1
|
Warner BE, Patel J, Wang R, Adams-Haduch J, Gao YT, Koh WP, Wong KW, Chiang AKS, Yuan JM, Shair KHY. The Epstein-Barr Virus Nuclear Antigen 1 Variant Associated with Nasopharyngeal Carcinoma Defines the Sequence Criteria for Serologic Risk Prediction. Clin Cancer Res 2024; 30:5207-5217. [PMID: 39264275 PMCID: PMC11567791 DOI: 10.1158/1078-0432.ccr-24-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Antibodies to select Epstein-Barr virus proteins can diagnose early-stage nasopharyngeal carcinoma (NPC). We have previously shown that IgA against Epstein-Barr virus nuclear antigen 1 (EBNA1) can predict incident NPC in high- and intermediate-risk cohorts 4 years before diagnosis. Here, we tested EBNA1 variants, with mutants, to define the sequence requirements for an NPC risk assay. EXPERIMENTAL DESIGN Mammalian-expressed constructs were developed to represent EBNA1 variants 487V and 487A, which can differ by ≥15 amino acids in the N- and C-termini. Denatured lysates were evaluated by a refined IgA and IgG immunoblot assay in a case-control study using prediagnostic NPC sera from two independent cohorts in Singapore and Shanghai, the People's Republic of China. RESULTS At 95% sensitivity, 487V yielded a 94.9% specificity compared with 86.1% for 487A. EBNA1 deleted for the conserved glycine-alanine repeats (GAr) reduced false positives by 22.8%. NPC sera reacted more strongly to the C-terminus than healthy controls, but the C-terminal construct (a.a. 390-641) showed lower specificity (84.8%) than the EBNA1 GAr-deleted construct (92.4%) at 95% sensitivity. CONCLUSIONS Although EBNA1 IgA was present in healthy sera, most epitopes localized to the immunodominant GAr. We conclude that a refined EBNA1 antigen deleted for the GAr, but with residues consistently detected in Southeast Asian NPC tumors, is optimized for risk prediction with an extended sojourn time of 7.5 years. Furthermore, distinct EBNA1 serologic profiles enhanced the utility of the EBNA1 IgA assay for risk stratification. This illustrates the importance of serologically relevant EBNA1 sequences for NPC risk prediction and early detection.
Collapse
Affiliation(s)
- Benjamin E Warner
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Japan Patel
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Renwei Wang
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer Adams-Haduch
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ka Wo Wong
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alan K S Chiang
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Min Yuan
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kathy H Y Shair
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Alsaadawe M, Radman BA, Long J, Alsaadawi M, Fang W, Lyu X. Epstein Barr virus: A cellular hijacker in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189218. [PMID: 39549877 DOI: 10.1016/j.bbcan.2024.189218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Numerous studies have demonstrated the importance of the Epstein-Barr Virus (EBV), which was initially identified in 1964 while studying Burkitt's lymphoma, in the development of a number of cancers, including nasopharyngeal carcinoma, Hodgkin's lymphoma, Burkitt's lymphoma, and EBV-associated gastric carcinoma. Gammaherpesvirus EBV is extremely common; by adulthood, over 90 % of people worldwide have been infected. Usually, the virus causes a permanent latent infection in B cells, epithelial cells, and NK/T cells. It then contributes to oncogenesis by inhibiting apoptosis and promoting unchecked cell proliferation through its latent proteins, which include EBNA-1, LMP1, and LMP2A. Tumor progression further accelerated by EBV's capacity to transition between latent and lytic phases, especially in cases of nasopharyngeal carcinoma. Although our understanding of the molecular underpinnings of EBV has advanced, there are still difficulties in identifying latent infections and creating targeted therapeutics. To tackle EBV-associated malignancies, current research efforts are concentrated on developing vaccines, developing better diagnostic tools, and developing targeted treatments. In order to improve treatment approaches and lower the incidence of EBV-related cancers worldwide, more research into the relationship between EBV and immune evasion and cancer formation is necessary.
Collapse
Affiliation(s)
- Moyed Alsaadawe
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Al-Qadisiyah Education Directorate, Ministry of Education, Al-Qadisiyah, Iraq
| | - Bakeel A Radman
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Biology, College of Science and Education, Albaydha University, Albaydha, Yemen
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mohenned Alsaadawi
- Education College of Pure Science, Al-Muthanna University, Al-Muthanna, Iraq
| | - Weiyi Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Hsu WL, Tao J, Fu S, Yu KJ, Simon J, Chen TC, Chen CJ, Goldstein AM, Yu K, Hildesheim A, Waterboer T, Wang CP, Liu Z. Kinetics of EBV antibody-based NPC risk scores in Taiwan NPC multiplex families. Int J Cancer 2024; 155:1400-1408. [PMID: 38822730 PMCID: PMC11326971 DOI: 10.1002/ijc.35037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Nasopharyngeal carcinoma (NPC) risk prediction models based on Epstein-Barr virus (EBV)-antibody testing have shown potential for screening of NPC; however, the long-term stability is unclear. Here, we investigated the kinetics of two EBV-antibody NPC risk scores within the Taiwan NPC Multiplex Family Study. Among 545 participants with multiple blood samples, we evaluated the stability of a 2-marker enzyme-linked immunosorbent assay score and 13-marker multiplex serology score using the intra-class correlation coefficient (ICC) by fitting a linear mixed model that accounted for the clustering effect of multiple measurements per subject and age. We also estimated the clustering of positive tests using Fleiss's kappa statistic. Over an average 20-year follow-up, the 2-marker score showed high stability over time, whereas the 13-marker score was more variable (p < .05). Case-control status is associated with the kinetics of the antibody response, with higher ICCs among cases. Positive tests were more likely to cluster within the same individual for the 2-marker score than the 13-marker score (p < .05). The 2-marker score had an increase in specificity from ~90% for single measurement to ~96% with repeat testing. The 13-marker score had a specificity of ~73% for a single measurement that increased to ~92% with repeat testing. Among individuals who developed NPC, none experienced score reversion. Our findings suggest that repeated testing could improve the specificity of NPC screening in high-risk NPC multiplex families. Further studies are required to determine the impact on sensitivity, establish optimal screening intervals, and generalize these findings to general population settings in high-risk regions.
Collapse
Affiliation(s)
- Wan-Lun Hsu
- Data Science Center, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
- College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Jun Tao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sheng Fu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Julia Simon
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Tseng-Cheng Chen
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Agencia Costarriciense de Investigaciones Biologicas, San Jose, Costa Rica
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Cheng-Ping Wang
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Zheng X, Li X, Tang C, Zhang Y, Zhou T, Yang X, Liao Y, He Y, Wang T, Xue W, Jia W. Detection of Epstein‒Barr virus DNA methylation as tumor markers of nasopharyngeal carcinoma patients in saliva, oropharyngeal swab, oral swab, and mouthwash. MedComm (Beijing) 2024; 5:e673. [PMID: 39161799 PMCID: PMC11331033 DOI: 10.1002/mco2.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
Saliva biopsy of nasopharyngeal carcinoma (NPC) has been developed in our latest study, indicating the application of oral sampling in NPC detection. Further exploration of the potential for self-sampling from the oral cavity is necessary. A total of 907 various samples from oral cavity, including saliva (n = 262), oropharyngeal swabs (n = 250), oral swabs (n = 210), and mouthwash (n = 185), were collected. Epstein‒Barr virus (EBV) DNA methylation at the 12,420 bp CpG site in EBV genome from the repeat-copy W promoter (Wp) region and at the 11,029 bp CpG site in the single-copy C promoter (Cp) region were simultaneously detected in these samples. A significant increase in EBV methylation, no matter at Wp or Cp region, was found in all types of samples from NPC patients. However, EBV DNA methylation in saliva and oropharyngeal swab showed a better diagnostic performance in detecting NPC. The combination of these two sample types and two markers could help to improve the detection of NPC. Our study further explored the optimal self-sampling methods and detection target in the detection of NPC and may facilitate the application of EBV DNA methylation detection in a home-based large-scale screening of NPC.
Collapse
Affiliation(s)
- Xiao‐Hui Zheng
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Xi‐Zhao Li
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Cao‐Li Tang
- School of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Yu‐Meng Zhang
- School of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Ting Zhou
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Xiao‐Jing Yang
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Ying Liao
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Yong‐Qiao He
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Tong‐Min Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wen‐Qiong Xue
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wei‐Hua Jia
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
- School of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Chen VHE, Ong L, Teo WK, Siow CH, Goh HL, Tan C, Lim WS, Eu D, Cheong ISY, Chan SH, Loh KS, Tay JK. Clinical performance of a prefabricated immunofluorescence assay for nasopharyngeal cancer screening. Head Neck 2024; 46:2223-2232. [PMID: 38817018 DOI: 10.1002/hed.27790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) IgA serology for viral capsid antigen (VCA) and early antigen (EA) aids early detection of nasopharyngeal cancer (NPC), resulting in improved survival. We evaluated the diagnostic performance of a prefabricated immunofluorescent assay (IFA) for NPC screening in high-risk individuals. METHODS Sera from 96 biopsy-proven patients with NPC diagnosed at the outpatient clinic and 96 healthy family members were tested for EBV-VCA IgA and EBV-EA IgA using the prefabricated IFA from EUROIMMUN (EI) and the traditional immunofluorescence method. RESULTS The AUC of EI EBV-VCA IgA and EBV-EA IgA was 0.907 (95% confidence interval [CI]: 0.894-0.965) and 0.898 (95% CI: 0.848-0.947), respectively. Combined testing with the prefabricated assay at a threshold of VCA ≥1:320 or EA ≥1:10 showed 92.7% sensitivity and 81.2% specificity. Overall, the traditional EBV-EA IgA assay demonstrated the best accuracy (sensitivity 91.7% and specificity 96.9%) at a threshold of ≥1:5. CONCLUSION While the traditional IFA method was more accurate, the prefabricated IFA test kit can be a useful tool for NPC screening in high-risk populations.
Collapse
Affiliation(s)
- Vanessa Hui En Chen
- Department of Otolaryngology - Head and Neck Surgery, National University of Singapore, Singapore
- Department of Otolaryngology - Head and Neck Surgery, National University Hospital, Singapore
| | - Lizhen Ong
- Department of Laboratory Medicine, National University Hospital, Singapore
| | - Wei Keat Teo
- Department of Otolaryngology - Head and Neck Surgery, National University Hospital, Singapore
| | - Chor Hiang Siow
- Department of Otolaryngology - Head and Neck Surgery, National University Hospital, Singapore
| | - Han Lee Goh
- Department of Otolaryngology - Head and Neck Surgery, National University Hospital, Singapore
| | - Charmaine Tan
- Department of Otolaryngology - Head and Neck Surgery, National University Hospital, Singapore
| | - Wei Sian Lim
- Department of Otolaryngology - Head and Neck Surgery, National University Hospital, Singapore
| | - Donovan Eu
- Department of Otolaryngology - Head and Neck Surgery, National University Hospital, Singapore
| | - Ian S Y Cheong
- Pathnova Laboratories, Singapore
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Soh Ha Chan
- Pathnova Laboratories, Singapore
- World Health Organization Collaborating Centre for Research and Training in Immunology, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology - Head and Neck Surgery, National University of Singapore, Singapore
- Department of Otolaryngology - Head and Neck Surgery, National University Hospital, Singapore
| | - Joshua K Tay
- Department of Otolaryngology - Head and Neck Surgery, National University of Singapore, Singapore
- Department of Otolaryngology - Head and Neck Surgery, National University Hospital, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
6
|
Yang L, Kartsonaki C, Simon J, Yao P, Guo Y, Lv J, Walters RG, Chen Y, Fry H, Avery D, Yu C, Jin J, Mentzer AJ, Allen N, Butt J, Hill M, Li L, Millwood IY, Waterboer T, Chen Z. Prospective evaluation of the relevance of Epstein-Barr virus antibodies for early detection of nasopharyngeal carcinoma in Chinese adults. Int J Epidemiol 2024; 53:dyae098. [PMID: 39008896 PMCID: PMC11249388 DOI: 10.1093/ije/dyae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a major cause of nasopharyngeal carcinoma (NPC) and measurement of different EBV antibodies in blood may improve early detection of NPC. Prospective studies can help assess the roles of different EBV antibodies in predicting NPC risk over time. METHODS A case-cohort study within the prospective China Kadoorie Biobank of 512 715 adults from 10 (including two NPC endemic) areas included 295 incident NPC cases and 745 subcohort participants. A multiplex serology assay was used to quantify IgA and IgG antibodies against 16 EBV antigens in stored baseline plasma samples. Cox regression was used to estimate adjusted hazard ratios (HRs) for NPC and C-statistics to assess the discriminatory ability of EBV-markers, including two previously identified EBV-marker combinations, for predicting NPC. RESULTS Sero-positivity for 15 out of 16 EBV-markers was significantly associated with higher NPC risk. Both IgA and IgG antibodies against the same three EBV-markers showed the most extreme HRs, i.e. BGLF2 (IgA: 124.2 (95% CI: 63.3-243.9); IgG: 8.6 (5.5-13.5); LF2: [67.8 (30.0-153.1), 10.9 (7.2-16.4)]); and BFRF1: 26.1 (10.1-67.5), 6.1 (2.7-13.6). Use of a two-marker (i.e. LF2/BGLF2 IgG) and a four-marker (i.e. LF2/BGLF2 IgG and LF2/EA-D IgA) combinations yielded C-statistics of 0.85 and 0.84, respectively, which persisted for at least 5 years after sample collection in both endemic and non-endemic areas. CONCLUSIONS In Chinese adults, plasma EBV markers strongly predict NPC occurrence many years before clinical diagnosis. LF2 and BGLF2 IgG could identify NPC high-risk individuals to improve NPC early detection in community and clinical settings.
Collapse
Affiliation(s)
- Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julia Simon
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pang Yao
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yu Guo
- National Center for Cardiovascular Diseases, Fuwai Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hannah Fry
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Daniel Avery
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | | | | | - Naomi Allen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julia Butt
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hill
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Iona Y Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tim Waterboer
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Hsu CL, Chang YS, Li HP. Molecular diagnosis of nasopharyngeal carcinoma: Past and future. Biomed J 2024; 48:100748. [PMID: 38796105 PMCID: PMC11772973 DOI: 10.1016/j.bj.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originated from the nasopharynx epithelial cells and has been linked with Epstein-Barr virus (EBV) infection, dietary habits, environmental and genetic factors. It is a common malignancy in Southeast Asia, especially with gender preference among men. Due to its non-specific symptoms, NPC is often diagnosed at a late stage. Thus, the molecular diagnosis of NPC plays a crucial role in early detection, treatment selection, disease monitoring, and prognosis prediction. This review aims to provide a summary of the current state and the latest emerging molecular diagnostic techniques for NPC, including EBV-related biomarkers, gene mutations, liquid biopsy, and DNA methylation. Challenges and potential future directions of NPC molecular diagnosis will be discussed.
Collapse
Affiliation(s)
- Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.
| | - Hsin-Pai Li
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Wee JJ, Jang IJH, Teo NWY, Loh ICY, Charn TC, Eu DKC, Tsang RKY, Lim MY, Huang LM, Mok PKH, Toh ST, Lim CM. Screening of nasopharyngeal cancer in high-risk familial cohort: A practical approach using a screening algorithm. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2024; 53:268-271. [PMID: 38920184 DOI: 10.47102/annals-acadmedsg.2023273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In Singapore, nasopharyngeal cancer (NPC) is among the top 3 cancers afflicting middle-aged males (30–49 years old).1 Unfortunately, patients with early-stage NPC are often asymptomatic, and most patients (approx. 70%) are diagnosed with advanced disease with adversely reduced survival. First-degree relatives of NPC patients have about 4 to 10 times increased risk of developing NPC,2 and strategies for reducing NPC-specific mortality among this high-risk group are feasible. Herein, a working group from the Chapter Board of Otorhinolaryngologists Singapore proposed a screening algorithm for these high-risk individuals of NPC based on existing available evidence.
Collapse
Affiliation(s)
- Jia Jia Wee
- Department of Otorhinolaryngology and Head and Neck Surgery, Singapore General Hospital, Singapore
| | - Isabelle Jia Hui Jang
- Department of Otorhinolaryngology and Head and Neck Surgery, Singapore General Hospital, Singapore
| | - Neville Wei Yang Teo
- Department of Otorhinolaryngology and Head and Neck Surgery, Singapore General Hospital, Singapore
| | - Ian Chi Yuan Loh
- Department of Otorhinolaryngology and Head and Neck Surgery, Changi General Hospital, Singapore
| | - Tze Choong Charn
- Department of Otorhinolaryngology and Head and Neck Surgery, Sengkang General Hospital, Singapore
| | - Donovan Kum Chuen Eu
- Department of Otorhinolaryngology and Head and Neck Surgery, National University Hospital, Singapore
| | - Raymond King Yin Tsang
- Department of Otorhinolaryngology and Head and Neck Surgery, National University Hospital, Singapore
| | - Ming Yann Lim
- Department of Otorhinolaryngology and Head and Neck Surgery, Tan Tock Seng Hospital, Singapore
| | - Lilleen Minyi Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, Khoo Teck Puat Hospital, Singapore
| | - Paul Kan Hwei Mok
- My ENT Specialist, Mount Elizabeth Novena Specialist Centre and Farrer Park Hospital, Singapore
| | - Song Tar Toh
- Department of Otorhinolaryngology and Head and Neck Surgery, Singapore General Hospital, Singapore
| | - Chwee Ming Lim
- Department of Otorhinolaryngology and Head and Neck Surgery, Singapore General Hospital, Singapore
| |
Collapse
|
9
|
Polz A, Morshed K, Drop B, Drop A, Polz-Dacewicz M. Serum Anti-Zta and Anti-LMP1 Antibodies in Oropharyngeal Cancer Related to Epstein-Barr Virus-Diagnostic Usefulness. Cancers (Basel) 2024; 16:341. [PMID: 38254830 PMCID: PMC10814749 DOI: 10.3390/cancers16020341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The role of the Epstein-Barr virus (EBV), the first known human oncogenic virus, in the development of nasopharyngeal cancer (NPC) is already well documented. There are few studies in the available scientific literature on oropharyngeal cancer associated with EBV infection. Due to the lack of an effective vaccine against EBV, it is necessary to search for new markers for the early diagnosis and prognosis of this disease. The aim of current study was to determine the usefulness of anti-Zta and anti-LMP1 antibodies as diagnostic and prognostic markers in EBV positive OPSCC patients. METHODS For this purpose, experiments were carried out to determine both the prevalence and level of EBVCA, EBNA1, EA, Zta, and LMP1 antibodies in serum patients depending on histological differentiation-grading and TNM classification (ELISA assay). RESULTS Based on the obtained results, we showed that OPSCC EBV positive patients are characterized by a higher level of anti-Zta antibodies than in the EBV negative group. Their level depended on the clinical stage. Moreover, a ROC analysis confirmed the diagnostic accuracy of anti-Zta antibodies. CONCLUSIONS Anti-Zta and anti-LMP1 antibodies may be useful in the diagnosis of OPSCC. It seems that combined antibody testing should be performed to increase diagnostic accuracy.
Collapse
Affiliation(s)
- Anna Polz
- Genomed S.A., 02-971 Warsaw, Poland;
| | - Kamal Morshed
- Department of Otolaryngology Head and Neck Cancer, University of Technology and Humanities in Radom, 26-600 Radom, Poland;
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, 20-090 Lublin, Poland;
| | - Andrzej Drop
- 1st Department of Medical Radiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Diao H, Xue WQ, Wang TM, Yang DW, Deng CM, Li DH, Zhang WL, Liao Y, Wu YX, Chen XY, Zhou T, Li XZ, Zhang PF, Zheng XH, Zhang SD, Hu YZ, Cao SM, Liu Q, Ye WM, He YQ, Jia WH. The interaction and mediation effects between the host genetic factors and Epstein-Barr virus VCA-IgA in the risk of nasopharyngeal carcinoma. J Med Virol 2023; 95:e29224. [PMID: 37970759 DOI: 10.1002/jmv.29224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023]
Abstract
Previous studies have demonstrated strong associations between host genetic factors and Epstein-Barr virus (EBV) VCA-IgA with the risk of nasopharyngeal carcinoma (NPC). However, the specific interplay between host genetics and EBV VCA-IgA on NPC risk is not well understood. In this two-stage case-control study (N = 4804), we utilized interaction and mediation analysis to investigate the interplay between host genetics (genome-wide association study-derived polygenic risk score [PRS]) and EBV VCA-IgA antibody level in the NPC risk. We employed a four-way decomposition analysis to assess the extent to which the genetic effect on NPC risk is mediated by or interacts with EBV VCA-IgA. We consistently found a significant interaction between the PRS and EBV VCA-IgA on NPC risk (discovery population: synergy index [SI] = 2.39, 95% confidence interval [CI] = 1.85-3.10; replication population: SI = 3.10, 95% CI = 2.17-4.44; all pinteraction < 0.001). Moreover, the genetic variants included in the PRS demonstrated similar interactions with EBV VCA-IgA antibody. We also observed an obvious dose-response relationship between the PRS and EBV VCA-IgA antibody on NPC risk (all ptrend < 0.001). Furthermore, our decomposition analysis revealed that a substantial proportion (approximately 90%) of the genetic effects on NPC risk could be attributed to host genetic-EBV interaction, while the risk effects mediated by EBV VCA-IgA antibody were weak and statistically insignificant. Our study provides compelling evidence for an interaction between host genetics and EBV VCA-IgA antibody in the development of NPC. These findings emphasize the importance of implementing measures to control EBV infection as a crucial strategy for effectively preventing NPC, particularly in individuals at high genetic risk.
Collapse
Affiliation(s)
- Hua Diao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xue-Yin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Su-Mei Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qing Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei-Min Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology and Health Statistics and Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Melouli H, Khenchouche A, Taibi-Zidouni F, Salma D, Aoudia N, Djennaoui D, Sahraoui T, Benyahia S, El Kebir FZ. A Distinct Anti-EBV DNase Profile in Patients with Undifferentiated Nasopharyngeal Carcinoma Compared to Classical Antigens. Viruses 2023; 15:2158. [PMID: 38005835 PMCID: PMC10675439 DOI: 10.3390/v15112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/17/2023] [Accepted: 10/08/2023] [Indexed: 11/26/2023] Open
Abstract
Nasopharyngeal cancer (NPC) is a prevalent type of cancer that often takes the form of undifferentiated carcinoma in the Maghreb region. It affects people of all ages. NPC diagnosis, mainly based on detecting Epstein-Barr virus (EBV), has not been well evaluated in North Africa. We compared the classical EBV serological tests using indirect immunofluorescence to the detection of EBV DNase antibodies by immunoblot in Algerian NPC patients. Significant variations were observed among different age groups of patients regarding the presence of VCA-IgA antibodies (0-14 and ≥30 years old, p < 0.0001; 15-19 and ≥30 years old, p < 0.01) and EA-IgA (0-14 and ≥30 years old, p < 0.01; 15-29 and ≥30 years old, p < 0.05). Differences were also noted in the titers of IgA anti-VCA and anti-EA antibodies across the three age groups. Some patients under the age of 30 with detectable IgG anti-VCA antibodies had undetectable IgA anti-VCA antibodies. These patients had a strong anti-DNase IgA response. However, older individuals had a higher level of anti-DNase IgG. Before treatment, children had strong DNase reactivity as indicated by specific IgA antibodies. Young adults had high IgA anti-DNase response, but the elderly (90.9%) had a lower response for these antibodies. Following therapy, the children retained high levels of IgA anti-DNase antibodies, and 66% of the young adults demonstrated robust antibody reactivity against DNase. In contrast, IgG responses to anti-DNase were low in children. This study demonstrated the utility of anti-DNase responses in the diagnosis and prognosis of NPC.
Collapse
Affiliation(s)
- Hamid Melouli
- Viral Oncogenesis Laboratory, Pasteur Institute of Algeria, Algiers 16000, Algeria; (H.M.)
| | - Abdelhalim Khenchouche
- Laboratory of Applied Biochemistry, Ferhat Abbas, Setif 1 University, Setif 19000, Algeria
| | - Fouzia Taibi-Zidouni
- Viral Oncogenesis Laboratory, Pasteur Institute of Algeria, Algiers 16000, Algeria; (H.M.)
| | - Dahmani Salma
- Viral Oncogenesis Laboratory, Pasteur Institute of Algeria, Algiers 16000, Algeria; (H.M.)
| | - Nassim Aoudia
- Viral Oncogenesis Laboratory, Pasteur Institute of Algeria, Algiers 16000, Algeria; (H.M.)
| | - Djamel Djennaoui
- Otorhinolaryngology Department, Mustapha Pacha Hospital, Algiers 16000, Algeria
| | - Tewfik Sahraoui
- Laboratory of Developmental Biology and Differentiation, Es-Sénia University, Oran 31000, Algeria
| | - Samir Benyahia
- Otorhinolaryngology Department, Mustapha Pacha Hospital, Algiers 16000, Algeria
| | - Fatima Zohra El Kebir
- Laboratory of Developmental Biology and Differentiation, Es-Sénia University, Oran 31000, Algeria
| |
Collapse
|
12
|
Sabourin KR, Mugisha J, Asiki G, Nalwoga A, Labo N, Miley W, Beyer R, Rochford R, Johnston TW, Newton R, Whitby D. Epstein-Barr virus (EBV) antibody changes over time in a general population cohort in rural Uganda, 1992-2008. Infect Agent Cancer 2023; 18:55. [PMID: 37775773 PMCID: PMC10543268 DOI: 10.1186/s13027-023-00534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) infection is ubiquitous and in sub-Saharan Africa, occurs early in life. In a population-based rural African cohort, we leveraged historical samples from the General Population Cohort (GPC) in Uganda to examine the epidemiology of infection with EBV over time, in the era of HIV. METHODS We used 9024 serum samples collected from the GPC in 1992, 2000, 2008, from 7576 participants across the age range (0-99 years of age) and tested for anti-EBV immunoglobulin G (IgG) antibodies to EAd, VCA, and EBNA-1 using a multiplex bead-based assay. The related gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV) seropositivity was also determined by detection of anti-KSHV IgG antibodies to K8.1 or ORF73 measured by recombinant protein enzyme-linked immunosorbent assay. Data on sex, age, and HIV serostatus were also collected. EBV seropositivity was modeled with age (excluding those under one year, who may have had maternal antibodies), sex, HIV serostatus, and KSHV serostatus using generalized linear mixed effects models to produce beta estimates. RESULTS More than 93% of children were EBV seropositive by one year of age. EBV seropositivity was significantly associated with KSHV seropositivity. Anti-EBNA-1 antibody levels decreased with increasing age and were lower on average in people living with HIV. In general, anti-EAd antibody levels increased with age, were higher in males and KSHV seropositive persons, but decreased over calendar time. Anti-VCA antibody levels increased with age and with calendar time and were higher in KSHV seropositive persons but lower in males. CONCLUSIONS This is the first study to identify factors associated with EBV antibodies across the entire life-course in rural sub-Saharan Africa. Consistent with other studies, EBV was near ubiquitous in the population by age one year. Patterns of antibodies show changes by age, sex and calendar time, but no association with HIV was evident, suggesting no relationship between EBV sero-epidemiology and the spread of HIV in the population over time in Uganda.
Collapse
Affiliation(s)
- Katherine R Sabourin
- Department of Immunology and Microbiology, CU School of Medicine, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, RC1N P18-9403D, Aurora, CO, 80045, USA.
- UK Medical Research Council/ Uganda Virus Research Institute and London School of Health and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.
| | - Joseph Mugisha
- UK Medical Research Council/ Uganda Virus Research Institute and London School of Health and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Gershim Asiki
- UK Medical Research Council/ Uganda Virus Research Institute and London School of Health and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- The African Population and Health Research Center, Nairobi, Kenya
| | - Angela Nalwoga
- Department of Immunology and Microbiology, CU School of Medicine, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, RC1N P18-9403D, Aurora, CO, 80045, USA
- UK Medical Research Council/ Uganda Virus Research Institute and London School of Health and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Nazzarena Labo
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wendell Miley
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rachel Beyer
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rosemary Rochford
- Department of Immunology and Microbiology, CU School of Medicine, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, RC1N P18-9403D, Aurora, CO, 80045, USA
| | | | - Robert Newton
- UK Medical Research Council/ Uganda Virus Research Institute and London School of Health and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- University of York, York, UK
| | - Denise Whitby
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
13
|
Zheng XH, Deng CM, Zhou T, Li XZ, Tang CL, Jiang CT, Liao Y, Wang TM, He YQ, Jia WH. Saliva biopsy: Detecting the difference of EBV DNA methylation in the diagnosis of nasopharyngeal carcinoma. Int J Cancer 2023; 153:882-892. [PMID: 37170851 DOI: 10.1002/ijc.34561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Saliva sampling is a non-invasive method, and could be performed by donors themselves. However, there are few studies reporting biomarkers in saliva in the diagnosis of NPC. A total of 987 salivary samples were used in this study. First, EBV DNA methylation was profiled by capture sequencing in the discovery cohort (n = 36). Second, a q-PCR based method was developed and five representative EBV DNA CpG sites (11 029 bp, 45 849 bp, 57 945 bp, 66 226 bp and 128 102 bp) were selected and quantified to obtain the methylated density in the validation cohort1 (n = 801). Third, a validation cohort2 (n = 108) was used to further verify the differences of EBV methylation in saliva. A significant increase of EBV methylation was found in NPC patients compared with controls. The methylated score of EBV genome obtained by capture sequencing could distinguish NPC from controls (sensitivity 90%, specificity 100%). Further, the methylated density of EBV DNA CpG sites revealed by q-PCR showed a good diagnostic performance. The sensitivity and specificity of detecting a single CpG site (11 029 bp) could reach 75.4% and 99.7% in the validation cohort1, and 78.2% and 100% in the validation cohort2. Besides, the methylated density of the CpG site was found to decrease below the COV in NPC patients after therapy, and increase above the COV after recurrence. Our study provides an appealing alternative for the non-invasive detection of NPC without clinical setting. It paves the way for conducting a home-based large-scale screening in the future.
Collapse
Affiliation(s)
- Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Cao-Li Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Cheng-Tao Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Lian M. Combining Epstein-Barr virus antibodies for early detection of nasopharyngeal carcinoma: A meta-analysis. Auris Nasus Larynx 2023; 50:430-439. [PMID: 36241564 DOI: 10.1016/j.anl.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 04/03/2023]
Abstract
OBJECTIVE Epstein-Barr virus-related antibody seromarkers including VCA-IgA, EA-IgA, EBNA1-IgA, and Rta-IgG are used as markers for the detection of nasopharyngeal carcinoma (NPC). This meta-analysis was conducted to evaluate the diagnostic performance of their use in combined assays. METHODS Computerized searching of five electronic databases, supplemented by manual searching methods, was performed to identify pertinent articles. Diagnostic accuracy parameters, including sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC), were calculated with corresponding 95% confidence intervals (CIs). RESULTS Twenty-one studies with 4753 NPC cases and 31875 non-NPC controls were included. The pooled sensitivities for VCA-IgA+EA-IgA, VCA-IgA+EBNA1-IgA, VCA-IgA+Rta-IgG, and VCA-IgA+ EA-IgA+Rta-IgG were 0.89, 0.93, 0.94, and 0.94, respectively. Pooled specificities were 0.89, 0.88, 0.90, and 0.95, respectively. The PLRs were 8.1, 7.6, 9.4, and 17.4, respectively. Pooled NLRs were 0.12, 0.08, 0.07, and 0.07, respectively. Pooled DORs were 66, 95, 135, and 261, respectively. Pooled AUCs were 0.94, 0.96, 0.97, and 0.94, respectively. CONCLUSION These four combined assays based on EBV-related antibodies show diagnostic accuracy. The three-marker assay of VCA-IgA, EA IgA, and Rta-IgG has the best performance. Given the aspect of cost-benefit, VCA-IgA combined with EBNA1-IgA or Rta-IgG could become the preferred serodiagnostic strategy for NPC screening and early diagnosis.
Collapse
Affiliation(s)
- Mei Lian
- Department of Otorhinolaryngology, Tianjin Fifth Central Hospital, No.41 Zhejiang Road, Binhai New Area, Tianjin, 300450, China.
| |
Collapse
|
15
|
Tan H, Gong Y, Liu Y, Long J, Luo Q, Faleti OD, Lyu X. Advancing therapeutic strategies for Epstein-Barr virus-associated malignancies through lytic reactivation. Biomed Pharmacother 2023; 164:114916. [PMID: 37229802 DOI: 10.1016/j.biopha.2023.114916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a widespread human herpes virus associated with lymphomas and epithelial cell cancers. It establishes two separate infection phases, latent and lytic, in the host. Upon infection of a new host cell, the virus activates several pathways, to induce the expression of lytic EBV antigens and the production of infectious virus particles. Although the carcinogenic role of latent EBV infection has been established, recent research suggests that lytic reactivation also plays a significant role in carcinogenesis. In this review, we summarize the mechanism of EBV reactivation and recent findings about the role of viral lytic antigens in tumor formation. In addition, we discuss the treatment of EBV-associated tumors with lytic activators and the targets that may be therapeutically effective in the future.
Collapse
Affiliation(s)
- Haiqi Tan
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Yibing Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Yi Liu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Qingshuang Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Oluwasijibomi Damola Faleti
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999000, Hong Kong Special Administrative Region of China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
16
|
Lan WL, Chen CH, Chu YC, Cheng YF, Huang CY. Is There an Association between Concurrent Epstein-Barr Virus Infection and Sudden Hearing Loss?-A Case-Control Study in an East Asian Population. J Clin Med 2023; 12:jcm12051946. [PMID: 36902736 PMCID: PMC10004397 DOI: 10.3390/jcm12051946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Viral infection serves as the crucial etiology for the development of sudden sensorineural hearing loss (SSNHL). We aimed to investigate whether there is an association between concurrent Epstein-Barr virus (EBV) infection and SSNHL in an East Asian population. Patients who were older than 18 years of age and met the criteria of sudden hearing loss without an identifiable etiology were enrolled from July 2021 until June 2022, followed by the serological testing of IgA antibody responses against EBV-specific early antigen (EA) and viral capsid antigen (VCA) with an indirect hemagglutination assay (IHA) and real-time quantitative polymerase chain reaction (qPCR) of EBV DNA in serum before the treatment was initiated. After the treatment for SSNHL, post-treatment audiometry was performed to record the treatment response and degree of recovery. Among the 29 patients included during enrollment, 3 (10.3%) had a positive qPCR result for EBV. In addition, a trend of poor recovery of hearing thresholds was noted for those patients with a higher viral PCR titer. This is the first study to use real-time PCR to detect possible concurrent EBV infection in SSNHL. Our study demonstrated that approximately one-tenth of the enrolled SSNHL patients had evidence of concurrent EBV infection, as reflected by the positive qPCR test results, and a negative trend between hearing gain and the viral DNA PCR level was found within the affected cohort after steroid therapy. These findings indicate a possible role for EBV infection in East Asian patients with SSNHL. Further larger-scale research is needed to better understand the potential role and underlying mechanism of viral infection in the etiology of SSNHL.
Collapse
Affiliation(s)
- Wei-Lun Lan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chih-Hao Chen
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yuan-Chia Chu
- Information Management Office, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Medical AI Development Center, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Information Management, National Taipei University of Nursing and Health, Taipei 112, Taiwan
| | - Yen-Fu Cheng
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chii-Yuan Huang
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Information Management Office, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Correspondence:
| |
Collapse
|
17
|
Myers JE, Schaal DL, Nkadi EH, Ward BJH, Bienkowska-Haba M, Sapp M, Bodily JM, Scott RS. Retinoblastoma Protein Is Required for Epstein-Barr Virus Replication in Differentiated Epithelia. J Virol 2023; 97:e0103222. [PMID: 36719239 PMCID: PMC9972952 DOI: 10.1128/jvi.01032-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
Coinfection of human papillomavirus (HPV) and Epstein-Barr virus (EBV) has been detected in oropharyngeal squamous cell carcinoma. Although HPV and EBV replicate in differentiated epithelial cells, we previously reported that HPV epithelial immortalization reduces EBV replication within organotypic raft culture and that the HPV16 oncoprotein E7 was sufficient to inhibit EBV replication. A well-established function of HPV E7 is the degradation of the retinoblastoma (Rb) family of pocket proteins (pRb, p107, and p130). Here, we show that pRb knockdown in differentiated epithelia and EBV-positive Burkitt lymphoma (BL) reduces EBV lytic replication following de novo infection and reactivation, respectively. In differentiated epithelia, EBV immediate early (IE) transactivators were expressed, but loss of pRb blocked expression of the early gene product, EA-D. Although no alterations were observed in markers of epithelial differentiation, DNA damage, and p16, increased markers of S-phase progression and altered p107 and p130 levels were observed in suprabasal keratinocytes after pRb knockdown. In contrast, pRb interference in Akata BX1 Burkitt lymphoma cells showed a distinct phenotype from differentiated epithelia with no significant effect on EBV IE or EA-D expression. Instead, pRb knockdown reduced the levels of the plasmablast differentiation marker PRDM1/Blimp1 and increased the abundance of c-Myc protein in reactivated Akata BL with pRb knockdown. c-Myc RNA levels also increased following the loss of pRb in epithelial rafts. These results suggest that pRb is required to suppress c-Myc for efficient EBV replication in BL cells and identifies a mechanism for how HPV immortalization, through degradation of the retinoblastoma pocket proteins, interferes with EBV replication in coinfected epithelia. IMPORTANCE Terminally differentiated epithelium is known to support EBV genome amplification and virion morphogenesis following infection. The contribution of the cell cycle in differentiated tissues to efficient EBV replication is not understood. Using organotypic epithelial raft cultures and genetic interference, we can identify factors required for EBV replication in quiescent cells. Here, we phenocopied HPV16 E7 inhibition of EBV replication through knockdown of pRb. Loss of pRb was found to reduce EBV early gene expression and viral replication. Interruption of the viral life cycle was accompanied by increased S-phase gene expression in postmitotic keratinocytes, a process also observed in E7-positive epithelia, and deregulation of other pocket proteins. Together, these findings provide evidence of a global requirement for pRb in EBV lytic replication and provide a mechanistic framework for how HPV E7 may facilitate a latent EBV infection through its mediated degradation of pRb in copositive epithelia.
Collapse
Affiliation(s)
- Julia E. Myers
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Danielle L. Schaal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - B. J. H. Ward
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Martin Sapp
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Jason M. Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
18
|
Muacevic A, Adler JR, Sayed S, Siyal T, Das T. An Acute Presentation of Epstein-Barr Virus (EBV) Infection in an Immunocompromised Gentleman. Cureus 2022; 14:e33036. [PMID: 36721558 PMCID: PMC9881071 DOI: 10.7759/cureus.33036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV) is a relevant cause of many clinical manifestations with a range of malignant and non-malignant presentations. This is particularly important to consider in immunosuppressed individuals. We present a case of a 36-year-old individual with ulcerative colitis who was in remission whilst taking mercaptopurine. The patient presented with weight loss, night sweats, and significant laboratory serum abnormalities on monitoring. Relevant investigations into his presentation ruled out a malignant feature, but his serology confirmed infection with EBV with the spread of infection to the liver and bone marrow. Overall, we identify a notable yet relevant clinical expression of EBV infection in the context of an immunosuppressed individual.
Collapse
|
19
|
Zhang Y, Zhang Q, Xu L, Wang W, Xiao H, Luo B. Analysis of the relationship between the expression of EBV-related antibodies and ET-1 axis in gastric cancer. Cancer Biomark 2022; 35:321-329. [DOI: 10.3233/cbm-220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND OBJECTIVE: EBV-associated gastric cancer (EBVaGC) is a distinct subtype of GC, and EBV plays an important role in tumor progress. The standard method to identify EBV-positive tumor is determined by in situ hybridization for EBV-encoded EBERs in tumor tissues. The present study aims to detect the serological expression of EBV-related antibodies and ET-1 axis to provide a noninvasive method for diagnosis of EBVaGC. METHODS: The content of EBV-related antibodies and ET-1 axis in preoperative peripheral blood of GC was performed by Chemiluminescence and ELISA assay. The EBV DNA copy number was measured by qRT-PCR. RESULTS: The results showed that the levels of anti-EBV early antigen (EA) IgG, viral capsid antigen (VCA) IgA, nuclear antigen (NA) IgG, and EBV DNA copy number were significantly higher in EBVaGC. The ET-1 axis level was much lower in EBVaGC than EBVnGC. CONCLUSIONS: The combined detection of specific anti-EBV antibodies and ET-1 axis might provide new molecular markers for the identification of EBVaGC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, Shandong, China
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Qianqian Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lin Xu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Weiwen Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Hua Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
20
|
Monroy-Iglesias MJ, Crescioli S, Beckmann K, Le N, Karagiannis SN, Van Hemelrijck M, Santaolalla A. Antibodies as biomarkers for cancer risk: a systematic review. Clin Exp Immunol 2022; 209:46-63. [PMID: 35380164 PMCID: PMC9307228 DOI: 10.1093/cei/uxac030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has linked the humoral immune response with the development of various cancers. Therefore, there is growing interest in investigating the predictive value of antibodies to assess overall and tissue site-specific cancer risk. Given the large amount of antibody types and the broad scope of the search (i.e. cancer risk), the primary aim of this systematic review was to present an overview of the most researched antibodies (i.e. immunoglobulin (Ig) isotypes (IgG, IgM, IgA, and IgE), tumour and self-antigen-reactive antibodies, infection-related antibodies) in relation to overall and site-specific cancer risk. We identified various antibody types that have been associated with the risk of cancer. While no significant associations were found for IgM serum levels, studies found an inconsistent association among IgE, IgA, and IgG serum levels in relation to cancer risk. When evaluating antibodies against infectious agents, most studies reported a positive link with specific cancers known to be associated with the specific agent recognized by serum antibodies (i.e. helicobacter pylori and gastric cancer, hepatitis B virus and hepatocellular carcinoma, and human papillomavirus and cervical cancer). Several reports identified autoantibodies, as single biomarkers (e.g. anti-p53, anti-MUC1, and anti-CA125) but especially in panels of multiple autoantibodies, to have potential as diagnostic biomarkers for specific cancer types. Overall, there is emerging evidence associating certain antibodies to cancer risk, especially immunoglobulin isotypes, tumour-associated antigen-specific, and self-reactive antibodies. Further experimental studies are necessary to assess the efficacy of specific antibodies as markers for the early diagnosis of cancer.
Collapse
Affiliation(s)
| | | | - Kerri Beckmann
- Higher Degree by Research, University of South Australia, Adelaide, Australia
- Cancer Epidemiology and Population Health Research Group, University of South Australia, Adelaide, SE, Australia
| | - Nga Le
- Higher Degree by Research, University of South Australia, Adelaide, Australia
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research (TOUR), Centre for Cancer, Society, and Public Health, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Aida Santaolalla
- Correspondence: Aida Santaolalla, Translational Oncology and Urology Research (TOUR), Centre for Cancer, Society, and Public Health, School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK.
| |
Collapse
|
21
|
Li M, Chen WJ, Yang J, Charvat H, Xie SH, Li T, Ling W, Lu YQ, Liu Q, Hong MH, Cao SM. Association between solid fuel use and seropositivity against Epstein-Barr virus in a high-risk area for nasopharyngeal carcinoma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119184. [PMID: 35341821 DOI: 10.1016/j.envpol.2022.119184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Epstein-Barr virus (EBV) is one of the risk factors of nasopharyngeal carcinoma (NPC), and understanding the modifiable risk factors of EBV activation is crucial in the prevention of NPC. In this study, we aimed to investigate the association between solid fuel use and EBV seropositivity in a high-risk area of NPC. Our study was based on the baseline findings from an ongoing population-based prospective cohort in Sihui county in Southern China. We explored the association between current use of solid fuel in cooking and EBV seropositivity, and NPC-related EBV activation, using logistic regression models. Stratification analyses were further conducted to assess potential effect modifiers. We also examined the impact of frequency and duration of solid fuel use, and switch in fuel types, on EBV seropositivity among ever users. Of the 12,579 participants included in our analysis, 4088 (32.5%) were EBV seropositive and 421 (3.3%) were high risk for NPC-related EBV activation. Solid fuel use was associated with a higher risk of EBV seropositivity and NPC-related EBV activation, with odds ratios (ORs) of 1.33 (95%CI: 1.01, 1.76) and 1.81 (95%CI: 1.03, 3.18), respectively. Higher risk of EBV seropositivity was observed for those who did not use ventilation apparatus and those who consumed salted food. Among ever users, OR was highest for participants with more than 40 years of solid fuel exposure (1.17, 95%CI: 1.00-1.37) and who have been constantly using solid fuel (1.30, 95%CI: 0.96-1.75). We did not find a statistically significant impact of cooking frequency on EBV seropositivity. The identification of solid fuel as a risk factor for EBV activation is of great value for understanding the etiology of NPC. Our findings also have important public health implications given the fact that a third of the global population still lack access to clean cooking, especially in low resource settings.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Jie Chen
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hadrien Charvat
- Division of International Collaborative Research, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shang-Hang Xie
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tong Li
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Ling
- Sihui Cancer Institute, Sihui, China
| | | | - Qing Liu
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming-Huang Hong
- Department of Clinical Trial Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
22
|
Huang Y, Liang J, Hu W, Liang Y, Xiao X, Zhao W, Zhong X, Yang Y, Pan X, Zhou X, Zhang Z, Cai Y. Integration Profiling Between Plasma Lipidomics, Epstein–Barr Virus and Clinical Phenomes in Nasopharyngeal Carcinoma Patients. Front Microbiol 2022; 13:919496. [PMID: 35847074 PMCID: PMC9281874 DOI: 10.3389/fmicb.2022.919496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
Plasma lipidomics has been commonly used for biomarker discovery. Studies in cancer have suggested a significant alteration of circulating metabolite profiles which is correlated with cancer characteristics and treatment outcome. However, the lipidomics characteristics of nasopharyngeal carcinoma (NPC) have rarely been studied. We previously described the phenomenon of lipid droplet accumulation in NPC cells and showed that such accumulation could be regulated by latent infection of Epstein–Barr virus (EBV). Here, we compared the plasma lipidome of NPC patients to that of healthy controls by liquid chromatography-tandem mass spectrometry (LC–MS/MS). We found 19 lipids (e.g., phosphatidylinositols 18:0/20:4 and 18:0/18:2 and free fatty acid 22:6) to be remarkably decreased, whereas 2 lipids (i.e., diacylglycerols 16:0/16:1 and 16:0/20:3) to be increased, in the plasma of NPC patients, compared with controls. Different lipid profiles were also observed between patients with different titers of EBV antibodies (e.g., EA-IgA and VCA-IgA) as well as between patients with and without lymph node or distant organ metastasis. In conclusion, plasma lipidomics might help to differentiate NPC cases from controls, whereas EBV infection might influence the risk and prognosis of NPC through modulating lipid metabolism in both tumor cells and peripheral blood.
Collapse
Affiliation(s)
- Yi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinfeng Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenjin Hu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Yushan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weilin Zhao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuemin Zhong
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yanping Yang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
- *Correspondence: Zhe Zhang,
| | - Yonglin Cai
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, China
- Yonglin Cai,
| |
Collapse
|
23
|
Patel PD, Alghareeb R, Hussain A, Maheshwari MV, Khalid N. The Association of Epstein-Barr Virus With Cancer. Cureus 2022; 14:e26314. [PMID: 35911302 PMCID: PMC9314235 DOI: 10.7759/cureus.26314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 12/02/2022] Open
Abstract
Epstein-Barr virus (EBV) is classified as a herpesvirus and is known for being one of the few viruses that can lead to the development of cancer. This study has gathered several studies to provide evidence as to this association as well as some of the mechanisms specific to EBV that allow this to happen. The development of EBV into cancer as well as the proteins involved in this oncogenesis play a crucial role in understanding this problem as well as creating a solution for mitigating this disease process in the future. This study summarized three of the most common malignancies caused by EBV in order to consolidate information about each of them. Additional emphasis was placed on finding which EBV serum markers were seen to be most indicative of prognosis and likelihood of developing malignancy. Higher serum EBV viral DNA loads were seen to be a useful indicator in assessing the risk of various cancers and should be studied further in relation to cancers that were not mentioned in this review.
Collapse
|
24
|
Sinha S, Dickey BL, Coghill AE. Utility of Epstein-Barr virus (EBV) antibodies as screening markers for nasopharyngeal carcinoma: a narrative review. ANNALS OF NASOPHARYNX CANCER 2022; 6:6. [PMID: 35996401 PMCID: PMC9392954 DOI: 10.21037/anpc-21-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND OBJECTIVE Nasopharyngeal carcinoma (NPC) is a tumor of the head and neck that arises from the mucosal epithelium of the nasopharynx. Epstein-Barr virus (EBV) is a human herpes virus and the necessary cause for NPC. The 5-year survival rate for NPC patients is higher when diagnosed at an earlier stage of disease. Therefore, NPC screening should be prioritized for early detection. The objective of this narrative review is to synthesize the existing literature from the past decade describing evaluations of EBV-based serological markers for NPC screening. METHODS We performed a literature search in PubMed for studies published from 2010 to 2020. Studies were required to be English-language articles. Twelve articles fulfilled all inclusion criteria, including eight studies conducted among the general population in southeastern China, three studies in genetically high-risk Taiwanese families, and one study comparing EBV serology versus circulating EBV DNA for NPC prediction. KEY CONTENT AND FINDINGS Studies suggest that EBV-based serology has the potential to be an effective tool to aid in early detection of NPC. The synthesized research also collectively suggests that incorporation of antibody against multiple EBV targets, as well as efforts to optimize assay output, can improve the ability of EBV serological markers to detect NPC. Finally, recent data from the only randomized trial provide preliminary evidence that screening using anti-EBV immunoglobulin A (IgA) antibody may achieve the goal of reducing mortality from NPC. CONCLUSIONS Late diagnosis is one of the reasons for poor survival after an NPC diagnosis. In high-risk areas, early diagnosis aided by EBV antibody could therefore improve survival.
Collapse
Affiliation(s)
- Sweta Sinha
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Center for Immunization and Infection Research in Cancer, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Brittney L. Dickey
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Center for Immunization and Infection Research in Cancer, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Anna E. Coghill
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Center for Immunization and Infection Research in Cancer, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
25
|
He YQ, Wang TM, Ji M, Mai ZM, Tang M, Wang R, Zhou Y, Zheng Y, Xiao R, Yang D, Wu Z, Deng C, Zhang J, Xue W, Dong S, Zhan J, Cai Y, Li F, Wu B, Liao Y, Zhou T, Zheng M, Jia Y, Li D, Cao L, Yuan L, Zhang W, Luo L, Tong X, Wu Y, Li X, Zhang P, Zheng X, Zhang S, Hu Y, Qin W, Deng B, Liang X, Fan P, Feng Y, Song J, Xie SH, Chang ET, Zhang Z, Huang G, Xu M, Feng L, Jin G, Bei J, Cao S, Liu Q, Kozlakidis Z, Mai H, Sun Y, Ma J, Hu Z, Liu J, Lung ML, Adami HO, Shen H, Ye W, Lam TH, Zeng YX, Jia WH. A polygenic risk score for nasopharyngeal carcinoma shows potential for risk stratification and personalized screening. Nat Commun 2022; 13:1966. [PMID: 35414057 PMCID: PMC9005522 DOI: 10.1038/s41467-022-29570-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Polygenic risk scores (PRS) have the potential to identify individuals at risk of diseases, optimizing treatment, and predicting survival outcomes. Here, we construct and validate a genome-wide association study (GWAS) derived PRS for nasopharyngeal carcinoma (NPC), using a multi-center study of six populations (6 059 NPC cases and 7 582 controls), and evaluate its utility in a nested case-control study. We show that the PRS enables effective identification of NPC high-risk individuals (AUC = 0.65) and improves the risk prediction with the PRS incremental deciles in each population (Ptrend ranging from 2.79 × 10-7 to 4.79 × 10-44). By incorporating the PRS into EBV-serology-based NPC screening, the test's positive predictive value (PPV) is increased from an average of 4.84% to 8.38% and 11.91% in the top 10% and 5% PRS, respectively. In summary, the GWAS-derived PRS, together with the EBV test, significantly improves NPC risk stratification and informs personalized screening.
Collapse
Affiliation(s)
- Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Zhi-Ming Mai
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., China
- Center for Nasopharyngeal Carcinoma Research (CNPCR), The University of Hong Kong, Hong Kong S.A.R., China
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Minzhong Tang
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
- Wuzhou Cancer Center, Wuzhou, Guangxi, P.R. China
| | - Ruozheng Wang
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Ürümqi, Xinjiang Uygur Autonomous Region, 830011, P.R. China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Yuming Zheng
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
- Wuzhou Cancer Center, Wuzhou, Guangxi, P.R. China
| | - Ruowen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Dawei Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ziyi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Changmi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jiangbo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wenqiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Siqi Dong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jiyun Zhan
- Public Health Service Center of Xiaolan Town, Zhongshan City, Guangdong, China
| | - Yonglin Cai
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Biaohua Wu
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Meiqi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yijing Jia
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Danhua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lianjing Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Leilei Yuan
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wenli Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Luting Luo
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiating Tong
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yanxia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xizhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Peifen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiaohui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shaodan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yezhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Weiling Qin
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P.R. China
| | - Bisen Deng
- Public Health Service Center of Xiaolan Town, Zhongshan City, Guangdong, China
| | - Xuejun Liang
- Public Health Service Center of Xiaolan Town, Zhongshan City, Guangdong, China
| | - Peiwen Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Departments of Institute for Cancer Research, The Third Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830011, P.R. China
| | - Yaning Feng
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Ürümqi, 830011, China
| | - Jia Song
- Departments of Institute for Cancer Research, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Ürümqi, Xinjiang Uyghur Autonomous Region, 830010, P.R. China
| | - Shang-Hang Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ellen T Chang
- Center for Health Sciences, Exponent, Inc., Menlo Park, CA, USA
- Stanford Cancer Institute, Stanford, CA, USA
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Guangfu Jin
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jinxin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Sumei Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qing Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zisis Kozlakidis
- Division of Infection and Immunity, Faculty of Medical Sciences - University College London, London, UK
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Haiqiang Mai
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zhibin Hu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maria Li Lung
- Center for Nasopharyngeal Carcinoma Research (CNPCR), The University of Hong Kong, Hong Kong S.A.R., China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Hans-Olov Adami
- Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hongbing Shen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| | - Tai-Hing Lam
- School of Public Health, The University of Hong Kong, Hong Kong S.A.R., China.
- Center for Nasopharyngeal Carcinoma Research (CNPCR), The University of Hong Kong, Hong Kong S.A.R., China.
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
- School of Public Health, Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
26
|
Tay JK, Zhu C, Shin JH, Zhu SX, Varma S, Foley JW, Vennam S, Yip YL, Goh CK, Wang DY, Loh KS, Tsao SW, Le QT, Sunwoo JB, West RB. The microdissected gene expression landscape of nasopharyngeal cancer reveals vulnerabilities in FGF and noncanonical NF-κB signaling. SCIENCE ADVANCES 2022; 8:eabh2445. [PMID: 35394843 PMCID: PMC8993121 DOI: 10.1126/sciadv.abh2445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Nasopharyngeal cancer (NPC) is an Epstein-Barr virus (EBV)-positive epithelial malignancy with an extensive inflammatory infiltrate. Traditional RNA-sequencing techniques uncovered only microenvironment signatures, while the gene expression of the tumor epithelial compartment has remained a mystery. Here, we use Smart-3SEQ to prepare transcriptome-wide gene expression profiles from microdissected NPC tumors, dysplasia, and normal controls. We describe changes in biological pathways across the normal to tumor spectrum and show that fibroblast growth factor (FGF) ligands are overexpressed in NPC tumors, while negative regulators of FGF signaling, including SPRY1, SPRY2, and LGALS3, are down-regulated early in carcinogenesis. Within the NF-κB signaling pathway, the critical noncanonical transcription factors, RELB and NFKB2, are enriched in the majority of NPC tumors. We confirm the responsiveness of EBV-positive NPC cell lines to targeted inhibition of these pathways, reflecting the heterogeneity in NPC patient tumors. Our data comprehensively describe the gene expression landscape of NPC and unravel the mysteries of receptor tyrosine kinase and NF-κB pathways in NPC.
Collapse
Affiliation(s)
- Joshua K. Tay
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Otolaryngology–Head & Neck Surgery, National University of Singapore, Singapore, Singapore
| | - Chunfang Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - June Ho Shin
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Shirley X. Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph W. Foley
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yim Ling Yip
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chuan Keng Goh
- Department of Otolaryngology–Head & Neck Surgery, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology–Head & Neck Surgery, National University of Singapore, Singapore, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology–Head & Neck Surgery, National University of Singapore, Singapore, Singapore
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - John B. Sunwoo
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert B. West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
27
|
Chen Y, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G, Huang QH, Xie SH, Cao SM, Jia WH, Zheng Y, Li Y, Lin L, Ernberg I, Huang G, Zeng YX, Adami HO, Ye W. Environmental factors for Epstein-Barr virus reactivation in a high-risk area of nasopharyngeal carcinoma: a population-based study. Open Forum Infect Dis 2022; 9:ofac128. [PMID: 35450082 PMCID: PMC9017372 DOI: 10.1093/ofid/ofac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Background Epstein-Barr virus (EBV) reactivation from latent to lytic infection has been considered as a key step in nasopharyngeal carcinoma oncogenesis. However, epidemiological evidence regarding environmental risk factors for EBV reactivation on a population level remains largely lacking. Methods We enrolled 1916 randomly selected adults from the general population of Guangdong and Guangxi, China, from 2010 to 2014. Information on environmental factors was collected via a structured interview. Serum immunoglobulin A antibodies against EBV viral capsid antigen and nuclear antigen 1 were measured by enzyme-linked immunosorbent assay to evaluate EBV reactivation status. We used logistic regression to calculate odds ratios (ORs) with 95% confidence intervals (CIs) for the associations of EBV reactivation with various environmental factors. Results No associations were observed between EBV reactivation and extensive environmental factors, including alcohol or tea drinking, a history of chronic ear/nose/throat diseases, use of medications or herbs, consumption of salted fish or preserved foods, oral hygiene, sibship structure, and various residential and occupational exposures. Only cigarette smoking was associated with EBV reactivation (current smokers vs never smokers; OR = 1.37; 95% CI = 1.02–1.83), with positive exposure-response trends with increasing intensity, duration, and pack-years of smoking. Conclusions Consistent with previous studies, we found an association between cigarette smoking and EBV reactivation. Other examined exposures were not associated with EBV reactivation. These null results could suggest either more complex interactions between exposures and EBV reactivation or a predominant role of host and/or viral genetic variation.
Collapse
Affiliation(s)
- Yufeng Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ellen T Chang
- Exponent, Inc., Center for Health Sciences, Menlo Park, CA, USA
| | - Qing Liu
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine & Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yonglin Cai
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, China
- Wuzhou Health System Key Laboratory for Nasopharyngeal Carcinoma Etiology and Molecular Mechanism, Wuzhou, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Guomin Chen
- State Key Laboratory for Infectious Diseases Prevention and Control, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | - Shang-Hang Xie
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine & Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine & Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine & Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yuming Zheng
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, China
- Wuzhou Health System Key Laboratory for Nasopharyngeal Carcinoma Etiology and Molecular Mechanism, Wuzhou, China
| | - Yancheng Li
- Cangwu Institute for Nasopharyngeal Carcinoma Control and Prevention, Wuzhou, China
| | - Longde Lin
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine & Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Beijing Hospital, Beijing, China
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Guo Z, Jin B, Fang Y, Deng Y, Chen Z, Chen H, Li S, Leung P, Wang H, Cai L, He N. Selected aptamer specially combing 5-8F cells based on automatic screening instrument. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Shi X, Li N. Research Progress in Infectious Agents of Malignant Tumors. PROGRESS IN CHINA EPIDEMIOLOGY 2022:215-241. [DOI: 10.1007/978-981-19-2199-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
OUP accepted manuscript. Clin Chem 2022; 68:953-962. [DOI: 10.1093/clinchem/hvac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/31/2022] [Indexed: 11/12/2022]
|
31
|
Epstein-Barr virus miR-BHRF1-3 targets the BZLF1 3'UTR and regulates the lytic cycle. J Virol 2021; 96:e0149521. [PMID: 34878852 DOI: 10.1128/jvi.01495-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Suppression of lytic viral gene expression is a key aspect of the Epstein-Barr virus (EBV) life cycle to facilitate the establishment of latent infection. Molecular mechanisms regulating transitions between EBV lytic replication and latency are not fully understood. Here, we investigated the impact of viral microRNAs on the EBV lytic cycle. Through functional assays, we found that miR-BHRF1-3 attenuates EBV lytic gene expression following reactivation. To understand the miRNA targets contributing to this activity, we performed Ago PAR-CLIP analysis on EBV-positive, reactivated Burkitt's lymphoma cells and identified multiple miR-BHRF1-3 interactions with viral transcripts. Using luciferase reporter assays, we confirmed a miRNA interaction site within the 3'UTR of BZLF1 which encodes the essential immediate early (IE) transactivator Zta. Comparison of >850 published EBV genomes identified sequence polymorphisms within the miR-BHRF1-3 locus that deleteriously affect miRNA expression and function. Molecular interactions between the homologous viral miRNA, miR-rL1-17, and IE transcripts encoded by rhesus lymphocryptovirus were further identified. Our data demonstrate that regulation of IE gene expression by a BHRF1 miRNA is conserved amongst lymphocryptoviruses, and further reveal virally-encoded genetic elements that orchestrate viral antigen expression during the lytic cycle. Importance Epstein-Barr virus infection is predominantly latent in healthy individuals, while periodic cycles of reactivation are thought to facilitate persistent lifelong infection. Lytic infection has been linked to development of certain EBV-associated diseases. Here, we demonstrate that EBV miR-BHRF1-3 can suppress lytic replication by directly inhibiting Zta expression. Moreover, we identify nucleotide variants that impact the function of miR-BHRF1-3, which may contribute to specific EBV pathologies.
Collapse
|
32
|
Liu Z, Sarathkumara YD, Chan JKC, Kwong YL, Lam TH, Ip DKM, Chiu BCH, Xu J, Su YC, Proietti C, Cooper MM, Yu KJ, Bassig B, Liang R, Hu W, Ji BT, Coghill AE, Pfeiffer RM, Hildesheim A, Rothman N, Doolan DL, Lan Q. Characterization of the humoral immune response to the EBV proteome in extranodal NK/T-cell lymphoma. Sci Rep 2021; 11:23664. [PMID: 34880297 PMCID: PMC8655014 DOI: 10.1038/s41598-021-02788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Extranodal natural killer/T-cell lymphoma (NKTCL) is an aggressive malignancy that has been etiologically linked to Epstein-Barr virus (EBV) infection, with EBV gene transcripts identified in almost all cases. However, the humoral immune response to EBV in NKTCL patients has not been well characterized. We examined the antibody response to EBV in plasma samples from 51 NKTCL cases and 154 controls from Hong Kong and Taiwan who were part of the multi-center, hospital-based AsiaLymph case–control study. The EBV-directed serological response was characterized using a protein microarray that measured IgG and IgA antibodies against 202 protein sequences representing the entire EBV proteome. We analyzed 157 IgG antibodies and 127 IgA antibodies that fulfilled quality control requirements. Associations between EBV serology and NKTCL status were disproportionately observed for IgG rather than IgA antibodies. Nine anti-EBV IgG responses were significantly elevated in NKTCL cases compared with controls and had ORshighest vs. lowest tertile > 6.0 (Bonferroni-corrected P-values < 0.05). Among these nine elevated IgG responses in NKTCL patients, three IgG antibodies (all targeting EBNA3A) are novel and have not been observed for other EBV-associated tumors of B-cell or epithelial origin. IgG antibodies against EBNA1, which have consistently been elevated in other EBV-associated tumors, were not elevated in NKTCL cases. We characterize the antibody response against EBV for patients with NKTCL and identify IgG antibody responses against six distinct EBV proteins. Our findings suggest distinct serologic patterns of this NK/T-cell lymphoma compared with other EBV-associated tumors of B-cell or epithelial origin.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA.
| | - Yomani D Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, SAR, China
| | - Yok-Lam Kwong
- Queen Mary Hospital, The University of Hong Kong, Hong Kong, SAR, China
| | - Tai Hing Lam
- School of Public Health, Faculty of Medicine, Li Ka Shing (LKS), The University of Hong Kong, Hong Kong, SAR, China
| | - Dennis Kai Ming Ip
- School of Public Health, Faculty of Medicine, Li Ka Shing (LKS), The University of Hong Kong, Hong Kong, SAR, China
| | - Brian C-H Chiu
- Department of Public Health Sciences, University of Chicago, Chicago, USA
| | - Jun Xu
- School of Public Health, Faculty of Medicine, Li Ka Shing (LKS), The University of Hong Kong, Hong Kong, SAR, China
| | - Yu-Chieh Su
- Department of Medicine, School of Medicine, I-Shou University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Bryan Bassig
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Raymond Liang
- Hong Kong Sanatorium & Hospital, Hong Kong, SAR, China
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Anna E Coghill
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, Australia
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, 9609 Medical Center Drive, National Cancer Institute, Rockville, MD, 20850, USA
| |
Collapse
|
33
|
Zhu QY, Zhao GX, Li Y, Talakatta G, Mai HQ, Le QT, Young LS, Zeng MS. Advances in pathogenesis and precision medicine for nasopharyngeal carcinoma. MedComm (Beijing) 2021; 2:175-206. [PMID: 34766141 PMCID: PMC8491203 DOI: 10.1002/mco2.32] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous carcinoma with apparent geographical and racial distribution, mostly prevalent in East and Southeast Asia, particularly concentrated in southern China. The epidemiological trend over the past decades has suggested a substantial reduction in the incidence rate and mortality rate due to NPC. These results may reflect changes in lifestyle and environment, and more importantly, a deeper comprehension of the pathogenic mechanism of NPC, leading to much progress in the preventing, screening, and treating for this cancer. Herein, we present the recent advances on the key signal pathways involved in pathogenesis of NPC, the mechanism of Epstein‐Barr virus (EBV) entry into the cell, and the progress of EBV vaccine and screening biomarkers. We will also discuss in depth the development of various therapeutic approaches including radiotherapy, chemotherapy, surgery, targeted therapy, and immunotherapy. These research advancements have led to a new era of precision medicine in NPC.
Collapse
Affiliation(s)
- Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Girish Talakatta
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Quynh-Thu Le
- Department of Radiation Oncology Stanford California
| | - Lawrence S Young
- Warwick Medical School University of Warwick Coventry United Kingdom
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| |
Collapse
|
34
|
Vigón L, García-Pérez J, Rodríguez-Mora S, Torres M, Mateos E, Castillo de la Osa M, Cervero M, Malo De Molina R, Navarro C, Murciano-Antón MA, García-Gutiérrez V, Planelles V, Alcamí J, Pérez-Olmeda M, Coiras M, López-Huertas MR. Impaired Antibody-Dependent Cellular Cytotoxicity in a Spanish Cohort of Patients With COVID-19 Admitted to the ICU. Front Immunol 2021; 12:742631. [PMID: 34616404 PMCID: PMC8488389 DOI: 10.3389/fimmu.2021.742631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 infection causes COVID-19, ranging from mild to critical disease in symptomatic subjects. It is essential to better understand the immunologic responses occurring in patients with the most severe outcomes. In this study, parameters related to the humoral immune response elicited against SARS-CoV-2 were analysed in 61 patients with different presentations of COVID-19 who were recruited in Hospitals and Primary Healthcare Centres in Madrid, Spain, during the first pandemic peak between April and June 2020. Subjects were allocated as mild patients without hospitalization, severe patients hospitalized or critical patients requiring ICU assistance. Critical patients showed significantly enhanced levels of B cells with memory and plasmablast phenotypes, as well as higher levels of antibodies against SARS-CoV-2 with neutralization ability, which were particularly increased in male gender. Despite all this, antibody-dependent cell-mediated cytotoxicity was defective in these individuals. Besides, patients with critical COVID-19 also showed increased IgG levels against herpesvirus such as CMV, EBV, HSV-1 and VZV, as well as detectable CMV and EBV viremia in plasma. Altogether, these results suggest an enhanced but ineffectual immune response in patients with critical COVID-19 that allowed latent herpesvirus reactivation. These findings should be considered during the clinical management of these patients due to the potential contribution to the most severe disease during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Javier García-Pérez
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Castillo de la Osa
- Serology Laboratory, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Spain
| | - Rosa Malo De Molina
- Neumology Service, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | | | | | - Vicente Planelles
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Mayte Pérez-Olmeda
- Serology Laboratory, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Rosa López-Huertas
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
35
|
Zhou X, Cao SM, Cai YL, Zhang X, Zhang S, Feng GF, Chen Y, Feng QS, Chen Y, Chang ET, Liu Z, Adami HO, Liu J, Ye W, Zhang Z, Zeng YX, Xu M. A comprehensive risk score for effective risk stratification and screening of nasopharyngeal carcinoma. Nat Commun 2021; 12:5189. [PMID: 34465768 PMCID: PMC8408241 DOI: 10.1038/s41467-021-25402-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Using Epstein-Barr virus (EBV)-based markers to screen populations at high risk for nasopharyngeal carcinoma (NPC) is an attractive preventive approach. Here, we develop a comprehensive risk score (CRS) that combines risk effects of EBV and human genetics for NPC risk stratification and validate this CRS within an independent, population-based dataset. Comparing the top decile with the bottom quintile of CRSs, the odds ratio of developing NPC is 21 (95% confidence interval: 12-37) in the validation dataset. When combining the top quintile of CRS with EBV serology tests currently used for NPC screening in southern China, the positive prediction value of screening increases from 4.70% (serology test alone) to 43.24% (CRS plus serology test). By identifying individuals at a monogenic level of NPC risk, this CRS approach provides opportunities for personalized risk prediction and population screening in endemic areas for the early diagnosis and secondary prevention of NPC.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Su-Mei Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yong-Lin Cai
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shanshan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Guo-Fei Feng
- Department of Otolaryngology/Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufeng Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Qi-Sheng Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yijun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ellen T Chang
- Center for Health Sciences, Exponent, Menlo Park, CA, USA.,Stanford Cancer Institute, Stanford, CA, USA
| | - Zhonghua Liu
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Zhe Zhang
- Department of Otolaryngology/Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
36
|
Liu Z, Li H, Yu KJ, Xie SH, King AD, Ai QYH, Chen WJ, Chen XX, Lu ZJ, Tang LQ, Wang L, Xie CM, Ling W, Lu YQ, Huang QH, Coghill AE, Fakhry C, Pfeiffer RM, Zeng YX, Cao SM, Hildesheim A. Comparison of new magnetic resonance imaging grading system with conventional endoscopy for the early detection of nasopharyngeal carcinoma. Cancer 2021; 127:3403-3412. [PMID: 34231883 DOI: 10.1002/cncr.33552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Although stratifying individuals with respect to nasopharyngeal carcinoma (NPC) risk with Epstein-Barr virus-based markers is possible, the performance of diagnostic methods for detecting lesions among screen-positive individuals is poorly understood. METHODS The authors prospectively evaluated 882 participants aged 30 to 70 years who were enrolled between October 2014 and November 2018 in an ongoing, population-based NPC screening program and had an elevated NPC risk. Participants were offered endoscopy and magnetic resonance imaging (MRI), and lesions were identified either by biopsy at a follow-up endoscopy or further contact and linkage to the local cancer registry through December 31, 2019. The diagnostic performance characteristics of endoscopy and MRI for NPC detection were investigated. RESULTS Eighteen of 28 identified NPC cases were detected by both methods, 1 was detected by endoscopy alone, and 9 were detected by MRI alone. MRI had significantly higher sensitivity than endoscopy for NPC detection overall (96.4% vs 67.9%; Pdifference = .021) and for early-stage NPC (95.2% vs 57.1%; P = .021). The sensitivity of endoscopy was suggestively lower among participants who had previously been screened in comparison with those undergoing an initial screening (50.0% vs 81.2%; P = .11). The authors observed a higher overall referral rate by MRI versus endoscopy (17.3% vs 9.1%; P < .001). Cases missed by endoscopy had early-stage disease and were more commonly observed for tumors originating from the pharyngeal recess. CONCLUSIONS MRI was more sensitive than endoscopy for NPC detection in the context of population screening but required the referral of a higher proportion of screen-positive individuals. The sensitivity of endoscopy was particularly low for individuals who had previously been screened.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Hui Li
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Shang-Hang Xie
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ann D King
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qi-Yong H Ai
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wen-Jie Chen
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Xia Chen
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zi-Jian Lu
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin-Quang Tang
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin Wang
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chuan-Miao Xie
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei Ling
- Sihui Cancer Institute, Sihui, China
| | | | | | - Anna E Coghill
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA.,Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carole Fakhry
- Johns Hopkins Head and Neck Cancer Center, Baltimore, Maryland, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Yi-Xin Zeng
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
37
|
Yuan L, Deng C, Xue W, He Y, Wang T, Zhang J, Yang D, Zhou T, Wu Z, Liao Y, Zheng M, Li D, Cao L, Jia Y, Zhang W, Xiao R, Luo L, Tong X, Wu Y, Huang J, Jia W. Association between HLA alleles and Epstein-Barr virus Zta-IgA serological status in healthy males from southern China. J Gene Med 2021; 23:e3375. [PMID: 34164868 PMCID: PMC8596395 DOI: 10.1002/jgm.3375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/22/2021] [Indexed: 11/12/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC), an Epstein–Barr virus (EBV) associated cancer, exhibits an extremely high incidence in southern Chinese. Given that human leukocyte antigen (HLA) plays critical roles in antigen presentation and relates to NPC susceptibility, it is speculated that certain HLA variants may affect EBV reactivation, which is a key pathogenic factor of NPC. Therefore, we attempted to identify HLA alleles associated with the indicator of EBV reactivation, Zta‐IgA, in healthy males from NPC endemic area. Methods HLA alleles of 1078 healthy males in southern China from the 21‐RCCP study were imputed using genome‐wide single nucleotide polymorphism data. EBV Zta‐IgA in blood samples were measured using an enzyme‐linked immunosorbent assay. Multiple logistic regression analysis was used to evaluate the effect of HLA allele on Zta‐IgA serological status and its potential joint association with smoking. The binding affinity for Zta‐peptide was predicted using NetMHCIIpan 4.0. Results HLA‐DRB1*09:01 was found to be associated with a higher risk of Zta‐IgA seropositivity (odds ratio = 1.80, 95% confidence interval = 1.32–2.45; p = 1.82 × 10−4). Compared with non‐smokers without HLA‐DRB1*09:01, the effect size increased to 2.19‐ and 3.70‐fold for the light and heavy smokers carrying HLA‐DRB1*09:01, respectively. Furthermore, HLA‐DRB1*09:01 showed a stronger binding affinity to Zta peptide than other HLA‐DRB1 alleles. Conclusions Our study highlighted the pivotal role of genetic HLA variants in EBV reactivation and the etiology of NPC. Smokers with HLA‐DRB1*09:01 have a significantly higher risk of being Zta‐IgA seropositive, which indicates the necessity of smoking cessation in certain high‐risk populations and also provide clues for further research on the etiology of NPC.
Collapse
Affiliation(s)
- Lei‐Lei Yuan
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chang‐Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wen‐Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yong‐Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Tong‐Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jiang‐Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Da‐Wei Yang
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zi‐Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Mei‐Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Dan‐Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lian‐Jing Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yi‐Jing Jia
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wen‐Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ruo‐Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lu‐Ting Luo
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xia‐Ting Tong
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yan‐Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing‐Wen Huang
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wei‐Hua Jia
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
38
|
Chen WJ, Xu WN, Wang HY, Chen XX, Li XQ, Xie SH, Lin DF, Cao SM. Plasma Epstein-Barr virus DNA and risk of nasopharyngeal carcinoma in a prospective seropositive population. BMC Cancer 2021; 21:651. [PMID: 34074258 PMCID: PMC8168313 DOI: 10.1186/s12885-021-08408-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Plasma Epstein-Barr virus (EBV) DNA is considered a biomarker for nasopharyngeal carcinoma (NPC). However, its long-term role in NPC development is unclear. MATERIALS AND METHODS A total of 1363 participants seropositive for EBV VCA-IgA and EBNA1-IgA in a community-based NPC screening program in southern China were tested for plasma EBV DNA levels by real-time qPCR between 2008 and 2015. New NPC cases were confirmed by active follow-up approach and linkage to local cancer registry through the end of 2016. Cox proportional hazards regression analysis was performed to calculate the hazard ratios (HRs) for NPC risk with plasma EBV DNA. RESULTS Thirty patients were newly diagnosed during a median 7.5 years follow-up. NPC incidence increased with the plasma EBV DNA load ranging from 281.46 to 10,074.47 per 100,000 person-years in participants with undetectable and ≥ 1000 copies/ml levels; the corresponding cumulative incidence rates were 1.73 and 50%. Furthermore, plasma EBV DNA loads conferred an independent risk for NPC development after adjustment for other risk factors, with HRs of 7.63 for > 3-999 copies/ml and 39.79 for ≥1000 copies/ml. However, the HRs decreased gradually after excluding NPC cases detected in the first 2 to 3 years and became statistically nonsignificant by excluding cases detected during the first 4 years. CONCLUSION Elevated plasma EBV DNA can predict NPC risk over 3 years. Monitoring plasma EBV DNA can be used as a complementary approach to EBV serological antibody-based screening for NPC.
Collapse
Affiliation(s)
- Wen-Jie Chen
- Department of Cancer Prevention, Cancer Prevention Center, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Na Xu
- Department of Medicine Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Xia Chen
- Department of Cancer Prevention, Cancer Prevention Center, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue-Qi Li
- Department of Cancer Prevention, Cancer Prevention Center, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Shang-Hang Xie
- Department of Cancer Prevention, Cancer Prevention Center, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong-Feng Lin
- Department of Cancer Prevention, Cancer Prevention Center, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention, Cancer Prevention Center, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
39
|
Frappier L. Epstein-Barr virus: Current questions and challenges. Tumour Virus Res 2021; 12:200218. [PMID: 34052467 PMCID: PMC8173096 DOI: 10.1016/j.tvr.2021.200218] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects most people worldwide and persists for life due to complicated interplay between lytic infection and multiple types of latent infections. While usually asymptomatic, EBV is a causative agent in several types of cancer and has a strong association with multiple sclerosis. Exactly how EBV promotes these diseases and why they are rare consequences of infection are incompletely understood. Here I will discuss current ideas on disease induction by EBV, including the importance of lytic protein expression in the context of latent infection as well as the possible importance of specific EBV variants in disease induction.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Suite 1600, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
40
|
Feng Y, Xia W, He G, Ke R, Liu L, Xie M, Tang A, Yi X. Accuracy Evaluation and Comparison of 14 Diagnostic Markers for Nasopharyngeal Carcinoma: A Meta-Analysis. Front Oncol 2020; 10:1779. [PMID: 33072558 PMCID: PMC7531263 DOI: 10.3389/fonc.2020.01779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to collect published studies and compare the diagnostic accuracy of different markers for nasopharyngeal carcinoma (NPC). We systematically searched PubMed/MEDLINE, EMBASE, Cochrane Library, CNKI, and Wanfang for relevant studies until April 29, 2020. The revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to evaluate the methodological quality of the studies. The sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) values of the diagnostic markers were combined by a bivariate mixed effect model to compare their diagnostic accuracy. We explored heterogeneity through meta-regression. In total, 244 records from 101 articles were included, with 49,432 total study subjects (13,109 cases and 36,323 controls). EA-IgG, Zta-IgG, and Epstein-Barr virus (EBV) DNA load in non-invasive nasopharyngeal brushings (EBV-DNA brushings) have both high sensitivity and specificity, EBNA1-IgG and VCA-IgG have only high sensitivity, and EBNA1-IgA, VCA-IgA, Rta-IgG, Zta-IgA, HSP70, and serum sialic acid (SA) have only high specificity. The bivariate mixed effect model of EA-IgA had a significant threshold effect. Meta-regression analysis showed that ethnicity affected EBNA1-IgA, EBNA1-IgG, VCA-IgA, and EBV DNA load in plasma, test methods affected EBNA1-IgG, publication year affected VCA-IgA, and sample size affected Rta-IgG. There was significant publication bias for VCA-IgA and Rta-IgG (P < 0.05). EA-IgG, Zta-IgG, and EBV-DNA brushings are good diagnostic markers for NPC. The diagnostic accuracy was influenced by publication year, sample size, test methods, and ethnicity.
Collapse
Affiliation(s)
- Yiwei Feng
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- First Clinical Medical College, Guangxi Medical University, Nanning, China
| | - Wei Xia
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- First Clinical Medical College, Guangxi Medical University, Nanning, China
| | - Guangyao He
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongdan Ke
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lei Liu
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mao Xie
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Anzhou Tang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Yi
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| |
Collapse
|
41
|
Li Y, Feng Z, Xing S, Liu W, Zhang G. Combination of serum matrix metalloproteinase-3 activity and EBV antibodies improves the diagnostic performance of nasopharyngeal carcinoma. J Cancer 2020; 11:6009-6018. [PMID: 32922541 PMCID: PMC7477409 DOI: 10.7150/jca.46977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: Nasopharyngeal carcinoma (NPC) is a malignant head and neck tumor that is highly prevalent in Southeast Asia. The two traditional NPC markers VCA-IgA (EBV viral capsid antigen) and EA-IgA (EBV early antigen) are limited in the screening and diagnosis of NPC. The purpose of present study is to evaluate the diagnostic value of matrix metalloproteinase-3 (MMP3) in NPC. Methods: The levels of 23 secretory MMPs in serum samples from 15 healthy controls and 26 NPC patients were detected by Cytokine Antibody Array 2000. Immunohistochemistry, Real-time PCR and western bolt were used to detect MMP3 mRNA and protein levels in NPC tissues and cell lines. The serum protein levels of MMP3 were further measured by ELISA in healthy control individuals (n = 200) and NPC patients (n = 206). Results: MMP3 can be expressed and secreted by both NPC and fibroblast cell lines, suggesting that the higher expression of MMP3 protein in both tumor nests and stromal of NPC tissues may be the source of circulating MMP3 in NPC patients. Furthermore, we found out both MMP3 concentration and enzymatic activity were significantly increased in the NPC group (n = 206) than the healthy control group (n = 200) (P < 0.001). However, serum MMP3 enzymatic activity, but not MMP3 concentration, was significantly associated with the progression of NPC. In addition, serum MMP3 activity was more valuable in diagnosis of NPC than its concentration (0.86 vs. 0.78, AUC), and MMP3 activity can improve the diagnosis of NPC by combining with EBV-infection biomarkers VCA-IgA and EA-IgA with a sensitivity of 91.5% and a specificity of 92.3%. Conclusions: This study suggested the combination of MMP3 activity and EBV antibodies may be a useful biomarker for screening and diagnosis of NPC.
Collapse
Affiliation(s)
- Yiqiu Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Waihuandong Road, University Town, Guangzhou 510006, China
| | - Zhibo Feng
- Department of anatomy, Xinxiang Medical University, Xinxiang, Henan 453700, China
| | - Shan Xing
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wanli Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Waihuandong Road, University Town, Guangzhou 510006, China
| |
Collapse
|
42
|
Drosu NC, Edelman ER, Housman DE. Tenofovir prodrugs potently inhibit Epstein-Barr virus lytic DNA replication by targeting the viral DNA polymerase. Proc Natl Acad Sci U S A 2020; 117:12368-12374. [PMID: 32409608 PMCID: PMC7275665 DOI: 10.1073/pnas.2002392117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that establishes life-long infection and increases the risk for the development of several cancers and autoimmune diseases. The mechanisms by which chronic EBV infection leads to subsequent disease remain incompletely understood. Lytic reactivation plays a central role in the development of EBV-driven cancers and may contribute to other EBV-associated diseases. Thus, the clinical use of antivirals as suppressive therapy for EBV lytic reactivation may aid efforts aimed at disease prevention. Current antivirals for EBV have shown limited clinical utility due to low potency or high toxicity, leaving open the need for potent antivirals suitable for long-term prophylaxis. In the present study, we show that tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF), drugs with excellent safety profiles used clinically for HIV prevention, inhibit EBV lytic DNA replication, with respective IC50 values of 0.30 μM and 84 nM. In a cell-based assay, TAF was 35- and 24-fold and TDF was 10- and 7-fold more potent than acyclovir and penciclovir, respectively, and TAF was also twice as potent as ganciclovir. The active metabolite of tenofovir prodrugs, tenofovir-diphosphate, inhibited the incorporation of dATP into a primed DNA template by the EBV DNA polymerase in vitro. In contrast to acyclovir, treatment of cells during latency for 24 h with TAF still inhibited EBV lytic DNA replication at 72 h after drug was removed. Our results suggest that tenofovir prodrugs may be particularly effective as inhibitors of EBV lytic reactivation, and that clinical studies to address critical questions about disease prevention are warranted.
Collapse
Affiliation(s)
- Natalia C Drosu
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Health Sciences & Technology, Harvard Medical School, Boston, MA 02115
| | - Elazer R Edelman
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Health Sciences & Technology, Harvard Medical School, Boston, MA 02115
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115
| | - David E Housman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
43
|
Bakkalci D, Jia Y, Winter JR, Lewis JE, Taylor GS, Stagg HR. Risk factors for Epstein Barr virus-associated cancers: a systematic review, critical appraisal, and mapping of the epidemiological evidence. J Glob Health 2020; 10:010405. [PMID: 32257153 PMCID: PMC7125417 DOI: 10.7189/jogh.10.010405] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epstein Barr Virus (EBV) infects 90%-95% of all adults globally and causes ~ 1% of all cancers. Differing proportions of Burkitt's lymphoma (BL), gastric carcinoma (GC), Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC) are associated with EBV. We sought to systematically review the global epidemiological evidence for risk factors that (in addition to EBV) contribute to the development of the EBV-associated forms of these cancers, assess the quality of the evidence, and compare and contrast the cancers. METHODS MEDLINE, Embase and Web of Science were searched for studies of risk factors for EBV-associated BL, GC, HL and NPC without language or temporal restrictions. Studies were excluded if there was no cancer-free comparator group or where analyses of risk factors were inadequately documented. After screening and reference list searching, data were extracted into standardised spreadsheets and quality assessed. Due to heterogeneity, a narrative synthesis was undertaken. RESULTS 9916 hits were retrieved. 271 papers were retained: two BL, 24 HL, one GC and 244 NPC. The majority of studies were from China, North America and Western Europe. Risk factors were categorised as dietary, environmental/non-dietary, human genetic, and infection and clinical. Anti-EBV antibody load was associated with EBV-associated GC and BL. Although the evidence could be inconsistent, HLA-A alleles, smoking, infectious mononucleosis and potentially other infections were risk factors for EBV-associated HL. Rancid dairy products; anti-EBV antibody and EBV DNA load; history of chronic ear, nose and/or throat conditions; herbal medicine use; family history; and human genetics were risk factors for NPC. Fresh fruit and vegetable and tea consumption may be protective against NPC. CONCLUSIONS Many epidemiological studies of risk factors in addition to EBV for the EBV-associated forms of BL, GC, HL and NPC have been undertaken, but there is a dearth of evidence for GC and BL. Available evidence is of variable quality. The aetiology of EBV-associated cancers likely results from a complex intersection of genetic, clinical, environmental and dietary factors, which is difficult to assess with observational studies. Large, carefully designed, studies need to be strategically undertaken to harmonise and clarify the evidence. REGISTRATION PROSPERO CRD42017059806.
Collapse
Affiliation(s)
- Deniz Bakkalci
- Institute for Global Health, University College London, London, UK
- Joint first authors, listed alphabetically
| | - Yumeng Jia
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Joint first authors, listed alphabetically
| | - Joanne R Winter
- Institute for Global Health, University College London, London, UK
- Joint first authors, listed alphabetically
| | - Joanna Ea Lewis
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Graham S Taylor
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Joint senior authors
| | - Helen R Stagg
- Institute for Global Health, University College London, London, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
- Joint senior authors
| |
Collapse
|
44
|
Tay JK, Siow CH, Goh HL, Lim CM, Hsu PP, Chan SH, Loh KS. A comparison of EBV serology and serum cell‐free DNA as screening tools for nasopharyngeal cancer: Results of the Singapore NPC screening cohort. Int J Cancer 2020; 146:2923-2931. [DOI: 10.1002/ijc.32774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/07/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Joshua K. Tay
- Department of Otolaryngology – Head and Neck SurgeryNational University Health System Singapore Singapore
- Cancer Biology ProgramStanford University School of Medicine Stanford MA
| | - Chor H. Siow
- Department of Otolaryngology – Head and Neck SurgeryNational University Health System Singapore Singapore
| | - Han L. Goh
- Department of Otolaryngology – Head and Neck SurgeryNational University Health System Singapore Singapore
| | - Chwee M. Lim
- Department of Otolaryngology – Head and Neck SurgeryNational University Health System Singapore Singapore
- Department of Otolaryngology – Head and Neck SurgerySingapore General Hospital Singapore Singapore
| | - Pon P. Hsu
- Department of Otolaryngology – Head and Neck SurgeryChangi General Hospital Singapore Singapore
| | - Soh H. Chan
- World Health Organization Collaborating Centre for Research and Training in Immunology Singapore Singapore
- Pathnova Laboratories Singapore Singapore
| | - Kwok S. Loh
- Department of Otolaryngology – Head and Neck SurgeryNational University Health System Singapore Singapore
| |
Collapse
|
45
|
Simon J, Schroeder L, Ingarfield K, Diehl S, Werner J, Brenner N, Liu Z, Pawlita M, Pring M, Butt J, Ness A, Waterboer T. Epstein-Barr virus and human papillomavirus serum antibodies define the viral status of nasopharyngeal carcinoma in a low endemic country. Int J Cancer 2020; 147:461-471. [PMID: 32279316 DOI: 10.1002/ijc.33006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/27/2020] [Accepted: 03/24/2020] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus (EBV) causes nasopharyngeal carcinoma (NPC) in endemic regions, where almost every tumor is EBV-positive. In Western populations, NPC is rare, and human papillomavirus infection (HPV) has been suggested as another viral cause. We validated multiplex serology with molecular tumor markers, to define EBV-positive, HPV-positive and EBV-/HPV-negative NPCs in the United Kingdom, and analyzed survival differences between those groups. Sera from NPC cases (n = 98) and age- and sex-matched controls (n = 142) from the Head and Neck 5000 clinical cohort study were analyzed. IgA and IgG serum antibodies against 13 EBV antigens were measured and compared with EBER in situ hybridization (EBER-ISH) data of 41 NPC tumors (29 EBER-ISH positive, 12 negative). IgG antibodies to EBV LF2 correctly diagnosed EBV-positive NPCs in 28 of 29 cases, while all EBER-ISH negative NPCs were seronegative to LF2 IgG (specificity = 100%, sensitivity = 97%). HPV early antigen serology was compared to HPV molecular markers (p16 expression, HPV DNA and RNA) available for 41 NPCs (13 positive, 28 negative). Serology matched molecular HPV markers in all but one case (specificity = 100%, sensitivity = 92%). EBV and HPV infections were mutually exclusive. Overall, 67% of the analyzed NPCs were defined as EBV-positive, 18% as HPV-positive and 14% as EBV/HPV-negative. There was no statistical evidence of a difference in survival between the three groups. These data provide evidence that both, EBV-positive and HPV-positive NPCs are present in a low incidence country, and that EBV and HPV serum antibodies correlate with the viral status of the tumor.
Collapse
Affiliation(s)
- Julia Simon
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lea Schroeder
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kate Ingarfield
- National Institute for Health Research (NIHR), Bristol Biomedical Research Centre, University Bristol Hospitals, Bristol NHS Foundation Trust and University of Bristol, Bristol, UK.,Centre for Trials Research, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.,Community Oral Health, University of Glasgow Dental School, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stefan Diehl
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jill Werner
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicole Brenner
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael Pawlita
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miranda Pring
- National Institute for Health Research (NIHR), Bristol Biomedical Research Centre, University Bristol Hospitals, Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Julia Butt
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andy Ness
- National Institute for Health Research (NIHR), Bristol Biomedical Research Centre, University Bristol Hospitals, Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Tim Waterboer
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
46
|
Validation of an Epstein-Barr Virus Antibody Risk Stratification Signature for Nasopharyngeal Carcinoma by Use of Multiplex Serology. J Clin Microbiol 2020; 58:JCM.00077-20. [PMID: 32102852 DOI: 10.1128/jcm.00077-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Serological testing for nasopharyngeal carcinoma (NPC) has recently been reinvigorated by the implementation of novel Epstein-Barr virus (EBV)-specific IgA and IgG antibodies from a proteome array. Although proteome arrays are well suited for comprehensive antigen selection, they are not applicable for large-scale studies. We adapted a 13-marker EBV antigen signature for NPC risk identified by proteome arrays to multiplex serology to establish an assay for large-scale studies. Taiwanese NPC cases (n = 175) and matched controls (n = 175) were used for assay validation. Spearman's correlation was calculated, and the diagnostic value of all multiplex markers was assessed independently using the area under the receiver operating characteristic curve (AUC). Two refined signatures were identified using stepwise logistic regression and internally validated with 10-fold cross validation. Array and multiplex serology showed strong correlation for each individual EBV marker, as well as for a 13-marker combined model on continuous data. Two refined signatures with either four (LF2 and BGLF2 IgG, LF2 and BMRF1 IgA) or two (LF2 and BGLF2 IgG) antibodies on dichotomous data were identified as the most parsimonious set of serological markers able to distinguish NPC cases from controls with AUCs of 0.992 (95% confidence interval [CI], 0.983 to 1.000) and 0.984 (95% CI, 0.971 to 0.997), respectively. Neither differed significantly from the 13-marker model (AUC, 0.992; 95% CI, 0.982 to 1.000). All models were internally validated. Multiplex serology successfully validated the original EBV proteome microarray data. Two refined signatures of four and two antibodies were capable of detecting NPC with 99.2% and 98.4% accuracy.
Collapse
|
47
|
Guo J, Cui Z, Zheng Y, Li X, Chen Y. Comparison of Epstein-Barr Virus Serological Tools for the Screening and Risk Assessment of Nasopharyngeal Carcinoma: a Large Population-based Study. Pathol Oncol Res 2020; 26:2185-2190. [PMID: 32222897 DOI: 10.1007/s12253-020-00808-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022]
Abstract
Epstein-Barr virus (EBV)-based serologic antibody testing has been found to be a feasible alternative for nasopharyngeal carcinoma (NPC) screening in endemic areas. The purpose of this study was to evaluate the performance of ELISA based on VCA IgA antibody, EA-IgA and Rta-IgG antibody specific to EBV in the diagnosis of NPC. A total of 2155 untreated NPC patients and 6957 healthy volunteers without nasopharyngeal disorder were recruited, and all subjects received EBV VCA-IgA, EA-IgA and Rta-IgG antibody tests simultaneously. The diagnostic efficiency of three testing alone or in combination for the diagnosis of NPC was evaluated. The prevalence of IgA antibody against EBV-VCA, IgA antibody against EBV-EA and IgG antibody against EBV-Rta was 89.9%, 46.6% and 63.2%. The sensitivity, specificity, positive predictive value, negative predictive value and Youden index were 89.88%, 89.65%, 73.18%, 96.63% and 0.79 for the EBV VCA-IgA antibody test, 46.59%, 96.89%, 82.5%, 85.42% and 0.43 for the EA-IgA antibody test, and 63.25%, 94.87%, 79.48%, 89.29% and 0.58 for the Rta-IgG antibody test in the diagnosis of NPC, and ROC curve analysis revealed the greatest diagnostic efficiency for EBV VCA-IgA antibody test and the lowest efficiency for EBV EA-IgA antibody test in the diagnosis of NPC. In addition, the simultaneous triple positivity of VCA-IgA, EA-IgA and Rta-IgG antibodies specific to EBV indicated the highest risk of NPC, and the simultaneous triple negativity of the three types of anti-EBV antibodies suggested the lowest risk of NPC. Our data demonstrate that EBV VCA-IgA antibody test shows a higher diagnostic efficiency than EA-IgA and Rta-IgG antibody tests for the screening of NPC, and triple positivity of is a better biomarker for the diagnosis of NPC.
Collapse
Affiliation(s)
- Junying Guo
- Department of Clinical Laboratory, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No. 420 Fuma Road, 350014, Fuzhou City, Fujian Province, China
| | - Zhaolei Cui
- Department of Clinical Laboratory, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No. 420 Fuma Road, 350014, Fuzhou City, Fujian Province, China
| | - Yuhong Zheng
- Department of Clinical Laboratory, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No. 420 Fuma Road, 350014, Fuzhou City, Fujian Province, China
| | - Xiaoli Li
- Department of Clinical Laboratory, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No. 420 Fuma Road, 350014, Fuzhou City, Fujian Province, China
| | - Yan Chen
- Department of Clinical Laboratory, Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, No. 420 Fuma Road, 350014, Fuzhou City, Fujian Province, China.
| |
Collapse
|
48
|
Zheng XH, Wang RZ, Li XZ, Zhou T, Zhang JB, Zhang PF, Lu LX, Jia WH. Detection of methylation status of Epstein-Barr virus DNA C promoter in the diagnosis of nasopharyngeal carcinoma. Cancer Sci 2020; 111:592-600. [PMID: 31834989 PMCID: PMC7004524 DOI: 10.1111/cas.14281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
The detection of Epstein-Barr virus (EBV) DNA load in nasopharyngeal (NP) brushing samples for diagnosis of nasopharyngeal carcinoma (NPC) has attracted great attention. Further improvements that eliminate the need for clinical settings will greatly extend its application. A total of 250 participants were recruited to obtain NP brushing samples. Brush sampling both with and without the guide of endoscopy was conducted in 38 NPC patients. EBV DNA load, EBV RNA transcript and EBV DNA C promoter methylation status were, respectively, evaluated. Typical latency II transcripts were observed in brushing samples from NPC patients but not controls. Unlike in tissues, multiple lytic gene transcripts were observed not only in NPC patients but also in controls. Apart from EBV RNA transcript, samples from NPC patients also showed higher levels of EBV DNA load and C promoter methylation degree than their controls. Qualitative analysis further showed that EBV DNA C promoter was methylated in all NPC patients but in only 18.4% of the control group. Combined analysis of EBV DNA methylated degree and EBV DNA load increased the sensitivity to 100% in the detection of NPC. Using qualitative methylated type as the criteria, up to 89.5% of samples collected via blind brushing showed consistent results with samples collected via endoscopy-guided brushing from NPC patients. Detection of the methylation status of EBV DNA C promoter in NP brushing samples shows great potential in diagnosing NPC and may provide an appealing alternative for the non-invasive detection and screening of NPC without the need for clinical settings.
Collapse
Affiliation(s)
- Xiao-Hui Zheng
- Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Ruo-Zheng Wang
- Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Xia Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
49
|
Camargo MC, Kim KM, Matsuo K, Torres J, Liao LM, Morgan D, Michel A, Waterboer T, Song M, Gulley ML, Dominguez RL, Yatabe Y, Kim S, Cortes-Martinez G, Lissowska J, Zabaleta J, Pawlita M, Rabkin CS. Circulating Antibodies against Epstein-Barr Virus (EBV) and p53 in EBV-Positive and -Negative Gastric Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:414-419. [PMID: 31719065 PMCID: PMC8272980 DOI: 10.1158/1055-9965.epi-19-0790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 11/04/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV)-positive gastric cancers have clinicopathologic differences from EBV-negative tumors and lack TP53 mutation. Serologic profiles may inform viral contribution to carcinogenesis. METHODS We compared humoral responses of EBV-positive (n = 67) and EBV-negative (n = 137) patients with gastric cancer from the International EBV-Gastric Cancer Consortium. Serum antibodies against four EBV proteins, nuclear (EBNA), viral capsid (VCA), early-diffuse (EA-D), and Zta replication activator (ZEBRA), and to p53 were assessed by multiplex assays. OR of antibody level tertiles (T1-T3) were adjusted by logistic regression. We also conducted a meta-analysis of reported anti-p53 seropositivity in gastric cancer. RESULTS Consistent with EBV's ubiquity, 99% of patients were seropositive for anti-EBNA and 98% for anti-VCA, without difference by tumor EBV status. Seropositivity varied between patients with EBV-positive and EBV-negative tumors for anti-EA-D (97% vs. 67%, respectively, P < 0.001) and anti-ZEBRA (97% vs. 85%, respectively, P = 0.009). Adjusted ORs (vs. T1) for patients with EBV-positive versus EBV-negative tumors were significantly elevated for higher antibodies against EBNA (2.6 for T2 and 13 for T3), VCA (1.8 for T2 and 2.4 for T3), EA-D (6.0 for T2 and 44 for T3), and ZEBRA (4.6 for T2 and 12 for T3). Antibodies to p53 were inversely associated with EBV positivity (3% vs. 15%; adjusted OR = 0.16, P = 0.021). Anti-p53 prevalence from the literature was 15%. CONCLUSIONS These serologic patterns suggest viral reactivation in EBV-positive cancers and identify variation of p53 seropositivity by subtype. IMPACT Anti-EBV and anti-p53 antibodies are differentially associated with tumor EBV positivity. Serology may identify EBV-positive gastric cancer for targeted therapies.
Collapse
Affiliation(s)
- M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland.
| | - Kyoung-Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center, Nagoya, Japan
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, México City, México
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Douglas Morgan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, Tennessee
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Angelika Michel
- Infections and Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Margaret L Gulley
- Department of Pathology and Laboratory Medicine and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Ricardo L Dominguez
- Department of Medicine, Western Regional Hospital, Santa Rosa de Copan, Honduras
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gustavo Cortes-Martinez
- Servicio de Cirugía, Hospital de Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, México City, México
| | - Jolanta Lissowska
- Division of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Michael Pawlita
- Infections and Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
50
|
Hsu WL, Chien YC, Huang YT, Yu KJ, Ko JY, Lin CY, Tsou YA, Leu YS, Liao LJ, Chang YL, Su JY, Liu Z, Wang CP, Terng SD, Hua CH, Lee JC, Yang TL, Kate Hsiao CH, Wu MS, Tsai MH, Liu MJ, Lou PJ, Hildesheim A, Chen CJ. Cigarette smoking increases the risk of nasopharyngeal carcinoma through the elevated level of IgA antibody against Epstein-Barr virus capsid antigen: A mediation analysis. Cancer Med 2020; 9:1867-1876. [PMID: 31925935 PMCID: PMC7050088 DOI: 10.1002/cam4.2832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/16/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022] Open
Abstract
Background The study aims are to evaluate the associations between nasopharyngeal carcinoma (NPC) risk and cigarette smoking and to explore the effects of cigarette smoking on Epstein‐Barr virus (EBV) infection for NPC risk. Methods 1235 male NPC cases and 1262 hospital‐based male controls matched to cases were recruited across six collaborative hospitals between 2010 and 2014. Using a standardized questionnaire, information on cigarette smoking and other potential risk factors for NPC was obtained. Blood was collected and used for anti‐EBV VCA IgA and anti‐EBV EA‐EBNA1 IgA testing using standard methods. Unconditional logistic regression analysis was used to estimate odds ratio (OR) with 95% confidence interval (CI) for each risk factor after adjusting for confounders. Results 63.6% of cases and 44.0% of controls reported ever smoking cigarettes. After full adjustment, current smokers had a significant 1.60‐fold (95% CI = 1.30‐1.97) and former smokers a borderline significant 1.27‐fold (95% CI = 1.00‐1.60) increased NPC risk compared to never smokers. NPC risk increased with increasing duration, intensity, and pack‐years of cigarette smoking but not with age at smoking initiation. Among controls, anti‐EBV VCA IgA seropositivity rate was higher in current smokers than never smokers (14.0% vs 8.4%; OR = 1.82; 95% CI = 1.19‐2.79). Mediation analyses showed that more than 90% of the cigarette smoking effect on NPC risk is mediated through anti‐EBV VCA IgA. Conclusion This study confirms the association between long‐term cigarette smoking and NPC and demonstrates that current smoking is associated with seropositivity of anti‐EBV VCA IgA antibodies.
Collapse
Affiliation(s)
- Wan-Lun Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yin-Chu Chien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Kelly J Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jenq-Yuh Ko
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Yuan Lin
- Department of Head and Neck Surgery, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Yung-An Tsou
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Shing Leu
- Department of Otolaryngology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Li-Jen Liao
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Liang Chang
- Department of Otolaryngology, Cathay General Hospital, Taipei, Taiwan
| | - Jia-Ying Su
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Cheng-Ping Wang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shyuang-Der Terng
- Department of Head and Neck Surgery, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Jehn-Chuan Lee
- Department of Otolaryngology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chu-Hsing Kate Hsiao
- Graduate Institute of Epidemiology and Preventative Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Hsui Tsai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Jiung Liu
- Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|