1
|
Anggraeni N, Vuong CK, Silvia P, Fukushige M, Yamashita T, Obata-Yasuoka M, Hamada H, Ohneda O. Mesenchymal stem cell-derived extracellular vesicles reduce inflammatory responses to SARS-CoV-2 and Influenza viral proteins via miR-146a/NF-κB pathway. Sci Rep 2024; 14:26649. [PMID: 39496662 PMCID: PMC11535355 DOI: 10.1038/s41598-024-77258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
The risk of severe disease caused by co-infection with SARS-CoV-2 and influenza virus (IAV) raises an annual concern for global public health. Extracellular vesicles (EV) derived from mesenchymal stem cells (MSC) possess anti-inflammatory properties that can attenuate the inflammatory cytokine levels induced by viral infection. However, the effects of MSC-EV treatment on SARS-CoV-2 and IAV co-infection have not been elucidated. In the present study, we co-induced lung epithelial cells (EpiC) with SARS-CoV-2 Spike protein (S) and H1N1 influenza viral HA protein (HA) and found robust upregulation of inflammatory cytokines in comparison to those induced by either S or HA protein. Consequently, treatment of lung endothelial cells (EC) with conditioned medium from EpiC co-induced by both S and HA proteins resulted in increased apoptosis and impaired angiogenic ability, suggesting the effects of co-induction on epithelial-endothelial crosstalk. In addition, lung EpiC co-induced by both S and HA proteins showed paracrine effects on the recruitment of immune cells, including monocytes, macrophages and neutrophils. Of Note, EV derived from Wharton Jelly's MSC (WJ-EV) transferred miR-146a to recipient lung EpiC, which impaired TRAF6 and IRAK1, resulting in the downregulation of NF-κB pathway and secretion of inflammatory cytokines, rescuing the epithelial-endothelial crosstalk, and reducing the elevation of immune cell recruitment. Moreover, the anti-inflammatory properties of WJ-EV are affected by type 2 Diabetes Mellitus. WJ-EV derived from donors with type 2 Diabetes Mellitus contained less miR-146a and showed impaired ability to downregulate the NF-κB pathway and inflammatory cytokines in recipient cells. Taken together, our findings demonstrate the role of miR-146a in targeting the NF-κB pathway in the anti-inflammatory abilities of WJ-EV, which is a promising strategy to rescue the epithelial-endothelial crosstalk altered by co-infection with SARS-CoV-2 and IAV.
Collapse
Affiliation(s)
- Neni Anggraeni
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan
| | - Cat-Khanh Vuong
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan
| | - Precella Silvia
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan
| | - Mizuho Fukushige
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan
| | - Toshiharu Yamashita
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan
| | - Mana Obata-Yasuoka
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan.
| |
Collapse
|
2
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Akache B, Renner TM, Deschatelets L, Dudani R, Harrison BA, McCluskie MJ, Hrapovic S, Blouin J, Wang X, Schuller M, Cui K, Cho JY, Durocher Y. SARS-CoV-2 spike-based virus-like particles incorporate influenza H1/N1 antigens and induce dual immunity in mice. Vaccine 2024; 42:126463. [PMID: 39481241 DOI: 10.1016/j.vaccine.2024.126463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
A vaccine effective against both SARS-CoV-2 and influenza A (IAV) viruses could represent a cost-effective strategy to reduce their combined public health burden as well as potential complications arising from co-infection. Based on previous findings that full-length SARS-CoV-2 spike (S) expression can induce high-level, enveloped VLP (eVLP) production in CHO cells, we tested whether IAV H1N1 hemagglutinin (H1) and neuraminidase (N1) could also be displayed on these particles. We found that co-incorporation of the IAV surface antigens in spike VLPs (S-VLPs) was highly efficient: upon transient co-expression of S + H1 or S + H1 + N1 in CHO cells, the resulting VLPs contained similar amounts of the SARS-CoV-2 S and IAV antigens. The self-assembled bivalent (S/H1) and trivalent (S/H1/N1) VLPs released into the culture media were purified by single-step chromatography using a S-VLP affinity resin. Western blot analysis and immuno‑gold labeling transmission electron microscopy (TEM) of purified VLPs confirmed the coexistence of S, H1 and N1 antigens in the same particles. Finally, we demonstrated that two doses of adjuvanted bivalent and trivalent VLPs elicit specific functional antibodies and cellular immunity in a mouse model, suggesting potential for combined SARS-CoV-2/IAV vaccine development.
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada.; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada.; Current address: Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca Morelos (CP 62250), Mexico
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Bassel Akache
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Tyler M Renner
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Lise Deschatelets
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Renu Dudani
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Blair A Harrison
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Michael J McCluskie
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Sabahudin Hrapovic
- Aquatic and Crop Resources Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Julie Blouin
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Xinyu Wang
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Matthew Schuller
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Kai Cui
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Jae-Young Cho
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada.; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada..
| |
Collapse
|
3
|
Shoji K, Asai Y, Tsuzuki S, Matsunaga N, Suzuki S, Iwamoto N, Funaki T, Miyairi I, Ohmagari N. Comparison of clinical characteristics and severity of COVID-19 with or without viral co-infection in hospitalized children. J Infect Chemother 2024:S1341-321X(24)00260-5. [PMID: 39270846 DOI: 10.1016/j.jiac.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Co-infection with other pathogens can alter the severity and clinical outcomes of viral infections. However, the information regarding viral co-infections in pediatric coronavirus disease 2019 (COVID-19) cases is still limited. METHODS This is a nationwide, retrospective cohort study using the data from the COVID-19 Registry Japan. The pediatric (<18 years), laboratory confirmed, hospitalized COVID-19 patients in the Omicron variant of concern predominant period (January 2022 to January 2024) were included. Co-infection was investigated by multiplex PCR. We compared clinical characteristics, symptoms, severity, and outcomes between children with and without co-infection. RESULTS Among 245 hospitalized pediatric COVID-19 patients, 78 (31.8 %) had co-infections. The patient backgrounds of the "co-infection" and "SARS-CoV-2 alone" groups were similar, although age distribution was different, with a lower number of patients over 12 years in the co-infection group (n = 2, 2.6 % vs. n = 29, 17.4 %; P < 0.001). Among the patients with co-infection, the most common pathogen was enterovirus/rhinovirus (51.3 %), followed by parainfluenza virus (23.1 %) and adenovirus (12.8 %). Patients with co-infection more commonly had respiratory symptoms, including SpO2 < 96 %, shortness of breath, runny nose, and wheezing. Requirement of non-invasive oxygen support was higher in the co-infection group (n = 27, 34.6 % vs. n = 28, 16.8 %, P = 0.006). By multivariable logistic regression analysis, co-infection and presence of any comorbidity were identified as significant risk factors for necessity of oxygen therapy (odds ratio [95 % confidence interval] 2.44 [1.29-4.63] and 3.99 [2.07-7.82], respectively). CONCLUSIONS Viral co-infection may increase the risk of respiratory distress in pediatric COVID-19 patients.
Collapse
Affiliation(s)
- Kensuke Shoji
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan.
| | - Yusuke Asai
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan; Department of Infectious Diseases, Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinya Tsuzuki
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan; Department of Infectious Diseases, Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Setsuko Suzuki
- Department of Infectious Diseases, Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Iwamoto
- Department of Infectious Diseases, Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takanori Funaki
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Isao Miyairi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan; Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan; Department of Infectious Diseases, Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Cao N, Cai Y, Huang X, Jiang H, Huang Z, Xing L, Lu L, Jiang S, Xu W. Inhibition of influenza A virus and SARS-CoV-2 infection or co-infection by griffithsin and griffithsin-based bivalent entry inhibitor. mBio 2024; 15:e0074124. [PMID: 38587427 PMCID: PMC11077956 DOI: 10.1128/mbio.00741-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Outbreaks of acute respiratory viral diseases, such as influenza and COVID-19 caused by influenza A virus (IAV) and SARS-CoV-2, pose a serious threat to global public health, economic security, and social stability. This calls for the development of broad-spectrum antivirals to prevent or treat infection or co-infection of IAV and SARS-CoV-2. Hemagglutinin (HA) on IAV and spike (S) protein on SARS-CoV-2, which contain various types of glycans, play crucial roles in mediating viral entry into host cells. Therefore, they are key targets for the development of carbohydrate-binding protein-based antivirals. This study demonstrated that griffithsin (GRFT) and the GRFT-based bivalent entry inhibitor GL25E (GRFT-L25-EK1) showed broad-spectrum antiviral effects against IAV infection in vitro by binding to HA in a carbohydrate-dependent manner and effectively protected mice from lethal IAV infection. Although both GRFT and GL25E could inhibit infection of SARS-CoV-2 Omicron variants, GL25E proved to be significantly more effective than GRFT and EK1 alone. Furthermore, GL25E effectively inhibited in vitro co-infection of IAV and SARS-CoV-2 and demonstrated good druggability, including favorable safety and stability profiles. These findings suggest that GL25E is a promising candidate for further development as a broad-spectrum antiviral drug for the prevention and treatment of infection or co-infection from IAV and SARS-CoV-2.IMPORTANCEInfluenza and COVID-19 are highly contagious respiratory illnesses caused by the influenza A virus (IAV) and SARS-CoV-2, respectively. IAV and SARS-CoV-2 co-infection exacerbates damage to lung tissue and leads to more severe clinical symptoms, thus calling for the development of broad-spectrum antivirals for combating IAV and SARS-CoV-2 infection or co-infection. Here we found that griffithsin (GRFT), a carbohydrate-binding protein, and GL25E, a recombinant protein consisting of GRFT, a 25 amino acid linker, and EK1, a broad-spectrum coronavirus inhibitor, could effectively inhibit IAV and SARS-CoV-2 infection and co-infection by targeting glycans on HA of IAV and spike (S) protein of SARS-CoV-2. GL25E is more effective than GRFT because GL25E can also interact with the HR1 domain in SARS-CoV-2 S protein. Furthermore, GL25E possesses favorable safety and stability profiles, suggesting that it is a promising candidate for development as a drug to prevent and treat IAV and SARS-CoV-2 infection or co-infection.
Collapse
Affiliation(s)
- Najing Cao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanxing Cai
- Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hanxiao Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziqi Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Zheng J, Ni C, Lee SWR, Li FR, Huang J, Zhou R, Huang Y, Lip GYH, Wu X, Tang S. Association of hospital-treated infectious diseases and infection burden with cardiovascular diseases and life expectancy. J Intern Med 2024; 295:679-694. [PMID: 38528394 DOI: 10.1111/joim.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
BACKGROUND The association of a broad spectrum of infectious diseases with cardiovascular outcomes remains unclear. OBJECTIVES We aim to provide the cardiovascular risk profiles associated with a wide range of infectious diseases and explore the extent to which infections reduce life expectancy. METHODS We ascertained exposure to 900+ infectious diseases before cardiovascular disease (CVD) onset in 453,102 participants from the UK Biobank study. Time-varying Cox proportional hazard models were used. Life table was used to estimate the life expectancy of individuals aged ≥50 with different levels of infection burden (defined as the number of infection episodes over time and the number of co-occurring infections). RESULTS Infectious diseases were associated with a greater risk of CVD events (adjusted HR [aHR] 1.79 [95% confidence interval {CI} 1.74-1.83]). For type-specific analysis, bacterial infection with sepsis had the strongest risk of CVD events [aHR 4.76 (4.35-5.20)]. For site-specific analysis, heart and circulation infections posed the greatest risk of CVD events [aHR 4.95 (95% CI 3.77-6.50)], whereas noncardiac infections also showed excess risk [1.77 (1.72-1.81)]. Synergistic interactions were observed between infections and genetic risk score. A dose-response relationship was found between infection burden and CVD risks (p-trend <0.001). Infection burden >1 led to a CVD-related life loss at age 50 by 9.3 years [95% CI 8.6-10.3]) for men and 6.6 years [5.5-7.8] for women. CONCLUSIONS The magnitude of the infection-CVD association showed specificity in sex, pathogen type, infection burden, and infection site. High genetic risk and infection synergistically increased the CVD risk.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Can Ni
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - S W Ricky Lee
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Fu-Rong Li
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Jinghan Huang
- Biomedical Genetics Section, School of Medicine, Boston University, Boston, Massachusetts, USA
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Rui Zhou
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Yining Huang
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Danish Center for Clinical Health Services Research, Aalborg University, Aalborg, Denmark
| | - Xianbo Wu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Shaojun Tang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
6
|
Trifonova I, Korsun N, Madzharova I, Velikov P, Alexsiev I, Grigorova L, Voleva S, Yordanova R, Ivanov I, Tcherveniakova T, Christova I. Prevalence and clinical impact of mono- and co-infections with endemic coronaviruses 229E, OC43, NL63, and HKU-1 during the COVID-19 pandemic. Heliyon 2024; 10:e29258. [PMID: 38623185 PMCID: PMC11016702 DOI: 10.1016/j.heliyon.2024.e29258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Introduction Endemic human coronaviruses (eHCoVs) are found worldwide and usually result in mild to moderate upper respiratory tract infections. They can lead to more severe illnesses such as croup, bronchiolitis, and pneumonia in vulnerable populations. During the coronavirus disease 2019 (COVID-19) pandemic, information on HCoV prevalence and incidence and clinical impact of co-infections of HCoV with SARS-CoV-2 was lacking. Objectives Thus, this study aimed to determine the prevalence and clinical significance of infections caused by eHCoVs during the COVID-19 pandemic in Bulgaria. Methods From January 2021 to December 2022, nasopharyngeal swabs of patients with acute upper or lower respiratory tract infections were tested for 17 respiratory viruses using multiplex real-time polymerase chain reaction assays. The clinical data and laboratory parameters of patients infected with respiratory viruses were analysed. Results Of the 1375 patients screened, 24 (1.7 %) were positive for HCoVs, and 197 (14.3 %) were positive for eight other seasonal respiratory viruses. Five (0.7 %) of 740 patients positive for SARS-CoV-2 were co-infected with eHCoVs. Co-infected patients had a mean C-reactive protein level of 198.5 ± 2.12 mg/mL and a mean oxygen saturation of 82 ± 2.8 mmHg, while those in patients co-infected with SARS-CoV-2 and other respiratory viruses were 61.8 mg/mL and 92.8 ± 4.6 mmHg, respectively (p < 0.05). Pneumonia was diagnosed in 63.3 % of patients with HCoV infection and 6 % of patients positive for other seasonal respiratory viruses (p < 0.05). Patients with SARS-CoV-2 mono-infection stayed in hospital for an average of 5.8 ± 3.7 days, whereas the average hospital stay of patients with eHCoV and SARS-CoV-2 co-infection was 9 ± 1.4 days (p < 0.05). Conclusion These findings indicate the low prevalence of eHCoVs and low co-infection rate between eHCoVs and SARS-CoV-2 during the COVID-19 pandemic in Bulgaria. Despite their low incidence, such mixed infections can cause severe signs that require oxygen therapy and longer hospital stays, underlining the need for targeted testing of severe COVID-19 cases to identify potential co-infections.
Collapse
Affiliation(s)
- I. Trifonova
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - N. Korsun
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - I. Madzharova
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - P. Velikov
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Bulgaria
| | - I. Alexsiev
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - L. Grigorova
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - S. Voleva
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Bulgaria
| | - R. Yordanova
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Bulgaria
| | - I. Ivanov
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Bulgaria
| | - T. Tcherveniakova
- Infectious Disease Hospital “Prof. Ivan Kirov”, Department for Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Bulgaria
| | - I. Christova
- National Laboratory “Influenza and ARD”, Department of Virology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| |
Collapse
|
7
|
Owusu D, Ndegwa LK, Ayugi J, Kinuthia P, Kalani R, Okeyo M, Otieno NA, Kikwai G, Juma B, Munyua P, Kuria F, Okunga E, Moen AC, Emukule GO. Use of Sentinel Surveillance Platforms for Monitoring SARS-CoV-2 Activity: Evidence From Analysis of Kenya Influenza Sentinel Surveillance Data. JMIR Public Health Surveill 2024; 10:e50799. [PMID: 38526537 PMCID: PMC11002741 DOI: 10.2196/50799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Little is known about the cocirculation of influenza and SARS-CoV-2 viruses during the COVID-19 pandemic and the use of respiratory disease sentinel surveillance platforms for monitoring SARS-CoV-2 activity in sub-Saharan Africa. OBJECTIVE We aimed to describe influenza and SARS-CoV-2 cocirculation in Kenya and how the SARS-CoV-2 data from influenza sentinel surveillance correlated with that of universal national surveillance. METHODS From April 2020 to March 2022, we enrolled 7349 patients with severe acute respiratory illness or influenza-like illness at 8 sentinel influenza surveillance sites in Kenya and collected demographic, clinical, underlying medical condition, vaccination, and exposure information, as well as respiratory specimens, from them. Respiratory specimens were tested for influenza and SARS-CoV-2 by real-time reverse transcription polymerase chain reaction. The universal national-level SARS-CoV-2 data were also obtained from the Kenya Ministry of Health. The universal national-level SARS-CoV-2 data were collected from all health facilities nationally, border entry points, and contact tracing in Kenya. Epidemic curves and Pearson r were used to describe the correlation between SARS-CoV-2 positivity in data from the 8 influenza sentinel sites in Kenya and that of the universal national SARS-CoV-2 surveillance data. A logistic regression model was used to assess the association between influenza and SARS-CoV-2 coinfection with severe clinical illness. We defined severe clinical illness as any of oxygen saturation <90%, in-hospital death, admission to intensive care unit or high dependence unit, mechanical ventilation, or a report of any danger sign (ie, inability to drink or eat, severe vomiting, grunting, stridor, or unconsciousness in children younger than 5 years) among patients with severe acute respiratory illness. RESULTS Of the 7349 patients from the influenza sentinel surveillance sites, 76.3% (n=5606) were younger than 5 years. We detected any influenza (A or B) in 8.7% (629/7224), SARS-CoV-2 in 10.7% (768/7199), and coinfection in 0.9% (63/7165) of samples tested. Although the number of samples tested for SARS-CoV-2 from the sentinel surveillance was only 0.2% (60 per week vs 36,000 per week) of the number tested in the universal national surveillance, SARS-CoV-2 positivity in the sentinel surveillance data significantly correlated with that of the universal national surveillance (Pearson r=0.58; P<.001). The adjusted odds ratios (aOR) of clinical severe illness among participants with coinfection were similar to those of patients with influenza only (aOR 0.91, 95% CI 0.47-1.79) and SARS-CoV-2 only (aOR 0.92, 95% CI 0.47-1.82). CONCLUSIONS Influenza substantially cocirculated with SARS-CoV-2 in Kenya. We found a significant correlation of SARS-CoV-2 positivity in the data from 8 influenza sentinel surveillance sites with that of the universal national SARS-CoV-2 surveillance data. Our findings indicate that the influenza sentinel surveillance system can be used as a sustainable platform for monitoring respiratory pathogens of pandemic potential or public health importance.
Collapse
Affiliation(s)
- Daniel Owusu
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Linus K Ndegwa
- Global Influenza Branch, Influenza Division, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Jorim Ayugi
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Rosalia Kalani
- Disease Surveillance and Response Unit, Ministry of Health, Nairobi, Kenya
| | - Mary Okeyo
- National Influenza Centre Laboratory, National Public Health Laboratories, Ministry of Health, Nairobi, Kenya
| | - Nancy A Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Gilbert Kikwai
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Bonventure Juma
- Global Influenza Branch, Influenza Division, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Peninah Munyua
- Global Influenza Branch, Influenza Division, US Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Francis Kuria
- Directorate of Public Health, Ministry of Health, Nairobi, Kenya
| | - Emmanuel Okunga
- Disease Surveillance and Response Unit, Ministry of Health, Nairobi, Kenya
| | - Ann C Moen
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Gideon O Emukule
- Global Influenza Branch, Influenza Division, US Centers for Disease Control and Prevention, Nairobi, Kenya
| |
Collapse
|
8
|
Liang J, Wang Y, Lin Z, He W, Sun J, Li Q, Zhang M, Chang Z, Guo Y, Zeng W, Liu T, Zeng Z, Yang Z, Hon C. Influenza and COVID-19 co-infection and vaccine effectiveness against severe cases: a mathematical modeling study. Front Cell Infect Microbiol 2024; 14:1347710. [PMID: 38500506 PMCID: PMC10945002 DOI: 10.3389/fcimb.2024.1347710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/20/2024] Open
Abstract
Background Influenza A virus have a distinctive ability to exacerbate SARS-CoV-2 infection proven by in vitro studies. Furthermore, clinical evidence suggests that co-infection with COVID-19 and influenza not only increases mortality but also prolongs the hospitalization of patients. COVID-19 is in a small-scale recurrent epidemic, increasing the likelihood of co-epidemic with seasonal influenza. The impact of co-infection with influenza virus and SARS-CoV-2 on the population remains unstudied. Method Here, we developed an age-specific compartmental model to simulate the co-circulation of COVID-19 and influenza and estimate the number of co-infected patients under different scenarios of prevalent virus type and vaccine coverage. To decrease the risk of the population developing severity, we investigated the minimum coverage required for the COVID-19 vaccine in conjunction with the influenza vaccine, particularly during co-epidemic seasons. Result Compared to the single epidemic, the transmission of the SARS-CoV-2 exhibits a lower trend and a delayed peak when co-epidemic with influenza. Number of co-infection cases is higher when SARS-CoV-2 co-epidemic with Influenza A virus than that with Influenza B virus. The number of co-infected cases increases as SARS-CoV-2 becomes more transmissible. As the proportion of individuals vaccinated with the COVID-19 vaccine and influenza vaccines increases, the peak number of co-infected severe illnesses and the number of severe illness cases decreases and the peak time is delayed, especially for those >60 years old. Conclusion To minimize the number of severe illnesses arising from co-infection of influenza and COVID-19, in conjunction vaccinations in the population are important, especially priority for the elderly.
Collapse
Affiliation(s)
- Jingyi Liang
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yangqianxi Wang
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zhijie Lin
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Wei He
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jiaxi Sun
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Qianyin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingyi Zhang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zichen Chang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yinqiu Guo
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wenting Zeng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tie Liu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhiqi Zeng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Zifeng Yang
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Chitin Hon
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao SAR, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Di Pietro C, Haberman AM, Lindenbach BD, Smith PC, Bruscia EM, Allore HG, Vander Wyk B, Tyagi A, Zeiss CJ. Prior Influenza Infection Mitigates SARS-CoV-2 Disease in Syrian Hamsters. Viruses 2024; 16:246. [PMID: 38400021 PMCID: PMC10891789 DOI: 10.3390/v16020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Seasonal infection rates of individual viruses are influenced by synergistic or inhibitory interactions between coincident viruses. Endemic patterns of SARS-CoV-2 and influenza infection overlap seasonally in the Northern hemisphere and may be similarly influenced. We explored the immunopathologic basis of SARS-CoV-2 and influenza A (H1N1pdm09) interactions in Syrian hamsters. H1N1 given 48 h prior to SARS-CoV-2 profoundly mitigated weight loss and lung pathology compared to SARS-CoV-2 infection alone. This was accompanied by the normalization of granulocyte dynamics and accelerated antigen-presenting populations in bronchoalveolar lavage and blood. Using nasal transcriptomics, we identified a rapid upregulation of innate and antiviral pathways induced by H1N1 by the time of SARS-CoV-2 inoculation in 48 h dual-infected animals. The animals that were infected with both viruses also showed a notable and temporary downregulation of mitochondrial and viral replication pathways. Quantitative RT-PCR confirmed a decrease in the SARS-CoV-2 viral load and lower cytokine levels in the lungs of animals infected with both viruses throughout the course of the disease. Our data confirm that H1N1 infection induces rapid and transient gene expression that is associated with the mitigation of SARS-CoV-2 pulmonary disease. These protective responses are likely to begin in the upper respiratory tract shortly after infection. On a population level, interaction between these two viruses may influence their relative seasonal infection rates.
Collapse
Affiliation(s)
- Caterina Di Pietro
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06519, USA; (C.D.P.); (E.M.B.)
| | - Ann M. Haberman
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA;
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06519, USA;
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA;
| | - Peter C. Smith
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA;
| | - Emanuela M. Bruscia
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06519, USA; (C.D.P.); (E.M.B.)
| | - Heather G. Allore
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA; (H.G.A.); (B.V.W.)
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06519, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA; (H.G.A.); (B.V.W.)
| | - Antariksh Tyagi
- Department of Genetics, Yale Center for Genome Analysis, New Haven, CT 06519, USA;
| | - Caroline J. Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA;
| |
Collapse
|
10
|
Yea C, Barton M, Bitnun A, Morris SK, El Tal T, Ulloa-Gutierrez R, Brenes-Chacon H, Yock-Corrales A, Ivankovich-Escoto G, Soriano-Fallas A, Hernandez-de Mezerville M, Gill P, Nateghian A, Aski BH, Manafi AA, Dwilow R, Bullard J, Papenburg J, Scuccimarri R, Lefebvre MA, Cooke S, Dewan T, Restivo L, Lopez A, Sadarangani M, Roberts A, Wong J, Saux NL, Bowes J, Purewal R, Lautermilch J, Foo C, Merckx J, Robinson J, Yeh EA. Neurological involvement in hospitalized children with SARS-CoV-2 infection: a multinational study. Can J Neurol Sci 2024; 51:40-49. [PMID: 36597285 PMCID: PMC9947047 DOI: 10.1017/cjn.2022.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Neurological involvement associated with SARS-CoV-2 infection is increasingly recognized. However, the specific characteristics and prevalence in pediatric patients remain unclear. The objective of this study was to describe the neurological involvement in a multinational cohort of hospitalized pediatric patients with SARS-CoV-2. METHODS This was a multicenter observational study of children <18 years of age with confirmed SARS-CoV-2 infection or multisystemic inflammatory syndrome (MIS-C) and laboratory evidence of SARS-CoV-2 infection in children, admitted to 15 tertiary hospitals/healthcare centers in Canada, Costa Rica, and Iran February 2020-May 2021. Descriptive statistical analyses were performed and logistic regression was used to identify factors associated with neurological involvement. RESULTS One-hundred forty-seven (21%) of 697 hospitalized children with SARS-CoV-2 infection had neurological signs/symptoms. Headache (n = 103), encephalopathy (n = 28), and seizures (n = 30) were the most reported. Neurological signs/symptoms were significantly associated with ICU admission (OR: 1.71, 95% CI: 1.15-2.55; p = 0.008), satisfaction of MIS-C criteria (OR: 3.71, 95% CI: 2.46-5.59; p < 0.001), fever during hospitalization (OR: 2.15, 95% CI: 1.46-3.15; p < 0.001), and gastrointestinal involvement (OR: 2.31, 95% CI: 1.58-3.40; p < 0.001). Non-headache neurological manifestations were significantly associated with ICU admission (OR: 1.92, 95% CI: 1.08-3.42; p = 0.026), underlying neurological disorders (OR: 2.98, 95% CI: 1.49-5.97, p = 0.002), and a history of fever prior to hospital admission (OR: 2.76, 95% CI: 1.58-4.82; p < 0.001). DISCUSSION In this study, approximately 21% of hospitalized children with SARS-CoV-2 infection had neurological signs/symptoms. Future studies should focus on pathogenesis and long-term outcomes in these children.
Collapse
Affiliation(s)
- Carmen Yea
- Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
| | - Michelle Barton
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
| | - Ari Bitnun
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shaun K. Morris
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tala El Tal
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Rheumatology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rolando Ulloa-Gutierrez
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Helena Brenes-Chacon
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Adriana Yock-Corrales
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Gabriela Ivankovich-Escoto
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Alejandra Soriano-Fallas
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Marcela Hernandez-de Mezerville
- Department of Pediatrics, Hospital Nacional de Niños “Dr. Carlos Sáenz Herrera”, Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Peter Gill
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Pediatric Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alireza Nateghian
- Department of Pediatrics, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Anari Manafi
- Department of Pediatrics, Iran University of Medical Sciences, Tehran, Iran
| | - Rachel Dwilow
- Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jared Bullard
- Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jesse Papenburg
- Division of Pediatric Infectious Diseases, Dept. of Pediatrics, Montreal Children’s Hospital (McGill University Health Centre), Montreal, Quebec, Canada
- Division of Microbiology, Dept. of Clinical Laboratory Medicine, Optilab Montreal, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rosie Scuccimarri
- Division of Rheumatology, Montreal Children’s Hospital (McGill University Health Centre), Montreal, Quebec, Canada
| | - Marie-Astrid Lefebvre
- Division of Pediatric Infectious Diseases, Dept. of Pediatrics, Montreal Children’s Hospital (McGill University Health Centre), Montreal, Quebec, Canada
| | - Suzette Cooke
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Tammie Dewan
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Lea Restivo
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | | | - Manish Sadarangani
- BC Children’s Hospital, Vancouver, BC, Canada
- Vaccine Evaluation Center, University of British Columbia, Vancouver, BC, Canada
| | | | - Jacqueline Wong
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Nicole Le Saux
- Department of Pediatrics, University of Ottawa, Ontario, Canada
| | - Jennifer Bowes
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Rupeena Purewal
- Department of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janell Lautermilch
- Department of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cheryl Foo
- Department of Pediatrics, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Joanna Merckx
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Joan Robinson
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - E. Ann Yeh
- Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, The Hospital of Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Hwang JH, You YS, Yeom SW, Lee MG, Lee JH, Kim MG, Kim JS. Influenza viral infection is a risk factor for severe illness in COVID-19 patients: a nationwide population-based cohort study. Emerg Microbes Infect 2023; 12:2164215. [PMID: 36580041 PMCID: PMC9858545 DOI: 10.1080/22221751.2022.2164215] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to prepare for the twindemic of influenza and SARS-CoV-2 infection, we investigated the association between influenza infection and subsequent severity of SARS-CoV-2 infection. A population-based nationwide cohort study was performed using data from the National Health Insurance Service (NHIS) in the Republic of Korea. This study included 274,126 individuals who underwent SARS-CoV-2 PCR testing between 20 January 2020 and 1 October 2020. Among these patients, 28,338 tested positive for SARS-CoV-2, and 4,003 of these individuals had a history of influenza. The control group was selected through 1:1 propensity score matching. In the group of 4,003 COVID-19-positive individuals with no history of influenza, 192 (4.8%) experienced severe illness from COVID-19 infection. In the group of 4,003 COVID-19-positive individuals with a history of influenza, 260 (6.5%) had severe illness from COVID-19, and the overall adjusted odds ratio (aOR) was 1.29 (95% confidence interval 1.04-1.59). Among the 4,003 COVID-19-positive individuals with a history of influenza, severe COVID-19 infection was experienced by 143 of 1,760 (8.1%) with an influenza history within 1 year before the onset of COVID-19, 48 of 1,129 (4.3%) between 1 and 2 years, and 69 of 1,114 (6.2%) between 2 and 3 years before COVID-19 onset, and the aORs were 1.54 (1.20-1.98), 1.19 (0.84-1.70), and 1.00 (0.73-1.37), respectively. In conclusion, individuals who had an influenza infection less than 1 year before COVID-19 infection were at an increased risk of experiencing severe illness from the SARS-CoV-2 infection. To control the public health burden, it is essential that effective public health control measures, which include influenza vaccination, hand washing, cough etiquette, and mask use are in place.
Collapse
Affiliation(s)
- Jeong-Hwan Hwang
- Department of Internal Medicine, Division of Infectious Diseases, Jeonbuk National University Medical School, Jeonju, South Korea,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Yeon Seok You
- Department of Medical Informatics, Jeonbuk National University, Jeonju, South Korea,Department of Otorhinolaryngology, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Sang Woo Yeom
- Department of Medical Informatics, Jeonbuk National University, Jeonju, South Korea
| | - Min Gyu Lee
- Department of Medical Informatics, Jeonbuk National University, Jeonju, South Korea
| | - Jong-hwan Lee
- Department of Otorhinolaryngology, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Min Gul Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea,Department of Pharmacology, Jeonbuk National University Medical School, Jeonju, South Korea, Min Gul Kim Department of Pharmacology, Jeonbuk National University Medical School, Jeonju54907, South Korea
| | - Jong Seung Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea,Department of Medical Informatics, Jeonbuk National University, Jeonju, South Korea,Department of Otorhinolaryngology, Jeonbuk National University Medical School, Jeonju, South Korea,Jong Seung Kim Department of Medical Informatics, Jeonbuk National University, Jeonju54907, South Korea; Department of Otorhinolaryngology, Jeonbuk National University Medical School, Jeonju54907, South Korea
| |
Collapse
|
12
|
Varshney K, Pillay P, Mustafa AD, Shen D, Adalbert JR, Mahmood MQ. A systematic review of the clinical characteristics of influenza-COVID-19 co-infection. Clin Exp Med 2023; 23:3265-3275. [PMID: 37326928 PMCID: PMC10618381 DOI: 10.1007/s10238-023-01116-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
COVID-19 has impacted populations across the globe and has been a major cause of morbidity and mortality. Influenza is another potentially deadly respiratory infection that affects people worldwide. While both of these infections pose major health threats, little is currently understood regarding the clinical aspects of influenza and COVID-19 co-infection. Our objective was to therefore provide a systematic review of the clinical characteristics, treatments, and outcomes for patients who are co-infected with influenza and COVID-19. Our review, which was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, involved searching for literature in seven different databases. Studies were eligible for inclusion if they included at least one co-infected patient, were available in English, and described clinical characteristics for the patients. Data were pooled after extraction. Study quality was assessed using the Joanna Brigg's Institute Checklists. Searches produced a total of 5096 studies, and of those, 64 were eligible for inclusion. A total of 6086 co-infected patients were included, 54.1% of whom were male; the mean age of patients was 55.9 years (SD = 12.3). 73.6% of cases were of influenza A and 25.1% were influenza B. 15.7% of co-infected patients had a poor outcome (death/deterioration). The most common symptoms were fever, cough, and dyspnea, with the most frequent complications being pneumonia, linear atelectasis, and acute respiratory distress syndrome. Oseltamivir, supplemental oxygen, arbidol, and vasopressors were the most common treatments provided to patients. Having comorbidities, and being unvaccinated for influenza, were shown to be important risk factors. Co-infected patients show symptoms that are similar to those who are infected with COVID-19 or influenza only. However, co-infected patients have been shown to be at an elevated risk for poor outcomes compared to mono-infected COVID-19 patients. Screening for influenza in high-risk COVID-19 patients is recommended. There is also a clear need to improve patient outcomes with more effective treatment regimens, better testing, and higher rates of vaccination.
Collapse
Affiliation(s)
- Karan Varshney
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia.
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| | - Preshon Pillay
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| | - Ashmit Daiyan Mustafa
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| | - Dennis Shen
- School of Medicine, University of New England, Armidale, NSW, Australia
| | | | - Malik Quasir Mahmood
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| |
Collapse
|
13
|
Hsiao CY, Pan HC, Wu VC, Su CC, Yeh TH, Chuang MH, Tu KC, Wang HY, Kan WC, Yang CC, Chen JY. Acute kidney injury in patients with COVID-19 compared to those with influenza: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1252990. [PMID: 37795409 PMCID: PMC10547056 DOI: 10.3389/fmed.2023.1252990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Background COVID-19 and influenza can both lead to acute kidney injury (AKI) as a common complication. However, no meta-analysis has been conducted to directly compare the incidence of AKI between hospitalized patients with COVID-19 and influenza. The objective of our study aims to investigate the incidence and outcomes of AKI among hospitalized patients between these two groups. Materials and methods A systematic search of PubMed, Embase, and Cochrane databases was conducted from December 2019 to August 2023 to identify studies examining AKI and clinical outcomes among hospitalized patients with COVID-19 and influenza. The primary outcome of interest was the incidence of AKI, while secondary outcomes included in-hospital mortality, recovery from AKI, hospital and ICU stay duration. The quality of evidence was evaluated using Cochrane and GRADE methods. Results Twelve retrospective cohort studies, involving 17,618 hospitalized patients with COVID-19 and influenza, were analyzed. COVID-19 patients showed higher AKI incidence (29.37% vs. 20.98%, OR: 1.67, 95% CI 1.56-1.80, p < 0.01, I2 = 92.42%), and in-hospital mortality (30.95% vs. 5.51%, OR: 8.16, 95% CI 6.17-10.80, p < 0.01, I2 = 84.92%) compared to influenza patients with AKI. Recovery from AKI was lower in COVID-19 patients (57.02% vs., 80.23%, OR: 0.33, 95% CI 0.27-0.40, p < 0.01, I2 = 85.17%). COVID-19 patients also had a longer hospital stay (SMD: 0.69, 95% CI 0.65-0.72, p < 0.01, I2 = 98.94%) and longer ICU stay (SMD: 0.61, 95% CI 0.50-0.73, p < 0.01, I2 = 94.80%) than influenza patients. In our study, evidence quality was high (NOS score 7-9), with low certainty for AKI incidence and moderate certainty for recovery form AKI by GRADE assessment. Conclusion COVID-19 patients had higher risk of developing AKI, experiencing in-hospital mortality, and enduring prolonged hospital/ICU stays in comparison to influenza patients. Additionally, the likelihood of AKI recovery was lower among COVID-19 patients.
Collapse
Affiliation(s)
- Chiu-Ying Hsiao
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Heng-Chih Pan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelungi, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Chun Su
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Tzu-Hsuan Yeh
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Min-Hsiang Chuang
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kuan-Chieh Tu
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsien-Yi Wang
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Sport Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wei-Chih Kan
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chun-Chi Yang
- Division of Hepato-gastroenterology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Jui-Yi Chen
- Department of Sport Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
14
|
Dobrinen E, Moser L, White D, Alquwayfili S, Bingham D, Tesfai H. Surveillance Methods Used to Detect, Characterize, and Monitor the COVID-19 Pandemic in Rocky Mountain Tribal Communities. Public Health Rep 2023; 138:38S-47S. [PMID: 37461886 PMCID: PMC10352695 DOI: 10.1177/00333549231179457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
OBJECTIVE Data were essential to public health decision-making during the COVID-19 pandemic, yet no single data source was adequate for Tribes in Montana and Wyoming. We outlined data access, availability, and limitations for COVID-19 pandemic surveillance response to improve future data exchange. MATERIALS AND METHODS The Rocky Mountain Tribal Epidemiology Center (RMTEC) used various data sources to deliver data on the number of COVID-19 cases, deaths, and vaccinations at local, state, and regional levels to inform Tribes in Montana and Wyoming. RMTEC reviewed state, federal, and public datasets and then attached a score to each dataset for completeness of demographic information, including race, geographic level, and refresh rate. RESULTS The RMTEC COVID-19 response team shared data weekly on the number of COVID-19 cases, deaths, and vaccinations distributed and the percentage of the population vaccinated with Tribal health departments in Montana and Wyoming. The Indian Health Service Epidemiology Data Mart dataset scored the highest (24 of 30), followed by datasets from Montana (18 of 30) and Wyoming (22 of 30). Publicly available datasets scored low largely due to data aggregation across larger geographic areas and lack of demographic variables. PRACTICE IMPLICATIONS The absence of data on race and ethnicity from publicly available data and lack of access to real-time data limited RMTEC's ability to provide Tribal-specific updates on COVID-19 cases, deaths, and vaccinations to Tribal health departments. RMTEC should be fully funded to provide the necessary resources for data management and the capacity to respond to data requests from Tribal health departments and their programs to address current and future pandemics. Federal and state agencies should also be educated on Tribal Epidemiology Centers' public health authority status to improve access to infectious disease data among those agencies.
Collapse
Affiliation(s)
- Erin Dobrinen
- Rocky Mountain Tribal Leaders Council, Rocky Mountain Tribal Epidemiology Center, Billings, MT, USA
| | - Lea Moser
- Rocky Mountain Tribal Leaders Council, Rocky Mountain Tribal Epidemiology Center, Billings, MT, USA
| | - David White
- Rocky Mountain Tribal Leaders Council, Rocky Mountain Tribal Epidemiology Center, Billings, MT, USA
- CDC Foundation, Atlanta, GA, USA
| | - Sulaiman Alquwayfili
- Rocky Mountain Tribal Leaders Council, Rocky Mountain Tribal Epidemiology Center, Billings, MT, USA
| | - Dyani Bingham
- Rocky Mountain Tribal Leaders Council, Rocky Mountain Tribal Epidemiology Center, Billings, MT, USA
| | - Helen Tesfai
- Rocky Mountain Tribal Leaders Council, Rocky Mountain Tribal Epidemiology Center, Billings, MT, USA
| |
Collapse
|
15
|
King KL, Ham R, Smothers A, Lee I, Bowie T, Teetsel E, Peng C, Dean D. Repurposing a SARS-CoV-2 surveillance program for infectious respiratory diseases in a university setting. Front Public Health 2023; 11:1168551. [PMID: 37727605 PMCID: PMC10505707 DOI: 10.3389/fpubh.2023.1168551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Standard multiplex RT-qPCR diagnostic tests use nasopharyngeal swabs to simultaneously detect a variety of infections, but commercially available kits can be expensive and have limited throughput. Previously, we clinically validated a saliva-based RT-qPCR diagnostic test for SARS-CoV-2 to provide low-cost testing with high throughput and low turnaround time on a university campus. Here, we developed a respiratory diagnostic panel to detect SARS-CoV-2, influenza A and B within a single saliva sample. When compared to clinical results, our assay demonstrated 93.5% accuracy for influenza A samples (43/46 concordant results) with no effect on SARS-CoV-2 accuracy or limit of detection. In addition, our assay can detect simulated coinfections at varying virus concentrations generated from synthetic RNA controls. We also confirmed the stability of influenza A in saliva at room temperature for up to 5 days. The cost of the assay is lower than standard nasopharyngeal swab respiratory panel tests as saliva collection does not require specialized swabs or trained clinical personnel. By repurposing the lab infrastructure developed for the COVID-19 pandemic, our multiplex assay can be used to provide expanded access to respiratory disease diagnostics, especially for community, school, or university testing applications where saliva testing was effectively utilized during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Kylie L. King
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Rachel Ham
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Austin Smothers
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Isaac Lee
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Tyler Bowie
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Erika Teetsel
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Congyue Peng
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
16
|
Maltezou HC, Papanikolopoulou A, Vassiliu S, Theodoridou K, Nikolopoulou G, Sipsas NV. COVID-19 and Respiratory Virus Co-Infections: A Systematic Review of the Literature. Viruses 2023; 15:865. [PMID: 37112844 PMCID: PMC10142898 DOI: 10.3390/v15040865] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Τhe COVID-19 pandemic highly impacted the circulation, seasonality, and morbidity burden of several respiratory viruses. We reviewed published cases of SARS-CoV-2 and respiratory virus co-infections as of 12 April 2022. SARS-CoV-2 and influenza co-infections were reported almost exclusively during the first pandemic wave. It is possible that the overall incidence of SARS-CoV-2 co-infections is higher because of the paucity of co-testing for respiratory viruses during the first pandemic waves when mild cases might have been missed. Animal models indicate severe lung pathology and high fatality; nevertheless, the available literature is largely inconclusive regarding the clinical course and prognosis of co-infected patients. Animal models also indicate the importance of considering the sequence timing of each respiratory virus infection; however, there is no such information in reported human cases. Given the differences between 2020 and 2023 in terms of epidemiology and availability of vaccines and specific treatment against COVID-19, it is rational not to extrapolate these early findings to present times. It is expected that the characteristics of SARS-CoV-2 and respiratory virus co-infections will evolve in the upcoming seasons. Multiplex real-time PCR-based assays have been developed in the past two years and should be used to increase diagnostic and infection control capacity, and also for surveillance purposes. Given that COVID-19 and influenza share the same high-risk groups, it is essential that the latter get vaccinated against both viruses. Further studies are needed to elucidate how SARS-CoV-2 and respiratory virus co-infections will be shaped in the upcoming years, in terms of impact and prognosis.
Collapse
Affiliation(s)
- Helena C. Maltezou
- Directorate of Research, Studies and Documentation, National Public Health Organization, 15123 Athens, Greece
| | - Amalia Papanikolopoulou
- Third Department of Internal Medicine, Sotiria General Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, School of Medicine, Sotiria General Hospital, 11527 Athens, Greece
| | | | - Kalliopi Theodoridou
- Department of Microbiology, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Georgia Nikolopoulou
- Department of Hepatitides, National Public Health Organization, 15123 Athens, Greece
| | - Nikolaos V. Sipsas
- Pathophysiology Department, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
17
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
18
|
Shen CJ, Lin YP, Hu SY, Shen CF, Chuang HY, Ker CR, Sun DJ, Yang YH, Cheng CM. Pilot Study for Immunogenicity of SARS-CoV-2 Vaccine with Seasonal Influenza and Pertussis Vaccines in Pregnant Women. Vaccines (Basel) 2023; 11:119. [PMID: 36679964 PMCID: PMC9860598 DOI: 10.3390/vaccines11010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Background: It is well known that the implementation of routine immunizations to prevent vaccine-preventable diseases has a significant impact on the health and well-being of infants, children, and pregnant women. We aimed to evaluate the influence of influenza, tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccine on the immunogenicity of SARS-CoV-2 vaccine among pregnant women, the priority population recommended for vaccination. Methods: We conducted a prospective study among pregnant women without previous SARS-CoV-2 infection in Taiwan. Maternal and umbilical cord blood samples at delivery were analyzed for the percentage of inhibition of neutralizing antibodies (NAbs) against the original strain, Delta, and Omicron variants of SARS-CoV-2 as well as the total antibody to the SARS-CoV-2 spike protein. We examined the association between different doses of SARS-CoV-2 vaccine in combination with influenza and Tdap vaccination, and two-dose SARS-CoV-2 vaccination with or without influenza and Tdap vaccines via a two-sample t-test. Results of p < 0.05 were considered to be statistically significant. Results: 98 pregnant women were enrolled in our study, with 32 receiving two doses of SARS-CoV-2 mRNA-1273 vaccine, 60 receiving three-dose of mRNA-1273, and 6 receiving one-dose of ChAdOx1 and two-dose of mRNA-1273. Twenty-one participants were immunized with SARS-CoV-2, influenza, and Tdap vaccines. Of these 21 individuals, there were no significant NAbs levels in maternal and cord blood samples against the Omicron variant, regardless of doses or type of SARS-CoV-2 vaccine. However, antibody responses against the wild-type and Delta variant were significantly lower in all maternal sera in the two-dose SARS-CoV-2 vaccine group. Among 32 women receiving two-dose mRNA-1273, significantly lower levels of NAbs in maternal sera were observed against the Delta variant and total antibody both in maternal sera and cord blood were observed in individuals receiving SARS-CoV-2 and influenza vaccine. Conclusion: This is the pilot study to demonstrate the effects of influenza and the Tdap vaccine on the immunogenicity of the SARS-CoV-2 vaccine among pregnant women. These results suggest that combination vaccination during pregnancy may result in immunogenic interactions.
Collapse
Affiliation(s)
- Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Pin Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Shu-Yu Hu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hui-Yu Chuang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chin-Ru Ker
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Der-Ji Sun
- Department of Obstetrics and Gynecology, Pojen Hospital, Kaohsiung 804, Taiwan
| | - Yu-Hsuan Yang
- Department of Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
19
|
Hayashida K, Garcia A, Moonga LC, Sugi T, Takuya K, Kawase M, Kodama F, Nagasaka A, Ishiguro N, Takada A, Kajihara M, Nao N, Shingai M, Kida H, Suzuki Y, Hall WW, Sawa H, Yamagishi J. Field-deployable multiplex detection method of SARS-CoV-2 and influenza virus using loop-mediated isothermal amplification and DNA chromatography. PLoS One 2023; 18:e0285861. [PMID: 37192155 DOI: 10.1371/journal.pone.0285861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
A novel multiplex loop-mediated isothermal amplification (LAMP) method combined with DNA chromatography was developed for the simultaneous detection of three important respiratory disease-causing viruses: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus. Amplification was performed at a constant temperature, and a positive result was confirmed by a visible colored band. An in-house drying protocol with trehalose was used to prepare the dried format multiplex LAMP test. Using this dried multiplex LAMP test, the analytical sensitivity was determined to be 100 copies for each viral target and 100-1000 copies for the simultaneous detection of mixed targets. The multiplex LAMP system was validated using clinical COVID-19 specimens and compared with the real-time qRT-PCR method as a reference test. The determined sensitivity of the multiplex LAMP system for SARS-CoV-2 was 71% (95% CI: 0.62-0.79) for cycle threshold (Ct) ≤ 35 samples and 61% (95% CI: 0.53-0.69) for Ct ≤40 samples. The specificity was 99% (95%CI: 0.92-1.00) for Ct ≤35 samples and 100% (95%CI: 0.92-1.00) for the Ct ≤40 samples. The developed simple, rapid, low-cost, and laboratory-free multiplex LAMP system for the two major important respiratory viral diseases, COVID-19 and influenza, is a promising field-deployable diagnosis tool for the possible future 'twindemic, ' especially in resource-limited settings.
Collapse
Affiliation(s)
- Kyoko Hayashida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Alejandro Garcia
- UCD Centre for Experimental Pathogen Host Research, University College Dublin, Belfield, Ireland
| | - Lavel Chinyama Moonga
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Tatsuki Sugi
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | | | | | | | - Nobuhisa Ishiguro
- Division of Infection Control, Hokkaido University Hospital, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Ayato Takada
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Masahiro Kajihara
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - William W Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Ireland
- Global Virus Network, Baltimore, Maryland, United States of America
| | - Hirofumi Sawa
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, Maryland, United States of America
| | - Junya Yamagishi
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Tran QL, Benitez G, Shehadeh F, Kaczynski M, Mylonakis E. Clinical Outcomes Associated with SARS-CoV-2 Co-Infection with Rhinovirus and Adenovirus in Adults-A Retrospective Matched Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:646. [PMID: 36612967 PMCID: PMC9819765 DOI: 10.3390/ijerph20010646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
(1) Background: Respiratory co-infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viruses are common, but data on clinical outcomes and laboratory biomarkers indicative of disease severity are limited. We aimed to compare clinical outcomes and laboratory biomarkers of patients with SARS-CoV-2 alone to those of patients with SARS-CoV-2 and either rhinovirus or adenovirus. (2) Methods: Hospitalized patients co-infected with SARS-CoV-2 and rhinovirus and patients co-infected with SARS-CoV-2 and adenovirus were matched to patients infected with SARS-CoV-2 alone. Outcomes of interest were the cumulative incidences of mechanical ventilation use, intensive care unit (ICU) admission, 30-day all-cause mortality, and 30-day all-cause readmission from the day of discharge. We also assessed differences in laboratory biomarkers from the day of specimen collection. (3) Results: Patients co-infected with SARS-CoV-2 and rhinovirus, compared with patients infected with SARS-CoV-2, had significantly greater 30-day all-cause mortality (8/23 (34.8%) vs. 8/69 (11.6%), p = 0.02). Additionally, median alanine transaminase (13 IU/L vs. 24 IU/L, p = 0.03), aspartate transaminase (25 IU/L vs. 36 IU/L, p = 0.04), and C-reactive protein (34.86 mg/L vs. 94.68 mg/L, p = 0.02) on day of specimen collection were significantly lower in patients co-infected with SARS-CoV-2 and rhinovirus in comparison to patients infected with SARS-CoV-2 alone. Clinical outcomes and laboratory markers did not differ significantly between patients with SARS-CoV-2 and adenovirus co-infection and patients with SARS-CoV-2 mono-infection. (4) Conclusion: SARS-CoV-2 and rhinovirus co-infection, compared with SARS-CoV-2 mono-infection alone, is positively associated with 30-day all-cause mortality among hospitalized patients. However, our lack of significant findings in our analysis of patients with SARS-CoV-2 and adenovirus co-infection may suggest that SARS-CoV-2 co-infections have variable significance, and further study is warranted.
Collapse
Affiliation(s)
- Quynh-Lam Tran
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Gregorio Benitez
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Fadi Shehadeh
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Matthew Kaczynski
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
21
|
Hussain M, Ahmed F, Henzeler B, Husain M. Anti-microbial host factor HDAC6 is antagonised by the influenza A virus through host caspases and viral PA. FEBS J 2022; 290:2744-2759. [PMID: 36516338 DOI: 10.1111/febs.16703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Histone deacetylase 6 (HDAC6), through the repertoire of its substrate proteins, plays a critical role in human physiology, and an aberrant function of HDAC6 contributes to various pathophysiological conditions. HDAC6 is also known to be an anti-microbial host factor and has been implicated in restricting or clearing the infection of various human viral and bacterial pathogens. However, the state and the mechanisms of its antagonism in infected cells are not understood. Here, we demonstrate that influenza A virus (IAV) antagonises HDAC6 by recruiting both viral and host components. We found that HDAC6 mRNA expression, and consequently, the HDAC6 polypeptide expression is downregulated in human lung epithelial cells during early stage of IAV infection but can be rescued by depleting the expression of viral polymerase acidic (PA) protein, a subunit of IAV RNA polymerase. In addition, during later stage of the infection, the HDAC6 polypeptide undergoes caspase-mediated cleavage at two sites, generating two cleaved fragments. Both these fragments disappeared when the expression of caspase 3 was depleted in infected cells, whereas only second fragment disappeared when the expression of caspase 6 was depleted. But both fragments disappeared and the level of full-length HDAC6 polypeptide was rescued when the expression of PA was depleted in infected cells. Collectively, these data indicated that IAV antagonises the HDAC6 by decreasing its expression level in infected cells, both at mRNA and polypeptide level via PA gene, which has been implicated in auxiliary functions like degradation of host mRNA and induction of apoptosis.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Farjana Ahmed
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Bennett Henzeler
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Kim SH, Park HY, Jung H, Zo S, Kim S, Park DW, Park TS, Moon JY, Kim SH, Kim TH, Sohn JW, Yoon HJ, Lee H, Shin SH. Trends and factors associated with influenza vaccination in subjects with asthma: analysis of the Korea National Health and Nutrition Examination Survey between 2010 and 2019. Ther Adv Chronic Dis 2022; 13:20406223221123979. [PMID: 36213169 PMCID: PMC9537498 DOI: 10.1177/20406223221123979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Despite the importance of influenza vaccination, its rates in subjects with asthma are suboptimal, especially in the young population. METHODS Among 72,843 adults aged ⩾18 years from the Korea National Health and Nutrition Examination Survey conducted between 2010 and 2019, 1643 with asthma were included. The yearly trends and factors associated with influenza vaccination were analyzed in subjects with asthma. In addition, stratified analyses were performed by age group (<65 versus ⩾65 years). RESULTS During the study period, the overall influenza vaccination rate among subjects with asthma fluctuated from 51.0% to 64.3%, with a consistently higher vaccination rate in elderly subjects than in young subjects. Among young subjects with asthma, factors positively associated with influenza vaccination were female sex [adjusted odds ratio (aOR) = 1.66, 95% confidence interval (CI) = 1.11-2.49], current asthma being treated (aOR = 1.69, 95% CI = 1.14-2.50), history of pulmonary tuberculosis (aOR = 2.01, 95% CI = 1.04-3.87), and dyslipidemia (aOR = 1.86, 95% CI = 1.05-3.30). However, unmarried subjects showed an inverse relationship (aOR = 0.50, 95% CI = 0.34-0.75). In elderly subjects, unmarried status (aOR = 0.52, 95% CI = 0.29-0.94), being underweight (aOR = 0.29, 95% CI = 0.09-0.97), and having a low income (aOR = 0.42, 95% CI = 0.18-0.97) were factors negatively associated with influenza vaccination. CONCLUSION In the last 10 years, influenza vaccination rates have still been insufficient in subjects with asthma, particularly in young subjects. Considering the factors that are influencing the vaccination rates of young subjects, public policies to increase influenza vaccination rates in subjects with asthma need to be established urgently.
Collapse
Affiliation(s)
| | | | - Hwasik Jung
- Division of Pulmonary and Critical Care
Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan
University School of Medicine, Seoul, Korea
| | - Sungmin Zo
- Division of Pulmonary and Critical Care
Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan
University School of Medicine, Seoul, Korea
| | - Saerom Kim
- Division of Pulmonary and Critical Care
Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan
University School of Medicine, Seoul, Korea
| | - Dong Won Park
- Division of Pulmonary Medicine and Allergy,
Department of Internal Medicine, Hanyang University College of Medicine,
Seoul, Korea
| | - Tai Sun Park
- Division of Pulmonary Medicine and Allergy,
Department of Internal Medicine, Hanyang University College of Medicine,
Seoul, Korea
| | - Ji-Yong Moon
- Division of Pulmonary Medicine and Allergy,
Department of Internal Medicine, Hanyang University College of Medicine,
Seoul, Korea
| | - Sang-Heon Kim
- Division of Pulmonary Medicine and Allergy,
Department of Internal Medicine, Hanyang University College of Medicine,
Seoul, Korea
| | - Tae-Hyung Kim
- Division of Pulmonary Medicine and Allergy,
Department of Internal Medicine, Hanyang University College of Medicine,
Seoul, Korea
| | - Jang Won Sohn
- Division of Pulmonary Medicine and Allergy,
Department of Internal Medicine, Hanyang University College of Medicine,
Seoul, Korea
| | - Ho Joo Yoon
- Division of Pulmonary Medicine and Allergy,
Department of Internal Medicine, Hanyang University College of Medicine,
Seoul, Korea
| | | | | |
Collapse
|
23
|
Buckrell S, Ben Moussa M, Bui T, Rahal A, Schmidt K, Lee L, Bastien N, Bancej C. National Influenza Annual Report, Canada, 2021-2022: A brief, late influenza epidemic. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2022; 48:473-483. [PMID: 38125392 PMCID: PMC10730107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Canadian seasonal influenza circulation had been suppressed since the beginning of the coronavirus disease 2019 (COVID-19) pandemic. This suppression was reported globally and generated concern that the return of community influenza circulation could be intense and that co-circulation of influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was possible and potentially severe. Community circulation of influenza returned to Canada during the 2021-2022 influenza season. The influenza epidemic began in week 16 (mid-April 2022) and lasted only nine weeks. This epidemic was driven by influenza A(H3N2) and was exceptionally late in the season, low in intensity and short in length. Community co-circulation of influenza and SARS-CoV-2 was observed in Canada for the first time during the 2021-2022 seasonal influenza epidemic. The unusual characteristics of the 2021-2022 influenza epidemic suggest that a breadth of factors moderate transmission dynamics of the two viruses. Concerns of an intense seasonal influenza epidemic did not come to fruition during the 2021-2022 season; therefore, high influenza susceptibility remains, as does predisposition to larger influenza epidemics. Ongoing circulation of SARS-CoV-2 creates uncertainty about dynamics of future influenza epidemics, but influenza vaccination remains a key public health intervention available to protect Canadians. Public health authorities need to remain vigilant, maintain surveillance and continue to plan for both heightened seasonal influenza circulation and for the potential for endemic co-circulation of influenza and SARS-CoV-2.
Collapse
Affiliation(s)
- Steven Buckrell
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Myriam Ben Moussa
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Tammy Bui
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Abbas Rahal
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Kara Schmidt
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Liza Lee
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Nathalie Bastien
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| | - Christina Bancej
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| |
Collapse
|
24
|
Cong B, Deng S, Wang X, Li Y. The role of respiratory co-infection with influenza or respiratory syncytial virus in the clinical severity of COVID-19 patients: A systematic review and meta-analysis. J Glob Health 2022; 12:05040. [PMID: 36112521 PMCID: PMC9480863 DOI: 10.7189/jogh.12.05040] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Bingbing Cong
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shuyu Deng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Wang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - You Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
25
|
Trifonova I, Christova I, Madzharova I, Angelova S, Voleva S, Yordanova R, Tcherveniakova T, Krumova S, Korsun N. Clinical significance and role of coinfections with respiratory pathogens among individuals with confirmed severe acute respiratory syndrome coronavirus-2 infection. Front Public Health 2022; 10:959319. [PMID: 36117597 PMCID: PMC9479447 DOI: 10.3389/fpubh.2022.959319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/04/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction This study aimed to determine the prevalence, viral profile, and clinical features of coinfections with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and other respiratory viruses. Methods Nasopharyngeal samples and clinical data of 221 hospitalized patients and 21 outpatients were collected and analyzed. Real-time reverse transcription-polymerase chain reaction was used to detect SARS-CoV-2, influenza virus, respiratory syncytial virus (RSV), human metapneumovirus (HMPV), parainfluenza virus (PIV) 1,2,3, rhinovirus (RV), adenovirus (AdV), bocaviruses (BoV), and seasonal coronaviruses (OC43, 229E, NL63, and HKU1). Viral load was determined by capillary electrophoresis. Results From November 2020 to mid-March 2022, 242 SARS-CoV-2 positive patients were tested for seasonal respiratory viruses, and 24 (9.9%) cases of coinfections were detected. The distribution of viruses involved in cases of coinfections were as follows: HMPV (n = 6; 25%), RSV (n = 4;16.7%), AdV (n = 4; 16.7%), BoV (n = 4; 16.7%), PIV3 (n = 2; 8.3%), influenza A (H3N2; n = 2; 8.3%), RV (n = 1; 4.62%), and RV+BoV (n = 1; 4.62%). The proportion of detected coinfections with SARS-CoV-2 was highest in children aged 0-5 years (59%), followed by those >65 years (33%). In specimens with detected coinfection, the viral load of influenza was higher than that of SARS-CoV-2, and the mean viral load of SARS-CoV-2 was higher than that of the other respiratory viruses. C-reactive protein (CRP) and lymphocytes count in co-infected patients >65 years of age were on average higher than in children <16 years of age (mean CRP of 161.8 ± 133.1 mg/L; 19.7 ± 3.09% vs. mean 6.9 ± 8.9 mg/L, 0.9 ± 3.1%; p < 0.01). Patients >65 years of age co-infected with SARS-CoV-2 and other respiratory viruses had longer hospital stays than those <16 years of age (mean 9 ± 3.96 days vs. 5.44 ± 1.89 days; p = 0.025). The combination of AdV and SARS-CoV-2 is fatal for patients aged >65 years. Conclusion In patients aged >65 years, coinfection with SARS CoV-2 and other respiratory viruses, together with concomitant diseases, causes worsening of the clinical picture and complications, and can be fatal. Screening of patients with SARS CoV-2 for other respiratory viruses is needed to select appropriate treatments and prevent a fatal outcome of the disease.
Collapse
Affiliation(s)
- Ivelina Trifonova
- National Laboratory “Influenza and ARD”, Department of Virology, National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iva Christova
- National Laboratory “Influenza and ARD”, Department of Virology, National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iveta Madzharova
- National Laboratory “Influenza and ARD”, Department of Virology, National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Svetla Angelova
- Clinical Virology Laboratory, University Hospital “Prof. Dr. Stoyan Kirkovich”, Stara Zagora, Bulgaria
| | - Silvya Voleva
- Clinic for Neuro Infections, Airborne, Roof, and Transmissible Infections, Infectious Hospital “Prof. Ivan Kirov”, Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ralitsa Yordanova
- Clinic for Neuro Infections, Airborne, Roof, and Transmissible Infections, Infectious Hospital “Prof. Ivan Kirov”, Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Tatiana Tcherveniakova
- Clinic for Neuro Infections, Airborne, Roof, and Transmissible Infections, Infectious Hospital “Prof. Ivan Kirov”, Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Stefka Krumova
- National Laboratory “Influenza and ARD”, Department of Virology, National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Neli Korsun
- National Laboratory “Influenza and ARD”, Department of Virology, National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
26
|
Abstract
Annual seasonal influenza epidemics of variable severity caused by influenza A and B virus infections result in substantial disease burden worldwide. Seasonal influenza virus circulation declined markedly in 2020-21 after SARS-CoV-2 emerged but increased in 2021-22. Most people with influenza have abrupt onset of respiratory symptoms and myalgia with or without fever and recover within 1 week, but some can experience severe or fatal complications. Prevention is primarily by annual influenza vaccination, with efforts underway to develop new vaccines with improved effectiveness. Sporadic zoonotic infections with novel influenza A viruses of avian or swine origin continue to pose pandemic threats. In this Seminar, we discuss updates of key influenza issues for clinicians, in particular epidemiology, virology, and pathogenesis, diagnostic testing including multiplex assays that detect influenza viruses and SARS-CoV-2, complications, antiviral treatment, influenza vaccines, infection prevention, and non-pharmaceutical interventions, and highlight gaps in clinical management and priorities for clinical research.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - David S Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Maria Zambon
- Virology Reference Department, UK Health Security Agency, London, UK
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnold S Monto
- Center for Respiratory Research and Response, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Santos CAD, Bezerra GVB, Marinho ARRADA, Sena LOC, Menezes VDJ, Teixeira DCP, Souza MFD, Góes MADO, Martins-Filho PR. SARS-CoV-2/influenza A (H3N2) virus coinfection: epidemiological surveillance in Northeast Brazil. Rev Soc Bras Med Trop 2022; 55:e0132. [PMID: 35946626 PMCID: PMC9344941 DOI: 10.1590/0037-8682-0132-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Cliomar Alves Dos Santos
- Governo do Estado de Sergipe, Fundação de Saúde Parreiras Horta, Laboratório Central de Saúde Pública de Sergipe (LACEN/SE), Aracaju, Sergipe, Brasil
| | - Gabriela Vasconcelos Brito Bezerra
- Governo do Estado de Sergipe, Fundação de Saúde Parreiras Horta, Laboratório Central de Saúde Pública de Sergipe (LACEN/SE), Aracaju, Sergipe, Brasil
| | | | - Ludmila Oliveira Carvalho Sena
- Governo do Estado de Sergipe, Fundação de Saúde Parreiras Horta, Laboratório Central de Saúde Pública de Sergipe (LACEN/SE), Aracaju, Sergipe, Brasil
| | - Vitoria de Jesus Menezes
- Governo do Estado de Sergipe, Fundação de Saúde Parreiras Horta, Laboratório Central de Saúde Pública de Sergipe (LACEN/SE), Aracaju, Sergipe, Brasil
| | - Daniela Cabral Pizzi Teixeira
- Governo do Estado de Sergipe, Fundação de Saúde Parreiras Horta, Laboratório Central de Saúde Pública de Sergipe (LACEN/SE), Aracaju, Sergipe, Brasil
| | | | - Marco Aurélio de Oliveira Góes
- Governo do Estado de Sergipe, Secretaria de Estado da Saúde, Aracaju, Sergipe, Brasil.,Universidade Federal de Sergipe, Departamento de Medicina, Lagarto, Sergipe, Brasil
| | - Paulo Ricardo Martins-Filho
- Universidade Federal de Sergipe, Laboratório de Patologia Investigativa, Programa de Pós-graduação em Ciências da Saúde, Aracaju, Sergipe, Brasil
| |
Collapse
|
28
|
Weidmann MD, Berry GJ, Green DA, Wu F. Prevalence and clinical disease severity of respiratory co-infections during the COVID-19 pandemic. ADVANCES IN MOLECULAR PATHOLOGY 2022. [PMCID: PMC9364747 DOI: 10.1016/j.yamp.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Ochnik M, Franz D, Sobczyński M, Naporowski P, Banach M, Orzechowska B, Sochocka M. Inhibition of Human Respiratory Influenza A Virus and Human Betacoronavirus-1 by the Blend of Double-Standardized Extracts of Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. Pharmaceuticals (Basel) 2022; 15:ph15050619. [PMID: 35631445 PMCID: PMC9143272 DOI: 10.3390/ph15050619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Viral and bacterial diseases are among the greatest concerns of humankind since ancient times. Despite tremendous pharmacological progress, there is still a need to search for new drugs that could treat or support the healing processes. A rich source of bioactive compounds with antiviral potency include plants such as black chokeberry and elderberry. The aim of this study was to assess the in vitro antiviral ability of an originally designed double-standardized blend of extracts from Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. (EAM-ESN) or separated extracts of A. melanocarpa (EAM) or S. nigra (ESN) against four human respiratory tract viruses: influenza A virus (A/H1N1), betacoronavirus-1 (HCoV-OC43) belonging to the same β-coronaviruses as the current pandemic SARS-CoV-2, human herpesvirus type 1 (HHV-1), and human adenovirus type 5 (HAdV-5). Antiviral assays (AVAs) were used to evaluate the antiviral activity of the plant extracts in a cell-present environment with extracts tested before, simultaneously, or after viral infection. The virus replication was assessed using the CPE scale or luminescent assay. The EAM-ESN blend strongly inhibited A/H1N1 replication as well as HCoV-OC43, while having a limited effect against HHV-1 and HAdV-5. This activity likely depends mostly on the presence of the extract of S. nigra. However, the EAM-ESN blend possesses more effective inhibitory activity toward virus replication than its constituent extracts. A post-infection mechanism of action of the EAM-ESN make this blend the most relevant for potential drugs and supportive treatments; thus, the EAM-ESN blend might be considered as a natural remedy in mild, seasonal respiratory viral infections.
Collapse
Affiliation(s)
- Michał Ochnik
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Dominika Franz
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Maciej Sobczyński
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Piotr Naporowski
- Laboratory of Medical Microbiology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Mariusz Banach
- Department of Physical Chemistry and Polymer Physical Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Beata Orzechowska
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
- Correspondence: ; Tel.: +48-713-709-924
| |
Collapse
|
30
|
Bancej C, Rahal A, Lee L, Buckrell S, Schmidt K, Bastien N. National FluWatch mid-season report, 2021-2022: Sporadic influenza activity returns. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2022; 48:39-45. [PMID: 35273468 PMCID: PMC8856831 DOI: 10.14745/ccdr.v48i01a06] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surveillance for Canada's 2021-2022 seasonal influenza epidemic began in epidemiological week 35 (the week starting August 29, 2021) during the ongoing coronavirus disease 2019 (COVID-19) global public health emergency. In the 2021-2022 surveillance season to date, there has been a return of persistent sporadic influenza activity, and the first influenza-associated hospitalizations since mid-2020 have been reported. However, as of week 52 (week ending 01/01/2022) activity has remained sporadic, and no influenza-confirmed outbreaks or epidemic activity have been detected. There has been a delay or absence in several traditional seasonal influenza milestones, including the declared start of the influenza season, marked by a threshold of 5% positivity, which historically has occurred on average in week 47. The 429 sporadic detections reported in Canada to date have occurred in 31 regions across seven provinces/territories. Nearly half (n=155/335, 46.3%) of reported cases have been in the paediatric (younger than 19 years) population. Three-quarters of the cases were influenza A detections (n=323/429, 75.3%). Of the subtyped influenza A detections, A(H3N2) predominated (n=83/86, 96.5%). Of the 12 viruses characterized by the National Microbiology Laboratory, 11 were seasonal strains. Among the seasonal strains characterized, only one was antigenically similar to the strains recommended for the 2021-2022 Northern Hemisphere vaccine, though all were sensitive to the antivirals, oseltamivir and zanamivir. Until very recently, seasonal influenza epidemics had not been reported since March 2020. Evidence on the re-emergence of seasonal influenza strains in Canada following the A(H1N1)pdm09 pandemic shows that influenza A(H3N2) and B epidemics ceased through the 2009-2010 season and second wave of A(H1N1)pdm09, but then re-emerged in subsequent seasons to predominate causing epidemics of higher intensity than in the pre-pandemic seasons. When and where seasonal influenza epidemic activity resumes cannot be predicted, but model-based estimates and historical post-pandemic patterns of intensified epidemics warrant continued vigilance through the usual season and for out-of-season re-emergence. In addition, ongoing population preparedness measures, such as annual influenza vaccination to mitigate the intensity and burden of future seasonal influenza epidemic waves, should continue.
Collapse
Affiliation(s)
- Christina Bancej
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Abbas Rahal
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Liza Lee
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Steven Buckrell
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Kara Schmidt
- Centre for Immunization and Respiratory Infectious Diseases, Public Health Agency of Canada, Ottawa, ON
| | - Nathalie Bastien
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| |
Collapse
|