Sci Data 2023; 10:616. [PMID: 37696871 PMCID: PMC10495316 DOI: 10.1038/s41597-023-02493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) through epigenetic manipulation. While the essential role of miRNA in reprogramming and maintaining pluripotency is well studied, little is known about the functions of miRNA from exosomes in this context. To fill this research gap,we comprehensively obtained the 17 sets of cellular mRNA transcriptomic data with 3.93 × 1010 bp raw reads and 18 sets of exosomal miRNA transcriptomic data with 2.83 × 107 bp raw reads from three categories of human somatic cells: peripheral blood mononuclear cells (PBMCs), skin fibroblasts(SFs) and urine cells (UCs), along with their derived iPSCs. Additionally, differentially expressed molecules of each category were identified and used to perform gene set enrichment analysis. Our study provides sets of comparative transcriptomic data of cellular mRNA and exosomal miRNA from three categories of human tissue with three individual biological controls in studies of iPSCs generation, which will contribute to a better understanding of donor cell variation in functional epigenetic regulation and differentiation bias in iPSCs.
Collapse
Affiliation(s)
- Chunlai Yu
- University of Electronic Science and Technology of China, Chengdu, Sichuang, China
| | - Mei Zhang
- Binzhou Medical University, Yantai, Shandong, China
| | - Yucui Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qizheng Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yuanhua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Shaoling Wu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sajjad Hussain
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhizhong Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Nini Rao
- University of Electronic Science and Technology of China, Chengdu, Sichuang, China.
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| | - Xiao Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Buckberry S, Liu X, Poppe D, Tan JP, Sun G, Chen J, Nguyen TV, de Mendoza A, Pflueger J, Frazer T, Vargas-Landín DB, Paynter JM, Smits N, Liu N, Ouyang JF, Rossello FJ, Chy HS, Rackham OJL, Laslett AL, Breen J, Faulkner GJ, Nefzger CM, Polo JM, Lister R. Transient naive reprogramming corrects hiPS cells functionally and epigenetically. Nature 2023; 620:863-872. [PMID: 37587336 PMCID: PMC10447250 DOI: 10.1038/s41586-023-06424-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.
Collapse
Affiliation(s)
- Sam Buckberry
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, Perth, Western Australia, Australia
- John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xiaodong Liu
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Westlake Institute for Advanced Study, Hangzhou, China
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jia Ping Tan
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Guizhi Sun
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Trung Viet Nguyen
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Alex de Mendoza
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Thomas Frazer
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Dulce B Vargas-Landín
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jacob M Paynter
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Nathan Smits
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Ning Liu
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Hun S Chy
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria, Australia
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Andrew L Laslett
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria, Australia
| | - James Breen
- John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, Victoria, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
- The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
21
|
Meiser I, Alstrup M, Khalesi E, Stephan B, Speicher AM, Majer J, Kwok CK, Neubauer JC, Hansson M, Zimmermann H. Application-Oriented Bulk Cryopreservation of Human iPSCs in Cryo Bags Followed by Direct Inoculation in Scalable Suspension Bioreactors for Expansion and Neural Differentiation. Cells 2023; 12:1914. [PMID: 37508576 PMCID: PMC10378238 DOI: 10.3390/cells12141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Stem cell-based therapies are promising tools for regenerative medicine and require bulk numbers of high-quality cells. Currently, cells are produced on demand and have a limited shelf-life as conventional cryopreservation is primarily designed for stock keeping. We present a study on bulk cryopreservation of the human iPSC lines UKKi011-A and BIONi010-C-41. By increasing cell concentration and volume, compared to conventional cryopreservation routines in cryo vials, one billion cells were frozen in 50 mL cryo bags. Upon thawing, the cells were immediately seeded in scalable suspension-based bioreactors for expansion to assess the stemness maintenance and for neural differentiation to assess their differentiation potential on the gene and protein levels. Both the conventional and bulk cryo approach show comparative results regarding viability and aggregation upon thawing and bioreactor inoculation. Reduced performance compared to the non-frozen control was compensated within 3 days regarding biomass yield. Stemness was maintained upon thawing in expansion. In neural differentiation, a delay of the neural marker expression on day 4 was compensated at day 9. We conclude that cryopreservation in cryo bags, using high cell concentrations and volumes, does not alter the cells' fate and is a suitable technology to avoid pre-cultivation and enable time- and cost-efficient therapeutic approaches with bulk cell numbers.
Collapse
Affiliation(s)
- Ina Meiser
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Monica Alstrup
- Cell Therapy R&D, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Elham Khalesi
- Cell Therapy R&D, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Bianca Stephan
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Anna M Speicher
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Julia Majer
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Chee Keong Kwok
- Cell Therapy R&D, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Julia C Neubauer
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Mattias Hansson
- Cell Therapy R&D, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Department of Molecular and Cellular Biotechnology, Saarland University, 66123 Saarbruecken, Germany
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
| |
Collapse
|
22
|
Molloy CJ, Cooke J, Gatford NJF, Rivera-Olvera A, Avazzadeh S, Homberg JR, Grandjean J, Fernandes C, Shen S, Loth E, Srivastava DP, Gallagher L. Bridging the translational gap: what can synaptopathies tell us about autism? Front Mol Neurosci 2023; 16:1191323. [PMID: 37441676 PMCID: PMC10333541 DOI: 10.3389/fnmol.2023.1191323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. F. Gatford
- Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Sciences Division, Oxford, United Kingdom
| | - Alejandro Rivera-Olvera
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanes Grandjean
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Qiu Y, Wang H, Fan M, Pan H, Guan J, Jiang Y, Jia Z, Wu K, Zhou H, Zhuang Q, Lei Z, Ding X, Cai H, Dong Y, Yan L, Lin A, Fu Y, Zhang D, Yan Q, Wang Q. Impaired AIF-CHCHD4 interaction and mitochondrial calcium overload contribute to auditory neuropathy spectrum disorder in patient-iPSC-derived neurons with AIFM1 variant. Cell Death Dis 2023; 14:375. [PMID: 37365177 PMCID: PMC10293272 DOI: 10.1038/s41419-023-05899-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Auditory neuropathy spectrum disorder (ANSD) is a hearing impairment caused by dysfunction of inner hair cells, ribbon synapses, spiral ganglion neurons and/or the auditory nerve itself. Approximately 1/7000 newborns have abnormal auditory nerve function, accounting for 10%-14% of cases of permanent hearing loss in children. Although we previously identified the AIFM1 c.1265 G > A variant to be associated with ANSD, the mechanism by which ANSD is associated with AIFM1 is poorly understood. We generated induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) via nucleofection with episomal plasmids. The patient-specific iPSCs were edited via CRISPR/Cas9 technology to generate gene-corrected isogenic iPSCs. These iPSCs were further differentiated into neurons via neural stem cells (NSCs). The pathogenic mechanism was explored in these neurons. In patient cells (PBMCs, iPSCs, and neurons), the AIFM1 c.1265 G > A variant caused a novel splicing variant (c.1267-1305del), resulting in AIF p.R422Q and p.423-435del proteins, which impaired AIF dimerization. Such impaired AIF dimerization then weakened the interaction between AIF and coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4). On the one hand, the mitochondrial import of ETC complex subunits was inhibited, subsequently leading to an increased ADP/ATP ratio and elevated ROS levels. On the other hand, MICU1-MICU2 heterodimerization was impaired, leading to mCa2+ overload. Calpain was activated by mCa2+ and subsequently cleaved AIF for its translocation into the nucleus, ultimately resulting in caspase-independent apoptosis. Interestingly, correction of the AIFM1 variant significantly restored the structure and function of AIF, further improving the physiological state of patient-specific iPSC-derived neurons. This study demonstrates that the AIFM1 variant is one of the molecular bases of ANSD. Mitochondrial dysfunction, especially mCa2+ overload, plays a prominent role in ANSD associated with AIFM1. Our findings help elucidate the mechanism of ANSD and may lead to the provision of novel therapies.
Collapse
Affiliation(s)
- Yue Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongyang Wang
- Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mingjie Fan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Huaye Pan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jing Guan
- Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yangwei Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zexiao Jia
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kaiwen Wu
- Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hui Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qianqian Zhuang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhaoying Lei
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xue Ding
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huajian Cai
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yufei Dong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lei Yan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yong Fu
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China
| | - Dong Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Qingfeng Yan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.
| | - Qiuju Wang
- Senior Department of Otolaryngology, Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
24
|
Fransen LFH, Leonard MO. Induced pluripotent and CD34+ stem cell derived myeloid cells display differential responses to particle and dust mite exposure. Sci Rep 2023; 13:9375. [PMID: 37296179 PMCID: PMC10256772 DOI: 10.1038/s41598-023-36508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Myeloid cells form an essential component of initial responses to environmental hazards and toxic exposures. The ability to model these responses in vitro is central to efforts tasked with identifying hazardous materials and understanding mechanisms of injury and disease. Induced pluripotent stem cell (iPSC) derived cells have been suggested as alternatives to more established primary cell testing systems for these purposes. iPSC derived macrophage and dendritic like cells were compared to CD34+ haematopoietic stem cell derived populations using transcriptomic analysis. Using single cell sequencing-based characterisation of iPSC derived myeloid cells, we identified transitional, mature and M2 like macrophages as well as dendritic like antigen presenting cells and fibrocytes. Direct transcriptomic comparisons between iPSC and CD34+ cell derived populations revealed higher expression of myeloid differentiation genes such as MNDA, CSF1R and CSF2RB in CD34+ cells, while iPSC populations had higher fibroblastic and proliferative markers. Exposure of differentiated macrophage populations to nanoparticle alone or in combination with dust mite, resulted in differential gene expression on combination only, with responses markedly absent in iPSC compared to CD34+ derived cells. The lack of responsiveness in iPSC derived cells may be attributable to lower levels of dust mite component receptors CD14, TLR4, CLEC7A and CD36. In summary, iPSC derived myeloid cells display typical characteristics of immune cells but may lack a fully mature phenotype to adequately respond to environmental exposures.
Collapse
Affiliation(s)
- Leonie F H Fransen
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Chilton, Harwell Campus, Didcot, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Chilton, Harwell Campus, Didcot, OX11 0RQ, UK.
| |
Collapse
|
25
|
Yang X, Chen D, Sun Q, Wang Y, Xia Y, Yang J, Lin C, Dang X, Cen Z, Liang D, Wei R, Xu Z, Xi G, Xue G, Ye C, Wang LP, Zou P, Wang SQ, Rivera-Fuentes P, Püntener S, Chen Z, Liu Y, Zhang J, Zhao Y. A live-cell image-based machine learning strategy for reducing variability in PSC differentiation systems. Cell Discov 2023; 9:53. [PMID: 37280224 DOI: 10.1038/s41421-023-00543-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/13/2023] [Indexed: 06/08/2023] Open
Abstract
The differentiation of pluripotent stem cells (PSCs) into diverse functional cell types provides a promising solution to support drug discovery, disease modeling, and regenerative medicine. However, functional cell differentiation is currently limited by the substantial line-to-line and batch-to-batch variabilities, which severely impede the progress of scientific research and the manufacturing of cell products. For instance, PSC-to-cardiomyocyte (CM) differentiation is vulnerable to inappropriate doses of CHIR99021 (CHIR) that are applied in the initial stage of mesoderm differentiation. Here, by harnessing live-cell bright-field imaging and machine learning (ML), we realize real-time cell recognition in the entire differentiation process, e.g., CMs, cardiac progenitor cells (CPCs), PSC clones, and even misdifferentiated cells. This enables non-invasive prediction of differentiation efficiency, purification of ML-recognized CMs and CPCs for reducing cell contamination, early assessment of the CHIR dose for correcting the misdifferentiation trajectory, and evaluation of initial PSC colonies for controlling the start point of differentiation, all of which provide a more invulnerable differentiation method with resistance to variability. Moreover, with the established ML models as a readout for the chemical screen, we identify a CDK8 inhibitor that can further improve the cell resistance to the overdose of CHIR. Together, this study indicates that artificial intelligence is able to guide and iteratively optimize PSC differentiation to achieve consistently high efficiency across cell lines and batches, providing a better understanding and rational modulation of the differentiation process for functional cell manufacturing in biomedical applications.
Collapse
Affiliation(s)
- Xiaochun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Daichao Chen
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qiushi Sun
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Yao Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Xia
- College of Engineering, Peking University, Beijing, China
| | - Jinyu Yang
- College of Engineering, Peking University, Beijing, China
| | - Chang Lin
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
| | - Xin Dang
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Zimu Cen
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Dongdong Liang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rong Wei
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ze Xu
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Guangyin Xi
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Gang Xue
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Can Ye
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Li-Peng Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | | | - Salome Püntener
- Department of Chemistry, University of Zurich, Zurich, Switzerland
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéral de Lausanne, Lausanne, Switzerland
| | - Zhixing Chen
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yi Liu
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China.
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- College of Engineering, Peking University, Beijing, China.
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
26
|
Eade KT, Ansell BRE, Giles S, Fallon R, Harkins-Perry S, Nagasaki T, Tzaridis S, Wallace M, Mills EA, Farashi S, Johnson A, Sauer L, Hart B, Diaz-Rubio ME, Bahlo M, Metallo C, Allikmets R, Gantner ML, Bernstein PS, Friedlander M. iPSC-derived retinal pigmented epithelial cells from patients with macular telangiectasia show decreased mitochondrial function. J Clin Invest 2023; 133:e163771. [PMID: 37115691 PMCID: PMC10145939 DOI: 10.1172/jci163771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) provide a powerful tool for identifying cellular and molecular mechanisms of disease. Macular telangiectasia type 2 (MacTel) is a rare, late-onset degenerative retinal disease with an extremely heterogeneous genetic architecture, lending itself to the use of iPSCs. Whole-exome sequencing screens and pedigree analyses have identified rare causative mutations that account for less than 5% of cases. Metabolomic surveys of patient populations and GWAS have linked MacTel to decreased circulating levels of serine and elevated levels of neurotoxic 1-deoxysphingolipids (1-dSLs). However, retina-specific, disease-contributing factors have yet to be identified. Here, we used iPSC-differentiated retinal pigmented epithelial (iRPE) cells derived from donors with or without MacTel to screen for novel cell-intrinsic pathological mechanisms. We show that MacTel iRPE cells mimicked the low serine levels observed in serum from patients with MacTel. Through RNA-Seq and gene set enrichment pathway analysis, we determined that MacTel iRPE cells are enriched in cellular stress pathways and dysregulation of central carbon metabolism. Using respirometry and mitochondrial stress testing, we functionally validated that MacTel iRPE cells had a reduction in mitochondrial function that was independent of defects in serine biosynthesis and 1-dSL accumulation. Thus, we identified phenotypes that may constitute alternative disease mechanisms beyond the known serine/sphingolipid pathway.
Collapse
Affiliation(s)
- Kevin T. Eade
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Brendan Robert E. Ansell
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Giles
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Regis Fallon
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Sarah Harkins-Perry
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Simone Tzaridis
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Martina Wallace
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Elizabeth A. Mills
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Samaneh Farashi
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alec Johnson
- The Lowy Medical Research Institute, La Jolla, California, USA
| | - Lydia Sauer
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Barbara Hart
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - M. Elena Diaz-Rubio
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christian Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Rando Allikmets
- Department of Ophthalmology and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marin L. Gantner
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Paul S. Bernstein
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Martin Friedlander
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| |
Collapse
|
27
|
Cho YK, Kim HK, Kwon SS, Jeon SH, Cheong JW, Nam KT, Kim HS, Kim S, Kim HO. In vitro erythrocyte production using human-induced pluripotent stem cells: determining the best hematopoietic stem cell sources. Stem Cell Res Ther 2023; 14:106. [PMID: 37101221 PMCID: PMC10132444 DOI: 10.1186/s13287-023-03305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Blood transfusion is an essential part of medicine. However, many countries have been facing a national blood crisis. To address this ongoing blood shortage issue, there have been efforts to generate red blood cells (RBCs) in vitro, especially from human-induced pluripotent stem cells (hiPSCs). However, the best source of hiPSCs for this purpose is yet to be determined. METHODS In this study, hiPSCs were established from three different hematopoietic stem cell sources-peripheral blood (PB), cord blood (CB) and bone marrow (BM) aspirates (n = 3 for each source)-using episomal reprogramming vectors and differentiated into functional RBCs. Various time-course studies including immunofluorescence assay, quantitative real-time PCR, flow cytometry, karyotyping, morphological analysis, oxygen binding capacity analysis, and RNA sequencing were performed to examine and compare the characteristics of hiPSCs and hiPSC-differentiated erythroid cells. RESULTS hiPSC lines were established from each of the three sources and were found to be pluripotent and have comparable characteristics. All hiPSCs differentiated into erythroid cells, but there were discrepancies in differentiation and maturation efficiencies: CB-derived hiPSCs matured into erythroid cells the fastest while PB-derived hiPSCs required a longer time for maturation but showed the highest degree of reproducibility. BM-derived hiPSCs gave rise to diverse types of cells and exhibited poor differentiation efficiency. Nonetheless, erythroid cells differentiated from all hiPSC lines mainly expressed fetal and/or embryonic hemoglobin, indicating that primitive erythropoiesis occurred. Their oxygen equilibrium curves were all left-shifted. CONCLUSIONS Collectively, both PB- and CB-derived hiPSCs were favorably reliable sources for the clinical production of RBCs in vitro, despite several challenges that need to be overcome. However, owing to the limited availability and the large amount of CB required to produce hiPSCs, and the results of this study, the advantages of using PB-derived hiPSCs for RBC production in vitro may outweigh those of using CB-derived hiPSCs. We believe that our findings will facilitate the selection of optimal hiPSC lines for RBC production in vitro in the near future.
Collapse
Affiliation(s)
- Youn Keong Cho
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Kyung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soon Sung Kwon
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hee Jeon
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Soo Kim
- Department of Biomedical Sciences, Catholic Kwandong University College of Medical Convergence, Gangneung-si, Gangwon-do, Republic of Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Puigdevall P, Jerber J, Danecek P, Castellano S, Kilpinen H. Somatic mutations alter the differentiation outcomes of iPSC-derived neurons. CELL GENOMICS 2023; 3:100280. [PMID: 37082143 PMCID: PMC10112289 DOI: 10.1016/j.xgen.2023.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 04/22/2023]
Abstract
The use of induced pluripotent stem cells (iPSC) as models for development and human disease has enabled the study of otherwise inaccessible tissues. A remaining challenge in developing reliable models is our limited understanding of the factors driving irregular differentiation of iPSCs, particularly the impact of acquired somatic mutations. We leveraged data from a pooled dopaminergic neuron differentiation experiment of 238 iPSC lines profiled with single-cell RNA and whole-exome sequencing to study how somatic mutations affect differentiation outcomes. We found that deleterious somatic mutations in key developmental genes, notably the BCOR gene, are strongly associated with failure in dopaminergic neuron differentiation and a larger proliferation rate in culture. We further identified broad differences in cell type composition between incorrectly and successfully differentiating lines, as well as significant changes in gene expression contributing to the inhibition of neurogenesis. Our work calls for caution in interpreting differentiation-related phenotypes in disease-modeling experiments.
Collapse
Affiliation(s)
- Pau Puigdevall
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Haartmaninkatu 8, PO Box 63, Helsinki 00014, Finland
| | - Julie Jerber
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sergi Castellano
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Helena Kilpinen
- UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Haartmaninkatu 8, PO Box 63, Helsinki 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, PO Box 65, Helsinki 00014, Finland
| |
Collapse
|
29
|
Pandemic city: Village-in-a-dish unlocks dynamic genetic effects in the brain. Cell Stem Cell 2023; 30:239-241. [PMID: 36868190 DOI: 10.1016/j.stem.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
In this issue, Wells et al. combine genetic multiplexing ("village-in-a-dish") and Stem-cell-derived NGN2-accelerated Progenitors (SNaPs) to evaluate genotype-phenotype relationships across 100 donors in the context of Zika virus infection in the developing brain. This resource will be broadly applicable in uncovering how genetic variation underlies risk for neurodevelopmental disorders.
Collapse
|
30
|
Apicella C, Ruano CSM, Thilaganathan B, Khalil A, Giorgione V, Gascoin G, Marcellin L, Gaspar C, Jacques S, Murdoch CE, Miralles F, Méhats C, Vaiman D. Pan-Genomic Regulation of Gene Expression in Normal and Pathological Human Placentas. Cells 2023; 12:cells12040578. [PMID: 36831244 PMCID: PMC9954093 DOI: 10.3390/cells12040578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/17/2023] Open
Abstract
In this study, we attempted to find genetic variants affecting gene expression (eQTL = expression Quantitative Trait Loci) in the human placenta in normal and pathological situations. The analysis of gene expression in placental diseases (Pre-eclampsia and Intra-Uterine Growth Restriction) is hindered by the fact that diseased placental tissue samples are generally taken at earlier gestations compared to control samples. The difference in gestational age is considered a major confounding factor in the transcriptome regulation of the placenta. To alleviate this significant problem, we propose here a novel approach to pinpoint disease-specific cis-eQTLs. By statistical correction for gestational age at sampling as well as other confounding/surrogate variables systematically searched and identified, we found 43 e-genes for which proximal SNPs influence expression level. Then, we performed the analysis again, removing the disease status from the covariates, and we identified 54 e-genes, 16 of which are identified de novo and, thus, possibly related to placental disease. We found a highly significant overlap with previous studies for the list of 43 e-genes, validating our methodology and findings. Among the 16 disease-specific e-genes, several are intrinsic to trophoblast biology and, therefore, constitute novel targets of interest to better characterize placental pathology and its varied clinical consequences. The approach that we used may also be applied to the study of other human diseases where confounding factors have hampered a better understanding of the pathology.
Collapse
Affiliation(s)
- Clara Apicella
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
| | - Camino S. M. Ruano
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
| | - Basky Thilaganathan
- Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London SW17 0RE, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Asma Khalil
- Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London SW17 0RE, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Veronica Giorgione
- Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London SW17 0RE, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Géraldine Gascoin
- Department of Neonatology, Angers University Hospital, F-49000 Angers, France
| | - Louis Marcellin
- Department of Gynaecology, Obstetrics and Reproductive Medicine, Centre Hospitalier Universitaire (CHU) Cochin Faculté de Médecine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre (HUPC), Université de Paris, 138 Boulevard de Port-Royal, 75014 Paris, France
| | - Cassandra Gaspar
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, 75013 Paris, France
| | - Sébastien Jacques
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
| | - Colin E. Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Francisco Miralles
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
| | - Céline Méhats
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
| | - Daniel Vaiman
- Team ‘From Gametes to Birth’, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris-Descartes University, 75014 Paris, France
- Correspondence: ; Tel.: +33-1-44412301; Fax: +33-1-44412302
| |
Collapse
|
31
|
Zhou Q, Li Z, Duan H. iPSC-Derived Corneal Endothelial Cells. Handb Exp Pharmacol 2023; 281:257-276. [PMID: 36882600 DOI: 10.1007/164_2023_644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The corneal endothelium is the innermost monolayer of the cornea that maintains corneal transparency and thickness. However, adult human corneal endothelial cells (CECs) possess limited proliferative capacity, and injuries can only be repaired by migration and enlargement of resident cells. When corneal endothelial cell density is lower than the critical level (400-500 cells/mm2) due to disease or trauma, corneal endothelial dysfunction will occur and lead to corneal edema. Corneal transplantation remains the most effective clinical treatment therapy but is limited by the global shortage of healthy corneal donors. Recently, researchers have developed several alternative strategies for the treatment of corneal endothelial disease, including the transplantation of cultured human CECs and artificial corneal endothelial replacement. Early-stage results show that these strategies can effectively resolve corneal edema and restore corneal clarity and thickness, but the long-term efficacy and safety remain to be further validated. Induced pluripotent stem cells (iPSCs) represent an ideal cell source for the treatment and drug discovery of corneal endothelial diseases, which can avoid the ethical-related and immune-related problems of human embryonic stem cells (hESCs). At present, many approaches have been developed to induce the differentiation of corneal endothelial-like cells from human induced pluripotent stem cells (hiPSCs). Their safety and efficacy for the treatment of corneal endothelial dysfunction have been confirmed in rabbit and nonhuman primate animal models. Therefore, the iPSC-derived corneal endothelial cell model may provide a novel effective platform for basic and clinical research of disease modeling, drug screening, mechanistic investigation, and toxicology testing.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| |
Collapse
|
32
|
Kaneski CR, Hanover JA, Schueler Hoffman UH. Generation of GLA-knockout human embryonic stem cell lines to model peripheral neuropathy in Fabry disease. Mol Genet Metab Rep 2022; 33:100914. [PMID: 36092250 PMCID: PMC9449667 DOI: 10.1016/j.ymgmr.2022.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Fabry disease is an X-linked glycolipid storage disorder caused by mutations in the GLA gene which result in a deficiency in the lysosomal enzyme alpha galactosidase A (AGA). As a result, the glycolipid substrate Gb3 accumulates in critical tissues and organs producing a progressive debilitating disease. In Fabry disease up to 80% of patients experience life-long neuropathic pain that is difficult to treat and greatly affects their quality of life. The molecular mechanisms by which deficiency of AGA leads to neuropathic pain are not well understood, due in part to a lack of in vitro models that can be used to study the underlying pathology at the cellular level. Using CRISPR-Cas9 gene editing, we generated two clones with mutations in the GLA gene from a human embryonic stem cell line. Our clonal cell lines maintained normal stem cell morphology and markers for pluripotency, and showed the phenotypic characteristics of Fabry disease including absent AGA activity and intracellular accumulation of Gb3. Mutations in the predicted locations in exon 1 of the GLA gene were confirmed. Using established techniques for dual-SMAD inhibition/WNT activation, we were able to show that our AGA-deficient clones, as well as wild-type controls, could be differentiated to peripheral-type sensory neurons that express pain receptors. This genetically and physiologically relevant human model system offers a new and promising tool for investigating the cellular mechanisms of peripheral neuropathy in Fabry disease and may assist in the development of new therapeutic strategies to help lessen the burden of this disease.
Collapse
Key Words
- 4-MU, 4-methylumbelliferone
- AGA, alpha-galactosidase A
- Alpha-galactosidase
- BDNF, brain-derived neurotrophic factor
- BRN3A, brain-specific homeobox/POU domain protein 3A
- CRISPR-Cas9
- DAPI, 4′,6-diamidino-2-phenylindole
- DRG, dorsal root ganglion
- EDTA, ethylene diamine tetracetic acid
- ERT, enzyme replacement therapy
- Fabry disease
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GDNF, glia-derived neurotrophic factor
- GLA, alpha-galactosidase A gene
- Gb3, globotriaosylceramide
- HEX, beta-hexosaminidase
- Human embryonic stem cells
- NGF, nerve growth factor
- Neuropathy
- PAM, protospacer adjacent motif
- PBS, phosphate buffered saline
- RNP, ribonucleoprotein
- Sensory neurons
- SgRNA, single guide RNA
- TNA-alpha, Tumor Necrosis Factor- alpha
- TRPV1, transient receptor potential vanilloid family-1
- eGFP, green fluorescent protein
- hESC, human embryonic stem cell
- iPSC, induced pluripotent stem cell
Collapse
Affiliation(s)
- Christine R. Kaneski
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Hanover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrike H. Schueler Hoffman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Brunner JW, Lammertse HCA, van Berkel AA, Koopmans F, Li KW, Smit AB, Toonen RF, Verhage M, van der Sluis S. Power and optimal study design in iPSC-based brain disease modelling. Mol Psychiatry 2022; 28:1545-1556. [PMID: 36385170 DOI: 10.1038/s41380-022-01866-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
Studies using induced pluripotent stem cells (iPSCs) are gaining momentum in brain disorder modelling, but optimal study designs are poorly defined. Here, we compare commonly used designs and statistical analysis for different research aims. Furthermore, we generated immunocytochemical, electrophysiological, and proteomic data from iPSC-derived neurons of five healthy subjects, analysed data variation and conducted power simulations. These analyses show that published case-control iPSC studies are generally underpowered. Designs using isogenic iPSC lines typically have higher power than case-control designs, but generalization of conclusions is limited. We show that, for the realistic settings used in this study, a multiple isogenic pair design increases absolute power up to 60% or requires up to 5-fold fewer lines. A free web tool is presented to explore the power of different study designs, using any (pilot) data.
Collapse
Affiliation(s)
- Jessie W Brunner
- Dept. Functional Genomics, CNCR, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Hanna C A Lammertse
- Dept. Functional Genomics, CNCR, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands.,Functional Genomics, Department of Human Genetics, CNCR, Amsterdam, UMC, 1081 HV, Amsterdam, The Netherlands
| | - Annemiek A van Berkel
- Dept. Functional Genomics, CNCR, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands.,Functional Genomics, Department of Human Genetics, CNCR, Amsterdam, UMC, 1081 HV, Amsterdam, The Netherlands
| | - Frank Koopmans
- Dept. Functional Genomics, CNCR, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands.,Dept. Molecular & Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Ka Wan Li
- Dept. Molecular & Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - August B Smit
- Dept. Molecular & Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Dept. Functional Genomics, CNCR, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Dept. Functional Genomics, CNCR, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands. .,Functional Genomics, Department of Human Genetics, CNCR, Amsterdam, UMC, 1081 HV, Amsterdam, The Netherlands.
| | - Sophie van der Sluis
- Dept. Complex Trait Genetics, CNCR, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands. .,Dept. of Child and Adolescence Psychiatry, section Complex Trait Genetics, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Navarro M, Halstead MM, Rincon G, Mutto AA, Ross PJ. bESC from cloned embryos do not retain transcriptomic or epigenetic memory from somatic donor cells. Reproduction 2022; 164:243-257. [PMID: 35951478 DOI: 10.1530/rep-22-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
In brief Epigenetic reprogramming after mammalian somatic cell nuclear transfer is often incomplete, resulting in low efficiency of cloning. However, gene expression and histone modification analysis indicated high similarities in transcriptome and epigenomes of bovine embryonic stem cells from in vitro fertilized and somatic cell nuclear transfer embryos. Abstract Embryonic stem cells (ESC) indefinitely maintain the pluripotent state of the blastocyst epiblast. Stem cells are invaluable for studying development and lineage commitment, and in livestock, they constitute a useful tool for genomic improvement and in vitro breeding programs. Although these cells have been recently derived from bovine blastocysts, a detailed characterization of their molecular state is lacking. Here, we apply cutting-edge technologies to analyze the transcriptomic and epigenomic landscape of bovine ESC (bESC) obtained from in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos. bESC were efficiently derived from SCNT and IVF embryos and expressed pluripotency markers while retaining genome stability. Transcriptome analysis revealed that only 46 genes were differentially expressed between IVF- and SCNT-derived bESC, which did not reflect significant deviation in cellular function. Interrogating histone 3 lysine 4 trimethylation, histone 3 lysine 9 trimethylation, and histone 3 lysine 27 trimethylation with cleavage under targets and tagmentation, we found that the epigenomes of both bESC groups were virtually indistinguishable. Minor epigenetic differences were randomly distributed throughout the genome and were not associated with differentially expressed or developmentally important genes. Finally, the categorization of genomic regions according to their combined histone mark signal demonstrated that all bESC shared the same epigenomic signatures, especially at gene promoters. Overall, we conclude that bESC derived from SCNT and IVF embryos are transcriptomically and epigenetically analogous, allowing for the production of an unlimited source of pluripotent cells from high genetic merit organisms without resorting to transgene-based techniques.
Collapse
Affiliation(s)
- M Navarro
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
- Department of Animal Science, University of California, Davis, California, USA
| | - M M Halstead
- Department of Animal Science, University of California, Davis, California, USA
| | | | - A A Mutto
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
| | - P J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
35
|
Krasnova OA, Gursky VV, Chabina AS, Kulakova KA, Alekseenko LL, Panova AV, Kiselev SL, Neganova IE. Prognostic Analysis of Human Pluripotent Stem Cells Based on Their Morphological Portrait and Expression of Pluripotent Markers. Int J Mol Sci 2022; 23:12902. [PMID: 36361693 PMCID: PMC9656397 DOI: 10.3390/ijms232112902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2023] Open
Abstract
The ability of human pluripotent stem cells for unlimited proliferation and self-renewal promotes their application in the fields of regenerative medicine. The morphological assessment of growing colonies and cells, as a non-invasive method, allows the best clones for further clinical applications to be safely selected. For this purpose, we analyzed seven morphological parameters of both colonies and cells extracted from the phase-contrast images of human embryonic stem cell line H9, control human induced pluripotent stem cell (hiPSC) line AD3, and hiPSC line HPCASRi002-A (CaSR) in various passages during their growth for 120 h. The morphological phenotype of each colony was classified using a visual analysis and associated with its potential for pluripotency and clonality maintenance, thus defining the colony phenotype as the control parameter. Using the analysis of variance for the morphological parameters of each line, we showed that selected parameters carried information about different cell lines and different phenotypes within each line. We demonstrated that a model of classification of colonies and cells by phenotype, built on the selected parameters as predictors, recognized the phenotype with an accuracy of 70-75%. In addition, we performed a qRT-PCR analysis of eleven pluripotency markers genes. By analyzing the variance of their expression in samples from different lines and with different phenotypes, we identified group-specific sets of genes that could be used as the most informative ones for the separation of the best clones. Our results indicated the fundamental possibility of constructing a morphological portrait of a colony informative for the automatic identification of the phenotype and for linking this portrait to the expression of pluripotency markers.
Collapse
Affiliation(s)
| | - Vitaly V. Gursky
- Institute of Cytology, 194064 Saint Petersburg, Russia
- Ioffe Institute, 194021 Saint Petersburg, Russia
| | | | | | | | - Alexandra V. Panova
- Endocrinology Research Centre, 115478 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | - Sergey L. Kiselev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | | |
Collapse
|
36
|
Duff C, Baruteau J. Modelling urea cycle disorders using iPSCs. NPJ Regen Med 2022; 7:56. [PMID: 36163209 PMCID: PMC9513077 DOI: 10.1038/s41536-022-00252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
The urea cycle is a liver-based pathway enabling disposal of nitrogen waste. Urea cycle disorders (UCDs) are inherited metabolic diseases caused by deficiency of enzymes or transporters involved in the urea cycle and have a prevalence of 1:35,000 live births. Patients present recurrent acute hyperammonaemia, which causes high rate of death and neurological sequelae. Long-term therapy relies on a protein-restricted diet and ammonia scavenger drugs. Currently, liver transplantation is the only cure. Hence, high unmet needs require the identification of effective methods to model these diseases to generate innovative therapeutics. Advances in both induced pluripotent stem cells (iPSCs) and genome editing technologies have provided an invaluable opportunity to model patient-specific phenotypes in vitro by creating patients' avatar models, to investigate the pathophysiology, uncover novel therapeutic targets and provide a platform for drug discovery. This review summarises the progress made thus far in generating 2- and 3-dimensional iPSCs models for UCDs, the challenges encountered and how iPSCs offer future avenues for innovation in developing the next-generation of therapies for UCDs.
Collapse
Affiliation(s)
- Claire Duff
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
37
|
Davidsen N, Ramhøj L, Kugathas I, Evrard B, Darde TA, Chalmel F, Svingen T, Rosenmai AK. PFOS disrupts key developmental pathways during hiPSC-derived cardiomyocyte differentiation in vitro. Toxicol In Vitro 2022; 85:105475. [PMID: 36116746 DOI: 10.1016/j.tiv.2022.105475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
Exposure to perfluorooctanesulfonic acid (PFOS) has been associated with congenital heart disease (CHD) and decreased birth weight. PFOS exposure can disrupt signaling pathways relevant for cardiac development in stem cell-derived cardiomyocyte assays, such as the PluriBeat assay, where spheroids of human induced pluripotent stem cells (hiPSCs) differentiate into contracting cardiomyocytes. Notably, cell line origin can also affect how the assay responds to chemical exposure. Herein, we examined the effect of PFOS on cardiomyocyte differentiation by transcriptomics profiling of two different hiPSC lines to see if they exhibit a common pattern of disruption. Two stages of differentiation were investigated: the cardiac progenitor stage and the cardiomyocyte stage. Many differentially expressed genes (DEGs) were observed between cell lines independent of exposure. However, 135 DEGs were identified as common between the two cell lines. Of these, 10 DEGs were associated with GO-terms related to the heart. PFOS exposure disrupted multiple signaling pathways relevant to cardiac development, including WNT, TGF, HH, and EGF. Of these pathways, genes related to the non-canonical WNTCa2+ signaling was particularly affected. PFOS thus has the capacity to disrupt pathways important for cardiac development and function.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Indusha Kugathas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | | | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | |
Collapse
|
38
|
Susco SG, Ghosh S, Mazzucato P, Angelini G, Beccard A, Barrera V, Berryer MH, Messana A, Lam D, Hazelbaker DZ, Barrett LE. Molecular convergence between Down syndrome and fragile X syndrome identified using human pluripotent stem cell models. Cell Rep 2022; 40:111312. [PMID: 36070702 PMCID: PMC9465809 DOI: 10.1016/j.celrep.2022.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/19/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Down syndrome (DS), driven by an extra copy of chromosome 21 (HSA21), and fragile X syndrome (FXS), driven by loss of the RNA-binding protein FMRP, are two common genetic causes of intellectual disability and autism. Based upon the number of DS-implicated transcripts bound by FMRP, we hypothesize that DS and FXS may share underlying mechanisms. Comparing DS and FXS human pluripotent stem cell (hPSC) and glutamatergic neuron models, we identify increased protein expression of select targets and overlapping transcriptional perturbations. Moreover, acute upregulation of endogenous FMRP in DS patient cells using CRISPRa is sufficient to significantly reduce expression levels of candidate proteins and reverse 40% of global transcriptional perturbations. These results pinpoint specific molecular perturbations shared between DS and FXS that can be leveraged as a strategy for target prioritization; they also provide evidence for the functional relevance of previous associations between FMRP targets and disease-implicated genes.
Collapse
Affiliation(s)
- Sara G Susco
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrizia Mazzucato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gabriella Angelini
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amanda Beccard
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Martin H Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dane Z Hazelbaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
39
|
Rouhani FJ, Zou X, Danecek P, Badja C, Amarante TD, Koh G, Wu Q, Memari Y, Durbin R, Martincorena I, Bassett AR, Gaffney D, Nik-Zainal S. Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells. Nat Genet 2022; 54:1406-1416. [PMID: 35953586 PMCID: PMC9470532 DOI: 10.1038/s41588-022-01147-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/24/2022] [Indexed: 12/27/2022]
Abstract
We explored human induced pluripotent stem cells (hiPSCs) derived from different tissues to gain insights into genomic integrity at single-nucleotide resolution. We used genome sequencing data from two large hiPSC repositories involving 696 hiPSCs and daughter subclones. We find ultraviolet light (UV)-related damage in ~72% of skin fibroblast-derived hiPSCs (F-hiPSCs), occasionally resulting in substantial mutagenesis (up to 15 mutations per megabase). We demonstrate remarkable genomic heterogeneity between independent F-hiPSC clones derived during the same round of reprogramming due to oligoclonal fibroblast populations. In contrast, blood-derived hiPSCs (B-hiPSCs) had fewer mutations and no UV damage but a high prevalence of acquired BCOR mutations (26.9% of lines). We reveal strong selection pressure for BCOR mutations in F-hiPSCs and B-hiPSCs and provide evidence that they arise in vitro. Directed differentiation of hiPSCs and RNA sequencing showed that BCOR mutations have functional consequences. Our work strongly suggests that detailed nucleotide-resolution characterization is essential before using hiPSCs.
Collapse
Affiliation(s)
- Foad J Rouhani
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Cherif Badja
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Tauanne Dias Amarante
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Gene Koh
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Qianxin Wu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yasin Memari
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Inigo Martincorena
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Andrew R Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniel Gaffney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Genomics plc, King Charles House, Oxford, UK
| | - Serena Nik-Zainal
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK.
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK.
| |
Collapse
|
40
|
González-Fernández V, Sevilla A. Understanding the Molecular Basis of iPSC Reprogrammed Cells to Fulfil Their Expectations in Future Clinical Applications. Cells 2022; 11:cells11172714. [PMID: 36078122 PMCID: PMC9454435 DOI: 10.3390/cells11172714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Verónica González-Fernández
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Ana Sevilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
41
|
Panova AV, Klementieva NV, Sycheva AV, Korobko EV, Sosnovtseva AO, Krasnova TS, Karpova MR, Rubtsov PM, Tikhonovich YV, Tiulpakov AN, Kiselev SL. Aberrant Splicing of INS Impairs Beta-Cell Differentiation and Proliferation by ER Stress in the Isogenic iPSC Model of Neonatal Diabetes. Int J Mol Sci 2022; 23:8824. [PMID: 35955956 PMCID: PMC9369396 DOI: 10.3390/ijms23158824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 01/09/2023] Open
Abstract
One of the causes of diabetes in infants is the defect of the insulin gene (INS). Gene mutations can lead to proinsulin misfolding, an increased endoplasmic reticulum (ER) stress and possible beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear. We generated induced pluripotent stem cells (iPSCs) from a patient diagnosed with neonatal diabetes mellitus carrying the INS mutation in the 2nd intron (c.188-31G>A) and engineered isogenic CRISPR/Cas9 mutation-corrected cell lines. Differentiation into beta-like cells demonstrated that mutation led to the emergence of an ectopic splice site within the INS and appearance of the abnormal RNA transcript. Isogenic iPSC lines differentiated into beta-like cells showed a clear difference in formation of organoids at pancreatic progenitor stage of differentiation. Moreover, MIN6 insulinoma cell line expressing mutated cDNA demonstrated significant decrease in proliferation capacity and activation of ER stress and unfolded protein response (UPR)-associated genes. These findings shed light on the mechanism underlying the pathogenesis of monogenic diabetes.
Collapse
Affiliation(s)
- Alexandra V. Panova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Endocrinology Research Centre, 115478 Moscow, Russia
| | - Natalia V. Klementieva
- Endocrinology Research Centre, 115478 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Elena V. Korobko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Tatiana S. Krasnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria R. Karpova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Petr M. Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | - Sergey L. Kiselev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- Endocrinology Research Centre, 115478 Moscow, Russia
| |
Collapse
|
42
|
Lange J, Zhou H, McTague A. Cerebral Organoids and Antisense Oligonucleotide Therapeutics: Challenges and Opportunities. Front Mol Neurosci 2022; 15:941528. [PMID: 35836547 PMCID: PMC9274522 DOI: 10.3389/fnmol.2022.941528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
The advent of stem cell-derived cerebral organoids has already advanced our understanding of disease mechanisms in neurological diseases. Despite this, many remain without effective treatments, resulting in significant personal and societal health burden. Antisense oligonucleotides (ASOs) are one of the most widely used approaches for targeting RNA and modifying gene expression, with significant advancements in clinical trials for epilepsy, neuromuscular disorders and other neurological conditions. ASOs have further potential to address the unmet need in other neurological diseases for novel therapies which directly target the causative genes, allowing precision treatment. Induced pluripotent stem cell (iPSC) derived cerebral organoids represent an ideal platform in which to evaluate novel ASO therapies. In patient-derived organoids, disease-causing mutations can be studied in the native genetic milieu, opening the door to test personalized ASO therapies and n-of-1 approaches. In addition, CRISPR-Cas9 can be used to generate isogenic iPSCs to assess the effects of ASOs, by either creating disease-specific mutations or correcting available disease iPSC lines. Currently, ASO therapies face a number of challenges to wider translation, including insufficient uptake by distinct and preferential cell types in central nervous system and inability to cross the blood brain barrier necessitating intrathecal administration. Cerebral organoids provide a practical model to address and improve these limitations. In this review we will address the current use of organoids to test ASO therapies, opportunities for future applications and challenges including those inherent to cerebral organoids, issues with organoid transfection and choice of appropriate read-outs.
Collapse
Affiliation(s)
- Jenny Lange
- Department for Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Haiyan Zhou
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Amy McTague
- Department for Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
- *Correspondence: Amy McTague,
| |
Collapse
|
43
|
Metzler E, Escobar H, Sunaga-Franze DY, Sauer S, Diecke S, Spuler S. Generation of hiPSC-Derived Skeletal Muscle Cells: Exploiting the Potential of Skeletal Muscle-Derived hiPSCs. Biomedicines 2022; 10:1204. [PMID: 35625941 PMCID: PMC9138862 DOI: 10.3390/biomedicines10051204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/28/2022] Open
Abstract
Cell therapies for muscle wasting disorders are on the verge of becoming a realistic clinical perspective. Muscle precursor cells derived from human induced pluripotent stem cells (hiPSCs) represent the key to unrestricted cell numbers indispensable for the treatment of generalized muscle wasting such as cachexia or intensive care unit (ICU)-acquired weakness. We asked how the cell of origin influences efficacy and molecular properties of hiPSC-derived muscle progenitor cells. We generated hiPSCs from primary muscle stem cells and from peripheral blood mononuclear cells (PBMCs) of the same donors (n = 4) and compared their molecular profiles, myogenic differentiation potential, and ability to generate new muscle fibers in vivo. We show that reprogramming into hiPSCs from primary muscle stem cells was faster and 35 times more efficient than from blood cells. Global transcriptome comparison revealed significant differences, but differentiation into induced myogenic cells using a directed transgene-free approach could be achieved with muscle- and PBMC-derived hiPSCs, and both cell types generated new muscle fibers in vivo. Differences in myogenic differentiation efficiency were identified with hiPSCs generated from individual donors. The generation of muscle-stem-cell-derived hiPSCs is a fast and economic method to obtain unrestricted cell numbers for cell-based therapies in muscle wasting disorders, and in this aspect are superior to blood-derived hiPSCs.
Collapse
Affiliation(s)
- Eric Metzler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Helena Escobar
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Daniele Yumi Sunaga-Franze
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genomics Platform, Hannoversche Straße 28, 10115 Berlin, Germany
| | - Sascha Sauer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genomics Platform, Hannoversche Straße 28, 10115 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Pluripotent Stem Cells Platform, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Simone Spuler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
| |
Collapse
|
44
|
Flynn E, Lappalainen T. Functional Characterization of Genetic Variant Effects on Expression. Annu Rev Biomed Data Sci 2022; 5:119-139. [PMID: 35483347 DOI: 10.1146/annurev-biodatasci-122120-010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thousands of common genetic variants in the human population have been associated with disease risk and phenotypic variation by genome-wide association studies (GWAS). However, the majority of GWAS variants fall into noncoding regions of the genome, complicating our understanding of their regulatory functions, and few molecular mechanisms of GWAS variant effects have been clearly elucidated. Here, we set out to review genetic variant effects, focusing on expression quantitative trait loci (eQTLs), including their utility in interpreting GWAS variant mechanisms. We discuss the interrelated challenges and opportunities for eQTL analysis, covering determining causal variants, elucidating molecular mechanisms of action, and understanding context variability. Addressing these questions can enable better functional characterization of disease-associated loci and provide insights into fundamental biological questions of the noncoding genetic regulatory code and its control of gene expression. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Elise Flynn
- New York Genome Center, New York, NY, USA; , .,Department of Systems Biology, Columbia University, New York, NY, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA; , .,Department of Systems Biology, Columbia University, New York, NY, USA.,Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
45
|
Boyling A, Perez-Siles G, Kennerson ML. Structural Variation at a Disease Mutation Hotspot: Strategies to Investigate Gene Regulation and the 3D Genome. Front Genet 2022; 13:842860. [PMID: 35401663 PMCID: PMC8990796 DOI: 10.3389/fgene.2022.842860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
A rare form of X-linked Charcot-Marie-Tooth neuropathy, CMTX3, is caused by an interchromosomal insertion occurring at chromosome Xq27.1. Interestingly, eight other disease phenotypes have been associated with insertions (or insertion-deletions) occurring at the same genetic locus. To date, the pathogenic mechanism underlying most of these diseases remains unsolved, although local gene dysregulation has clearly been implicated in at least two phenotypes. The challenges of accessing disease-relevant tissue and modelling these complex genomic rearrangements has led to this research impasse. We argue that recent technological advancements can overcome many of these challenges, particularly induced pluripotent stem cells (iPSC) and their capacity to provide access to patient-derived disease-relevant tissue. However, to date these valuable tools have not been utilized to investigate the disease-associated insertions at chromosome Xq27.1. Therefore, using CMTX3 as a reference disease, we propose an experimental approach that can be used to explore these complex mutations, as well as similar structural variants located elsewhere in the genome. The mutational hotspot at Xq27.1 is a valuable disease paradigm with the potential to improve our understanding of the pathogenic consequences of complex structural variation, and more broadly, refine our knowledge of the multifaceted process of long-range gene regulation. Intergenic structural variation is a critically understudied class of mutation, although it is likely to contribute significantly to unsolved genetic disease.
Collapse
Affiliation(s)
- Alexandra Boyling
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Alexandra Boyling, ; Marina L. Kennerson,
| | - Gonzalo Perez-Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Marina L. Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW, Australia
- *Correspondence: Alexandra Boyling, ; Marina L. Kennerson,
| |
Collapse
|
46
|
Merkle FT, Ghosh S, Genovese G, Handsaker RE, Kashin S, Meyer D, Karczewski KJ, O'Dushlaine C, Pato C, Pato M, MacArthur DG, McCarroll SA, Eggan K. Whole-genome analysis of human embryonic stem cells enables rational line selection based on genetic variation. Cell Stem Cell 2022; 29:472-486.e7. [PMID: 35176222 PMCID: PMC8900618 DOI: 10.1016/j.stem.2022.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/29/2021] [Accepted: 01/24/2022] [Indexed: 02/02/2023]
Abstract
Despite their widespread use in research, there has not yet been a systematic genomic analysis of human embryonic stem cell (hESC) lines at a single-nucleotide resolution. We therefore performed whole-genome sequencing (WGS) of 143 hESC lines and annotated their single-nucleotide and structural genetic variants. We found that while a substantial fraction of hESC lines contained large deleterious structural variants, finer-scale structural and single-nucleotide variants (SNVs) that are ascertainable only through WGS analyses were present in hESC genomes and human blood-derived genomes at similar frequencies. Moreover, WGS allowed us to identify SNVs associated with cancer and other diseases that could alter cellular phenotypes and compromise the safety of hESC-derived cellular products transplanted into humans. As a resource to enable reproducible hESC research and safer translation, we provide a user-friendly WGS data portal and a data-driven scheme for cell line maintenance and selection.
Collapse
Affiliation(s)
- Florian T Merkle
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wellcome - MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Sulagna Ghosh
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Robert E Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Seva Kashin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Colm O'Dushlaine
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carlos Pato
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Michele Pato
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Daniel G MacArthur
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
47
|
Abstract
The human blood-brain-barrier (BBB) is a vital structure for brain health. Conversely it represents a challenge in drug development programmes that require breaching of the barrier in order to access the central nervous system. Very often brain disorders have early dysfunction of the BBB implicating an important role in pathogenesis and disease progression. The development of human in vitro models is a major advance to allow experimental studies and screening assays, although there remain outstanding questions for the field. In this chapter, the current state of the art will be reviewed, with the complementary innovative approaches to in vitro modelling described, from simple 2D-cultures to more complex multi-cell type micro-physiological systems.
Collapse
Affiliation(s)
- Zameel Cader
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK.
| |
Collapse
|
48
|
Sayed S, Sürün D, Mircetic J, Sidorova OA, Buchholz F. Using CRISPR-Cas9 to Dissect Cancer Mutations in Cell Lines. Methods Mol Biol 2022; 2508:235-260. [PMID: 35737245 DOI: 10.1007/978-1-0716-2376-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The CRISPR-Cas9 technology has revolutionized the scope and pace of biomedical research, enabling the targeting of specific genomic sequences for a wide spectrum of applications. Here we describe assays to functionally interrogate mutations identified in cancer cells utilizing both CRISPR-Cas9 nuclease and base editors. We provide guidelines to interrogate known cancer driver mutations or functionally screen for novel vulnerability mutations with these systems in characterized human cancer cell lines. The proposed platform should be transferable to primary cancer cells, opening up a path for precision oncology on a functional level.
Collapse
Affiliation(s)
- Shady Sayed
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, Dresden, Germany
| | - Duran Sürün
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, Dresden, Germany
| | - Jovan Mircetic
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, Dresden, Germany
| | - Olga Alexandra Sidorova
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, Dresden, Germany
| | - Frank Buchholz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), Dresden, Germany.
- German Cancer Consortium (DKTK), Dresden, Germany.
| |
Collapse
|
49
|
Vickers A, Tewary M, Laddach A, Poletti M, Salameti V, Fraternali F, Danovi D, Watt FM. Plating human iPSC lines on micropatterned substrates reveals role for ITGB1 nsSNV in endoderm formation. Stem Cell Reports 2021; 16:2628-2641. [PMID: 34678211 PMCID: PMC8581167 DOI: 10.1016/j.stemcr.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
Quantitative analysis of human induced pluripotent stem cell (iPSC) lines from healthy donors is a powerful tool for uncovering the relationship between genetic variants and cellular behavior. We previously identified rare, deleterious non-synonymous single nucleotide variants (nsSNVs) in cell adhesion genes that are associated with outlier iPSC phenotypes in the pluripotent state. Here, we generated micropatterned colonies of iPSCs to test whether nsSNVs influence patterning of radially ordered germ layers. Using a custom-built image analysis pipeline, we quantified the differentiation phenotypes of 13 iPSC lines that harbor nsSNVs in genes related to cell adhesion or germ layer development. All iPSC lines differentiated into the three germ layers; however, there was donor-specific variation in germ layer patterning. We identified one line that presented an outlier phenotype of expanded endodermal differentiation, which was associated with a nsSNV in ITGB1. Our study establishes a platform for investigating the impact of nsSNVs on differentiation.
Collapse
Affiliation(s)
- Alice Vickers
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Mukul Tewary
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Anna Laddach
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Great Maze Pond, London SE1 9RT, UK; Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Martina Poletti
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; Quadram Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Vasiliki Salameti
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Great Maze Pond, London SE1 9RT, UK
| | - Davide Danovi
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK; bit.bio, Babraham Research Campus, The Dorothy Hodgkin Building, Cambridge CB22 3FH, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
50
|
Horánszky A, Becker JL, Zana M, Ferguson-Smith AC, Dinnyés A. Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes (Basel) 2021; 12:genes12111704. [PMID: 34828310 PMCID: PMC8620286 DOI: 10.3390/genes12111704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
The rising frequency of ART-conceived births is accompanied by the need for an improved understanding of the implications of ART on gametes and embryos. Increasing evidence from mouse models and human epidemiological data suggests that ART procedures may play a role in the pathophysiology of certain imprinting disorders (IDs), including Beckwith-Wiedemann syndrome, Silver-Russell syndrome, Prader-Willi syndrome, and Angelman syndrome. The underlying molecular basis of this association, however, requires further elucidation. In this review, we discuss the epigenetic and imprinting alterations of in vivo mouse models and human iPSC models of ART. Mouse models have demonstrated aberrant regulation of imprinted genes involved with ART-related IDs. In the past decade, iPSC technology has provided a platform for patient-specific cellular models of culture-associated perturbed imprinting. However, despite ongoing efforts, a deeper understanding of the susceptibility of iPSCs to epigenetic perturbation is required if they are to be reliably used for modelling ART-associated IDs. Comparing the patterns of susceptibility of imprinted genes in mouse models and IPSCs in culture improves the current understanding of the underlying mechanisms of ART-linked IDs with implications for our understanding of the influence of environmental factors such as culture and hormone treatments on epigenetically important regions of the genome such as imprints.
Collapse
Affiliation(s)
- Alex Horánszky
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Jessica L. Becker
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - Melinda Zana
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
| | - Anne C. Ferguson-Smith
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - András Dinnyés
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
- HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, H-6723 Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-20-510-9632; Fax: +36-28-526-151
| |
Collapse
|