1
|
Naganishi S, Hagihara H, Miyakawa T. Gene Expression Signatures of Immaturity, Decreased pH, and Neural Hyperexcitation in the Hippocampus of Alzheimer's Disease Model Mice. Neuropsychopharmacol Rep 2025; 45:e70001. [PMID: 39907034 DOI: 10.1002/npr2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
AIMS Alzheimer's disease (AD) is a leading cause of dementia, with increasing prevalence. Mutations in genes like MAPT, PSEN1, and PSEN2 are risk factors, leading to the development of several AD model mice. Recent hypotheses suggest AD brain pathology involves abnormal neurodevelopment, decreased pH, and neural hyperexcitation. However, it remains unclear to what extent these pathologies are reflected in the gene expression changes of AD models. This study aims to compare gene expression patterns in the brains of multiple AD model mice with those related to these three factors, evaluating the extent of overlap. METHODS We conducted a comprehensive search of public databases, collecting 20 gene expression datasets from the hippocampus of AD model mice. These datasets were compared with gene sets related to hippocampal maturation, brain pH, and neural hyperexcitation to statistically assess overlap. Pathway enrichment analysis explored the biological relevance of these gene expression changes. RESULTS The extent of overlap with maturity-, pH-, and hyperexcitation-associated genes varied across AD models, showing significant correlations between lower maturity, lower pH, and increased neural hyperexcitation. In MAPT mutant and APP+PSEN1 homozygous transgenic mice, these signatures became more pronounced with age. Pathway meta-analysis revealed that genes associated with maturity, pH, and hyperexcitation in AD models are involved in synaptic and channel functions, as well as inflammatory responses, consistent with previous studies. CONCLUSION These findings suggest that pathophysiological changes related to maturity, pH, and neural hyperexcitation play varying roles across individual AD model mice. Our recent study found a negative correlation between disease progression and actual pH levels in human AD patients. Considering the results presented in this study, maturity and neural hyperexcitation, which are correlated with pH, may also be linked to disease progression. Thus, gene expression changes in these factors could be useful markers for assessing the pathology in AD models.
Collapse
Affiliation(s)
- Sayaka Naganishi
- Department of Systems Medical Science, Fujita Health University Graduate School of Medicine, Toyoake, Aichi, Japan
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
2
|
Corton JC, Auerbach SS, Koyama N, Mezencev R, Yauk CL, Suzuki T. Review and meta-analysis of gene expression biomarkers predictive of chemical-induced genotoxicity in vivo. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025. [PMID: 39838547 DOI: 10.1002/em.22646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025]
Abstract
There is growing recognition across broad sectors of the toxicology community that gene expression biomarkers have the potential to identify genotoxic and nongenotoxic carcinogens through a weight-of-evidence approach, providing opportunities to reduce reliance on the 2-year bioassay to identify carcinogens. In August 2022, a workshop within the International Workshops on Genotoxicity Testing (IWGT) was held to critically review current methods to identify genotoxicants using various 'omics profiling methods. Here, we describe the findings of a workshop subgroup focused on the state of the science regarding the use of biomarkers to identify chemicals that act as genotoxicants in vivo. A total of 1341 papers were screened to identify those that were most relevant. While six published biomarkers with characterized accuracy were initially examined, four of the six were not considered further, because they had not been tested for classification accuracy using additional sets of chemicals or other transcript profiling platforms. Two independently derived biomarkers used in conjunction with standard computational techniques can identify genotoxic chemicals in vivo (rat liver or both rat and mouse liver) on different gene expression profiling platforms. The biomarkers have predictive accuracies of ≥92%. These biomarkers have the potential to be used in conjunction with other biomarkers in integrated test strategies using short-term rodent exposures to identify genotoxic and nongenotoxic chemicals that cause cancer.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Scott S Auerbach
- Division of the Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Naoki Koyama
- Translational Research Division, Safety and Bioscience Research Dept., Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Roman Mezencev
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Takayoshi Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| |
Collapse
|
3
|
Vats K, Tian H, Singh K, Tyurina YY, Sparvero LJ, Tyurin VA, Kruglov O, Chang A, Wang J, Green F, Samovich SN, Zhang J, Chattopadhyay A, Murray N, Shah VK, Mathers AR, Chandran UR, Pilewski JM, Kellum JA, Wenzel SE, Bayır H, Kagan VE, Bunimovich YL. Ferroptosis of select skin epithelial cells initiates and maintains chronic systemic immune-mediated psoriatic disease. J Clin Invest 2024; 135:e183219. [PMID: 39570671 PMCID: PMC11735110 DOI: 10.1172/jci183219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/15/2024] [Indexed: 01/30/2025] Open
Abstract
Dysregulations of epithelial-immune interactions frequently culminate in chronic inflammatory diseases of the skin, lungs, kidneys, and gastrointestinal tract. Yet, the intraepithelial processes that initiate and perpetuate inflammation in these organs are poorly understood. Here, by utilizing redox lipidomics we identified ferroptosis-associated peroxidation of polyunsaturated phosphatidylethanolamines in the epithelia of patients with asthma, cystic fibrosis, psoriasis, and renal failure. Focusing on psoriasis as a disease model, we used high-resolution mass spectrometry imaging and identified keratin 14-expressing (K14-expressing) keratinocytes executing a ferroptotic death program in human psoriatic skin. Psoriatic phenotype with characteristic Th1/Th17 skin and extracutaneous immune responses was initiated and maintained in a murine model designed to actuate ferroptosis in a fraction of K14+ glutathione peroxidase 4-deficient (Gpx4-deficient) epidermal keratinocytes. Importantly, an antiferroptotic agent, liproxstatin-1, was as effective as clinically relevant biological IL-12/IL-23/TNF-α-targeting therapies or the depletion of T cells in completely abrogating molecular, biochemical, and morphological features of psoriasis. As ferroptosis in select epidermal keratinocytes triggers and sustains a pathological psoriatic multiorgan inflammatory circuit, we suggest that strategies targeting ferroptosis or its causes may be effective in preventing or ameliorating a variety of chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Hua Tian
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, and
| | | | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, and
| | - Louis J. Sparvero
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, and
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, and
| | | | - Alexander Chang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jiefei Wang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Felicia Green
- Biomolecular Imaging Lab, Rosalind Franklin Institute, Didcot, United Kingdom
| | - Svetlana N. Samovich
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, and
| | | | | | | | | | | | - Uma R. Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - John A. Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sally E. Wenzel
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, and
| | - Hülya Bayır
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, and
| | | |
Collapse
|
4
|
Ledbetter V, Auerbach S, Everett LJ, Vallanat B, Lowit A, Akerman G, Gwinn W, Wehmas LC, Hughes MF, Devito M, Corton JC. A new approach methodology to identify tumorigenic chemicals using short-term exposures and transcript profiling. FRONTIERS IN TOXICOLOGY 2024; 6:1422325. [PMID: 39483698 PMCID: PMC11526388 DOI: 10.3389/ftox.2024.1422325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Current methods for cancer risk assessment are resource-intensive and not feasible for most of the thousands of untested chemicals. In earlier studies, we developed a new approach methodology (NAM) to identify liver tumorigens using gene expression biomarkers and associated tumorigenic activation levels (TALs) after short-term exposures in rats. The biomarkers are used to predict the six most common rodent liver cancer molecular initiating events. In the present study, we wished to confirm that our approach could be used to identify liver tumorigens at only one time point/dose and if the approach could be applied to (targeted) RNA-Seq analyses. Male rats were exposed for 4 days by daily gavage to 15 chemicals at doses with known chronic outcomes and liver transcript profiles were generated using Affymetrix arrays. Our approach had 75% or 85% predictive accuracy using TALs derived from the TG-GATES or DrugMatrix studies, respectively. In a dataset generated from the livers of male rats exposed to 16 chemicals at up to 10 doses for 5 days, we found that our NAM coupled with targeted RNA-Seq (TempO-Seq) could be used to identify tumorigenic chemicals with predictive accuracies of up to 91%. Overall, these results demonstrate that our NAM can be applied to both microarray and (targeted) RNA-Seq data generated from short-term rat exposures to identify chemicals, their doses, and mode of action that would induce liver tumors, one of the most common endpoints in rodent bioassays.
Collapse
Affiliation(s)
- Victoria Ledbetter
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
- Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, United States
| | - Scott Auerbach
- National Institute of Environmental Health Sciences (NIEHS), Division of Translational Toxicology, Durham, NC, United States
| | - Logan J. Everett
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, United States
| | - Gregory Akerman
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, United States
| | - William Gwinn
- National Institute of Environmental Health Sciences (NIEHS), Division of Translational Toxicology, Durham, NC, United States
| | - Leah C. Wehmas
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Michael F. Hughes
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Michael Devito
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
5
|
Corton JC, Ledbetter V, Cohen SM, Atlas E, Yauk CL, Liu J. A transcriptomic biomarker predictive of cell proliferation for use in adverse outcome pathway-informed testing and assessment. Toxicol Sci 2024; 201:174-189. [PMID: 39137154 DOI: 10.1093/toxsci/kfae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
High-throughput transcriptomics (HTTr) is increasingly being used to identify molecular targets of chemicals that can be linked to adverse outcomes. Cell proliferation (CP) is an important key event in chemical carcinogenesis. Here, we describe the construction and characterization of a gene expression biomarker that is predictive of the CP status in human and rodent tissues. The biomarker was constructed from 30 genes known to be increased in expression in prostate cancers relative to surrounding tissues and in cycling human MCF-7 cells after estrogen receptor (ER) agonist exposure. Using a large compendium of gene expression profiles to test utility, the biomarker could identify increases in CP in (i) 308 out of 367 tumor vs. normal surrounding tissue comparisons from 6 human organs, (ii) MCF-7 cells after activation of ER, (iii) after partial hepatectomy in mice and rats, and (iv) the livers of mice and rats after exposure to nongenotoxic hepatocarcinogens. The biomarker identified suppression of CP (i) under conditions of p53 activation by DNA damaging agents in human cells, (ii) in human A549 lung cells exposed to therapeutic anticancer kinase inhibitors (dasatinib, nilotnib), and (iii) in the mouse liver when comparing high levels of CP at birth to the low background levels in the adult. The responses using the biomarker were similar to those observed using conventional markers of CP including PCNA, Ki67, and BrdU labeling. The CP biomarker will be a useful tool for interpretation of HTTr data streams to identify CP status after exposure to chemicals in human cells or in rodent tissues.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Victoria Ledbetter
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Samuel M Cohen
- Department of Pathology and Microbiology and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198-3135, United States
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, ON K2K 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| |
Collapse
|
6
|
Ltaief SM, Nour-Eldine W, Manaph NPA, Tan TM, Anuar ND, Bensmail I, George J, Abdesselem HB, Al-Shammari AR. Dysregulated plasma autoantibodies are associated with B cell dysfunction in young Arab children with autism spectrum disorder in Qatar. Autism Res 2024; 17:1974-1993. [PMID: 39315457 DOI: 10.1002/aur.3235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and communication, as well as the occurrence of stereotyped and repetitive behaviors. Previous studies have provided solid evidence of dysregulated immune system in ASD; however, limited studies have investigated autoantibody profiles in individuals with ASD. This study aims to screen plasma autoantibodies in a well-defined cohort of young children with ASD (n = 100) and their matched controls (n = 60) utilizing a high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. We identified differential protein expression of 16 autoantibodies in ASD, which were correlated with differential gene expression of these markers in independent ASD cohorts. Meanwhile, we identified a distinct list of 33 autoantibodies associated with ASD severity; several of which were correlated with maternal age and birth weight in ASD. In addition, we found dysregulated numbers of circulating B cells and activated HLADR+ B cells in ASD, which were correlated with altered levels of several autoantibodies. Further in-depth analysis of B cell subpopulations revealed an increased frequency of activated naïve B cells in ASD, as well as an association of resting naïve B cells and transitional B cells with ASD severity. Pathway enrichment analysis revealed disrupted MAPK signaling in ASD, suggesting a potential relevance of this pathway to altered autoantibodies and B cell dysfunction in ASD. Finally, we found that a combination of eight autoantibodies associated with ASD severity showed an area under the curve (ROC-AUC) of 0.937 (95% CI = 0.890, 0.983; p < 0.001), which demonstrated the diagnostic accuracy of the eight-marker signature in the severity classification of ASD cases. Overall, this study determined dysregulated autoantibody profiles and B cell dysfunction in children with ASD and identified an eight-autoantibody panel for ASD severity classification.
Collapse
Affiliation(s)
- Samia M Ltaief
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Ti-Myen Tan
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Nur Diana Anuar
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jilbin George
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Houari B Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abeer R Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
7
|
Liu B, Cui D, Liu J, Shi JS. Transcriptome analysis of the aged SAMP8 mouse model of Alzheimer's disease reveals novel molecular targets of formononetin protection. Front Pharmacol 2024; 15:1440515. [PMID: 39234102 PMCID: PMC11371586 DOI: 10.3389/fphar.2024.1440515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024] Open
Abstract
Background Senescence-accelerated mouse prone 8 (SAMP8) and age-matched SAMR1 mice are used to study the pathogenesis and therapeutics of Alzheimer's disease (AD); however, the molecular mechanisms are not completely understood. Objective This study aimed to examine the effects of the 5-month administration of formononetin in SAMP8 mice and used RNA-seq to explore the molecular targets. Methods SAMP8 mice were orally administered formononetin (0, 8, and 16 mg/kg) from 4 months of age, and age-matched SAMR1 mice were used as controls. Behavioral tests were performed in 9-month-old mice, followed by histopathologic analysis. Total RNA from the hippocampus was isolated and subjected to RNA-seq, RT-qPCR, and bioinformatics analysis. Results The 9-month-old SAMP8 mice exhibited cognition deficits, evidenced by novel object recognition, open-field test, elevated plus maze, and passive avoidance. Nissl bodies in the cortex and hippocampus were decreased. Formononetin treatments ameliorated behavioral deficits and improved morphological changes, which were evidenced by Nissl and H&E staining. RNA-seq revealed distinct gene expression patterns between SAMP8 and SAMR1 mice. Differentially expressed genes in SAMP8 mice were attenuated or normalized by formononetin. Ingenuity pathway analysis (IPA) of canonical pathway and upstream regulators revealed increases in proinflammatory factors and immune dysfunction and decreases in NRF2 and SIRT-1 signaling pathways, leading to neuroinflammation. Formononetin treatment attenuated or reversed these molecular changes. The transcriptome of SAMP8 mice was correlated with transcriptomic profiles of other AD mouse models in the GEO database. Conclusion Neuroinflammation and decreased antioxidant and SIRT-1 signaling contributed to cognitive deficits in aged SAMP8 mice, which are potential therapeutic targets of formononetin in combination with other therapies.
Collapse
Affiliation(s)
- Bo Liu
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Di Cui
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing-Shan Shi
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Karunakaran KB, Ganapathiraju MK. Malignant peritoneal mesothelioma interactome with 417 novel protein-protein interactions. BJC REPORTS 2024; 2:42. [PMID: 39516360 PMCID: PMC11524009 DOI: 10.1038/s44276-024-00062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Malignant peritoneal mesothelioma (MPeM) is an aggressive cancer affecting the abdominal peritoneal lining and intra-abdominal organs, with a median survival of ~2.5 years. METHODS We constructed the protein interactome of 59 MPeM-associated genes with previously known protein-protein interactions (PPIs) as well as novel PPIs predicted using our previously developed HiPPIP computational model and analysed it for transcriptomic and functional associations and for repurposable drugs. RESULTS The MPeM interactome had over 400 computationally predicted PPIs and 4700 known PPIs. Transcriptomic evidence validated 75.6% of the genes in the interactome and 65% of the novel interactors. Some genes had tissue-specific expression in extramedullary hematopoietic sites and the expression of some genes could be correlated with unfavourable prognoses in various cancers. 39 out of 152 drugs that target the proteins in the interactome were identified as potentially repurposable for MPeM, with 29 having evidence from prior clinical trials, animal models or cell lines for effectiveness against peritoneal and pleural mesothelioma and primary peritoneal cancer. Functional modules related to chromosomal segregation, transcriptional dysregulation, IL-6 production and hematopoiesis were identified from the interactome. The MPeM interactome overlapped significantly with the malignant pleural mesothelioma interactome, revealing shared molecular pathways. CONCLUSIONS Our findings demonstrate the utility of the interactome in uncovering biological associations and in generating clinically translatable results.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bengaluru, 560012, India.
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, and Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, 5607 Baum Blvd, 5th Floor, Pittsburgh, PA, 15206, USA.
- Carnegie Mellon University in Qatar, Doha, Qatar.
| |
Collapse
|
9
|
Corton JC, Matteo G, Chorley B, Liu J, Vallanat B, Everett L, Atlas E, Meier MJ, Williams A, Yauk CL. A 50-gene biomarker identifies estrogen receptor-modulating chemicals in a microarray compendium. Chem Biol Interact 2024; 394:110952. [PMID: 38570061 DOI: 10.1016/j.cbi.2024.110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
High throughput transcriptomics (HTTr) profiling has the potential to rapidly and comprehensively identify molecular targets of environmental chemicals that can be linked to adverse outcomes. We describe here the construction and characterization of a 50-gene expression biomarker designed to identify estrogen receptor (ER) active chemicals in HTTr datasets. Using microarray comparisons, the genes in the biomarker were identified as those that exhibited consistent directional changes when ER was activated (4 ER agonists; 4 ESR1 gene constitutively active mutants) and opposite directional changes when ER was suppressed (4 antagonist treatments; 4 ESR1 knockdown experiments). The biomarker was evaluated as a predictive tool using the Running Fisher algorithm by comparison to annotated gene expression microarray datasets including those evaluating the transcriptional effects of hormones and chemicals in MCF-7 cells. Depending on the reference dataset used, the biomarker had a predictive accuracy for activation of up to 96%. To demonstrate applicability for HTTr data analysis, the biomarker was used to identify ER activators in a set of 15 chemicals that are considered potential bisphenol A (BPA) alternatives examined at up to 10 concentrations in MCF-7 cells and analyzed by full-genome TempO-Seq. Using benchmark dose (BMD) modeling, the biomarker genes stratified the ER potency of BPA alternatives consistent with previous studies. These results demonstrate that the ER biomarker can be used to accurately identify ER activators in transcript profile data derived from MCF-7 cells.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Geronimo Matteo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada; Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Brian Chorley
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Logan Everett
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Carole Lyn Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
10
|
Wu Y, Xin J, Li X, Yang T, Liu Y, Zhao Y, Xie W, Jiang M. Repurposing lansoprazole to alleviate metabolic syndrome via PHOSPHO1 inhibition. Acta Pharm Sin B 2024; 14:1711-1725. [PMID: 38572109 PMCID: PMC10985025 DOI: 10.1016/j.apsb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Drug repurposing offers an efficient approach to therapeutic development. In this study, our bioinformatic analysis first predicted an association between obesity and lansoprazole (LPZ), a commonly prescribed drug for gastrointestinal ulcers. We went on to show that LPZ treatment increased energy expenditure and alleviated the high-fat diet-induced obesity, insulin resistance, and hepatic steatosis in mice. Treatment with LPZ elicited thermogenic gene expression and mitochondrial respiration in primary adipocytes, and induced cold tolerance in cold-exposed mice, suggesting the activity of LPZ in promoting adipose thermogenesis and energy metabolism. Mechanistically, LPZ is an efficient inhibitor of adipose phosphocholine phosphatase 1 (PHOSPHO1) and produces metabolic benefits in a PHOSPHO1-dependent manner. Our results suggested that LPZ may stimulate adipose thermogenesis by inhibiting the conversion of 2-arachidonoylglycerol-lysophosphatidic acid (2-AG-LPA) to 2-arachidonoylglycerol (2-AG) and reduce the activity of the thermogenic-suppressive cannabinoid receptor signaling. In summary, we have uncovered a novel therapeutic indication and mechanism of LPZ in managing obesity and its related metabolic syndrome, and identified a potential metabolic basis by which LPZ improves energy metabolism.
Collapse
Affiliation(s)
- Yingting Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiaqi Xin
- Department of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xinyu Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ting Yang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yi Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongsheng Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mengxi Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
11
|
Karunakaran KB, Ganapathiraju MK, Jain S, Brahmachari SK, Balakrishnan N. Drug contraindications in comorbid diseases: a protein interactome perspective. NETWORK MODELING ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2024; 13:10. [DOI: 10.1007/s13721-023-00440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2025]
Abstract
AbstractAdverse drug reactions (ADRs) are leading causes of death and drug withdrawals and frequently co-occur with comorbidities. However, systematic studies on the effects of drugs on comorbidities are lacking. Drug interactions with the cellular protein–protein interaction (PPI) network give rise to ADRs. We selected 6 comorbid disease pairs, identified the drugs used in the treatment of the individual diseases ‘A’ and ‘B’– 44 drugs in anxiety and depression, 128 in asthma and hypertension, 48 in chronic obstructive pulmonary disease and heart failure, 58 in type 2 diabetes and obesity, 58 in Parkinson’s disease and schizophrenia, and 84 in rheumatoid arthritis and osteoporosis—and categorized them based on whether they aggravate the comorbid condition. We constructed drug target networks (DTNs) and examined their enrichment among genes in disease A/B PPI networks, expressed across 53 tissues and involved in ~ 1000 pathways. To characterize the biological features of the DTNs, we performed principal component analysis and computed the Euclidean distance between DTN component scores and feature loading values. DTNs of disease A drugs not contraindicated in B were affiliated with proteins common to A/B networks or uniquely found in the B network, similarly regulated common pathways, and disease-B specific pathways and tissues. DTNs of disease A drugs contraindicated in B were affiliated with common proteins or those uniquely found in the A network, differentially regulated common pathways, and disease A-specific pathways and tissues. Hence, DTN enrichment in pathways, tissues, and PPI networks of comorbid diseases will help identify drug contraindications in comorbidities.
Collapse
|
12
|
Karunakaran KB, Amemori KI. Spatiotemporal expression patterns of anxiety disorder-associated genes. Transl Psychiatry 2023; 13:385. [PMID: 38092764 PMCID: PMC10719387 DOI: 10.1038/s41398-023-02693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Anxiety disorders (ADs) are the most common form of mental disorder that affects millions of individuals worldwide. Although physiological studies have revealed the neural circuits related to AD symptoms, how AD-associated genes are spatiotemporally expressed in the human brain still remains unclear. In this study, we integrated genome-wide association studies of four human AD subtypes-generalized anxiety disorder, social anxiety disorder, panic disorder, and obsessive-compulsive disorder-with spatial gene expression patterns. Our investigation uncovered a novel division among AD-associated genes, marked by significant and distinct expression enrichments in the cerebral nuclei, limbic, and midbrain regions. Each gene cluster was associated with specific anxiety-related behaviors, signaling pathways, region-specific gene networks, and cell types. Notably, we observed a significant negative correlation in the temporal expression patterns of these gene clusters during various developmental stages. Moreover, the specific brain regions enriched in each gene group aligned with neural circuits previously associated with negative decision-making and anxious temperament. These results suggest that the two distinct gene clusters may underlie separate neural systems involved in anxiety. As a result, our findings bridge the gap between genes and neural circuitry, shedding light on the mechanisms underlying AD-associated behaviors.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Institute for the Advanced Study of Human Biology, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
13
|
Maurya VK, Szwarc MM, Lonard DM, Kommagani R, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Steroid receptor coactivator-2 drives epithelial reprogramming that enables murine embryo implantation. FASEB J 2023; 37:e23313. [PMID: 37962238 PMCID: PMC10655894 DOI: 10.1096/fj.202301581r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - San Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| |
Collapse
|
14
|
Robarts DR, Dai J, Lau C, Apte U, Corton JC. Hepatic Transcriptome Comparative In Silico Analysis Reveals Similar Pathways and Targets Altered by Legacy and Alternative Per- and Polyfluoroalkyl Substances in Mice. TOXICS 2023; 11:963. [PMID: 38133364 PMCID: PMC10748317 DOI: 10.3390/toxics11120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to the legacy PFAS (HFPO-DA (GenX), HFPO4, HFPO-TA, F-53B, 6:2 FTSA, and 6:2 FTCA), as well as a byproduct of PFAS manufacturing (Nafion BP2), are increasingly being found in the environment. The potential hazards of these new alternatives are less well known. To better understand the diversity of molecular targets of the PFAS, we performed a comparative toxicogenomics analysis of the gene expression changes in the livers of mice exposed to these PFAS, and compared these to five activators of PPARα, a common target of many PFAS. Using hierarchical clustering, pathway analysis, and predictive biomarkers, we found that most of the alternative PFAS modulate molecular targets that overlap with legacy PFAS. Only three of the 11 PFAS tested did not appreciably activate PPARα (Nafion BP2, 6:2 FTSA, and 6:2 FTCA). Predictive biomarkers showed that most PFAS (PFHxS, PFOA, PFOS, PFNA, HFPO-TA, F-53B, HFPO4, Nafion BP2) activated CAR. PFNA, PFHxS, PFOA, PFOS, HFPO4, HFPO-TA, F-53B, Nafion BP2, and 6:2 FTSA suppressed STAT5b, activated NRF2, and activated SREBP. There was no apparent relationship between the length of the carbon chain, type of head group, or number of ether linkages and the transcriptomic changes. This work highlights the similarities in molecular targets between the legacy and alternative PFAS.
Collapse
Affiliation(s)
- Dakota R. Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Christopher Lau
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
15
|
Flynn J, Ahmadi MM, McFarland CT, Kubal MD, Taylor MA, Cheng Z, Torchia EC, Edwards MG. Crowdsourcing temporal transcriptomic coronavirus host infection data: Resources, guide, and novel insights. Biol Methods Protoc 2023; 8:bpad033. [PMID: 38107402 PMCID: PMC10723038 DOI: 10.1093/biomethods/bpad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) reawakened the need to rapidly understand the molecular etiologies, pandemic potential, and prospective treatments of infectious agents. The lack of existing data on SARS-CoV-2 hampered early attempts to treat severe forms of coronavirus disease-2019 (COVID-19) during the pandemic. This study coupled existing transcriptomic data from severe acute respiratory syndrome-related coronavirus 1 (SARS-CoV-1) lung infection animal studies with crowdsourcing statistical approaches to derive temporal meta-signatures of host responses during early viral accumulation and subsequent clearance stages. Unsupervised and supervised machine learning approaches identified top dysregulated genes and potential biomarkers (e.g. CXCL10, BEX2, and ADM). Temporal meta-signatures revealed distinct gene expression programs with biological implications to a series of host responses underlying sustained Cxcl10 expression and Stat signaling. Cell cycle switched from G1/G0 phase genes, early in infection, to a G2/M gene signature during late infection that correlated with the enrichment of DNA damage response and repair genes. The SARS-CoV-1 meta-signatures were shown to closely emulate human SARS-CoV-2 host responses from emerging RNAseq, single cell, and proteomics data with early monocyte-macrophage activation followed by lymphocyte proliferation. The circulatory hormone adrenomedullin was observed as maximally elevated in elderly patients who died from COVID-19. Stage-specific correlations to compounds with potential to treat COVID-19 and future coronavirus infections were in part validated by a subset of twenty-four that are in clinical trials to treat COVID-19. This study represents a roadmap to leverage existing data in the public domain to derive novel molecular and biological insights and potential treatments to emerging human pathogens.
Collapse
Affiliation(s)
- James Flynn
- Illumina Corporation, San Diego, CA 92122, United States
| | - Mehdi M Ahmadi
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | | | | - Mark A Taylor
- Bioinfo Solutions LLC, Parker, CO 80134, United States
| | - Zhang Cheng
- Illumina Corporation, San Diego, CA 92122, United States
| | - Enrique C Torchia
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | |
Collapse
|
16
|
Neustaeter A, Brito LF, Hanna WJB, Baird JD, Schenkel FS. Investigating the Genetic Background of Spastic Syndrome in North American Holstein Cattle Based on Heritability, Genome-Wide Association, and Functional Genomic Analyses. Genes (Basel) 2023; 14:1479. [PMID: 37510383 PMCID: PMC10378964 DOI: 10.3390/genes14071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Spastic syndrome is a chronic, progressive disorder of adult cattle characterized by episodes of sudden involuntary muscle contractions or spasms of the extensor and abductor muscles of one or both hind limbs. In this study, a case-control genome-wide association study (GWAS) was performed on an adult Holstein cattle cohort. Based on the 50 K and high-density (HD) SNP panel GWAS, we identified 98 and 522 SNPs, respectively. The most significant genomic regions identified are located on BTA9 at approximately 87 megabase pairs (Mb) and BTA7 between 1 and 20 Mb. Functional analyses of significant SNPs identified genes associated with muscle contraction, neuron growth or regulation, and calcium or sodium ion movement. Two candidate genes (FIG4 and FYN) were identified. FIG4 is ubiquitously expressed in skeletal muscle and FYN is involved with processes such as forebrain development, neurogenesis, locomotion, neurogenesis, synapse development, neuron migration, and the positive regulation of neuron projection development. The CACNA1A gene, which codes for a calcium channel subunit protein in the calcium signaling pathway, seems the most compelling candidate gene, as many calcium ion channel disorders are non-degenerative, and produce spastic phenotypes. These results suggest that spastic syndrome is of polygenic inheritance, with important genomic areas of interest on BTA7 and BTA9.
Collapse
Affiliation(s)
- Anna Neustaeter
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - W J Brad Hanna
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John D Baird
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
17
|
El-Agnaf O, Bensmail I, Al-Nesf MAY, Flynn J, Taylor M, Majbour NK, Abdi IY, Vaikath NN, Farooq A, Vemulapalli PB, Schmidt F, Ouararhni K, Al-Siddiqi HH, Arredouani A, Wijten P, Al-Maadheed M, Mohamed-Ali V, Decock J, Abdesselem HB. Uncovering a neurological protein signature for severe COVID-19. Neurobiol Dis 2023; 182:106147. [PMID: 37178811 PMCID: PMC10174474 DOI: 10.1016/j.nbd.2023.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified. Plasma samples from 49 severe COVID-19 patients, 50 mild COVID-19 patients, and 40 healthy controls were subjected to Olink proteomics analysis of 184 CNS-enriched proteins. By using a multi-approach bioinformatics analysis, we identified a 34-neurological protein signature for COVID-19 severity and unveiled dysregulated neurological pathways in severe cases. Here, we identified a new neurological protein signature for severe COVID-19 that was validated in different independent cohorts using blood and postmortem brain samples and shown to correlate with neurological diseases and pharmacological drugs. This protein signature could potentially aid the development of prognostic and diagnostic tools for neurological complications in post-COVID-19 convalescent patients with long term neurological sequelae.
Collapse
Affiliation(s)
- Omar El-Agnaf
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Maryam A Y Al-Nesf
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar; Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK
| | | | | | - Nour K Majbour
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Y Abdi
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Nishant N Vaikath
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Abdulaziz Farooq
- Aspetar Hospital, Orthopaedic and Sports Medicine, Hospital, FIFA Medical Centre of Excellence, Doha, Qatar
| | | | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Khalid Ouararhni
- Genomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Heba H Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohammed Al-Maadheed
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Vidya Mohamed-Ali
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houari B Abdesselem
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
18
|
Santiago JA, Quinn JP, Potashkin JA. Co-Expression Network Analysis Identifies Molecular Determinants of Loneliness Associated with Neuropsychiatric and Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24065909. [PMID: 36982982 PMCID: PMC10058494 DOI: 10.3390/ijms24065909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Loneliness and social isolation are detrimental to mental health and may lead to cognitive impairment and neurodegeneration. Although several molecular signatures of loneliness have been identified, the molecular mechanisms by which loneliness impacts the brain remain elusive. Here, we performed a bioinformatics approach to untangle the molecular underpinnings associated with loneliness. Co-expression network analysis identified molecular 'switches' responsible for dramatic transcriptional changes in the nucleus accumbens of individuals with known loneliness. Loneliness-related switch genes were enriched in cell cycle, cancer, TGF-β, FOXO, and PI3K-AKT signaling pathways. Analysis stratified by sex identified switch genes in males with chronic loneliness. Male-specific switch genes were enriched in infection, innate immunity, and cancer-related pathways. Correlation analysis revealed that loneliness-related switch genes significantly overlapped with 82% and 68% of human studies on Alzheimer's (AD) and Parkinson's diseases (PD), respectively, in gene expression databases. Loneliness-related switch genes, BCAM, NECTIN2, NPAS3, RBM38, PELI1, DPP10, and ASGR2, have been identified as genetic risk factors for AD. Likewise, switch genes HLA-DRB5, ALDOA, and GPNMB are known genetic loci in PD. Similarly, loneliness-related switch genes overlapped in 70% and 64% of human studies on major depressive disorder and schizophrenia, respectively. Nine switch genes, HLA-DRB5, ARHGAP15, COL4A1, RBM38, DMD, LGALS3BP, WSCD2, CYTH4, and CNTRL, overlapped with known genetic variants in depression. Seven switch genes, NPAS3, ARHGAP15, LGALS3BP, DPP10, SMYD3, CPXCR1, and HLA-DRB5 were associated with known risk factors for schizophrenia. Collectively, we identified molecular determinants of loneliness and dysregulated pathways in the brain of non-demented adults. The association of switch genes with known risk factors for neuropsychiatric and neurodegenerative diseases provides a molecular explanation for the observed prevalence of these diseases among lonely individuals.
Collapse
Affiliation(s)
| | | | - Judith A Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
19
|
Matteo G, Leingartner K, Rowan-Carroll A, Meier M, Williams A, Beal MA, Gagné M, Farmahin R, Wickramasuriya S, Reardon AJF, Barton-Maclaren T, Christopher Corton J, Yauk CL, Atlas E. In vitro transcriptomic analyses reveal pathway perturbations, estrogenic activities, and potencies of data-poor BPA alternative chemicals. Toxicol Sci 2023; 191:266-275. [PMID: 36534918 PMCID: PMC9936204 DOI: 10.1093/toxsci/kfac127] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since initial regulatory action in 2010 in Canada, bisphenol A (BPA) has been progressively replaced by structurally related alternative chemicals. Unfortunately, many of these chemicals are data-poor, limiting toxicological risk assessment. We used high-throughput transcriptomics to evaluate potential hazards and compare potencies of BPA and 15 BPA alternative chemicals in cultured breast cancer cells. MCF-7 cells were exposed to BPA and 15 alternative chemicals (0.0005-100 µM) for 48 h. TempO-Seq (BioSpyder Inc) was used to examine global transcriptomic changes and estrogen receptor alpha (ERα)-associated transcriptional changes. Benchmark concentration (BMC) analysis was conducted to identify 2 global transcriptomic points of departure: (1) the lowest pathway median gene BMC and (2) the 25th lowest rank-ordered gene BMC. ERα activation was evaluated using a published transcriptomic biomarker and an ERα-specific transcriptomic point of departure was derived. Genes fitting BMC models were subjected to upstream regulator and canonical pathway analysis in Ingenuity Pathway Analysis. Biomarker analysis identified BPA and 8 alternative chemicals as ERα active. Global and ERα transcriptomic points of departure produced highly similar potency rankings with bisphenol AF as the most potent chemical tested, followed by BPA and bisphenol C. Further, BPA and transcriptionally active alternative chemicals enriched similar gene sets associated with increased cell division and cancer-related processes. These data provide support for future read-across applications of transcriptomic profiling for risk assessment of data-poor chemicals and suggest that several BPA alternative chemicals may cause hazards at similar concentrations to BPA.
Collapse
Affiliation(s)
- Geronimo Matteo
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K2K 0K9, Canada.,Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 9A7, Canada
| | - Karen Leingartner
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K2K 0K9, Canada.,Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 9A7, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K2K 0K9, Canada.,Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 9A7, Canada
| | - Matthew Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K2K 0K9, Canada.,Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 9A7, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K2K 0K9, Canada.,Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 9A7, Canada
| | - Marc A Beal
- Bureau of Chemical Safety, Health Canada.,Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Matthew Gagné
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Reza Farmahin
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Shamika Wickramasuriya
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Anthony J F Reardon
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Tara Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carole L Yauk
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 9A7, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K2K 0K9, Canada.,Department of Biochemistry, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
20
|
Robarts DR, Paine-Cabrera D, Kotulkar M, Venneman KK, Gunewardena S, Corton JC, Lau C, Foquet L, Bial G, Apte U. Identifying Human Specific Adverse Outcome Pathways of Per- and Polyfluoroalkyl Substances Using Liver-Chimeric Humanized Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526711. [PMID: 36778348 PMCID: PMC9915685 DOI: 10.1101/2023.02.01.526711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants with myriad adverse effects. While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most common contaminants, levels of replacement PFAS, such as perfluoro-2-methyl-3-oxahexanoic acid (GenX), are increasing. In rodents, PFOA, PFOS, and GenX have several adverse effects on the liver, including nonalcoholic fatty liver disease. Objective We aimed to determine human-relevant mechanisms of PFAS induced adverse hepatic effects using FRG liver-chimeric humanized mice with livers repopulated with functional human hepatocytes. Methods Male humanized mice were treated with 0.067 mg/L of PFOA, 0.145 mg/L of PFOS, or 1 mg/L of GenX in drinking water for 28 days. Liver and serum were collected for pathology and clinical chemistry, respectively. RNA-sequencing coupled with pathway analysis was used to determine molecular mechanisms. Results PFOS caused a significant decrease in total serum cholesterol and LDL/VLDL, whereas GenX caused a significant elevation in LDL/VLDL with no change in total cholesterol and HDL. PFOA had no significant changes in serum LDL/VLDL and total cholesterol. All three PFAS induced significant hepatocyte proliferation. RNA-sequencing with alignment to the human genome showed a total of 240, 162, and 619 differentially expressed genes after PFOA, PFOS, and GenX exposure, respectively. Upstream regulator analysis revealed inhibition of NR1D1, a transcriptional repressor important in circadian rhythm, as the major common molecular change in all PFAS treatments. PFAS treated mice had significant nuclear localization of NR1D1. In silico modeling showed PFOA, PFOS, and GenX potentially interact with the DNA-binding domain of NR1D1. Discussion These data implicate PFAS in circadian rhythm disruption via inhibition of NR1D1. These studies show that FRG humanized mice are a useful tool for studying the adverse outcome pathways of environmental pollutants on human hepatocytes in situ.
Collapse
Affiliation(s)
- Dakota R. Robarts
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Manasi Kotulkar
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Kaitlyn K. Venneman
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC
| | - Christopher Lau
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Research Triangle Park, NC
| | | | | | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
21
|
Ton TVT, Hong HHL, Kovi RC, Shockley KR, Peddada SD, Gerrish KE, Janardhan KS, Flake G, Stout MD, Sills RC, Pandiri AR. Chronic Inhalation Exposure to Antimony Trioxide Exacerbates the MAPK Signaling in Alveolar Bronchiolar Carcinomas in B6C3F1/N Mice. Toxicol Pathol 2023; 51:39-55. [PMID: 37009983 PMCID: PMC11368139 DOI: 10.1177/01926233231157322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Antimony trioxide (AT) is used as a flame retardant in fabrics and plastics. Occupational exposure in miners and smelters is mainly through inhalation and dermal contact. Chronic inhalation exposure to AT particulates in B6C3F1/N mice and Wistar Han rats resulted in increased incidences and tumor multiplicities of alveolar/bronchiolar carcinomas (ABCs). In this study, we demonstrated Kras (43%) and Egfr (46%) hotspot mutations in mouse lung tumors (n = 80) and only Egfr (50%) mutations in rat lung tumors (n = 26). Interestingly, there were no differences in the incidences of these mutations in ABCs from rats and mice at exposure concentrations that did and did not exceed the pulmonary overload threshold. There was increased expression of p44/42 mitogen-activated protein kinase (MAPK) (Erk1/2) protein in ABCs harboring mutations in Kras and/or Egfr, confirming the activation of MAPK signaling. Transcriptomic analysis indicated significant alterations in MAPK signaling such as ephrin receptor signaling and signaling by Rho-family GTPases in AT-exposed ABCs. In addition, there was significant overlap between transcriptomic data from mouse ABCs due to AT exposure and human pulmonary adenocarcinoma data. Collectively, these data suggest chronic AT exposure exacerbates MAPK signaling in ABCs and, thus, may be translationally relevant to human lung cancers.
Collapse
Affiliation(s)
- Thai-Vu T. Ton
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology (DTT), National Institute Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709
| | - Hue-Hua L. Hong
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology (DTT), National Institute Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709
| | - Ramesh C. Kovi
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology (DTT), National Institute Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, NIEHS, Research Triangle Park, NC 27709
| | - Shyamal D. Peddada
- Biostatistics and Computational Biology Branch, NIEHS, Research Triangle Park, NC 27709
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, NIEHS, Research Triangle Park, NC 27709
| | - Kyathanahalli S. Janardhan
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology (DTT), National Institute Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709
| | - Gordon Flake
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology (DTT), National Institute Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709
| | - Mathew D. Stout
- Office of the Scientific Director, DTT, NIEHS, Research Triangle Park, NC 27709
| | - Robert C. Sills
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology (DTT), National Institute Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709
| | - Arun R. Pandiri
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology (DTT), National Institute Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709
| |
Collapse
|
22
|
Hagihara H, Murano T, Miyakawa T. The gene expression patterns as surrogate indices of pH in the brain. Front Psychiatry 2023; 14:1151480. [PMID: 37200901 PMCID: PMC10185791 DOI: 10.3389/fpsyt.2023.1151480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Hydrogen ion (H+) is one of the most potent intrinsic neuromodulators in the brain in terms of concentration. Changes in H+ concentration, expressed as pH, are thought to be associated with various biological processes, such as gene expression, in the brain. Accumulating evidence suggests that decreased brain pH is a common feature of several neuropsychiatric disorders, including schizophrenia, bipolar disorder, autism spectrum disorder, and Alzheimer's disease. However, it remains unclear whether gene expression patterns can be used as surrogates for pH changes in the brain. In this study, we performed meta-analyses using publicly available gene expression datasets to profile the expression patterns of pH-associated genes, whose expression levels were correlated with brain pH, in human patients and mouse models of major central nervous system (CNS) diseases, as well as in mouse cell-type datasets. Comprehensive analysis of 281 human datasets from 11 CNS disorders revealed that gene expression associated with decreased pH was over-represented in disorders including schizophrenia, bipolar disorder, autism spectrum disorders, Alzheimer's disease, Huntington's disease, Parkinson's disease, and brain tumors. Expression patterns of pH-associated genes in mouse models of neurodegenerative disease showed a common time course trend toward lower pH over time. Furthermore, cell type analysis identified astrocytes as the cell type with the most acidity-related gene expression, consistent with previous experimental measurements showing a lower intracellular pH in astrocytes than in neurons. These results suggest that the expression pattern of pH-associated genes may be a surrogate for the state- and trait-related changes in pH in brain cells. Altered expression of pH-associated genes may serve as a novel molecular mechanism for a more complete understanding of the transdiagnostic pathophysiology of neuropsychiatric and neurodegenerative disorders.
Collapse
|
23
|
Hagihara H, Shoji H, Kuroiwa M, Graef IA, Crabtree GR, Nishi A, Miyakawa T. Forebrain-specific conditional calcineurin deficiency induces dentate gyrus immaturity and hyper-dopaminergic signaling in mice. Mol Brain 2022; 15:94. [PMID: 36414974 PMCID: PMC9682671 DOI: 10.1186/s13041-022-00981-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022] Open
Abstract
Calcineurin (Cn), a phosphatase important for synaptic plasticity and neuronal development, has been implicated in the etiology and pathophysiology of neuropsychiatric disorders, including schizophrenia, intellectual disability, autism spectrum disorders, epilepsy, and Alzheimer's disease. Forebrain-specific conditional Cn knockout mice have been known to exhibit multiple behavioral phenotypes related to these disorders. In this study, we investigated whether Cn mutant mice show pseudo-immaturity of the dentate gyrus (iDG) in the hippocampus, which we have proposed as an endophenotype shared by these disorders. Expression of calbindin and GluA1, typical markers for mature DG granule cells (GCs), was decreased and that of doublecortin, calretinin, phospho-CREB, and dopamine D1 receptor (Drd1), markers for immature GC, was increased in Cn mutants. Phosphorylation of cAMP-dependent protein kinase (PKA) substrates (GluA1, ERK2, DARPP-32, PDE4) was increased and showed higher sensitivity to SKF81297, a Drd1-like agonist, in Cn mutants than in controls. While cAMP/PKA signaling is increased in the iDG of Cn mutants, chronic treatment with rolipram, a selective PDE4 inhibitor that increases intracellular cAMP, ameliorated the iDG phenotype significantly and nesting behavior deficits with nominal significance. Chronic rolipram administration also decreased the phosphorylation of CREB, but not the other four PKA substrates examined, in Cn mutants. These results suggest that Cn deficiency induces pseudo-immaturity of GCs and that cAMP signaling increases to compensate for this maturation abnormality. This study further supports the idea that iDG is an endophenotype shared by certain neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Isabella A. Graef
- Department of Pathology, Stanford University of Medicine, Stanford, CA 94305 USA
| | - Gerald R. Crabtree
- Department of Pathology, Stanford University of Medicine, Stanford, CA 94305 USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
24
|
Corton JC, Lee JS, Liu J, Ren H, Vallanat B, DeVito M. Determinants of gene expression in the human liver: Impact of aging and sex on xenobiotic metabolism. Exp Gerontol 2022; 169:111976. [PMID: 36244585 PMCID: PMC10586520 DOI: 10.1016/j.exger.2022.111976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
There is a need to characterize the potential susceptibility of older adults to toxicity from environmental chemical exposures. Liver xenobiotic metabolizing enzymes (XMEs) play important roles in detoxifying and eliminating xenobiotics. We examined global gene expression in the livers of young (21-45 years) and old (69+ years) men and women. Differentially expressed genes (DEG) were identified using two-way ANOVA (p ≤ 0.05). We identified 1437 and 1670 DEGs between young and old groups in men and women, respectively. Only a minor number of the total number of genes overlapped (146 genes). Aging increased or decreased pathways involved in inflammation and intermediary metabolism, respectively. Aging led to numerous changes in the expression of XME genes or genes known to control their expression (~90 genes). Out of 10 cytochrome P450s activities examined, there were increased activities of CYP1A2 and CYP2C9 enzymes in the old groups. We also identified sex-dependent genes that were more numerous in the young group (1065) than in the old group (202) and included changes in XMEs. These studies indicate that the livers from aging humans when compared to younger adults exhibit changes in XMEs that may lead to differences in the metabolism of xenobiotics.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC 27711, United States of America.
| | - Janice S Lee
- Center for Public Health and Environmental Assessment, US EPA, Research Triangle Park, NC 27711, United States of America.
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC 27711, United States of America.
| | - Hongzu Ren
- Center for Public Health and Environmental Assessment, US EPA, Research Triangle Park, NC 27711, United States of America.
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC 27711, United States of America.
| | - Michael DeVito
- Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC 27711, United States of America.
| |
Collapse
|
25
|
Shen H, Bai X, Liu J, Liu P, Zhang T. Screening potential biomarkers of cholangiocarcinoma based on gene chip meta-analysis and small-sample experimental research. Front Oncol 2022; 12:1001400. [PMID: 36300097 PMCID: PMC9590411 DOI: 10.3389/fonc.2022.1001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare malignant tumor associated with poor prognosis. This study aimed to identify CCA biomarkers by investigating differentially expressed genes (DEGs) between CCA patients and healthy subjects obtained from the Gene Expression Omnibus database. Bioinformatics tools, including the Illumina BaseSpace Correlation Engine (BSCE) and Gene Expression Profiling Interactive Analysis (GEPIA), were used. The initial DEGs from GSE26566, GSE31370, and GSE77984 were analyzed using GEO2R and Venn, and protein–protein interaction networks were constructed using STRING. The BSCE was applied to assess curated CCA studies to select additional DEGs and them DEGs across the 10 biosets, which was supported by findings in the literature. The final 18 DEGs with clinical significance for CCA were further verified using GEPIA. These included CEACAM6, EPCAM, LAMC2, MMP11, KRT7, KRT17, KRT19, SFN, and SOX9, which were upregulated, and ADH1A, ALDOB, AOX1, CTH, FGA, FGB, FGG, GSTA1, and OTC, which were downregulated in CCA patients. Among these 18 genes, 56 groups of genes (two in each group) were significantly related, and none were independently and differentially expressed. The hub genes FGA, OTC, CTH, and MMP11, which were most correlated with the 18 DEGs, were screened using STRING. The significantly low expression of FGA, OTC, and CTH and significantly high expression of MMP11 were verified by immunohistochemical analysis. Overall, four CCA biomarkers were identified that might regulate the occurrence and development of this disease and affect the patient survival rate, and they have the potential to become diagnostic and therapeutic targets for patients with CCA.
Collapse
Affiliation(s)
- Hengyan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Tao Zhang, ; Ping Liu,
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Tao Zhang, ; Ping Liu,
| |
Collapse
|
26
|
Li HT, Xu L, Weisenberger DJ, Li M, Zhou W, Peng CC, Stachelek K, Cobrinik D, Liang G, Berry JL. Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy. Nat Commun 2022; 13:5523. [PMID: 36130950 PMCID: PMC9492718 DOI: 10.1038/s41467-022-33248-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023] Open
Abstract
Retinoblastoma (RB) is a cancer that forms in the developing retina of babies and toddlers. The goal of therapy is to cure the tumor, save the eye and maximize vision. However, it is difficult to predict which eyes are likely to respond to therapy. Predictive molecular biomarkers are needed to guide prognosis and optimize treatment decisions. Direct tumor biopsy is not an option for this cancer; however, the aqueous humor (AH) is an alternate source of tumor-derived cell-free DNA (cfDNA). Here we show that DNA methylation profiling of the AH is a valid method to identify the methylation status of RB tumors. We identify 294 genes directly regulated by methylation that are implicated in p53 tumor suppressor (RB1, p53, p21, and p16) and oncogenic (E2F) pathways. Finally, we use AH to characterize molecular subtypes that can potentially be used to predict the likelihood of treatment success for retinoblastoma patients.
Collapse
Affiliation(s)
- Hong-Tao Li
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
| | - Liya Xu
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, CA, 90033, USA
| | - Wanding Zhou
- University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Chen-Ching Peng
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Kevin Stachelek
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - David Cobrinik
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90089, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Jesse L Berry
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90089, USA.
| |
Collapse
|
27
|
Iwasaki S, Kaneda K. Genes Relating to Biological Processes of Endometriosis: Expression Changes Common to a Mouse Model and Patients. Drug Res (Stuttg) 2022; 72:523-533. [PMID: 36055285 DOI: 10.1055/a-1894-6817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Endometriosis is one of the most common gynecological diseases in women of reproductive age. Retrograde menstruation is considered a major reason for the development of endometriosis. The syngeneic transplantation mouse model is an endometriosis animal model that is considered to mimic retrograde menstruation. However, it remains poorly understood which genetic signatures of endometriosis are reflected in this model. Here, we employed an in vivo syngeneic mouse endometriosis model and identified differentially expressed genes (DEGs) between the ectopic and eutopic tissues using microarray analysis. Three gene expression profile datasets, GSE5108, GSE7305, and GSE11691, were downloaded from the Gene Expression Omnibus database and DEGs between ectopic and eutopic tissues from the same patients were identified. Gene ontology analysis of the DEGs revealed that biological processes including cell adhesion, the inflammatory response, the response to mechanical stimulus, cell proliferation, and extracellular matrix organization were enriched in both the model and patients. Of the 195 DEGs common to the model and patients, 154 showed the same expression pattern, and 28 of these 154 DEGs came up when PubMed was searched for each gene along with the terms "endometriosis" and "development". This is the first comparison of the DEGs of the mouse syngeneic endometriosis model and those of patients, and we identified the biological processes common to the model and patients at the transcriptional level. This model may be useful to evaluate the efficacy of drugs which target these biological processes.
Collapse
Affiliation(s)
- Shiho Iwasaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Discovery Research Laboratories, Nippon Shinyaku Co., Ltd., Kyoto, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
28
|
Elcombe CS, Monteiro A, Elcombe MR, Ghasemzadeh-Hasankolaei M, Sinclair KD, Lea R, Padmanabhan V, Evans NP, Bellingham M. Developmental exposure to real-life environmental chemical mixture programs a testicular dysgenesis syndrome-like phenotype in prepubertal lambs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103913. [PMID: 35738462 PMCID: PMC9554787 DOI: 10.1016/j.etap.2022.103913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 05/30/2023]
Abstract
Current declines in male reproductive health may, in part, be driven by anthropogenic environmental chemical (EC) exposure. Using a biosolids treated pasture (BTP) sheep model, this study examined the effects of gestational exposure to a translationally relevant EC mixture. Testes of 8-week-old ram lambs from mothers exposed to BTP during pregnancy contained fewer germ cells and had a greater proportion of Sertoli-cell-only seminiferous tubules. This concurs with previous published data from fetuses and neonatal lambs from mothers exposed to BTP. Comparison between the testicular transcriptome of biosolids lambs and human testicular dysgenesis syndrome (TDS) patients indicated common changes in genes involved in apoptotic and mTOR signalling. Gene expression data and immunohistochemistry indicated increased HIF1α activation and nuclear localisation in Leydig cells of BTP exposed animals. As HIF1α is reported to disrupt testosterone synthesis, these results provide a potential mechanism for the pathogenesis of this testicular phenotype, and TDS in humans.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Matthew R Elcombe
- MicroMatrices Associates Ltd, Dundee Technopole, James Lindsay Place, Dundee, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Richard Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
29
|
vanLieshout TL, Stouth DW, Hartel NG, Vasam G, Ng SY, Webb EK, Rebalka IA, Mikhail AI, Graham NA, Menzies KJ, Hawke TJ, Ljubicic V. The CARM1 transcriptome and arginine methylproteome mediate skeletal muscle integrative biology. Mol Metab 2022; 64:101555. [PMID: 35872306 PMCID: PMC9379683 DOI: 10.1016/j.molmet.2022.101555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins to regulate critical processes in health and disease. A mechanistic understanding of the role(s) of CARM1 in skeletal muscle biology is only gradually emerging. The purpose of this study was to elucidate the function of CARM1 in regulating the maintenance and plasticity of skeletal muscle. METHODS We used transcriptomic, methylproteomic, molecular, functional, and integrative physiological approaches to determine the specific impact of CARM1 in muscle homeostasis. RESULTS Our data defines the occurrence of arginine methylation in skeletal muscle and demonstrates that this mark occurs on par with phosphorylation and ubiquitination. CARM1 skeletal muscle-specific knockout (mKO) mice displayed altered transcriptomic and arginine methylproteomic signatures with molecular and functional outcomes confirming remodeled skeletal muscle contractile and neuromuscular junction characteristics, which presaged decreased exercise tolerance. Moreover, CARM1 regulates AMPK-PGC-1α signalling during acute conditions of activity-induced muscle plasticity. CONCLUSIONS This study uncovers the broad impact of CARM1 in the maintenance and remodelling of skeletal muscle biology.
Collapse
Affiliation(s)
| | - Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Nicolas G Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Erin K Webb
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology and the Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Rd, K1H 8M5, Ottawa, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
30
|
Corton JC, Liu J, Williams A, Cho E, Yauk CL. A gene expression biomarker identifies inhibitors of two classes of epigenome effectors in a human microarray compendium. Chem Biol Interact 2022; 365:110032. [PMID: 35777453 DOI: 10.1016/j.cbi.2022.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
Abstract
Biomarkers predictive of molecular and toxicological effects are needed to interpret emerging high-throughput transcriptomics (HTTr) data streams. To address the limited approaches available for identifying epigenotoxicants, we previously developed and validated an 81-gene biomarker that accurately predicts histone deacetylase inhibition (HDACi) in transcript profiles derived from chemically-treated TK6 cells. In the present study, we sought to determine if this biomarker (TGx-HDACi) could be used to identify HDACi chemicals in other cell lines using the Running Fisher correlation test. Using microarray comparisons derived from human cells exposed to HDACi, we found considerable heterogeneity in correlation with the TGx-HDACi biomarker dependent on chemical exposure conditions and tissue from which the cell line was derived. Using a defined set of conditions that overlapped with our earlier study, the biomarker was able to accurately identify HDACi chemicals (90-100% balanced accuracy). In an in silico screen of 2427 chemicals in 9660 chemical versus control comparisons, the biomarker coupled with the Running Fisher test was able to identify 14 additional HDACi chemicals as well as other chemicals not previously associated with HDACi. Most notable were 12 inhibitors of bromodomain (BRD) and extraterminal (BET) family proteins including BRD4 that bind to acetylated histones. The BET protein inhibitors could be distinguished from the HDACi based on differences in the expression of a small set of biomarker genes. Our results indicate that the TGx-HDACi biomarker will be useful for identifying inhibitors of two classes of epigenome effectors in HTTr screening studies.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Eunnara Cho
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
31
|
Hephzibah Cathryn R, Udhaya Kumar S, Younes S, Zayed H, George Priya Doss C. A review of bioinformatics tools and web servers in different microarray platforms used in cancer research. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:85-164. [PMID: 35871897 DOI: 10.1016/bs.apcsb.2022.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over the past decade, conventional lab work strategies have gradually shifted from being limited to a laboratory setting towards a bioinformatics era to help manage and process the vast amounts of data generated by omics technologies. The present work outlines the latest contributions of bioinformatics in analyzing microarray data and their application to cancer. We dissect different microarray platforms and their use in gene expression in cancer models. We highlight how computational advances empowered the microarray technology in gene expression analysis. The study on protein-protein interaction databases classified into primary, derived, meta-database, and prediction databases describes the strategies to curate and predict novel interaction networks in silico. In addition, we summarize the areas of bioinformatics where neural graph networks are currently being used, such as protein functions, protein interaction prediction, and in silico drug discovery and development. We also discuss the role of deep learning as a potential tool in the prognosis, diagnosis, and treatment of cancer. Integrating these resources efficiently, practically, and ethically is likely to be the most challenging task for the healthcare industry over the next decade; however, we believe that it is achievable in the long term.
Collapse
Affiliation(s)
- R Hephzibah Cathryn
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
32
|
Corton JC, Liu J, Kleinstreuer N, Gwinn MR, Ryan N. Towards replacement of animal tests with in vitro assays: a gene expression biomarker predicts in vitro and in vivo estrogen receptor activity. Chem Biol Interact 2022; 363:109995. [PMID: 35697134 DOI: 10.1016/j.cbi.2022.109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
High-throughput transcriptomics (HTTr) has the potential to support efforts to reduce or replace some animal tests. In past studies, we described a computational approach utilizing a gene expression biomarker consisting of 46 genes to predict estrogen receptor (ER) activity after chemical exposure in ER-positive human breast cancer cells including the MCF-7 cell line. We hypothesized that the biomarker model could identify ER activities of chemicals examined by Endocrine Disruptor Screening Program (EDSP) Tier 1 screening assays in which transcript profiles of the same chemicals were examined in MCF-7 cells. For the 62 chemicals examined including 5 chemicals examined in this study using RNA-Seq, the ER biomarker model accuracy was 1) 97% for in vitro reference chemicals, 2) 76-85% for guideline uterotrophic assays, and 3) 87-88% for guideline and nonguideline uterotrophic assays. For the same chemicals, these accuracies were similar or slightly better than those of the ToxCast ER model based on 18 in vitro assays. The performance of the ER biomarker model indicates that HTTr interpreted using the ER biomarker correctly identifies active and inactive ER reference chemicals. As part of the HTTr screening program the approach could rapidly identify chemicals with potential ER bioactivities for additional screening and testing.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC, 27711, USA.
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC, 27711, USA.
| | - Nicole Kleinstreuer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27711, USA.
| | - Maureen R Gwinn
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC, 27711, USA.
| | - Natalia Ryan
- Oak Ridge Institute for Science and Education (ORISE), Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
33
|
Santiago JA, Quinn JP, Potashkin JA. Physical Activity Rewires the Human Brain against Neurodegeneration. Int J Mol Sci 2022; 23:6223. [PMID: 35682902 PMCID: PMC9181322 DOI: 10.3390/ijms23116223] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Physical activity may offset cognitive decline and dementia, but the molecular mechanisms by which it promotes neuroprotection remain elusive. In the absence of disease-modifying therapies, understanding the molecular effects of physical activity in the brain may be useful for identifying novel targets for disease management. Here we employed several bioinformatic methods to dissect the molecular underpinnings of physical activity in brain health. Network analysis identified 'switch genes' associated with drastic hippocampal transcriptional changes in aged cognitively intact individuals. Switch genes are key genes associated with dramatic transcriptional changes and thus may play a fundamental role in disease pathogenesis. Switch genes are associated with protein processing pathways and the metabolic control of glucose, lipids, and fatty acids. Correlation analysis showed that transcriptional patterns associated with physical activity significantly overlapped and negatively correlated with those of neurodegenerative diseases. Functional analysis revealed that physical activity might confer neuroprotection in Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases via the upregulation of synaptic signaling pathways. In contrast, in frontotemporal dementia (FTD) its effects are mediated by restoring mitochondrial function and energy precursors. Additionally, physical activity is associated with the downregulation of genes involved in inflammation in AD, neurogenesis in FTD, regulation of growth and transcriptional repression in PD, and glial cell differentiation in HD. Collectively, these findings suggest that physical activity directs transcriptional changes in the brain through different pathways across the broad spectrum of neurodegenerative diseases. These results provide new evidence on the unique and shared mechanisms between physical activity and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
34
|
Morrison HA, Liu Y, Eden K, Nagai-Singer MA, Wade PA, Allen IC. NLRX1 Deficiency Alters the Gut Microbiome and Is Further Exacerbated by Adherence to a Gluten-Free Diet. Front Immunol 2022; 13:882521. [PMID: 35572547 PMCID: PMC9097893 DOI: 10.3389/fimmu.2022.882521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Patients with gluten sensitivities present with dysbiosis of the gut microbiome that is further exacerbated by a strict adherence to a gluten-free diet (GFD). A subtype of patients genetically susceptible to gluten sensitivities are Celiac Disease (CeD) patients, who are carriers of the HLA DR3/DQ2 or HLA DR4/DQ8 haplotypes. Although 85-95% of all CeD patients carry HLA DQ2, up to 25-50% of the world population carry this haplotype with only a minority developing CeD. This suggests that CeD and other gluten sensitivities are mediated by factors beyond genetics. The contribution of innate immune system signaling has been generally understudied in the context of gluten sensitivities. Thus, here we examined the role of NOD-like receptors (NLRs), a subtype of pattern recognition receptors, in maintaining the composition of the gut microbiome in animals maintained on a GFD. Human transcriptomics data revealed significant increases in the gene expression of multiple NLR family members, across functional groups, in patients with active CeD compared to control specimens. However, NLRX1 was uniquely down-regulated during active disease. NLRX1 is a negative regulatory NLR that functions to suppress inflammatory signaling and has been postulate to prevent inflammation-induced dysbiosis. Using Nlrx1-/- mice maintained on either a normal or gluten-free diet, we show that loss of NLRX1 alters the microbiome composition, and a distinctive shift further ensues following adherence to a GFD, including a reciprocal loss of beneficial microbes and increase in opportunistic bacterial populations. Finally, we evaluated the functional impact of an altered gut microbiome by assessing short- and medium-chain fatty acid production. These studies revealed significant differences in a selection of metabolic markers that when paired with 16S rRNA sequencing data could reflect an overall imbalance and loss of immune system homeostasis in the gastrointestinal system.
Collapse
Affiliation(s)
- Holly A Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Yang Liu
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Paul A Wade
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
35
|
Reed D, Kumar D, Kumar S, Raina K, Punia R, Kant R, Saba L, Cruickshank-Quinn C, Tabakoff B, Reisdorph N, Edwards MG, Wempe M, Agarwal C, Agarwal R. Transcriptome and metabolome changes induced by bitter melon ( Momordica charantia)- intake in a high-fat diet induced obesity model. J Tradit Complement Med 2022; 12:287-301. [PMID: 35493312 PMCID: PMC9039170 DOI: 10.1016/j.jtcme.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background and aim Metabolic syndrome (MetS) is a complex disease of physiological imbalances interrelated to abnormal metabolic conditions, such as abdominal obesity, type II diabetes, dyslipidemia and hypertension. In the present pilot study, we investigated the nutraceutical bitter melon (Momordica charantia L) -intake induced transcriptome and metabolome changes and the converging metabolic signaling networks underpinning its inhibitory effects against MetS-associated risk factors. Experimental procedure Metabolic effects of lyophilized bitter melon juice (BMJ) extract (oral gavage 200 mg/kg/body weight-daily for 40 days) intake were evaluated in diet-induced obese C57BL/6J male mice [fed-high fat diet (HFD), 60 kcal% fat]. Changes in a) serum levels of biochemical parameters, b) gene expression in the hepatic transcriptome (microarray analysis using Affymetrix Mouse Exon 1.0 ST arrays), and c) metabolite abundance levels in lipid-phase plasma [liquid chromatography mass spectrometry (LC-MS)-based metabolomics] after BMJ intervention were assessed. Results and conclusion BMJ-mediated changes showed a positive trend towards enhanced glucose homeostasis, vitamin D metabolism and suppression of glycerophospholipid metabolism. In the liver, nuclear peroxisome proliferator-activated receptor (PPAR) and circadian rhythm signaling, as well as bile acid biosynthesis and glycogen metabolism targets were modulated by BMJ (p < 0.05). Thus, our in-depth transcriptomics and metabolomics analysis suggests that BMJ-intake lowers susceptibility to the onset of high-fat diet associated MetS risk factors partly through modulation of PPAR signaling and its downstream targets in circadian rhythm processes to prevent excessive lipogenesis, maintain glucose homeostasis and modify immune responses signaling.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- BMJ, bitter melon juice
- Bitter melon
- DIO, diet-induced obese
- Diet intervention
- HDL, high density lipoprotein (cholesterol)
- HFD, high fat diet
- HMDB, Human Metabolome Database
- High fat diet-induced obesity
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LC-MS, liquid-chromatography mass spectrometry
- LDL, low density lipoprotein (cholesterol)
- MetS, Metabolic syndrome
- Metabolic syndrome
- Momordica charantia
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PPARs, Peroxisome proliferator-activated receptors
Collapse
Affiliation(s)
- Dominique Reed
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sushil Kumar
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Reenu Punia
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charmion Cruickshank-Quinn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Michael Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
36
|
Karunakaran KB, Balakrishnan N, Ganapathiraju MK. Interactome of SARS-CoV-2 Modulated Host Proteins With Computationally Predicted PPIs: Insights From Translational Systems Biology Studies. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2. [DOI: 10.3389/fsysb.2022.815237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Accelerated efforts to identify intervention strategies for the COVID-19 pandemic caused by SARS-CoV-2 need to be supported by deeper investigations into host invasion and response mechanisms. We constructed the neighborhood interactome network of the 332 human proteins targeted by SARS-CoV-2 proteins, augmenting it with 1,941 novel human protein-protein interactions predicted using our High-precision Protein-Protein Interaction Prediction (HiPPIP) model. Novel interactors, and the interactome as a whole, showed significant enrichment for genes differentially expressed in SARS-CoV-2-infected A549 and Calu-3 cells, postmortem lung samples of COVID-19 patients and blood samples of COVID-19 patients with severe clinical outcomes. The PPIs connected host proteins to COVID-19 blood biomarkers, ACE2 (SARS-CoV-2 entry receptor), genes differentiating SARS-CoV-2 infection from other respiratory virus infections, and SARS-CoV-targeted host proteins. Novel PPIs facilitated identification of the cilium organization functional module; we deduced the potential antiviral role of an interaction between the virus-targeted NUP98 and the cilia-associated CHMP5. Functional enrichment analyses revealed promyelocytic leukaemia bodies, midbody, cell cycle checkpoints and tristetraprolin pathway as potential viral targets. Network proximity of diabetes and hypertension associated genes to host proteins indicated a mechanistic basis for these co-morbidities in critically ill/non-surviving patients. Twenty-four drugs were identified using comparative transcriptome analysis, which include those undergoing COVID-19 clinical trials, showing broad-spectrum antiviral properties or proven activity against SARS-CoV-2 or SARS-CoV/MERS-CoV in cell-based assays. The interactome is available on a webserver at http://severus.dbmi.pitt.edu/corona/.
Collapse
|
37
|
Korunes KL, Liu J, Huang R, Xia M, Houck KA, Corton JC. A gene expression biomarker for predictive toxicology to identify chemical modulators of NF-κB. PLoS One 2022; 17:e0261854. [PMID: 35108274 PMCID: PMC8809623 DOI: 10.1371/journal.pone.0261854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/12/2021] [Indexed: 11/29/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) is a transcription factor with important roles in inflammation, immune response, and oncogenesis. Dysregulation of NF-κB signaling is associated with inflammation and certain cancers. We developed a gene expression biomarker predictive of NF-κB modulation and used the biomarker to screen a large compendia of gene expression data. The biomarker consists of 108 genes responsive to tumor necrosis factor α in the absence but not the presence of IκB, an inhibitor of NF-κB. Using a set of 450 profiles from cells treated with immunomodulatory factors with known NF-κB activity, the balanced accuracy for prediction of NF-κB activation was > 90%. The biomarker was used to screen a microarray compendium consisting of 12,061 microarray comparisons from human cells exposed to 2,672 individual chemicals to identify chemicals that could cause toxic effects through NF-κB. There were 215 and 49 chemicals that were identified as putative or known NF-κB activators or suppressors, respectively. NF-κB activators were also identified using two high-throughput screening assays; 165 out of the ~3,800 chemicals (ToxCast assay) and 55 out of ~7,500 unique compounds (Tox21 assay) were identified as potential activators. A set of 32 chemicals not previously associated with NF-κB activation and which partially overlapped between the different screens were selected for validation in wild-type and NFKB1-null HeLa cells. Using RT-qPCR and targeted RNA-Seq, 31 of the 32 chemicals were confirmed to be NF-κB activators. These results comprehensively identify a set of chemicals that could cause toxic effects through NF-κB.
Collapse
Affiliation(s)
- Katharine L. Korunes
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Keith A. Houck
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
38
|
Addicks GC, Zhang H, Ryu D, Vasam G, Green AE, Marshall PL, Patel S, Kang BE, Kim D, Katsyuba E, Williams EG, Renaud JM, Auwerx J, Menzies KJ. GCN5 maintains muscle integrity by acetylating YY1 to promote dystrophin expression. J Cell Biol 2022; 221:e202104022. [PMID: 35024765 PMCID: PMC8931935 DOI: 10.1083/jcb.202104022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Protein lysine acetylation is a post-translational modification that regulates protein structure and function. It is targeted to proteins by lysine acetyltransferases (KATs) or removed by lysine deacetylases. This work identifies a role for the KAT enzyme general control of amino acid synthesis protein 5 (GCN5; KAT2A) in regulating muscle integrity by inhibiting DNA binding of the transcription factor/repressor Yin Yang 1 (YY1). Here we report that a muscle-specific mouse knockout of GCN5 (Gcn5skm-/-) reduces the expression of key structural muscle proteins, including dystrophin, resulting in myopathy. GCN5 was found to acetylate YY1 at two residues (K392 and K393), disrupting the interaction between the YY1 zinc finger region and DNA. These findings were supported by human data, including an observed negative correlation between YY1 gene expression and muscle fiber diameter. Collectively, GCN5 positively regulates muscle integrity through maintenance of structural protein expression via acetylation-dependent inhibition of YY1. This work implicates the role of protein acetylation in the regulation of muscle health and for consideration in the design of novel therapeutic strategies to support healthy muscle during myopathy or aging.
Collapse
Affiliation(s)
- Gregory C Addicks
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexander E Green
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Philip L Marshall
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sonia Patel
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Baeki E Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Doyoun Kim
- Division of Therapeutics and Biotechnology, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Elena Katsyuba
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Kotajima-Murakami H, Hagihara H, Sato A, Hagino Y, Tanaka M, Katoh Y, Nishito Y, Takamatsu Y, Uchino S, Miyakawa T, Ikeda K. Exposure to GABA A Receptor Antagonist Picrotoxin in Pregnant Mice Causes Autism-Like Behaviors and Aberrant Gene Expression in Offspring. Front Psychiatry 2022; 13:821354. [PMID: 35185658 PMCID: PMC8850354 DOI: 10.3389/fpsyt.2022.821354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by impairments in social interaction and restricted/repetitive behaviors. The neurotransmitter γ-aminobutyric acid (GABA) through GABAA receptor signaling in the immature brain plays a key role in the development of neuronal circuits. Excitatory/inhibitory imbalance in the mature brain has been investigated as a pathophysiological mechanism of ASD. However, whether and how disturbances of GABA signaling in embryos that are caused by GABAA receptor inhibitors cause ASD-like pathophysiology are poorly understood. The present study examined whether exposure to the GABAA receptor antagonist picrotoxin causes ASD-like pathophysiology in offspring by conducting behavioral tests from the juvenile period to adulthood and performing gene expression analyses in mature mouse brains. Here, we found that male mice that were prenatally exposed to picrotoxin exhibited a reduction of active interaction time in the social interaction test in both adolescence and adulthood. The gene expression analyses showed that picrotoxin-exposed male mice exhibited a significant increase in the gene expression of odorant receptors. Weighted gene co-expression network analysis showed a strong correlation between social interaction and enrichment of the "odorant binding" pathway gene module. Our findings suggest that exposure to a GABAA receptor inhibitor during the embryonic period induces ASD-like behavior, and impairments in odorant function may contribute to social deficits in offspring.
Collapse
Affiliation(s)
- Hiroko Kotajima-Murakami
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
- Department of Biosciences, School of Science and Engineering, Teikyo University, Utsunomiya-Shi, Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake-Shi, Japan
| | - Atsushi Sato
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Japan
| | - Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
| | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
- Department of Psychiatry, The University of Tokyo Hospital, Bunkyo-Ku, Japan
| | - Yoshihisa Katoh
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
| | - Yukio Takamatsu
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
| | - Shigeo Uchino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
- Department of Biosciences, School of Science and Engineering, Teikyo University, Utsunomiya-Shi, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake-Shi, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Japan
| |
Collapse
|
40
|
Rooney J, Wehmas LC, Ryan N, Chorley BN, Hester SD, Kenyon EM, Schmid JE, George BJ, Hughes MF, Sey YM, Tennant AH, Simmons JE, Wood CE, Corton JC. Genomic comparisons between hepatocarcinogenic and non-hepatocarcinogenic organophosphate insecticides in the mouse liver. Toxicology 2022; 465:153046. [PMID: 34813904 DOI: 10.1016/j.tox.2021.153046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022]
Abstract
Short-term biomarkers of toxicity have an increasingly important role in the screening and prioritization of new chemicals. In this study, we examined early indicators of liver toxicity for three reference organophosphate (OP) chemicals, which are among the most widely used insecticides in the world. The OP methidathion was previously shown to increase the incidence of liver toxicity, including hepatocellular tumors, in male mice. To provide insights into the adverse outcome pathway (AOP) that underlies these tumors, effects of methidathion in the male mouse liver were examined after 7 and 28 day exposures and compared to those of two other OPs that either do not increase (fenthion) or possibly suppress liver cancer (parathion) in mice. None of the chemicals caused increases in liver weight/body weight or histopathological changes in the liver. Parathion decreased liver cell proliferation after 7 and 28 days while the other chemicals had no effects. There was no evidence for hepatotoxicity in any of the treatment groups. Full-genome microarray analysis of the livers from the 7 and 28 day treatments demonstrated that methidathion and fenthion regulated a large number of overlapping genes, while parathion regulated a unique set of genes. Examination of cytochrome P450 enzyme activities and use of predictive gene expression biomarkers found no consistent evidence for activation of AhR, CAR, PXR, or PPARα. Parathion suppressed the male-specific gene expression pattern through STAT5b, similar to genetic and dietary conditions that decrease liver tumor incidence in mice. Overall, these findings indicate that methidathion causes liver cancer by a mechanism that does not involve common mechanisms of liver cancer induction.
Collapse
Affiliation(s)
- John Rooney
- Oak Ridge Institute for Science and Education (ORISE) Research Participant at US EPA, Office of Research and Development, Center for Computational Toxicology and Exposure (formerly NHEERL), Research Triangle Park, NC, 27711, United States; National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States(3).
| | - Leah C Wehmas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Natalia Ryan
- Oak Ridge Institute for Science and Education (ORISE) Research Participant at US EPA, Office of Research and Development, Center for Computational Toxicology and Exposure (formerly NHEERL), Research Triangle Park, NC, 27711, United States; National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States(3).
| | - Brian N Chorley
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Susan D Hester
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Elaina M Kenyon
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Judith E Schmid
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States(3).
| | - Barbara Jane George
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Michael F Hughes
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Yusupha M Sey
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Alan H Tennant
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Jane Ellen Simmons
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Charles E Wood
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States(3).
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
41
|
Li R, Wang X, Huang Z, Balaji J, Kim TH, Wang T, Zhou L, Deleon A, Cook ME, Marbrey MW, Wu SP, Jeong JW, Arora R, DeMayo FJ. The role of epithelial progesterone receptor isoforms in embryo implantation. iScience 2021; 24:103487. [PMID: 34934913 DOI: 10.1016/j.isci.2021.103487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
The loss of uterine epithelial progesterone receptor (PGR) is crucial for successful embryo implantation in both humans and mice. The two major isoforms PGRA and PGRB have divergent functions under both physiological and pathological conditions. The present study compares phenotypes and gene signatures of PGRA and PGRB in uterine epithelium using uterine epithelial-specific constitutively expressed PGRA or PGRB mouse models. The cistrome and transcriptome analysis reveals substantial overlap between epithelial PGRA and PGRB, and both disrupt embryo implantation through FOXO1 pathways. Constitutive epithelial PGRA and PGRB expression impairs ESR1 occupancy at the promoter of Lif leading to reduced Lif transcription and further exaggerates SGK1 expression leading to enhanced PI3K-SGK1 activities, and both contribute to the decline of nuclear FOXO1 expression. Our study demonstrates that PGRA and PGRB in the uterine epithelium act on a similar set of target genes and commonly regulate the LIF-SGK1-FOXO1 signaling pathway for embryo implantation.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Xiaoqiu Wang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jayani Balaji
- Department of Obstetrics, Gynecology and Reproductive Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48823, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Lecong Zhou
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Ashley Deleon
- Laser Capture Microdissection Core Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA.,Kelly Government Solutions, Rockville, MD, 20852, USA
| | - Molly E Cook
- Epigenomics and DNA Sequencing Core, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Margeaux W Marbrey
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Jae Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing 48823, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing 48823, MI, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
42
|
Mezencev R, Auerbach SS. Inferred inactivation of the Cftr gene in the duodena of mice exposed to hexavalent chromium (Cr(VI)) in drinking water supports its tumor-suppressor status and implies its potential role in Cr(VI)-induced carcinogenesis of the small intestines. Toxicol Appl Pharmacol 2021; 433:115773. [PMID: 34688701 PMCID: PMC9659473 DOI: 10.1016/j.taap.2021.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Carcinogenicity of hexavalent chromium [Cr (VI)] has been supported by a number of epidemiological and animal studies; however, its carcinogenic mode of action is still incompletely understood. To identify mechanisms involved in cancer development, we analyzed gene expression data from duodena of mice exposed to Cr(VI) in drinking water. This analysis included (i) identification of upstream regulatory molecules that are likely responsible for the observed gene expression changes, (ii) identification of annotated gene expression data from public repositories that correlate with gene expression changes in duodena of Cr(VI)-exposed mice, and (iii) identification of hallmark and oncogenic signature gene sets relevant to these data. We identified the inactivated CFTR gene among the top scoring upstream regulators, and found positive correlations between the expression data from duodena of Cr(VI)-exposed mice and other datasets in public repositories associated with the inactivation of the CFTR gene. In addition, we found enrichment of signatures for oncogenic signaling, sustained cell proliferation, impaired apoptosis and tissue remodeling. Results of our computational study support the tumor-suppressor role of the CFTR gene. Furthermore, our results support human relevance of the Cr(VI)-mediated carcinogenesis observed in the small intestines of exposed mice and suggest possible groups that may be more vulnerable to the adverse outcomes associated with the inactivation of CFTR by hexavalent chromium or other agents. Lastly, our findings predict, for the first time, the role of CFTR inactivation in chemical carcinogenesis and expand the range of plausible mechanisms that may be operative in Cr(VI)-mediated carcinogenesis of intestinal and possibly other tissues.
Collapse
Affiliation(s)
- Roman Mezencev
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Washington, DC, United States.
| | - Scott S Auerbach
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, United States
| |
Collapse
|
43
|
Xiong TW, Liu B, Wu Q, Xu YY, Liu P, Wang Y, Liu J, Shi JS. Beneficial effects of Dendrobium nobile Lindl. Alkaloids (DNLA) on anxiety and depression induced by chronic unpredictable stress in rats. Brain Res 2021; 1771:147647. [PMID: 34481787 DOI: 10.1016/j.brainres.2021.147647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Dendrobium nobile Lindl. alkaloid (DNLA) is effective against animal models of Alzheimer's disease. This study further examined its effect on anxiety and depression produced by chronic unpredictable stress (CUS). Rats were subjected to CUS for 42 days, followed by DNLA treatment (20 mg/kg/day, po) for 28 days. The behavioral tests, histopathology, neurotransmitters and RNA-Seq were examined. DNLA attenuated body weight loss and CUS-induced anxiety/depressive-like behaviors, as evidenced by the elevated-plus-maze test, open-field test and sucrose preference. DNLA alleviated neuronal damage and loss and increased Nissl bodies in the hippocampus CA2 region and cortex. DNLA decreased CUS-elevated 5-hydroxytryptamine, dopamine and monoamine oxidase and catechol-O-methyltransferase activities in the brain. DNLA attenuated HPA activation by decreasing adrenocorticotropic hormones and the expression of corticotropin-releasing hormone receptor-1, and increased the expression of glucocorticoid receptor in the brain. RNA-Seq revealed distinct gene expression patterns among groups. Gene ontology revealed the cell projection assembly, postsynapse and centrosome as top biological processes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed the cAMP, cGMP-PKG, glutamatergic synapse and circadian as major pathways for DNLA effects. Using DESeq2, CUS modulated 1700 differentially expressed genes (DEGs), which were prevented or attenuated by DNLA. CUS-induced DEGs were highly correlated with the Gene Expression Omnibus (GEO) database for anxiety and depression and were ameliorated by DNLA. Taken together, DNLA attenuated anxiety/depression-like behavior and neuronal damage induced by CUS in rats. The mechanisms could be related to regulation of the monoamine neurotransmitters and the HPA axis, and modulation of gene expression in the hippocampus.
Collapse
Affiliation(s)
- Ting-Wang Xiong
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China; Zunyi Medical and Pharmaceutical College, Zunyi, China.
| | - Bo Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Qin Wu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yun-Yan Xu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Ping Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Clinical Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Yan Wang
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jing-Shan Shi
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
44
|
Willemsen J, Neuhoff MT, Hoyler T, Noir E, Tessier C, Sarret S, Thorsen TN, Littlewood-Evans A, Zhang J, Hasan M, Rush JS, Guerini D, Siegel RM. TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis. Cell Rep 2021; 37:109977. [PMID: 34758308 DOI: 10.1016/j.celrep.2021.109977] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor (TNF) is a key driver of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, in which affected tissues show an interferon-stimulated gene signature. Here, we demonstrate that TNF triggers a type-I interferon response that is dependent on the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. We show that TNF inhibits PINK1-mediated mitophagy and leads to altered mitochondrial function and to an increase in cytosolic mtDNA levels. Using cGAS-chromatin immunoprecipitation (ChIP), we demonstrate that cytosolic mtDNA binds to cGAS after TNF treatment. Furthermore, TNF induces a cGAS-STING-dependent transcriptional response that mimics that of macrophages from rheumatoid arthritis patients. Finally, in an inflammatory arthritis mouse model, cGAS deficiency blocked interferon responses and reduced inflammatory cell infiltration and joint swelling. These findings elucidate a molecular mechanism linking TNF to type-I interferon signaling and suggest a potential benefit for therapeutic targeting of cGAS/STING in TNF-driven diseases.
Collapse
Affiliation(s)
- Joschka Willemsen
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland.
| | - Marie-Therese Neuhoff
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Thomas Hoyler
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Emma Noir
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Clemence Tessier
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Sophie Sarret
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Tara N Thorsen
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | | | - Juan Zhang
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Maroof Hasan
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - James S Rush
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Danilo Guerini
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Richard M Siegel
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| |
Collapse
|
45
|
H3K4 di-methylation governs smooth muscle lineage identity and promotes vascular homeostasis by restraining plasticity. Dev Cell 2021; 56:2765-2782.e10. [PMID: 34582749 PMCID: PMC8567421 DOI: 10.1016/j.devcel.2021.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
Epigenetic mechanisms contribute to the regulation of cell differentiation and function. Vascular smooth muscle cells (SMCs) are specialized contractile cells that retain phenotypic plasticity even after differentiation. Here, by performing selective demethylation of histone H3 lysine 4 di-methylation (H3K4me2) at SMC-specific genes, we uncovered that H3K4me2 governs SMC lineage identity. Removal of H3K4me2 via selective editing in cultured vascular SMCs and in murine arterial vasculature led to loss of differentiation and reduced contractility due to impaired recruitment of the DNA methylcytosine dioxygenase TET2. H3K4me2 editing altered SMC adaptative capacities during vascular remodeling due to loss of miR-145 expression. Finally, H3K4me2 editing induced a profound alteration of SMC lineage identity by redistributing H3K4me2 toward genes associated with stemness and developmental programs, thus exacerbating plasticity. Our studies identify the H3K4me2-TET2-miR145 axis as a central epigenetic memory mechanism controlling cell identity and function, whose alteration could contribute to various pathophysiological processes.
Collapse
|
46
|
Nakagawa C, Yokoyama S, Hosomi K, Takada M. Repurposing haloperidol for the treatment of rheumatoid arthritis: an integrative approach using data mining techniques. Ther Adv Musculoskelet Dis 2021; 13:1759720X211047057. [PMID: 34589142 PMCID: PMC8474350 DOI: 10.1177/1759720x211047057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023] Open
Abstract
Introduction Treatment of rheumatoid arthritis (RA) has advanced with the introduction of biological disease-modifying antirheumatic drugs. However, more than 20% of patients with RA still have moderate or severe disease activity. Hence, novel antirheumatic drugs are required. Recently, drug repurposing, a process of identifying new indications for existing drugs, has received great attention. Furthermore, a few reports have shown that antipsychotics are capable of affecting several cytokines that are also modulated by existing antirheumatic drugs. Therefore, we investigated the association between antipsychotics and RA by data mining using real-world data and bioinformatics databases. Methods Disproportionality and sequence symmetry analyses were employed to identify the associations between the investigational drugs and RA using the US Food and Drug Administration Adverse Event Reporting System (2004-2016) and JMDC administrative claims database (January 2005-April 2017; JMDC Inc., Tokyo, Japan), respectively. The reporting odds ratio (ROR) and information component (IC) were used in the disproportionality analysis to indicate a signal. The adjusted sequence ratio (SR) was used in the sequence symmetry analysis to indicate a signal. The bioinformatics analysis suite, BaseSpace Correlation Engine (Illumina, CA, USA) was employed to explore the molecular mechanisms associated with the potential candidates identified by the drug-repurposing approach. Results A potential inverse association between the antipsychotic haloperidol and RA, which exhibited significant inverse signals with ROR, IC, and adjusted SR, was found. Furthermore, the results suggested that haloperidol may exert antirheumatic effects by modulating various signaling pathways, including cytokine and chemokine signaling, major histocompatibility complex class-II antigen presentation, and Toll-like receptor cascade pathways. Conclusion Our drug-repurposing approach using data mining techniques identified haloperidol as a potential antirheumatic drug candidate.
Collapse
Affiliation(s)
- Chihiro Nakagawa
- Division of Drug Informatics, School of Pharmacy, Kindai University, Higashiosaka City, Japan
| | - Satoshi Yokoyama
- Division of Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka City 577-8502, Osaka, Japan
| | - Kouichi Hosomi
- Division of Drug Informatics, School of Pharmacy, Kindai University, Higashiosaka City, Japan
| | - Mitsutaka Takada
- Division of Drug Informatics, School of Pharmacy, Kindai University, Higashiosaka City, Japan
| |
Collapse
|
47
|
Nakajima R, Hagihara H, Miyakawa T. Similarities of developmental gene expression changes in the brain between human and experimental animals: rhesus monkey, mouse, Zebrafish, and Drosophila. Mol Brain 2021; 14:135. [PMID: 34493287 PMCID: PMC8425040 DOI: 10.1186/s13041-021-00840-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
AIM Experimental animals, such as non-human primates (NHPs), mice, Zebrafish, and Drosophila, are frequently employed as models to gain insights into human physiology and pathology. In developmental neuroscience and related research fields, information about the similarities of developmental gene expression patterns between animal models and humans is vital to choose what animal models to employ. Here, we aimed to statistically compare the similarities of developmental changes of gene expression patterns in the brains of humans with those of animal models frequently used in the neuroscience field. METHODS The developmental gene expression datasets that we analyzed consist of the fold-changes and P values of gene expression in the brains of animals of various ages compared with those of the youngest postnatal animals available in the dataset. By employing the running Fisher algorithm in a bioinformatics platform, BaseSpace, we assessed similarities between the developmental changes of gene expression patterns in the human (Homo sapiens) hippocampus with those in the dentate gyrus (DG) of the rhesus monkey (Macaca mulatta), the DG of the mouse (Mus musculus), the whole brain of Zebrafish (Danio rerio), and the whole brain of Drosophila (D. melanogaster). RESULTS Among all possible comparisons of different ages and animals in developmental changes in gene expression patterns within the datasets, those between rhesus monkeys and mice were highly similar to those of humans with significant overlap P-value as assessed by the running Fisher algorithm. There was the highest degree of gene expression similarity between 40-59-year-old humans and 6-12-year-old rhesus monkeys (overlap P-value = 2.1 × 10- 72). The gene expression similarity between 20-39-year-old humans and 29-day-old mice was also significant (overlap P = 1.1 × 10- 44). Moreover, there was a similarity in developmental changes of gene expression patterns between 1-2-year-old Zebrafish and 40-59-year-old humans (Overlap P-value = 1.4 × 10- 6). The overlap P-value of developmental gene expression patterns between Drosophila and humans failed to reach significance (30 days Drosophila and 6-11-year-old humans; overlap P-value = 0.0614). CONCLUSIONS These results indicate that the developmental gene expression changes in the brains of the rhesus monkey, mouse, and Zebrafish recapitulate, to a certain degree, those in humans. Our findings support the idea that these animal models are a valid tool for investigating the development of the brain in neurophysiological and neuropsychiatric studies.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
48
|
Ton TVT, Kovi RC, Peddada TN, Chhabria RM, Shockley KR, Flagler ND, Gerrish KE, Herbert RA, Behl M, Hoenerhoff MJ, Sills RC, Pandiri AR. Cobalt-induced oxidative stress contributes to alveolar/bronchiolar carcinogenesis in B6C3F1/N mice. Arch Toxicol 2021; 95:3171-3190. [PMID: 34468815 DOI: 10.1007/s00204-021-03146-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Rodent alveolar/bronchiolar carcinomas (ABC) that arise either spontaneously or due to chemical exposure are similar to a subtype of lung adenocarcinomas in humans. B6C3F1/N mice and F344/NTac rats exposed to cobalt metal dust (CMD) by inhalation developed ABCs in a dose dependent manner. In CMD-exposed mice, the incidence of Kras mutations in ABCs was 67% with 80% of those being G to T transversions on codon 12 suggesting a role of oxidative stress in the pathogenesis. In vitro studies, such as DMPO (5,5-dimethyl-1-pyrroline N-oxide) immune-spin trapping assay, and dihydroethidium (DHE) fluorescence assay on A549 and BEAS-2B cells demonstrated increased oxidative stress due to cobalt exposure. In addition, significantly increased 8-oxo-dG adducts were demonstrated by immunohistochemistry in lungs from mice exposed to CMD for 90 days. Furthermore, transcriptomic analysis on ABCs arising spontaneously or due to chronic CMD-exposure demonstrated significant alterations in canonical pathways related to MAPK signaling (IL-8, ErbB, Integrin, and PAK pathway) and oxidative stress (PI3K/AKT and Melatonin pathway) in ABCs from CMD-exposed mice. Oxidative stress can stimulate PI3K/AKT and MAPK signaling pathways. Nox4 was significantly upregulated only in CMD-exposed ABCs and NOX4 activation of PI3K/AKT can lead to increased ROS levels in human cancer cells. The gene encoding Ereg was markedly up-regulated in CMD-exposed mice. Oncogenic KRAS mutations have been shown to induce EREG overexpression. Collectively, all these data suggest that oxidative stress plays a significant role in CMD-induced pulmonary carcinogenesis in rodents and these findings may also be relevant in the context of human lung cancers.
Collapse
Affiliation(s)
- Thai-Vu T Ton
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Ramesh C Kovi
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,Experimental Pathology Laboratories Inc., Research Triangle Park, NC, 27709, USA.,Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Teja N Peddada
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Raveena M Chhabria
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Keith R Shockley
- Biostatistics and Computational Biology Branch, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Norris D Flagler
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Kevin E Gerrish
- Molecular Genomics Core Laboratory, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Ronald A Herbert
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Mamta Behl
- Toxicology Branch, DNTP, NIEHS, Research Triangle Park, NC, 27709, USA
| | - Mark J Hoenerhoff
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert C Sills
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Arun R Pandiri
- Comparative and Molecular Pathogenesis Branch, DNTP, NIEHS, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
49
|
Hoang TT, Qi C, Paul KC, Lee M, White JD, Richards M, Auerbach SS, Long S, Shrestha S, Wang T, Beane Freeman LE, Hofmann JN, Parks C, Xu CJ, Ritz B, Koppelman GH, London SJ. Epigenome-Wide DNA Methylation and Pesticide Use in the Agricultural Lung Health Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97008. [PMID: 34516295 PMCID: PMC8437246 DOI: 10.1289/ehp8928] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Pesticide exposure is associated with many long-term health outcomes; the potential underlying mechanisms are not well established for most associations. Epigenetic modifications, such as DNA methylation, may contribute. Individual pesticides may be associated with specific DNA methylation patterns but no epigenome-wide association study (EWAS) has evaluated methylation in relation to individual pesticides. OBJECTIVES We conducted an EWAS of DNA methylation in relation to several pesticide active ingredients. METHODS The Agricultural Lung Health Study is a case-control study of asthma, nested within the Agricultural Health Study. We analyzed blood DNA methylation measured using Illumina's EPIC array in 1,170 male farmers of European ancestry. For pesticides still on the market at blood collection (2009-2013), we evaluated nine active ingredients for which at least 30 participants reported past and current (within the last 12 months) use, as well as seven banned organochlorines with at least 30 participants reporting past use. We used robust linear regression to compare methylation at individual C-phosphate-G sites (CpGs) among users of a specific pesticide to never users. RESULTS Using family-wise error rate (p<9×10-8) or false-discovery rate (FDR<0.05), we identified 162 differentially methylated CpGs across 8 of 9 currently marketed active ingredients (acetochlor, atrazine, dicamba, glyphosate, malathion, metolachlor, mesotrione, and picloram) and one banned organochlorine (heptachlor). Differentially methylated CpGs were unique to each active ingredient, and a dose-response relationship with lifetime days of use was observed for most. Significant CpGs were enriched for transcription motifs and 28% of CpGs were associated with whole blood cis-gene expression, supporting functional effects of findings. We corroborated a previously reported association between dichlorodiphenyltrichloroethane (banned in the United States in 1972) and epigenetic age acceleration. DISCUSSION We identified differential methylation for several active ingredients in male farmers of European ancestry. These may serve as biomarkers of chronic exposure and could inform mechanisms of long-term health outcomes from pesticide exposure. https://doi.org/10.1289/EHP8928.
Collapse
Affiliation(s)
- Thanh T. Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kimberly C. Paul
- Department of Epidemiology, University of California, Los Angeles Fielding School of Public Health, Los Angeles, California, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Julie D. White
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Scott S. Auerbach
- Biomolecular Screening Branch, National Toxicology Program, NIEHS, NIH, DHHS, Morrisville, North Carolina, USA
| | | | - Srishti Shrestha
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Laura E. Beane Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Jonathan N. Hofmann
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Christine Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Cheng-Jian Xu
- Research Group of Bioinformatics and Computational Genomics, CiiM, Centre for individualized infection medicine, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Beate Ritz
- Department of Epidemiology, University of California, Los Angeles Fielding School of Public Health, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
50
|
Cervantes PW, Corton JC. A Gene Expression Biomarker Predicts Heat Shock Factor 1 Activation in a Gene Expression Compendium. Chem Res Toxicol 2021; 34:1721-1737. [PMID: 34170685 DOI: 10.1021/acs.chemrestox.0c00510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The United States Environmental Protection Agency (US EPA) recently developed a tiered testing strategy to use advances in high-throughput transcriptomics (HTTr) testing to identify molecular targets of thousands of environmental chemicals that can be linked to adverse outcomes. Here, we describe a method that uses a gene expression biomarker to predict chemical activation of heat shock factor 1 (HSF1), a transcription factor critical for proteome maintenance. The HSF1 biomarker was built from transcript profiles derived from A375 cells exposed to a HSF1-activating heat shock protein (HSP) 90 inhibitor in the presence or absence of HSF1 expression. The resultant 44 identified genes included those that (1) are dependent on HSF1 for regulation, (2) have direct interactions with HSF1 assessed by ChIP-Seq, and (3) are in the molecular chaperone family. To test for accuracy, the biomarker was compared in a pairwise manner to gene lists derived from treatments with known HSF1 activity (HSP and proteasomal inhibitors) using the correlation-based Running Fisher test; the balanced accuracy for prediction was 96%. A microarray compendium consisting of 12,092 microarray comparisons from human cells exposed to 2670 individual chemicals was screened using our approach; 112 and 19 chemicals were identified as putative HSF1 activators or suppressors, respectively, and most appear to be novel modulators. A large percentage of the chemical treatments that induced HSF1 also induced oxidant-activated NRF2 (∼46%). For five compounds or mixtures, we found that NRF2 activation occurred at lower concentrations or at earlier times than HSF1 activation, supporting the concept of a tiered cellular protection system dependent on the level of chemical-induced stress. The approach described here could be used to identify environmentally relevant chemical HSF1 activators in HTTr data sets.
Collapse
Affiliation(s)
- Patrick W Cervantes
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|