1
|
Holendová B, Benáková Š, Křivonosková M, Plecitá-Hlavatá L. Redox Status as a Key Driver of Healthy Pancreatic Beta-Cells. Physiol Res 2024; 73:S139-S152. [PMID: 38647167 PMCID: PMC11412338 DOI: 10.33549/physiolres.935259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Redox status plays a multifaceted role in the intricate physiology and pathology of pancreatic beta-cells, the pivotal regulators of glucose homeostasis through insulin secretion. They are highly responsive to changes in metabolic cues where reactive oxygen species are part of it, all arising from nutritional intake. These molecules not only serve as crucial signaling intermediates for insulin secretion but also participate in the nuanced heterogeneity observed within the beta-cell population. A central aspect of beta-cell redox biology revolves around the localized production of hydrogen peroxide and the activity of NADPH oxidases which are tightly regulated and serve diverse physiological functions. Pancreatic beta-cells possess a remarkable array of antioxidant defense mechanisms although considered relatively modest compared to other cell types, are efficient in preserving redox balance within the cellular milieu. This intrinsic antioxidant machinery operates in concert with redox-sensitive signaling pathways, forming an elaborate redox relay system essential for beta-cell function and adaptation to changing metabolic demands. Perturbations in redox homeostasis can lead to oxidative stress exacerbating insulin secretion defect being a hallmark of type 2 diabetes. Understanding the interplay between redox signaling, oxidative stress, and beta-cell dysfunction is paramount for developing effective therapeutic strategies aimed at preserving beta-cell health and function in individuals with type 2 diabetes. Thus, unraveling the intricate complexities of beta-cell redox biology presents exciting avenues for advancing our understanding and treatment of metabolic disorders.
Collapse
Affiliation(s)
- B Holendová
- Laboratory of Pancreatic Islet Research, Czech Academy of Sciences, Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
2
|
Rutter GA, Gresch A, Delgadillo Silva L, Benninger RKP. Exploring pancreatic beta-cell subgroups and their connectivity. Nat Metab 2024:10.1038/s42255-024-01097-6. [PMID: 39117960 DOI: 10.1038/s42255-024-01097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Functional pancreatic islet beta cells are essential to ensure glucose homeostasis across species from zebrafish to humans. These cells show significant heterogeneity, and emerging studies have revealed that connectivity across a hierarchical network is required for normal insulin release. Here, we discuss current thinking and areas of debate around intra-islet connectivity, cellular hierarchies and potential "controlling" beta-cell populations. We focus on methodologies, including comparisons of different cell preparations as well as in vitro and in vivo approaches to imaging and controlling the activity of human and rodent islet preparations. We also discuss the analytical approaches that can be applied to live-cell data to identify and study critical subgroups of cells with a disproportionate role in control Ca2+ dynamics and thus insulin secretion (such as "first responders", "leaders" and "hubs", as defined by Ca2+ responses to glucose stimulation). Possible mechanisms by which this hierarchy is achieved, its physiological relevance and how its loss may contribute to islet failure in diabetes mellitus are also considered. A glossary of terms and links to computational resources are provided.
Collapse
Affiliation(s)
- Guy A Rutter
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Anne Gresch
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luis Delgadillo Silva
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Yu V, Yong F, Marta A, Khadayate S, Osakwe A, Bhattacharya S, Varghese SS, Chabosseau P, Tabibi SM, Chen K, Georgiadou E, Parveen N, Suleiman M, Stamoulis Z, Marselli L, De Luca C, Tesi M, Ostinelli G, Delgadillo-Silva L, Wu X, Hatanaka Y, Montoya A, Elliott J, Patel B, Demchenko N, Whilding C, Hajkova P, Shliaha P, Kramer H, Ali Y, Marchetti P, Sladek R, Dhawan S, Withers DJ, Rutter GA, Millership SJ. Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity. Diabetologia 2024; 67:1079-1094. [PMID: 38512414 PMCID: PMC11058053 DOI: 10.1007/s00125-024-06123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024]
Abstract
AIMS/HYPOTHESIS Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.
Collapse
Affiliation(s)
- Vanessa Yu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Fiona Yong
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| | - Angellica Marta
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | | | - Adrien Osakwe
- Quantitative Life Sciences Program, McGill University, Montréal, QC, Canada
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sneha S Varghese
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Pauline Chabosseau
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Sayed M Tabibi
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Keran Chen
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eleni Georgiadou
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Nazia Parveen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Zoe Stamoulis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Giada Ostinelli
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Luis Delgadillo-Silva
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yuki Hatanaka
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | - Nikita Demchenko
- MRC Laboratory of Medical Sciences, London, UK
- Imaging Resource Facility, Research Operations, St George's, University of London, London, UK
| | | | - Petra Hajkova
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | | | | - Yusuf Ali
- Nutrition, Metabolism and Health Programme & Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Republic of Singapore
- Singapore Eye Research Institute (SERI), Singapore General Hospital, Singapore, Republic of Singapore
- Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, Republic of Singapore
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Robert Sladek
- Quantitative Life Sciences Program, McGill University, Montréal, QC, Canada
- Departments of Medicine and Human Genetics, McGill University, Montréal, QC, Canada
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dominic J Withers
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Guy A Rutter
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
| | - Steven J Millership
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
4
|
Yu V, Yong F, Marta A, Khadayate S, Osakwe A, Bhattacharya S, Varghese SS, Chabosseau P, Tabibi SM, Chen K, Georgiadou E, Parveen N, Suleiman M, Stamoulis Z, Marselli L, De Luca C, Tesi M, Ostinelli G, Delgadillo-Silva L, Wu X, Hatanaka Y, Montoya A, Elliott J, Patel B, Demchenko N, Whilding C, Hajkova P, Shliaha P, Kramer H, Ali Y, Marchetti P, Sladek R, Dhawan S, Withers DJ, Rutter GA, Millership SJ. Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.04.527050. [PMID: 38076935 PMCID: PMC10705251 DOI: 10.1101/2023.02.04.527050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Aims/hypothesis Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly-connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility which we explore here by focussing on the imprinted gene neuronatin (Nnat), which is required for normal insulin synthesis and secretion. Methods Single cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing eGFP under the control of the Nnat enhancer/promoter regions were generated for fluorescence-activated cell (FAC) sorting of beta cells and downstream analysis of CpG methylation by bisulphite and RNA sequencing, respectively. Animals deleted for the de novo methyltransferase, DNMT3A from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 and Cal-590. Insulin secretion was measured using Homogeneous Time Resolved Fluorescence Imaging. Results Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic data sets demonstrated the early establishment of Nnat-positive and negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a sub-population specialised for insulin production, reminiscent of recently-described "βHI" cells and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialization. Conclusions/interpretation These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may thus contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes.
Collapse
Affiliation(s)
- Vanessa Yu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Fiona Yong
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, 637553, Singapore
| | - Angellica Marta
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Sanjay Khadayate
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Adrien Osakwe
- Departments of Medicine, Human Genetics and Quantitative Life Sciences, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Sneha S. Varghese
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Pauline Chabosseau
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Sayed M. Tabibi
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Keran Chen
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Eleni Georgiadou
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Nazia Parveen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Zoe Stamoulis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Giada Ostinelli
- CHUM Research Center and Faculty of Medicine, University of Montréal, 900 Rue St Denis, Montréal, H2X OA9, QC, Canada
| | - Luis Delgadillo-Silva
- CHUM Research Center and Faculty of Medicine, University of Montréal, 900 Rue St Denis, Montréal, H2X OA9, QC, Canada
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Yuki Hatanaka
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Alex Montoya
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - James Elliott
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Bhavik Patel
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Nikita Demchenko
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Chad Whilding
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Petra Hajkova
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Pavel Shliaha
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Holger Kramer
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Yusuf Ali
- Nutrition, Metabolism and Health Programme & Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232
- Singapore Eye Research Institute (SERI), Singapore General Hospital, Singapore, 168751
- Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, 768828
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa 56126, Italy
| | - Robert Sladek
- Departments of Medicine, Human Genetics and Quantitative Life Sciences, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Dominic J. Withers
- MRC Laboratory of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Guy A. Rutter
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, 637553, Singapore
- CHUM Research Center and Faculty of Medicine, University of Montréal, 900 Rue St Denis, Montréal, H2X OA9, QC, Canada
| | - Steven J. Millership
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
5
|
Rubio-Navarro A, Gómez-Banoy N, Stoll L, Dündar F, Mawla AM, Ma L, Cortada E, Zumbo P, Li A, Reiterer M, Montoya-Oviedo N, Homan EA, Imai N, Gilani A, Liu C, Naji A, Yang B, Chong ACN, Cohen DE, Chen S, Cao J, Pitt GS, Huising MO, Betel D, Lo JC. A beta cell subset with enhanced insulin secretion and glucose metabolism is reduced in type 2 diabetes. Nat Cell Biol 2023; 25:565-578. [PMID: 36928765 PMCID: PMC10449536 DOI: 10.1038/s41556-023-01103-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023]
Abstract
The pancreatic islets are composed of discrete hormone-producing cells that orchestrate systemic glucose homeostasis. Here we identify subsets of beta cells using a single-cell transcriptomic approach. One subset of beta cells marked by high CD63 expression is enriched for the expression of mitochondrial metabolism genes and exhibits higher mitochondrial respiration compared with CD63lo beta cells. Human and murine pseudo-islets derived from CD63hi beta cells demonstrate enhanced glucose-stimulated insulin secretion compared with pseudo-islets from CD63lo beta cells. We show that CD63hi beta cells are diminished in mouse models of and in humans with type 2 diabetes. Finally, transplantation of pseudo-islets generated from CD63hi but not CD63lo beta cells into diabetic mice restores glucose homeostasis. These findings suggest that loss of a specific subset of beta cells may lead to diabetes. Strategies to reconstitute or maintain CD63hi beta cells may represent a potential anti-diabetic therapy.
Collapse
Affiliation(s)
- Alfonso Rubio-Navarro
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Excellence Research Unit "Modeling Nature" (MNat), CTS-963-Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Nicolás Gómez-Banoy
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Stoll
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Alex M Mawla
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Lunkun Ma
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Eric Cortada
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Ang Li
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Moritz Reiterer
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nathalia Montoya-Oviedo
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Lipids and Diabetes Laboratory, Department of Physiological Sciences, Faculty of Medicine, National University of Colombia, Bogotá, Colombia
| | - Edwin A Homan
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Norihiro Imai
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Ankit Gilani
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Boris Yang
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - David E Cohen
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Doron Betel
- Department of Physiology and Biophysics, Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Division of Hematology and Medical Oncology, Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - James C Lo
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Wnt4 is heterogeneously activated in maturing β-cells to control calcium signaling, metabolism and function. Nat Commun 2022; 13:6255. [PMID: 36271049 PMCID: PMC9587236 DOI: 10.1038/s41467-022-33841-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetes is a multifactorial disorder characterized by loss or dysfunction of pancreatic β-cells. β-cells are heterogeneous, exhibiting different glucose sensing, insulin secretion and gene expression. They communicate with other endocrine cell types via paracrine signals and between β-cells via gap junctions. Here, we identify the importance of signaling between β-cells via the extracellular signal WNT4. We show heterogeneity in Wnt4 expression, most strikingly in the postnatal maturation period, Wnt4-positive cells, being more mature while Wnt4-negative cells are more proliferative. Knock-out in adult β-cells shows that WNT4 controls the activation of calcium signaling in response to a glucose challenge, as well as metabolic pathways converging to lower ATP/ADP ratios, thereby reducing insulin secretion. These results reveal that paracrine signaling between β-cells is important in addition to gap junctions in controling insulin secretion. Together with previous reports of WNT4 up-regulation in obesity our observations suggest an adaptive insulin response coordinating β-cells.
Collapse
|
7
|
Functional architecture of pancreatic islets identifies a population of first responder cells that drive the first-phase calcium response. PLoS Biol 2022; 20:e3001761. [PMID: 36099294 PMCID: PMC9506623 DOI: 10.1371/journal.pbio.3001761] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 09/23/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Insulin-secreting β-cells are functionally heterogeneous. Whether there exist cells driving the first-phase calcium response in individual islets, has not been examined. We examine “first responder” cells, defined by the earliest [Ca2+] response during first-phase [Ca2+] elevation, distinct from previously identified “hub” and “leader” cells. We used islets isolated from Mip-CreER; Rosa-Stop-Lox-Stop-GCamP6s mice (β-GCamP6s) that show β-cell-specific GCamP6s expression following tamoxifen-induced CreER-mediated recombination. First responder cells showed characteristics of high membrane excitability and lower electrical coupling to their neighbors. The first-phase response time of β-cells in the islet was spatially organized, dependent on the cell’s distance to the first responder cell, and consistent over time up to approximately 24 h. When first responder cells were laser ablated, the first-phase [Ca2+] was slowed down, diminished, and discoordinated compared to random cell ablation. Cells that were next earliest to respond often took over the role of the first responder upon ablation. In summary, we discover and characterize a distinct first responder β-cell state, critical for the islet first-phase response to glucose. A hallmark of the early stages in diabetes is the disruption of the first-phase peak of insulin secretion. This study reveals a state of beta cells that drives the first-phase calcium response (a precursor to insulin secretion), challenging the existing paradigm that first-phase calcium response to glucose is not organized within the islet.
Collapse
|
8
|
Benninger RKP, Kravets V. The physiological role of β-cell heterogeneity in pancreatic islet function. Nat Rev Endocrinol 2022; 18:9-22. [PMID: 34667280 PMCID: PMC8915749 DOI: 10.1038/s41574-021-00568-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/03/2023]
Abstract
Endocrine cells within the pancreatic islets of Langerhans are heterogeneous in terms of transcriptional profile, protein expression and the regulation of hormone release. Even though this heterogeneity has long been appreciated, only within the past 5 years have detailed molecular analyses led to an improved understanding of its basis. Although we are beginning to recognize why some subpopulations of endocrine cells are phenotypically different to others, arguably the most important consideration is how this heterogeneity affects the regulation of hormone release to control the homeostasis of glucose and other energy-rich nutrients. The focus of this Review is the description of how endocrine cell heterogeneity (and principally that of insulin-secreting β-cells) affects the regulation of hormone secretion within the islets of Langerhans. This discussion includes an overview of the functional characteristics of the different islet cell subpopulations and describes how they can communicate to influence islet function under basal and glucose-stimulated conditions. We further discuss how changes to the specific islet cell subpopulations or their numbers might underlie islet dysfunction in type 2 diabetes mellitus. We conclude with a discussion of several key open questions regarding the physiological role of islet cell heterogeneity.
Collapse
Affiliation(s)
- Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
9
|
Kalwat MA, Scheuner D, Rodrigues-dos-Santos K, Eizirik DL, Cobb MH. The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology 2021; 162:bqab173. [PMID: 34407177 PMCID: PMC8459449 DOI: 10.1210/endocr/bqab173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.
Collapse
Affiliation(s)
- Michael A Kalwat
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | | | - Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
10
|
Miranda MA, Macias-Velasco JF, Lawson HA. Pancreatic β-cell heterogeneity in health and diabetes: classes, sources, and subtypes. Am J Physiol Endocrinol Metab 2021; 320:E716-E731. [PMID: 33586491 PMCID: PMC8238131 DOI: 10.1152/ajpendo.00649.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cells perform glucose-stimulated insulin secretion, a process at the center of type 2 diabetes etiology. Efforts to understand how β-cells behave in healthy and stressful conditions have revealed a wide degree of morphological, functional, and transcriptional heterogeneity. Sources of heterogeneity include β-cell topography, developmental origin, maturation state, and stress response. Advances in sequencing and imaging technologies have led to the identification of β-cell subtypes, which play distinct roles in the islet niche. This review examines β-cell heterogeneity from morphological, functional, and transcriptional perspectives, and considers the relevance of topography, maturation, development, and stress response. It also discusses how these factors have been used to identify β-cell subtypes, and how heterogeneity is impacted by diabetes. We examine open questions in the field and discuss recent technological innovations that could advance understanding of β-cell heterogeneity in health and disease.
Collapse
Affiliation(s)
- Mario A Miranda
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Juan F Macias-Velasco
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
11
|
Stucker S, De Angelis J, Kusumbe AP. Heterogeneity and Dynamics of Vasculature in the Endocrine System During Aging and Disease. Front Physiol 2021; 12:624928. [PMID: 33767633 PMCID: PMC7987104 DOI: 10.3389/fphys.2021.624928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The endocrine system consists of several highly vascularized glands that produce and secrete hormones to maintain body homeostasis and regulate a range of bodily functions and processes, including growth, metabolism and development. The dense and highly vascularized capillary network functions as the main transport system for hormones and regulatory factors to enable efficient endocrine function. The specialized capillary types provide the microenvironments to support stem and progenitor cells, by regulating their survival, maintenance and differentiation. Moreover, the vasculature interacts with endocrine cells supporting their endocrine function. However, the structure and niche function of vasculature in endocrine tissues remain poorly understood. Aging and endocrine disorders are associated with vascular perturbations. Understanding the cellular and molecular cues driving the disease, and age-related vascular perturbations hold potential to manage or even treat endocrine disorders and comorbidities associated with aging. This review aims to describe the structure and niche functions of the vasculature in various endocrine glands and define the vascular changes in aging and endocrine disorders.
Collapse
Affiliation(s)
| | | | - Anjali P. Kusumbe
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Chabosseau P, Rutter GA, Millership SJ. Importance of Both Imprinted Genes and Functional Heterogeneity in Pancreatic Beta Cells: Is There a Link? Int J Mol Sci 2021; 22:1000. [PMID: 33498234 PMCID: PMC7863946 DOI: 10.3390/ijms22031000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/02/2023] Open
Abstract
Diabetes mellitus now affects more than 400 million individuals worldwide, with significant impacts on the lives of those affected and associated socio-economic costs. Although defects in insulin secretion underlie all forms of the disease, the molecular mechanisms which drive them are still poorly understood. Subsets of specialised beta cells have, in recent years, been suggested to play critical roles in "pacing" overall islet activity. The molecular nature of these cells, the means through which their identity is established and the changes which may contribute to their functional demise and "loss of influence" in both type 1 and type 2 diabetes are largely unknown. Genomic imprinting involves the selective silencing of one of the two parental alleles through DNA methylation and modified imprinted gene expression is involved in a number of diseases. Loss of expression, or loss of imprinting, can be shown in mouse models to lead to defects in beta cell function and abnormal insulin secretion. In the present review we survey the evidence that altered expression of imprinted genes contribute to loss of beta cell function, the importance of beta cell heterogeneity in normal and disease states, and hypothesise whether there is a direct link between the two.
Collapse
Affiliation(s)
| | | | - Steven J. Millership
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; (P.C.); (G.A.R.)
| |
Collapse
|
13
|
Amoura L, El-Ghazouani FZ, Kassem M, El Habhab A, Kreutter G, Sahraoui S, Bosco D, Jessel N, Berney T, Benhamou PY, Toti F, Kessler L. Assessment of plasma microvesicles to monitor pancreatic islet graft dysfunction: Beta cell- and leukocyte-derived microvesicles as specific features in a pilot longitudinal study. Am J Transplant 2020; 20:40-51. [PMID: 31319009 DOI: 10.1111/ajt.15534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 01/25/2023]
Abstract
Markers of early pancreatic islet graft dysfunction and its causes are lacking. We monitored 19 type 1 diabetes islet-transplanted patients for up to 36 months following last islet injection. Patients were categorized as Partial (PS) or complete (S) Success, or Graft Failure (F), using the β-score as an indicator of graft function. F was the subset reference of maximum worsened graft outcome. To identify the immune, pancreatic, and liver contribution to the graft dysfunction, the cell origin and concentration of circulating microvesicles (MVs) were assessed, including MVs from insulin-secreting β-cells typified by polysialic acid of neural cell adhesion molecule (PSA-NCAM), and data were compared with values of the β-score. Similar ranges of PSA-NCAM+ -MVs were found in healthy volunteers and S patients, indicating minimal cell damage. In PS, a 2-fold elevation in PSA-NCAM+ -MVs preceded each β-score drop along with a concomitant rise in insulin needs, suggesting β-cell damage or altered function. Significant elevation of liver asialoglycoprotein receptor (ASGPR)+ -MVs, endothelial CD105+ -MVs, neutrophil CD66b+ -MVs, monocyte CD 14+ -MVs, and T4 lymphocyte CD4+ -MVs occurred before each β-score drop, CD8+ -MVs increased only in F, and B lymphocyte CD19+ -MVs remained undetectable. In conclusion, PSA-NCAM+ -MVs are noninvasive early markers of transplant dysfunction, while ASGPR+ -MVs signal host tissue remodeling. Leukocyte MVs could identify the cause of graft dysfunction.
Collapse
Affiliation(s)
- Lamia Amoura
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.,CLINICA Group, Contract Research Organization, Alger, Algeria
| | - Fatiha Z El-Ghazouani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Ali El Habhab
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Salah Sahraoui
- CLINICA Group, Contract Research Organization, Alger, Algeria
| | - Domenico Bosco
- Department of Surgery, Islet Isolation, and Transplantation, University Hospitals, Geneva, Switzerland
| | - Nadia Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Thierry Berney
- Department of Surgery, Islet Isolation, and Transplantation, University Hospitals, Geneva, Switzerland
| | - Pierre-Yves Benhamou
- Department of Endocrinology, Diabetes, and Nutrition, Grenoble Alpes University, Grenoble, France.,Laboratory of Fundamental and Applied Bioenergetics Grenoble, Inserm U1055, Grenoble, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.,Department of Endocrinology, Diabetes and Nutrition, University Hospital of Strasbourg, Strasbourg, France.,Faculty of Medicine, Federation of Translational Medicine (FMTS), Strasbourg, France
| | | |
Collapse
|
14
|
Dwulet JM, Ludin NWF, Piscopio RA, Schleicher WE, Moua O, Westacott MJ, Benninger RKP. How Heterogeneity in Glucokinase and Gap-Junction Coupling Determines the Islet [Ca 2+] Response. Biophys J 2019; 117:2188-2203. [PMID: 31753287 PMCID: PMC6895742 DOI: 10.1016/j.bpj.2019.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Accepted: 10/25/2019] [Indexed: 11/24/2022] Open
Abstract
Understanding how cell subpopulations in a tissue impact overall system function is challenging. There is extensive heterogeneity among insulin-secreting β-cells within islets of Langerhans, including their insulin secretory response and gene expression profile, and this heterogeneity can be altered in diabetes. Several studies have identified variations in nutrient sensing between β-cells, including glucokinase (GK) levels, mitochondrial function, or expression of genes important for glucose metabolism. Subpopulations of β-cells with defined electrical properties can disproportionately influence islet-wide free-calcium activity ([Ca2+]) and insulin secretion via gap-junction electrical coupling. However, it is poorly understood how subpopulations of β-cells with altered glucose metabolism may impact islet function. To address this, we utilized a multicellular computational model of the islet in which a population of cells deficient in GK activity and glucose metabolism was imposed on the islet or in which β-cells were heterogeneous in glucose metabolism and GK kinetics were altered. This included simulating GK gene (GCK) mutations that cause monogenic diabetes. We combined these approaches with experimental models in which gck was genetically deleted in a population of cells or GK was pharmacologically inhibited. In each case, we modulated gap-junction electrical coupling. Both the simulated islet and the experimental system required 30-50% of the cells to have near-normal glucose metabolism, fewer than cells with normal KATP conductance. Below this number, the islet lacked any glucose-stimulated [Ca2+] elevations. In the absence of electrical coupling, the change in [Ca2+] was more gradual. As such, electrical coupling allows a large minority of cells with normal glucose metabolism to promote glucose-stimulated [Ca2+]. If insufficient numbers of cells are present, which we predict can be caused by a subset of GCK mutations that cause monogenic diabetes, electrical coupling exacerbates [Ca2+] suppression. This demonstrates precisely how metabolically heterogeneous β-cell populations interact to impact islet function.
Collapse
Affiliation(s)
- JaeAnn M Dwulet
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Nurin W F Ludin
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Robert A Piscopio
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Ong Moua
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Richard K P Benninger
- Department of Bioengineering, University of Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, Colorado.
| |
Collapse
|
15
|
Abarkan M, Gaitan J, Lebreton F, Perrier R, Jaffredo M, Mulle C, Magnan C, Raoux M, Lang J. The glutamate receptor GluK2 contributes to the regulation of glucose homeostasis and its deterioration during aging. Mol Metab 2019; 30:152-160. [PMID: 31767166 PMCID: PMC6807305 DOI: 10.1016/j.molmet.2019.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Islets secrete neurotransmitters including glutamate which participate in fine regulation of islet function. The excitatory ionotropic glutamate receptor GluK2 of the kainate receptor family is widely expressed in brain and also found in islets, mainly in α and γ cells. α cells co-release glucagon and glutamate and the latter increases glucagon release via ionotropic glutamate receptors. However, neither the precise nature of the ionotropic glutamate receptor involved nor its role in glucose homeostasis is known. As isoform specific pharmacology is not available, we investigated this question in constitutive GluK2 knock-out mice (GluK2-/-) using adult and middle-aged animals to also gain insight in a potential role during aging. METHODS We compared wild-type GluK2+/+ and knock-out GluK2-/- mice using adult (14-20 weeks) and middle-aged animals (40-52 weeks). Glucose (oral OGTT and intraperitoneal IPGTT) and insulin tolerance as well as pyruvate challenge tests were performed according to standard procedures. Parasympathetic activity, which stimulates hormones secretion, was measured by electrophysiology in vivo. Isolated islets were used in vitro to determine islet β-cell electrical activity on multi-electrode arrays and dynamic secretion of insulin as well as glucagon was determined by ELISA. RESULTS Adult GluK2-/- mice exhibit an improved glucose tolerance (OGTT and IPGTT), and this was also apparent in middle-aged mice, whereas the outcome of pyruvate challenge was slightly improved only in middle-aged GluK2-/- mice. Similarly, insulin sensitivity was markedly enhanced in middle-aged GluK2-/- animals. Basal and glucose-induced insulin secretion in vivo was slightly lower in GluK2-/- mice, whereas fasting glucagonemia was strongly reduced. In vivo recordings of parasympathetic activity showed an increase in basal activity in GluK2-/- mice which represents most likely an adaptive mechanism to counteract hypoglucagonemia rather than altered neuronal mechanism. In vitro recording demonstrated an improvement of glucose-induced electrical activity of β-cells in islets obtained from GluK2-/- mice at both ages. Finally, glucose-induced insulin secretion in vitro was increased in GluK2-/- islets, whereas glucagon secretion at 2 mmol/l of glucose was considerably reduced. CONCLUSIONS These observations indicate a general role for kainate receptors in glucose homeostasis and specifically suggest a negative effect of GluK2 on glucose homeostasis and preservation of islet function during aging. Our observations raise the possibility that blockade of GluK2 may provide benefits in glucose homeostasis especially during aging.
Collapse
Affiliation(s)
- Myriam Abarkan
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Julien Gaitan
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Fanny Lebreton
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Romain Perrier
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Manon Jaffredo
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Université de Bordeaux, Bordeaux, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, Université de Paris, Paris, France
| | - Matthieu Raoux
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France
| | - Jochen Lang
- Chimie et Biologie des Membranes et Nano-objets, UMR CNRS 5248, Université de Bordeaux, Pessac, France.
| |
Collapse
|
16
|
Da Silva Xavier G, Rutter GA. Metabolic and Functional Heterogeneity in Pancreatic β Cells. J Mol Biol 2019; 432:1395-1406. [PMID: 31419404 DOI: 10.1016/j.jmb.2019.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 01/01/2023]
Abstract
Metabolic and secretory heterogeneity are fundamental properties of pancreatic islet β cells. Emerging data suggest that stable differences in the transcriptome and proteome of individual cells may create cellular hierarchies, which, in turn, establish coordinated functional networks. These networks appear to govern the secretory activity of the whole islet and be affected in some forms of diabetes mellitus. Functional imaging, for example, of intracellular calcium dynamics, has led to the demonstration of "small worlds" behavior, and the identification of highly connected "hub" (or "leader") cells and of follower populations subservient to them. Subsequent inactivation of members of either population, for example, using optogenetic approaches or photoablation, has confirmed the importance of hub cells as possible pacemakers. Hub cells appear to be enriched for the glucose phosphorylating enzyme glucokinase and for genes encoding other enzymes involved in glucose metabolism compared to follower cells. Recent findings have shown the relevance of cellular hierarchy in islets from multiple species including human, mouse and fish, and shown that it is preserved in vivo in the context of the fully vascularized and innervated islet. Importantly, connectivity is impaired by insults, which mimic the diabetic milieu, including high glucose and/or fatty levels, and by the ablation of genes associated with type 2 diabetes risk in genome-wide association studies. We discuss here the evidence for the existence of these networks and their failure in disease settings. We also briefly survey the challenges in understanding their properties.
Collapse
Affiliation(s)
- Gabriela Da Silva Xavier
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, United Kingdom.
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom; Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore
| |
Collapse
|
17
|
Abstract
Pancreatic β-cells play a pivotal role in maintaining normoglycemia. Recent studies have revealed that the β-cell is not a homogeneous cell population but, rather, is heterogeneous in a number of properties such as electrical activity, gene expression, and cell surface markers. Identification of specific β-cell subpopulations altered in diabetic conditions would open a new avenue to develop targeted therapeutic interventions. As intense studies of β-cell heterogeneity are anticipated in the next decade, it is important that heterogeneity of the islet be recognized. Many studies in the past were undertaken with a small sample of islets, which might overlook important individual variance. In this study, by systematic analyses of the human islet in two and three dimensions, we demonstrate islet heterogeneity in size, number, architecture, cellular composition, and capillary density. There is no stereotypic human islet, and thus, a sufficient number of islets should be examined to ensure study reproducibility.
Collapse
Affiliation(s)
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
18
|
Benninger RKP, Hodson DJ. New Understanding of β-Cell Heterogeneity and In Situ Islet Function. Diabetes 2018; 67:537-547. [PMID: 29559510 PMCID: PMC5860861 DOI: 10.2337/dbi17-0040] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/28/2017] [Indexed: 12/25/2022]
Abstract
Insulin-secreting β-cells are heterogeneous in their regulation of hormone release. While long known, recent technological advances and new markers have allowed the identification of novel subpopulations, improving our understanding of the molecular basis for heterogeneity. This includes specific subpopulations with distinct functional characteristics, developmental programs, abilities to proliferate in response to metabolic or developmental cues, and resistance to immune-mediated damage. Importantly, these subpopulations change in disease or aging, including in human disease. Although discovering new β-cell subpopulations has substantially advanced our understanding of islet biology, a point of caution is that these characteristics have often necessarily been identified in single β-cells dissociated from the islet. β-Cells in the islet show extensive communication with each other via gap junctions and with other cell types via diffusible chemical messengers. As such, how these different subpopulations contribute to in situ islet function, including during plasticity, is not well understood. We will discuss recent findings revealing functional β-cell subpopulations in the intact islet, the underlying basis for these identified subpopulations, and how these subpopulations may influence in situ islet function. Furthermore, we will discuss the outlook for emerging technologies to gain further insight into the role of subpopulations in in situ islet function.
Collapse
Affiliation(s)
- Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, U.K
| |
Collapse
|
19
|
Westacott MJ, Ludin NWF, Benninger RKP. Spatially Organized β-Cell Subpopulations Control Electrical Dynamics across Islets of Langerhans. Biophys J 2017; 113:1093-1108. [PMID: 28877492 DOI: 10.1016/j.bpj.2017.07.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 10/18/2022] Open
Abstract
Understanding how heterogeneous cells within a multicellular system interact and affect overall function is difficult without a means of perturbing individual cells or subpopulations. Here we apply optogenetics to understand how subpopulations of β-cells control the overall [Ca2+]i response and insulin secretion dynamics of the islets of Langerhans. We spatiotemporally perturbed electrical activity in β-cells of channelrhodopsin2-expressing islets, mapped the [Ca2+]i response, and correlated this with the cellular metabolic activity and an in silico electrophysiology model. We discovered organized regions of metabolic activity across the islet, and these affect the way in which β-cells electrically interact. Specific regions acted as pacemakers by initiating calcium wave propagation. Our findings reveal the functional architecture of the islet, and show how distinct subpopulations of cells can disproportionality affect function. These results also suggest ways in which other neuroendocrine systems can be regulated, and demonstrate how optogenetic tools can discern their functional architecture.
Collapse
Affiliation(s)
| | - Nurin W F Ludin
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado, Aurora, Colorado; Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado.
| |
Collapse
|
20
|
Different developmental histories of beta-cells generate functional and proliferative heterogeneity during islet growth. Nat Commun 2017; 8:664. [PMID: 28939870 PMCID: PMC5610262 DOI: 10.1038/s41467-017-00461-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
The proliferative and functional heterogeneity among seemingly uniform cells is a universal phenomenon. Identifying the underlying factors requires single-cell analysis of function and proliferation. Here we show that the pancreatic beta-cells in zebrafish exhibit different growth-promoting and functional properties, which in part reflect differences in the time elapsed since birth of the cells. Calcium imaging shows that the beta-cells in the embryonic islet become functional during early zebrafish development. At later stages, younger beta-cells join the islet following differentiation from post-embryonic progenitors. Notably, the older and younger beta-cells occupy different regions within the islet, which generates topological asymmetries in glucose responsiveness and proliferation. Specifically, the older beta-cells exhibit robust glucose responsiveness, whereas younger beta-cells are more proliferative but less functional. As the islet approaches its mature state, heterogeneity diminishes and beta-cells synchronize function and proliferation. Our work illustrates a dynamic model of heterogeneity based on evolving proliferative and functional beta-cell states. Βeta-cells have recently been shown to be heterogeneous with regard to morphology and function. Here, the authors show that β-cells in zebrafish switch from proliferative to functional states with increasing time since β-cell birth, leading to functional and proliferative heterogeneity.
Collapse
|
21
|
Pipeleers D, De Mesmaeker I, Robert T, Van Hulle F. Heterogeneity in the Beta-Cell Population: a Guided Search Into Its Significance in Pancreas and in Implants. Curr Diab Rep 2017; 17:86. [PMID: 28812213 PMCID: PMC5557868 DOI: 10.1007/s11892-017-0925-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Intercellular differences in function have since long been noticed in the pancreatic beta-cell population. Heterogeneity in cellular glucose responsiveness is considered of physiological and pathological relevance. The present review updates evidence for the physiologic significance of beta-cell heterogeneity in the pancreas. It also briefly discusses what this role would imply for beta-cell implants in diabetes. RECENT FINDINGS Over the past 3 years, functionally different beta cells have been related to mechanisms that may underlie their heterogeneity in the pancreas, such as the stage in their life cycle and the degree of their clustering to islets with varying vascularization. Markers were identified for detecting these subpopulations in tissues. The existence of a functional heterogeneity in the pancreatic beta-cell population is further supported. Views on its origin and methods for its analysis in pancreas and implants will help guide the search into its significance in beta-cell biology, pathology, and therapy.
Collapse
Affiliation(s)
- Daniel Pipeleers
- Diabetes Research Center, Brussels Free University-VUB, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Ines De Mesmaeker
- Diabetes Research Center, Brussels Free University-VUB, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Thomas Robert
- Diabetes Research Center, Brussels Free University-VUB, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Freya Van Hulle
- Diabetes Research Center, Brussels Free University-VUB, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
22
|
β Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistance. Cell Metab 2017; 25:898-910.e5. [PMID: 28380379 PMCID: PMC5471618 DOI: 10.1016/j.cmet.2017.03.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/10/2017] [Accepted: 03/21/2017] [Indexed: 01/09/2023]
Abstract
We hypothesized that the known heterogeneity of pancreatic β cells was due to subpopulations of β cells at different stages of their life cycle with different functional capacities and that further changes occur with metabolic stress and aging. We identified new markers of aging in β cells, including IGF1R. In β cells IGF1R expression correlated with age, dysfunction, and expression of known age markers p16ink4a, p53BP1, and senescence-associated β-galactosidase. The new markers showed striking heterogeneity both within and between islets in both mouse and human pancreas. Acute induction of insulin resistance with an insulin receptor antagonist or chronic ER stress resulted in increased expression of aging markers, providing insight into how metabolic stress might accelerate dysfunction and decline of β cells. These novel findings about β cell and islet heterogeneity, and how they change with age, open up an entirely new set of questions about the pathogenesis of type 2 diabetes.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This report examines recent publications identifying phenotypic and functional heterogeneity among pancreatic β cells and investigating their potential roles in normal and abnormal islet function. The development of new methods and tools for the study of individual islet cells has produced a surge of interest in this topic. RECENT FINDINGS Studies of β cell maturation and pregnancy-induced proliferation have identified changes in serotonin and transcription factors SIX2/3 expression as markers of temporal heterogeneity. Structural and functional heterogeneity in the form of functionally distinct 'hub' and 'follower' β cells was found in mouse islets. Heterogeneous expression of Fltp (in mouse β cells) and ST8SIA1 and CD9 (in human β cells) were associated with distinct functional potential. Several impressive reports describing the transcriptomes of individual β cells were also published in recent months. Some of these reveal previously unknown β cell subpopulations. SUMMARY A wealth of information on functional and phenotypic heterogeneity has been collected recently, including the transcriptomes of individual β cells and the identities of functionally distinct β cell subpopulations. Several studies suggest the existence of two broad categories: a more proliferative but less functional and a less proliferative but more functional β cell type. The identification of functionally distinct subpopulations and their association with type 2 diabetes underlines the potential clinical importance of these investigations.
Collapse
Affiliation(s)
- Chaoxing Yang
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Feorillo Galivo
- Oregon Stem Cell Center, Papé Family Pediatric Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Craig Dorrell
- Oregon Stem Cell Center, Papé Family Pediatric Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
24
|
Meda P. Gap junction proteins are key drivers of endocrine function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:124-140. [PMID: 28284720 DOI: 10.1016/j.bbamem.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland.
| |
Collapse
|
25
|
Gutierrez GD, Gromada J, Sussel L. Heterogeneity of the Pancreatic Beta Cell. Front Genet 2017; 8:22. [PMID: 28321233 PMCID: PMC5337801 DOI: 10.3389/fgene.2017.00022] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/14/2017] [Indexed: 01/06/2023] Open
Abstract
The pancreatic beta cell functions as a key regulator of blood glucose levels by integrating a variety of signals in response to changing metabolic demands. Variations in beta cell identity that translate into functionally different subpopulations represent an interesting mechanism to allow beta cells to efficiently respond to diverse physiological and pathophysiological conditions. Recently, there is emerging evidence that morphological and functional differences between beta cells exist. Furthermore, the ability of novel single cell technologies to characterize the molecular identity of individual beta cells has created a new era in the beta cell field. These studies are providing important novel information about the origin of beta cell heterogeneity, the type and proportions of the different beta cell subpopulations, as well as their intrinsic properties. Furthermore, characterization of different beta cell subpopulations that could variably offer protection from or drive progression of diabetes has important clinical implications in diabetes prevention, beta cell regeneration and stem cell treatments. In this review, we will assess the evidence that supports the existence of heterogeneous populations of beta cells and the factors that could influence their formation. We will also address novel studies using islet single cell analysis that have provided important information toward understanding beta cell heterogeneity and discuss the caveats that may be associated with these new technologies.
Collapse
Affiliation(s)
| | | | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado, Denver CO, USA
| |
Collapse
|
26
|
Roscioni SS, Migliorini A, Gegg M, Lickert H. Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nat Rev Endocrinol 2016; 12:695-709. [PMID: 27585958 DOI: 10.1038/nrendo.2016.147] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although β-cell heterogeneity was discovered more than 50 years ago, the underlying principles have been explored only during the past decade. Islet-cell heterogeneity arises during pancreatic development and might reflect the existence of distinct populations of progenitor cells and the developmental pathways of endocrine cells. Heterogeneity can also be acquired in the postnatal period owing to β-cell plasticity or changes in islet architecture. Furthermore, β-cell neogenesis, replication and dedifferentiation represent alternative sources of β-cell heterogeneity. In addition to a physiological role, β-cell heterogeneity influences the development of diabetes mellitus and its response to treatment. Identifying phenotypic and functional markers to discriminate distinct β-cell subpopulations and the mechanisms underpinning their regulation is warranted to advance current knowledge of β-cell function and to design novel regenerative strategies that target subpopulations of β cells. In this context, the Wnt/planar cell polarity (PCP) effector molecule Flattop can distinguish two unique β-cell subpopulations with specific transcriptional signatures, functional properties and differential responses to environmental stimuli. In vivo targeting of these β-cell subpopulations might, therefore, represent an alternative strategy for the future treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Sara S Roscioni
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Adriana Migliorini
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Moritz Gegg
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Technische Universität München, 81675 München, Germany
| |
Collapse
|
27
|
|
28
|
Wills QF, Boothe T, Asadi A, Ao Z, Warnock GL, Kieffer TJ, Johnson JD. Statistical approaches and software for clustering islet cell functional heterogeneity. Islets 2016; 8:48-56. [PMID: 26909740 PMCID: PMC4878268 DOI: 10.1080/19382014.2016.1150664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Worldwide efforts are underway to replace or repair lost or dysfunctional pancreatic β-cells to cure diabetes. However, it is unclear what the final product of these efforts should be, as β-cells are thought to be heterogeneous. To enable the analysis of β-cell heterogeneity in an unbiased and quantitative way, we developed model-free and model-based statistical clustering approaches, and created new software called TraceCluster. Using an example data set, we illustrate the utility of these approaches by clustering dynamic intracellular Ca(2+) responses to high glucose in ∼300 simultaneously imaged single islet cells. Using feature extraction from the Ca(2+) traces on this reference data set, we identified 2 distinct populations of cells with β-like responses to glucose. To the best of our knowledge, this report represents the first unbiased cluster-based analysis of human β-cell functional heterogeneity of simultaneous recordings. We hope that the approaches and tools described here will be helpful for those studying heterogeneity in primary islet cells, as well as excitable cells derived from embryonic stem cells or induced pluripotent cells.
Collapse
Affiliation(s)
- Quin F Wills
- a Wellcome Trust Center for Human Genetics, University of Oxford , Oxford , United Kingdom
- b Weatherall Institute of Molecular Medicine, University of Oxford , Oxford , United Kingdom
| | - Tobias Boothe
- c Department of Cellular and Physiological Sciences , Life Sciences Center, University of British Columbia , Vancouver , Canada
| | - Ali Asadi
- c Department of Cellular and Physiological Sciences , Life Sciences Center, University of British Columbia , Vancouver , Canada
| | - Ziliang Ao
- d Department of Surgery , University of British Columbia , Vancouver , Canada
| | - Garth L Warnock
- d Department of Surgery , University of British Columbia , Vancouver , Canada
| | - Timothy J Kieffer
- c Department of Cellular and Physiological Sciences , Life Sciences Center, University of British Columbia , Vancouver , Canada
- d Department of Surgery , University of British Columbia , Vancouver , Canada
| | - James D Johnson
- c Department of Cellular and Physiological Sciences , Life Sciences Center, University of British Columbia , Vancouver , Canada
- d Department of Surgery , University of British Columbia , Vancouver , Canada
| |
Collapse
|
29
|
Laurent D, Vinet L, Lamprianou S, Daval M, Filhoulaud G, Ktorza A, Wang H, Sewing S, Juretschke HP, Glombik H, Meda P, Boisgard R, Nguyen DL, Stasiuk GJ, Long NJ, Montet X, Hecht P, Kramer W, Rutter GA, Hecksher-Sørensen J. Pancreatic β-cell imaging in humans: fiction or option? Diabetes Obes Metab 2016; 18:6-15. [PMID: 26228188 DOI: 10.1111/dom.12544] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/02/2015] [Accepted: 07/28/2015] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a growing worldwide epidemic disease, currently affecting 1 in 12 adults. Treatment of disease complications typically consumes ∼10% of healthcare budgets in developed societies. Whilst immune-mediated destruction of insulin-secreting pancreatic β cells is responsible for Type 1 diabetes, both the loss and dysfunction of these cells underly the more prevalent Type 2 diabetes. The establishment of robust drug development programmes aimed at β-cell restoration is still hampered by the absence of means to measure β-cell mass prospectively in vivo, an approach which would provide new opportunities for understanding disease mechanisms and ultimately assigning personalized treatments. In the present review, we describe the progress towards this goal achieved by the Innovative Medicines Initiative in Diabetes, a collaborative public-private consortium supported by the European Commission and by dedicated resources of pharmaceutical companies. We compare several of the available imaging methods and molecular targets and provide suggestions as to the likeliest to lead to tractable approaches. Furthermore, we discuss the simultaneous development of animal models that can be used to measure subtle changes in β-cell mass, a prerequisite for validating the clinical potential of the different imaging tracers.
Collapse
Affiliation(s)
- D Laurent
- Biomarker Department, Clinical Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - L Vinet
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - S Lamprianou
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - M Daval
- Metabolic Diseases Department, Servier Research Institute, Suresnes, France
| | - G Filhoulaud
- Metabolic Diseases Department, Servier Research Institute, Suresnes, France
| | - A Ktorza
- Metabolic Diseases Department, Servier Research Institute, Suresnes, France
| | - H Wang
- Roche Pharma Research and Early Development, Innovation Center Basel, Basel, Switzerland
| | - S Sewing
- Roche Pharma Research and Early Development, Innovation Center Basel, Basel, Switzerland
| | - H-P Juretschke
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - H Glombik
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - P Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - R Boisgard
- Commissariat à l'Energie Atomique, Equipe d'Imagerie Moléculaire Expérimentale, Orsay, France
| | - D L Nguyen
- Commissariat à l'Energie Atomique, Equipe d'Imagerie Moléculaire Expérimentale, Orsay, France
| | - G J Stasiuk
- Department of Chemistry, Imperial College London, London, UK
| | - N J Long
- Department of Chemistry, Imperial College London, London, UK
| | - X Montet
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - P Hecht
- IMIDIA Project Office, Graz, Austria
| | - W Kramer
- Scientific Consultant for Sanofi Deutschland GmbH, Frankfurt am Main, Germany
| | - G A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | | |
Collapse
|
30
|
Raoux M, Vacher P, Papin J, Picard A, Kostrzewa E, Devin A, Gaitan J, Limon I, Kas MJ, Magnan C, Lang J. Multilevel control of glucose homeostasis by adenylyl cyclase 8. Diabetologia 2015; 58:749-57. [PMID: 25403481 DOI: 10.1007/s00125-014-3445-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an important role in glucose-induced signalling and glucose homeostasis. METHODS We used pharmacological and genetic approaches in beta cells to determine secretion and calcium metabolism. Furthermore, Adcy8 knockout mice were characterised. RESULTS In clonal beta cells, inhibitors of adenylyl cyclases or their downstream targets reduced the glucose-induced increase in cytosolic calcium and insulin secretion. This was reproduced by knock-down of ADCY8, but not of ADCY1. These agents also inhibited glucose-induced increase in cytosolic calcium and electrical activity in primary beta cells and similar effects were observed after ADCY8 knock-down. Moreover, insulin secretion was diminished in islets from Adcy8 knockout mice. These mice were glucose intolerant after oral or intraperitoneal administration of glucose whereas their levels of glucagon-like peptide-1 remained unaltered. Finally, we knocked down ADCY8 in the ventromedial hypothalamus to evaluate the need for ADCY8 in the central regulation of glucose homeostasis. Whereas mice fed a standard diet had normal glucose levels, high-fat diet exacerbated glucose intolerance and knock-down mice were incapable of raising their plasma insulin levels. Finally we confirmed that ADCY8 is expressed in human islets. CONCLUSIONS/INTERPRETATIONS Collectively, our findings demonstrate that ADCY8 is required for the physiological activation of glucose-induced signalling pathways in beta cells, for glucose tolerance and for hypothalamic adaptation to a high-fat diet via regulation of islet insulin secretion.
Collapse
Affiliation(s)
- Matthieu Raoux
- Université de Bordeaux, CNRS UMR 5248, Chimie et Biologie des Membranes et Nano-objets, Batiment B14, Allée Geoffrey St Hilaire, CS90063, F-33615, Pessac, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Katsuda Y, Ohta T, Miyajima K, Kemmochi Y, Sasase T, Tong B, Shinohara M, Yamada T. Diabetic complications in obese type 2 diabetic rat models. Exp Anim 2014; 63:121-32. [PMID: 24770637 PMCID: PMC4160981 DOI: 10.1538/expanim.63.121] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We overviewed the pathophysiological features of diabetes and its complications in obese
type 2 diabetic rat models: Otsuka Long-Evans Tokushima fatty (OLETF) rat, Wistar fatty
rat, Zucker diabetic fatty (ZDF) rat and Spontaneously diabetic Torii (SDT) fatty rat.
Pancreatic changes with progression of diabetes were classified into early changes, such
as islet hypertrophy and degranulation of β cells, and degenerative changes, such as islet
atrophy and fibrosis of islet with infiltration of inflammatory cells. Renal lesions in
tubuli and glomeruli were observed, and nodular lesions in glomeruli were notable changes
in OLETF and SDT fatty rats. Among retinal changes, folding and thickening were
interesting findings in SDT fatty rats. A decrease of motor nerve conduction velocity with
progression of diabetes was presented in obese diabetic rats. Other diabetic
complications, osteoporosis and sexual dysfunction, were also observed. Observation of
bone metabolic abnormalities, including decrease of osteogenesis and bone mineral density,
and sexual dysfunction, including hypotestosteronemia and erectile dysfunction, in obese
type 2 diabetic rats have been reported.
Collapse
Affiliation(s)
- Yoshiaki Katsuda
- Japan Tobacco Inc., Central Pharmaceutical Research Institute, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hodson DJ, Tarasov AI, Gimeno Brias S, Mitchell RK, Johnston NR, Haghollahi S, Cane MC, Bugliani M, Marchetti P, Bosco D, Johnson PR, Hughes SJ, Rutter GA. Incretin-modulated beta cell energetics in intact islets of Langerhans. Mol Endocrinol 2014; 28:860-71. [PMID: 24766140 PMCID: PMC4042069 DOI: 10.1210/me.2014-1038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Incretins such as glucagon-like peptide 1 (GLP-1) are released from the gut and potentiate insulin release in a glucose-dependent manner. Although this action is generally believed to hinge on cAMP and protein kinase A signaling, up-regulated beta cell intermediary metabolism may also play a role in incretin-stimulated insulin secretion. By employing recombinant probes to image ATP dynamically in situ within intact mouse and human islets, we sought to clarify the role of GLP-1-modulated energetics in beta cell function. Using these techniques, we show that GLP-1 engages a metabolically coupled subnetwork of beta cells to increase cytosolic ATP levels, an action independent of prevailing energy status. We further demonstrate that the effects of GLP-1 are accompanied by alterations in the mitochondrial inner membrane potential and, at elevated glucose concentration, depend upon GLP-1 receptor-directed calcium influx through voltage-dependent calcium channels. Lastly, and highlighting critical species differences, beta cells within mouse but not human islets respond coordinately to incretin stimulation. Together, these findings suggest that GLP-1 alters beta cell intermediary metabolism to influence ATP dynamics in a species-specific manner, and this may contribute to divergent regulation of the incretin-axis in rodents and man.
Collapse
Affiliation(s)
| | | | - Silvia Gimeno Brias
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ryan K. Mitchell
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Natalie R. Johnston
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Shahab Haghollahi
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Matthew C. Cane
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Marco Bugliani
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Piero Marchetti
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Domenico Bosco
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Paul R. Johnson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Stephen J. Hughes
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine (D.J.H, A.I.T., S.G.B., R.K.M., N.R.J., S.H., M.C.C., G.A.R.), Imperial College London, London W12 0NN, United Kingdom; Department of Endocrinology and Metabolism (M.B., P.M.), University of Pisa, 56126 Pisa, Italy; Cell Isolation and Transplantation Center, Department of Surgery (D.B.), Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland; Oxford Centre for Diabetes, Endocrinology, & Metabolism (P.R.J., S.J.H.), University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre (P.R.J., S.J.H.), Churchill Hospital, Oxford OX3 7LE, United Kingdom; and Nuffield Department of Surgical Sciences (P.R.J., S.J.H.), University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
33
|
Efficient neuronal in vitro and in vivo differentiation after immunomagnetic purification of mESC derived neuronal precursors. Stem Cell Res 2012; 10:133-46. [PMID: 23237958 DOI: 10.1016/j.scr.2012.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 02/06/2023] Open
Abstract
The cellular heterogeneity that is generated during the differentiation of pluripotent stem cells into specific neural subpopulations represents a major obstacle for experimental and clinical progress. To address this problem we developed an optimized strategy for magnetic isolation of PSA-NCAM positive neuronal precursors from embryonic stem cells (ESCs) derived neuronal cultures. PSA-NCAM enrichment at an early step of the in vitro differentiation process increased the number of ES cell derived neurons and reduced cellular diversity. Gene expression analysis revealed that mainly genes involved in neuronal activity were over-represented after purification. In vitro derived PSA-NCAM(+) enriched precursors were characterized in vivo through grafting into the forebrain of adult mice. While unsorted control cells 40 days post graft gave rise to a mixed population composed of immature precursors, early postmitotic neurons and glial cells, PSA-NCAM(+) enriched cells differentiated predominantly into NeuN positive cells. Furthermore, PSA-NCAM enriched population showed efficient migration towards the olfactory bulb after transplantation into the rostral migratory stream of the forebrain neurogenic system. Thus, enrichment of neuronal precursors based on PSA-NCAM expression represents a general and straightforward approach to narrow cellular heterogeneity during neuronal differentiation of pluripotent cells.
Collapse
|
34
|
Katsuta H, Aguayo-Mazzucato C, Katsuta R, Akashi T, Hollister-Lock J, Sharma AJ, Bonner-Weir S, Weir GC. Subpopulations of GFP-marked mouse pancreatic β-cells differ in size, granularity, and insulin secretion. Endocrinology 2012; 153:5180-7. [PMID: 22919061 PMCID: PMC3473214 DOI: 10.1210/en.2012-1257] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is growing information about the heterogeneity of pancreatic β-cells and how it relates to insulin secretion. This study used the approach of flow cytometry to sort and analyze β-cells from transgenic mice expressing green fluorescent protein (GFP) under the control of the mouse insulin I gene promoter. Three populations of β-cells with differing GFP brightness could be identified, which were classified as GFP-low, GFP-medium, and GFP-bright. The GFP-medium population comprised about 70% of the total. The GFP-low population had less insulin secretion as determined by the reverse hemolytic plaque assay and reduced insulin gene expression. Additionally, all three subpopulations of β-cells were found in mice of varying ages (embryonic d 15.5 and postnatal wk 1-9). The three populations from the youngest had larger cells (forward scatter) and less granularity (side scatter) than those from the adults. This approach opens up new ways to advance knowledge about β-cell heterogeneity.
Collapse
Affiliation(s)
- Hitoshi Katsuta
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
36
|
Kirkpatrick CL, Marchetti P, Purrello F, Piro S, Bugliani M, Bosco D, de Koning EJP, Engelse MA, Kerr-Conte J, Pattou F, Wollheim CB. Type 2 diabetes susceptibility gene expression in normal or diabetic sorted human alpha and beta cells: correlations with age or BMI of islet donors. PLoS One 2010; 5:e11053. [PMID: 20548773 PMCID: PMC2883550 DOI: 10.1371/journal.pone.0011053] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/17/2010] [Indexed: 11/18/2022] Open
Abstract
Background Genome-wide association studies have identified susceptibility genes for development of type 2 diabetes. We aimed to examine whether a subset of these (comprising FTO, IDE, KCNJ11, PPARG and TCF7L2) were transcriptionally restricted to or enriched in human beta cells by sorting islet cells into alpha and beta – specific fractions. We also aimed to correlate expression of these transcripts in both alpha and beta cell types with phenotypic traits of the islet donors and to compare diabetic and non-diabetic cells. Methodology/Principal Findings Islet cells were sorted using a previously published method and RNA was extracted, reverse transcribed and used as the template for quantitative PCR. Sorted cells were also analysed for insulin and glucagon immunostaining and insulin secretion from the beta cells as well as insulin, glucagon and GLP-1 content. All five genes were expressed in both alpha and beta cells, with significant enrichment of KCNJ11 in the beta cells and of TCF7L2 in the alpha cells. The ratio of KCNJ11 in beta to alpha cells was negatively correlated with BMI, while KCNJ11 expression in alpha cells was negatively correlated with age but not associated with BMI. Beta cell expression of glucagon, TCF7L2 and IDE was increased in cells from islets that had spent more time in culture prior to cell sorting. In beta cells, KCNJ11, FTO and insulin were positively correlated with each other. Diabetic alpha and beta cells had decreased expression of insulin, glucagon and FTO. Conclusions/Significance This study has identified novel patterns of expression of type 2 diabetes susceptibility genes within sorted islet cells and suggested interactions of gene expression with age or BMI of the islet donors. However, expression of these genes in islets is less associated with BMI than has been found for other tissues.
Collapse
Affiliation(s)
- Clare L. Kirkpatrick
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Piero Marchetti
- Metabolic Unit, Department of Endocrinology and Metabolism, Cisanello Hospital, Pisa, Italy
| | - Francesco Purrello
- Department of Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, Catania, Italy
| | - Salvatore Piro
- Department of Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, Catania, Italy
| | - Marco Bugliani
- Metabolic Unit, Department of Endocrinology and Metabolism, Cisanello Hospital, Pisa, Italy
| | - Domenico Bosco
- Cell Isolation and Transplantation Centre, University Hospital, Geneva, Switzerland
| | | | - Marten A. Engelse
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Julie Kerr-Conte
- INSERM U859, University Lille Nord de France, University Hospital of Lille, Lille, France
| | - François Pattou
- INSERM U859, University Lille Nord de France, University Hospital of Lille, Lille, France
| | - Claes B. Wollheim
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|