1
|
Mora VP, Kalergis AM, Bohmwald K. Neurological Impact of Respiratory Viruses: Insights into Glial Cell Responses in the Central Nervous System. Microorganisms 2024; 12:1713. [PMID: 39203555 PMCID: PMC11356956 DOI: 10.3390/microorganisms12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 09/03/2024] Open
Abstract
Respiratory viral infections pose a significant public health threat, particularly in children and older adults, with high mortality rates. Some of these pathogens are the human respiratory syncytial virus (hRSV), severe acute respiratory coronavirus-2 (SARS-CoV-2), influenza viruses (IV), human parvovirus B19 (B19V), and human bocavirus 1 (HBoV1). These viruses cause various respiratory symptoms, including cough, fever, bronchiolitis, and pneumonia. Notably, these viruses can also impact the central nervous system (CNS), leading to acute manifestations such as seizures, encephalopathies, encephalitis, neurological sequelae, and long-term complications. The precise mechanisms by which these viruses affect the CNS are not fully understood. Glial cells, specifically microglia and astrocytes within the CNS, play pivotal roles in maintaining brain homeostasis and regulating immune responses. Exploring how these cells interact with viral pathogens, such as hRSV, SARS-CoV-2, IVs, B19V, and HBoV1, offers crucial insights into the significant impact of respiratory viruses on the CNS. This review article examines hRSV, SARS-CoV-2, IV, B19V, and HBoV1 interactions with microglia and astrocytes, shedding light on potential neurological consequences.
Collapse
Affiliation(s)
- Valentina P. Mora
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy (MIII), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
2
|
Abdelgalil AI, Yassin AM, Khattab MS, Abdelnaby EA, Marouf SA, Farghali HA, Emam IA. Platelet-rich plasma attenuates the UPEC-induced cystitis via inhibiting MMP-2,9 activities and downregulation of NGF and VEGF in Canis Lupus Familiaris model. Sci Rep 2024; 14:13612. [PMID: 38871929 DOI: 10.1038/s41598-024-63760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
One of the most prevalent disorders of the urinary system is urinary tract infection, which is mostly brought on by uropathogenic Escherichia coli (UPEC). The objective of this study was to evaluate the regenerative therapeutic and antibacterial efficacy of PRP for induced bacterial cystitis in dogs in comparison to conventional antibiotics. 25 healthy male mongrel dogs were divided into 5 groups (n = 5). Control negative group that received neither induced infection nor treatments. 20 dogs were randomized into 4 groups after two weeks of induction of UPEC cystitis into; Group 1 (control positive; G1) received weekly intravesicular instillation of sodium chloride 0.9%. Group 2 (syst/PRP; G2), treated with both systemic intramuscular antibiotic and weekly intravesicular instillation of PRP; Group 3 (PRP; G3), treated with weekly intravesicular instillation of PRP, and Group 4 (syst; G4) treated with an intramuscular systemic antibiotic. Animals were subjected to weekly clinical, ultrasonographic evaluation, urinary microbiological analysis, and redox status biomarkers estimation. Urinary matrix metalloproteinases (MMP-2, MMP-9) and urinary gene expression for platelet-derived growth factor -B (PDGF-B), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) were measured. At the end of the study, dogs were euthanized, and the bladder tissues were examined macroscopically, histologically, and immunohistochemically for NF-κB P65 and Cox-2. The PRP-treated group showed significant improvement for all the clinical, Doppler parameters, and the urinary redox status (p < 0.05). The urinary MMPs activity was significantly decreased in the PRP-treated group and the expression level of urinary NGF and VEGF were downregulated while PDGFB was significantly upregulated (p < 0.05). Meanwhile, the urinary viable cell count was significantly reduced in all treatments (P < 0.05). Gross examination of bladder tissue showed marked improvement for the PRP-treated group, expressed in the histopathological findings. Immunohistochemical analysis revealed a marked increase in Cox-2 and NF-κB P65 in the PRP-treated group (P < 0.05). autologous CaCl2-activated PRP was able to overcome the bacterial infection, generating an inflammatory environment to overcome the old one and initiate tissue healing. Hence, PRP is a promising alternative therapeutic for UPEC cystitis instead of conventional antibiotics.
Collapse
Affiliation(s)
- Ahmed I Abdelgalil
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Elshymaa A Abdelnaby
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sherif A Marouf
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Haithem A Farghali
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ibrahim A Emam
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
3
|
Welch N, Mishra S, Bellar A, Kannan P, Gopan A, Goudarzi M, King J, Luknis M, Musich R, Agrawal V, Bena J, Koch CJ, Li L, Willard B, Shah YM, Dasarathy S. Differential impact of sex on regulation of skeletal muscle mitochondrial function and protein homeostasis by hypoxia-inducible factor-1α in normoxia. J Physiol 2024; 602:2763-2806. [PMID: 38761133 PMCID: PMC11178475 DOI: 10.1113/jp285339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 04/19/2024] [Indexed: 05/20/2024] Open
Abstract
Hypoxia-inducible factor (HIF)-1α is continuously synthesized and degraded in normoxia. During hypoxia, HIF1α stabilization restricts cellular/mitochondrial oxygen utilization. Cellular stressors can stabilize HIF1α even during normoxia. However, less is known about HIF1α function(s) and sex-specific effects during normoxia in the basal state. Since skeletal muscle is the largest protein store in mammals and protein homeostasis has high energy demands, we determined HIF1α function at baseline during normoxia in skeletal muscle. Untargeted multiomics data analyses were followed by experimental validation in differentiated murine myotubes with loss/gain of function and skeletal muscle from mice without/with post-natal muscle-specific Hif1a deletion (Hif1amsd). Mitochondrial oxygen consumption studies using substrate, uncoupler, inhibitor, titration protocols; targeted metabolite quantification by gas chromatography-mass spectrometry; and post-mitotic senescence markers using biochemical assays were performed. Multiomics analyses showed enrichment in mitochondrial and cell cycle regulatory pathways in Hif1a deleted cells/tissue. Experimentally, mitochondrial oxidative functions and ATP content were higher with less mitochondrial free radical generation with Hif1a deletion. Deletion of Hif1a also resulted in higher concentrations of TCA cycle intermediates and HIF2α proteins in myotubes. Overall responses to Hif1amsd were similar in male and female mice, but changes in complex II function, maximum respiration, Sirt3 and HIF1β protein expression and muscle fibre diameter were sex-dependent. Adaptive responses to hypoxia are mediated by stabilization of constantly synthesized HIF1α. Despite rapid degradation, the presence of HIF1α during normoxia contributes to lower mitochondrial oxidative efficiency and greater post-mitotic senescence in skeletal muscle. In vivo responses to HIF1α in skeletal muscle were differentially impacted by sex. KEY POINTS: Hypoxia-inducible factor -1α (HIF1α), a critical transcription factor, undergoes continuous synthesis and proteolysis, enabling rapid adaptive responses to hypoxia by reducing mitochondrial oxygen consumption. In mammals, skeletal muscle is the largest protein store which is determined by a balance between protein synthesis and breakdown and is sensitive to mitochondrial oxidative function. To investigate the functional consequences of transient HIF1α expression during normoxia in the basal state, myotubes and skeletal muscle from male and female mice with HIF1α knockout were studied using complementary multiomics, biochemical and metabolite assays. HIF1α knockout altered the electron transport chain, mitochondrial oxidative function, signalling molecules for protein homeostasis, and post-mitotic senescence markers, some of which were differentially impacted by sex. The cost of rapid adaptive responses mediated by HIF1α is lower mitochondrial oxidative efficiency and post-mitotic senescence during normoxia.
Collapse
Affiliation(s)
- Nicole Welch
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Saurabh Mishra
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Annette Bellar
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Pugazhendhi Kannan
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Amrit Gopan
- KEM Hospital, Seth GS Medical College, Mumbai, India
| | - Maryam Goudarzi
- Respiratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jasmine King
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Mathew Luknis
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Ryan Musich
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Vandana Agrawal
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - James Bena
- Quantitative Health, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Ling Li
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Srinivasan Dasarathy
- Departments of Inflammation and Immunity, Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Hausmann M, Seuwen K, de Vallière C, Busch M, Ruiz PA, Rogler G. Role of pH-sensing receptors in colitis. Pflugers Arch 2024; 476:611-622. [PMID: 38514581 PMCID: PMC11006753 DOI: 10.1007/s00424-024-02943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Low pH in the gut is associated with severe inflammation, fibrosis, and colorectal cancer (CRC) and is a hallmark of active inflammatory bowel disease (IBD). Subsequently, pH-sensing mechanisms are of interest for the understanding of IBD pathophysiology. Tissue hypoxia and acidosis-two contributing factors to disease pathophysiology-are linked to IBD, and understanding their interplay is highly relevant for the development of new therapeutic options. One member of the proton-sensing G protein-coupled receptor (GPCR) family, GPR65 (T-cell death-associated gene 8, TDAG8), was identified as a susceptibility gene for IBD in a large genome-wide association study. In response to acidic extracellular pH, GPR65 induces an anti-inflammatory response, whereas the two other proton-sensing receptors, GPR4 and GPR68 (ovarian cancer G protein-coupled receptor 1, OGR1), mediate pro-inflammatory responses. Here, we review the current knowledge on the role of these proton-sensing receptors in IBD and IBD-associated fibrosis and cancer, as well as colitis-associated cancer (CAC). We also describe emerging small molecule modulators of these receptors as therapeutic opportunities for the treatment of IBD.
Collapse
Affiliation(s)
- Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland.
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Moana Busch
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| |
Collapse
|
5
|
Zhuang X, Gallo G, Sharma P, Ha J, Magri A, Borrmann H, Harris JM, Tsukuda S, Bentley E, Kirby A, de Neck S, Yang H, Balfe P, Wing PA, Matthews D, Harris AL, Kipar A, Stewart JP, Bailey D, McKeating JA. Hypoxia inducible factors inhibit respiratory syncytial virus infection by modulation of nucleolin expression. iScience 2024; 27:108763. [PMID: 38261926 PMCID: PMC10797196 DOI: 10.1016/j.isci.2023.108763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a global healthcare problem, causing respiratory illness in young children and elderly individuals. Our knowledge of the host pathways that define susceptibility to infection and disease severity are limited. Hypoxia inducible factors (HIFs) define metabolic responses to low oxygen and regulate inflammatory responses in the lower respiratory tract. We demonstrate a role for HIFs to suppress RSV entry and RNA replication. We show that hypoxia and HIF prolyl-hydroxylase inhibitors reduce the expression of the RSV entry receptor nucleolin and inhibit viral cell-cell fusion. We identify a HIF regulated microRNA, miR-494, that regulates nucleolin expression. In RSV-infected mice, treatment with the clinically approved HIF prolyl-hydroxylase inhibitor, Daprodustat, reduced the level of infectious virus and infiltrating monocytes and neutrophils in the lung. This study highlights a role for HIF-signalling to limit multiple aspects of RSV infection and associated inflammation and informs future therapeutic approaches for this respiratory pathogen.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jiyeon Ha
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Bentley
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adam Kirby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Simon de Neck
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A.C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - David Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | | | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Schwarz J, Rühle J, Stephan K, Dietz S, Geißert J, Schoppmeier U, Frick JS, Hudalla H, Lajqi T, Poets CF, Gille C, Köstlin-Gille N. HIF-1α targeted deletion in myeloid cells decreases MDSC accumulation and alters microbiome in neonatal mice. Eur J Immunol 2023; 53:e2250144. [PMID: 37044112 DOI: 10.1002/eji.202250144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 04/14/2023]
Abstract
The newborn's immune system is faced with the challenge of having to learn quickly to fight off infectious agents, but tolerating the colonization of the body surfaces with commensals without reacting with an excessive inflammatory response. Myeloid-derived suppressor cells (MDSC) are innate immune cells with suppressive activity on other immune cells that regulate fetal-maternal tolerance during pregnancy and control intestinal inflammation in neonates. Until now, nothing is known about the role of MDSC in microbiome establishment. One of the transcription factors regulating MDSC homeostasis is the hypoxia-inducible factor 1α (HIF-1α). We investigated the impact of HIF-1α on MDSC accumulation and microbiome establishment during the neonatal period in a mouse model with targeted deletion of HIF-1α in myeloid cells (Hif1a loxP/loxP LysMCre+). We show that in contrast to wildtype mice, where an extensive expansion of MDSC was observed, MDSC expansion in neonatal Hif1a loxP/loxP LysMCre+ mice was dramatically reduced both systemically and locally in the intestine. This was accompanied by an altered microbiome composition and intestinal T-cell homeostasis. Our results point toward a role of MDSC in inflammation regulation in the context of microbiome establishment and thus reveal a new aspect of the biological role of MDSC during the neonatal period.
Collapse
Affiliation(s)
- Julian Schwarz
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Jessica Rühle
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Kevin Stephan
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Stefanie Dietz
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - Janina Geißert
- Institute for Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
- NGS-Competence Center Tuebingen, Institute for Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
| | - Ulrich Schoppmeier
- Institute for Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia S Frick
- Institute for Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
- MVZ Laboratory Ludwigsburg GbR, Germany
| | - Hannes Hudalla
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - Trim Lajqi
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - Christian F Poets
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Christian Gille
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| |
Collapse
|
7
|
Talotta R. Impaired VEGF-A-Mediated Neurovascular Crosstalk Induced by SARS-CoV-2 Spike Protein: A Potential Hypothesis Explaining Long COVID-19 Symptoms and COVID-19 Vaccine Side Effects? Microorganisms 2022; 10:2452. [PMID: 36557705 PMCID: PMC9784975 DOI: 10.3390/microorganisms10122452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Long coronavirus disease-19 (COVID-19) is a newly discovered syndrome characterized by multiple organ manifestations that persist for weeks to months, following the recovery from acute disease. Occasionally, neurological and cardiovascular side effects mimicking long COVID-19 have been reported in recipients of COVID-19 vaccines. Hypothetically, the clinical similarity could be due to a shared pathogenic role of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike (S) protein produced by the virus or used for immunization. The S protein can bind to neuropilin (NRP)-1, which normally functions as a coreceptor for the vascular endothelial growth factor (VEGF)-A. By antagonizing the docking of VEGF-A to NRP-1, the S protein could disrupt physiological pathways involved in angiogenesis and nociception. One consequence could be the increase in unbound forms of VEGF-A that could bind to other receptors. SARS-CoV-2-infected individuals may exhibit increased plasma levels of VEGF-A during both acute illness and convalescence, which could be responsible for diffuse microvascular and neurological damage. A few studies suggest that serum VEGF-A may also be a potential biomarker for long COVID-19, whereas evidence for COVID-19 vaccines is lacking and merits further investigation.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, University Hospital "G. Martino", 98124 Messina, Italy
| |
Collapse
|
8
|
Wing PAC, Prange-Barczynska M, Cross A, Crotta S, Orbegozo Rubio C, Cheng X, Harris JM, Zhuang X, Johnson RL, Ryan KA, Hall Y, Carroll MW, Issa F, Balfe P, Wack A, Bishop T, Salguero FJ, McKeating JA. Hypoxia inducible factors regulate infectious SARS-CoV-2, epithelial damage and respiratory symptoms in a hamster COVID-19 model. PLoS Pathog 2022; 18:e1010807. [PMID: 36067210 PMCID: PMC9481176 DOI: 10.1371/journal.ppat.1010807] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding the host pathways that define susceptibility to Severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) infection and disease are essential for the design of new therapies. Oxygen levels in the microenvironment define the transcriptional landscape, however the influence of hypoxia on virus replication and disease in animal models is not well understood. In this study, we identify a role for the hypoxic inducible factor (HIF) signalling axis to inhibit SARS-CoV-2 infection, epithelial damage and respiratory symptoms in the Syrian hamster model. Pharmacological activation of HIF with the prolyl-hydroxylase inhibitor FG-4592 significantly reduced infectious virus in the upper and lower respiratory tract. Nasal and lung epithelia showed a reduction in SARS-CoV-2 RNA and nucleocapsid expression in treated animals. Transcriptomic and pathological analysis showed reduced epithelial damage and increased expression of ciliated cells. Our study provides new insights on the intrinsic antiviral properties of the HIF signalling pathway in SARS-CoV-2 replication that may be applicable to other respiratory pathogens and identifies new therapeutic opportunities.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Amy Cross
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Xiaotong Cheng
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel L. Johnson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Kathryn A. Ryan
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Miles W. Carroll
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Francisco J. Salguero
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Shivshankar P, Karmouty-Quintana H, Mills T, Doursout MF, Wang Y, Czopik AK, Evans SE, Eltzschig HK, Yuan X. SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation 2022; 45:1430-1449. [PMID: 35320469 PMCID: PMC8940980 DOI: 10.1007/s10753-022-01656-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a global pandemic with severe socioeconomic effects. Immunopathogenesis of COVID-19 leads to acute respiratory distress syndrome (ARDS) and organ failure. Binding of SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (hACE2) on bronchiolar and alveolar epithelial cells triggers host inflammatory pathways that lead to pathophysiological changes. Proinflammatory cytokines and type I interferon (IFN) signaling in alveolar epithelial cells counter barrier disruption, modulate host innate immune response to induce chemotaxis, and initiate the resolution of inflammation. Here, we discuss experimental models to study SARS-CoV-2 infection, molecular pathways involved in SARS-CoV-2-induced inflammation, and viral hijacking of anti-inflammatory pathways, such as delayed type-I IFN response. Mechanisms of alveolar adaptation to hypoxia, adenosinergic signaling, and regulatory microRNAs are discussed as potential therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Internal Medicine, Divisions of Critical Care, Pulmonary and Sleep Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Yanyu Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Agnieszka K Czopik
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Yuan X, Mills T, Doursout MF, Evans SE, Vidal Melo MF, Eltzschig HK. Alternative adenosine Receptor activation: The netrin-Adora2b link. Front Pharmacol 2022; 13:944994. [PMID: 35910389 PMCID: PMC9334855 DOI: 10.3389/fphar.2022.944994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During hypoxia or inflammation, extracellular adenosine levels are elevated. Studies using pharmacologic approaches or genetic animal models pertinent to extracellular adenosine signaling implicate this pathway in attenuating hypoxia-associated inflammation. There are four distinct adenosine receptors. Of these, it is not surprising that the Adora2b adenosine receptor functions as an endogenous feedback loop to control hypoxia-associated inflammation. First, Adora2b activation requires higher adenosine concentrations compared to other adenosine receptors, similar to those achieved during hypoxic inflammation. Second, Adora2b is transcriptionally induced during hypoxia or inflammation by hypoxia-inducible transcription factor HIF1A. Studies seeking an alternative adenosine receptor activation mechanism have linked netrin-1 with Adora2b. Netrin-1 was originally discovered as a neuronal guidance molecule but also functions as an immune-modulatory signaling molecule. Similar to Adora2b, netrin-1 is induced by HIF1A, and has been shown to enhance Adora2b signaling. Studies of acute respiratory distress syndrome (ARDS), intestinal inflammation, myocardial or hepatic ischemia and reperfusion implicate the netrin-Adora2b link in tissue protection. In this review, we will discuss the potential molecular linkage between netrin-1 and Adora2b, and explore studies demonstrating interactions between netrin-1 and Adora2b in attenuating tissue inflammation.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
11
|
Zhou W, Yu T, Hua Y, Hou Y, Ding Y, Nie H. Effects of Hypoxia on Respiratory Diseases: Perspective View of Epithelial Ion Transport. Am J Physiol Lung Cell Mol Physiol 2022; 323:L240-L250. [PMID: 35819839 DOI: 10.1152/ajplung.00065.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The balance of gas exchange and lung ventilation is essential for the maintenance of body homeostasis. There are many ion channels and transporters in respiratory epithelial cells, including epithelial sodium channel, Na,K-ATPase, cystic fibrosis transmembrane conductance regulator, and some transporters. These ion channels/transporters maintain the capacity of liquid layer on the surface of respiratory epithelial cells, and provide an immune barrier for the respiratory system to clear off foreign pathogens. However, in some harmful external environment and/or pathological conditions, the respiratory epithelium is prone to hypoxia, which would destroy the ion transport function of the epithelium and unbalance the homeostasis of internal environment, triggering a series of pathological reactions. Many respiratory diseases associated with hypoxia manifest an increased expression of hypoxia-inducible factor-1, which mediates the integrity of the epithelial barrier and affects epithelial ion transport function. It is important to study the relationship between hypoxia and ion transport function, whereas the mechanism of hypoxia-induced ion transport dysfunction in respiratory diseases is not clear. This review focuses on the relationship of hypoxia and respiratory diseases, as well as dysfunction of ion transport and tight junctions in respiratory epithelial cells under hypoxia.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Hua
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Bhattacharya S, Agarwal S, Shrimali NM, Guchhait P. Interplay between hypoxia and inflammation contributes to the progression and severity of respiratory viral diseases. Mol Aspects Med 2021; 81:101000. [PMID: 34294412 PMCID: PMC8287505 DOI: 10.1016/j.mam.2021.101000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
History of pandemics is dominated by viral infections and specifically respiratory viral diseases like influenza and COVID-19. Lower respiratory tract infection is the fourth leading cause of death worldwide. Crosstalk between resultant inflammation and hypoxic microenvironment may impair ventilatory response of lungs. This reduces arterial partial pressure of oxygen, termed as hypoxemia, which is observed in a section of patients with respiratory virus infections including SARS-CoV-2 (COVID-19). In this review, we describe the interplay between inflammation and hypoxic microenvironment in respiratory viral infection and its contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Sulagna Bhattacharya
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Orissa, India
| | - Sakshi Agarwal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Nishith M Shrimali
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
13
|
Pral LP, Fachi JL, Corrêa RO, Colonna M, Vinolo MAR. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions. Trends Immunol 2021; 42:604-621. [PMID: 34171295 DOI: 10.1016/j.it.2021.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Oxygen (O2) availability is a key factor regulating microbiota composition and the homeostatic function of cells in the intestinal mucosa of vertebrates. Microbiota-derived metabolites increase O2 consumption by intestinal epithelial cells (IECs), reducing its availability in the gut and leading to hypoxia. This physiological hypoxia activates cellular hypoxic sensors that adapt the metabolism and function of IECs and mucosa-resident cells, such as type-3 innate lymphoid cells (ILC3s). In this review, we discuss recent evidence suggesting that the intricate and multidirectional interactions among the microbiota, hypoxia/hypoxic sensors, and mammalian host cells (IECs and ILC3s) determine how the intestinal barrier and host-microbiota-pathogens connections are molded. Understanding these interactions might provide new treatment possibilities for dysbiosis, as well as certain inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Laís P Pral
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - José L Fachi
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Renan O Corrêa
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Marco A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Experimental Medicine Research Cluster, Campinas, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil.
| |
Collapse
|
14
|
Abstract
Oxygen-sensing mechanisms allow cells to adapt and respond to changes in cellular oxygen tension, including hypoxic conditions. Hypoxia-inducible factor (HIF) is a central mediator in this fundamental adaptive response, and has critical functions in normal and disease physiology. Viruses have been shown to manipulate HIFs during their life cycle to facilitate replication and invasion. Conversely, HIFs are also implicated in the development of the host immune system and response to viral infections. Here, we highlight the recent revelations of host-pathogen interactions that involve the hypoxic response pathway and the role of HIF in emerging viral infectious diseases, as well as discussing potential antiviral therapeutic strategies targeting the HIF signaling axis.
Collapse
Affiliation(s)
- Richard Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Huestis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Esther Shuyi Gan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Li X, Berg NK, Mills T, Zhang K, Eltzschig HK, Yuan X. Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury. Front Immunol 2021; 11:604944. [PMID: 33519814 PMCID: PMC7840604 DOI: 10.3389/fimmu.2020.604944] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and inflammation often coincide in pathogenic conditions such as acute respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant contributors to morbidity and mortality for the general population. For example, the recent global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading cause of death in the United States. Hypoxia signaling plays a diverse role in both acute and chronic lung inflammation, which could partially be explained by the divergent function of downstream target pathways such as adenosine signaling. Particularly, hypoxia signaling activates adenosine signaling to inhibit the inflammatory response in ARDS, while in chronic lung diseases, it promotes inflammation and tissue injury. In this review, we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS and chronic lung diseases, as well as the current strategy for therapeutic targeting of the adenosine signaling pathway.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Nathanial K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaiying Zhang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
16
|
Reyes A, Corrales N, Gálvez NMS, Bueno SM, Kalergis AM, González PA. Contribution of hypoxia inducible factor-1 during viral infections. Virulence 2020; 11:1482-1500. [PMID: 33135539 PMCID: PMC7605355 DOI: 10.1080/21505594.2020.1836904] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays critical roles during the cellular response to hypoxia. Under normoxic conditions, its function is tightly regulated by the degradation of its alpha subunit (HIF-1α), which impairs the formation of an active heterodimer in the nucleus that otherwise regulates the expression of numerous genes. Importantly, HIF-1 participates in both cancer and infectious diseases unveiling new therapeutic targets for those ailments. Here, we discuss aspects related to the activation of HIF-1, the effects of this transcription factor over immune system components, as well as the involvement of HIF-1 activity in response to viral infections in humans. Although HIF-1 is currently being assessed in numerous clinical settings as a potential therapy for different diseases, up to date, there are no clinical studies evaluating the pharmacological modulation of this transcription factor as a possible new antiviral treatment. However, based on the available evidence, clinical trials targeting this molecule are likely to occur soon. In this review we discuss the role of HIF-1 in viral immunity, the modulation of HIF-1 by different types of viruses, as well as the effects of HIF-1 over their life cycle and the potential use of HIF-1 as a new target for the treatment of viral infections.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento De Endocrinología, Facultad De Medicina, Escuela De Medicina, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
HIF-1α Modulates Core Metabolism and Virus Replication in Primary Airway Epithelial Cells Infected with Respiratory Syncytial Virus. Viruses 2020; 12:v12101088. [PMID: 32993138 PMCID: PMC7601280 DOI: 10.3390/v12101088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic reprogramming of host cells is key to the foundation of a successful viral infection. Hypoxia inducible factors (HIFs) mediate oxygen utilization by regulating cellular metabolism and redox homeostasis. Under normoxic conditions, HIF proteins are synthesized and subsequently degraded following ubiquitination to allow for normal metabolic activities. Recent studies suggest that respiratory syncytial virus (RSV) has the ability to induce HIF-1α stabilization and accumulation through non-hypoxic mechanisms. This makes the HIF pathway a potential avenue of approach for RSV therapeutic development. Using a model of primary human small alveolar epithelial cells, we demonstrate RSV infections to greatly alter cellular metabolism in favor of the glycolytic and pentose phosphate pathways. Additionally, we show RSV infections to stabilize HIF-1α and HIF-2α expression in these cells. Inhibition of HIF-1α, but not HIF-2α, was found to significantly reduce RSV replication as well as the glycolytic pathway, as measured by the expression of hexokinase II. Our study contributes to the understanding of RSV-mediated changes to cellular metabolism and supports further investigation into anti-HIF-1α therapeutics for RSV infections.
Collapse
|
18
|
Lee TJ, Yuan X, Kerr K, Yoo JY, Kim DH, Kaur B, Eltzschig HK. Strategies to Modulate MicroRNA Functions for the Treatment of Cancer or Organ Injury. Pharmacol Rev 2020; 72:639-667. [PMID: 32554488 PMCID: PMC7300323 DOI: 10.1124/pr.119.019026] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer and organ injury-such as that occurring in the perioperative period, including acute lung injury, myocardial infarction, and acute gut injury-are among the leading causes of death in the United States and impose a significant impact on quality of life. MicroRNAs (miRNAs) have been studied extensively during the last two decades for their role as regulators of gene expression, their translational application as diagnostic markers, and their potential as therapeutic targets for disease treatment. Despite promising preclinical outcomes implicating miRNA targets in disease treatment, only a few miRNAs have reached clinical trials. This likely relates to difficulties in the delivery of miRNA drugs to their targets to achieve efficient inhibition or overexpression. Therefore, understanding how to efficiently deliver miRNAs into diseased tissues and specific cell types in patients is critical. This review summarizes current knowledge on various approaches to deliver therapeutic miRNAs or miRNA inhibitors and highlights current progress in miRNA-based disease therapy that has reached clinical trials. Based on ongoing advances in miRNA delivery, we believe that additional therapeutic approaches to modulate miRNA function will soon enter routine medical treatment of human disease, particularly for cancer or perioperative organ injury. SIGNIFICANCE STATEMENT: MicroRNAs have been studied extensively during the last two decades in cancer and organ injury, including acute lung injury, myocardial infarction, and acute gut injury, for their regulation of gene expression, application as diagnostic markers, and therapeutic potentials. In this review, we specifically emphasize the pros and cons of different delivery approaches to modulate microRNAs, as well as the most recent exciting progress in the field of therapeutic targeting of microRNAs for disease treatment in patients.
Collapse
Affiliation(s)
- Tae Jin Lee
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xiaoyi Yuan
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Keith Kerr
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Dong H Kim
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Balveen Kaur
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Holger K Eltzschig
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
19
|
Early-Life Respiratory Syncytial Virus Infection, Trained Immunity and Subsequent Pulmonary Diseases. Viruses 2020; 12:v12050505. [PMID: 32375305 PMCID: PMC7290378 DOI: 10.3390/v12050505] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is often the first clinically relevant pathogen encountered in life, with nearly all children infected by two years of age. Many studies have also linked early-life severe respiratory viral infection with more pathogenic immune responses later in life that lead to pulmonary diseases like childhood asthma. This phenomenon is thought to occur through long-term immune system alterations following early-life respiratory viral infection and may include local responses such as unresolved inflammation and/or direct structural or developmental modifications within the lung. Furthermore, systemic responses that could impact the bone marrow progenitors may be a significant cause of long-term alterations, through inflammatory mediators and shifts in metabolic profiles. Among these alterations may be changes in transcriptional and epigenetic programs that drive persistent modifications throughout life, leaving the immune system poised toward pathogenic responses upon secondary insult. This review will focus on early-life severe RSV infection and long-term alterations. Understanding these mechanisms will not only lead to better treatment options to limit initial RSV infection severity but also protect against the development of childhood asthma linked to severe respiratory viral infections.
Collapse
|
20
|
Piedimonte G, Harford TJ. Effects of maternal-fetal transmission of viruses and other environmental agents on lung development. Pediatr Res 2020; 87:420-426. [PMID: 31698410 PMCID: PMC6962526 DOI: 10.1038/s41390-019-0657-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
New information is emerging concerning the influence of environmental factors (e.g., viruses, pollutants, nutrients) on fetal lung development and the prenatal modulation of cellular and molecular effectors essential to the control of airway function, which may shed new light into the pathogenesis of chronic obstructive pulmonary disease in childhood. In particular, recent studies have shown that nanosize biological and inorganic particles (e.g., respiratory viruses and pollutants) are able to spread hematogenously across the placenta from mother to offspring and interfere with lung development during critical "windows of opportunity". Furthermore, the nutritional balance of maternal diet during pregnancy can affect postnatal lung structure and function. Adverse prenatal environmental conditions can predispose to increased airway reactivity by inducing aberrant cholinergic innervation of the respiratory tract, enhanced contractility of the airway smooth muscle, and impaired innate immunity. Such changes can persist long after birth and might provide a plausible explanation to the development of chronic airway dysfunction in children, even in the absence of atopic predisposition. Insight into maternal-fetal interactions will contribute to a better understanding of the pathogenesis of highly prevalent diseases like bronchiolitis and asthma, and may lead to more precise preventative and therapeutic strategies, or new indications for existing ones.
Collapse
Affiliation(s)
| | - Terri J. Harford
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
21
|
López-Rodríguez DM, Kirillov V, Krug LT, Mesri EA, Andreansky S. A role of hypoxia-inducible factor 1 alpha in Murine Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency. PLoS Pathog 2019; 15:e1008192. [PMID: 31809522 PMCID: PMC6975554 DOI: 10.1371/journal.ppat.1008192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/22/2020] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
The hypoxia-inducible factor 1 alpha (HIF1α) protein and the hypoxic microenvironment are critical for infection and pathogenesis by the oncogenic gammaherpesviruses (γHV), Kaposi sarcoma herpes virus (KSHV) and Epstein-Barr virus (EBV). However, understanding the role of HIF1α during the virus life cycle and its biological relevance in the context of host has been challenging due to the lack of animal models for human γHV. To study the role of HIF1α, we employed the murine gammaherpesvirus 68 (MHV68), a rodent pathogen that readily infects laboratory mice. We show that MHV68 infection induces HIF1α protein and HIF1α-responsive gene expression in permissive cells. siRNA silencing or drug-inhibition of HIF1α reduce virus production due to a global downregulation of viral gene expression. Most notable was the marked decrease in many viral genes bearing hypoxia-responsive elements (HREs) such as the viral G-Protein Coupled Receptor (vGPCR), which is known to activate HIF1α transcriptional activity during KSHV infection. We found that the promoter of MHV68 ORF74 is responsive to HIF1α and MHV-68 RTA. Moreover, Intranasal infection of HIF1αLoxP/LoxP mice with MHV68 expressing Cre- recombinase impaired virus expansion during early acute infection and affected lytic reactivation in the splenocytes explanted from mice. Low oxygen concentrations accelerated lytic reactivation and enhanced virus production in MHV68 infected splenocytes. Thus, we conclude that HIF1α plays a critical role in promoting virus replication and reactivation from latency by impacting viral gene expression. Our results highlight the importance of the mutual interactions of the oxygen-sensing machinery and gammaherpesviruses in viral replication and pathogenesis.
Collapse
Affiliation(s)
- Darlah M. López-Rodríguez
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Varvara Kirillov
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- IV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Enrique A. Mesri
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Samita Andreansky
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
22
|
Hofstetter AR, Sacco RE. Oxidative stress pathway gene transcription after bovine respiratory syncytial virus infection in vitro and ex vivo. Vet Immunol Immunopathol 2019; 219:109956. [PMID: 31706084 DOI: 10.1016/j.vetimm.2019.109956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 11/26/2022]
Abstract
Studies in mouse and lamb models indicate important roles of reactive oxygen species (ROS) in the pathology and immune response to respiratory syncytial virus (RSV). The role of ROS in bovine RSV (BRSV) infection of calves remains unclear. BRSV naturally infects calves, leading to similar disease course, micro- and macro-lesions, and symptomology as is observed in RSV infection of human neonates. Furthermore, humans, lambs, and calves, but not mice, have an active lung oxidative system involving lactoperoxidase (LPO) and the dual oxidases (DUOX) 1 and 2. To gain insight into the role of ROS in the BRSV-infected lung, we examined gene expression in infected bovine cells using qPCR. A panel of 19 primers was used to assay ex vivo and in vitro BRSV-infected cells. The panel targeted genes involved in both production and regulation of ROS. BRSV infection significantly increased transcription of five genes in bovine respiratory tract cells in vitro and ex vivo. PTGS2 expression more than doubled in both sample types. Four transcripts varied significantly in lung lesions, but not non-lesion samples, compared with uninfected lung. This is the first report of the transcriptional profile of ROS-related genes in the airway after BRSV infection in the natural host.
Collapse
Affiliation(s)
- Amelia R Hofstetter
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, United States of America.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, United States of America.
| |
Collapse
|
23
|
Fitzpatrick SF. Immunometabolism and Sepsis: A Role for HIF? Front Mol Biosci 2019; 6:85. [PMID: 31555665 PMCID: PMC6742688 DOI: 10.3389/fmolb.2019.00085] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming of innate immune cells occurs during both the hyperinflammatory and immunotolerant phases of sepsis. The hypoxia inducible factor (HIF) signaling pathway plays a vital role in regulating these metabolic changes. This review initially summarizes the HIF-driven changes in metabolic dynamics of innate immune cells in response to sepsis. The hyperinflammatory phase of sepsis is accompanied by a metabolic switch from oxidative phosphorylation to HIF-1α mediated glycolysis. Furthermore, HIF driven alterations in arginine metabolism also occur during this phase. This promotes sepsis pathophysiology and the development of clinical symptoms. These early metabolic changes are followed by a late immunotolerant phase, in which suppressed HIF signaling promotes a switch from aerobic glycolysis to fatty acid oxidation, with a subsequent anti-inflammatory response developing. Recently the molecular mechanisms controlling HIF activation during these early and late phases have begun to be elucidated. In the final part of this review the contribution of toll-like receptors, transcription factors, metabolic intermediates, kinases and reactive oxygen species, in governing the HIF-induced metabolic reprogramming of innate immune cells will be discussed. Importantly, understanding these regulatory mechanisms can lead to the development of novel diagnostic and therapeutic strategies targeting the HIF-dependent metabolic state of innate immune cells.
Collapse
Affiliation(s)
- Susan F Fitzpatrick
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Ren L, Zhang W, Han P, Zhang J, Zhu Y, Meng X, Zhang J, Hu Y, Yi Z, Wang R. Influenza A virus (H1N1) triggers a hypoxic response by stabilizing hypoxia-inducible factor-1α via inhibition of proteasome. Virology 2019; 530:51-58. [DOI: 10.1016/j.virol.2019.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 01/31/2023]
|
25
|
Sreepadmanabh M, Toley BJ. Investigations into the cancer stem cell niche using in-vitro 3-D tumor models and microfluidics. Biotechnol Adv 2018; 36:1094-1110. [DOI: 10.1016/j.biotechadv.2018.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
|
26
|
Kimura D, Saravia J, Jaligama S, McNamara I, Vu LD, Sullivan RD, Mancarella S, You D, Cormier SA. New mouse model of pulmonary hypertension induced by respiratory syncytial virus bronchiolitis. Am J Physiol Heart Circ Physiol 2018; 315:H581-H589. [PMID: 29906223 DOI: 10.1152/ajpheart.00627.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pulmonary hypertension (PH) has been observed in up to 75% of infants with moderate to severe respiratory syncytial virus (RSV) bronchiolitis and is associated with significant morbidity and mortality in infants with congenital heart disease. The purpose of the present study was to establish a mouse model of PH secondary to RSV bronchiolitis that mimics the disease etiology as it occurs in infants. Neonatal mice were infected with RSV at 5 days of age and then reinfected 4 wk later. Serum-free medium was administered to age-matched mice as a control. Echocardiography and right ventricular systolic pressure (RVSP) measurements via right jugular vein catheterization were conducted 5 and 6 days after the second infection, respectively. Peripheral capillary oxygen saturation monitoring did not indicate hypoxia at 2-4 days post-RSV infection, before reinfection, and at 2-7 days after reinfection. RSV-infected mice had significantly higher RVSP than control mice. Pulsed-wave Doppler recording of the pulmonary blood flow by echocardiogram demonstrated a significantly shortened pulmonary artery acceleration time and decreased pulmonary artery acceleration time-to-ejection time ratio in RSV-infected mice. Morphometry showed that RSV-infected mice exhibited a significantly higher pulmonary artery medial wall thickness and had an increased number of muscularized pulmonary arteries compared with control mice. These findings, confirmed by RVSP measurements, demonstrate the development of PH in the lungs of mice infected with RSV as neonates. This animal model can be used to study the pathogenesis of PH secondary to RSV bronchiolitis and to assess the effect of treatment interventions. NEW & NOTEWORTHY This is the first mouse model of respiratory syncytial virus-induced pulmonary hypertension, to our knowledge. This model will allow us to decipher molecular mechanisms responsible for the pathogenesis of pulmonary hypertension secondary to respiratory syncytial virus bronchiolitis with the use of knockout and/or transgenic animals and to monitor therapeutic effects with echocardiography.
Collapse
Affiliation(s)
- Dai Kimura
- Department of Pediatrics, University of Tennessee Health Science Center, Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Jordy Saravia
- Department of Pediatrics, University of Tennessee Health Science Center, Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee.,Department of Immunology, St. Jude Children's Research Hospital , Memphis, Tennessee
| | - Sridhar Jaligama
- Department of Pediatrics, University of Tennessee Health Science Center, Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee.,Battelle Life Science Research, Columbus, Ohio
| | - Isabella McNamara
- Department of Pediatrics, University of Tennessee Health Science Center, Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee.,Department of Health Research Methods, Evidence, and Impact, McMaster University , Hamilton, Ontario , Canada
| | - Luan D Vu
- Department of Pediatrics, University of Tennessee Health Science Center, Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee.,Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana
| | - Ryan D Sullivan
- Department of Comparative Medicine, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Salvatore Mancarella
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Dahui You
- Department of Pediatrics, University of Tennessee Health Science Center, Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Stephania A Cormier
- Department of Pediatrics, University of Tennessee Health Science Center, Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee.,Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana
| |
Collapse
|
27
|
Chakraborty S, Castranova V, Perez MK, Piedimonte G. Nanoparticles increase human bronchial epithelial cell susceptibility to respiratory syncytial virus infection via nerve growth factor-induced autophagy. Physiol Rep 2017; 5:5/13/e13344. [PMID: 28701524 PMCID: PMC5506529 DOI: 10.14814/phy2.13344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 11/24/2022] Open
Abstract
Cytotoxic and neuroinflammatory effects of TiO2 nanoparticles (TiO2-NP) in human airways are mediated by nerve growth factor (NGF), which is also implicated in the pathophysiology of respiratory syncytial virus (RSV) infection. We tested the hypothesis that exposure to TiO2-NP results in increased susceptibility to RSV infection and exacerbation of airway inflammation via NGF-mediated induction of autophagy in lower respiratory tract cells. Human primary bronchial epithelial cells were exposed to TiO2-NP for 24 h prior to infection with recombinant red RSV (rrRSV). Expression of NGF and its TrkA and p75NTR receptors was measured by real-time PCR and fluorescence-activated cell sorting (FACS). Autophagy was assessed by beclin-1 expression analysis. Cell death was studied by FACS after annexin V/propidium iodide staining. rrRSV infection efficiency more than doubled in human bronchial cells pre-exposed to TiO2-NP compared to controls. NGF and its TrkA receptor were upregulated in RSV-infected bronchial cells pre-exposed to TiO2-NP compared to controls exposed to either rrRSV or TiO2-NP alone. Silencing NGF gene expression with siRNA significantly inhibited rrRSV infection. rrRSV-infected cells pre-exposed to TiO2-NP also showed increase in necrotic cell death and reduction in apoptosis, together with 4.3-fold increase in expression of the early autophagosomal gene beclin-1. Pharmacological inhibition of beclin-1 by wortmannin resulted in increased apoptotic rate along with lower viral load. This study shows that TiO2-NP exposure enhances the infectivity of RSV in human bronchial epithelial cells by upregulating the NGF/TrkA axis. The mechanism of this interaction involves induction of autophagy promoting viral replication and necrotic cell death.
Collapse
Affiliation(s)
- Sreeparna Chakraborty
- Department of Pediatrics, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Vincent Castranova
- Department of Pharmaceutical Science, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Miriam K Perez
- Pediatric Institute and Children's Hospital, The Cleveland Clinic, Cleveland, Ohio
| | - Giovanni Piedimonte
- Pediatric Institute and Children's Hospital, The Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
28
|
Polke M, Seiler F, Lepper PM, Kamyschnikow A, Langer F, Monz D, Herr C, Bals R, Beisswenger C. Hypoxia and the hypoxia-regulated transcription factor HIF-1α suppress the host defence of airway epithelial cells. Innate Immun 2017; 23:373-380. [PMID: 28409544 DOI: 10.1177/1753425917698032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chronic diseases of the respiratory tract, such as cystic fibrosis, are associated with mucosal and systemic hypoxia. Innate immune functions of airway epithelial cells are required to prevent and control infections of the lung parenchyma. The transcription factor hypoxia-inducible factor 1α (HIF-1α) regulates cellular adaptation to low oxygen conditions. Here, we show that hypoxia and HIF-1α regulate innate immune mechanisms of cultured human bronchial epithelial cells (HBECs). Exposure of primary HBECs to hypoxia or the prolyl hydroxylase inhibitor dimethyloxaloylglycine (DMOG) resulted in a significantly decreased expression of inflammatory mediators (IL-6, IFN-γ-induced protein 10) in response to ligands for TLRs (flagellin, polyI:C) and Pseudomonas aeruginosa, whereas the expression of inflammatory mediators was not affected by hypoxia or DMOG in the absence of microbial factors. Small interfering RNA-mediated knockdown of HIF-1α in HBECs and in the bronchial epithelial cell line Calu-3 resulted in increased expression of inflammatory mediators. The inflammatory response was decreased in lungs of mice stimulated with inactivated P. aeruginosa under hypoxia. These data suggest that hypoxia suppresses the innate immune response of airway epithelial cells via HIF-1α.
Collapse
Affiliation(s)
- Markus Polke
- 1 Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | - Frederik Seiler
- 1 Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | - Philipp M Lepper
- 1 Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | - Andreas Kamyschnikow
- 1 Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | - Frank Langer
- 2 Department of Thoracic and Cardiovascular Surgery, Saarland University, Homburg, Germany
| | - Dominik Monz
- 3 Department of Pediatrics and Neonatology, Saarland University, Homburg, Germany
| | - Christian Herr
- 1 Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | - Robert Bals
- 1 Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | - Christoph Beisswenger
- 1 Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
29
|
Belton M, Brilha S, Manavaki R, Mauri F, Nijran K, Hong YT, Patel NH, Dembek M, Tezera L, Green J, Moores R, Aigbirhio F, Al-Nahhas A, Fryer TD, Elkington PT, Friedland JS. Hypoxia and tissue destruction in pulmonary TB. Thorax 2016; 71:1145-1153. [PMID: 27245780 PMCID: PMC5136721 DOI: 10.1136/thoraxjnl-2015-207402] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 02/27/2016] [Accepted: 03/24/2016] [Indexed: 02/04/2023]
Abstract
Background It is unknown whether lesions in human TB are hypoxic or whether this influences disease pathology. Human TB is characterised by extensive lung destruction driven by host matrix metalloproteinases (MMPs), particularly collagenases such as matrix metalloproteinase-1 (MMP-1). Methods We investigated tissue hypoxia in five patients with PET imaging using the tracer [18F]-fluoromisonidazole ([18F]FMISO) and by immunohistochemistry. We studied the regulation of MMP secretion in primary human cell culture model systems in normoxia, hypoxia, chemical hypoxia and by small interfering RNA (siRNA) inhibition. Results [18F]FMISO accumulated in regions of TB consolidation and around pulmonary cavities, demonstrating for the first time severe tissue hypoxia in man. Patlak analysis of dynamic PET data showed heterogeneous levels of hypoxia within and between patients. In Mycobacterium tuberculosis (M.tb)-infected human macrophages, hypoxia (1% pO2) upregulated MMP-1 gene expression 170-fold, driving secretion and caseinolytic activity. Dimethyloxalyl glycine (DMOG), a small molecule inhibitor which stabilises the transcription factor hypoxia-inducible factor (HIF)-1α, similarly upregulated MMP-1. Hypoxia did not affect mycobacterial replication. Hypoxia increased MMP-1 expression in primary respiratory epithelial cells via intercellular networks regulated by TB. HIF-1α and NF-κB regulated increased MMP-1 activity in hypoxia. Furthermore, M.tb infection drove HIF-1α accumulation even in normoxia. In human TB lung biopsies, epithelioid macrophages and multinucleate giant cells express HIF-1α. HIF-1α blockade, including by targeted siRNA, inhibited TB-driven MMP-1 gene expression and secretion. Conclusions Human TB lesions are severely hypoxic and M.tb drives HIF-1α accumulation, synergistically increasing collagenase activity which will lead to lung destruction and cavitation.
Collapse
Affiliation(s)
- Moerida Belton
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Sara Brilha
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Francesco Mauri
- Department of Histopathology, Hammersmith Campus, Imperial College London, London, UK
| | - Kuldip Nijran
- Radiological Science Unit Charing Cross Campus, Department of Nuclear Medicine, Charing Cross Campus, Imperial College NHS Trust, London, UK
| | - Young T Hong
- Wolfson Brain Imaging Centre, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Neva H Patel
- Radiological Science Unit Charing Cross Campus, Department of Nuclear Medicine, Charing Cross Campus, Imperial College NHS Trust, London, UK
| | - Marcin Dembek
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Liku Tezera
- NIHR Respiratory Biomedical Research Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Justin Green
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Rachel Moores
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Adil Al-Nahhas
- Radiological Science Unit Charing Cross Campus, Department of Nuclear Medicine, Charing Cross Campus, Imperial College NHS Trust, London, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Paul T Elkington
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK.,NIHR Respiratory Biomedical Research Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jon S Friedland
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| |
Collapse
|
30
|
Shi L, Eugenin EA, Subbian S. Immunometabolism in Tuberculosis. Front Immunol 2016; 7:150. [PMID: 27148269 PMCID: PMC4838633 DOI: 10.3389/fimmu.2016.00150] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023] Open
Abstract
Immunometabolism, the study of the relationship between bioenergetic pathways and specific functions of immune cells, has recently gained increasing appreciation. In response to infection, activation of the host innate and adaptive immune cells is accompanied by a switch in the bioenergetic pathway from oxidative phosphorylation to glycolysis, a metabolic remodeling known as the Warburg effect, which is required for the production of antimicrobial and pro-inflammatory effector molecules. In this review, we summarize the current understanding of the Warburg effect and discuss its association with the expression of host immune responses in tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb). We also discuss potential mechanisms underlying the Warburg effect with a focus on the expression and regulation of hypoxia-inducible factor 1 alpha (HIF-1α), the regulatory subunit of HIF-1, a major transcription regulator involved in cellular stress adaptation processes, including energy metabolism and antimicrobial responses. We also propose a novel hypothesis that Mtb perturbs the Warburg effect of immune cells to facilitate its survival and persistence in the host. A better understanding of the dynamics of metabolic states of immune cells and their specific functions during TB pathogenesis can lead to the development of immunotherapies capable of promoting Mtb clearance and reducing Mtb persistence and the emergence of drug resistant strains.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Eliseo A Eugenin
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| |
Collapse
|
31
|
Sandt C, Nadaradjane C, Richards R, Dumas P, Sée V. Use of infrared microspectroscopy to elucidate a specific chemical signature associated with hypoxia levels found in glioblastoma. Analyst 2016; 141:870-83. [DOI: 10.1039/c5an02112j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Detection of the chemical signature associated with hypoxia in single glioblastoma cells by synchrotron infrared microspectroscopy.
Collapse
Affiliation(s)
- Christophe Sandt
- Synchrotron SOLEIL
- L'Orme des Merisiers
- 91192 Gif sur Yvette
- France
| | - Céline Nadaradjane
- Synchrotron SOLEIL
- L'Orme des Merisiers
- 91192 Gif sur Yvette
- France
- Department of Biochemistry
| | - Rosalie Richards
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- Liverpool
- UK
| | - Paul Dumas
- Synchrotron SOLEIL
- L'Orme des Merisiers
- 91192 Gif sur Yvette
- France
| | - Violaine Sée
- Department of Biochemistry
- Institute of Integrative Biology
- University of Liverpool
- Liverpool
- UK
| |
Collapse
|
32
|
Aherne CM, Saeedi B, Collins CB, Masterson JC, McNamee EN, Perrenoud L, Rapp CR, Curtis VF, Bayless A, Fletcher A, Glover LE, Evans CM, Jedlicka P, Furuta GT, de Zoeten EF, Colgan SP, Eltzschig HK. Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis. Mucosal Immunol 2015; 8:1324-38. [PMID: 25850656 PMCID: PMC4598274 DOI: 10.1038/mi.2015.22] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 02/17/2015] [Indexed: 02/04/2023]
Abstract
Central to inflammatory bowel disease (IBD) pathogenesis is loss of mucosal barrier function. Emerging evidence implicates extracellular adenosine signaling in attenuating mucosal inflammation. We hypothesized that adenosine-mediated protection from intestinal barrier dysfunction involves tissue-specific signaling through the A2B adenosine receptor (Adora2b) at the intestinal mucosal surface. To address this hypothesis, we combined pharmacologic studies and studies in mice with global or tissue-specific deletion of the Adora2b receptor. Adora2b(-/-) mice experienced a significantly heightened severity of colitis, associated with a more acute onset of disease and loss of intestinal epithelial barrier function. Comparison of mice with Adora2b deletion on vascular endothelial cells (Adora2b(fl/fl)VeCadCre(+)) or intestinal epithelia (Adora2b(fl/fl)VillinCre(+)) revealed a selective role for epithelial Adora2b signaling in attenuating colonic inflammation. In vitro studies with Adora2b knockdown in intestinal epithelial cultures or pharmacologic studies highlighted Adora2b-driven phosphorylation of vasodilator-stimulated phosphoprotein (VASP) as a specific barrier repair response. Similarly, in vivo studies in genetic mouse models or treatment studies with an Adora2b agonist (BAY 60-6583) recapitulate these findings. Taken together, our results suggest that intestinal epithelial Adora2b signaling provides protection during intestinal inflammation via enhancing mucosal barrier responses.
Collapse
Affiliation(s)
- CM Aherne
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - B Saeedi
- Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - CB Collins
- Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - JC Masterson
- Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Gastrointestinal Eosinophilic Diseases Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - EN McNamee
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - L Perrenoud
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - CR Rapp
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - VF Curtis
- Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - A Bayless
- Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - A Fletcher
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - LE Glover
- Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - CM Evans
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - P Jedlicka
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - GT Furuta
- Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Gastrointestinal Eosinophilic Diseases Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - EF de Zoeten
- Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - SP Colgan
- Mucosal Inflammation Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - HK Eltzschig
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
33
|
CHO ILRAE, KAOWINN SIRICHAT, MOON JEONG, SOH JIWON, KANG HOYOUNG, JUNG CHOROK, OH SANGTAEK, SONG HAYNE, KOH SANGSEOK, CHUNG YOUNGHWA. Oncotropic H-1 parvovirus infection degrades HIF-1α protein in human pancreatic cancer cells independently of VHL and RACK1. Int J Oncol 2015; 46:2076-82. [DOI: 10.3892/ijo.2015.2922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/05/2014] [Indexed: 11/06/2022] Open
|
34
|
Weng T, Poth JM, Karmouty-Quintana H, Garcia-Morales LJ, Melicoff E, Luo F, Chen NY, Evans CM, Bunge RR, Bruckner BA, Loebe M, Volcik KA, Eltzschig HK, Blackburn MR. Hypoxia-induced deoxycytidine kinase contributes to epithelial proliferation in pulmonary fibrosis. Am J Respir Crit Care Med 2015; 190:1402-12. [PMID: 25358054 DOI: 10.1164/rccm.201404-0744oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease with few therapeutic options. Apoptosis of alveolar epithelial cells, followed by abnormal tissue repair characterized by hyperplastic epithelial cell formation, is a pathogenic process that contributes to the progression of pulmonary fibrosis. However, the signaling pathways responsible for increased proliferation of epithelial cells remain poorly understood. OBJECTIVES To investigate the role of deoxycytidine kinase (DCK), an important enzyme for the salvage of deoxynucleotides, in the progression of pulmonary fibrosis. METHODS DCK expression was examined in the lungs of patients with IPF and mice exposed to bleomycin. The regulation of DCK expression by hypoxia was studied in vitro and the importance of DCK in experimental pulmonary fibrosis was examined using a DCK inhibitor and alveolar epithelial cell-specific knockout mice. MEASUREMENTS AND MAIN RESULTS DCK was elevated in hyperplastic alveolar epithelial cells of patients with IPF and in mice exposed to bleomycin. Increased DCK was localized to cells associated with hypoxia, and hypoxia directly induced DCK in alveolar epithelial cells in vitro. Hypoxia-induced DCK expression was abolished by silencing hypoxia-inducible factor 1α and treatment of bleomycin-exposed mice with a DCK inhibitor attenuated pulmonary fibrosis in association with decreased epithelial cell proliferation. Furthermore, DCK expression, and proliferation of epithelial cells and pulmonary fibrosis was attenuated in mice with conditional deletion of hypoxia-inducible factor 1α in the alveolar epithelium. CONCLUSIONS Our findings suggest that the induction of DCK after hypoxia plays a role in the progression of pulmonary fibrosis by contributing to alveolar epithelial cell proliferation.
Collapse
Affiliation(s)
- Tingting Weng
- 1 Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Eltzschig HK, Bratton DL, Colgan SP. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov 2014; 13:852-69. [PMID: 25359381 PMCID: PMC4259899 DOI: 10.1038/nrd4422] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factors (HIFs) are stabilized during adverse inflammatory processes associated with disorders such as inflammatory bowel disease, pathogen infection and acute lung injury, as well as during ischaemia-reperfusion injury. HIF stabilization and hypoxia-induced changes in gene expression have a profound impact on the inflamed tissue microenvironment and on disease outcomes. Although the mechanism that initiates HIF stabilization may vary, the final molecular steps that control HIF stabilization converge on a set of oxygen-sensing prolyl hydroxylases (PHDs) that mark HIFs for proteasomal degradation. PHDs are therefore promising therapeutic targets. In this Review, we discuss the emerging potential and associated challenges of targeting the PHD-HIF pathway for the treatment of inflammatory and ischaemic diseases.
Collapse
Affiliation(s)
- Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Donna L Bratton
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
36
|
Bhandari T, Nizet V. Hypoxia-Inducible Factor (HIF) as a Pharmacological Target for Prevention and Treatment of Infectious Diseases. Infect Dis Ther 2014; 3:159-74. [PMID: 25134687 PMCID: PMC4269623 DOI: 10.1007/s40121-014-0030-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Indexed: 02/07/2023] Open
Abstract
In the present era of ever-increasing antibiotic resistance and increasingly complex and immunosuppressed patient populations, physicians and scientists are seeking novel approaches to battle difficult infectious disease conditions. Development of a serious infection implies a failure of innate immune capabilities in the patient, and one may consider whether pharmacological strategies exist to correct and enhance innate immune cell function. Hypoxia-inducible factor-1 (HIF-1), the central regulator of the cellular response to hypoxic stress, has recently been recognized to control the activation state and key microbicidal functions of immune cells. HIF-1 boosting drugs are in clinical development for anemia and other indications, and could be repositioned as infectious disease therapeutics. With equal attention to opportunities and complexities, we review our current understanding of HIF-1 regulation of microbial host-pathogen interactions with an eye toward future drug development.
Collapse
Affiliation(s)
- Tamara Bhandari
- Center for Immunity, Infection and Inflammation, Department of Pediatrics and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, USA
| | - Victor Nizet
- Center for Immunity, Infection and Inflammation, Department of Pediatrics and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA.
- Center for Immunity, Infection and Inflammation, Medical Sciences Research 4113, University of California, San Diego, 9500 Gilman Drive, MC 0760, La Jolla, CA, 92093-0760, USA.
| |
Collapse
|
37
|
Kohli L, Passegué E. Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol 2014; 24:479-87. [PMID: 24768033 DOI: 10.1016/j.tcb.2014.04.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 01/23/2023]
Abstract
Hematopoietic stem cells (HSCs) are a rare population of somatic stem cells that maintain blood production and are uniquely wired to adapt to diverse cellular fates during the lifetime of an organism. Recent studies have highlighted a central role for metabolic plasticity in facilitating cell fate transitions and in preserving HSC functionality and survival. This review summarizes our current understanding of the metabolic programs associated with HSC quiescence, self-renewal, and lineage commitment, and highlights the mechanistic underpinnings of these changing bioenergetics programs. It also discusses the therapeutic potential of targeting metabolic drivers in the context of blood malignancies.
Collapse
Affiliation(s)
- Latika Kohli
- Division of Hematology/Oncology, Department of Medicine, The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuelle Passegué
- Division of Hematology/Oncology, Department of Medicine, The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Esther CR, Alexis NE, Picher M. Regulation of airway nucleotides in chronic lung diseases. Subcell Biochem 2014; 55:75-93. [PMID: 21560045 DOI: 10.1007/978-94-007-1217-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological relevance of the purinergic signaling network for airway defenses is emerging through cumulating reports of abnormal ATP and adenosine (ADO) levels in the airway secretions of patients with asthma, chronic pulmonary obstructive diseases, cystic fibrosis and idiopathic pulmonary fibrosis. The consequences for airway defenses range from abnormal clearance responses to the destruction of lung tissue by excessive inflammation. This chapter reviews the challenges of assessing airway purines in human subjects, and identifies the general trend in aberrant airway composition. Most diseases are associated with an accumulation of ATP and/or ADO in bronchoalveolar lavage, sputum or exhaled breadth condensate. Intriguing is the case of cystic fibrosis patients, which do not accumulate airway ADO, but its precursor, AMP. This observation launched the investigation of ectonucleotidases as target proteins for the correction of airway purine levels in chronic respiratory diseases. This chapter exposes the extensive rearrangement of the enzymatic network taking place in diseased airways, and identifies signaling pathways likely involved in the aberrant regulation of the airway purines.
Collapse
Affiliation(s)
- Charles R Esther
- Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, 27599, USA,
| | | | | |
Collapse
|
39
|
Eckle T, Kewley EM, Brodsky KS, Tak E, Bonney S, Gobel M, Anderson D, Glover LE, Riegel AK, Colgan SP, Eltzschig HK. Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. THE JOURNAL OF IMMUNOLOGY 2014; 192:1249-56. [PMID: 24391213 DOI: 10.4049/jimmunol.1100593] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although acute lung injury (ALI) contributes significantly to critical illness, resolution often occurs spontaneously through endogenous pathways. We recently found that mechanical ventilation increases levels of pulmonary adenosine, a signaling molecule known to attenuate lung inflammation. In this study, we hypothesized a contribution of transcriptionally controlled pathways to pulmonary adenosine receptor (ADOR) signaling during ALI. We gained initial insight from microarray analysis of pulmonary epithelia exposed to conditions of cyclic mechanical stretch, a mimic for ventilation-induced lung disease. Surprisingly, these studies revealed a selective induction of the ADORA2B. Using real-time RT-PCR and Western blotting, we confirmed an up to 9-fold induction of the ADORA2B following cyclic mechanical stretch (A549, Calu-3, or human primary alveolar epithelial cells). Studies using ADORA2B promoter constructs identified a prominent region within the ADORA2B promoter conveying stretch responsiveness. This region of the promoter contained a binding site for the transcription factor hypoxia-inducible factor (HIF)-1. Additional studies using site-directed mutagenesis or transcription factor binding assays demonstrated a functional role for HIF-1 in stretch-induced increases of ADORA2B expression. Moreover, studies of ventilator-induced lung injury revealed induction of the ADORA2B during ALI in vivo that was abolished following HIF inhibition or genetic deletion of Hif1a. Together, these studies implicate HIF in the transcriptional control of pulmonary adenosine signaling during ALI.
Collapse
Affiliation(s)
- Tobias Eckle
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado, Aurora, CO 80045
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bhalla S, Evens AM, Prachand S, Schumacker PT, Gordon LI. Paradoxical regulation of hypoxia inducible factor-1α (HIF-1α) by histone deacetylase inhibitor in diffuse large B-cell lymphoma. PLoS One 2013; 8:e81333. [PMID: 24312289 PMCID: PMC3842257 DOI: 10.1371/journal.pone.0081333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022] Open
Abstract
Hypoxia inducible factor (HIF) is important in cancer, as it regulates various oncogenic genes as well as genes involved in cell survival, proliferation, and migration. Elevated HIF-1 protein promotes a more aggressive tumor phenotype, and greater HIF-1 expression has been demonstrated to correlate with poorer prognosis, increased risk of metastasis and increased mortality. Recent reports suggest that HIF-1 activates autophagy, a lysosomal degradation pathway which may promote tumor cell survival. We show here that HIF-1α expression is constitutively active in multiple diffuse large B cell lymphoma (DLBCL) cell lines under normoxia and it is regulated by the PI3K/AKT pathway. PCI-24781, a pan histone deacetylase inhibitor (HDACI), enhanced accumulation of HIF-1α and induced autophagy initially, while extended incubation with the drug resulted in inhibition of HIF-1α. We tested the hypothesis that PCI-24781- induced autophagy is mediated by HIF-1α and that inhibition of HIF-1α in these cells results in attenuation of autophagy and decreased survival. We also provide evidence that autophagy serves as a survival pathway in DLBCL cells treated with PCI-24781 which suggests that the use of autophagy inhibitors such as chloroquine or 3-methyl adenine in combination with PCI-24781 may enhance apoptosis in lymphoma cells.
Collapse
Affiliation(s)
- Savita Bhalla
- Department of Medicine, Division of Hematology/Oncology Northwestern University Feinberg School of Medicine and the Robert H Lurie Comprehensive Cancer Center, Chicago, Illinois, United States of America
- * E-mail:
| | - Andrew M. Evens
- Division of Hematology/Oncology, Tufts University School of Medicine and Tufts Cancer Center, Boston, Massachusetts, United States of America
| | - Sheila Prachand
- Department of Medicine, Division of Hematology/Oncology Northwestern University Feinberg School of Medicine and the Robert H Lurie Comprehensive Cancer Center, Chicago, Illinois, United States of America
| | - Paul T. Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Leo I. Gordon
- Department of Medicine, Division of Hematology/Oncology Northwestern University Feinberg School of Medicine and the Robert H Lurie Comprehensive Cancer Center, Chicago, Illinois, United States of America
| |
Collapse
|
41
|
Eckle T, Brodsky K, Bonney M, Packard T, Han J, Borchers CH, Mariani TJ, Kominsky DJ, Mittelbronn M, Eltzschig HK. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium. PLoS Biol 2013; 11:e1001665. [PMID: 24086109 DOI: 10.1371/journal.pbio.1001665] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND While acute lung injury (ALI) contributes significantly to critical illness, it resolves spontaneously in many instances. The majority of patients experiencing ALI require mechanical ventilation. Therefore, we hypothesized that mechanical ventilation and concomitant stretch-exposure of pulmonary epithelia could activate endogenous pathways important in lung protection. METHODS AND FINDINGS To examine transcriptional responses during ALI, we exposed pulmonary epithelia to cyclic mechanical stretch conditions--an in vitro model resembling mechanical ventilation. A genome-wide screen revealed a transcriptional response similar to hypoxia signaling. Surprisingly, we found that stabilization of hypoxia-inducible factor 1A (HIF1A) during stretch conditions in vitro or during ventilator-induced ALI in vivo occurs under normoxic conditions. Extension of these findings identified a functional role for stretch-induced inhibition of succinate dehydrogenase (SDH) in mediating normoxic HIF1A stabilization, concomitant increases in glycolytic capacity, and improved tricarboxylic acid (TCA) cycle function. Pharmacologic studies with HIF activator or inhibitor treatment implicated HIF1A-stabilization in attenuating pulmonary edema and lung inflammation during ALI in vivo. Systematic deletion of HIF1A in the lungs, endothelia, myeloid cells, or pulmonary epithelia linked these findings to alveolar-epithelial HIF1A. In vivo analysis of ¹³C-glucose metabolites utilizing liquid-chromatography tandem mass-spectrometry demonstrated that increases in glycolytic capacity, improvement of mitochondrial respiration, and concomitant attenuation of lung inflammation during ALI were specific for alveolar-epithelial expressed HIF1A. CONCLUSIONS These studies reveal a surprising role for HIF1A in lung protection during ALI, where normoxic HIF1A stabilization and HIF-dependent control of alveolar-epithelial glucose metabolism function as an endogenous feedback loop to dampen lung inflammation.
Collapse
Affiliation(s)
- Tobias Eckle
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Denver, Colorado, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Morinet F, Casetti L, François JH, Capron C, Pillet S. Oxygen tension level and human viral infections. Virology 2013; 444:31-6. [PMID: 23850460 DOI: 10.1016/j.virol.2013.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/06/2013] [Accepted: 06/12/2013] [Indexed: 01/22/2023]
Abstract
The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition.
Collapse
Affiliation(s)
- Frédéric Morinet
- Centre des Innovations Thérapeutiques en Oncologie et Hématologie (CITOH), CHU Saint-Louis, Paris, France.
| | | | | | | | | |
Collapse
|
43
|
Detrimental role of the airway mucin Muc5ac during ventilator-induced lung injury. Mucosal Immunol 2013; 6:762-75. [PMID: 23187315 PMCID: PMC3890100 DOI: 10.1038/mi.2012.114] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acute lung injury (ALI) is associated with high morbidity and mortality in critically ill patients. At present, the functional contribution of airway mucins to ALI is unknown. We hypothesized that excessive mucus production could be detrimental during lung injury. Initial transcriptional profiling of airway mucins revealed a selective and robust induction of MUC5AC upon cyclic mechanical stretch exposure of pulmonary epithelia (Calu-3). Additional studies confirmed time- and stretch-dose-dependent induction of MUC5AC transcript or protein during cyclic mechanical stretch exposure in vitro or during ventilator-induced lung injury in vivo. Patients suffering from ALI showed a 58-fold increase in MUC5AC protein in their bronchoalveolar lavage. Studies of the MUC5AC promoter implicated nuclear factor κB in Muc5ac induction during ALI. Moreover, mice with gene-targeted deletion of Muc5ac⁻/⁻ experience attenuated lung inflammation and pulmonary edema during injurious ventilation. We observed that neutrophil trafficking into the lungs of Muc5ac⁻/⁻ mice was selectively attenuated. This implicates that endogenous Muc5ac production enhances pulmonary neutrophil trafficking during lung injury. Together, these studies reveal a detrimental role for endogenous Muc5ac production during ALI and suggest pharmacological strategies to dampen mucin production in the treatment of lung injury.
Collapse
|
44
|
Scholz CC, Taylor CT. Targeting the HIF pathway in inflammation and immunity. Curr Opin Pharmacol 2013; 13:646-53. [PMID: 23660374 DOI: 10.1016/j.coph.2013.04.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 01/03/2023]
Abstract
Oxygen deprivation (hypoxia) is a frequently encountered condition in both health and disease. Metazoans have evolved an elegant and direct cellular mechanism by which to sense local oxygen levels and mount an adaptive transcriptional response to hypoxia which is mediated by a transcription factor termed the hypoxia-inducible factor (HIF). In normoxia, HIF is repressed primarily through the action of a family of hydroxylases, which target HIFα subunits for degradation in an oxygen-dependent manner. In hypoxia, HIF is rapidly stabilized in cells thus allowing it to regulate the expression of hundreds of genes which promote an adaptive response including genes expressing regulators of angiogenesis, metabolism, growth and survival. Initial studies into the HIF pathway focused mainly on its role in supporting tumor adaptation through enhancing processes such as angiogenesis, glycolytic metabolism and cell survival. More recently however, it has become clear that the HIF pathway also plays a key role in the regulation of immunity and inflammation. In fact, conditional knockout of the HIF-1α subunit has identified key immune roles in T-cells, dendritic cells, macrophages, neutrophils and epithelial cells. In this review, we will consider the role for HIF in the regulation of the immune response and its possible contribution to inflammation. Furthermore, we will consider potential therapeutic strategies, which target the HIF pathway in chronic inflammatory and infectious disease.
Collapse
Affiliation(s)
- Carsten C Scholz
- Systems Biology Ireland, School of Medicine and Medical Science & The Conway Institute, University College Dublin, Ireland
| | | |
Collapse
|
45
|
Poth JM, Brodsky K, Ehrentraut H, Grenz A, Eltzschig HK. Transcriptional control of adenosine signaling by hypoxia-inducible transcription factors during ischemic or inflammatory disease. J Mol Med (Berl) 2013; 91:183-93. [PMID: 23263788 PMCID: PMC3560301 DOI: 10.1007/s00109-012-0988-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 11/30/2012] [Accepted: 12/04/2012] [Indexed: 02/08/2023]
Abstract
Inflammatory lesions, ischemic tissues, or solid tumors are characterized by the occurrence of severe tissue hypoxia within the diseased tissue. Subsequent stabilization of hypoxia-inducible transcription factors-particularly of hypoxia-inducible factor 1α (HIF1A)--results in significant alterations of gene expression of resident cells or inflammatory cells that have been recruited into such lesions. Interestingly, studies of hypoxia-induced changes of gene expression identified a transcriptional program that promotes extracellular adenosine signaling. Adenosine is a signaling molecule that functions through the activation of four distinct adenosine receptors--the ADORA1, ADORA2A, ADORA2B, and ADORA3 receptors. Extracellular adenosine is predominantly derived from the phosphohydrolysis of precursor nucleotides, such as adenosine triphosphate or adenosine monophosphate. HIF1A-elicited alterations in gene expression enhance the enzymatic capacity within inflamed tissues to produce extracellular adenosine. Moreover, hypoxia-elicited induction of adenosine receptors--particularly of ADORA2B--results in increased signal transduction. Functional studies in genetic models for HIF1A or adenosine receptors implicate this pathway in an endogenous feedback loop that dampens excessive inflammation and promotes injury resolution, while at the same time enhancing ischemia tolerance. Therefore, pharmacological strategies to enhance HIF-elicited adenosine production or to promote adenosine signaling through adenosine receptors are being investigated for the treatment of acute inflammatory or ischemic diseases characterized by tissue hypoxia.
Collapse
Affiliation(s)
- Jens M. Poth
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, USA
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Germany
| | - Kelley Brodsky
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, USA
| | - Heidi Ehrentraut
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, USA
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Bonn, Germany
| | - Almut Grenz
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, USA
| | - Holger K. Eltzschig
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, USA
| |
Collapse
|
46
|
Garofalo RP, Kolli D, Casola A. Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities. Antioxid Redox Signal 2013; 18:186-217. [PMID: 22799599 PMCID: PMC3513983 DOI: 10.1089/ars.2011.4307] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) is one of the most important causes of upper and lower respiratory tract infections in infants and young children, for which no effective treatment is currently available. Although the mechanisms of RSV-induced airway disease remain incompletely defined, the lung inflammatory response is thought to play a central pathogenetic role. In the past few years, we and others have provided increasing evidence of a role of reactive oxygen species (ROS) as important regulators of RSV-induced cellular signaling leading to the expression of key proinflammatory mediators, such as cytokines and chemokines. In addition, RSV-induced oxidative stress, which results from an imbalance between ROS production and airway antioxidant defenses, due to a widespread inhibition of antioxidant enzyme expression, is likely to play a fundamental role in the pathogenesis of RSV-associated lung inflammatory disease, as demonstrated by a significant increase in markers of oxidative injury, which correlate with the severity of clinical illness, in children with RSV infection. Modulation of ROS production and oxidative stress therefore represents a potential novel pharmacological approach to ameliorate RSV-induced lung inflammation and its long-term consequences.
Collapse
Affiliation(s)
- Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | | | | |
Collapse
|
47
|
Infection by Leishmania amazonensis in mice: a potential model for chronic hypoxia. Acta Histochem 2012; 114:797-804. [PMID: 22360823 DOI: 10.1016/j.acthis.2012.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 11/20/2022]
Abstract
Hypoxia is a common feature of injured and infected tissues. Hypoxia inducible factors 1α and 2α (HIF-1α, HIF-2α) are heterodimeric transcription factors mediating the cellular responses to hypoxia and also the vascular endothelial growth factor (VEGF). VEGF is a cytokine which can be induced by hypoxia, whose pathogenic mechanisms are still unclear and which is the subject of debate. Murine cutaneous lesions during Leishmania amazonensis parasite infection are chronic, although they are small and self-controlled in C57BL/6 mice and severe in BALB/c mice. In the present study we examined the presence of hypoxia, HIF-1α, HIF-2α and VEGF during the course of infection in both mouse strains. Hypoxia was detected in lesions from BALB/c mice by pimonidazole marking, which occurred earlier than in lesions from C57Bl/6 mice. The lesions in the BALB/c mice showed HIF-1α and HIF-2α expression in the cytoplasm of macrophages and failed to promote any VEGF expression, while lesions in the C57BL/6 mice showed HIF-2α nuclear accumulation and subsequent VEGF expression. In conclusion, the animal models of leishmaniasis demonstrated a diversity of patterns of expression, cell localization and activity of the main transducers of hypoxia and may be useful models for studying the pathogenic mechanisms of HIF-1α and HIF-2α during chronic hypoxic diseases.
Collapse
|
48
|
Espinoza J. Uteroplacental ischemia in early- and late-onset pre-eclampsia: a role for the fetus? ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2012; 40:373-382. [PMID: 23161443 DOI: 10.1002/uog.12280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- J Espinoza
- Department of Obstetrics and Gynecology, Texas Children's Hospital Pavilion for Women, Baylor College of Medicine, 6651 Main Street, Suite 1020, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Yu TM, Wen MC, Li CY, Cheng CH, Wu MJ, Chen CH, Shu KH. Expression of hypoxia-inducible factor-1α (HIF-1α) in infiltrating inflammatory cells is associated with chronic allograft dysfunction and predicts long-term graft survival. Nephrol Dial Transplant 2012; 28:659-70. [PMID: 23028107 DOI: 10.1093/ndt/gfs377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In chronic kidney failure, a hypoxic state, infiltrating inflammatory cells play a crucial role in the progression to end-stage renal disease. No studies have evaluated the influence of hypoxia and infiltrating inflammatory cells on chronic allograft dysfunction. METHODS Renal transplant recipients who underwent renal allograft biopsy with interstitial fibrosis/tubular atrophy (IF/TA) were enrolled and renal allograft tissue sections were processed for immunohistochemical staining including hypoxia-inducible factor-1α (HIF-1α), nitrotyrosine, α-smooth muscle actin and e-cadherin. Patients with total renal tissue HIF score ≥1 were defined as positive for HIF-1α. To assess the phenotype of the infiltrating cells, dual staining of HIF-1α with CD45, CD68 and CD3 was performed. The correlation between HIF-1α score and Banff's score was analysed. Clinical parameters including renal survival among patients with or without an expression of HIF-1α were compared. RESULTS Out of 55 patients enrolled, 23 patients (41.8%) had an HIF-1α score ≥1 (Group B). Compared with Group A (total renal HIF score <1), Group B had a significantly higher Banff score of interstitial infiltrates (i) (P = 0.029), vascular fibrous intimal thickening (cv) (P = 0.007) and arteriolar hyaline thickening (ah) (P = 0.026). Clinically, patients with an HIF-1α score were associated with a poor graft survival. Significantly inferior allograft survival was noted in Group B. HIF scores had an adjusted hazard ratio of 3.25 (95% confidence inteval: 1.71-6.16, P = 0.0003) in allograft failure. CONCLUSIONS We first demonstrated the expression of HIF-1α protein among infiltrating inflammatory cells in areas with IF/TA in patients with chronic allograft dysfunction.
Collapse
|
50
|
Rider P, Kaplanov I, Romzova M, Bernardis L, Braiman A, Voronov E, Apte RN. The transcription of the alarmin cytokine interleukin-1 alpha is controlled by hypoxia inducible factors 1 and 2 alpha in hypoxic cells. Front Immunol 2012; 3:290. [PMID: 23049530 PMCID: PMC3442192 DOI: 10.3389/fimmu.2012.00290] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/29/2012] [Indexed: 02/04/2023] Open
Abstract
During hypoxia, cells undergo transcriptional changes to adjust to metabolic stress, to promote cell survival, and to induce pro-angiogenic factors. Hypoxia-induced factors (HIFs) regulate these transcriptional alterations. Failure to restore oxygen levels results in cell death by necrosis. IL-1α is one of the most important mediators of sterile inflammation following hypoxia-mediated necrosis. During hypoxia, IL-1α is up-regulated and released from necrotic cells, promoting the initiation of sterile inflammation. This study examined the role of IL-1α transcription in initiation of hypoxic stress and the correlation between IL-1α transcription and HIFα factors. In an epithelial cell line cultured under hypoxic conditions, IL-1α transcription was up-regulated in a process mediated and promoted by HIFα factors. IL-1α transcription was also up-regulated in hypoxia in a fibroblast cell line, however, in these cells, HIFα factors inhibited the elevation of transcription. These data suggest that HIFα factors play a significant role in initiating sterile inflammation by controlling IL-1α transcription during hypoxia in a differential manner, depending on the cell type.
Collapse
Affiliation(s)
- Peleg Rider
- The Shraga Segal Department of Microbiology and Immunology and The Cancer Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|