1
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
2
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
3
|
Ramalingam L, Mabry B, Menikdiwela KR, Moussa H, Moustaid-Moussa N. Enhanced Metabolic Effects of Fish Oil When Combined with Vitamin D in Diet-Induced Obese Male Mice. Biomolecules 2024; 14:474. [PMID: 38672490 PMCID: PMC11048485 DOI: 10.3390/biom14040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Vitamin D (vit D) and fish oil (FO) both offer unique health benefits, however, their combined effects have not been evaluated in obesity and nonalcoholic fatty liver disease (NAFLD). Hence, we hypothesized that vit D and FO supplementation would have additive effects in reducing obesity-associated inflammation and NAFLD. Male C57BL6 mice were split into four groups and fed a high fat (HF) diet supplemented with a low (HF; +200 IU vit D) or high dose of vitamin D (HF + D; +1000 IU vit D); combination of vit D and FO (HF-FO; +1000 IU vit D); or only FO (HF-FO; +200 IU vit D) for 12 weeks. We measured body weight, food intake, glucose tolerance, and harvested epididymal fat pad and liver for gene expression analyses. Adiposity was reduced in groups supplemented with both FO and vit D. Glucose clearance was higher in FO-supplemented groups compared to mice fed HF. In adipose tissue, markers of fatty acid synthesis and oxidation were comparable in groups that received vit D and FO individually in comparison to HF. However, the vit D and FO group had significantly lower fatty acid synthesis and higher oxidation compared to the other groups. Vit D and FO also significantly improved fatty acid oxidation, despite similar fatty acid synthesis among the four groups in liver. Even though we did not find additive effects of vit D and FO, our data provide evidence that FO reduces markers of obesity in the presence of adequate levels of vit D.
Collapse
Affiliation(s)
- Latha Ramalingam
- Nutrigenomics, Inflammation and Obesity Research Laboratory, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX 79409, USA (K.R.M.)
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University (TTU), Lubbock, TX 79409, USA
| | - Brennan Mabry
- Nutrigenomics, Inflammation and Obesity Research Laboratory, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX 79409, USA (K.R.M.)
| | - Kalhara R. Menikdiwela
- Nutrigenomics, Inflammation and Obesity Research Laboratory, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX 79409, USA (K.R.M.)
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University (TTU), Lubbock, TX 79409, USA
| | - Hanna Moussa
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University (TTU), Lubbock, TX 79409, USA
- Department of Physics & Astronomy, College of Arts & Sciences, Texas Tech University (TTU), Lubbock, TX 79409, USA
| | - Naima Moustaid-Moussa
- Nutrigenomics, Inflammation and Obesity Research Laboratory, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX 79409, USA (K.R.M.)
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University (TTU), Lubbock, TX 79409, USA
| |
Collapse
|
4
|
Torfadottir JE, Ulven SM. Fish - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10485. [PMID: 38571914 PMCID: PMC10989230 DOI: 10.29219/fnr.v68.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 04/05/2024] Open
Abstract
The aim of this scoping review was to conduct evidence-based documentation between fish intake and health outcomes for food-based dietary guidelines (FBDGs) in the Nordic Nutrition Recommendations (NNR) 2023. For most health outcomes, the evidence for fish oil and n-3 long chain (LC) polyunsaturated fatty acids (PUFA) supplementation was included when examining evidence between fish intake and health. In this review, conclusions from qualified systematic reviews (qSR) approved by NNR2023 are included. In addition, conclusions of a de novo systematic reviews on the topic of n-3 LC-PUFA, asthma, and allergy are included. Finally, a systematic literature search was performed limited to systematic reviews and meta-analysis published between 2011 and September 2021. In total, 21 papers from the systematic literature search, four qSR, and eight reports were included addressing the association between fish intake, fish oil, and n-3 LC-PUFA supplementation on several health outcomes. These included cardiovascular disease (CVD), type 2 diabetes, cancers (colorectal, breast, and prostate), metabolic syndrome, obesity, mortality, cognition and mental health, pregnancy-related outcomes (preterm birth and birth weight), and outcomes specific for children (neurodevelopment, and risk of food allergies, and asthma). In addition, intermediate risk factors such as blood lipids, glucose, C-reactive protein, and blood pressure were reviewed. Based on current evidence, fish consumption can have beneficial effects to prevent coronary heart disease (CHD) and stroke incidence, and lower mortality from CVD, CHD, myocardial infarction (MI), and stroke, as well as total mortality risk. In addition, fish consumption is beneficial for preventing cognitive decline in adults (e.g. dementia and Alzheimer's disease). Fish intake may also prevent metabolic syndrome, supported by an observed association between fish intake and reduction in plasma triglycerides and increase in high-density lipoprotein (HDL) cholesterol levels. Data from fish oil and n-3 LC-PUFA supplementation studies supports the conclusions on the effects of fish consumption on most of the health outcomes.
Collapse
Affiliation(s)
- Johanna E. Torfadottir
- Centre of Public Health Sciences, University of Iceland, Reykjavik, Iceland
- Directorate of Health, Reykjavik, Iceland
| | - Stine M. Ulven
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Shrestha A, Dellett SK, Yang J, Sharma U, Ramalingam L. Effects of Fish Oil Supplementation on Reducing the Effects of Paternal Obesity and Preventing Fatty Liver in Offspring. Nutrients 2023; 15:5038. [PMID: 38140297 PMCID: PMC10745816 DOI: 10.3390/nu15245038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious public health concern, which calls for appropriate diet/nutrition intervention. Fish oil (FO) has several benefits in reducing obesity, but its intergenerational role in reducing the effects of paternal obesity has not been established. Hence, we hypothesized that FO supplementation to an obese father during the pre-conceptional period could improve the metabolic health of the offspring, specifically in the liver. Three groups of male mice were fed with a low-fat (LF), high-fat (HF), or high-fat diet supplemented with FO (HF-FO) for 10 weeks and were then allowed to mate with female mice fed a chow diet. Offspring were sacrificed at 16 weeks. The liver tissue was harvested for genomic and histological analyses. The offspring of HF and HF-FO fathers were heavier compared to that of the LF mice during 9-16 weeks. The glucose tolerance of the offspring of HF-FO fathers were significantly improved as compared to the offspring of HF fathers. Paternal FO supplementation significantly lowered inflammation and fatty acid synthesis biomarkers and increased fatty acid oxidation biomarkers in the offspring liver. In summary, FO supplementation in fathers shows the potential to reduce metabolic and cardiovascular diseases through genetic means in offspring.
Collapse
Affiliation(s)
- Akriti Shrestha
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Sarah Katherine Dellett
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Junhui Yang
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Latha Ramalingam
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| |
Collapse
|
6
|
Xiong L, Dorus S, Ramalingam L. Role of Fish Oil in Preventing Paternal Obesity and Improving Offspring Skeletal Muscle Health. Biomedicines 2023; 11:3120. [PMID: 38137341 PMCID: PMC10740802 DOI: 10.3390/biomedicines11123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
This study investigates the effects of fish oil supplementation during the periconceptional period in male mice. Specifically, it examines the impact of fish oil on intergenerational health, as determined by skeletal muscle markers. To mimic paternal obesity, thirty mice were separated into three groups with distinct dietary regimes for 10 weeks: a high-fat diet (HF), a high-fat diet supplemented with fish oil (FO), and a low-fat diet (LF). Then, these mice mated with control female mice. Dams and offspring consumed a chow diet during gestation and lactation, and the offspring continued on a chow diet. To study short-term (8 weeks) and long-term (16 weeks) effects of FO, skeletal muscle was isolated at the time of sacrifice, and gene analyses were performed. Results suggest that offspring born to FO-supplemented sires exhibited a significant, short-term upregulation of genes associated with insulin signaling, fatty acid oxidation, and skeletal muscle growth with significant downregulation of genes involved in fatty acid synthesis at 8 weeks. Prominent differences in the above markers were observed at 8 weeks compared to 16 weeks. These findings suggest the potential benefits of FO supplementation for fathers during the periconceptional period in reducing the health risks of offspring due to paternal obesity.
Collapse
Affiliation(s)
- Ligeng Xiong
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA
| | - Stephen Dorus
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Latha Ramalingam
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
7
|
Zhong Y, Chen X, Huang C, Chen Y, Zhao F, Hao R, Wang N, Liao W, Xia H, Yang L, Wang S, Sun G. The effects of a low carbohydrate diet combined with partial meal replacement on obese individuals. Nutr Metab (Lond) 2023; 20:18. [PMID: 36997952 PMCID: PMC10064565 DOI: 10.1186/s12986-023-00740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
OBJECTIVE We explored the dietary effects of replacing normal dietary staple foods with supplementary nutritional protein powder, dietary fiber, and fish oil on several metabolic parameters. We examined weight loss, glucose and lipid metabolism, and intestinal flora in obese individuals when compared with individuals on a reduced staple food low carbohydrate diet. METHODS From inclusion and exclusion criteria, 99 participants (28 kg/m2 ≤ body mass index (BMI) ≤ 35 kg/m2) were recruited and randomly assigned to control and intervention 1 and 2 groups. Physical examinations and biochemical indices were performed/gathered before the intervention and at 4 and 13 weeks post intervention. After 13 weeks, feces was collected and 16s rDNA sequenced. RESULTS After 13 weeks, when compared with controls, body weight, BMI, waist circumference, hip circumference, systolic blood pressure, and diastolic blood pressure values in intervention group 1 were significantly reduced. In intervention group 2, body weight, BMI, waist circumference, and hip circumference were significantly reduced. Triglyceride (TG) levels in both intervention groups were significantly reduced. Fasting blood glucose, glycosylated hemoglobin, glycosylated albumin, total cholesterol, and apolipoprotein B levels in intervention group 1 were decreased, while high density lipoprotein cholesterol (HDL-c) decreased slightly. Glycosylated albumin, TG, and total cholesterol levels in intervention group 2 decreased, while HDL-c decreased slightly, High sensitive C-reactive protein, MPO, Ox-LDL, LEP, TGF-β1, IL-6, GPLD1, pro NT, GPC-4, and LPS levels in both intervention groups were lower when compared with controls. Adiponectin (ADPN) levels in intervention groups were higher when compared with controls. Tumor necrosis factor-α (TNF-α) levels in intervention group 1 were lower when compared with controls. There is no obvious difference in α diversity and β diversity between intestinal flora of 3 groups. Among the first 10 species of Phylum, only the control group and the intervention group 2 had significantly higher Patescibacteria than the intervention group 1. Among the first 10 species of Genus, only the number of Agathobacter in intervention group 2 was significantly higher than that in control group and intervention group 1. CONCLUSIONS We showed that an LCD, where nutritional protein powder replaced some staple foods and dietary fiber and fish oil were simultaneously supplemented, significantly reduced weight and improved carbohydrate and lipid metabolism in obese individuals when compared with an LCD which reduced staple food intake.
Collapse
Affiliation(s)
- Yulian Zhong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ximin Chen
- Beijing Institute of Nutritional Resources, Beijing, 100069, China
| | - Chao Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yuexiao Chen
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Fengyi Zhao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Runhua Hao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Niannian Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
8
|
Costa A, de Brito GAP. Aerobic Exercise Associated with Fish Oil Supplementation Decreases C-Reactive Protein and Interleukin-6 in Celiac Disease Patients. J Nutr Metab 2022; 2022:3908675. [PMID: 35910449 PMCID: PMC9334128 DOI: 10.1155/2022/3908675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background Several studies indicate that celiac disease patients present alterations within anthropometric, metabolic, and inflammatory parameters, while physical exercise and fish oil are known to activate modulatory pathways of such parameters. Objective To investigate the effects of a 12-week-long protocol of aerobic exercise and its association with fish oil supplementation in nineteen adult celiac disease patients. Material and Methods. The celiacs were divided into 2 groups: (A) FOS: supplementation (n = 11); and (B) EXE: supplementation and exercise (n = 8). The celiac groups were compared to the adult healthy control group (CTR) (n 12). Aerobic exercises were performed weekly, in three sessions of 60 minutes each, with a maximal heart rate intensity of 60-70%. The participants received 2 g/day of fish oil, a daily intake of 420 mg of eicosapentaenoic acid, and 230 mg of docosahexaenoic acid. The following measurements were taken in four phases: (A) anthropometry: body mass, height, body mass index, waist-to-hip ratio, fat mass, and fat-free mass; (B) metabolic profile: total cholesterol, triglycerides, HDL, and LDL; and (C) inflammatory profile: C-reactive protein and interleukin-6. Results Supplementation associated with aerobic exercise promoted a significant reduction in C-reactive protein (P < 0.01) and increased the proportion of individuals in the undetectable range of interleukin-6. Conclusions The associated interventions showed a corrective and preventive potential in relation to disorders associated with chronic inflammation; however, the experimental design does not allow us to discriminate between the biological effects that are dependent on the association between interventions and those exclusively dependent on aerobic exercise.
Collapse
Affiliation(s)
- Allysson Costa
- Laboratory of Physiology and Developmental Biology, Federal University of Latin American Integration—UNILA, Foz do Iguaçu, Paraná, Brazil
| | - Gleisson A. P. de Brito
- Laboratory of Physiology and Developmental Biology, Federal University of Latin American Integration—UNILA, Foz do Iguaçu, Paraná, Brazil
| |
Collapse
|
9
|
Petermann AB, Reyna-Jeldes M, Ortega L, Coddou C, Yévenes GE. Roles of the Unsaturated Fatty Acid Docosahexaenoic Acid in the Central Nervous System: Molecular and Cellular Insights. Int J Mol Sci 2022; 23:5390. [PMID: 35628201 PMCID: PMC9141004 DOI: 10.3390/ijms23105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acids (FAs) are essential components of the central nervous system (CNS), where they exert multiple roles in health and disease. Among the FAs, docosahexaenoic acid (DHA) has been widely recognized as a key molecule for neuronal function and cell signaling. Despite its relevance, the molecular pathways underlying the beneficial effects of DHA on the cells of the CNS are still unclear. Here, we summarize and discuss the molecular mechanisms underlying the actions of DHA in neural cells with a special focus on processes of survival, morphological development, and synaptic maturation. In addition, we examine the evidence supporting a potential therapeutic role of DHA against CNS tumor diseases and tumorigenesis. The current results suggest that DHA exerts its actions on neural cells mainly through the modulation of signaling cascades involving the activation of diverse types of receptors. In addition, we found evidence connecting brain DHA and ω-3 PUFA levels with CNS diseases, such as depression, autism spectrum disorders, obesity, and neurodegenerative diseases. In the context of cancer, the existing data have shown that DHA exerts positive actions as a coadjuvant in antitumoral therapy. Although many questions in the field remain only partially resolved, we hope that future research may soon define specific pathways and receptor systems involved in the beneficial effects of DHA in cells of the CNS, opening new avenues for innovative therapeutic strategies for CNS diseases.
Collapse
Affiliation(s)
- Ana B. Petermann
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| | - Mauricio Reyna-Jeldes
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Lorena Ortega
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Claudio Coddou
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Gonzalo E. Yévenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| |
Collapse
|
10
|
Selective Consumption of Fish Oil at End of the Day Increases the Physiological Fatty Acid Compositions of Eicosapentaenoic Acid and Docosahexaenoic Acid in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041271. [PMID: 35209062 PMCID: PMC8874613 DOI: 10.3390/molecules27041271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/19/2022]
Abstract
Diets with high daily fat consumption are associated with excess weight. However, the effects of fat type and consumption timing on excess weight remain unclear. We investigated the selection of a 30% (w/w) fat diet of soybean oil (SOY), lard (LARD), and fish oil (FISH) on the metabolic parameters of mice. Male C57BL/6 mice were divided into the double SOY-box (w-SOY), SOY-box/LARD-box (SOY-vs-LARD), or SOY-box/FISH-box (SOY-vs-FISH) groups and allowed to selectively consume for 8 weeks. The total energy intake was similar for all groups, but the mice selectively chose to consume LARD over SOY and SOY over FISH. Body weight in the SOY-vs-LARD group was significantly higher than that in the w-SOY and SOY-vs-FISH groups. Additionally, minimal but selective consumption of an omega-3 fatty-acid-rich FISH diet at the end of the active period increased the physiological fatty acid compositions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the SOY-vs-FISH group; their metabolic parameters were also lower than the SOY-vs-LARD group. In conclusion, selectively consuming small amounts of fish oil at the end of the day may prevent excess weight compared with LARD consumption.
Collapse
|
11
|
Siroma TK, Machate DJ, Zorgetto-Pinheiro VA, Figueiredo PS, Marcelino G, Hiane PA, Bogo D, Pott A, Cury ERJ, Guimarães RDCA, Vilela MLB, Ferreira RDS, do Nascimento VA. Polyphenols and ω-3 PUFAs: Beneficial Outcomes to Obesity and Its Related Metabolic Diseases. Front Nutr 2022; 8:781622. [PMID: 35111795 PMCID: PMC8802753 DOI: 10.3389/fnut.2021.781622] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
Obesity is associated with the leading causes of death in the worldwide. On the other hand, the intake of vegetables, fruits and fish is related to the reduction of obesity and other metabolic syndromes. This review aims to highlight the role of ingestion of polyphenols and omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in reducing obesity and related metabolic diseases (RMDs). The consumption of vegetables, fish and by-products rich in polyphenols and α-linolenic acid (ALA), as well as oils rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with a decrease in obesity and its RMDs in consumers. Furthermore, we discussed the adequate amount of extracts, powder, polyphenols, ω-3 PUFAs administrated in animal models and human subjects, and the relevant outcomes obtained. Thus, we appeal to the research institutions and departments of the Ministries of Health in each country to develop a food education joint project to help schools, businesses and families with the aim of reducing obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Thais Keiko Siroma
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - David Johane Machate
- Spectroscopy and Bioinformatics Applied Biodiversity and Health - GEBABS, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- Graduate Program in Materials Science, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Arnildo Pott
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Elenir Rose Jardim Cury
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | | | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- Spectroscopy and Bioinformatics Applied Biodiversity and Health - GEBABS, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
12
|
Abbas MM, Soto P, Ramalingam L, El-Manzalawy Y, Bensmail H, Moustaid-Moussa N. Sex Differences in Fish Oil and Olanzapine Effects on Gut Microbiota in Diet-Induced Obese Mice. Nutrients 2022; 14:349. [PMID: 35057526 PMCID: PMC8780445 DOI: 10.3390/nu14020349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Children are prescribed second-generation antipsychotic (SGA) medications, such as olanzapine (OLZ) for FDA-approved and "off-label" indications. The long-term impact of early-life SGA medication exposure is unclear. Olanzapine and other SGA medications are known to cause excessive weight gain in young and adult patients, suggesting the possibility of long-term complications associated with the use of these drugs, such as obesity, diabetes, and heart disease. Further, the weight gain effects of OLZ have previously been shown to depend on the presence of gut bacteria and treatment with OLZ, which shifts gut bacteria toward an "obesogenic" profile. The purpose of the current study was to evaluate changes in gut bacteria in adult mice following early life treatment with OLZ and being fed either a high-fat diet or a high-fat diet supplemented with fish oil, which has previously been shown to counteract gut dysbiosis, weight gain, and inflammation produced by a high-fat diet. Female and male C57Bl/6J mice were fed a high fat diet without (HF) or with the supplementation of fish oil (HF-FO) and treated with OLZ from postnatal day (PND) 37-65 resulting in four groups of mice: mice fed a HF diet and treated with OLZ (HF-OLZ), mice fed a HF diet and treated with vehicle (HF), mice fed a HF-FO diet and treated with OLZ (HF-FO-OLZ), and mice fed a HF-FO diet and treated with vehicle (HF-FO). Following euthanasia at approximately 164 days of age, we determined changes in gut bacteria populations and serum LPS binding protein, an established marker of gut inflammation and dysbiosis. Our results showed that male HF-FO and HF-FO-OLZ mice had lower body weights, at sacrifice, compared to the HF group, with a comparable body weight across groups in female mice. HF-FO and HF-FO-OLZ male groups also exhibited lower serum LPS binding protein levels compared to the HF group, with no differences across groups in female mice. Gut microbiota profiles were also different among the four groups; the Bacteroidetes-to-Firmicutes (B/F) ratio had the lowest value of 0.51 in the HF group compared to 0.6 in HF-OLZ, 0.9 in HF-FO, and 1.1 in HF-FO-OLZ, with no differences in female mice. In conclusion, FO reduced dietary obesity and its associated inflammation and increased the B/F ratio in male mice but did not benefit the female mice. Although the weight lowering effects of OLZ were unexpected, FO effects persisted in the presence of olanzapine, demonstrating its potential protective effects in male subjects using antipsychotic drugs.
Collapse
Affiliation(s)
- Mostafa M. Abbas
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA 17822, USA; (M.M.A.); (Y.E.-M.)
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha 5825, Qatar
| | - Paul Soto
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (L.R.)
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (L.R.)
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13210, USA
| | - Yasser El-Manzalawy
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA 17822, USA; (M.M.A.); (Y.E.-M.)
| | - Halima Bensmail
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha 5825, Qatar
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (L.R.)
| |
Collapse
|
13
|
Twells LK, Harris Walsh K, Blackmore A, Adey T, Donnan J, Peddle J, Ryan D, Farrell A, Nguyen H, Gao Z, Pace D. Nonsurgical weight loss interventions: A systematic review of systematic reviews and meta-analyses. Obes Rev 2021; 22:e13320. [PMID: 34378849 DOI: 10.1111/obr.13320] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Access to bariatric surgery to treat obesity is limited and has long wait times. Many adults are seeking nonsurgical weight loss support. Our study objective was to conduct a systematic review of nonsurgical weight loss interventions. PubMed, EMBASE, CINAHL, PsycInfo, and the CochraneLibrary were searched. Inclusion criteria were adults 18 + with a BMI > 25 enrolled in minimum a 3-month nonsurgical weight loss intervention. Studies were independently extracted and assessed for quality using A MeaSurement Tool to Assess systematic Reviews 2 (AMSTAR2). Pooled analyses were extracted, graded for evidence quality, and summarized. A total of 1065 studies were assessed for eligibility; 815 screened and 236 full-texts assessed. Sixty-four meta-analyses met eligibility criteria: 1180 RCTs with 184,605 study participants. Studies were categorized as diets (n = 13), combination therapies (n = 10), alternative (n = 16), technology (n = 10), behavioral (n = 5), physical activity (n = 6), and pharmacotherapy (n = 3). In 80% of studies, significant weight losses were reported ranging from 0.34-8.73 k in favor of the intervention. The most effective nonsurgical weight loss interventions were diets, either low-carbohydrate or low-fat diets, followed for 6 months; combination therapy including meal replacements plus enhanced support; and pharmacotherapy followed for 12 months. Although significant weight losses were reported for other types of interventions such as physical activity and technology, the majority of studies reported weight losses less than 2 kgs.
Collapse
Affiliation(s)
- Laurie K Twells
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Kristin Harris Walsh
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Alicia Blackmore
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Tanis Adey
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jennifer Donnan
- School of Pharmacy, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Justin Peddle
- School of Pharmacy, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Devonne Ryan
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Alison Farrell
- Health Sciences Library, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Hai Nguyen
- School of Pharmacy, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Zhiwei Gao
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Dave Pace
- Faculty of Medicine-Surgery, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
14
|
Aydin Cil M, Ghosi Ghareaghaji A, Bayir Y, Buyuktuncer Z, Besler HT. Efficacy of krill oil versus fish oil on obesity-related parameters and lipid gene expression in rats: randomized controlled study. PeerJ 2021; 9:e12009. [PMID: 34692241 PMCID: PMC8483003 DOI: 10.7717/peerj.12009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Backround This study aimed to determine the effects of LC n-3 PUFA supplementation on the prevention and treatment of obesity and obesity-related diseases, and to compare the efficiency of different LC n-3 PUFA sources via biochemical and genetic mechanisms in rats. Methods Male Wistar rats were randomized into four study groups, and fed with a standard diet, High Fat Diet (HFD), HFD+%2.5 Fish Oil (FO-HFD) or HFD+%2.5 Krill Oil (KO-HFD) for eight weeks. Food consumption, weight gain, serum glucose, insulin, ghrelin and leptin concentrations, lipid profile, liver fatty acid composition, and FADS1 and FADS2 mRNA gene expression levels were measured. Results Weight gain in each HFD group was significantly higher than control group (p < 0.001), without any differences among them (p < 0.05). LC n-3 PUFAs modified lipid profile, but not glucose tolerance. Serum leptin levels were significantly higher in HFD groups than in the control group, however, no difference in serum ghrelin levels was observed among the groups. Liver n-3 fatty acid desaturation activity was higher (p = 0.74), and liver total lipid content was lower (p = 0.86) in KO-HFD compared to FO-HFD. FADS1 gene expression was highest in the HFD group (p < 0.001) while FADS2 gene expression was highest in the FO-HFD group (p < 0.001). Conclusion LC n-3 PUFAs, especially krill oil, had moderate effects on lipid profile, but limited effects on obesity related parameters, suggesting different effects of different sources on gene expression levels. Further randomized controlled trials are needed to determine the efficacy of different LC n-3 PUFA sources in the prevention and treatment of obesity in humans.
Collapse
Affiliation(s)
- Mevra Aydin Cil
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.,Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkey
| | - Atena Ghosi Ghareaghaji
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yasin Bayir
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Zehra Buyuktuncer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Halit Tanju Besler
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.,Department of Nutrition and Dietetics, Faculty of Health Sciences, Istinye University, Istanbul, Turkey
| |
Collapse
|
15
|
Delpino FM, Figueiredo LM, da Silva BGC. Effects of omega-3 supplementation on body weight and body fat mass: A systematic review. Clin Nutr ESPEN 2021; 44:122-129. [PMID: 34330455 DOI: 10.1016/j.clnesp.2021.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/29/2021] [Accepted: 04/25/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Omega-3 is a supplement that promotes several health benefits. The evidence on omega-3 in weight loss or body fat mass is inconclusive. This study aimed to review the literature on studies that evaluated the effect of omega-3 supplementation and changes in weight and/or body fat mass in humans. METHODS A systematic review, following the recommendations of PRISMA, in the databases Pubmed, Lilacs, and Scielo. Only experimental studies in humans that evaluated the effects of supplementation with omega-3 on weight loss and/or body fat mass were included. RESULTS In total, 20 studies were selected, of which 11 found no effect, and the other nine find some benefits. Two studies found a reduction in individuals' body fat, and a third found these results in women and a fourth only in men. In children and adolescents, one study found a difference in weight loss between groups. Four studies reported decreased body weight in women, and in men, only one found this result. CONCLUSION To date, there is no consistency in the literature that omega-3 has benefits in weight loss or body fat mass in humans. Due to the studies' heterogeneity and inconsistency in the results, further studies on the subject are necessary.
Collapse
Affiliation(s)
- Felipe Mendes Delpino
- Department of Nursing in Public Health, Federal University of Pelotas, Rio Grande do Sul, Brazil; Faculty of Nursing, Federal University of Pelotas, Brazil.
| | | | | |
Collapse
|
16
|
A New Zealand green-lipped mussel oil-enriched high-fat diet exhibits beneficial effects on body weight and metabolism in mice. Br J Nutr 2021; 125:972-982. [PMID: 32594917 DOI: 10.1017/s0007114520002342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To induce diet-induced obesity (DIO) in rodents, diets high in saturated fat and/or carbohydrates are commonly used. In the laboratory, standardised diets evolved over time without paying particular attention to the effect of fat composition on metabolic alterations. In the present study, customised high-fat diets (HFD) enriched with a combination of lard and different concentrations of New Zealand green-lipped mussel (Perna canaliculus) oil or MSC Hoki (Macruronus novaezelandiae, blue grenadier) liver oil, important sources of n-3 PUFA, in comparison with a solely lard-based diet, were fed to lean and DIO male C57BL/6 mice and their effects on metabolic parameters were monitored. Intriguingly, an isoenergetic HFD containing 63 % of total fat in the form of mussel oil and only 28 % in the form of lard attenuated HFD-induced body weight gain after 1 and 4 weeks, respectively. Consistently, changing a lard-enriched HFD to the mussel oil diet reduced body weight markedly even after mice had been exposed to the former diet for 10 months. The weight-reducing effect of the diet was not caused by altered energy intake or expenditure, but was associated with reduced visceral fat mass. Collectively, these data suggest a novel weight-reducing potential of green-lipped mussel oil.
Collapse
|
17
|
Wu S, Zhu C, Wang Z, Wang S, Yuan P, Song T, Hou X, Lei Z. Effects of Fish Oil Supplementation on Cardiometabolic Risk Factors in Overweight or Obese Children and Adolescents: A Meta-Analysis of Randomized Controlled Trials. Front Pediatr 2021; 9:604469. [PMID: 33987149 PMCID: PMC8110710 DOI: 10.3389/fped.2021.604469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Influences of fish oil supplementation on body weight and other cardiometabolic factors in overweight or obese children and adolescents remain not fully understood. We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) to evaluate the role of fish oil for these children. Methods: Relevant studies were obtained by search of PubMed, Embase, and Cochrane's Library databases. A random-effect model, which incorporates the potential heterogeneity of the included studies, was used to pool the results. Results: Twelve RCTs including 1,028 overweight or obese children and adolescents were included. Compared to control, fish oil supplementation significantly reduced body mass index [BMI, mean difference (MD): -0.96 kg/m2, 95% confidence interval (CI): -1.69 to -0.23, P = 0.01] but did not significantly reduce body weight or waist circumference (P = 0.68 and 0.76). Moreover, fish oil supplementation significantly reduced serum triglyceride (MD: -0.24 mmol/L, 95% CI: -0.40 to -0.08, P = 0.004) but did not significantly affect serum total cholesterol and high-density or low-density lipoprotein cholesterol (P = 0.83, 0.42, and 0.31, respectively). Additionally, fish oil supplementation significantly lowered systolic blood pressure (SBP, MD: -2.46 mmHg, 95% CI: -4.93 to -0.01, P = 0.04) but did not significantly change diastolic blood pressure (P = 0.22). Supplementation with fish oil did not significantly affect fasting plasma glucose (P = 0.33). Conclusions: In overweight or obese children and adolescents, supplementation with fish oil could reduce BMI, decrease serum triglyceride, and lower SBP, while serum cholesterol and fasting glucose may not be significantly affected.
Collapse
Affiliation(s)
- Shaojing Wu
- Department of Clinical Nutrition, Hainan Maternal and Children's Medical Center, Haikou, China
| | - Chunhong Zhu
- Department of Pediatrics, Zhongshan Hospital Affiliated to Dalian University, Dalian, China
| | - Zhen Wang
- Department of Pediatrics, Zhongshan Hospital Affiliated to Dalian University, Dalian, China
| | - Shumei Wang
- Department of Pediatrics, Zhongshan Hospital Affiliated to Dalian University, Dalian, China
| | - Pengfei Yuan
- Department of Pediatrics, Zhongshan Hospital Affiliated to Dalian University, Dalian, China
| | - Tao Song
- Department of Pediatrics, Zhongshan Hospital Affiliated to Dalian University, Dalian, China
| | - Xiaoli Hou
- Department of Pediatrics, Zhongshan Hospital Affiliated to Dalian University, Dalian, China
| | - Zhixian Lei
- Department of Critical Medicine, Hainan Maternal and Children's Medical Center, Haikou, China
| |
Collapse
|
18
|
Verduci E, Calcaterra V, Di Profio E, Fiore G, Rey F, Magenes VC, Todisco CF, Carelli S, Zuccotti GV. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review. Nutrients 2021; 13:nu13051450. [PMID: 33923364 PMCID: PMC8145569 DOI: 10.3390/nu13051450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we revised preclinical and clinical works on factors that may promote BAT or browning of white adipose tissue (WAT) from fetal age to adolescence. Maternal lifestyle, type of breastfeeding and healthy microbiota can affect the thermogenic activity of BAT. Environmental factors such as exposure to cold or physical activity also play a role in promoting and activating BAT. Most of the evidence is preclinical, although in clinic there is some evidence on the role of omega-3 PUFAs (EPA and DHA) supplementation on BAT activation. Clinical studies are needed to dissect the early factors and their modulation to allow proper BAT development and functions and to prevent onset of childhood obesity.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Correspondence: (E.V.); (S.C.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Carolina Federica Todisco
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
- Correspondence: (E.V.); (S.C.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| |
Collapse
|
19
|
Behrouz V, Yari Z. A review on differential effects of dietary fatty acids on weight, appetite and energy expenditure. Crit Rev Food Sci Nutr 2020; 62:2235-2249. [PMID: 33261509 DOI: 10.1080/10408398.2020.1852172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The association between weight and chronic diseases is well defined. The quality and quantity of dietary fatty acids is an important external factor and appetite and energy expenditure, are important internal factors in determining body weight. On the other hand, dietary fatty acids composition can modulate appetite and energy metabolism, but not all fats are equal in producing metabolic responses.Given the accumulating evidence for differential effects of various dietary fatty acids, one important area of investigation is to scrutinize their roles in weight, appetite and energy expenditure modulation. There is substantial evidence to suggest that saturated fatty acids have a greater effect on appetite control, although in the long run may result in more weight gain than unsaturated fatty acids due to a weaker stimulation of energy expenditure. In contrast, mono-unsaturated fats do not have much effects on appetite control, but they can be beneficial in weight control over the long term due to stimulatory effects on energy expenditure. Interestingly, in case of poly unsaturated fats, including n-3 and n-6, their effect on increasing energy expenditure is aligned, but they act differently in controlling weight and appetite.
Collapse
Affiliation(s)
- Vahideh Behrouz
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Yari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Effect of omega-3 fatty acids supplementation on anthropometric indices in children and adolescents: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2020; 53:102487. [PMID: 33066870 DOI: 10.1016/j.ctim.2020.102487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/02/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
|
21
|
Parolini C. Marine n-3 polyunsaturated fatty acids: Efficacy on inflammatory-based disorders. Life Sci 2020; 263:118591. [PMID: 33069735 DOI: 10.1016/j.lfs.2020.118591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a physiological response to injury, stimulating tissue repair and regeneration. However, the presence of peculiar individual conditions can negatively perturb the resolution phase eventually leading to a state of low-grade systemic chronic inflammation, characterized by tissue and organ damages and increased susceptibility to non-communicable disease. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are able to influence many aspects of this process. Experiments performed in various animal models of obesity, Alzheimer's disease and multiple sclerosis have demonstrated that n-3 PUFAs can modulate the basic mechanisms as well as the disease progression. This review describes the available data from experimental studies to the clinical trials.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
22
|
Zarezadeh M, Faghfouri AH, Radkhah N, Foroumandi E, Khorshidi M, Rasouli A, Zarei M, Mohammadzadeh Honarvar N, Hazhir Karzar N, Ebrahimi Mamaghani M. Spirulina supplementation and anthropometric indices: A systematic review and meta‐analysis of controlled clinical trials. Phytother Res 2020; 35:577-586. [DOI: 10.1002/ptr.6834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Department of Clinical Nutrition School of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Amir Hossein Faghfouri
- Department of Community Nutrition, Student Research Committee School of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Nima Radkhah
- Department of Community Nutrition, Student Research Committee School of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Elaheh Foroumandi
- Department of Community Nutrition, Student Research Committee School of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Masoud Khorshidi
- Pediatric Gastroenterology Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences Tehran Iran
- Student Research Committee, Department of Nutrition School of Public Health, Iran University of Medical Sciences Tehran Iran
| | - Ahmadreza Rasouli
- Department of Nutrition School of Health, Qazvin University of Medical Sciences Qazvin Iran
- Student Research Committee School of Health, Qazvin University of Medical Sciences Qazvin Iran
| | - Mahtab Zarei
- Department of Cellular and Molecular Nutrition School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences Tehran Iran
| | - Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences Tehran Iran
| | - Nazanin Hazhir Karzar
- Neuroendocrine Unit Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Mehrangiz Ebrahimi Mamaghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy School of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
23
|
Hadaye RS, Manapurath RM, Gadapani BP. Obesity Prevalence and Determinants among Young Adults, with Special Focus on Normal-Weight Obesity; A Cross-Sectional Study in Mumbai. Indian J Community Med 2020; 45:358-362. [PMID: 33354019 PMCID: PMC7745795 DOI: 10.4103/ijcm.ijcm_408_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/01/2020] [Indexed: 11/04/2022] Open
Abstract
Background India has >135 million obese individuals at present. Body mass index (BMI) has been used to assess obesity until recent times. Later, studies have shown that central body fat (BF) measurements as a reliable predictor of metabolic diseases. Hence, normal-weight obesity (NWO) is defined. Those with a normal range of BMI but increased fat percentage are found to be having metabolic syndromes at a very early life. The young adult group is specifically focused on the study with diet and physical activity as potential determinants; as an intervention at the right time can prevent the development of many noncommunicable diseases. Objectives The aim of this study is to estimate the prevalence of obesity and its determinants with special reference to NWO. Materials and Methods A cross-sectional study was conducted based on diet, physical activity, and other lifestyle factors on a sample of 269 young adults. Using Harpenden skinfold calipers, BF percentage was calculated based on Jackson and Pollock and Siri's equation. Binary logistic regression was also applied appropriately. Results The proportion of obesity was 42.01%, and that of NWO was 16.1%. Sex, high protein diet, number of restaurant visits, less homemade tiffin intake, heavy physical activity, alcohol intake were found to be significantly associated with obesity. Intake of fish, physical activity, protein diet, day-time sleep were found to be significantly associated with NWO. Conclusion The study emphasizes the need for including BF percentage in addition to BMI in regular clinical practice. It may help in preventive and promotive efforts.
Collapse
|
24
|
Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem Toxicol 2020; 143:111558. [PMID: 32640331 PMCID: PMC7335494 DOI: 10.1016/j.fct.2020.111558] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Prevention and treatment of non-communicable diseases (NCDs), including cardiovascular disease, diabetes, obesity, cancer, Alzheimer's and Parkinson's disease, arthritis, non-alcoholic fatty liver disease and various infectious diseases; lately most notably COVID-19 have been in the front line of research worldwide. Although targeting different organs, these pathologies have common biochemical impairments - redox disparity and, prominently, dysregulation of the inflammatory pathways. Research data have shown that diet components like polyphenols, poly-unsaturated fatty acids (PUFAs), fibres as well as lifestyle (fasting, physical exercise) are important factors influencing signalling pathways with a significant potential to improve metabolic homeostasis and immune cells' functions. In the present manuscript we have reviewed scientific data from recent publications regarding the beneficial cellular and molecular effects induced by dietary plant products, mainly polyphenolic compounds and PUFAs, and summarize the clinical outcomes expected from these types of interventions, in a search for effective long-term approaches to improve the immune system response.
Collapse
|
25
|
Bazyar H, Zare Javid A, Dasi E, Sadeghian M. Major dietary patterns in relation to obesity and quality of sleep among female university students. Clin Nutr ESPEN 2020; 39:157-164. [PMID: 32859311 DOI: 10.1016/j.clnesp.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Few studies reported the association of dietary patterns with obesity, central adiposity, and quality of sleep. We aimed to investigate the association between major dietary patterns and anthropometric indices in relation to obesity and quality of sleep among female students of Ahvaz Jundishapur University of Medical Sciences (AJUMS). METHODS This cross-sectional study was conducted on 245 female university students aged 18-38 years. To assess sleep quality, we used a self-reported Pittsburgh sleep quality index (PSQI). Usual dietary intakes were assessed with the use of a 168 items food frequency questionnaire (FFQ). We used factor analysis to identify dietary patterns. RESULTS Four major dietary patterns were identified: mixed, high protein, Western, and healthy dietary patterns. After adjustment for energy intake, subjects in the upper tertile of the mixed dietary pattern were more likely to have a high quality of sleep than those in the first tertile (odds ratio [OR]: 0.27; 95% CI: 0.13, 0.55). Individuals with greater adherence to Western dietary pattern had greater odds of having low quality of sleep compared to those in the first tertile (OR: 1.99; 95% CI: 1.04, 3.82). A healthy dietary pattern was associated with a higher quality of sleep; however, the association was no longer significant after adjustment for dietary energy intake. No significant association was found for high protein dietary patterns. Compared to the first tertile of the healthy dietary pattern, individuals in the upper tertile were less likely to be centrally obese (OR = 0.15; 95% CI = 0.50-0.52). Participants in the last tertile of the high protein dietary pattern were less likely to be generally obese (OR = 0.34; 95% CI = 0.12-0.99), whereas those in the upper tertile of the Western dietary pattern were more likely to be generally obese (OR = 1.84; 95% CI = 1.08-4.93). CONCLUSIONS Adherence to a mixed dietary pattern was associated with a high quality of sleep; however, the result was not significant for a high protein dietary pattern. While the high protein dietary pattern was negatively associated with general and central obesity, students in the upper tertile of the Western dietary pattern were more likely to be generally obese.
Collapse
Affiliation(s)
- Hadi Bazyar
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Ahmad Zare Javid
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Elham Dasi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Mehdi Sadeghian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran.
| |
Collapse
|
26
|
Hunsche C, Martínez de Toda I, Hernandez O, Jiménez B, Díaz LE, Marcos A, De la Fuente M. The supplementations with 2-hydroxyoleic acid and n-3 polyunsaturated fatty acids revert oxidative stress in various organs of diet-induced obese mice. Free Radic Res 2020; 54:455-466. [PMID: 32752974 DOI: 10.1080/10715762.2020.1800004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Obesity and its related diseases have been associated with oxidative stress. Thus, the search for nutritional strategies to ameliorate oxidative stress in obese individuals seems important. We hypothesized that the supplementation with monounsaturated (2-hydroxyoleic acid (2-OHOA)) and with combined n-3 polyunsaturated (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) fatty acids would ameliorate oxidative stress in different organs, including brain, liver, lungs, and kidneys of adult diet-induced obese (DIO) mice. Adult female ICR-CD1 mice were fed a high-fat diet (HFD) for 14 weeks. During the last 6 weeks of HFD feeding, one group of DIO mice received the same HFD, supplemented with 1500 mg of 2-OHOA per kg of HFD and another group with 1500 mg of EPA and 1500 mg of DHA per kg of HFD. At the end of the experiment, several parameters of oxidative stress were assessed. The supplementation with 2-OHOA or with EPA and DHA in DIO mice was able to revert oxidative stress, enhancing the activities of catalase and glutathione reductase, as well as diminishing the activity of xanthine oxidase, the concentration of thiobarbituric acid reactive substances (TBARS) and the ratio between oxidized glutathione and reduced glutathione in several organs. These reached similar values to those of control mice, which were fed a standard diet. These data suggest that supplementation with 2-OHOA and with EPA and DHA could be an effective nutritional intervention to restore an appropriate redox state in DIO mice.
Collapse
Affiliation(s)
- Caroline Hunsche
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid and Research Institute of Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid and Research Institute of Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Oskarina Hernandez
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid and Research Institute of Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Beatriz Jiménez
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid and Research Institute of Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Ligia Esperanza Díaz
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Ascensión Marcos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid and Research Institute of Hospital 12 de Octubre (i + 12), Madrid, Spain
| |
Collapse
|
27
|
Sharma P, Agnihotri N. Fish oil and corn oil induced differential effect on beiging of visceral and subcutaneous white adipose tissue in high-fat-diet-induced obesity. J Nutr Biochem 2020; 84:108458. [PMID: 32738734 DOI: 10.1016/j.jnutbio.2020.108458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/29/2022]
Abstract
Obesity is characterised by excessive accumulation of fat in white adipose tissue (WAT) which is compartmentalised into two anatomically and functionally diverse depots - visceral and subcutaneous. Advice to substitute essential polyunsaturated fatty acids (PUFAs) for saturated fatty acids is a cornerstone of various obesity management strategies. Despite an array of reports on the role of essential PUFAs on obesity, there still exists a lacuna on their mode of action in distinct depots i.e. visceral (VWAT) and subcutaneous (SWAT). The present study aimed to evaluate the effect of fish oil and corn oil on VWAT and SWAT in high-fat-diet-induced rodent model of obesity. Fish oil (FO) supplementation positively ameliorated the effects of HFD by regulating the anthropometrical and serum lipid parameters. FO led to an overall reduction in fat mass in both depots while specifically inducing beiging of adipocytes in SWAT as indicated by increased UCP1 and PGC1α. We also observed an upregulation of AMPKα and ACC1/2 phosphorylation on FO supplementation in SWAT suggesting a role of AMPK-PGC1α-UCP1 axis in beiging of adipose tissue. On the other hand, corn oil supplementation did not show any improvements in adipose tissue metabolism in both the depots of adipose tissue. The results were analysed using one-way ANOVA followed by Tukey's test in Graphpad Prism 5.0. Combined together our results suggest that n-3 PUFAs exert their anti-obesity effect by regulating adipokine secretion and inducing beiging of SWAT, hence increasing energy expenditure via thermogenic upregulation.
Collapse
Affiliation(s)
- Prerna Sharma
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
28
|
Godea Lupei S, Ciubotariu D, Danciu M, Lupușoru RV, Ghiciuc CM, Cernescu I, Gheţu N, Lupei M, Lupușoru CE. Improvement in serum lipids and liver morphology after supplementation of the diet with fish oil is more evident under regular feeding conditions than under high-fat or mixed diets in rats. Lipids Health Dis 2020; 19:162. [PMID: 32631338 PMCID: PMC7339424 DOI: 10.1186/s12944-020-01339-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dietary n- 3 polyunsaturated fatty acids (PUFAs) have a role in preventing cardiovascular and hepatic diseases. However, their effects might differ significantly depending on individual dietary patterns. The aim of the present study was to evaluate the effects of dietary supplementation with ω-3 fatty acids (FA), administered in different schedules, on hepatic and aortic histological structure, lipid profile, and body weight (BW) in male Wistar rats under standard (SD), high-fat diet (HFD) and mixed feeding conditions. METHODS PUFA treatment consisted of the administration of 50 mg/kg fish oil (FO) daily by oral gavage. HFD was obtained by adding a suspension of 4% cholesterol, thiouracil and cholic acid to the animals' drinking water. The rats were maintained on the diets for 6 weeks, and different schedules of PUFA administration were used. At 14, 28, and 42 days, the morphology of liver and aortic samples and the levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), and triglycerides (TG) were assessed. RESULTS The HFD groups exhibited significant hyperlipidemia and aortic inflammation, with progression to atherogenesis after 6 weeks. Administration of PUFAs slightly attenuated the aortic changes in these groups and reduced the liver's tendency to steatosis. FO-induced metabolic improvement was more evident in SD than in HFD rats. For instance, after the first 2 weeks, SD animals that received PUFAs had significantly increased HDL levels vs. controls (62.375 ± 4.10 vs. 52.625 ± 8.38 mg/dL, P < 0.05), but HFD rats did not, and decreased TG levels were observed exclusively in the SD rats (57.6 ± 4.09 vs. 66 ± 4.69 mg/dL, P < 0.05). After 6 weeks of n- 3 PUFA administration, LDL was significantly lower in the SD rats than in controls (13.67 ± 4.13 vs. 30.83 ± 2.86 mg/dL, P < 0.001), but the decrease in the HFD rats, although significant (49.17 ± 5.85 mg/dL vs. 57.17 ± 4.96 g/dL, P < 0.05), was not as marked. In the mixed-diet groups, administration of 50 mg/kg/day FO for 14 days under SD conditions following 4 weeks of HFD slightly decreased TG (86.625 ± 11.67 vs. 73 ± 4.52 mg/dL, P < 0.05) and increased HDL (45.875 ± 5.28 vs. 56 ± 3.16 mg/dL). However, in these animals, n-3 PUFA administration had no effect on LDL or TC. Administration of half of the above dose failed to improve any biochemical parameters. FO protected against excessive weight gain mainly under SD conditions. CONCLUSIONS The results show that FO confers more protection against cardiovascular risk factors (increased LDL and TG, decreased HDL) and liver lipid accumulation when given to rats consuming regular diets than when given to rats consuming a high-fat diet. This argues that priority should be given to consumption of a healthy diet rather than to the use of supplements. The effectiveness of n-3 PUFAs might be reduced in the case of hyperlipidic intake or after consumption of a high-fat diet.
Collapse
Affiliation(s)
- Silvia Godea Lupei
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Diana Ciubotariu
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.
| | - Mihai Danciu
- Department of Pathology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.
| | - Raoul Vasile Lupușoru
- Department of Pathophysiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Cristina Mihaela Ghiciuc
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Irina Cernescu
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Nicolae Gheţu
- Department of Plastic Surgery, Regional Oncology Institute, Iaşi, Romania
| | - Mihai Lupei
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environment Protection, Gheorghe Asachi Technical University, Iaşi, Romania
| | - Cătălina Elena Lupușoru
- Department of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
29
|
Pahlavani M, Ramalingam L, Miller EK, Davis H, Scoggin S, Moustaid-Moussa N. Discordant Dose-Dependent Metabolic Effects of Eicosapentanoic Acid in Diet-Induced Obese Mice. Nutrients 2020; 12:E1342. [PMID: 32397139 PMCID: PMC7284763 DOI: 10.3390/nu12051342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a widespread epidemic that increases the risk for several metabolic diseases. Despite several beneficial health effects of eicosapentaenoic acid (C20:5n-3, EPA), previous studies have used very high doses of EPA. In this study, dose-dependent effects of EPA on metabolic outcomes were determined in diet-induced obese mice. We used B6 male mice, fed high-fat diet (HF, 45% kcal fat) or HF diet supplemented with 9, 18, and 36 g/kg of EPA-enriched fish oil for 14 weeks. We conducted metabolic phenotyping during the feeding period, and harvested tissues and blood at termination. Only mice fed 36 g/kg of EPA significantly (p < 0.05) lowered body weight, fat content and epididymal fat pad weight, compared to HF. Both 18 and 36 g/kg doses of EPA significantly increased glucose clearance and insulin sensitivity, compared to HF or 9 g/kg of EPA. Locomotor activity was significantly increased with both 18 and 36 g/kg doses of EPA. Interestingly, all doses of EPA compared to HF, significantly increased energy expenditure and oxygen consumption and significantly reduced serum insulin, leptin, and triglycerides levels. These results demonstrate weight- and adiposity-independent metabolic benefits of EPA, at doses comparable to those currently used to treat hypertriglyceridemia.
Collapse
Affiliation(s)
| | | | | | | | | | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (M.P.); (L.R.); (E.K.M.); (H.D.); (S.S.)
| |
Collapse
|
30
|
Urrutia O, Mendizabal JA, Alfonso L, Soret B, Insausti K, Arana A. Adipose Tissue Modification through Feeding Strategies and Their Implication on Adipogenesis and Adipose Tissue Metabolism in Ruminants. Int J Mol Sci 2020; 21:E3183. [PMID: 32365995 PMCID: PMC7246642 DOI: 10.3390/ijms21093183] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022] Open
Abstract
Dietary recommendations by health authorities have been advising of the importance of diminishing saturated fatty acids (SFA) consumption and replacing them by polyunsaturated fatty acids (PUFA), particularly omega-3. Therefore, there have been efforts to enhance food fatty acid profiles, helping them to meet human nutritional recommendations. Ruminant meat is the major dietary conjugated linoleic acid (CLA) source, but it also contains SFA at relatively high proportions, deriving from ruminal biohydrogenation of PUFA. Additionally, lipid metabolism in ruminants may differ from other species. Recent research has aimed to modify the fatty acid profile of meat, and other animal products. This review summarizes dietary strategies based on the n-3 PUFA supplementation of ruminant diets and their effects on meat fatty acid composition. Additionally, the role of n-3 PUFA in adipose tissue (AT) development and in the expression of key genes involved in adipogenesis and lipid metabolism is discussed. It has been demonstrated that linseed supplementation leads to an increase in α-linolenic acid (ALA) and eicosapentaenoic acid (EPA), but not in docosahexaenoic acid (DHA), whilst fish oil and algae increase DHA content. Dietary PUFA can alter AT adiposity and modulate lipid metabolism genes expression, although further research is required to clarify the underlying mechanism.
Collapse
Affiliation(s)
- Olaia Urrutia
- IS-FOOD Institute, Escuela Técnica Superior de Ingeniería Agronómica y Biociencias, Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (J.A.M.); (L.A.); (B.S.); (K.I.); (A.A.)
| | | | | | | | | | | |
Collapse
|
31
|
Chen H, Deng G, Zhou Q, Chu X, Su M, Wei Y, Li L, Zhang Z. Effects of eicosapentaenoic acid and docosahexaenoic acid versus α-linolenic acid supplementation on cardiometabolic risk factors: a meta-analysis of randomized controlled trials. Food Funct 2020; 11:1919-1932. [PMID: 32175534 DOI: 10.1039/c9fo03052b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous randomized controlled trials (RCTs) made direct comparisons between EPA/DHA versus ALA on improving cardiovascular risk factors and have reached inconsistent findings. The aim of this meta-analysis was to compare the effects of EPA/DHA vs. ALA supplementation on cardiometabolic disturbances. Databases including MEDLINE, Embase, PubMed and Cochrane Trials were searched until December 2019. The pooled effects (weighted mean difference, WMD) of outcomes with moderate and high heterogeneity were calculated with a random-effects model, while low heterogeneity was calculated with a fixed-effect model. Fourteen RCTs with 1137 participants who met the eligibility criteria were pooled. Compared with participants supplemented with ALA, those who received EPA/DHA supplementation experienced a greater reduction in triglycerides (TG) (WMD -0.191 mmol l-1; 95% CI -0.249, -0.133) but a greater increase in high-density lipoprotein (HDL) (WMD 0.033 mmol l-1; 95% CI 0.004, 0.062), low-density lipoprotein (LDL) (WMD 0.130 mmol l-1; 95% CI 0.006, 0.253) and total cholesterol (TC) (WMD 0.179 mmol l-1; 95% CI 0.006, 0.352). In subgroup analyses, the WMD for TG was much lower in trials with participants >40 years old (-0.246 mmol l-1; 95% CI -0.325, -0.167). When DHA and EPA were separately administered, modest increases in HDL were observed in trials that used DHA as a supplement (0.161 mmol l-1; 95% CI 0.017, 0.304), but not in trials using EPA (0.040 mmol l-1; 95% CI -0.132, 0.212). In conclusion, dietary EPA/DHA supplementation improved the TG and HDL status but increased LDL levels in comparison with ALA.
Collapse
Affiliation(s)
- Hengying Chen
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China.
| | - Guifang Deng
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Quan Zhou
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Xinwei Chu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Mengyang Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Liping Li
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China.
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Dos Santos LRB, Fleming I. Role of cytochrome P450-derived, polyunsaturated fatty acid mediators in diabetes and the metabolic syndrome. Prostaglandins Other Lipid Mediat 2019; 148:106407. [PMID: 31899373 DOI: 10.1016/j.prostaglandins.2019.106407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Over the last decade, cases of metabolic syndrome and type II diabetes have increased exponentially. Exercise and ω-3 polyunsaturated fatty acid (PUFA)-enriched diets are usually prescribed but no therapy is effectively able to restore the impaired glucose metabolism, hypertension, and atherogenic dyslipidemia encountered by diabetic patients. PUFAs are metabolized by different enzymes into bioactive metabolites with anti- or pro-inflammatory activity. One important class of PUFA metabolizing enzymes are the cytochrome P450 (CYP) enzymes that can generate a series of bioactive products, many of which have been attributed protective/anti-inflammatory and insulin-sensitizing effects in animal models. PUFA epoxides are, however, further metabolized by the soluble epoxide hydrolase (sEH) to fatty acid diols. The biological actions of the latter are less well understood but while low concentrations may be biologically important, higher concentrations of diols derived from linoleic acid and docosahexaenoic acid have been linked with inflammation. One potential application for sEH inhibitors is in the treatment of diabetic retinopathy where sEH expression and activity is elevated as are levels of a diol of docosahexaenoic acid that can induce the destabilization of the retina vasculature.
Collapse
Affiliation(s)
- Laila R B Dos Santos
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Germany.
| |
Collapse
|
33
|
de Mello AH, Schraiber RDB, Goldim MPDS, Mathias K, Mendes C, Corrêa MEAB, Gomes ML, Silveira PCL, Schuck PF, Petronilho F, Rezin GT. Omega-3 polyunsaturated fatty acids have beneficial effects on visceral fat in diet-induced obesity model. Biochem Cell Biol 2019; 97:693-701. [PMID: 31774300 DOI: 10.1139/bcb-2018-0361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023] Open
Abstract
This study evaluated the effects of omega-3 polyunsaturated fatty acids (PUFAs) on oxidative stress and energy metabolism parameters in the visceral fat of a high-fat-diet induced obesity model. Energy intake, body mass, and visceral fat mass were also evaluated. Male Swiss mice received either a control diet (control group) or a high-fat diet (obese group) for 6 weeks. After this period, the groups were divided into control + saline, control + omega-3, obese + saline, and obese + omega-3, and to these groups 400 mg·(kg body mass)-1·day-1 of fish oil (or saline) was administered orally, for 4 weeks. Energy intake and body mass were monitored throughout the experiment. In the 10th week, the animals were euthanized and the visceral fat (mesenteric) was removed. Treatment with omega-3 PUFAs did not affect energy intake or body mass, but it did reduced visceral fat mass. In visceral fat, omega-3 PUFAs reduced oxidative damage and alleviated changes to the antioxidant defense system and the Krebs cycle. The mitochondrial respiratory chain was neither altered by obesity nor by omega-3 PUFAs. In conclusion, omega-3 PUFAs have beneficial effects on the visceral fat of obese mice because they mitigate changes caused by the consumption of a high-fat diet.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brasil
| | - Rosiane de Bona Schraiber
- Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brasil
| | - Mariana Pereira de Souza Goldim
- Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brasil
| | - Khiany Mathias
- Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brasil
| | - Carolini Mendes
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brasil
| | - Maria Eduarda Anastácio Borges Corrêa
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brasil
| | - Maria Luiza Gomes
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brasil
| | - Paulo Cesar Lock Silveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brasil
| | - Patrícia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Fabricia Petronilho
- Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brasil
| | - Gislaine Tezza Rezin
- Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brasil
| |
Collapse
|
34
|
Yamagishi SI, Matsui T. Effects of Dietary Intake and Supplementation of Fatty Acids on Cardiometabolic Disorders in Humans: a Lesson from a Large Number of Meta-Analyses. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666181107113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary fatty acids have exerted numerous pathophysiological effects in humans. Indeed,
monounsaturated fatty acids and ω-3 polyunsaturated fatty acids are generally thought to have favorable
cardiometabolic actions via their anti-inflammatory and anti-thrombotic properties, while saturated
fatty acids and trans fatty acids are supposed to contribute to the development and progression
of atherosclerotic cardiovascular diseases by inducing dyslipidemia and obesity. However, there is
much controversy about the effects of dietary intake and supplementation of fatty acids on cardiometabolic
disorders. Therefore, in the present study, we limited the scope of this review to metaanalyses
(1) of observational studies of dietary intake of fatty acids and (2) of interventional trials
with fatty acid supplements to scrutinize the role of fatty acids in various cardiometabolic disorders.
We discuss here the clinical effects of fatty acids from dietary intake or supplements on incidence of
diabetes, metabolic syndrome, obesity and body weight, cardiovascular diseases and total mortality,
and also review the association of fatty acid biomarkers with these cardiometabolic disorders.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
35
|
Iraki J, Fitschen P, Espinar S, Helms E. Nutrition Recommendations for Bodybuilders in the Off-Season: A Narrative Review. Sports (Basel) 2019; 7:E154. [PMID: 31247944 PMCID: PMC6680710 DOI: 10.3390/sports7070154] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Many nutrition practices often used by bodybuilders lack scientific support and can be detrimental to health. Recommendations during the dieting phase are provided in the scientific literature, but little attention has been devoted to bodybuilders during the off-season phase. During the off-season phase, the goal is to increase muscle mass without adding unnecessary body fat. This review evaluated the scientific literature and provides nutrition and dietary supplement recommendations for natural bodybuilders during the off-season phase. A hyper-energetic diet (~10-20%) should be consumed with a target weight gain of ~0.25-0.5% of bodyweight/week for novice/intermediate bodybuilders. Advanced bodybuilders should be more conservative with the caloric surplus and weekly weight gain. Sufficient protein (1.6-2.2 g/kg/day) should be consumed with optimal amounts 0.40-0.55 g/kg per meal and distributed evenly throughout the day (3-6 meals) including within 1-2 hours pre- and post-training. Fat should be consumed in moderate amounts (0.5-1.5 g/kg/day). Remaining calories should come from carbohydrates with focus on consuming sufficient amounts (≥3-5 g/kg/day) to support energy demands from resistance exercise. Creatine monohydrate (3-5 g/day), caffeine (5-6 mg/kg), beta-alanine (3-5 g/day) and citrulline malate (8 g/day) might yield ergogenic effects that can be beneficial for bodybuilders.
Collapse
Affiliation(s)
- Juma Iraki
- Iraki Nutrition AS, 2008 Fjerdingby, Norway.
| | | | | | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ) at AUT Millennium, Auckland University of Technology, Auckland 0632, New Zealand
| |
Collapse
|
36
|
Eicosapentaenoic Acid Improves Hepatic Metabolism and Reduces Inflammation Independent of Obesity in High-Fat-Fed Mice and in HepG2 Cells. Nutrients 2019; 11:nu11030599. [PMID: 30871035 PMCID: PMC6471632 DOI: 10.3390/nu11030599] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide, concurrent with increased obesity. Thus, there is urgent need for research that can lead to effective NAFLD prevention/treatment strategies. Omega-3 polyunsaturated fatty acids (n-3 PUFAs), including eicosapentaenoic acid (EPA), improve inflammation- and dyslipidemia-related metabolic disorders; however, mechanisms mediating the benefits of n-3 PUFAs in NAFLD treatment are less understood. We previously reported that EPA reversed obesity-induced hepatic steatosis in high-fat (HF)-fed B6 mice. Utilizing a combination of biochemical analyses of liver tissues from HF and HF-EPA-fed mice and a series of in vitro studies in tumor necrosis factor-alpha (TNF-α)-stimulated HepG2 cells, we dissect the mechanistic effects of EPA in reducing hepatic steatosis, including the role of EPA-targeted microRNAs (miRNA). With EPA, hepatic lipid metabolism was improved in HF-EPA mice, as indicated by decreased protein and messenger RNA (mRNA) levels of fatty acid synthase (FASN) and acetyl-CoA carboxylase (Acaca) gene, and increased mRNA levels for the peroxisome proliferator activated receptor-α (Pparα), and carnitine palmitoyltransferase (Cpt) 1a and 2 genes in the HF-EPA mice. Additionally, inflammation was reduced, as shown by decreased tumor necrosis factor-alpha (Tnfα) gene expression. Accordingly, EPA also significantly reduced FASN and ACACA mRNAs in human HepG2 cells. Glycolysis, estimated by extracellular acidification rate, was significantly reduced in HepG2 cells treated with EPA vs. vehicle. Furthermore, we identified several miRNAs that are regulated by EPA in mouse liver, including miR-19b-3p, miR-21a-5p, and others, which target lipid metabolism and inflammatory pathways. In conclusion, our findings provide novel mechanistic evidence for beneficial effects of EPA in NAFLD, through the identification of specific genes and miRNAs, which may be further exploited as future NAFLD therapies.
Collapse
|
37
|
Pahlavani M, Ramalingam L, Miller EK, Scoggin S, Menikdiwela KR, Kalupahana NS, Festuccia WT, Moustaid-Moussa N. Eicosapentaenoic Acid Reduces Adiposity, Glucose Intolerance and Increases Oxygen Consumption Independently of Uncoupling Protein 1. Mol Nutr Food Res 2019; 63:e1800821. [PMID: 30657255 DOI: 10.1002/mnfr.201800821] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/30/2018] [Indexed: 12/21/2022]
Abstract
SCOPE Brown adipose tissue (BAT) dissipates energy through uncoupling protein 1 (UCP1) and has been proposed as an anti-obesity target. It was reported previously that a high-fat (HF) diet enriched in eicosapentaenoic acid (EPA) significantly increased UCP1 and other thermogenic markers in BAT. It is hypothesized that these effects are mediated through UCP1-dependent regulation. METHODS AND RESULTS Wild-type (WT) and UCP1 knockout (KO) B6 male mice were housed at thermoneutrality and fed a HF diet, without or with eicosapentaenoic acid (EPA)-enriched fish oil. HF-fed KO mice were heavier and had higher BAT lipid content than other groups. Protective effects of EPA in WT, previously observed at 22 °C (reduced adiposity, improved glucose tolerance, and increased UCP1), disappeared at thermoneutrality. Mitochondrial proteins, cytochrome c oxidase subunit 1 (COX I), COX I, II, and IV were reduced in the KO mice compared to WT. Unexpectedly, EPA attenuated weight and fat mass gain and improved glucose tolerance in the KO mice. Finally, EPA increased BAT peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) protein and gene expression, and whole-body oxygen consumption in KO mice, consistent with increased mitochondria DNA (mtDNA)/nuclear DNA (nucDNA) ratio. CONCLUSIONS EPA rescued the weight gain and glucose intolerance in UCP1 KO mice at thermoneutrality, independent of UCP1; these effects may be mediated in part via increased oxygen consumption and BAT PGC1α.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX, 79409, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX, 79409, USA
| | - Emily K Miller
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX, 79409, USA
| | - Shane Scoggin
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kalhara R Menikdiwela
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX, 79409, USA.,Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508, Brazil
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
38
|
Yang B, Shi MQ, Li ZH, Shi L, Wang AM, Guo XJ, Li D. Effects of n-3 fatty acid supplements on cardiometabolic profiles in hypertensive patients with abdominal obesity in Inner Mongolia: a randomized controlled trial. Food Funct 2019; 10:1661-1670. [DOI: 10.1039/c8fo01707g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Daily supplementation with n-3 fatty acid (FA) has been believed to be an adjunct or alternative to drug treatments to reduce blood pressure (BP) and triglyceride (TG) levels in western patients with high risk of cardiovascular disease.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Lipids Medicine
- Wenzhou Medical University
- Wenzhou
- China
| | - Mei-qi Shi
- Department of Food Science and Nutrition
- Zhejiang University
- Hangzhou
- China
| | - Zi-hao Li
- Department of Food Science and Nutrition
- Zhejiang University
- Hangzhou
- China
| | - Lin Shi
- Ejin Horo Banner Centre for Disease Prevention and Control
- Ordos
- China
| | - Ai-min Wang
- Ejin Horo Banner Centre for Disease Prevention and Control
- Ordos
- China
| | - Xiao-juan Guo
- Institute of Lipids Medicine
- Wenzhou Medical University
- Wenzhou
- China
| | - Duo Li
- Department of Food Science and Nutrition
- Zhejiang University
- Hangzhou
- China
- Institute of Nutrition & Health
| |
Collapse
|
39
|
Pahlavani M, Wijayatunga NN, Kalupahana NS, Ramalingam L, Gunaratne PH, Coarfa C, Rajapakshe K, Kottapalli P, Moustaid-Moussa N. Transcriptomic and microRNA analyses of gene networks regulated by eicosapentaenoic acid in brown adipose tissue of diet-induced obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1523-1531. [PMID: 30261280 PMCID: PMC6298436 DOI: 10.1016/j.bbalip.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/01/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
Brown adipose tissue (BAT) dissipates chemical energy as heat via thermogenesis and protects against obesity by increasing energy expenditure. However, regulation of BAT by dietary factors remains largely unexplored at the mechanistic level. We investigated the effect of eicosapentaenoic acid (EPA) on BAT metabolism. Male C57BL/6J (B6) mice were fed either a high-fat diet (HF, 45% kcal fat) or HF diet supplemented with EPA (HF-EPA, 6.75% kcal EPA) for 11 weeks. RNA sequencing (RNA-Seq) and microRNA (miRNA) profiling were performed on RNA from BAT using Illumina HiSeq and Illumina Genome Analyzer NextSeq, respectively. We conducted pathway analyses using ingenuity pathway analysis software (IPA®) and validated some genes and miRNAs using qPCR. We identified 479 genes that were differentially expressed (2-fold change, n = 3, P ≤ 0.05) in BAT from HF compared to HF-EPA. Genes negatively correlated with thermogenesis such as hypoxia inducible factor 1 alpha subunit inhibitor (Hif1an), were downregulated by EPA. Pathways related to thermogenesis such as peroxisome proliferator-activated receptor (PPAR) were upregulated by EPA while pathways associated with obesity and inflammation such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were downregulated by EPA. MiRNA profiling identified nine and six miRNAs that were upregulated and downregulated by EPA, respectively (log2 fold change > 1.25, n = 3, P ≤ 0.05). Key regulatory miRNAs which were involved in thermogenesis, such as miR-455-3p and miR-129-5p were validated using qPCR. In conclusion, the depth of transcriptomic and miRNA profiling revealed novel mRNA-miRNA interaction networks in BAT which are involved in thermogenesis, and regulated by EPA.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States
| | - Nadeeja N Wijayatunga
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States; Department of Physiology, University of Peradeniya, Sri Lanka
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, United States
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Houston, TX, United States
| | - Kimal Rajapakshe
- Department of Molecular and Cell Biology, Houston, TX, United States
| | - Pratibha Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
40
|
Dietary patterns and abdominal obesity in middle-aged and elderly Japanese adults: Waseda Alumni's Sports, Exercise, Daily Activity, Sedentariness and Health Study (WASEDA'S Health Study). Nutrition 2018; 58:149-155. [PMID: 30396031 DOI: 10.1016/j.nut.2018.05.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the associations between dietary patterns and abdominal obesity among middle-aged and elderly Japanese people, using both waist circumference (WC) and visceral fat (VF) as indices. METHODS A cross-sectional study was conducted with 829 adults (534 men and 295 women), 40 to 79 y of age, who participated in the Waseda Alumni's Sports, Exercise, Daily Activity, Sedentariness and Health Study (WASEDA'S Health Study). Dietary patterns were derived from principal component analysis. VF was measured using magnetic resonance imaging. To examine the associations of each dietary pattern with WC and VF, we calculated multivariate-adjusted means and 95% confidence intervals (CIs) of WC and VF for the tertile of each dietary pattern score. RESULTS Two main dietary patterns were identified: "healthy Japanese" and "seafood and alcohol." The healthy Japanese dietary pattern score was inversely associated with WC and VF in men only. WC measurements were 84.9 cm (95% CI, 83.7-86.1), 83.9 cm (95% CI, 82.7-85.1), and 82.4 cm (95% CI, 81.2-83.6); Ptrend = 0.006, and VF measurements were 94.0 cm2 (95% CI, 85.6-102.4), 89.4 cm2 (95% CI, 81.1-97.7), and 80.4 cm2 (95% CI, 72.5-88.4); Ptrend = 0.027 for the lowest through the highest tertile of healthy Japanese dietary pattern scores in men. The seafood and alcohol dietary pattern was not associated with WC and VF. CONCLUSION The healthy Japanese dietary pattern was negatively associated with WC and VF in middle-aged and elderly Japanese men.
Collapse
|
41
|
Abstract
The current paradigms of prevention and treatment are unable to curb obesity rates, which indicates the need to explore alternative therapeutic approaches. Obesity leads to several damages to the body and is an important risk factor for a number of other chronic diseases. Furthermore, despite the first alterations in obesity being observed and reported in peripheral tissues, studies indicate that obesity can also cause brain damage. Obesity leads to a chronic low-grade inflammatory state, and the therapeutic manipulation of inflammation can be explored. In this context, the use of n-3 PUFA (especially in the form of fish oil, rich in EPA and DHA) may be an interesting strategy, as this substance is known by its anti-inflammatory effect and numerous benefits to the body, such as reduction of TAG, cardiac arrhythmias, blood pressure and platelet aggregation, and has shown potential to help treat obesity. Thereby, the aim of this narrative review was to summarise the literature related to n-3 PUFA use in obesity treatment. First, the review provides a brief description of the obesity pathophysiology, including alterations that occur in peripheral tissues and at the central nervous system. In the sequence, we describe what are n-3 PUFA, their sources and their general effects. Finally, we explore the main topic linking obesity and n-3 PUFA. Animal and human studies were included and alterations on the whole organism were described (peripheral tissues and brain).
Collapse
|
42
|
Abstract
Numerous studies have shown that feeding rodents n-3 polyunsaturated fatty acids attenuates adiposity. Moreover, meta-analyses of human dietary intervention studies indicate that fish oil (eicosapentaenoic and docosahexaenoic acid) supplementation might reduce waist circumference. A recent line of research suggests that browning of white adipose depots and activation of uncoupled respiration in brown fat contributes to these effects. This mini-review summarizes the observations in rodents, highlights several mechanisms that might explain these observations and discusses the translational potential. Given the available in vivo evidence and the ability of human adipocytes to aquire a beige phenotype in response to eicosapentaenoic acid incubation, future studies should test the hypothesis that fish oil activates thermogenic brown and beige adipose tissue in humans.
Collapse
Affiliation(s)
- Jens Lund
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lesli Hingstrup Larsen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
43
|
Patti AM, Al-Rasadi K, Giglio RV, Nikolic D, Mannina C, Castellino G, Chianetta R, Banach M, Cicero AF, Lippi G, Montalto G, Rizzo M, Toth PP. Natural approaches in metabolic syndrome management. Arch Med Sci 2018; 14:422-441. [PMID: 29593818 PMCID: PMC5868676 DOI: 10.5114/aoms.2017.68717] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 12/25/2022] Open
Abstract
Metabolic syndrome (MetS) is characterized as a group of cardiometabolic risk factors that raise the risk for heart disease and other health problems, such as diabetes mellitus and stroke. Treatment strategies include pharmacologic interventions and supplementary (or "alternative") treatments. Nutraceuticals are derived from food sources (isolated nutrients, dietary supplements and herbal products) that are purported to provide health benefits, in addition to providing basic nutritional value. Nutraceuticals are claimed to prevent chronic diseases, improve health, delay the aging process, increase life expectancy, and support the structure and function of the body. The study of the beneficial effects of nutraceuticals in patients with MetS, including product standardization, duration of supplementation and definition of optimal dosing, could help better define appropriate treatment. This review focuses on widely marketed nutraceuticals (namely polyphenols, omega-3 fatty acids, macroelements and vitamins) with clinically demonstrated effects on more than one component of MetS.
Collapse
Affiliation(s)
- Angelo Maria Patti
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Khalid Al-Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University, Muscat, Oman
| | - Rosaria Vincenza Giglio
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Dragana Nikolic
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Carlo Mannina
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Giuseppa Castellino
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Roberta Chianetta
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
| | - Arrigo F.G. Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Italy
- EuroMediterranean Institute of Science and Technology, Italy
| | - Peter P. Toth
- CGH Medical Center, Sterling, Illinois; Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Ghasemi Fard S, Wang F, Sinclair AJ, Elliott G, Turchini GM. How does high DHA fish oil affect health? A systematic review of evidence. Crit Rev Food Sci Nutr 2018; 59:1684-1727. [PMID: 29494205 DOI: 10.1080/10408398.2018.1425978] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The health benefits of fish oil, and its omega-3 long chain polyunsaturated fatty acid content, have attracted much scientific attention in the last four decades. Fish oils that contain higher amounts of eicosapentaenoic acid (EPA; 20:5n-3) than docosahexaenoic acid (DHA; 22:6n-3), in a distinctive ratio of 18/12, are typically the most abundantly available and are commonly studied. Although the two fatty acids have traditionally been considered together, as though they were one entity, different physiological effects of EPA and DHA have recently been reported. New oils containing a higher quantity of DHA compared with EPA, such as fractionated and concentrated fish oil, tuna oil, calamari oil and microalgae oil, are increasingly becoming available on the market, and other oils, including those extracted from genetically modified oilseed crops, soon to come. This systematic review focuses on the effects of high DHA fish oils on various human health conditions, such as the heart and cardiovascular system, the brain and visual function, inflammation and immune function and growth/Body Mass Index. Although inconclusive results were reported in several instances, and inconsistent outcomes observed in others, current data provides substantiated evidence in support of DHA being a beneficial bioactive compound for heart, cardiovascular and brain function, with different, and at times complementary, effects compared with EPA. DHA has also been reported to be effective in slowing the rate of cognitive decline, while its possible effects on depression disorders are still unclear. Interestingly, gender- and age- specific divergent roles for DHA have also been reported. This review provides a comprehensive collection of evidence and a critical summary of the documented physiological effects of high DHA fish oils for human health.
Collapse
Affiliation(s)
- Samaneh Ghasemi Fard
- a School of Medicine, Deakin University , Geelong , Australia.,b Nu-Mega Ingredients Pty Ltd , Altona North , Melbourne , Australia
| | - Fenglei Wang
- c Department of Food Science and Nutrition , Zhejiang University , Hangzhou , China
| | - Andrew J Sinclair
- a School of Medicine, Deakin University , Geelong , Australia.,e Department of Nutrition , Dietetics and Food, Monash University , Clayton , Australia
| | - Glenn Elliott
- b Nu-Mega Ingredients Pty Ltd , Altona North , Melbourne , Australia
| | - Giovanni M Turchini
- d School of Life and Environmental Sciences , Deakin University , Geelong , Australia
| |
Collapse
|
45
|
Gheorghe A, Pérez de Heredia F, Hunsche C, Redondo N, Díaz LE, Hernández O, Marcos A, De la Fuente M. Oxidative stress and immunosenescence in spleen of obese mice can be reversed by 2-hydroxyoleic acid. Exp Physiol 2018; 102:533-544. [PMID: 28205317 DOI: 10.1113/ep086157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/02/2017] [Indexed: 01/17/2023]
Abstract
NEW FINDINGS What is the central question of this study? Evidence is growing for the link between obesity, immune dysfunction and oxidative stress, but it is still not known how the properties and functions of the spleen and splenic leucocytes are affected. What is the main finding and its importance? Obesity led to premature immunosenescence, manifested as oxidative stress and changes in leucocyte functions in mouse spleen. The oleic acid derivative 2-hydroxyoleate and, to a lesser extent, a combination of eicosapentaenoic and docosahexaenoic acids could reverse most of the observed alterations, suggesting a potential therapeutic tool for obesity-related immune dysfunction and redox imbalance. We aimed to investigate the effects of obesity on oxidative stress and leucocyte function in the mouse spleen and to assess whether supplementation with 2-hydroxyoleic acid (2-OHOA) or n-3 polyunsaturated fatty acids (PUFAs) could reverse those effects. Female ICR/CD1 mice (8 weeks old, n = 24) received an obesogenic diet (22% fat for 4 weeks and 60% fat for 14 weeks). After 6 weeks, mice were divided into the following three groups (n = 8 per group): no supplementation; 2-OHOA supplementation (1500 mg kg-1 of diet); and n-3 PUFA supplementation (eicosapentaenoic acid and docosahexaenoic acid, 1500 + 1500 mg kg-1 of diet). Eight mice were fed the standard diet for the whole duration of the study (control group). At the end of the experiment, the following variables were assessed in spleens: levels of reduced (GSH) and oxidized glutathione (GSSG), GSH/GSSG, xanthine oxidase activity, lipid peroxidation, lymphocyte chemotaxis, natural killer activity and mitogen (concanavalin A and lipopolysaccharide)-induced lymphocyte proliferation. Obese animals presented higher GSSG levels (P = 0.003), GSSG/GSH ratio (P = 0.013), lipid peroxidation (P = 0.004), xanthine oxidase activity (P = 0.015) and lymphocyte chemotaxis (P < 0.001), and lower natural killer activity (P = 0.003) and proliferation in response to concanavalin A (P < 0.001) than control mice. 2-Hydroxyoleic acid totally or partly reversed most of the changes (body weight, fat content, GSSG levels, GSH/GSSG, lipid peroxidation, chemotaxis and proliferation, all P < 0.05), whereas n-3 PUFAs reversed the increase in xanthine oxidase activity (P = 0.032). In conclusion, 2-OHOA or, to a lesser extent, n-3 PUFAs could ameliorate the oxidative stress and alteration of leucocyte function in the spleens of obese mice. Our findings support a link between obesity and immunosenescence and suggest a potential therapeutic tool for obesity-related immune dysfunction.
Collapse
Affiliation(s)
- Alina Gheorghe
- Immunonutrition Research Group, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | | | - Caroline Hunsche
- Department of Animal Physiology II, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Noemí Redondo
- Immunonutrition Research Group, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Ligia Esperanza Díaz
- Immunonutrition Research Group, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Oskarina Hernández
- Department of Animal Physiology II, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Ascensión Marcos
- Immunonutrition Research Group, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - Mónica De la Fuente
- Department of Animal Physiology II, Faculty of Biology, University Complutense of Madrid, Madrid, Spain.,Research Institute of the Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
46
|
Sihag J, Jones PJH. Dietary fatty acid composition impacts plasma fatty acid ethanolamide levels and body composition in golden Syrian hamsters. Food Funct 2018; 9:3351-3362. [DOI: 10.1039/c8fo00621k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fatty acid ethanolamides (FAEs) are a class of lipid amides that regulate numerous pathophysiological functions.
Collapse
Affiliation(s)
- Jyoti Sihag
- Department of Food and Human Nutritional Sciences
- University of Manitoba
- Winnipeg
- Canada
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN)
| | - Peter J. H. Jones
- Department of Food and Human Nutritional Sciences
- University of Manitoba
- Winnipeg
- Canada
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN)
| |
Collapse
|
47
|
Abstract
Zebrafish is an often used model of vertebrate lipid metabolism. In this article, we examined the effects of diets rich in fish oil, a dietary fat that has been shown to have antiobesity effects in mammals, or lard on body fat accumulation in zebrafish. Adult female zebrafish were fed a high-fat diet containing 20% (w/w) fish oil or lard for 4 weeks. Fish in the fish oil diet group had less body fat accumulation compared with those in the lard diet group. In the intestine, expression of genes for the alpha (hadhaa) and beta (hadhb) subunits of the beta-oxidation enzyme hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme A hydratase was significantly increased in the fish oil diet group compared with the lard diet group (p < 0.05). In the liver, expression of the gene for fatty acid synthase (fasn) was significantly decreased in the fish oil diet group compared with the lard diet group (p < 0.05). These results suggest that the mechanisms underlying the antiobesity effect of fish oil are similar in zebrafish and mammals.
Collapse
Affiliation(s)
- Shinichi Meguro
- Biological Science Research , Kao Corporation, Tochigi, Japan
| | | |
Collapse
|
48
|
Polymorphisms of the TNF-α gene interact with plasma fatty acids on inflammatory biomarker profile: a population-based, cross-sectional study in São Paulo, Brazil. Br J Nutr 2017. [PMID: 28633686 DOI: 10.1017/s0007114517001416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to investigate the relationship of four TNF-α SNP with inflammatory biomarkers and plasma fatty acids (FA), and the interaction among them in a population-based, cross-sectional study in São Paulo, Brazil. A total of 281 subjects, aged >19 and <60 years, participated in a cross-sectional, population-based study performed in Brazil. The following SNP spanning the TNF-α gene were genotyped: -238G/A (rs361525), -308G/A (rs1800629), -857C/T (rs1799724) and -1031T/C (rs1799964). In all, eleven plasma inflammatory biomarkers and plasma FA profile were determined. To analyse the interaction between TNF-α SNP and plasma FA, a cluster analysis was performed to stratify individuals based on eleven inflammatory biomarkers into two groups used as outcome: inflammatory (INF) and non-inflammatory clusters. The -238A allele carriers had higher TNF-α (P=0·033), IL-6 (P=0·013), IL-1β (P=0·037), IL-12 (0·048) and IL-10 (P=0·010) than the GG genotype. The -308A allele carriers also had lower levels of plasma palmitoleic acid (P=0·009), oleic acid (P=0·039), total MUFA (P=0·014), stearoyl-CoA desaturase (SCD) activity index-16 (P=0·007), SCD-18 (P=0·020) and higher levels of PUFA (P=0·046) and DHA (P=0·044). Significant interactions modifying the risk of belonging to the INF cluster were observed with inflammatory cluster as outcome between -857C/T and plasma α-linolenic acid (P=0·026), and also between -308G/A and plasma stearic acid (P=0·044) and total SFA (P=0·040). Our study contributes to knowledge on TNF-α SNP and their association with inflammatory biomarker levels, plasma FA and the interaction among them, of particular interest for the Brazilian population.
Collapse
|
49
|
Botchlett R, Woo SL, Liu M, Pei Y, Guo X, Li H, Wu C. Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol 2017; 233:R145-R171. [PMID: 28400405 PMCID: PMC5511693 DOI: 10.1530/joe-16-0580] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023]
Abstract
Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscles, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb the local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in controlling the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Rachel Botchlett
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Pinnacle Clinical ResearchLive Oak, USA
| | - Shih-Lung Woo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Mengyang Liu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Ya Pei
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Xin Guo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Baylor College of MedicineHouston, USA
| | - Honggui Li
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| |
Collapse
|
50
|
Bonet ML, Mercader J, Palou A. A nutritional perspective on UCP1-dependent thermogenesis. Biochimie 2017; 134:99-117. [DOI: 10.1016/j.biochi.2016.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
|