1
|
Murawska-Ciałowicz E, Kaczmarek A, Kałwa M, Oniszczuk A. Influence of Training and Single Exercise on Leptin Level and Metabolism in Obese Overweight and Normal-Weight Women of Different Age. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12168. [PMID: 36231470 PMCID: PMC9565933 DOI: 10.3390/ijerph191912168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Leptin is one of the important hormones secreted by adipose tissue. It participates in the regulation of energy processes in the body through central and peripheral mechanisms. The aim of this study was to analyse the anthropological and physical performance changes during 9 month training in women of different age and body mass. The additional aim was the analysis of leptin levels in the fasting stage and after a control exercise. Obese (O), overweight (OW), and normal-weight (N) women participated in the study. Additional subgroups of premenopausal (PRE) (<50 years) and postmenopausal (POST) (50+) women were created for leptin level analysis. The main criterion of the division into subgroups was the age of menopause in the population. The control submaximal test and maximal oxygen uptake (VO2max) according to Astrand-Rhyming procedures was performed at baseline and after 3, 6, and 9 months. Before each control test, body weight (BM), body mass index (BMI), percentage of adipose tissue (% FAT), and mass (FAT (kg)) were measured. Moreover, before and after each test, leptin level was measured. After 9 months, there was a significant decrease in BM in the O (p < 0.05) and OW (p < 0.05) groups with no significant changes in the N group. There was a decrease in BMI in both the O (p < 0.05) and the OW (p < 0.05) groups, with no changes in the N group. The % FAT reduction was noted only in the O group (p < 0.05). VO2max increased in each of the measured groups (p < 0.05). The fasting leptin level at 0, 3, 6, and 9 months were the highest in the O group. The fasting leptin level before training was highest in the O group compared to the OW group (p < 0.01) and the N group (p < 0.01). It was also higher in the OW group compared to the N group at baseline (0) (p < 0.01) and after 3 and 6 months (p < 0.01). After 9 months, the leptin concentration decreased by 20.2% in the O group, 40.7% in the OW group, and 33% in the N group. Moreover, the fasting leptin level was higher in the POST subgroup compared to the PRE group in the whole group of women (p < 0.05). After a single exercise, the level of leptin in the whole study group decreased (p < 0.05). This was clearly seen, especially in the POST group. The 9 month training had a reducing effect on the blood leptin concentration in groups O, OW, and N. This may have been a result of weight loss and the percentage of fat in the body, as well as systematically disturbed energy homeostasis.
Collapse
Affiliation(s)
- Eugenia Murawska-Ciałowicz
- Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Agnieszka Kaczmarek
- Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Małgorzata Kałwa
- Sport Didactics Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Anna Oniszczuk
- Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| |
Collapse
|
2
|
Cavalcanti-de-Albuquerque JP, Donato J. Rolling out physical exercise and energy homeostasis: Focus on hypothalamic circuitries. Front Neuroendocrinol 2021; 63:100944. [PMID: 34425188 DOI: 10.1016/j.yfrne.2021.100944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023]
Abstract
Energy balance is the fine regulation of energy expenditure and energy intake. Negative energy balance causes body weight loss, while positive energy balance promotes weight gain. Modern societies offer a maladapted way of life, where easy access to palatable foods and the lack of opportunities to perform physical activity are considered the roots of the obesity pandemic. Physical exercise increases energy expenditure and, consequently, is supposed to promote weight loss. Paradoxically, physical exercise acutely drives anorexigenic-like effects, but the mechanisms are still poorly understood. Using an evolutionary background, this review aims to highlight the potential involvement of the melanocortin system and other hypothalamic neural circuitries regulating energy balance during and after physical exercise. The physiological significance of these changes will be explored, and possible signalling agents will be addressed. The knowledge discussed here might be important for clarifying obesity aetiology as well as new therapeutic approaches for body weight loss.
Collapse
Affiliation(s)
| | - José Donato
- Department of Physiology and Biophysics, University of São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
3
|
Thorp A, Stine JG. Exercise as Medicine: The Impact of Exercise Training on Nonalcoholic Fatty Liver Disease. ACTA ACUST UNITED AC 2020; 19:402-411. [PMID: 33767944 DOI: 10.1007/s11901-020-00543-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose of review Nonalcoholic fatty liver disease (NAFLD) is a leading cause of global liver disease. Because current pharmacologic treatments are ineffective, lifestyle change centered on exercise remains the most effective NAFLD treatment. The aim of this systematic review is to summarize and evaluate the current evidence supporting the use of exercise training as a medical treatment for adult patients with NAFLD. Recent findings At least 150 minutes each week of moderate intensity exercise of any type can improve NAFLD, both with and without modest weight loss. Exercise training reduces hepatic steatosis and liver inflammation, favorably changes body composition, improves vascular endothelial function, increases cardiorespiratory fitness and can lead to histologic response. To date, exercise-based NAFLD trials are limited by small sample size and significant heterogeneity. Summary While several key questions remain unanswered, exercise training will always be an important part of the medical management of patients with NAFLD.
Collapse
Affiliation(s)
- Audrey Thorp
- Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA, USA
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA, USA
- Department of Public Health Sciences, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA, USA
- Liver Center, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA, USA
- Cancer Institute, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA, USA
| |
Collapse
|
4
|
Velasco C, Blanco AM, Unniappan S, Soengas JL. The anorectic effect of central PYY 1-36 treatment in rainbow trout (Oncorhynchus mykiss) is associated with changes in mRNAs encoding neuropeptides and parameters related to fatty acid sensing and metabolism. Gen Comp Endocrinol 2018; 267:137-145. [PMID: 29940182 DOI: 10.1016/j.ygcen.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
We hypothesized that peptide YY (PYY) is involved in the metabolic regulation of food intake in fish. Therefore, we assessed in rainbow trout (Oncorhynchus mykiss) the effects of intracerebroventricular treatment with 10 ng/g PYY1-36 on food intake, expression of neuropeptides involved in food intake control, and the activity of fatty acid-sensing systems. The administration of PYY1-36 caused a significant reduction in food intake up to 24 h post-treatment. This anorectic action was associated with changes 2 h after treatment in mRNA abundance of neuropeptides involved in metabolic regulation of food intake in hypothalamus (decreased NPY and raised CART values) and hindbrain (increased POMCa1 values). We also observed that PYY1-36 treatment induced changes in mRNA abundance of parameters related to fatty acid sensing and metabolism in hypothalamus (decreased values of ACLY, PPARγ, and SREBP1c) and hindbrain (increased values of LPL, FAT/CD36, PPARα, PPARγ, and SREBP1c and decreased values of UCP2a). PYY1-36 treatment also increased mRNA abundance of mTOR. In general, it seems that mRNAs encoding some components of the machinery required for fatty acid sensing and metabolism are activated by PYY1-36. The response observed was higher in the hindbrain than in the hypothalamus, supporting the greater importance of this brain area in mediating the modulatory effects of gastrointestinal hormones on feeding regulation.
Collapse
Affiliation(s)
- Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain; Laboratory of Integrative Neuroendrocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4 Saskatoon, Saskatchewan, Canada
| | - Ayelén M Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain; Laboratory of Integrative Neuroendrocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4 Saskatoon, Saskatchewan, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendrocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
5
|
|
6
|
Bjersing JL, Larsson A, Palstam A, Ernberg M, Bileviciute-Ljungar I, Löfgren M, Gerdle B, Kosek E, Mannerkorpi K. Benefits of resistance exercise in lean women with fibromyalgia: involvement of IGF-1 and leptin. BMC Musculoskelet Disord 2017; 18:106. [PMID: 28288611 PMCID: PMC5348801 DOI: 10.1186/s12891-017-1477-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/06/2017] [Indexed: 12/02/2022] Open
Abstract
Background Chronic pain and fatigue improves by exercise in fibromyalgia (FM) but underlying mechanisms are not known. Obesity is increased among FM patients and associates with higher levels of pain. Symptom improvement after aerobic exercise is affected by body mass index (BMI) in FM. Metabolic factors such as insulin-like growth factor 1 (IGF-1) and leptin may be involved. In this study, the aim was to evaluate the role of metabolic factors in lean, overweight and obese women during resistance exercise, in relation to symptom severity and muscle strength in women with FM. Methods Forty-three women participated in supervised progressive resistance exercise, twice weekly for 15-weeks. Serum free and total IGF-1, IGF-binding protein 3 (IGFBP3), adiponectin, leptin and resistin were determined at baseline and after 15-weeks. Level of current pain was rated on a visual analogue scale (0–100 mm). Level of fatigue was rated by multidimensional fatigue inventory (MFI-20) subscale general fatigue (MFIGF). Knee extension force, elbow flexion force and handgrip force were assessed by dynamometers. Results Free IGF-1 (p = 0.047), IGFBP3 (p = 0.025) and leptin (p = 0.008) were significantly decreased in lean women (n = 18), but not in the overweight (n = 17) and the obese (n = 8). Lean women with FM benefited from resistance exercise with improvements in current pain (p= 0.039, n = 18), general fatigue (MFIGF, p = 0.022, n = 18) and improved elbow-flexion force (p = 0.017, n = 18). In overweight and obese women with FM there was no significant improvement in pain or fatigue but an improvement in elbow flexion (p = 0.049; p = 0.012) after 15 weeks of resistance exercise. Conclusion The clearest clinical response to resistance exercise was found in lean patients with FM. In these individuals, individualized resistance exercise was followed by changes in IGF-1 and leptin, reduced pain, fatigue and improved muscular strength. In overweight and obese women FM markers of metabolic signaling and clinical symptoms were unchanged, but strength was improved in the upper limb. Resistance exercise combined with dietary interventions might benefit patients with FM and overweight. Trial registration The trial was registered 21 of October 2010 with ClinicalTrials.gov identification number: NCT01226784.
Collapse
Affiliation(s)
- Jan L Bjersing
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, Box 480, 40530, Gothenburg, Sweden. .,Sahlgrenska University Hospital, Rheumatology, Gothenburg, Sweden.
| | - Anette Larsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, Box 480, 40530, Gothenburg, Sweden.,University of Gothenburg Centre for Person Centered Care (GPCC), Gothenburg, Sweden
| | - Annie Palstam
- University of Gothenburg Centre for Person Centered Care (GPCC), Gothenburg, Sweden.,Institute of Neuroscience and Physiology/Physiotherapy, Section of Clinical Neuroscience and Rehabilitation, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Ernberg
- Department of Dental Medicine and Scandinavian Center for Orofacial Neurosciences (SCON) Karolinska Institutet, Stockholm, Sweden
| | | | - Monika Löfgren
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Björn Gerdle
- Department of Medical and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergotland, Linköping, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Spine Center, Stockholm, Sweden
| | - Kaisa Mannerkorpi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, Box 480, 40530, Gothenburg, Sweden.,Institute of Neuroscience and Physiology/Physiotherapy, Section of Clinical Neuroscience and Rehabilitation, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Physiotherapy and Occupational therapy, Gothenburg, Sweden
| |
Collapse
|
7
|
Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 2017; 74:1-20. [PMID: 28093238 DOI: 10.1016/j.neubiorev.2017.01.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
|
8
|
Hypothalamic activation is essential for endotoxemia-induced acute muscle wasting. Sci Rep 2016; 6:38544. [PMID: 27922103 PMCID: PMC5138608 DOI: 10.1038/srep38544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/10/2016] [Indexed: 01/04/2023] Open
Abstract
Growing evidence suggests acute skeletal muscle wasting is a key factor affecting nutritional support and prognosis in critical patients. Previously, plenty of studies of muscle wasting focused on the peripheral pathway, little was known about the central role. We tested the hypothesis whether central inflammatory pathway and neuropeptides were involved in the process. In lipopolysaccharide (LPS) treated rats, hypothalamic NF-κB pathway and inflammation were highly activated, which was accompanied with severe muscle wasting. Central inhibition of nuclear factor kappa-B (NF-κB) pathway activation by infusion of an inhibitor (PS1145) can efficiently reduce muscle wasting as well as attenuate hypothalamic neuropeptides alteration. Furthermore, knockdown the expression of anorexigenic neuropeptide proopiomelanocortin (POMC) expression with a lentiviral vector containing shRNA can significantly alleviate LPS-induced muscle wasting, whereas hypothalamic inflammation or NF-κB pathway was barely affected. Taken together, these results suggest activation of hypothalamic POMC is pivotal for acute muscle wasting caused by endotoxemia. Neuropeptide POMC expression may have mediated the contribution of hypothalamic inflammation to peripheral muscle wasting. Pharmaceuticals with the ability of inhibiting hypothalamic NF-κB pathway or POMC activation may have a therapeutic potential for acute muscle wasting and nutritional therapy in septic patients.
Collapse
|
9
|
Calisto KL, Camacho AC, Mittestainer FC, Carvalho BM, Guadagnini D, Carvalheira JB, Saad MJ. Retraction Note: Diacerhein attenuates the inflammatory response and improves survival in a model of severe sepsis. Crit Care 2016; 20:278. [PMID: 27585989 PMCID: PMC5009681 DOI: 10.1186/s13054-016-1453-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kelly L Calisto
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Angélica C Camacho
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Francine C Mittestainer
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Bruno M Carvalho
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - José B Carvalheira
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Mario J Saad
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| |
Collapse
|
10
|
Hypothalamic AMPK as a Regulator of Energy Homeostasis. Neural Plast 2016; 2016:2754078. [PMID: 27547453 PMCID: PMC4980534 DOI: 10.1155/2016/2754078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022] Open
Abstract
Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration.
Collapse
|
11
|
Central leptin resistance and hypothalamic inflammation are involved in letrozole-induced polycystic ovary syndrome rats. Biochem Biophys Res Commun 2016; 476:306-312. [PMID: 27233601 DOI: 10.1016/j.bbrc.2016.05.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
Accumulating evidence indicates that leptin acts as an important mediator in energy homeostasis and reproduction. Since dysfunction of reproduction and metabolism are major characteristics of polycystic ovarian syndrome (PCOS), the role of leptin in pathogenesis of PCOS needs further research. Many studies have shown that central leptin resistance existed in obesity rats through leptin intracerebroventricular (icv) injection; however, central leptin resistance in PCOS rats has not been reported. This study aimed to investigate whether there was a state of central leptin resistance in PCOS rats, as well as explore the possible association of hypothalamic inflammation with central leptin resistance. First, letrozole was used to induce the PCOS model, 24 h food intake, 24 h body weight changes and the expression of p-STAT3 were determined following leptin or artificial cerebrospinal fluid (aCSF) icv injection in rats. Second, we further evaluated the expressions of IL-1β, IL-6, TNF-α, p-IKKβ, NF-κB, p-NF-κB, IκBα, p-IκBα and SOCS3 in hypothalamus. The results showed that 24 h food intake and body weight were decreased, while the expression of p-STAT3 was increased in control group rats following leptin icv injection compared with aCSF icv injection; however, both of them showed no significant difference in PCOS rats. Furthermore, inflammatory markers were upregulated in the hypothalami of PCOS rats. Taken together, our data indicated that there was a state of chronic low-grade inflammation in hypothalamus which might be the possible mechanism for central leptin resistance in PCOS rats.
Collapse
|
12
|
Homa LD, Burger LL, Cuttitta AJ, Michele DE, Moenter SM. Voluntary Exercise Improves Estrous Cyclicity in Prenatally Androgenized Female Mice Despite Programming Decreased Voluntary Exercise: Implications for Polycystic Ovary Syndrome (PCOS). Endocrinology 2015; 156:4618-28. [PMID: 26360506 PMCID: PMC4655213 DOI: 10.1210/en.2015-1593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prenatal androgen (PNA) exposure in mice produces a phenotype resembling lean polycystic ovary syndrome. We studied effects of voluntary exercise on metabolic and reproductive parameters in PNA vs vehicle (VEH)-treated mice. Mice (8 wk of age) were housed individually and estrous cycles monitored. At 10 weeks of age, mice were divided into groups (PNA, PNA-run, VEH, VEH-run, n = 8-9/group); those in the running groups received wheels allowing voluntary running. Unexpectedly, PNA mice ran less distance than VEH mice; ovariectomy eliminated this difference. In ovary-intact mice, there was no difference in glucose tolerance, lower limb muscle fiber types, weight, or body composition among groups after 16 weeks of running, although some mitochondrial proteins were mildly up-regulated by exercise in PNA mice. Before running, estrous cycles in PNA mice were disrupted with most days in diestrus. There was no change in cycles during weeks 1-6 of running (10-15 wk of age). In contrast, from weeks 11 to 16 of running, cycles in PNA mice improved with more days in proestrus and estrus and fewer in diestrus. PNA programs reduced voluntary exercise, perhaps mediated in part by ovarian secretions. Exercise without weight loss improved estrous cycles, which if translated could be important for fertility in and counseling of lean women with polycystic ovary syndrome.
Collapse
Affiliation(s)
- Lori D Homa
- Departments of Obstetrics and Gynecology (L.D.H., S.M.M.), Molecular and Integrative Physiology (L.L.B., A.J.C., D.E.M., S.M.M.), and Internal Medicine (D.E.M., S.M.M.), University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Laura L Burger
- Departments of Obstetrics and Gynecology (L.D.H., S.M.M.), Molecular and Integrative Physiology (L.L.B., A.J.C., D.E.M., S.M.M.), and Internal Medicine (D.E.M., S.M.M.), University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Ashley J Cuttitta
- Departments of Obstetrics and Gynecology (L.D.H., S.M.M.), Molecular and Integrative Physiology (L.L.B., A.J.C., D.E.M., S.M.M.), and Internal Medicine (D.E.M., S.M.M.), University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Daniel E Michele
- Departments of Obstetrics and Gynecology (L.D.H., S.M.M.), Molecular and Integrative Physiology (L.L.B., A.J.C., D.E.M., S.M.M.), and Internal Medicine (D.E.M., S.M.M.), University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Suzanne M Moenter
- Departments of Obstetrics and Gynecology (L.D.H., S.M.M.), Molecular and Integrative Physiology (L.L.B., A.J.C., D.E.M., S.M.M.), and Internal Medicine (D.E.M., S.M.M.), University of Michigan, Ann Arbor, Michigan 48109-5622
| |
Collapse
|
13
|
Mendes MCS, Pimentel GD, Costa FO, Carvalheira JBC. Molecular and neuroendocrine mechanisms of cancer cachexia. J Endocrinol 2015; 226:R29-R43. [PMID: 26112046 DOI: 10.1530/joe-15-0170] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 02/05/2023]
Abstract
Cancer and its morbidities, such as cancer cachexia, constitute a major public health problem. Although cancer cachexia has afflicted humanity for centuries, its underlying multifactorial and complex physiopathology has hindered the understanding of its mechanism. During the last few decades we have witnessed a dramatic increase in the understanding of cancer cachexia pathophysiology. Anorexia and muscle and adipose tissue wasting are the main features of cancer cachexia. These apparently independent symptoms have humoral factors secreted by the tumor as a common cause. Importantly, the hypothalamus has emerged as an organ that senses the peripheral signals emanating from the tumoral environment, and not only elicits anorexia but also contributes to the development of muscle and adipose tissue loss. Herein, we review the roles of factors secreted by the tumor and its effects on the hypothalamus, muscle and adipose tissue, as well as highlighting the key targets that are being exploited for cancer cachexia treatment.
Collapse
Affiliation(s)
- Maria Carolina S Mendes
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - Gustavo D Pimentel
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - Felipe O Costa
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| | - José B C Carvalheira
- Department of Internal MedicineFaculty of Medical Sciences, State University of Campinas (UNICAMP), MA: 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
14
|
Yi SS. Effects of exercise on brain functions in diabetic animal models. World J Diabetes 2015; 6:583-597. [PMID: 25987956 PMCID: PMC4434079 DOI: 10.4239/wjd.v6.i4.583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Human life span has dramatically increased over several decades, and the quality of life has been considered to be equally important. However, diabetes mellitus (DM) characterized by problems related to insulin secretion and recognition has become a serious health problem in recent years that threatens human health by causing decline in brain functions and finally leading to neurodegenerative diseases. Exercise is recognized as an effective therapy for DM without medication administration. Exercise studies using experimental animals are a suitable option to overcome this drawback, and animal studies have improved continuously according to the needs of the experimenters. Since brain health is the most significant factor in human life, it is very important to assess brain functions according to the different exercise conditions using experimental animal models. Generally, there are two types of DM; insulin-dependent type 1 DM and an insulin-independent type 2 DM (T2DM); however, the author will mostly discuss brain functions in T2DM animal models in this review. Additionally, many physiopathologic alterations are caused in the brain by DM such as increased adiposity, inflammation, hormonal dysregulation, uncontrolled hyperphagia, insulin and leptin resistance, and dysregulation of neurotransmitters and declined neurogenesis in the hippocampus and we describe how exercise corrects these alterations in animal models. The results of changes in the brain environment differ according to voluntary, involuntary running exercises and resistance exercise, and gender in the animal studies. These factors have been mentioned in this review, and this review will be a good reference for studying how exercise can be used with therapy for treating DM.
Collapse
|
15
|
Yue Y, Wang Y, Li D, Song Z, Jiao H, Lin H. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice. J Endocrinol 2015; 224:37-47. [PMID: 25349249 DOI: 10.1530/joe-14-0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3a(Thr) (24) (/) (32) (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia.
Collapse
Affiliation(s)
- Yunshuang Yue
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| | - Yi Wang
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| | - Dan Li
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| | - Zhigang Song
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| | - Hongchao Jiao
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| | - Hai Lin
- Shandong Key Lab for Animal Biotechnology and Disease ControlDepartment of Animal Science, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong 271018, People's Republic of China
| |
Collapse
|
16
|
Haissaguerre M, Saucisse N, Cota D. Influence of mTOR in energy and metabolic homeostasis. Mol Cell Endocrinol 2014; 397:67-77. [PMID: 25109278 DOI: 10.1016/j.mce.2014.07.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023]
Abstract
The mechanistic (or mammalian) target of rapamycin couples a variety of different environmental signals, including nutrients and hormones, with the regulation of several energy-demanding cellular functions, spanning from protein and lipid synthesis to mitochondrial activity and cytoskeleton dynamics. mTOR forms two distinct protein complexes in cells, mTORC1 and mTORC2. This review focuses on recent advances made in understanding the roles played by these two complexes in the regulation of whole body metabolic homeostasis. Studies carried out in the past few years have shown that mTORC1 activity in the hypothalamus varies by cell and stimulus type, and that this complex is critically implicated in the regulation of food intake and body weight and in the central actions of both nutrients and hormones, such as leptin, ghrelin and triiodothyronine. As a regulator of cellular anabolic processes, mTORC1 activity in the periphery favors adipogenesis, lipogenesis, glucose uptake and beta-cell mass expansion. Much less is known about the function of mTORC2 in the hypothalamus, while in peripheral organs this second complex exerts roles strikingly similar to those described for mTORC1. Deregulation of mTORC1 and mTORC2 is associated with obesity, type 2 diabetes, cancer and neurodegenerative disorders. Insights on the exact relationship between mTORC1 and mTORC2 in the context of the regulation of metabolic homeostasis and on the specific molecular mechanisms engaged by these two complexes in such regulation may provide new avenues for therapy.
Collapse
Affiliation(s)
- Magalie Haissaguerre
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France
| | - Nicolas Saucisse
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France.
| |
Collapse
|
17
|
Martínez-Sánchez N, Alvarez CV, Fernø J, Nogueiras R, Diéguez C, López M. Hypothalamic effects of thyroid hormones on metabolism. Best Pract Res Clin Endocrinol Metab 2014; 28:703-12. [PMID: 25256765 DOI: 10.1016/j.beem.2014.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past few decades, obesity and its related metabolic disorders have increased at an epidemic rate in the developed and developing world. New signals and factors involved in the modulation of energy balance and metabolism are continuously being discovered, providing potential novel drug targets for the treatment of metabolic disease. A parallel strategy is to better understand how hormonal signals, with an already established role in energy metabolism, work, and how manipulation of the pathways involved may lead to amelioration of metabolic dysfunction. The thyroid hormones belong to the latter category, with dysregulation of the thyroid axis leading to marked alterations in energy balance. The potential of thyroid hormones in the treatment of obesity has been known for decades, but their therapeutic use has been hampered because of side-effects. Data gleaned over the past few years, however, have uncovered new features at the mechanisms of action involved in thyroid hormones. Sophisticated neurobiological approaches have allowed the identification of specific energy sensors, such as AMP-activated protein kinase and mechanistic target of rapamycin, acting in specific groups of hypothalamic neurons, mediating many of the effects of thyroid hormones on food intake, energy expenditure, glucose, lipid metabolism, and cardiovascular function. More extensive knowledge about these molecular mechanisms will be of great relevance for the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Noelia Martínez-Sánchez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - Clara V Alvarez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - Johan Fernø
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway.
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
18
|
Chronic activation of central AMPK attenuates glucose-stimulated insulin secretion and exacerbates hepatic insulin resistance in diabetic rats. Brain Res Bull 2014; 108:18-26. [PMID: 25149877 DOI: 10.1016/j.brainresbull.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/04/2023]
Abstract
We investigated the effects of chronic AMP-activated kinase (AMPK) activation in the hypothalamus on energy and glucose metabolism in 90% pancreatectomized diabetic rats. Diabetic rats fed a high fat diet were divided into 3 groups and intracerebroventricular (ICV) administered with one of the following: 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, AMPK activator; 80 μg/day), AICAR+compound C (AMPK inhibitor; 6.2 μg/day), or an artificial cerebrospinal fluid (control) by means of osmotic pumps for 4 weeks. In the hypothalamus, central AICAR activated the phosphorylation of AMPK whereas adding compound C suppressed the activation. AICAR increased body weight and epididymal and retroperitoneal fat mass by increasing energy intake for the first 2 weeks and decreasing energy expenditure, whereas compound C reversed the AICAR effect on energy metabolism. Indirect calorimetry revealed that ICV-AICAR decreased carbohydrate oxidation, but not fat oxidation, compared to the control. During euglycemic hyperinsulinemic clamp, central AICAR increased hepatic glucose output at hyperinsulinemic states. ICV-AICAR increased expressions of hepatic genes involved in fatty acid synthesis and decreased expression of hepatic genes related to thermogenesis whereas compound C nullified the AICAR effect. Insulin secretion in the first and second phases decreased in AICAR-treated rats at hyperglycemic clamp, but compound C nullified the decrease. However, central AICAR did not alter β-cell mass via its proliferation or apoptosis. In conclusion, chronic hypothalamic AMPK activation impaired energy metabolism and glucose homeostasis by increasing food intake, increasing hepatic glucose output and decreasing insulin secretion in diabetic rats. The impairment of energy and glucose homeostasis by AMPK activation was nullified by an AMPK inhibitor.
Collapse
|
19
|
Koga S, Kojima A, Ishikawa C, Kuwabara S, Arai K, Yoshiyama Y. Effects of diet-induced obesity and voluntary exercise in a tauopathy mouse model: implications of persistent hyperleptinemia and enhanced astrocytic leptin receptor expression. Neurobiol Dis 2014; 71:180-92. [PMID: 25132556 DOI: 10.1016/j.nbd.2014.08.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/02/2014] [Accepted: 08/10/2014] [Indexed: 01/08/2023] Open
Abstract
The number of patients with Alzheimer's disease (AD) is increasing worldwide, and available drugs have shown limited efficacy. Hence, preventive interventions and treatments for presymptomatic AD are currently considered very important. Obesity rates have also been increasing dramatically and it is an independent risk factor of AD. Therefore, for the prevention of AD, it is important to elucidate the pathomechanism between obesity and AD. We generated high calorie diet (HCD)-induced obese tauopathy model mice (PS19), which showed hyperleptinemia but limited insulin resistance. HCD enhanced tau pathology and glial activation. Conversely, voluntary exercise with a running wheel normalized the serum leptin concentration without reducing body weight, and restored the pathological changes induced by HCD. Thus, we speculated that persistent hyperleptinemia played an important role in accelerating pathological changes in PS19 mice. Leptin primarily regulates food intake and body weight via leptin receptor b (LepRb). Interestingly, the nuclear staining for p-STAT3, which was activated by LepRb, was decreased in hippocampal neurons in HCD PS19 mice, indicating leptin resistance. Meanwhile, astroglial activation and the astrocytic expression of a short LepR isoform, LepRa, were enhanced in the hippocampus of HCD PS19 mice. Real-time PCR analysis demonstrated that leptin increased mRNA levels for pro-inflammatory cytokines including IL-1β and TNF-α in primary cultured astrocytes from wild type and LepRb-deficient mice. These observations suggest that persistent hyperleptinemia caused by obesity induces astrocytic activation, astrocytic leptin hypersensitivity with enhanced LepRa expression, and enhanced inflammation, consequently accelerating tau pathology in PS19 mice.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neurology, School of Graduate Medicine, Chiba University, Japan
| | - Ayako Kojima
- Laboratory for Neurodegenerative Disorder Research, Clinical Research Center, Chiba-East National Hospital, Japan
| | - Chieko Ishikawa
- Laboratory for Neurodegenerative Disorder Research, Clinical Research Center, Chiba-East National Hospital, Japan; Department of Neurology, Chiba-East National Hospital, Japan
| | - Satoshi Kuwabara
- Department of Neurology, School of Graduate Medicine, Chiba University, Japan
| | - Kimihito Arai
- Department of Neurology, Chiba-East National Hospital, Japan; Department of Neurology, School of Graduate Medicine, Chiba University, Japan
| | - Yasumasa Yoshiyama
- Laboratory for Neurodegenerative Disorder Research, Clinical Research Center, Chiba-East National Hospital, Japan; Department of Neurology, Chiba-East National Hospital, Japan; Department of Neurology, School of Graduate Medicine, Chiba University, Japan.
| |
Collapse
|
20
|
Kılıç M, Ulusoy Ö, Cırrık S, Hindistan İ, Özkaya Y. Effect of exercise intensity on cerebrospinal fluid interleukin-6 concentration during recovery from exhaustive exercise in rats. ACTA ACUST UNITED AC 2014; 101:21-31. [DOI: 10.1556/aphysiol.100.2013.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Borg ML, Andrews ZB, Watt MJ. Exercise training does not enhance hypothalamic responsiveness to leptin or ghrelin in male mice. J Neuroendocrinol 2014; 26:68-79. [PMID: 24382258 DOI: 10.1111/jne.12130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/18/2013] [Accepted: 12/23/2013] [Indexed: 01/09/2023]
Abstract
The detection of hormone and nutrient signals by the hypothalamus is blunted in obesity and contributes to dysregulated energy homeostasis. We investigated whether aerobic exercise training would improve long-term hypothalamic sensitivity to both leptin and ghrelin, independent of acute exercise-induced signalling. Male C57Bl/6J mice were fed either a chow or high-fat diet for 6 weeks, then remained sedentary on their respective diet, or completed 6 weeks of treadmill exercise training with a progressive increase in exercise volume and intensity. Food intake and hypothalamic signalling were assessed in mice injected with leptin or ghrelin at least 24 h after the last exercise bout. Exercise training reduced body mass, increased daily food intake and improved glucose tolerance. Intraperitoneal leptin administration reduced food intake in lean and obese mice, and this was not enhanced after exercise training. Leptin-mediated activation of phosphorylated signal transducer and activator of transcription 3 in the arcuate nucleus and ventromedial nucleus of the hypothalamus was not enhanced with exercise training. Ghrelin increased food intake and c-Fos positive neurones in the hypothalamus in lean and obese mice, and these physiological and molecular responses were not enhanced with exercise training. This suggests that the previously reported exercise effects on sensitising hypothalamic signalling and food intake responses may be limited to the period immediately after an exercise bout, and are not a result of stable structural or molecular changes that occur with exercise training.
Collapse
Affiliation(s)
- M L Borg
- Department of Physiology, Biology of Lipid Metabolism laboratory, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
22
|
Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 2013; 3:1-58. [PMID: 23720280 DOI: 10.1002/cphy.c110062] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metabolic syndrome (MS) is a collection of cardiometabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia. Although there has been significant debate regarding the criteria and concept of the syndrome, this clustering of risk factors is unequivocally linked to an increased risk of developing type 2 diabetes and cardiovascular disease. Regardless of the true definition, based on current population estimates, nearly 100 million have MS. It is often characterized by insulin resistance, which some have suggested is a major underpinning link between physical inactivity and MS. The purpose of this review is to: (i) provide an overview of the history, causes and clinical aspects of MS, (ii) review the molecular mechanisms of insulin action and the causes of insulin resistance, and (iii) discuss the epidemiological and intervention data on the effects of exercise on MS and insulin sensitivity.
Collapse
Affiliation(s)
- Christian K Roberts
- Exercise and Metabolic Disease Research Laboratory, Translational Sciences Section, School of Nursing, University of California at Los Angeles, Los Angeles, California, USA.
| | | | | |
Collapse
|
23
|
Chiarreotto-Ropelle EC, Pauli LSS, Katashima CK, Pimentel GD, Picardi PK, Silva VRR, de Souza CT, Prada PO, Cintra DE, Carvalheira JBC, Ropelle ER, Pauli JR. Acute exercise suppresses hypothalamic PTP1B protein level and improves insulin and leptin signaling in obese rats. Am J Physiol Endocrinol Metab 2013; 305:E649-E659. [PMID: 23880311 DOI: 10.1152/ajpendo.00272.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypothalamic inflammation is associated with insulin and leptin resistance, hyperphagia, and obesity. In this scenario, hypothalamic protein tyrosine phosphatase 1B (PTP1B) has emerged as the key phosphatase induced by inflammation that is responsible for the central insulin and leptin resistance. Here, we demonstrated that acute exercise reduced inflammation and PTP1B protein level/activity in the hypothalamus of obese rodents. Exercise disrupted the interaction between PTP1B with proteins involved in the early steps of insulin (IRβ and IRS-1) and leptin (JAK2) signaling, increased the tyrosine phosphorylation of these molecules, and restored the anorexigenic effects of insulin and leptin in obese rats. Interestingly, the anti-inflammatory action and the reduction of PTP1B activity mediated by exercise occurred in an interleukin-6 (IL-6)-dependent manner because exercise failed to reduce inflammation and PTP1B protein level after the disruption of hypothalamic-specific IL-6 action in obese rats. Conversely, intracerebroventricular administration of recombinant IL-6 reproduced the effects of exercise, improving hypothalamic insulin and leptin action by reducing the inflammatory signaling and PTP1B activity in obese rats at rest. Taken together, our study reports that physical exercise restores insulin and leptin signaling, at least in part, by reducing hypothalamic PTP1B protein level through the central anti-inflammatory response.
Collapse
|
24
|
Pimentel GD, Ropelle ER, Rocha GZ, Carvalheira JBC. The role of neuronal AMPK as a mediator of nutritional regulation of food intake and energy homeostasis. Metabolism 2013; 62:171-178. [PMID: 22898253 DOI: 10.1016/j.metabol.2012.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/01/2012] [Accepted: 07/06/2012] [Indexed: 02/07/2023]
Abstract
Hypothalamic 5'-adenosine monophosphate-activated protein kinase (AMPK) senses intracellular metabolic stress, i.e., an increase in the cellular AMP:ATP ratio, and integrates diverse hormonal and nutritional signals to restore energy balance. Recent evidence suggests that different nutrients can modulate AMPK activity in the hypothalamus, thereby controlling weight gain through a leptin-independent mechanism. Understanding the mechanisms by which nutrients control hypothalamic AMPK activity is crucial to the development of effective nutritional interventions for the treatment of food intake-related disorders, such as anorexia and obesity. This article highlights the current evidence for the intricate relationship between nutrients and hypothalamic AMPK activity.
Collapse
Affiliation(s)
- Gustavo D Pimentel
- Department of Internal Medicine, State University of Campinas, Campinas/São Paulo, Brazil
| | | | | | | |
Collapse
|
25
|
Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 2013. [PMID: 23720280 DOI: 10.1002/cphy.c110062.metabolic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Metabolic syndrome (MS) is a collection of cardiometabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia. Although there has been significant debate regarding the criteria and concept of the syndrome, this clustering of risk factors is unequivocally linked to an increased risk of developing type 2 diabetes and cardiovascular disease. Regardless of the true definition, based on current population estimates, nearly 100 million have MS. It is often characterized by insulin resistance, which some have suggested is a major underpinning link between physical inactivity and MS. The purpose of this review is to: (i) provide an overview of the history, causes and clinical aspects of MS, (ii) review the molecular mechanisms of insulin action and the causes of insulin resistance, and (iii) discuss the epidemiological and intervention data on the effects of exercise on MS and insulin sensitivity.
Collapse
Affiliation(s)
- Christian K Roberts
- Exercise and Metabolic Disease Research Laboratory, Translational Sciences Section, School of Nursing, University of California at Los Angeles, Los Angeles, California, USA.
| | | | | |
Collapse
|
26
|
Hypothalamic mTOR signaling mediates the orexigenic action of ghrelin. PLoS One 2012; 7:e46923. [PMID: 23056530 PMCID: PMC3467268 DOI: 10.1371/journal.pone.0046923] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/06/2012] [Indexed: 12/20/2022] Open
Abstract
Current evidence suggests that ghrelin, a stomach derived peptide, exerts its orexigenic action through specific modulation of Sirtuin1 (SIRT1)/p53 and AMP-activated protein kinase (AMPK) pathways, which ultimately increase the expression of agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARC). However, there is a paucity of data about the possible action of ghrelin on alternative metabolic pathways at this level. Here, we demonstrate that ghrelin elicits a marked upregulation of the hypothalamic mammalian target of rapamycin (mTOR) signaling pathway. Of note, central inhibition of mTOR signaling with rapamycin decreased ghrelin’s orexigenic action and normalized the mRNA expression of AgRP and NPY, as well as their key downstream transcription factors, namely cAMP response-element binding protein (pCREB) and forkhead box O1 (FoxO1, total and phosphorylated). Taken together, these data indicate that, in addition to previous reported mechanisms, ghrelin also promotes feeding through modulation of hypothalamic mTOR pathway.
Collapse
|
27
|
Xia T, Cheng Y, Zhang Q, Xiao F, Liu B, Chen S, Guo F. S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid. Diabetes 2012; 61:2461-71. [PMID: 22787141 PMCID: PMC3447917 DOI: 10.2337/db11-1278] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is well established that the central nervous system (CNS), especially the hypothalamus, plays an important role in regulating energy homeostasis and lipid metabolism. We have previously shown that hypothalamic corticotropin-releasing hormone (CRH) is critical for stimulating fat loss in response to dietary leucine deprivation. The molecular mechanisms underlying the CNS regulation of leucine deprivation-stimulated fat loss are, however, still largely unknown. Here, we used intracerebroventricular injection of adenoviral vectors to identify a novel role for hypothalamic p70 S6 kinase 1 (S6K1), a major downstream effector of the kinase mammalian target of rapamycin, in leucine deprivation stimulation of energy expenditure. Furthermore, we show that the effect of hypothalamic S6K1 is mediated by modulation of Crh expression in a melanocortin-4 receptor-dependent manner. Taken together, our studies provide a new perspective for understanding the regulation of energy expenditure by the CNS and the importance of cross-talk between nutritional control and regulation of endocrine signals.
Collapse
|
28
|
Plasma levels of interleukin-6 and interleukin-18 after an acute physical exercise: relation with post-exercise energy intake in twins. J Physiol Biochem 2012; 69:85-95. [DOI: 10.1007/s13105-012-0191-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/21/2012] [Indexed: 12/28/2022]
|
29
|
Pitman RT, Fong JT, Billman P, Puri N. Knockdown of the fat mass and obesity gene disrupts cellular energy balance in a cell-type specific manner. PLoS One 2012; 7:e38444. [PMID: 22675562 PMCID: PMC3367022 DOI: 10.1371/journal.pone.0038444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Recent studies suggest that FTO variants strongly correlate with obesity and mainly influence energy intake with little effect on the basal metabolic rate. We suggest that FTO influences eating behavior by modulating intracellular energy levels and downstream signaling mechanisms which control energy intake and metabolism. Since FTO plays a particularly important role in adipocytes and in hypothalamic neurons, SH-SY5Y neuronal cells and 3T3-L1 adipocytes were used to understand how siRNA mediated knockdown of FTO expression alters cellular energy homeostasis. Cellular energy status was evaluated by measuring ATP levels using a luminescence assay and uptake of fluorescent glucose. FTO siRNA in SH-SY5Y cells mediated mRNA knockdown (−82%), increased ATP concentrations by up to 46% (P = 0.013) compared to controls, and decreased phosphorylation of AMPk and Akt in SH-SY5Y by −52% and −46% respectively as seen by immunoblotting. In contrast, FTO siRNA in 3T3-L1 cells decreased ATP concentration by −93% (p<0.0005), and increased AMPk and Akt phosphorylation by 204% and 70%, respectively suggesting that FTO mediates control of energy levels in a cell-type specific manner. Furthermore, glucose uptake was decreased in both SH-SY5Y (−51% p = 0.015) and 3T3-L1 cells (−30%, p = 0.0002). We also show that FTO knockdown decreases NPY mRNA expression in SH-SY5Y cells (−21%) through upregulation of pSTAT3 (118%). These results provide important evidence that FTO-variant linked obesity may be associated with altered metabolic functions through activation of downstream metabolic mediators including AMPk.
Collapse
Affiliation(s)
- Ryan T. Pitman
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Jason T. Fong
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Penny Billman
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
- * E-mail:
| |
Collapse
|
30
|
Brandt C, Jakobsen AH, Adser H, Olesen J, Iversen N, Kristensen JM, Hojman P, Wojtaszewski JFP, Hidalgo J, Pilegaard H. IL-6 regulates exercise and training-induced adaptations in subcutaneous adipose tissue in mice. Acta Physiol (Oxf) 2012; 205:224-35. [PMID: 21991887 DOI: 10.1111/j.1748-1716.2011.02373.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIM The aim of this study was to test the hypothesis that IL-6 regulates exercise-induced gene responses in subcutaneous adipose tissue in mice. METHODS Four-month-old male IL-6 whole body knockout (KO) mice and C57B wild-type (WT) mice performed 1 h of treadmill exercise, where subcutaneous adipose tissue (AT) was removed either immediately after, 4 h or 10 h after exercise as well as from mice not running acutely. Moreover, AT was sampled at resting conditions after 5 weeks of exercise training. RESULTS AT leptin mRNA decreased immediately after a single running exercise bout in both genotypes and returned to baseline within 10 h of recovery in IL-6 KO mice, but not WT mice. Leptin mRNA content decreased in WT and increased in IL-6 KO mice with training, but without significant alterations in leptin protein. Acute exercise induced a decrease in the AT TNFα mRNA content in WT, but not in IL-6-KO mice, while training lowered resting levels of TNFα mRNA in both genotypes. In addition, an exercise-induced decline in AT PPARγ mRNA content was absent in IL-6 KO mice and in line training increased PPARγ mRNA only in IL-6 KO mice. CONCLUSION The present findings indicate a role of IL-6 in regulating exercise- and training-induced leptin and PPARγ expression in adipose tissue. In addition, while IL-6 is required for TNF-α mRNA reduction in response to acute exercise, IL-6 does not appear to be mandatory for anti-inflammatory effects of exercise training in adipose tissue.
Collapse
Affiliation(s)
- C Brandt
- Centre of Inflammation and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Watterson KR, Bestow D, Gallagher J, Hamilton DL, Ashford FB, Meakin PJ, Ashford ML. Anorexigenic and orexigenic hormone modulation of mammalian target of rapamycin complex 1 activity and the regulation of hypothalamic agouti-related protein mRNA expression. Neurosignals 2012; 21:28-41. [PMID: 22456226 PMCID: PMC3704126 DOI: 10.1159/000334144] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 12/16/2022] Open
Abstract
Activation of mammalian target of rapamycin 1 (mTORC1) by nutrients, insulin and leptin leads to appetite suppression (anorexia). Contrastingly, increased AMP-activated protein kinase (AMPK) activity by ghrelin promotes appetite (orexia). However, the interplay between these mechanisms remains poorly defined. The relationship between the anorexigenic hormones, insulin and leptin, and the orexigenic hormone, ghrelin, on mTORC1 signalling was examined using S6 kinase phosphorylation as a marker for changes in mTORC1 activity in mouse hypothalamic GT1-7 cells. Additionally, the contribution of AMPK and mTORC1 signalling in relation to insulin-, leptin- and ghrelin-driven alterations to mouse hypothalamic agouti-related protein (AgRP) mRNA levels was examined. Insulin and leptin increase mTORC1 activity in a phosphoinositide-3-kinase (PI3K)- and protein kinase B (PKB)-dependent manner, compared to vehicle controls, whereas increasing AMPK activity inhibits mTORC1 activity and blocks the actions of the anorexigenic hormones. Ghrelin mediates an AMPK-dependent decrease in mTORC1 activity and increases hypothalamic AgRP mRNA levels, the latter effect being prevented by insulin in an mTORC1-dependent manner. In conclusion, mTORC1 acts as an integration node in hypothalamic neurons for hormone-derived PI3K and AMPK signalling and mediates at least part of the assimilated output of anorexigenic and orexigenic hormone actions in the hypothalamus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael L.J. Ashford
- Medical Research Institute, Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
32
|
Varela L, Martínez-Sánchez N, Gallego R, Vázquez MJ, Roa J, Gándara M, Schoenmakers E, Nogueiras R, Chatterjee K, Tena-Sempere M, Diéguez C, López M. Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J Pathol 2012; 227:209-22. [PMID: 22294347 DOI: 10.1002/path.3984] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 12/15/2011] [Accepted: 12/22/2011] [Indexed: 11/08/2022]
Abstract
Hyperthyroidism is characterized in rats by increased energy expenditure and marked hyperphagia. Alterations of thermogenesis linked to hyperthyroidism are associated with dysregulation of hypothalamic AMPK and fatty acid metabolism; however, the central mechanisms mediating hyperthyroidism-induced hyperphagia remain largely unclear. Here, we demonstrate that hyperthyroid rats exhibit marked up-regulation of the hypothalamic mammalian target of rapamycin (mTOR) signalling pathway associated with increased mRNA levels of agouti-related protein (AgRP) and neuropeptide Y (NPY), and decreased mRNA levels of pro-opiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC), an area where mTOR co-localizes with thyroid hormone receptor-α (TRα). Central administration of thyroid hormone (T3) or genetic activation of thyroid hormone signalling in the ARC recapitulated hyperthyroidism effects on feeding and the mTOR pathway. In turn, central inhibition of mTOR signalling with rapamycin in hyperthyroid rats reversed hyperphagia and normalized the expression of ARC-derived neuropeptides, resulting in substantial body weight loss. The data indicate that in the hyperthyroid state, increased feeding is associated with thyroid hormone-induced up-regulation of mTOR signalling. Furthermore, our findings that different neuronal modulations influence food intake and energy expenditure in hyperthyroidism pave the way for a more rational design of specific and selective therapeutic compounds aimed at reversing the metabolic consequences of this disease.
Collapse
Affiliation(s)
- Luis Varela
- Department of Physiology, School of Medicine-CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela (A Coruña) 15782, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Combination therapy targeting Akt and mammalian target of rapamycin improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 2012; 32:330-40. [PMID: 21934697 PMCID: PMC3272599 DOI: 10.1038/jcbfm.2011.131] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Akt and mammalian target of rapamycin (mTOR) are both activated after traumatic brain injury (TBI), however complex interplay between the two hampers deciphering their functional implications in vivo. We examined the effects of single and combination inhibitors of Akt/mTOR in a mouse controlled cortical impact (CCI) model. Following CCI, phospho-Akt-473 (p-Akt) and -S6 ribosomal protein (p-S6RP), a downstream substrate of mTOR, were increased in cortical and hippocampal brain homogenates (P<0.05 versus sham). At 24 hours, p-S6RP was detected in neurons and was robustly induced in microglia and astrocytes in injured hippocampus. In vivo activity of Akt and mTOR inhibitors administered separately was confirmed by reduced expression of p-GSK3β (P<0.01) or p-S6RP (P<0.05), respectively, after CCI. Importantly, administration of Akt and mTOR inhibitors together (but not of either alone) improved postinjury motor (P=0.02) and cognitive deficits (hidden platform trials, P=0.001; probe trials, P<0.05), decreased propidium iodide-positive cells in CA1 and CA3 (P<0.005), and unexpectedly increased p-GSK3β in hippocampus. Although the roles of Akt and mTOR in the pathogenesis of TBI remain to be fully elucidated, dual inhibition of Akt and mTOR may have therapeutic potential for TBI.
Collapse
|
34
|
Cornier MA, Melanson EL, Salzberg AK, Bechtell JL, Tregellas JR. The effects of exercise on the neuronal response to food cues. Physiol Behav 2011; 105:1028-34. [PMID: 22155218 DOI: 10.1016/j.physbeh.2011.11.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/23/2011] [Accepted: 11/25/2011] [Indexed: 01/18/2023]
Abstract
Increased physical activity is associated with successful long-term weight loss maintenance due to mechanisms likely more complex than simply increased energy expenditure. The impact of physical activity on the central regulation of food intake may be an important mechanism of this effect. The objective of this study was to examine the effects of exercise training and acute exercise on the neuronal response to food cues as well as eating behaviors. fMRI was performed in the fasted state at baseline and again after a 6 month progressive exercise intervention (supervised, 5 days/wk) both with and without an acute exercise bout in 12 overweight/obese (5 women, 7 men; BMI 33 ± 4 kg/m(2)) healthy adults. fMRI data were acquired while subjects were presented with visual stimuli of foods of high hedonic value as compared to neutral control objects. Questionnaires on eating behaviors, ratings of appeal and desire for foods, and ratings of appetite (hunger, satiety, prospective intake) using visual analog scales were also performed at baseline and again after the 6-month exercise intervention. While only a trend was observed for a reduction in body weight (102 ± 5 to 99 ± 6 kg, p=0.09), a significant reduction in fat mass was observed (36.4 ± 2.8 to 33.7 ± 3.2 kg, p=0.04), although as expected changes in fat mass were variable (-10.0 to +3.7 kg). Chronic exercise was associated with a reduction in the neuronal response to food, primarily in the posterior attention network and insula. A significant positive correlation between the change in fat/body mass and the change in insula response to food cues with chronic exercise was observed. An acute exercise bout attenuated the effects of chronic exercise. The exercise intervention, however, did not impact any of the measures of appetitive behavior. In summary, despite no effects on behavioral measures of appetite, chronic exercise training was associated with attenuation in the response to visual food cues in brain regions known to be important in food intake regulation. The insula, in particular, appears to play an important role in the potential exercise-induced weight loss and weight loss maintenance.
Collapse
Affiliation(s)
- Marc-Andre Cornier
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
35
|
Keung W, Palaniyappan A, Lopaschuk GD. Chronic central leptin decreases food intake and improves glucose tolerance in diet-induced obese mice independent of hypothalamic malonyl CoA levels and skeletal muscle insulin sensitivity. Endocrinology 2011; 152:4127-37. [PMID: 21914780 DOI: 10.1210/en.2011-1254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although acute leptin administration in the hypothalamus decreases food intake and increases peripheral energy metabolism, the peripheral actions of central chronic leptin administration are less understood. In this study, we investigated what effects chronic (7 d) intracerebroventricular (ICV) administration of leptin has on energy metabolism and insulin sensitivity in diet-induced obese mice. C57/BL mice were fed a low-fat diet (LFD; 10% total calories) or high-fat diet (HFD; 60% total calories) for 8 wk after which leptin was administered ICV for 7 consecutive days. Mice fed a HFD showed signs of insulin resistance, as evidenced by an impaired glucose tolerance test. Chronic leptin treatment resulted in a decrease in food intake and body weight and normalization of glucose clearance but no improvement in insulin sensitivity. Chronic ICV leptin increased hypothalamic signal transducer and activator of transcription-3 and AMP-activated protein kinase phosphorylation but did not change hypothalamic malonyl CoA levels in HFD fed and LFD-fed mice. In the gastrocnemius muscles, the levels of malonyl CoA in both leptin-treated groups were lower than their respective control groups, suggesting an increase in fatty acid oxidation. However, only in the muscles of ICV leptin-treated LFD mice was there a decrease in lipid metabolites including diacylglycerol, triacylglycerol, and ceramide. Our results suggest that chronic ICV leptin decreases food consumption and body weight via a mechanism different from acute ICV leptin administration. Although chronic ICV leptin treatment in HFD mice improves glucose tolerance, this occurs independent of changes in insulin sensitivity in the muscles of HFD mice.
Collapse
Affiliation(s)
- Wendy Keung
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | |
Collapse
|
36
|
Blanco Martínez de Morentin P, González CR, Saha AK, Martins L, Diéguez C, Vidal-Puig A, Tena-Sempere M, López M. Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Rev Endocr Metab Disord 2011; 12:127-40. [PMID: 21347863 DOI: 10.1007/s11154-011-9165-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The AMP-activated protein kinase (AMPK) is the downstream constituent of a kinase cascade that acts as a sensor of cellular energy levels. Current data unequivocally indicate that hypothalamic AMPK plays a key role in the control of the whole body energy balance, by integrating peripheral signals, such as hormones and metabolites, with central signals, such as neuropeptides, and eliciting allostatic changes in energy homeostasis. Although the molecular details of these interactions are not fully understood, recent evidence has suggested that the interaction between AMPK with hypothalamic lipid metabolism and other metabolic sensors, such as the uncoupling protein 2 (UCP-2), the mammalian target of rapamycin (mTOR) and the deacetylase sirtuin 1 (SIRT1), may play a main role in the hypothalamic control of feeding and energy expenditure. Here, we summarize the role of hypothalamic AMPK as whole body energy gauge. Understanding this key molecule and especially its functions at central level may provide new therapeutic targets for the treatment of metabolic alterations and obesity.
Collapse
Affiliation(s)
- Pablo Blanco Martínez de Morentin
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, A Coruña, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Steig AJ, Jackman MR, Giles ED, Higgins JA, Johnson GC, Mahan C, Melanson EL, Wyatt HR, Eckel RH, Hill JO, MacLean PS. Exercise reduces appetite and traffics excess nutrients away from energetically efficient pathways of lipid deposition during the early stages of weight regain. Am J Physiol Regul Integr Comp Physiol 2011; 301:R656-67. [PMID: 21715696 DOI: 10.1152/ajpregu.00212.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The impact of regular exercise on energy balance, fuel utilization, and nutrient availability, during weight regain was studied in obese rats, which had lost 17% of their weight by a calorie-restricted, low-fat diet. Weight reduced rats were maintained for 6 wk with and without regular treadmill exercise (1 h/day, 6 days/wk, 15 m/min). In vivo tracers and indirect calorimetry were then used in combination to examine nutrient metabolism during weight maintenance (in energy balance) and during the first day of relapse when allowed to eat ad libitum (relapse). An additional group of relapsing, sedentary rats were provided just enough calories to create the same positive energy imbalance as the relapsing, exercised rats. Exercise attenuated the energy imbalance by 50%, reducing appetite and increasing energy requirements. Expenditure increased beyond the energetic cost of the exercise bout, as exercised rats expended more energy to store the same nutrient excess in sedentary rats with the matched energy imbalance. Compared with sedentary rats with the same energy imbalance, exercised rats exhibited the trafficking of dietary fat toward oxidation and away from storage in adipose tissue, as well as a higher net retention of fuel via de novo lipogenesis in adipose tissue. These metabolic changes in relapse were preceded by an increase in the skeletal muscle expression of genes involved in lipid uptake, mobilization, and oxidation. Our observations reveal a favorable shift in fuel utilization with regular exercise that increases the energetic cost of storing excess nutrients during relapse and alterations in circulating nutrients that may affect appetite. The attenuation of the biological drive to regain weight, involving both central and peripheral aspects of energy homeostasis, may explain, in part, the utility of regular exercise in preventing weight regain after weight loss.
Collapse
Affiliation(s)
- Amy J Steig
- Center for Human Nutrition, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Suzuki T, Imai J, Yamada T, Ishigaki Y, Kaneko K, Uno K, Hasegawa Y, Ishihara H, Oka Y, Katagiri H. Interleukin-6 enhances glucose-stimulated insulin secretion from pancreatic beta-cells: potential involvement of the PLC-IP3-dependent pathway. Diabetes 2011; 60:537-47. [PMID: 21270264 PMCID: PMC3028353 DOI: 10.2337/db10-0796] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Interleukin-6 (IL-6) has a significant impact on glucose metabolism. However, the effects of IL-6 on insulin secretion from pancreatic β-cells are controversial. Therefore, we analyzed IL-6 effects on pancreatic β-cell functions both in vivo and in vitro. RESEARCH DESIGN AND METHODS First, to examine the effects of IL-6 on in vivo insulin secretion, we expressed IL-6 in the livers of mice using the adenoviral gene transfer system. In addition, using both MIN-6 cells, a murine β-cell line, and pancreatic islets isolated from mice, we analyzed the in vitro effects of IL-6 pretreatment on insulin secretion. Furthermore, using pharmacological inhibitors and small interfering RNAs, we studied the intracellular signaling pathway through which IL-6 may affect insulin secretion from MIN-6 cells. RESULTS Hepatic IL-6 expression raised circulating IL-6 and improved glucose tolerance due to enhancement of glucose stimulated-insulin secretion (GSIS). In addition, in both isolated pancreatic islets and MIN-6 cells, 24-h pretreatment with IL-6 significantly enhanced GSIS. Furthermore, pretreatment of MIN-6 cells with phospholipase C (PLC) inhibitors with different mechanisms of action, U-73122 and neomycin, and knockdowns of the IL-6 receptor and PLC-β(1), but not with a protein kinase A inhibitor, H-89, inhibited IL-6-induced enhancement of GSIS. An inositol triphosphate (IP(3)) receptor antagonist, Xestospondin C, also abrogated the GSIS enhancement induced by IL-6. CONCLUSIONS The results obtained from both in vivo and in vitro experiments strongly suggest that IL-6 acts directly on pancreatic β-cells and enhances GSIS. The PLC-IP(3)-dependent pathway is likely to be involved in IL-6-mediated enhancements of GSIS.
Collapse
Affiliation(s)
- Toshinobu Suzuki
- Department of Metabolic Diseases, Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
- Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Junta Imai
- Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Tetsuya Yamada
- Department of Metabolic Diseases, Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Yasushi Ishigaki
- Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Keizo Kaneko
- Department of Metabolic Diseases, Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Kenji Uno
- Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Yutaka Hasegawa
- Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Hisamitsu Ishihara
- Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Yoshitomo Oka
- Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolic Diseases, Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
- Corresponding author: Hideki Katagiri,
| |
Collapse
|
39
|
Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, de Souza CT, Moraes JC, Prada PO, Guadagnini D, Marin RM, Oliveira AG, Augusto TM, Carvalho HF, Velloso LA, Saad MJA, Carvalheira JBC. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol 2010; 8:e1000465. [PMID: 20808781 PMCID: PMC2927536 DOI: 10.1371/journal.pbio.1000465] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 07/15/2010] [Indexed: 02/07/2023] Open
Abstract
Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKbeta activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKbeta/NF-kappaB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKbeta/NF-kappaB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKbeta and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action of insulin and leptin.
Collapse
Affiliation(s)
- Eduardo R. Ropelle
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo B. Flores
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys E. Cintra
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José R. Pauli
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Joseane Morari
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudio T. de Souza
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliana C. Moraes
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Patrícia O. Prada
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rodrigo M. Marin
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre G. Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Taize M. Augusto
- Department of Anatomy, Cell Biology, Physiology and Biophysics, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Hernandes F. Carvalho
- Department of Anatomy, Cell Biology, Physiology and Biophysics, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lício A. Velloso
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José B. C. Carvalheira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
40
|
Roman EAFR, Reis D, Romanatto T, Maimoni D, Ferreira EA, Santos GA, Torsoni AS, Velloso LA, Torsoni MA. Central leptin action improves skeletal muscle AKT, AMPK, and PGC1 alpha activation by hypothalamic PI3K-dependent mechanism. Mol Cell Endocrinol 2010; 314:62-9. [PMID: 19698760 DOI: 10.1016/j.mce.2009.08.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 08/01/2009] [Accepted: 08/11/2009] [Indexed: 02/03/2023]
Abstract
Central leptin action requires PI3K activity to modulate glucose homeostasis and peripheral metabolism. However, the mechanism behind this phenomenon is not clearly understood. We hypothesize that hypothalamic PI3K activity is important for the modulation of the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway, PGC1 alpha, and AKT in skeletal muscle (SM). To address this issue, we injected leptin into the lateral ventricle of rats. Hypothalamic JAK2 and AKT were activated by intracerebroventricular (ICV) injection of leptin in a time-dependent manner. Central leptin improved tolerance to glucose (GTT), increased PGC1 alpha expression, and AKT, AMPK, ACC and JAK2 phosphorylation in the soleus muscle. Previous ICV administration of either LY294002 or propranolol (IP) blocked these effects. We concluded that the activation of the hypothalamic PI3K pathway is important for leptin-induced AKT phosphorylation, as well as for active catabolic pathway through AMPK and PGC1 alpha in SM. Thus, a defective leptin signalling PI3K pathway in the hypothalamus may contribute to peripheral resistance to insulin associated to diet-induced obesity.
Collapse
Affiliation(s)
- Erika A F R Roman
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
MacLean PS, Higgins JA, Wyatt HR, Melanson EL, Johnson GC, Jackman MR, Giles ED, Brown IE, Hill JO. Regular exercise attenuates the metabolic drive to regain weight after long-term weight loss. Am J Physiol Regul Integr Comp Physiol 2009; 297:R793-802. [PMID: 19587114 DOI: 10.1152/ajpregu.00192.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Weight loss is accompanied by several metabolic adaptations that work together to promote rapid, efficient regain. We employed a rodent model of regain to examine the effects of a regular bout of treadmill exercise on these adaptations. Obesity was induced in obesity-prone rats with 16 wk of high-fat feeding and limited physical activity. Obese rats were then weight reduced (approximately 14% of body wt) with a calorie-restricted, low-fat diet and maintained at that reduced weight for 8 wk by providing limited provisions of the diet with (EX) or without (SED) a daily bout of treadmill exercise (15 m/min, 30 min/day, 6 days/wk). Weight regain, energy balance, fuel utilization, adipocyte cellularity, and humoral signals of adiposity were monitored during eight subsequent weeks of ad libitum feeding while the rats maintained their respective regimens of physical activity. Regular exercise decreased the rate of regain early in relapse and lowered the defended body weight. During weight maintenance, regular exercise reduced the biological drive to eat so that it came closer to matching the suppressed level of energy expenditure. The diurnal extremes in fuel preference observed in weight-reduced rats were blunted, since exercise promoted the oxidation of fat during periods of feeding (dark cycle) and promoted the oxidation of carbohydrate (CHO) later in the day during periods of deprivation (light cycle) . At the end of relapse, exercise reestablished the homeostatic steady state between intake and expenditure to defend a lower body weight. Compared with SED rats, relapsed EX rats exhibited a reduced turnover of energy, a lower 24-h oxidation of CHO, fewer adipocytes in abdominal fat pads, and peripheral signals that overestimated their adiposity. These observations indicate that regimented exercise altered several metabolic adaptations to weight reduction in a manner that would coordinately attenuate the propensity to regain lost weight.
Collapse
Affiliation(s)
- Paul S MacLean
- Center for Human Nutrition, Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Denver, Denver, Colorado, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ropelle ER, Pauli JR, Prada P, Cintra DE, Rocha GZ, Moraes JC, Frederico MJS, da Luz G, Pinho RA, Carvalheira JBC, Velloso LA, Saad MA, De Souza CT. Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats. J Physiol 2009; 587:2341-2351. [PMID: 19332486 PMCID: PMC2697302 DOI: 10.1113/jphysiol.2009.170050] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 03/25/2009] [Indexed: 02/05/2023] Open
Abstract
Insulin signalling in the hypothalamus plays a role in maintaining body weight. The forkhead transcription factor Foxo1 is an important mediator of insulin signalling in the hypothalamus. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti-related protein through the phosphatidylinositol-3-kinase/Akt signalling pathway, but the role of hypothalamic Foxo1 in insulin resistance and obesity remains unclear. Here, we identify that a high-fat diet impaired insulin-induced hypothalamic Foxo1 phosphorylation and degradation, increasing the nuclear Foxo1 activity and hyperphagic response in rats. Thus, we investigated the effects of the intracerebroventricular (i.c.v.) microinfusion of Foxo1-antisense oligonucleotide (Foxo1-ASO) and evaluated the food consumption and weight gain in normal and diet-induced obese (DIO) rats. Three days of Foxo1-ASO microinfusion reduced the hypothalamic Foxo1 expression by about 85%. i.c.v. infusion of Foxo1-ASO reduced the cumulative food intake (21%), body weight change (28%), epididymal fat pad weight (22%) and fasting serum insulin levels (19%) and increased the insulin sensitivity (34%) in DIO but not in control animals. Collectively, these data showed that the Foxo1-ASO treatment blocked the orexigenic effects of Foxo1 and prevented the hyperphagic response in obese rats. Thus, pharmacological manipulation of Foxo1 may be used to prevent or treat obesity.
Collapse
Affiliation(s)
- Eduardo R Ropelle
- Departamento de Clínica Médica, FCM, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Meurer M, Lübbe J, Kapp A, Schneider D. The Role of Pimecrolimus Cream 1% (Elidel®) in Managing Adult Atopic Eczema. Dermatology 2007; 215 Suppl 1:18-26. [DOI: 10.1159/000102117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|