1
|
Drummond GT, Natesan A, Celotto M, Shih J, Ojha P, Osako Y, Park J, Sipe GO, Jenks KR, Breton-Provencher V, Simpson PC, Panzeri S, Sur M. Cortical norepinephrine-astrocyte signaling critically mediates learned behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620009. [PMID: 39484425 PMCID: PMC11527196 DOI: 10.1101/2024.10.24.620009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Updating behavior based on feedback from the environment is a crucial means by which organisms learn and develop optimal behavioral strategies1-3. Norepinephrine (NE) release from the locus coeruleus (LC) has been shown to mediate learned behaviors4-6 such that in a task with graded stimulus uncertainty and performance, a high level of NE released after an unexpected outcome causes improvement in subsequent behavior7. Yet, how the transient activity of LC-NE neurons, lasting tens of milliseconds, influences behavior several seconds later, is unclear. Here, we show that NE acts directly on cortical astrocytes via Adra1a adrenergic receptors to elicit sustained increases in intracellular calcium. Chemogenetic blockade of astrocytic calcium elevation prevents the improvement in behavioral performance. NE-activated calcium invokes purinergic pathways in cortical astrocytes that signal to neurons; pathway-specific astrocyte gene expression is altered in mice trained on the task, and blocking neuronal adenosine-sensitive A1 receptors also prevents post-reinforcement behavioral gain. Finally, blocking either astrocyte calcium dynamics or A1 receptors alters encoding of the task in prefrontal cortex neurons, preventing the post-reinforcement change in discriminability of rewarded and unrewarded stimuli underlying behavioral improvement. Together, these data demonstrate that astrocytes, rather than indirectly reflecting neuronal drive, play a direct, instrumental role in representing task-relevant information and signaling to neurons to mediate a fundamental component of learning in the brain.
Collapse
Affiliation(s)
- Gabrielle T. Drummond
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arundhati Natesan
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Marco Celotto
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Jennifer Shih
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Prachi Ojha
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yuma Osako
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiho Park
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Grayson O. Sipe
- Department of Biology, Eberly College of Science and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Kyle R. Jenks
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vincent Breton-Provencher
- Department of Psychiatry and Neuroscience, CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Paul C. Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Stefano Panzeri
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Holt LM, Gyles TM, Parise EM, Minier-Toribio AM, Rivera M, Markovic T, Yeh SY, Nestler EJ. Astrocytic CREB in Nucleus Accumbens Promotes Susceptibility to Chronic Stress. Biol Psychiatry 2024:S0006-3223(24)01626-3. [PMID: 39369762 DOI: 10.1016/j.biopsych.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Increasing evidence implicates astrocytes in stress and depression in both rodent models and human major depressive disorder. Despite this, little is known about the transcriptional responses to stress of astrocytes within the nucleus accumbens (NAc), a key brain reward region, and their influence on behavioral outcomes. METHODS We used whole-cell sorting, RNA sequencing, and bioinformatic analyses to investigate the NAc astrocyte transcriptome in male mice in response to chronic social defeat stress (CSDS). Immunohistochemistry was used to determine stress-induced changes in astrocytic CREB (cAMP response element binding protein) within the NAc. Finally, astrocytic regulation of depression-like behavior was investigated using viral-mediated manipulation of CREB in combination with CSDS. RESULTS We found a robust transcriptional response in NAc astrocytes to CSDS in stressed mice, with changes seen in both stress-susceptible and stress-resilient animals. Bioinformatic analysis revealed CREB, a transcription factor widely studied in neurons, as one of the top-predicted upstream regulators of the NAc astrocyte transcriptome, with opposite activation states implicated in resilient versus susceptible mice. This bioinformatic deduction was confirmed at the protein level with immunohistochemistry. Moreover, NAc astrocyte morphological complexity correlated with CREB activation and was reduced selectively in astrocytes of resilient mice. Viral overexpression of CREB selectively in NAc astrocytes promoted susceptibility to chronic stress. CONCLUSIONS Together, our data demonstrate that the astrocyte transcriptome responds robustly to CSDS and that transcriptional regulation in astrocytes contributes to depressive-like behaviors. A better understanding of transcriptional regulation in astrocytes may reveal unknown molecular mechanisms underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Trevonn M Gyles
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Angelica M Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Matthew Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Szu-Ying Yeh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
3
|
Bhardwaj S, Grewal AK, Singh S, Dhankar V, Jindal A. An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer's disease: targeting molecular approach Nrf2, NF-κB, and CREB. Inflammopharmacology 2024; 32:2943-2960. [PMID: 38951436 DOI: 10.1007/s10787-024-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a most prevalent neurologic disorder characterized by cognitive dysfunction, amyloid-β (Aβ) protein accumulation, and excessive neuroinflammation. It affects various life tasks and reduces thinking, memory, capability, reasoning and orientation ability, decision, and language. The major parts responsible for these abnormalities are the cerebral cortex, amygdala, and hippocampus. Excessive inflammatory markers release, and microglial activation affect post-synaptic neurotransmission. Various mechanisms of AD pathogenesis have been explored, but still, there is a need to debate the role of NF-κB, Nrf2, inflammatory markers, CREB signaling, etc. In this review, we have briefly discussed the signaling mechanisms and function of the NF-ĸB signaling pathway, inflammatory mediators, microglia activation, and alteration of autophagy. NF-κB inhibition is a current strategy to counter neuroinflammation and neurodegeneration in the brain of individuals with AD. In clinical trials, numbers of NF-κB modulators are being examined. Recent reports revealed that molecular and cellular pathways initiate complex pathological competencies that cause AD. Moreover, this review will provide extensive knowledge of the cAMP response element binding protein (CREB) and how these nuclear proteins affect neuronal plasticity.
Collapse
Affiliation(s)
- Shaveta Bhardwaj
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Anu Jindal
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| |
Collapse
|
4
|
Jha PK, Valekunja UK, Reddy AB. An integrative analysis of cell-specific transcriptomics and nuclear proteomics of sleep-deprived mouse cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.611806. [PMID: 39386443 PMCID: PMC11463534 DOI: 10.1101/2024.09.24.611806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sleep regulation follows a homeostatic pattern. The mammalian cerebral cortex is the repository of homeostatic sleep drive and neurons and astrocytes of the cortex are principal responders of sleep need. The molecular mechanisms by which these two cell types respond to sleep loss are not yet clearly understood. By combining cell-type specific transcriptomics and nuclear proteomics we investigated how sleep loss affects the cellular composition and molecular profiles of these two cell types in a focused approach. The results indicate that sleep deprivation regulates gene expression and nuclear protein abundance in a cell-type-specific manner. Our integrated multi-omics analysis suggests that this distinction arises because neurons and astrocytes employ different gene regulatory strategies under accumulated sleep pressure. These findings provide a comprehensive view of the effects of sleep deprivation on gene regulation in neurons and astrocytes.
Collapse
Affiliation(s)
- Pawan K. Jha
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute (CSI), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Utham K. Valekunja
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute (CSI), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akhilesh B. Reddy
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute (CSI), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Abdelazim H, Barnes A, Stupin J, Hasson R, Muñoz-Ballester C, Young KL, Robel S, Smyth JW, Lamouille S, Chappell JC. Optimized Enrichment of Murine Blood-Brain Barrier Vessels with a Critical Focus on Network Hierarchy in Post-Collection Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613898. [PMID: 39345630 PMCID: PMC11429916 DOI: 10.1101/2024.09.19.613898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cerebrovascular networks contain a unique region of interconnected capillaries known as the blood-brain barrier (BBB). Positioned between upstream arteries and downstream veins, these microvessels have unique structural features, such as the absence of vascular smooth muscle cells (vSMCs) and a relatively thin basement membrane, to facilitate highly efficient yet selective exchange between the circulation and the brain interstitium. This vital role in neurological health and function has garnered significant attention from the scientific community and inspired methodology for enriching BBB capillaries. Extensive characterization of the isolates from such protocols is essential for framing the results of follow-on experiments and analyses, providing the most accurate interpretation and assignment of BBB properties. Seeking to aid in these efforts, here we visually screened output samples using fluorescent labels and found considerable reduction of non-vascular cells following density gradient centrifugation (DGC) and subsequent filtration. Comparatively, this protocol enriched brain capillaries, though larger diameter vessels associated with vSMCs could not be fully excluded. Protein analysis further underscored the enrichment of vascular markers following DGC, with filtration preserving BBB-associated markers and reducing - though not fully removing - arterial/venous contributions. Transcriptional profiling followed similar trends of DGC plus filtration generating isolates with less non-vascular and non- capillary material included. Considering vascular network hierarchy inspired a more comprehensive assessment of the material yielded from brain microvasculature isolation protocols. This approach is important for providing an accurate representation of the cerebrovascular segments being used for data collection and assigning BBB properties specifically to capillaries relative to other regions of the brain vasculature. HIGHLIGHTS We optimized a protocol for the enrichment of murine capillaries using density gradient centrifugation and follow-on filtration.We offer an approach to analyzing post-collection cerebrovascular fragments and cells with respect to vascular network hierarchy.Assessing arterial and venous markers alongside those associated with the BBB provides a more comprehensive view of material collected.Enhanced insight into isolate composition is critical for a more accurate view of BBB biology relative to larger diameter cerebrovasculature. MOTIVATION The recent surge in studies investigating the cerebrovasculature, and the blood-brain barrier (BBB) in particular, has inspired a broad range of approaches to target and observe these specialized blood vessels within murine models. To capture transcriptional and molecular changes during a specific intervention or disease model, techniques have been developed to isolate brain capillary networks and collect their cellular constituents for downstream analysis. Here, we sought to highlight the benefits and cautions of isolating and enriching microvessels from murine brain tissue. Specifically, through rigorous assessment of the output material following application of specific protocols, we presented the benefits of specific approaches to reducing the inclusion of non-vascular cells and non-capillary vessel segments, verified by analysis of vascular-related proteins and transcripts. We also emphasized the levels of larger- caliber vessels (i.e. arteries/arterioles and veins/venules) that are collected alongside cerebral capillaries with each method. Distinguishing these vascular regions with greater precision is critical for attributing specific characteristics exclusively to the BBB where metabolic, ion, and waste exchange occurs. While the addition of larger vessels to molecular / transcriptional analyses or follow-on experiments may not be substantial for a given protocol, it is essential to gauge and report their level of inclusion, as their contributions may be inadvertently assigned to the BBB. Therefore, we present this optimized brain microvessel isolation protocol and associated evaluation methods to underscore the need for increased rigor in characterizing vascular regions that are collected and analyzed within a given study.
Collapse
|
6
|
Wei X, Browning JL, Olsen ML. Neuron and astrocyte specific 5mC and 5hmC signatures of BDNF's receptor, TrkB. Front Mol Neurosci 2024; 17:1463437. [PMID: 39268252 PMCID: PMC11390696 DOI: 10.3389/fnmol.2024.1463437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Michelle L. Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Wei X, Li J, Cheng Z, Wei S, Yu G, Olsen ML. Decoding the Epigenetic Landscape: Insights into 5mC and 5hmC Patterns in Mouse Cortical Cell Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602342. [PMID: 39026756 PMCID: PMC11257419 DOI: 10.1101/2024.07.06.602342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), represent powerful epigenetic regulators of temporal and spatial gene expression. Yet, how the cooperation of these genome-wide, epigenetic marks determine unique transcriptional signatures across different brain cell populations is unclear. Here we applied Nanopore sequencing of native DNA to obtain a complete, genome-wide, single-base resolution atlas of 5mC and 5hmC modifications in neurons, astrocytes and microglia in the mouse cortex (99% genome coverage, 40 million CpG sites). In tandem with RNA sequencing, analysis of 5mC and 5hmC patterns across cell types reveals astrocytes drive uniquely high brain 5hmC levels and support two decades of research regarding methylation patterns, gene expression and alternative splicing, benchmarking this resource. As such, we provide the most comprehensive DNA methylation data in mouse brain as an interactive, online tool (NAM-Me, https://olsenlab.shinyapps.io/NAMME/) to serve as a resource dataset for those interested in the methylome landscape.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, the United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, the United States
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Songtao Wei
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| |
Collapse
|
8
|
Zheng Y, Duan C, Yu H, Jiang G, Shen H, Li H, Wang Z, Zhou X, Li X, He M. Transcriptomic analysis reveals novel hub genes associated with astrocyte autophagy in intracerebral hemorrhage. Front Aging Neurosci 2024; 16:1433094. [PMID: 39026989 PMCID: PMC11256209 DOI: 10.3389/fnagi.2024.1433094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Neuroinflammation serves as a critical local defense mechanism against secondary brain injury following intracerebral hemorrhage (ICH), and astrocytes play a prominent role in this process. In this study, we investigated astrocytic changes during the inflammatory state after ICH to identify new targets for improving the inflammatory response. Methods We stimulated mouse astrocytes with lipopolysaccharide (LPS) in vitro and analyzed their transcriptomes via ribonucleic acid sequencing. We created an ICH model in living organisms by injecting autologous blood. Results RNA sequencing revealed that 2,717 genes were differentially expressed in the LPS group compared to those in the saline group, with notable enrichment of the autophagic pathway. By intersecting the 2,717 differentially expressed genes (DEGs) with autophagy-related genes, we identified 36 autophagy-related DEGs and seven hub genes. Previous studies and quantitative reverse transcription-polymerase chain reaction results confirmed the increased expression of phosphatidylinositol 3-kinase catalytic subunit type 3 (Pik3c3), AKT serine/threonine kinase 1 (Akt1), and unc-51 like autophagy activating kinase 2 (Ulk2) in astrocytes after ICH. Transcription factors and target miRNAs were identified for the final three DEGs, and 3-methyladenine and leupeptin were identified as potential therapeutic agents for ICH. Conclusion Our findings suggest that astrocyte autophagy plays a critical role in ICH complexity, and that Pik3c3, Akt1, and Ulk2 may be potential therapeutic targets.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Haoyun Yu
- Soochow Medical College of Soochow University, Suzhou, China
| | - Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xiaohan Zhou
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Leonard J, Wei X, Browning J, Gudenschwager-Basso EK, Li J, Harris EA, Olsen ML, Theus MH. Transcriptomic alterations in cortical astrocytes following the development of post-traumatic epilepsy. Sci Rep 2024; 14:8367. [PMID: 38600221 PMCID: PMC11006850 DOI: 10.1038/s41598-024-58904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Post-traumatic epilepsy (PTE) stands as one of the numerous debilitating consequences that follow traumatic brain injury (TBI). Despite its impact on many individuals, the current landscape offers only a limited array of reliable treatment options, and our understanding of the underlying mechanisms and susceptibility factors remains incomplete. Among the potential contributors to epileptogenesis, astrocytes, a type of glial cell, have garnered substantial attention as they are believed to promote hyperexcitability and the development of seizures in the brain following TBI. The current study evaluated the transcriptomic changes in cortical astrocytes derived from animals that developed seizures as a result of severe focal TBI. Using RNA-Seq and ingenuity pathway analysis (IPA), we unveil a distinct gene expression profile in astrocytes, including alterations in genes supporting inflammation, early response modifiers, and neuropeptide-amidating enzymes. The findings underscore the complex molecular dynamics in astrocytes during PTE development, offering insights into therapeutic targets and avenues for further exploration.
Collapse
Affiliation(s)
- John Leonard
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Xiaoran Wei
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jack Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Erwin Kristobal Gudenschwager-Basso
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elizabeth A Harris
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA.
| |
Collapse
|
10
|
Peterson IL, Thompson AD, Scholpa NE, Largent-Milnes T, Schnellmann RG. Isolation and monoculture of functional primary astrocytes from the adult mouse spinal cord. Front Neurosci 2024; 18:1367473. [PMID: 38435055 PMCID: PMC10906264 DOI: 10.3389/fnins.2024.1367473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Astrocytes are a widely heterogenic cell population that play major roles in central nervous system (CNS) homeostasis and neurotransmission, as well as in various neuropathologies, including spinal cord injury (SCI), traumatic brain injury, and neurodegenerative diseases, such as amyotrophic lateral sclerosis. Spinal cord astrocytes have distinct differences from those in the brain and accurate modeling of disease states is necessary for understanding disease progression and developing therapeutic interventions. Several limitations to modeling spinal cord astrocytes in vitro exist, including lack of commercially available adult-derived cells, lack of purchasable astrocytes with different genotypes, as well as time-consuming and costly in-house primary cell isolations that often result in low yield due to small tissue volume. To address these issues, we developed an efficient adult mouse spinal cord astrocyte isolation method that utilizes enzymatic digestion, debris filtration, and multiple ACSA-2 magnetic microbead purification cycles to achieve an astrocyte monoculture purity of ≅93-98%, based on all markers assessed. Importantly, the isolated cells contain active mitochondria and express key astrocyte markers including ACSA-1, ACSA-2, EAAT2, and GFAP. Furthermore, this isolation method can be applied to the spinal cord of male and female mice, mice subjected to SCI, and genetically modified mice. We present a primary adult mouse spinal cord astrocyte isolation protocol focused on purity, viability, and length of isolation that can be applied to a multitude of models and aid in targeted research on spinal-cord related CNS processes and pathologies.
Collapse
Affiliation(s)
- Ingrid L. Peterson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Austin D. Thompson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
| | - Natalie E. Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Tally Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Rick G. Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Holt LM, Gyles TM, Parise EM, Minier-Toribio A, Markovic T, Rivera M, Yeh SY, Nestler EJ. Astrocytic CREB in nucleus accumbens promotes susceptibility to chronic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575728. [PMID: 38293227 PMCID: PMC10827054 DOI: 10.1101/2024.01.15.575728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Increasing evidence implicates astrocytes in stress and depression in both rodent models and human Major Depressive Disorder (MDD). Despite this, little is known about the transcriptional responses to stress of astrocytes within the nucleus accumbens (NAc), a key brain reward region, and their influence on behavioral outcomes. Methods We used whole cell sorting, RNA-sequencing, and bioinformatic analyses to investigate the NAc astrocyte transcriptome in male mice in response to chronic social defeat stress (CSDS). Immunohistochemistry was used to determine stress-induced changes in astrocytic CREB within the NAc. Finally, astrocytic regulation of depression-like behavior was investigated using viral-mediated manipulation of CREB in combination with CSDS. Results We found a robust transcriptional response in NAc astrocytes to CSDS in stressed mice, with changes seen in both stress-susceptible and stress-resilient animals. Bioinformatic analysis revealed CREB, a transcription factor widely studied in neurons, as one of the top-predicted upstream regulators of the NAc astrocyte transcriptome, with opposite activation states seen in resilient versus susceptible mice. This bioinformatic result was confirmed at the protein level with immunohistochemistry. Viral overexpression of CREB selectively in NAc astrocytes promoted susceptibility to chronic stress. Conclusions Together, our data demonstrate that the astrocyte transcriptome responds robustly to CSDS and, for the first time, that transcriptional regulation in astrocytes contributes to depressive-like behaviors. A better understanding of transcriptional regulation in astrocytes may reveal unknown molecular mechanisms underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Leanne M. Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Trevonn M Gyles
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric M. Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Angelica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matthew Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Szu-Ying Yeh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
12
|
das Neves SP, Sousa JC, Magalhães R, Gao F, Coppola G, Mériaux S, Boumezbeur F, Sousa N, Cerqueira JJ, Marques F. Astrocytes Undergo Metabolic Reprogramming in the Multiple Sclerosis Animal Model. Cells 2023; 12:2484. [PMID: 37887329 PMCID: PMC10605171 DOI: 10.3390/cells12202484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that presents a largely unknown etiopathology. The presence of reactive astrocytes in MS lesions has been described for a long time; however, the role that these cells play in the pathophysiology of MS is still not fully understood. Recently, we used an MS animal model to perform high-throughput sequencing of astrocytes' transcriptome during disease progression. Our data show that astrocytes isolated from the cerebellum (a brain region typically affected in MS) showed a strong alteration in the genes that encode for proteins related to several metabolic pathways. Specifically, we found a significant increase in glycogen degradation, glycolytic, and TCA cycle enzymes. Together with these alterations, we detected an upregulation of genes that characterize "astrocyte reactivity". Additionally, at each disease time point we also reconstructed the morphology of cerebellum astrocytes in non-induced controls and in EAE animals, near lesion regions and in the normal-appearing white mater (NAWM). We found that near lesions, astrocytes presented increased length and complexity compared to control astrocytes, while no significant alterations were observed in the NAWM. How these metabolic alterations are linked with disease progression is yet to be uncovered. Herein, we bring to the literature the hypothesis of performing metabolic reprogramming as a novel therapeutic approach in MS.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.P.d.N.); (J.C.S.); n (N.S.); (J.J.C.)
- ICVS/3B’s PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.P.d.N.); (J.C.S.); n (N.S.); (J.J.C.)
- ICVS/3B’s PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Ricardo Magalhães
- NeuroSpin, CEA, Paris-Saclay University, Centre d’études de Saclay, Bâtiment 145, 91191 Gif-sur-Yvette, France (S.M.); (F.B.)
| | - Fuying Gao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (F.G.); (G.C.)
| | - Giovanni Coppola
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (F.G.); (G.C.)
| | - Sebatien Mériaux
- NeuroSpin, CEA, Paris-Saclay University, Centre d’études de Saclay, Bâtiment 145, 91191 Gif-sur-Yvette, France (S.M.); (F.B.)
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, Paris-Saclay University, Centre d’études de Saclay, Bâtiment 145, 91191 Gif-sur-Yvette, France (S.M.); (F.B.)
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.P.d.N.); (J.C.S.); n (N.S.); (J.J.C.)
- ICVS/3B’s PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
- Clinical Academic Center, 4710-243 Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.P.d.N.); (J.C.S.); n (N.S.); (J.J.C.)
- ICVS/3B’s PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
- Clinical Academic Center, 4710-243 Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.P.d.N.); (J.C.S.); n (N.S.); (J.J.C.)
- ICVS/3B’s PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| |
Collapse
|
13
|
Clark DN, O'Neil SM, Xu L, Steppe JT, Savage JT, Raghunathan K, Filiano AJ. Prolonged STAT1 activation in neurons drives a pathological transcriptional response. J Neuroimmunol 2023; 382:578168. [PMID: 37556887 PMCID: PMC10527980 DOI: 10.1016/j.jneuroim.2023.578168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Neurons require physiological IFN-γ signaling to maintain central nervous system (CNS) homeostasis, however, pathological IFN-γ signaling can cause CNS pathologies. The downstream signaling mechanisms that cause these drastically different outcomes in neurons has not been well studied. We hypothesized that different levels of IFN-γ signaling in neurons results in differential activation of its downstream transcription factor, signal transducer and activator of transduction 1 (STAT1), causing varying outcomes. Using primary cortical neurons, we showed that physiological IFN-γ elicited brief and transient STAT1 activation, whereas pathological IFN-γ induced prolonged STAT1 activation, which primed the pathway to be more responsive to a subsequent IFN-γ challenge. This is an IFN-γ specific response, as other IFNs and cytokines did not elicit such STAT1 activation nor priming in neurons. Additionally, we did not see the same effect in microglia or astrocytes, suggesting this non-canonical IFN-γ/STAT1 signaling is unique to neurons. Prolonged STAT1 activation was facilitated by continuous janus kinase (JAK) activity, even in the absence of IFN-γ. Finally, although IFN-γ initially induced a canonical IFN-γ transcriptional response in neurons, pathological levels of IFN-γ caused long-term changes in synaptic pathway transcripts. Overall, these findings suggest that IFN-γ signaling occurs via non-canonical mechanisms in neurons, and differential STAT1 activation may explain how neurons have both homeostatic and pathological responses to IFN-γ signaling.
Collapse
Affiliation(s)
- Danielle N Clark
- Department of Integrative Immunobiology, Duke University, Durham, NC 27705, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA
| | - Shane M O'Neil
- Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA
| | - Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA
| | - Justin T Steppe
- Department of Pathology, Duke University, Durham, NC 27705, USA
| | - Justin T Savage
- Department of Neurobiology, Duke University, Durham, NC 27705, USA
| | | | - Anthony J Filiano
- Department of Integrative Immunobiology, Duke University, Durham, NC 27705, USA; Department of Pathology, Duke University, Durham, NC 27705, USA; Department of Neurosurgery, Duke University, Durham, NC 27705, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA.
| |
Collapse
|
14
|
Yim YY, Nestler EJ. Cell-Type-Specific Neuroproteomics of Synapses. Biomolecules 2023; 13:998. [PMID: 37371578 PMCID: PMC10296650 DOI: 10.3390/biom13060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the last two decades, our knowledge of synaptic proteomes and their relationship to normal brain function and neuropsychiatric disorders has been expanding rapidly through the use of more powerful neuroproteomic approaches. However, mass spectrometry (MS)-based neuroproteomic studies of synapses still require cell-type, spatial, and temporal proteome information. With the advancement of sample preparation and MS techniques, we have just begun to identify and understand proteomes within a given cell type, subcellular compartment, and cell-type-specific synapse. Here, we review the progress and limitations of MS-based neuroproteomics of synapses in the mammalian CNS and highlight the recent applications of these approaches in studying neuropsychiatric disorders such as major depressive disorder and substance use disorders. Combining neuroproteomic findings with other omics studies can generate an in-depth, comprehensive map of synaptic proteomes and possibly identify new therapeutic targets and biomarkers for several central nervous system disorders.
Collapse
Affiliation(s)
- Yun Young Yim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | | |
Collapse
|
15
|
Murlanova K, Jouroukhin Y, Novototskaya-Vlasova K, Huseynov S, Pletnikova O, Morales MJ, Guan Y, Kamiya A, Bergles DE, Dietz DM, Pletnikov MV. Loss of Astrocytic µ Opioid Receptors Exacerbates Aversion Associated with Morphine Withdrawal in Mice: Role of Mitochondrial Respiration. Cells 2023; 12:1412. [PMID: 37408246 PMCID: PMC10216734 DOI: 10.3390/cells12101412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Astrocytes express mu/µ opioid receptors, but the function of these receptors remains poorly understood. We evaluated the effects of astrocyte-restricted knockout of µ opioid receptors on reward- and aversion-associated behaviors in mice chronically exposed to morphine. Specifically, one of the floxed alleles of the Oprm1 gene encoding µ opioid receptor 1 was selectively deleted from brain astrocytes in Oprm1 inducible conditional knockout (icKO) mice. These mice did not exhibit changes in locomotor activity, anxiety, or novel object recognition, or in their responses to the acute analgesic effects of morphine. Oprm1 icKO mice displayed increased locomotor activity in response to acute morphine administration but unaltered locomotor sensitization. Oprm1 icKO mice showed normal morphine-induced conditioned place preference but exhibited stronger conditioned place aversion associated with naloxone-precipitated morphine withdrawal. Notably, elevated conditioned place aversion lasted up to 6 weeks in Oprm1 icKO mice. Astrocytes isolated from the brains of Oprm1 icKO mice had unchanged levels of glycolysis but had elevated oxidative phosphorylation. The basal augmentation of oxidative phosphorylation in Oprm1 icKO mice was further exacerbated by naloxone-precipitated withdrawal from morphine and, similar to that for conditioned place aversion, was still present 6 weeks later. Our findings suggest that µ opioid receptors in astrocytes are linked to oxidative phosphorylation and they contribute to long-term changes associated with opioid withdrawal.
Collapse
Affiliation(s)
- Kateryna Murlanova
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yan Jouroukhin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ksenia Novototskaya-Vlasova
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Shovgi Huseynov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Olga Pletnikova
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J. Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dwight E. Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Mikhail V. Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Ma W, Oliveira-Nunes MC, Xu K, Kossenkov A, Reiner BC, Crist RC, Hayden J, Chen Q. Type I interferon response in astrocytes promotes brain metastasis by enhancing monocytic myeloid cell recruitment. Nat Commun 2023; 14:2632. [PMID: 37149684 PMCID: PMC10163863 DOI: 10.1038/s41467-023-38252-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/20/2023] [Indexed: 05/08/2023] Open
Abstract
Cancer metastasis to the brain is a significant clinical problem. Metastasis is the consequence of favorable interactions between invaded cancer cells and the microenvironment. Here, we demonstrate that cancer-activated astrocytes create a sustained low-level activated type I interferon (IFN) microenvironment in brain metastatic lesions. We further confirm that the IFN response in astrocytes facilitates brain metastasis. Mechanistically, IFN signaling in astrocytes activates C-C Motif Chemokine Ligand 2 (CCL2) production, which further increases the recruitment of monocytic myeloid cells. The correlation between CCL2 and monocytic myeloid cells is confirmed in clinical brain metastasis samples. Lastly, genetically or pharmacologically inhibiting C-C Motif Chemokine Receptor 2 (CCR2) reduces brain metastases. Our study clarifies a pro-metastatic effect of type I IFN in the brain even though IFN response has been considered to have anti-tumor effects. Moreover, this work expands our understandings on the interactions between cancer-activated astrocytes and immune cells in brain metastasis.
Collapse
Affiliation(s)
- Weili Ma
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Maria Cecília Oliveira-Nunes
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
- Carisma Therapeutics, Philadelphia, PA, 19104, USA
| | - Ke Xu
- MD/PhD Program, Boston University School of Medicine, Boston, MA, 02215, USA
| | - Andrew Kossenkov
- Gene Expression & Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Hayden
- Imaging Shared Resource, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Qing Chen
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Zhou J, Singh N, Galske J, Hudobenko J, Hu X, Yan R. BACE1 regulates expression of Clusterin in astrocytes for enhancing clearance of β-amyloid peptides. Mol Neurodegener 2023; 18:31. [PMID: 37143090 PMCID: PMC10161466 DOI: 10.1186/s13024-023-00611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Abnormal accumulation of amyloid beta peptide (Aβ) in the brain induces a cascade of pathological changes in Alzheimer's disease (AD), and inhibiting BACE1, which is required for Aβ generation, is therefore being explored for the treatment of AD by reducing Aβ accumulation. As Bace1 knockout mice exhibit increased number of reactive astrocytes and AD brains have reactive astrocytes that surround amyloid plaques, we investigated the role of BACE1 in astrocytes and determined whether BACE1 regulates astrocytic functions. METHODS We conducted unbiased single cell RNA-seq (scRNA-seq) using purified astrocytes from Bace1 KO mice and wild type control littermates. Similar scRNA-seq was also conducted using AD mice with conditional deletion of Bace1 in the adult stage (5xFAD;Bace1fl/fl;UBC-creER compared to 5xFAD;Bace1fl/fl controls). We compared the transcriptomes of astrocyte and reactive astrocyte clusters and identified several differentially expressed genes, which were further validated using Bace1 KO astrocyte cultures. Mice with astrocyte-specific Bace1 knockout in 5xFAD background were used to compare amyloid deposition. Mechanistic studies using cultured astrocytes were used to identify BACE1 substrates for changes in gene expression and signaling activity. RESULTS Among altered genes, Clusterin (Clu) and Cxcl14 were significantly upregulated and validated by measuring protein levels. Moreover, BACE1 deficiency enhanced both astrocytic Aβ uptake and degradation, and this effect was significantly attenuated by siRNA knockdown of Clu. Mechanistic study suggests that BACE1 deficiency abolishes cleavage of astrocytic insulin receptors (IR), and this may enhance expression of Clu and Cxcl14. Acutely isolated astrocytes from astrocyte-specific knockout of Bace1 mice (Bace1 fl/fl;Gfap-cre) show similar increases in CLU and IR. Furthermore, astrocyte-specific knockout of Bace1 in a 5xFAD background resulted in a significant attenuation in cortical Aβ plaque load through enhanced clearance. CONCLUSION Together, our study suggests that BACE1 in astrocytes regulates expression of Clu and Cxcl14, likely via the control of insulin receptor pathway, and inhibition of astrocytic BACE1 is a potential alternative strategy for enhancing Aβ clearance.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, United States
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, United States
| | - Neeraj Singh
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - James Galske
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Jacob Hudobenko
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
18
|
Delgado L, Navarrete M. Shining the Light on Astrocytic Ensembles. Cells 2023; 12:1253. [PMID: 37174653 PMCID: PMC10177371 DOI: 10.3390/cells12091253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
While neurons have traditionally been considered the primary players in information processing, the role of astrocytes in this mechanism has largely been overlooked due to experimental constraints. In this review, we propose that astrocytic ensembles are active working groups that contribute significantly to animal conduct and suggest that studying the maps of these ensembles in conjunction with neurons is crucial for a more comprehensive understanding of behavior. We also discuss available methods for studying astrocytes and argue that these ensembles, complementarily with neurons, code and integrate complex behaviors, potentially specializing in concrete functions.
Collapse
Affiliation(s)
| | - Marta Navarrete
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| |
Collapse
|
19
|
Gudenschwager-Basso EK, Shandra O, Volanth T, Patel DC, Kelly C, Browning JL, Wei X, Harris EA, Mahmutovic D, Kaloss AM, Correa FG, Decker J, Maharathi B, Robel S, Sontheimer H, VandeVord PJ, Olsen ML, Theus MH. Atypical Neurogenesis, Astrogliosis, and Excessive Hilar Interneuron Loss Are Associated with the Development of Post-Traumatic Epilepsy. Cells 2023; 12:1248. [PMID: 37174647 PMCID: PMC10177146 DOI: 10.3390/cells12091248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) remains a significant risk factor for post-traumatic epilepsy (PTE). The pathophysiological mechanisms underlying the injury-induced epileptogenesis are under investigation. The dentate gyrus-a structure that is highly susceptible to injury-has been implicated in the evolution of seizure development. METHODS Utilizing the murine unilateral focal control cortical impact (CCI) injury, we evaluated seizure onset using 24/7 EEG video analysis at 2-4 months post-injury. Cellular changes in the dentate gyrus and hilus of the hippocampus were quantified by unbiased stereology and Imaris image analysis to evaluate Prox1-positive cell migration, astrocyte branching, and morphology, as well as neuronal loss at four months post-injury. Isolation of region-specific astrocytes and RNA-Seq were performed to determine differential gene expression in animals that developed post-traumatic epilepsy (PTE+) vs. those animals that did not (PTE-), which may be associated with epileptogenesis. RESULTS CCI injury resulted in 37% PTE incidence, which increased with injury severity and hippocampal damage. Histological assessments uncovered a significant loss of hilar interneurons that coincided with aberrant migration of Prox1-positive granule cells and reduced astroglial branching in PTE+ compared to PTE- mice. We uniquely identified Cst3 as a PTE+-specific gene signature in astrocytes across all brain regions, which showed increased astroglial expression in the PTE+ hilus. CONCLUSIONS These findings suggest that epileptogenesis may emerge following TBI due to distinct aberrant cellular remodeling events and key molecular changes in the dentate gyrus of the hippocampus.
Collapse
Affiliation(s)
| | - Oleksii Shandra
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Troy Volanth
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dipan C. Patel
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Colin Kelly
- Translational Biology Medicine and Health Graduate Program, Blacksburg, VA 24061, USA
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaoran Wei
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | - Elizabeth A. Harris
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | - Dzenis Mahmutovic
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | | | - Jeremy Decker
- Department of Biomedical Engineering and Mechanics, Blacksburg, VA 24061, USA
| | - Biswajit Maharathi
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefanie Robel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Pamela J. VandeVord
- Department of Biomedical Engineering and Mechanics, Blacksburg, VA 24061, USA
| | | | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Engineered Health, Viginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
20
|
Delepine C, Shih J, Li K, Gaudeaux P, Sur M. Differential Effects of Astrocyte Manipulations on Learned Motor Behavior and Neuronal Ensembles in the Motor Cortex. J Neurosci 2023; 43:2696-2713. [PMID: 36894315 PMCID: PMC10089242 DOI: 10.1523/jneurosci.1982-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Although motor cortex is crucial for learning precise and reliable movements, whether and how astrocytes contribute to its plasticity and function during motor learning is unknown. Here, we report that astrocyte-specific manipulations in primary motor cortex (M1) during a lever push task alter motor learning and execution, as well as the underlying neuronal population coding. Mice that express decreased levels of the astrocyte glutamate transporter 1 (GLT1) show impaired and variable movement trajectories, whereas mice with increased astrocyte Gq signaling show decreased performance rates, delayed response times, and impaired trajectories. In both groups, which include male and female mice, M1 neurons have altered interneuronal correlations and impaired population representations of task parameters, including response time and movement trajectories. RNA sequencing further supports a role for M1 astrocytes in motor learning and shows changes in astrocytic expression of glutamate transporter genes, GABA transporter genes, and extracellular matrix protein genes in mice that have acquired this learned behavior. Thus, astrocytes coordinate M1 neuronal activity during motor learning, and our results suggest that this contributes to learned movement execution and dexterity through mechanisms that include regulation of neurotransmitter transport and calcium signaling.SIGNIFICANCE STATEMENT We demonstrate for the first time that in the M1 of mice, astrocyte function is critical for coordinating neuronal population activity during motor learning. We demonstrate that knockdown of astrocyte glutamate transporter GLT1 affects specific components of learning, such as smooth trajectory formation. Altering astrocyte calcium signaling by activation of Gq-DREADD upregulates GLT1 and affects other components of learning, such as response rates and reaction times as well as trajectory smoothness. In both manipulations, neuronal activity in motor cortex is dysregulated, but in different ways. Thus, astrocytes have a crucial role in motor learning via their influence on motor cortex neurons, and they do so by mechanisms that include regulation of glutamate transport and calcium signals.
Collapse
Affiliation(s)
- Chloe Delepine
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jennifer Shih
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Keji Li
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Pierre Gaudeaux
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Simons Center for the Social Brain, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
21
|
Buenaventura RG, Harvey AC, Burns MP, Main BS. Sequential Isolation of Microglia and Astrocytes from Young and Aged Adult Mouse Brains for Downstream Transcriptomic Analysis. Methods Protoc 2022; 5:77. [PMID: 36287049 PMCID: PMC9610580 DOI: 10.3390/mps5050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
In aging, the brain is more vulnerable to injury and neurodegenerative disease, but the mechanisms responsible are largely unknown. Evidence now suggests that neuroinflammation, mediated by resident brain astrocyte and microglia populations, are key players in the generation of inflammatory responses and may influence both age related processes and the initiation/progression of neurodegeneration. Consequently, targeting these cell types individually and collectively may aid in the development of novel disease-modifying therapies. We have optimized and characterized a protocol for the effective sequential isolation of both microglia and astrocytes from the adult mouse brain in young and aged mice. We demonstrate a technique for the sequential isolation of these immune cells by using magnetic beads technology, optimized to increase yield and limit potential artifacts in downstream transcriptomic applications, including RNA-sequencing pipelines. This technique is versatile, cost-effective, and reliable for the study of responses within the same biological context, simultaneously being advantageous in reducing mice numbers required to assess cellular responses in normal and age-related pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Bevan S. Main
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
22
|
Jha PK, Valekunja UK, Ray S, Nollet M, Reddy AB. Single-cell transcriptomics and cell-specific proteomics reveals molecular signatures of sleep. Commun Biol 2022; 5:846. [PMID: 35986171 PMCID: PMC9391396 DOI: 10.1038/s42003-022-03800-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Every day, we sleep for a third of the day. Sleep is important for cognition, brain waste clearance, metabolism, and immune responses. The molecular mechanisms governing sleep are largely unknown. Here, we used a combination of single-cell RNA sequencing and cell-type-specific proteomics to interrogate the molecular underpinnings of sleep. Different cell types in three important brain regions for sleep (brainstem, cortex, and hypothalamus) exhibited diverse transcriptional responses to sleep need. Sleep restriction modulates astrocyte-neuron crosstalk and sleep need enhances expression of specific sets of transcription factors in different brain regions. In cortex, we also interrogated the proteome of two major cell types: astrocytes and neurons. Sleep deprivation differentially alters the expression of proteins in astrocytes and neurons. Similarly, phosphoproteomics revealed large shifts in cell-type-specific protein phosphorylation. Our results indicate that sleep need regulates transcriptional, translational, and post-translational responses in a cell-specific manner.
Collapse
Affiliation(s)
- Pawan K Jha
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Utham K Valekunja
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sandipan Ray
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Mathieu Nollet
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Akhilesh B Reddy
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Schacke S, Kirkpatrick J, Stocksdale A, Bauer R, Hagel C, Riecken LB, Morrison H. Ezrin deficiency triggers glial fibrillary acidic protein upregulation and a distinct reactive astrocyte phenotype. Glia 2022; 70:2309-2329. [PMID: 35929192 DOI: 10.1002/glia.24253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/02/2023]
Abstract
Astrocytes are increasingly being recognized as contributors to physiological brain function and behavior. Astrocytes engage in glia-synaptic interactions through peripheral astrocyte processes, thus modulating synaptic signaling, for example, by handling glutamate removal from the synaptic cleft and (re)provision to axonal terminals. Peripheral astrocyte processes are ultrafine membrane protrusions rich in the membrane-to-actin cytoskeleton linker Ezrin, an essential component of in vitro filopodia formation and in vivo peripheral astrocyte process motility. Consequently, it has been postulated that Ezrin significantly contributes to neurodevelopment as well as astrocyte functions within the adult brain. However, while Ezrin has been studied in vitro within cultured primary astrocytes, in vivo studies on the role of Ezrin in astrocytes remain to be conducted and consequences of its depletion to be studied. Here, we investigated consequences of Ezrin deletion in the mouse brain starting from early neuronal specification. While Ezrin knockout did not impact prenatal cerebral cortex development, behavioral phenotyping depicted reduced exploratory behavior. Starting with postnatal appearance of glia cells, Ezrin was verified to remain predominantly expressed in astrocytes. Proteome analysis of Ezrin deficient astrocytes revealed alterations in glutamate and ion homeostasis, metabolism and cell morphology - important processes for synaptic signal transmission. Notably, Ezrin deletion in astrocytes provoked (GFAP) glial fibrillary acidic protein upregulation - a marker of astrocyte activation and reactive astrogliosis. However, this spontaneous, reactive astrogliosis exhibited proteome changes distinct from ischemic-induced reactive astrogliosis. Moreover, in experimental ischemic stroke, Ezrin knockout mice displayed reduced infarct volume, indicating a protective effect of the Ezrin deletion-induced changes and astrogliosis.
Collapse
Affiliation(s)
- Stephan Schacke
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Amy Stocksdale
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| |
Collapse
|
24
|
Dickerson M, Guilhaume-Corrêa F, Strickler J, VandeVord PJ. Age-relevant in vitro models may lead to improved translational research for traumatic brain injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Li L, Zhou J, Han L, Wu X, Shi Y, Cui W, Zhang S, Hu Q, Wang J, Bai H, Liu H, Guo W, Feng D, Qu Y. The Specific Role of Reactive Astrocytes in Stroke. Front Cell Neurosci 2022; 16:850866. [PMID: 35321205 PMCID: PMC8934938 DOI: 10.3389/fncel.2022.850866] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are essential in maintaining normal brain functions such as blood brain barrier (BBB) homeostasis and synapse formation as the most abundant cell type in the central nervous system (CNS). After the stroke, astrocytes are known as reactive astrocytes (RAs) because they are stimulated by various damage-associated molecular patterns (DAMPs) and cytokines, resulting in significant changes in their reactivity, gene expression, and functional characteristics. RAs perform multiple functions after stroke. The inflammatory response of RAs may aggravate neuro-inflammation and release toxic factors to exert neurological damage. However, RAs also reduce excitotoxicity and release neurotrophies to promote neuroprotection. Furthermore, RAs contribute to angiogenesis and axonal remodeling to promote neurological recovery. Therefore, RAs' biphasic roles and mechanisms make them an effective target for functional recovery after the stroke. In this review, we summarized the dynamic functional changes and internal molecular mechanisms of RAs, as well as their therapeutic potential and strategies, in order to comprehensively understand the role of RAs in the outcome of stroke disease and provide a new direction for the clinical treatment of stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
26
|
Ocañas SR, Pham KD, Blankenship HE, Machalinski AH, Chucair-Elliott AJ, Freeman WM. Minimizing the Ex Vivo Confounds of Cell-Isolation Techniques on Transcriptomic and Translatomic Profiles of Purified Microglia. eNeuro 2022; 9:ENEURO.0348-21.2022. [PMID: 35228310 PMCID: PMC8970438 DOI: 10.1523/eneuro.0348-21.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 01/21/2023] Open
Abstract
Modern molecular and biochemical neuroscience studies require analysis of specific cellular populations derived from brain tissue samples to disambiguate cell type-specific events. This is particularly true in the analysis of minority glial populations in the brain, such as microglia, which may be obscured in whole tissue analyses. Microglia have central functions in development, aging, and neurodegeneration and are a current focus of neuroscience research. A long-standing concern for glial biologists using in vivo models is whether cell isolation from CNS tissue could introduce ex vivo artifacts in microglia, which respond quickly to changes in the environment. Mouse microglia were purified by magnetic-activated cell sorting (MACS), as well as cytometer-based and cartridge-based fluorescence-activated cell sorting (FACS) approaches to compare and contrast performance. The Cx3cr1-NuTRAP mouse model was used to provide an endogenous fluorescent microglial marker and a microglial-specific translatome profile as a baseline comparison lacking cell isolation artifacts. All sorting methods performed similarly for microglial purity with main differences being in cell yield and time of isolation. Ex vivo activation signatures occurred principally during the initial tissue dissociation and cell preparation and not the cell sorting. The cell preparation-induced activational phenotype could be minimized by inclusion of transcriptional and translational inhibitors or non-enzymatic dissociation conducted entirely at low temperatures. These data demonstrate that a variety of microglial isolation approaches can be used, depending on experimental needs, and that inhibitor cocktails are effective at reducing cell preparation artifacts.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Harris E Blankenship
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Adeline H Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
27
|
Fritsch LE, Ju J, Gudenschwager Basso EK, Soliman E, Paul S, Chen J, Kaloss AM, Kowalski EA, Tuhy TC, Somaiya RD, Wang X, Allen IC, Theus MH, Pickrell AM. Type I Interferon Response Is Mediated by NLRX1-cGAS-STING Signaling in Brain Injury. Front Mol Neurosci 2022; 15:852243. [PMID: 35283725 PMCID: PMC8916033 DOI: 10.3389/fnmol.2022.852243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 01/05/2023] Open
Abstract
Background Inflammation is a significant contributor to neuronal death and dysfunction following traumatic brain injury (TBI). Recent evidence suggests that interferons may be a key regulator of this response. Our studies evaluated the role of the Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) signaling pathway in a murine model of TBI. Methods Male, 8-week old wildtype, STING knockout (-/-), cGAS -/-, and NLRX1 -/- mice were subjected to controlled cortical impact (CCI) or sham injury. Histopathological evaluation of tissue damage was assessed using non-biased stereology, which was complemented by analysis at the mRNA and protein level using qPCR and western blot analysis, respectively. Results We found that STING and Type I interferon-stimulated genes were upregulated after CCI injury in a bi-phasic manner and that loss of cGAS or STING conferred neuroprotection concomitant with a blunted inflammatory response at 24 h post-injury. cGAS -/- animals showed reduced motor deficits 4 days after injury (dpi), and amelioration of tissue damage was seen in both groups of mice up to 14 dpi. Given that cGAS requires a cytosolic damage- or pathogen-associated molecular pattern (DAMP/PAMP) to prompt downstream STING signaling, we further demonstrate that mitochondrial DNA is present in the cytosol after TBI as one possible trigger for this pathway. Recent reports suggest that the immune modulator NLR containing X1 (NLRX1) may sequester STING during viral infection. Our findings show that NLRX1 may be an additional regulator that functions upstream to regulate the cGAS-STING pathway in the brain. Conclusions These findings suggest that the canonical cGAS-STING-mediated Type I interferon signaling axis is a critical component of neural tissue damage following TBI and that mtDNA may be a possible trigger in this response.
Collapse
Affiliation(s)
- Lauren E. Fritsch
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Jing Ju
- Molecular and Cellular Biology Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Swagatika Paul
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jiang Chen
- Molecular and Cellular Biology Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Elizabeth A. Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Taylor C. Tuhy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Rachana Deven Somaiya
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
28
|
Profiling Microglia in a Mouse Model of Machado–Joseph Disease. Biomedicines 2022; 10:biomedicines10020237. [PMID: 35203447 PMCID: PMC8869404 DOI: 10.3390/biomedicines10020237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microglia have been increasingly implicated in neurodegenerative diseases (NDs), and specific disease associated microglia (DAM) profiles have been defined for several of these NDs. Yet, the microglial profile in Machado–Joseph disease (MJD) remains unexplored. Here, we characterized the profile of microglia in the CMVMJD135 mouse model of MJD. This characterization was performed using primary microglial cultures and microglial cells obtained from disease-relevant brain regions of neonatal and adult CMVMJD135 mice, respectively. Machine learning models were implemented to identify potential clusters of microglia based on their morphological features, and an RNA-sequencing analysis was performed to identify molecular perturbations and potential therapeutic targets. Our findings reveal morphological alterations that point to an increased activation state of microglia in CMVMJD135 mice and a disease-specific transcriptional profile of MJD microglia, encompassing a total of 101 differentially expressed genes, with enrichment in molecular pathways related to oxidative stress, immune response, cell proliferation, cell death, and lipid metabolism. Overall, these results allowed us to define the cellular and molecular profile of MJD-associated microglia and to identify genes and pathways that might represent potential therapeutic targets for this disorder.
Collapse
|
29
|
Zelenka L, Pägelow D, Krüger C, Seele J, Ebner F, Rausch S, Rohde M, Lehnardt S, van Vorst K, Fulde M. Novel protocol for the isolation of highly purified neonatal murine microglia and astrocytes. J Neurosci Methods 2022; 366:109420. [PMID: 34808220 DOI: 10.1016/j.jneumeth.2021.109420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The crosstalk and reactivity of the cell type glia, especially microglia and astrocytes, have progressively gathered research attention in understanding proper brain function regulated by the innate immune response. Therefore, methods to isolate highly viable and pure glia for the analysis on a cell-specific level are indispensable. NEW METHOD We modified previously established techniques: Animal numbers were reduced by multiple microglial harvests from the same mixed glial culture, thereby maximizing microglial yields following the principles of the 3Rs (replacement, reduction, and refinement). We optimized Magnetic-activated cell sorting (MACS®) of microglia and astrocytes by applying cultivated primary glial cell suspensions instead of directly sorting dissociated single cell suspension. RESULTS We generated highly viable and pure microglia and astrocytes derived from a single mixed culture with a purity of ~99%, as confirmed by FACS analysis. Field emission scanning electron microscopy (FESEM) demonstrated integrity of the MACS-purified glial cells. Tumor necrosis factor (TNF) and Interleukin-10 (IL-10) ELISA confirmed pro- and anti-inflammatory responses to be functional in purified glia, but significantly weakened compared to non-purified cells, further highlighting the importance of cellular crosstalk for proper immune activation. COMPARISON WITH EXISTING METHOD(S) Unlike previous studies that either isolated a single type of glia or displayed a substantial proportion of contamination with other cell types, we achieved isolation of both microglia and astrocytes at an increased purity (99-100%). CONCLUSIONS We have created an optimized protocol for the efficient purification of both primary microglia and astrocytes. Our results clearly demonstrate the importance of purity in glial cell cultivation in order to examine immune responses, which particularly holds true for astrocytes. We propose the novel protocol as a tool to investigate the cell type-specific crosstalk between microglia and astrocytes in the frame of CNS diseases.
Collapse
Affiliation(s)
- Laura Zelenka
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Dennis Pägelow
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jana Seele
- University Medical Center Göttingen, Institute of Neuropathology, Göttingen, Germany
| | - Friederike Ebner
- Freie Universität Berlin, Institute of Immunology, Berlin, Germany
| | - Sebastian Rausch
- Freie Universität Berlin, Institute of Immunology, Berlin, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kira van Vorst
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany.
| |
Collapse
|
30
|
Pena-Ortiz MA, Shafiq S, Rowland ME, Bérubé NG. Selective isolation of mouse glial nuclei optimized for reliable downstream omics analyses. J Neurosci Methods 2022; 369:109480. [PMID: 35026308 DOI: 10.1016/j.jneumeth.2022.109480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Isolation of cell types of interest from the brain for molecular applications presents several challenges, including cellular damage during tissue dissociation or enrichment procedures, and low cell number in the tissue in some cases. Techniques have been developed to enrich distinct cell populations using immunopanning or fluorescence activated cell/nuclei sorting. However, these techniques often involve fixation, immunolabeling and DNA staining steps, which could potentially influence downstream omics applications. NEW METHOD Taking advantage of readily available genetically modified mice with fluorescent-tagged nuclei, we describe a technique for the purification of cell-type specific brain nuclei, optimized to decrease sample preparation time and to limit potential artefacts for downstream omics applications. We demonstrate the applicability of this approach for the purification of glial cell nuclei and show that the resulting cell-type specific nuclei obtained can be used effectively for omics applications, including ATAC-seq and RNA-seq. RESULTS We demonstrate excellent enrichment of fluorescently-tagged glial nuclei, yielding high quality RNA and chromatin. We identify several critical steps during nuclei isolation that help limit nuclei rupture and clumping, including quick homogenization, dilution before filtration and loosening of the pellet before resuspension, thus improving yield. Sorting of fluorescent nuclei can be achieved without fixation, antibody labelling, or DAPI staining, reducing potential artifactual results in RNA-seq and ATAC-seq analyses. We show that reproducible glial cell type-specific profiles can be obtained in transcriptomic and chromatin accessibility assays using this rapid protocol. COMPARISON WITH EXISTING METHODS Our method allows for rapid enrichment of glial nuclei populations from the mouse brain with minimal processing steps, while still providing high quality RNA and chromatin required for reliable omics analyses. CONCLUSIONS We provide a reproducible method to obtain nucleic material from glial cells in the mouse brain with a quick and limited sample preparation.
Collapse
Affiliation(s)
- Miguel A Pena-Ortiz
- Departments of Anatomy and Cell Biology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, London, ON, Canada
| | - Sarfraz Shafiq
- Departments of Anatomy and Cell Biology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, London, ON, Canada
| | - Megan E Rowland
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Nathalie G Bérubé
- Departments of Anatomy and Cell Biology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, London, ON, Canada.
| |
Collapse
|
31
|
George KK, Heithoff BP, Shandra O, Robel S. Mild Traumatic Brain Injury/Concussion Initiates an Atypical Astrocyte Response Caused by Blood-Brain Barrier Dysfunction. J Neurotrauma 2022; 39:211-226. [PMID: 34806422 PMCID: PMC8785769 DOI: 10.1089/neu.2021.0204] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mild traumatic brain injury/concussion (mTBI) accounts for 70-90% of all reported TBI cases and causes long-lasting neurological consequences in 10-40% of patients. Recent clinical studies revealed increased blood-brain barrier (BBB) permeability in mTBI patients, which correlated with secondary damage after mTBI. However, the cascade of cellular events initiated by exposure to blood-borne factors resulting in sustained damage is not fully understood. We previously reported that astrocytes respond atypically to mTBI, rapidly losing many proteins essential to their homeostatic function, while classic scar formation does not occur. Here, we tested the hypothesis that mTBI-induced BBB damage causes atypical astrocytes through exposure to blood-borne factors. Using an mTBI mouse model, two-photon imaging, an endothelial cell-specific genetic ablation approach, and serum-free primary astrocyte cultures, we demonstrated that areas with atypical astrocytes coincide with BBB damage and that exposure of astrocytes to plasma proteins is sufficient to initiate loss of astrocyte homeostatic proteins. Although mTBI resulted in frequent impairment of both physical and metabolic BBB properties and leakage of small-sized blood-borne factors, deposition of the coagulation factor fibrinogen or vessel rupture were rare. Surprisingly, even months after mTBI, BBB repair did not occur in areas with atypical astrocytes. Together, these findings implicate that even relatively small BBB disturbances are sustained long term, and render nearby astrocytes dysfunctional, likely at the cost of neuronal health and function.
Collapse
Affiliation(s)
- Kijana K. George
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, Virginia, USA
| | - Benjamin P. Heithoff
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Oleksii Shandra
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stefanie Robel
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Address correspondence to: Stefanie Robel, PhD, University of Alabama at Birmingham, Department of Cell, Developmental, and Integrative Biology, McCallum Basic Health Sciences Building, 9th floor, 1720 2nd Avenue South, Birmingham, AL 35294-0006, USA
| |
Collapse
|
32
|
Irwin AB, Bahabry R, Lubin FD. A putative role for lncRNAs in epigenetic regulation of memory. Neurochem Int 2021; 150:105184. [PMID: 34530054 PMCID: PMC8552959 DOI: 10.1016/j.neuint.2021.105184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
The central dogma of molecular genetics is defined as encoded genetic information within DNA, transcribed into messenger RNA, which contain the instructions for protein synthesis, thus imparting cellular functionality and ultimately life. This molecular genetic theory has given birth to the field of neuroepigenetics, and it is now well established that epigenetic regulation of gene transcription is critical to the learning and memory process. In this review, we address a potential role for a relatively new player in the field of epigenetic crosstalk - long non-coding RNAs (lncRNAs). First, we briefly summarize epigenetic mechanisms in memory formation and examine what little is known about the emerging role of lncRNAs during this process. We then focus discussions on how lncRNAs interact with epigenetic mechanisms to control transcriptional programs under various conditions in the brain, and how this may be applied to regulation of gene expression necessary for memory formation. Next, we explore how epigenetic crosstalk in turn serves to regulate expression of various individual lncRNAs themselves. To highlight the importance of further exploring the role of lncRNA in epigenetic regulation of gene expression, we consider the significant relationship between lncRNA dysregulation and declining memory reserve with aging, Alzheimer's disease, and epilepsy, as well as the promise of novel therapeutic interventions. Finally, we conclude with a discussion of the critical questions that remain to be answered regarding a role for lncRNA in memory.
Collapse
Affiliation(s)
- Ashleigh B Irwin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
33
|
Reiss D, Maurin H, Audouard E, Martínez-Navarro M, Xue Y, Herault Y, Maldonado R, Cabañero D, Gaveriaux-Ruff C. Delta Opioid Receptor in Astrocytes Contributes to Neuropathic Cold Pain and Analgesic Tolerance in Female Mice. Front Cell Neurosci 2021; 15:745178. [PMID: 34602984 PMCID: PMC8483180 DOI: 10.3389/fncel.2021.745178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 01/13/2023] Open
Abstract
Background: The delta opioid receptor (DOR) contributes to pain control, and a major challenge is the identification of DOR populations that control pain, analgesia, and tolerance. Astrocytes are known as important cells in the pathophysiology of chronic pain, and many studies report an increased prevalence of pain in women. However, the implication of astrocytic DOR in neuropathic pain and analgesia, as well as the influence of sex in this receptor activity, remains unknown. Experimental Approach: We developed a novel conditional knockout (cKO) mouse line wherein DOR is deleted in astrocytes (named GFAP-DOR-KO), and investigated neuropathic mechanical allodynia as well as analgesia and analgesic tolerance in mutant male and female mice. Neuropathic cold allodynia was also characterized in mice of both sexes lacking DOR either in astrocytes or constitutively. Results: Neuropathic mechanical allodynia was similar in GFAP-DOR-KO and floxed DOR control mice, and the DOR agonist SNC80 produced analgesia in mutant mice of both sexes. Interestingly, analgesic tolerance developed in cKO males and was abolished in cKO females. Cold neuropathic allodynia was reduced in mice with decreased DOR in astrocytes. By contrast, cold allodynia was exacerbated in full DOR KO females. Conclusions: These findings show that astrocytic DOR has a prominent role in promoting cold allodynia and analgesic tolerance in females, while overall DOR activity was protective. Altogether this suggests that endogenous- and exogenous-mediated DOR activity in astrocytes worsens neuropathic allodynia while DOR activity in other cells attenuates this form of pain. In conclusion, our results show a sex-specific implication of astrocytic DOR in neuropathic pain and analgesic tolerance. These findings open new avenues for developing tailored DOR-mediated analgesic strategies.
Collapse
Affiliation(s)
- David Reiss
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Hervé Maurin
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Emilie Audouard
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Miriam Martínez-Navarro
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yaping Xue
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Cabañero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Universidad Miguel Hernández Elche, Alicante, Spain
| | - Claire Gaveriaux-Ruff
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| |
Collapse
|
34
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
35
|
INTACT vs. FANS for Cell-Type-Specific Nuclei Sorting: A Comprehensive Qualitative and Quantitative Comparison. Int J Mol Sci 2021; 22:ijms22105335. [PMID: 34069481 PMCID: PMC8159132 DOI: 10.3390/ijms22105335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Increasing numbers of studies seek to characterize the different cellular sub-populations present in mammalian tissues. The techniques “Isolation of Nuclei Tagged in Specific Cell Types” (INTACT) or “Fluorescence-Activated Nuclei Sorting” (FANS) are frequently used for isolating nuclei of specific cellular subtypes. These nuclei are then used for molecular characterization of the cellular sub-populations. Despite the increasing popularity of both techniques, little is known about their isolation efficiency, advantages, and disadvantages or downstream molecular effects. In our study, we compared the physical and molecular attributes of sfGFP+ nuclei isolated by the two methods—INTACT and FANS—from the neocortices of Arc-CreERT2 × CAG-Sun1/sfGFP animals. We identified differences in efficiency of sfGFP+ nuclei isolation, nuclear size as well as transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) states. Therefore, our study presents a comprehensive comparison between the two widely used nuclei sorting techniques, identifying the advantages and disadvantages for both INTACT and FANS. Our conclusions are summarized in a table to guide researchers in selecting the most suitable methodology for their individual experimental design.
Collapse
|
36
|
One Brain-All Cells: A Comprehensive Protocol to Isolate All Principal CNS-Resident Cell Types from Brain and Spinal Cord of Adult Healthy and EAE Mice. Cells 2021; 10:cells10030651. [PMID: 33804060 PMCID: PMC7999839 DOI: 10.3390/cells10030651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, the role of each central nervous system (CNS)-resident cell type during inflammation, neurodegeneration, and remission has been frequently addressed. Although protocols for the isolation of different individual CNS-resident cell types exist, none can harvest all of them within a single experiment. In addition, isolation of individual cells is more demanding in adult mice and even more so from the inflamed CNS. Here, we present a protocol for the simultaneous purification of viable single-cell suspensions of all principal CNS-resident cell types (microglia, oligodendrocytes, astrocytes, and neurons) from adult mice-applicable in healthy mice as well as in EAE. After dissociation of the brain and spinal cord from adult mice, microglia, oligodendrocytes, astrocytes and, neurons were isolated via magnetic-activated cell sorting (MACS). Validations comprised flow cytometry, immunocytochemistry, as well as functional analyses (immunoassay and Sholl analysis). The purity of each cell isolation averaged 90%. All cells displayed cell-type-specific morphologies and expressed specific surface markers. In conclusion, this new protocol for the simultaneous isolation of all major CNS-resident cell types from one CNS offers a sophisticated and comprehensive way to investigate complex cellular networks ex vivo and simultaneously reduce mice numbers to be sacrificed.
Collapse
|
37
|
Jackson-Cowan L, Eldahshan W, Dumanli S, Dong G, Jamil S, Abdul Y, Althomali W, Baban B, Fagan SC, Ergul A. Delayed Administration of Angiotensin Receptor (AT2R) Agonist C21 Improves Survival and Preserves Sensorimotor Outcomes in Female Diabetic Rats Post-Stroke through Modulation of Microglial Activation. Int J Mol Sci 2021; 22:ijms22031356. [PMID: 33572986 PMCID: PMC7866408 DOI: 10.3390/ijms22031356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/31/2022] Open
Abstract
About 70% of stroke victims present with comorbid diseases such as diabetes and hypertension. The integration of comorbidities in pre-clinical experimental design is important in understanding the mechanisms involved in the development of stroke injury and recovery. We recently showed that administration of compound C21, an angiotensin II type 2 receptor agonist, at day 3 post-stroke improved sensorimotor outcomes by lowering neuroinflammation in diabetic male animals. In the current study, we hypothesized that a delayed administration of C21 would also lower chronic inflammation post-stroke in diabetic female animals. Young female diabetic rats were subjected to 1 h of middle cerebral artery occlusion (MCAO). Three days post-stroke, rats were administered C21 or vehicle in drinking water at a dose of 0.12 mg/kg/day for 4 weeks. The impact of C21 on microglial polarization was analyzed by flow cytometry in vivo and in vitro. Compound 21 treatment improved fine motor skills after MCAO through modulation of the microglia/macrophage inflammatory properties. In addition, C21 increased M2 polarization and reduced the M1:M2 ratio in vitro. In conclusion, delayed administration of C21 downregulates post-stroke inflammation in female diabetic animals. C21 may be a useful therapeutic option to lower neuro-inflammation and improve the post-stroke recovery in diabetes.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cell Line
- Cognition/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Female
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/physiopathology
- Mice
- Microglia/drug effects
- Microglia/pathology
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Stroke/complications
- Stroke/drug therapy
- Stroke/physiopathology
Collapse
Affiliation(s)
- LaDonya Jackson-Cowan
- Department of Medicine, Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Selin Dumanli
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Guangkuo Dong
- Department Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sarah Jamil
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Yasir Abdul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Waleed Althomali
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta, GA 30912, USA
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Adviye Ergul
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
38
|
Still KM, Batista SJ, O’Brien CA, Oyesola OO, Früh SP, Webb LM, Smirnov I, Kovacs MA, Cowan MN, Hayes NW, Thompson JA, Tait Wojno ED, Harris TH. Astrocytes promote a protective immune response to brain Toxoplasma gondii infection via IL-33-ST2 signaling. PLoS Pathog 2020; 16:e1009027. [PMID: 33108405 PMCID: PMC7647122 DOI: 10.1371/journal.ppat.1009027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/06/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
It is of great interest to understand how invading pathogens are sensed within the brain, a tissue with unique challenges to mounting an immune response. The eukaryotic parasite Toxoplasma gondii colonizes the brain of its hosts, and initiates robust immune cell recruitment, but little is known about pattern recognition of T. gondii within brain tissue. The host damage signal IL-33 is one protein that has been implicated in control of chronic T. gondii infection, but, like many other pattern recognition pathways, IL-33 can signal peripherally, and the specific impact of IL-33 signaling within the brain is unclear. Here, we show that IL-33 is expressed by oligodendrocytes and astrocytes during T. gondii infection, is released locally into the cerebrospinal fluid of T. gondii-infected animals, and is required for control of infection. IL-33 signaling promotes chemokine expression within brain tissue and is required for the recruitment and/or maintenance of blood-derived anti-parasitic immune cells, including proliferating, IFN-γ-expressing T cells and iNOS-expressing monocytes. Importantly, we find that the beneficial effects of IL-33 during chronic infection are not a result of signaling on infiltrating immune cells, but rather on radio-resistant responders, and specifically, astrocytes. Mice with IL-33 receptor-deficient astrocytes fail to mount an adequate adaptive immune response in the CNS to control parasite burden-demonstrating, genetically, that astrocytes can directly respond to IL-33 in vivo. Together, these results indicate a brain-specific mechanism by which IL-33 is released locally, and sensed locally, to engage the peripheral immune system in controlling a pathogen.
Collapse
Affiliation(s)
- Katherine M. Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Samantha J. Batista
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carleigh A. O’Brien
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Oyebola O. Oyesola
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Simon P. Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| | - Lauren M. Webb
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Igor Smirnov
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael A. Kovacs
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Maureen N. Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Nikolas W. Hayes
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeremy A. Thompson
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Elia D. Tait Wojno
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
39
|
Castagnola S, Cazareth J, Lebrigand K, Jarjat M, Magnone V, Delhaye S, Brau F, Bardoni B, Maurin T. Agonist-induced functional analysis and cell sorting associated with single-cell transcriptomics characterizes cell subtypes in normal and pathological brain. Genome Res 2020; 30:1633-1642. [PMID: 32973039 PMCID: PMC7605246 DOI: 10.1101/gr.262717.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022]
Abstract
To gain better insight into the dynamic interaction between cells and their environment, we developed the agonist-induced functional analysis and cell sorting (aiFACS) technique, which allows the simultaneous recording and sorting of cells in real-time according to their immediate and individual response to a stimulus. By modulating the aiFACS selection parameters, testing different developmental times, using various stimuli, and multiplying the analysis of readouts, it is possible to analyze cell populations of any normal or pathological tissue. The association of aiFACS with single-cell transcriptomics allows the construction of functional tissue cartography based on specific pharmacological responses of cells. As a proof of concept, we used aiFACS on the dissociated mouse brain, a highly heterogeneous tissue, enriching it in interneurons by stimulation with KCl or with AMPA, an agonist of the glutamate receptors, followed by sorting based on calcium levels. After AMPA stimulus, single-cell transcriptomics of these aiFACS-selected interneurons resulted in a nine-cluster classification. Furthermore, we used aiFACS on interneurons derived from the brain of the Fmr1-KO mouse, a rodent model of fragile X syndrome. We showed that these interneurons manifest a generalized defective response to AMPA compared with wild-type cells, affecting all the analyzed cell clusters at one specific postnatal developmental time.
Collapse
Affiliation(s)
- Sara Castagnola
- Université Côte d'Azur, CNRS, Institute of Molecular Cellular Pharmacology, F-06560 Valbonne, France
| | - Julie Cazareth
- Université Côte d'Azur, CNRS, Institute of Molecular Cellular Pharmacology, F-06560 Valbonne, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, Institute of Molecular Cellular Pharmacology, F-06560 Valbonne, France
| | - Marielle Jarjat
- Université Côte d'Azur, CNRS, Institute of Molecular Cellular Pharmacology, F-06560 Valbonne, France
| | - Virginie Magnone
- Université Côte d'Azur, CNRS, Institute of Molecular Cellular Pharmacology, F-06560 Valbonne, France
| | - Sébastien Delhaye
- Université Côte d'Azur, CNRS, Institute of Molecular Cellular Pharmacology, F-06560 Valbonne, France
| | - Frederic Brau
- Université Côte d'Azur, CNRS, Institute of Molecular Cellular Pharmacology, F-06560 Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular Cellular Pharmacology, F-06560 Valbonne, France
| | - Thomas Maurin
- Université Côte d'Azur, CNRS, Institute of Molecular Cellular Pharmacology, F-06560 Valbonne, France
| |
Collapse
|
40
|
Leite JA, Isaksen TJ, Heuck A, Scavone C, Lykke-Hartmann K. The α 2 Na +/K +-ATPase isoform mediates LPS-induced neuroinflammation. Sci Rep 2020; 10:14180. [PMID: 32843655 PMCID: PMC7447643 DOI: 10.1038/s41598-020-71027-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Na+/K+-ATPase is a transmembrane ion pump that is essential for the maintenance of ion gradients and regulation of multiple cellular functions. Na+/K+-ATPase has been associated with nuclear factor kappa B (NFκB) signalling, a signal associated with lipopolysaccharides (LPSs)-induced immune response in connection with activated Toll-like receptor 4 (TLR4) signalling. However, the contribution of Na+/K+-ATPase to regulating inflammatory responses remains elusive. We report that mice haploinsufficient for the astrocyte-enriched α2Na+/K+-ATPase isoform (α2+/G301R mice) have a reduced proinflammatory response to LPS, accompanied by a reduced hypothermic reaction compared to wild type litter mates. Following intraperitoneal injection of LPS, gene expressions of Tnf-α, Il-1β, and Il-6 was reduced in the hypothalamus and hippocampus from α2+/G301R mice compared to α2+/+ littermates. The α2+/G301R mice experienced increased expression of the gene encoding an antioxidant enzyme, NRF2, in hippocampal astrocytes. Our findings indicate that α2Na+/K+-ATPase haploinsufficiency negatively modulates LPS-induced immune responses, highlighting a rational pharmacological target for reducing LPS-induced inflammation.
Collapse
Affiliation(s)
- J A Leite
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Pharmacology, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - T J Isaksen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - A Heuck
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - C Scavone
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - K Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Clinical Medicine, Aarhus University, 8000, Aarhus C, Denmark. .,Department of Clinical Genetics, Aarhus University Hospital, 8200, Aarhus N, Denmark.
| |
Collapse
|
41
|
Dynamic UTR Usage Regulates Alternative Translation to Modulate Gap Junction Formation during Stress and Aging. Cell Rep 2020; 27:2737-2747.e5. [PMID: 31141695 PMCID: PMC6857847 DOI: 10.1016/j.celrep.2019.04.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 11/22/2022] Open
Abstract
Connexin43 (Cx43; gene name GJA1) is the most ubiquitously expressed gap junction protein, and understanding of its regulation largely falls under transcription and post-translational modification. In addition to Cx43, Gja1 mRNA encodes internally translated isoforms regulating gap junction formation, whose expression is modulated by TGF-β. Here, using RLM-RACE, we identify distinct Gja1 transcripts differing only in 5′ UTR length, of which two are upregulated during TGF-β exposure and hypoxia. Introduction of these transcripts into Gja1−/− cells phenocopies the response of Gja1 to TGF-β with reduced internal translation initiation. Inhibiting pathways downstream of TGF-β selectively regulates levels of Gja1 transcript isoforms and translation products. Reporter assays reveal enhanced translation of full-length Cx43 from shorter Gja1 5′ UTR isoforms. We also observe a correlation among UTR selection, translation, and reduced gap junction formation in aged heart tissue. These data elucidate a relationship between transcript isoform expression and translation initiation regulating intercellular communication. Connexin43 gap junctions enable direct intercellular communication facilitating action potential propagation. Internal translation of connexin43 mRNA generates the truncated isoform GJA1–20k, which promotes gap junction formation. During aging, Zeitz et al. find that activation of stress-response pathways shortens connexin43 mRNA UTRs to limit GJA1–20k translation coincident with gap junction loss.
Collapse
|
42
|
Boni JL, Kahanovitch U, Nwaobi SE, Floyd CL, Olsen ML. DNA methylation: A mechanism for sustained alteration of KIR4.1 expression following central nervous system insult. Glia 2020; 68:1495-1512. [PMID: 32068308 PMCID: PMC8665281 DOI: 10.1002/glia.23797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
Kir4.1, a glial-specific inwardly rectifying potassium channel, is implicated in astrocytic maintenance of K+ homeostasis. Underscoring the role of Kir4.1 in central nervous system (CNS) functioning, genetic mutations in KCNJ10, the gene which encodes Kir4.1, causes seizures, ataxia and developmental disability in humans. Kir4.1 protein and mRNA loss are consistently observed in CNS injury and neurological diseases linked to hyperexcitability and neuronal dysfunction, leading to the notion that Kir4.1 represents an attractive therapeutic target. Despite this, little is understood regarding the mechanisms that underpin this downregulation. Previous work by our lab revealed that DNA hypomethylation of the Kcnj10 gene functions to regulate mRNA levels during astrocyte maturation whereas hypermethylation in vitro led to decreased promoter activity. In the present study, we utilized two vastly different injury models with known acute and chronic loss of Kir4.1 protein and mRNA to evaluate the methylation status of Kcnj10 as a candidate molecular mechanism for reduced transcription and subsequent protein loss. Examining whole hippocampal tissue and isolated astrocytes, in a lithium-pilocarpine model of epilepsy, we consistently identified hypermethylation of CpG island two, which resides in the large intronic region spanning the Kcnj10 gene. Strikingly similar results were observed using the second injury paradigm, a fifth cervical (C5) vertebral hemi-contusion model of spinal cord injury. Our previous work indicates the same gene region is significantly hypomethylated when transcription increases during astrocyte maturation. Our results suggest that DNA methylation can bidirectionally modulate Kcnj10 transcription and may represent a targetable molecular mechanism for the restoring astroglial Kir4.1 expression following CNS insult.
Collapse
Affiliation(s)
- Jessica L Boni
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Sinifunanya E Nwaobi
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital, University of California Los Angeles, Los Angeles, California
| | - Candace L Floyd
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Physical Medicine and Rehabilitation, University of Utah Health, Salt Lake City, Utah
| | - Michelle L Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| |
Collapse
|
43
|
Hypothalamic glial cells isolated by MACS reveal that microglia and astrocytes induce hypothalamic inflammation via different processes under high-fat diet conditions. Neurochem Int 2020; 136:104733. [PMID: 32222288 DOI: 10.1016/j.neuint.2020.104733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/08/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
|
44
|
Jackson L, Dumanli S, Johnson MH, Fagan SC, Ergul A. Microglia knockdown reduces inflammation and preserves cognition in diabetic animals after experimental stroke. J Neuroinflammation 2020; 17:137. [PMID: 32345303 PMCID: PMC7189436 DOI: 10.1186/s12974-020-01815-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Unfortunately, over 40% of stroke victims have pre-existing diabetes which not only increases their risk of stroke up to 2-6 fold, but also worsens both functional recovery and the severity of cognitive impairment. Our lab has recently linked the chronic inflammation in diabetes to poor functional outcomes and exacerbated cognitive impairment, also known as post-stroke cognitive impairment (PSCI). Although we have shown that the development of PSCI in diabetes is associated with the upregulation and the activation of pro-inflammatory microglia, we have not established direct causation between the two. To this end, we evaluated the role of microglia in the development of PSCI. METHODS At 13 weeks of age, diabetic animals received bilateral intracerebroventricular (ICV) injections of short hairpin RNA (shRNA) lentiviral particles targeting the colony stimulating factor 1 receptor (CSF1R). After 14 days, animals were subjected to 60 min middle cerebral artery occlusion (MCAO) or sham surgery. Adhesive removal task (ART), novel object recognition (NOR), and 2-trial Y-maze were utilized to evaluate sensorimotor and cognitive function. Tissue from freshly harvested brains was analyzed by flow cytometry and immunohistochemistry. RESULTS CSF1R silencing resulted in a 94% knockdown of residential microglia to relieve inflammation and improve myelination of white matter in the brain. This prevented cognitive decline in diabetic animals. CONCLUSION Microglial activation after stroke in diabetes may be causally related to the development of delayed neurodegeneration and PSCI.
Collapse
Affiliation(s)
- Ladonya Jackson
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Selin Dumanli
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Maribeth H Johnson
- Department Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA.
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC, Charleston, SC, USA.
- Department of Pathology and Laboratory Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
45
|
Holt LM, Stoyanof ST, Olsen ML. Magnetic Cell Sorting for In Vivo and In Vitro Astrocyte, Neuron, and Microglia Analysis. ACTA ACUST UNITED AC 2020; 88:e71. [PMID: 31216394 DOI: 10.1002/cpns.71] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interest in evaluating individual cellular populations in the central nervous system has prompted the development of several techniques enabling the enrichment of single-cell populations. Herein we detail a relatively inexpensive method to specifically isolate neurons, astrocytes, and microglia from a mixed homogenate utilizing magnetic beads conjugated to cell-type specific antibodies. We have used this technique to isolate astrocytes across development and into late adulthood. Finally, we detail the utilization of this technique in novel astrocyte and astrocyte/neuron co-culture paradigms. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Leanne M Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - S Tristan Stoyanof
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| |
Collapse
|
46
|
Comparison of RNA isolation procedures for analysis of adult murine brain and spinal cord astrocytes. J Neurosci Methods 2020; 333:108545. [PMID: 31821821 DOI: 10.1016/j.jneumeth.2019.108545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Molecular analyses of cell populations and single cells have been instrumental in the advancement of our understanding of the physiology and pathologic processes of the nervous system. However, the limitation of these methods is the dependence on a gentle, efficient and specific enrichment procedure for the target cell population. In particular, this has been challenging for tightly interconnected cells, for example central nervous system (CNS) endogenous cells such as astrocytes. NEW METHOD Here we adopted one of the most common methods of cell extraction, namely, enzymatic tissue digestion followed by fluorescence-activated cell sorting (FACS) of individual cells. We evaluated different enzymatic/mechanical tissue dissociation procedures and analyzed different astrocyte lineage transgenic models. Furthermore, we compared the cell extraction efficiency from spinal cord vs. brain. RESULTS Enzymatic digestion of CNS tissue of Glast-CreERT2x tdTomatofl/fl or Aldh1l1-CreERT2x tdTomatofl/fl followed by FACS resulted in highly purified astrocytes. Automated tissue digestion strongly improved the isolated cell numbers. Aldh1l1-CreERT2 identified more astrocytes than Glast-CreERT2; isolation from brain yields higher numbers than from spinal cord. COMPARISON WITH EXISTING METHODS We compared the efficiency and purity of the enzymatic dissociation/FACS approach with a more modern procedure consisting of tissue homogenization followed by translating ribosome affinity purification (TRAP). CONCLUSION We found that both methods result in highly enriched astrocytic RNA. However, only TRAP isolation resulted in reliably detectable RNA concentrations from spinal cord tissue on a single animal level. Depending on the aim of the study both methods have advantages and disadvantages but both are acceptable for astrocytic RNA analysis.
Collapse
|
47
|
Phenotypic Differences in Primary Murine Microglia Treated with NOD1, NOD2, and NOD1/2 Agonists. J Mol Neurosci 2020; 70:600-609. [PMID: 31907866 DOI: 10.1007/s12031-019-01466-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
The purpose of the study was studying the influence of different NOD agonists on the morphological phenotype of primary murine microglia and to examine their influence on characteristic cytokines. Primary CD11b-positive cells were isolated from the brain of neonatal mice. The microglial phenotype of the cells was examined by ionized calcium-binding adapter molecule (Iba)1 staining. After14 days in culture, these cells were stimulated by iE-DAP, L18-MDP, or M-TriDAP as NOD1, NOD2, and NOD1/2 agonists, respectively. The cellular morphology was recorded and compared to the phenotype of cells cultured in medium alone or after LPS stimulation. The cells developed a specific phenotype only after treatment with the NOD2 agonist L18-MDP. These cells were characterized by straight extensions carrying tiny spikes and had a high ramification index. This was in sharp contrast to all other treatments, which always resulted in an amoeboid phenotype typically shown by activated microglia in vivo and by cultured microglia in vitro. The staining intensity of IL-6 and TNF-α did not reveal any clear difference independent of the NOD agonist treatment. In contrast, an increased staining intensity was observed for IL-10 after L18-MDP treatment. The NOD2 agonist L18-MDP induced a morphologically distinct phenotype characterized by microspike-decorated dendritiform extensions and a high degree of ramification in primary murine microglia. Increased ramification index and elevated staining intensity of anti-inflammatory IL-10 as hallmarks suggest that a M2-like phenotype of microglia was induced.
Collapse
|
48
|
Jackson L, Dong G, Althomali W, Sayed MA, Eldahshan W, Baban B, Johnson MH, Filosa J, Fagan SC, Ergul A. Delayed Administration of Angiotensin II Type 2 Receptor (AT2R) Agonist Compound 21 Prevents the Development of Post-stroke Cognitive Impairment in Diabetes Through the Modulation of Microglia Polarization. Transl Stroke Res 2019; 11:762-775. [PMID: 31792796 DOI: 10.1007/s12975-019-00752-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
A disabling consequence of stroke is cognitive impairment, occurring in 12%-48% of patients, for which there is no therapy. A critical barrier is the lack of understanding of how post-stroke cognitive impairment (PSCI) develops. While 70% of stroke victims present with comorbid diseases such as diabetes and hypertension, the limited use of comorbid disease models in preclinical research further contributes to this lack of progress. To this end, we used a translational model of diabetes to study the development of PSCI. In addition, we evaluated the application of compound 21 (C21), an angiotensin II Type 2 receptor agonist, for the treatment of PSCI by blinding the treatment assignment, setting strict inclusion criteria, and implementing a delayed administration time point. Diabetes was induced by a high-fat diet (HFD) and low-dose streptozotocin (STZ) combination. Control and diabetic rats were subjected to 1 h middle cerebral artery occlusion (MCAO) or sham surgery. Adhesive removal task (ART) and two-trial Y-maze were utilized to test sensorimotor and cognitive function. Three days post-stroke, rats that met the inclusion criteria were administered C21 or vehicle in drinking water at a dose of 0.12 mg/kg/day for 8 weeks. Samples from freshly harvested brains were analyzed by flow cytometry and immunohistochemistry (IHC). Diabetes exacerbated the development of PSCI and increased inflammation and demyelination. Delayed administration of C21 3 days post-stroke reduced mortality and improved sensorimotor and cognitive deficits. It also reduced inflammation and demyelination through modulation of the M1:M2 ratio in the diabetic animals.
Collapse
Affiliation(s)
- Ladonya Jackson
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, USA.,Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Guangkuo Dong
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Waleed Althomali
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, USA
| | - Mohammed A Sayed
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, USA
| | - Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, USA.,Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Oral Biology, Dental College of Georgia, Augusta, GA, USA
| | - Maribeth H Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jessica Filosa
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, USA
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC, Charleston, SC, 908, USA. .,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
49
|
Shen Y, Ding Z, Ma S, Ding Z, Zhang Y, Zou Y, Xu F, Yang X, Schäfer MKE, Guo Q, Huang C. SETD7 mediates spinal microgliosis and neuropathic pain in a rat model of peripheral nerve injury. Brain Behav Immun 2019; 82:382-395. [PMID: 31505256 DOI: 10.1016/j.bbi.2019.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/26/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Gene transcription regulation is critical for the development of spinal microgliosis and neuropathic pain after peripheral nerve injury. Using a model of chronic constriction injury (CCI) of the sciatic nerve, this study characterized the role of SET domain containing lysine methyltransferase 7 (SETD7) which monomethylates histone H3 lysine 4 (H3K4me1), a marker for active gene transcription. SETD7 protein expression in the spinal dorsal horn ipsilateral to nerve lesion was increased from one day to 14 days after CCI, concomitantly with the expression of inflammatory genes, Ccl2, Il-6 and Il-1β. The CCI-induced SETD7 expression was predominantly localized to microglia, as demonstrated by immunohistochemistry and western blot from magnetic activated cell sorted spinal microglia. SETD7 knockdown by intrathecal lentivirus shRNA delivery prior to CCI prevented spinal microgliosis and neuropathic pain, whereas lentiviral SETD7 transduction exacerbated these symptoms. In addition, SETD7 regulated H3K4me1 level and expression of inflammatory mediators both in CCI rats and in the HAPI rat microglia cell line. Accordingly, PFI-2, a specific inhibitor of SETD7 monomethylation activity, suppressed the lipopolysaccharides-induced amoeboid morphology of primary microglia and the expression of inflammatory genes, Ccl2, Il-6 and Il-1β. Moreover, intrathecal administration of PFI-2 alleviated CCI-induced neuropathic pain. However, this effect was observed in male but not in female rats. These results demonstrate a critical role of SETD7 in the development of spinal microgliosis and neuropathic pain subsequently to peripheral nerve injury. The pharmacological approach further suggests that SETD7 is a new target for the treatment of neuropathic pain. The underlying mechanisms may involve H3K4me1-dependent regulation of inflammatory gene expression in microglia.
Collapse
Affiliation(s)
- Yu Shen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Shengyun Ma
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zijin Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Fangting Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany; Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz, Germany
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
50
|
Laffer B, Bauer D, Wasmuth S, Busch M, Jalilvand TV, Thanos S, Meyer Zu Hörste G, Loser K, Langmann T, Heiligenhaus A, Kasper M. Loss of IL-10 Promotes Differentiation of Microglia to a M1 Phenotype. Front Cell Neurosci 2019; 13:430. [PMID: 31649508 PMCID: PMC6794388 DOI: 10.3389/fncel.2019.00430] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Microglia represent the primary resident immune cells of the central nervous system (CNS) and modulate local immune responses. Depending on their physiological functions, microglia can be classified into pro- (M1) and anti-inflammatory (M2) phenotype. Interleukin (IL)-10 is an important modulator of neuronal homeostasis, with anti-inflammatory and neuroprotective functions, and can be released by microglia. Here, we investigated how IL-10 deficiency affected the M1/2 polarization of primary microglia upon lipopolysaccharide (LPS) stimulation in vitro. Microglia phenotypes were analyzed via flow cytometry. Cytokine and chemokine secretion were examined by ELISA and bead-based multiplex LEGENDplexTM. Our results showed that genetic depletion of IL-10 led to elevated M1 like phenotype (CD86+ CD206−) under pro-inflammatory conditions associated with increased frequency of IL-6+, TNF-α+ cells and enhanced release of several pro-inflammatory chemokines. Absence of IL-10 led to an attenuated M2 like phenotype (CD86− CD206+) and a reduced secretion of TGF-β1 upon LPS stimulation. In conclusion, IL-10 deficiency may promote the polarization of microglia into M1-prone phenotype under pro-inflammatory conditions.
Collapse
Affiliation(s)
- Björn Laffer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Dirk Bauer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Susanne Wasmuth
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Martin Busch
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Tida Viola Jalilvand
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,Department of Experimental Ophthalmology, Westphalian Wilhelms University of Münster, Münster, Germany
| | - Solon Thanos
- Department of Experimental Ophthalmology, Westphalian Wilhelms University of Münster, Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Karin Loser
- Department of Dermatology - Experimental Dermatology and Immunobiology of the Skin, University of Münster, Münster, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Arnd Heiligenhaus
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,University of Duisburg-Essen, Essen, Germany
| | - Maren Kasper
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| |
Collapse
|