1
|
Siegers JY, Wille M, Yann S, Tok S, Sin S, Chea S, Porco A, Sours S, Chim V, Chea S, Chhel K, Tum S, Sorn S, Hak M, Thielen P, Dhanasekaran V, Karlsson EA. Detection and phylogenetic analysis of contemporary H14N2 Avian influenza A virus in domestic ducks in Southeast Asia (Cambodia). Emerg Microbes Infect 2024; 13:2297552. [PMID: 38112157 PMCID: PMC11025406 DOI: 10.1080/22221751.2023.2297552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/17/2023] [Indexed: 12/20/2023]
Abstract
Avian influenza virus (AIV) in Asia is a complex system with numerous subtypes and a highly porous wild birds-poultry interface. Certain AIV subtypes, such as H14, are underrepresented in current surveillance efforts, leaving gaps in our understanding of their ecology and evolution. The detection of rare subtype H14 in domestic ducks in Southeast Asia comprises a geographic region and domestic bird population previously unassociated with this subtype. These H14 viruses have a complex evolutionary history involving gene reassortment events. They share sequence similarity to AIVs endemic in Cambodian ducks, and Eurasian low pathogenicity and high pathogenicity H5Nx AIVs. The detection of these H14 viruses in Southeast Asian domestic poultry further advances our knowledge of the ecology and evolution of this subtype and reinforces the need for continued, longitudinal, active surveillance in domestic and wild birds. Additionally, in vivo and in vitro risk assessment should encompass rare AIV subtypes, as they have the potential to establish in poultry systems.
Collapse
Affiliation(s)
- Jurre Y. Siegers
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Michelle Wille
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sokhoun Yann
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Songha Tok
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sarath Sin
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sokha Chea
- Wildlife Conservation Society, Phnom Penh, Cambodia
| | - Alice Porco
- Wildlife Conservation Society, Phnom Penh, Cambodia
| | - Sreyem Sours
- Wildlife Conservation Society, Phnom Penh, Cambodia
| | - Vutha Chim
- National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Samban Chea
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Kimtuo Chhel
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sothyra Tum
- National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - San Sorn
- National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Makara Hak
- Food and Agriculture Organization of the United Nations Country Office, Phnom Penh, Cambodia
| | - Peter Thielen
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Vijaykrishna Dhanasekaran
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People’s Republic of China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Erik A. Karlsson
- Virology Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
2
|
Yan Q, Xing J, Zou R, Sun M, Zou B, Wang Y, Niu T, Yu T, Huang H, Yang W, Shi C, Yang G, Wang C. LysoPE mediated by respiratory microorganism Aeromicrobium camelliae alleviates H9N2 challenge in mice. Vet Res 2024; 55:136. [PMID: 39390593 PMCID: PMC11468851 DOI: 10.1186/s13567-024-01391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.
Collapse
Affiliation(s)
- Qingsong Yan
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Junhong Xing
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Ruonan Zou
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Mingjie Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Boshi Zou
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yingjie Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tianming Niu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Yu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Azeem S, Baroch J, Tewari D, Pabilonia KL, Killian M, Bradel-Tretheway B, Sun D, Ghorbani-Nezami S, Yoon KJ. Molecular Characterization of Non-H5 and Non-H7 Avian Influenza Viruses from Non-Mallard Migratory Waterbirds of the North American Flyways, 2006-2011. Pathogens 2024; 13:333. [PMID: 38668288 PMCID: PMC11054893 DOI: 10.3390/pathogens13040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
The surveillance of migratory waterbirds (MWs) for avian influenza virus (AIV) is indispensable for the early detection of a potential AIV incursion into poultry. Surveying AIV infections and virus subtypes in understudied MW species could elucidate their role in AIV ecology. Oropharyngeal-cloacal (OPC) swabs were collected from non-mallard MWs between 2006 and 2011. OPC swabs (n = 1158) that molecularly tested positive for AIV (Cts ≤ 32) but tested negative for H5 and H7 subtypes were selected for virus isolation (VI). The selected samples evenly represented birds from all four North American flyways (Pacific, Central, Mississippi, and Atlantic). Eighty-seven low pathogenic AIV isolates, representing 31 sites in 17 states, were recovered from the samples. All isolates belonged to the North American lineage. The samples representing birds from the Central Flyway had the highest VI positive rate (57.5%) compared to those from the other flyways (10.3-17.2%), suggesting that future surveillance can focus on the Central Flyway. Of the isolates, 43.7%, 12.6%, and 10.3% were obtained from blue-winged teal, American wigeon, and American black duck species, respectively. Hatch-year MWs represented the majority of the isolates (70.1%). The most common H and N combinations were H3N8 (23.0%), H4N6 (18.4%), and H4N8 (18.4%). The HA gene between non-mallard and mallard MW isolates during the same time period shared 85.5-99.5% H3 identity and 89.3-99.7% H4 identity. Comparisons between MW (mallard and non-mallard) and poultry H3 and H4 isolates also revealed high similarity (79.0-99.0% and 88.7-98.4%), emphasizing the need for continued AIV surveillance in MWs.
Collapse
Affiliation(s)
- Shahan Azeem
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA; (S.A.); (D.S.)
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - John Baroch
- Wildlife Services, Animal & Plant Health Inspection Service (APHIS), United States Department of Agriculture (USDA), Fort Collins, CO 80526, USA
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA;
| | - Kristy L. Pabilonia
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Mary Killian
- National Veterinary Services Laboratories, Animal & Plant Health Inspection Service (APHIS), United States Department of Agriculture (USDA), Ames, IA 50010, USA;
| | - Birgit Bradel-Tretheway
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA;
| | - Dong Sun
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA; (S.A.); (D.S.)
| | - Sara Ghorbani-Nezami
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Naguib MM, Eriksson P, Jax E, Wille M, Lindskog C, Bröjer C, Krambrich J, Waldenström J, Kraus RHS, Larson G, Lundkvist Å, Olsen B, Järhult JD, Ellström P. A Comparison of Host Responses to Infection with Wild-Type Avian Influenza Viruses in Chickens and Tufted Ducks. Microbiol Spectr 2023; 11:e0258622. [PMID: 37358408 PMCID: PMC10434033 DOI: 10.1128/spectrum.02586-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Cross-species transmission of influenza A virus (IAV) from wild waterfowl to poultry is the first step in a chain of events that can ultimately lead to exposure and infection of humans. Herein, we study the outcome of infection with eight different mallard-origin IAV subtypes in two different avian hosts: tufted ducks and chickens. We found that infection and shedding patterns as well as innate immune responses were highly dependent on viral subtypes, host species, and inoculation routes. For example, intraoesophageal inoculation, commonly used in mallard infection experiments, resulted in no infections in contrast to oculonasal inoculation, suggesting a difference in transmission routes. Despite H9N2 being endemic in chickens, inoculation of mallard-origin H9N2 failed to cause viable infection beyond 1 day postinfection in our study design. The innate immune responses were markedly different in chickens and tufted ducks, and despite the presence of retinoic acid-inducible gene-I (RIG-I) in tufted duck transcriptomes, it was neither up nor downregulated in response to infection. Overall, we have revealed the heterogeneity of infection patterns and responses in two markedly different avian hosts following a challenge with mallard-origin IAV. These virus-host interactions provide new insights into important aspects of interspecies transmission of IAV. IMPORTANCE Our current findings highlight important aspects of IAV infection in birds that have implications for our understanding of its zoonotic ecology. In contrast to mallards where the intestinal tract is the main site of IAV replication, chickens and tufted ducks show limited or no signs of intestinal infection suggesting that the fecal-oral transmission route might not apply to all bird IAV host species. Our results indicate that mallard-origin IAVs undergo genetic changes upon introduction into new hosts, suggesting rapid adaptation to a new environment. However, similar to the mallard, chickens and tufted ducks show a limited immune response to infection with low pathogenic avian influenza viruses. These findings and future studies in different IAV hosts are important for our understanding of barriers to IAV transmission between species and ultimately from the wild reservoir to humans.
Collapse
Affiliation(s)
- Mahmoud M. Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Janina Krambrich
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robert H. S. Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Göran Larson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Saint-Martin V, Quéré P, Trapp S, Guabiraba R. Uncovering the core principles of the gut-lung axis to enhance innate immunity in the chicken. Front Immunol 2022; 13:956670. [PMID: 36268022 PMCID: PMC9577073 DOI: 10.3389/fimmu.2022.956670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Research in mammals has evidenced that proper colonization of the gut by a complex commensal microbial community, the gut microbiota (GM), is critical for animal health and wellbeing. It greatly contributes to the control of infectious processes through competition in the microbial environment while supporting proper immune system development and modulating defence mechanisms at distant organ sites such as the lung: a concept named ‘gut-lung axis’. While recent studies point to a role of the GM in boosting immunity and pathogen resilience also in poultry, the mechanisms underlying this role are largely unknown. In spite of this knowledge gap, GM modulation approaches are today considered as one of the most promising strategies to improve animal health and welfare in commercial poultry production, while coping with the societal demand for responsible, sustainable and profitable farming systems. The majority of pathogens causing economically important infectious diseases in poultry are targeting the respiratory and/or gastrointestinal tract. Therefore, a better understanding of the role of the GM in the development and function of the mucosal immune system is crucial for implementing measures to promote animal robustness in commercial poultry production. The importance of early gut colonization in the chicken has been overlooked or neglected in industrial poultry production systems, where chicks are hampered from acquiring a complex GM from the hen. Here we discuss the concept of strengthening mucosal immunity in the chicken through GM modulation approaches favouring immune system development and functioning along the gut-lung axis, which could be put into practice through improved farming systems, early-life GM transfer, feeding strategies and pre-/probiotics. We also provide original data from experiments with germ-free and conventional chickens demonstrating that the gut-lung axis appears to be functional in chickens. These key principles of mucosal immunity are likely to be relevant for a variety of avian diseases and are thus of far-reaching importance for the poultry sector worldwide.
Collapse
|
6
|
Wille M, Tolf C, Latorre-Margalef N, Fouchier RAM, Halpin RA, Wentworth DE, Ragwani J, Pybus OG, Olsen B, Waldenström J. Evolutionary features of a prolific subtype of avian influenza A virus in European waterfowl. Virus Evol 2022; 8:veac074. [PMID: 36128050 PMCID: PMC9477075 DOI: 10.1093/ve/veac074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/12/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Avian influenza A virus (AIV) is ubiquitous in waterfowl and is detected annually at high prevalence in waterfowl during the Northern Hemisphere autumn. Some AIV subtypes are globally common in waterfowl, such as H3N8, H4N6, and H6N2, and are detected in the same populations at a high frequency, annually. In order to investigate genetic features associated to the long-term maintenance of common subtypes in migratory ducks, we sequenced 248 H4 viruses isolated across 8 years (2002-9) from mallards (Anas platyrhynchos) sampled in southeast Sweden. Phylogenetic analyses showed that both H4 and N6 sequences fell into three distinct lineages, structured by year of isolation. Specifically, across the 8 years of the study, we observed lineage replacement, whereby a different HA lineage circulated in the population each year. Analysis of deduced amino acid sequences of the HA lineages illustrated key differences in regions of the globular head of hemagglutinin that overlap with established antigenic sites in homologous hemagglutinin H3, suggesting the possibility of antigenic differences among these HA lineages. Beyond HA, lineage replacement was common to all segments, such that novel genome constellations were detected across years. A dominant genome constellation would rapidly amplify in the duck population, followed by unlinking of gene segments as a result of reassortment within 2-3 weeks following introduction. These data help reveal the evolutionary dynamics exhibited by AIV on both annual and decadal scales in an important reservoir host.
Collapse
Affiliation(s)
- Michelle Wille
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Conny Tolf
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Neus Latorre-Margalef
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| | - Ron A M Fouchier
- Department of Virology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | - Jayna Ragwani
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London AL9 7TA, UK
| | - Björn Olsen
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala SE751 85, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, Kalmar SE-39231, Sweden
| |
Collapse
|
7
|
Dehgany-Asl S, Allymehr M, Talebi A, Yosefi O, Allahyari E. Monitoring of aquatic birds and surveillance of avian influenza and Newcastle disease of waterfowls at the National Park of Urmia Lake. Vet Med Sci 2022; 8:2016-2031. [PMID: 35763835 PMCID: PMC9514460 DOI: 10.1002/vms3.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Urmia lake, as a national park, is one of the most valuable aquatic ecosystems in the Middle East and quatitative and qualitative changes in Urmia lake water have a great impact on its ecological performance and in the region. OBJECTIVES This project was designed to study the effects of the extent of Urmia lake water surface area on the area size and on the number of aquatic birds of the six selected habitats in 2011-2019. The presence of avian influenza (AI) and Newcastle disease (ND) viruses in migratory aquatic birds together with their impacts on poultry farms as well as on rural birds was also under surveillance in 2018-2019. METHODS Changes of Urmia lake and its impacts on area size of the six selected birds habitats were monitored by GIS. The small monitoring program with circular plot point counts was used for counting of the number of birds of the six selected habitats. At least, 100 samples (oropharyngeal and cloacal swabs) were collected. each sample was placed in a sterile plastic tube containg transport media and assigned with an number and store untill used. Reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR test were used for detection of AI and ND viruses in the samples. RESULTS The results revealed that changes in the water surface area of Urmia lake had a gsignificat impacts on area size and the number of aquatic birds of the six selected habitats. The surveillance results showed that 5% of the samples were AIV positvie while 25% of the samples were pasitive for NDV including 20% for non-virulent NDV (lNDV) and 5% for virulent NDV (vNDV) strains. CONCLUSION This study showed that fluctuation of Urmia lake's water surface area influenced (p < 0.05) the area size of the six selected aquatic birds' habitats and had a great impacts on the number of the migratory birds. Detection of AIV and vNDV emphesises that the seasonal migratory waterfowls spread AI and vND viruses to the ponds and estuaries as well as to the rural birds and industrialised poultry units around the Urmia lake. Potential public health treats were also discussed.
Collapse
Affiliation(s)
- Saied Dehgany-Asl
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, West Azerbaijan Province, Urmia, Iran
| | - Manoochehr Allymehr
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, West Azerbaijan Province, Urmia, Iran
| | - Alireza Talebi
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, West Azerbaijan Province, Urmia, Iran
| | - Omid Yosefi
- Division of Wildlife, General Department of Environment, West Azerbaijan Province, Urmia, Iran
| | - Esmaeel Allahyari
- Department of Health and Management of Poultry Diseases, Iran Veterinary Organization, West Azerbaijan Province, Urmia, Iran
| |
Collapse
|
8
|
Verhagen JH, Eriksson P, Leijten L, Blixt O, Olsen B, Waldenström J, Ellström P, Kuiken T. Host Range of Influenza A Virus H1 to H16 in Eurasian Ducks Based on Tissue and Receptor Binding Studies. J Virol 2021; 95:e01873-20. [PMID: 33361418 PMCID: PMC8094940 DOI: 10.1128/jvi.01873-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Dabbling and diving ducks partly occupy shared habitats but have been reported to play different roles in wildlife infectious disease dynamics. Influenza A virus (IAV) epidemiology in wild birds has been based primarily on surveillance programs focused on dabbling duck species, particularly mallard (Anas platyrhynchos). Surveillance in Eurasia has shown that in mallards, some subtypes are commonly (H1 to H7 and H10), intermediately (H8, H9, H11, and H12), or rarely (H13 to H16) detected, contributing to discussions on virus host range and reservoir competence. An alternative to surveillance in determining IAV host range is to study virus attachment as a determinant for infection. Here, we investigated the attachment patterns of all avian IAV subtypes (H1 to H16) to the respiratory and intestinal tracts of four dabbling duck species (Mareca and Anas spp.), two diving duck species (Aythya spp.), and chicken, as well as to a panel of 65 synthetic glycan structures. We found that IAV subtypes generally showed abundant attachment to colon of the Anas duck species, mallard, and Eurasian teal (Anas crecca), supporting the fecal-oral transmission route in these species. The reported glycan attachment profile did not explain the virus attachment patterns to tissues but showed significant attachment of duck-originated viruses to fucosylated glycan structures and H7 virus tropism for Neu5Gc-LN. Our results suggest that Anas ducks play an important role in the ecology and epidemiology of IAV. Further knowledge on virus tissue attachment, receptor distribution, and receptor binding specificity is necessary to understand the mechanisms underlying host range and epidemiology of IAV.IMPORTANCE Influenza A viruses (IAVs) circulate in wild birds worldwide. From wild birds, the viruses can cause outbreaks in poultry and sporadically and indirectly infect humans. A high IAV diversity has been found in mallards (Anas platyrhynchos), which are most often sampled as part of surveillance programs; meanwhile, little is known about the role of other duck species in IAV ecology and epidemiology. In this study, we investigated the attachment of all avian IAV hemagglutinin (HA) subtypes (H1 to H16) to tissues of six different duck species and chicken as an indicator of virus host range. We demonstrated that the observed virus attachment patterns partially explained reported field prevalence. This study demonstrates that dabbling ducks of the Anas genus are potential hosts for most IAV subtypes, including those infecting poultry. This knowledge is useful to target the sampling of wild birds in nature and to further study the interaction between IAVs and birds.
Collapse
Affiliation(s)
- Josanne H Verhagen
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, Uppsala, Sweden
| | - Lonneke Leijten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ola Blixt
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Verhagen JH, Fouchier RAM, Lewis N. Highly Pathogenic Avian Influenza Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021; 13:212. [PMID: 33573231 PMCID: PMC7912471 DOI: 10.3390/v13020212] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) outbreaks in wild birds and poultry are no longer a rare phenomenon in Europe. In the past 15 years, HPAI outbreaks-in particular those caused by H5 viruses derived from the A/Goose/Guangdong/1/1996 lineage that emerged in southeast Asia in 1996-have been occuring with increasing frequency in Europe. Between 2005 and 2020, at least ten HPAI H5 incursions were identified in Europe resulting in mass mortalities among poultry and wild birds. Until 2009, the HPAI H5 virus outbreaks in Europe were caused by HPAI H5N1 clade 2.2 viruses, while from 2014 onwards HPAI H5 clade 2.3.4.4 viruses dominated outbreaks, with abundant genetic reassortments yielding subtypes H5N1, H5N2, H5N3, H5N4, H5N5, H5N6 and H5N8. The majority of HPAI H5 virus detections in wild and domestic birds within Europe coincide with southwest/westward fall migration and large local waterbird aggregations during wintering. In this review we provide an overview of HPAI H5 virus epidemiology, ecology and evolution at the interface between poultry and wild birds based on 15 years of avian influenza virus surveillance in Europe, and assess future directions for HPAI virus research and surveillance, including the integration of whole genome sequencing, host identification and avian ecology into risk-based surveillance and analyses.
Collapse
Affiliation(s)
- Josanne H. Verhagen
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Nicola Lewis
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield AL9 7TA, Hertfordshire, UK
| |
Collapse
|
10
|
Harvey WT, Mulatti P, Fusaro A, Scolamacchia F, Zecchin B, Monne I, Marangon S. Spatiotemporal reconstruction and transmission dynamics during the 2016-17 H5N8 highly pathogenic avian influenza epidemic in Italy. Transbound Emerg Dis 2021; 68:37-50. [PMID: 31788978 PMCID: PMC8048528 DOI: 10.1111/tbed.13420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/03/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
Abstract
Effective control of avian diseases in domestic populations requires understanding of the transmission dynamics facilitating viral emergence and spread. In 2016-17, Italy experienced a significant avian influenza epidemic caused by a highly pathogenic A(H5N8) virus, which affected domestic premises housing around 2.7 million birds, primarily in the north-eastern regions with the highest density of poultry farms (Lombardy, Emilia-Romagna and Veneto). We perform integrated analyses of genetic, spatiotemporal and host data within a Bayesian phylogenetic framework. Using continuous and discrete phylogeography, we estimate the locations of movements responsible for the spread and persistence of the epidemic. The information derived from these analyses on rates of transmission between regions through time can be used to assess the success of control measures. Using an approach based on phylogenetic-temporal distances between domestic cases, we infer the presence of cryptic wild bird-mediated transmission, information that can be used to complement existing epidemiological methods for distinguishing transmission within the domestic population from incursions across the wildlife-domestic interface, a common challenge in veterinary epidemiology. Spatiotemporal reconstruction of the epidemic reveals a highly skewed distribution of virus movements with a high proportion of shorter distance local movements interspersed with occasional long-distance dispersal events associated with wild birds. We also show how such inference be used to identify possible instances of human-mediated movements where distances between phylogenetically linked domestic cases are unusually high.
Collapse
Affiliation(s)
- William T. Harvey
- Boyd Orr Centre for Population and Ecosystem HealthInstitute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | | | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| | - Stefano Marangon
- Istituto Zooprofilattico Sperimentale delle VenezieLegnaro (Padua)Italy
| |
Collapse
|
11
|
Mateus-Anzola J, Gaytan-Cruz L, Montoya-Carrillo C, Ivan Sánchez-Betancourt J, Zarza H, Segura-Velázquez R, Ojeda-Flores R. Molecular identification and phylogenetic characterization of influenza A virus at a wildlife-livestock interface in Mexico. Transbound Emerg Dis 2020; 68:3563-3573. [PMID: 33350099 DOI: 10.1111/tbed.13962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022]
Abstract
Influenza A virus (IAV) outbreaks constitute a constant threat to public health and pose a remarkable impact on socio-economic systems worldwide. Interactions between wild and domestic birds, humans and swine can lead to spillover events. Backyard livestock systems in proximity to wetlands represent high-risk areas for viral spread. However, some gaps remain in our knowledge of IAV transmission at the wildlife-livestock interface in Mexico. Hence, the study aimed at molecular identification and phylogenetic characterization of IAV in the wild duck-backyard livestock interface at a wetland of Mexico. A total of 875 animals were tested by real-time RT-PCR (qRT-PCR). We detected IAV in 3.68% of the wild ducks sampled during the winter season 2016-2017. Nonetheless, the samples obtained from backyard poultry and swine tested negative. The highest IAV frequency (11.10%) was found in the Mexican duck (Anas diazi). Subtypes H1N1, H3N2 and H5N2 were detected. Phylogenetic analyses revealed that IAV detected in wild birds from the Lerma wetlands was mostly related to swine and poultry IAV strains previously isolated in the United States and Mexico. Except, the UIFMVZ377/H5N2 related to North American waterbirds. In conclusion, the co-circulation of three IAV subtypes in wild ducks close to backyard farms in Mexico, as well as the local identification of influenza viruses genetically related to Mexican and North American IAV strains, highlights the importance of the Lerma marshes for influenza surveillance given the close interaction among wild birds, poultry, pigs and humans.
Collapse
Affiliation(s)
- Jessica Mateus-Anzola
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Liliana Gaytan-Cruz
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Cecilia Montoya-Carrillo
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Ivan Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Heliot Zarza
- Departamento de Ciencias Ambientales, CBS, Universidad Autónoma Metropolitana Unidad Lerma, México, México
| | - René Segura-Velázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Unidad de Investigación, Ciudad de México, México
| | - Rafael Ojeda-Flores
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
12
|
Moriguchi S, Hosoda R, Ushine N, Kato T, Hayama SI. Surveillance system for avian influenza in wild birds and implications of its improvement with insights into the highly pathogenic avian influenza outbreaks in Japan. Prev Vet Med 2020; 187:105234. [PMID: 33360671 DOI: 10.1016/j.prevetmed.2020.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/03/2020] [Accepted: 12/09/2020] [Indexed: 12/09/2022]
Abstract
Since the re-emergence of a highly pathogenic avian influenza (HPAI) in 2004, outbreaks of the viral subtypes HPAI, H5N1, H5N8, and H5N6 in wild birds, poultry, and zoo birds have occurred in Japan. In 2008, a nation-wide avian influenza (AI) surveillance program was started for the early detection of the HPAI virus (HPAIV) and for the assessment of HPAIV infection among wild birds. In this study, we aimed to conduct an overview of the AI surveillance system of wild birds in Japan, including those in the regions and prefectures, to assess its overall performance and develop insights on its improvement. We analyzed past surveillance data in Japan and conducted questionnaire surveys for the officers in 11 regional branches of the Ministry of Environment and the nature conservation divisions of 47 prefectures to acquire details regarding those AI surveillance. We found that the early detection of HPAIV in wild birds was successfully achieved in only one of the five outbreak seasons during the 2008-2019 period in Japan, and the assessment of HPAIV infection had possibly not been adequate in the national surveillance system. In the winter season, AI surveillance in most prefectures were mainly conducted by means of passive surveillance through reported dead birds and active surveillance through collected waterbird feces. Conversely, less than half of the prefectures conducted bird monitoring, patrolling in migratory bird habitats, and AI antigen testing in rescued birds. In areas surrounding HPAI occurrence sites (<10 km), bird monitoring and patrolling efforts were enhanced. However, AI testing efforts in waterbird feces and rescued birds were decreased. The AI surveillance for endangered bird species and in national wildlife protection areas was conducted by the branches of the Ministry of Environment and by the prefectures. Based on our results, we concluded that for maximum efficiency, legislation which specialized in wildlife pathogens should be necessary to prepare adequate national budget and testing capacity for appropriate surveillance system with periodical assessment for surveillance results and the system.
Collapse
Affiliation(s)
- Sachiko Moriguchi
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan.
| | - Rin Hosoda
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Nana Ushine
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Takuya Kato
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Shin-Ichi Hayama
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
13
|
Blaurock C, Scheibner D, Landmann M, Vallbracht M, Ulrich R, Böttcher-Friebertshäuser E, Mettenleiter TC, Abdelwhab EM. Non-basic amino acids in the hemagglutinin proteolytic cleavage site of a European H9N2 avian influenza virus modulate virulence in turkeys. Sci Rep 2020; 10:21226. [PMID: 33277593 PMCID: PMC7718272 DOI: 10.1038/s41598-020-78210-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/20/2020] [Indexed: 01/26/2023] Open
Abstract
H9N2 avian influenza virus (AIV) is the most widespread low pathogenic (LP) AIV in poultry and poses a serious zoonotic risk. Vaccination is used extensively to mitigate the economic impact of the virus. However, mutations were acquired after long-term circulation of H9N2 virus in poultry, particularly in the hemagglutinin (HA) proteolytic cleavage site (CS), a main virulence determinant of AIV. Compared to chickens, little is known about the genetic determinants for adaptation of H9N2 AIV to turkeys. Here, we describe 36 different CS motifs in Eurasian H9N2 viruses identified from 1966 to 2019. The European H9N2 viruses specify unique HACS with particular polymorphism by insertion of non-basic amino acids at position 319. Recombinant viruses carrying single HACS mutations resembling field viruses were constructed (designated G319, A319, N319, S319, D319 and K319). Several viruses replicated to significantly higher titers in turkey cells than in chicken cells. Serine proteases were more efficient than trypsin to support multicycle replication in mammalian cells. Mutations affected cell-to-cell spread and pH-dependent HA fusion activity. In contrast to chickens, mutations in the HACS modulated clinical signs in inoculated and co-housed turkeys. G319 exhibited the lowest virulence, however, it replicated to significantly higher titers in contact-turkeys and in vitro. Interestingly, H9N2 viruses, particularly G319, replicated in brain cells of turkeys and to a lesser extent in mammalian brain cells independent of trypsin. Therefore, the silent circulation of potentially zoonotic H9N2 viruses in poultry should be monitored carefully. These results are important for understanding the adaptation of H9N2 in poultry and replication in mammalian cells.
Collapse
Affiliation(s)
- Claudia Blaurock
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - David Scheibner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Maria Landmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103, Leipzig, Germany
| | - Melina Vallbracht
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103, Leipzig, Germany
| | | | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
14
|
Kim SM, Kim J, Noh S, Sohn H, Lee T. Recent Development of Aptasensor for Influenza Virus Detection. BIOCHIP JOURNAL 2020; 14:327-339. [PMID: 33224441 PMCID: PMC7670017 DOI: 10.1007/s13206-020-4401-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
In nowadays, we have entered the new era of pandemics and the significance of virus detection deeply impacts human society. Viruses with genetic mutations are reported nearly every year, and people have prepared tools to detect the virus and vaccines to ensure proper treatments. Influenza virus (IV) is one of the most harmful viruses reporting various mutations, sub-types, and rapid infection speed for humans and animals including swine and poultry. Moreover, IV infection presents several harmful symptoms including cough, fever, diarrhea, chills, even causing death. To reduce the IV-induced harm, its proper and rapid detection is highly required. Conventional techniques were used against various IV sub-types including H1N1, H3N2, and H5N1. However, some of the techniques are time-consuming, expensive, or labor-intensive for detecting IV. Recently, the nucleic acid-based aptamer has gained attention as a novel bioprobe for constructing a biosensor. In this review, the authors discuss the recent progress in aptasensors for detecting IV in terms of an electrochemical and an optical biosensor.
Collapse
Affiliation(s)
- Soo Min Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| |
Collapse
|
15
|
Gonzales JL, Pritz-Verschuren S, Bouwstra R, Wiegel J, Elbers ARW, Beerens N. Seasonal risk of low pathogenic avian influenza virus introductions into free-range layer farms in the Netherlands. Transbound Emerg Dis 2020; 68:127-136. [PMID: 32506770 PMCID: PMC8048991 DOI: 10.1111/tbed.13649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 01/30/2023]
Abstract
Poultry can become infected with avian influenza viruses (AIV) via (in) direct contact with infected wild birds. Free‐range chicken farms in the Netherlands were shown to have a higher risk for introduction of low pathogenic avian influenza (LPAI) virus than indoor chicken farms. Therefore, during outbreaks of highly pathogenic avian influenza (HPAI), free‐range layers are confined indoors as a risk mitigation measure. In this study, we characterized the seasonal patterns of AIV introductions into free‐range layer farms, to determine the high‐risk period. Data from the LPAI serological surveillance programme for the period 2013–2016 were used to first estimate the time of virus introduction into affected farms and then assess seasonal patterns in the risk of introduction. Time of introduction was estimated by fitting a mathematical model to seroprevalence data collected longitudinally from infected farms. For the period 2015–2016, longitudinal follow‐up included monthly collections of eggs for serological testing from a cohort of 261 farms. Information on the time of introduction was then used to estimate the monthly incidence and seasonality by fitting harmonic and Poisson regression models. A significant yearly seasonal risk of introduction that lasted around 4 months (November to February) was identified with the highest risk observed in January. The risk for introduction of LPAI viruses in this period was on average four times significantly higher than the period of low risk around the summer months. Although the data for HPAI infections were limited in the period 2014–2018, a similar risk period for introduction of HPAI viruses was observed. The results of this study can be used to optimize risk‐based surveillance and inform decisions on timing and duration of indoor confinement when HPAI viruses are known to circulate in the wild bird population.
Collapse
Affiliation(s)
- Jose L Gonzales
- Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | | | | | | | - Armin R W Elbers
- Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Nancy Beerens
- Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| |
Collapse
|
16
|
Hassan MM, El Zowalaty ME, Islam A, Khan SA, Rahman MK, Järhult JD, Hoque MA. Prevalence and Diversity of Avian Influenza Virus Hemagglutinin Sero-Subtypes in Poultry and Wild Birds in Bangladesh. Vet Sci 2020; 7:vetsci7020073. [PMID: 32492967 PMCID: PMC7355479 DOI: 10.3390/vetsci7020073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 02/05/2023] Open
Abstract
Highly pathogenic avian influenza H5 viruses have pandemic potential, cause significant economic losses and are of veterinary and public health concerns. This study aimed to investigate the distribution and diversity of hemagglutinin (HA) subtypes of avian influenza virus (AIV) in poultry and wild birds in Bangladesh. We conducted an avian influenza sero-surveillance in wild and domestic birds in wetlands of Chattogram and Sylhet in the winter seasons 2012-2014. We tested serum samples using a competitive enzyme-linked immunosorbent assay (c-ELISA), and randomly selected positive serum samples (170 of 942) were tested using hemagglutination inhibition (HI) to detect antibodies against the 16 different HA sero-subtypes. All AIV sero-subtypes except H7, H11, H14 and H15 were identified in the present study, with H5 and H9 dominating over other subtypes, regardless of the bird species. The diversity of HA sero-subtypes within groups ranged from 3 (in household chickens) to 10 (in migratory birds). The prevalence of the H5 sero-subtype was 76.3% (29/38) in nomadic ducks, 71.4% (5/7) in household chicken, 66.7% (24/36) in resident wild birds, 65.9% (27/41) in migratory birds and 61.7% (29/47) in household ducks. Moreover, the H9 sero-subtype was common in migratory birds (56%; 23/41), followed by 38.3% (18/47) in household ducks, 36.8% (14/38) in nomadic ducks, 30.6% (11/66) in resident wild birds and 28.5% (2/7) in household chickens. H1, H4 and H6 sero-subtypes were the most common sero-subtypes (80%; 8/10, 70%; 7/10 and 70%; 7/10, respectively) in migratory birds in 2012, H9 in resident wild birds (83.3%; 5/6) and H2 in nomadic ducks (73.9%; 17/23) in 2013, and the H5 sero-subtype in all types of birds (50% to 100%) in 2014. The present study demonstrates that a high diversity of HA subtypes circulated in diverse bird species in Bangladesh, and this broad range of AIV hosts may increase the probability of AIVs' reassortment and may enhance the emergence of novel AIV strains. A continued surveillance for AIV at targeted domestic-wild bird interfaces is recommended to understand the ecology and evolution of AIVs.
Collapse
Affiliation(s)
- Mohammad M. Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
- Correspondence: (M.M.H.); (M.E.E.Z.)
| | - Mohamed E. El Zowalaty
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, SE-75 123 Uppsala, Sweden
- St. Jude Center of Excellence for Influenza Research and Surveillance, Division of Virology, Department of Infectious Diseases, St Jude Children’s Hospital, Memphis, TN 38105, USA
- Correspondence: (M.M.H.); (M.E.E.Z.)
| | - Ariful Islam
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong Campus, Geelong, VIC 3125, Australia
- EcoHealth Alliance, New York, NY 10001-2320, USA;
| | - Shahneaz A. Khan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
| | | | - Josef D. Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, SE-752 36 Uppsala, Sweden;
| | - Md. A. Hoque
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; (A.I.); (S.A.K.); (M.A.H.)
| |
Collapse
|
17
|
Adaptation of H9N2 Influenza Viruses to Mammalian Hosts: A Review of Molecular Markers. Viruses 2020; 12:v12050541. [PMID: 32423002 PMCID: PMC7290818 DOI: 10.3390/v12050541] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022] Open
Abstract
As the number of human infections with avian and swine influenza viruses continues to rise, the pandemic risk posed by zoonotic influenza viruses cannot be underestimated. Implementation of global pandemic preparedness efforts has largely focused on H5 and H7 avian influenza viruses; however, the pandemic threat posed by other subtypes of avian influenza viruses, especially the H9 subtype, should not be overlooked. In this review, we summarize the literature pertaining to the emergence, prevalence and risk assessment of H9N2 viruses, and add new molecular analyses of key mammalian adaptation markers in the hemagglutinin and polymerase proteins. Available evidence has demonstrated that H9N2 viruses within the Eurasian lineage continue to evolve, leading to the emergence of viruses with an enhanced receptor binding preference for human-like receptors and heightened polymerase activity in mammalian cells. Furthermore, the increased prevalence of certain mammalian adaptation markers and the enhanced transmissibility of selected viruses in mammalian animal models add to the pandemic risk posed by this virus subtype. Continued surveillance of zoonotic H9N2 influenza viruses, inclusive of close genetic monitoring and phenotypic characterization in animal models, should be included in our pandemic preparedness efforts.
Collapse
|
18
|
Schreuder J, Velkers FC, Bouwstra RJ, Beerens N, Stegeman JA, de Boer WF, Elbers ARW, van Hooft P, Feberwee A, Bossers A, Jurburg SD. Limited changes in the fecal microbiome composition of laying hens after oral inoculation with wild duck feces. Poult Sci 2020; 98:6542-6551. [PMID: 31541252 PMCID: PMC8913958 DOI: 10.3382/ps/pez526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022] Open
Abstract
Interspecies transmission of fecal microbiota can serve as an indicator for (indirect) contact between domestic and wild animals to assess risks of pathogen transmission, e.g., avian influenza. Here, we investigated whether oral inoculation of laying hens with feces of wild ducks (mallards, Anas platyrhynchos) resulted in a hen fecal microbiome that was detectably altered on community parameters or relative abundances of individual genera. To distinguish between effects of the duck inoculum and effects of the inoculation procedure, we compared the fecal microbiomes of adult laying hens resulting from 3 treatments: inoculation with wild duck feces (duck), inoculation with chicken feces (auto), and a negative control group with no treatment. We collected cloacal swabs from 7 hens per treatment before (day 0), and 2 and 7 D after inoculation, and performed 16S rRNA amplicon sequencing. No distinguishable effect of inoculation with duck feces on microbiome community (alpha and beta diversity) was found compared to auto or control treatments. At the individual taxonomic level, the relative abundance of the genus Alistipes (phylum Bacteroidetes) was significantly higher in the inoculated treatments (auto and duck) compared to the control 2 D after inoculation. Seven days after inoculation, the relative abundance of Alistipes had increased in the control and no effect was found anymore across treatments. These effects might be explained by the perturbation of the hen's microbiome caused by the inoculation procedure itself, or by intrinsic temporal variation in the hen's microbiome. This experiment shows that a single inoculation of fecal microbiota from duck feces to laying hens did not cause a measurable alteration of the gut microbiome community. Furthermore, the temporary change in relative abundance forAlistipes could not be attributed to the duck feces inoculation. These outcomes suggest that the fecal microbiome of adult laying hens may not be a useful indicator for detection of single oral exposure to wild duck feces.
Collapse
Affiliation(s)
- Janneke Schreuder
- Department of Farm Animal Health, Utrecht University, 3584 CL, the Netherlands
| | - Francisca C Velkers
- Department of Farm Animal Health, Utrecht University, 3584 CL, the Netherlands
| | | | - Nancy Beerens
- Wageningen Bioveterinary Research, 8221RA Lelystad, the Netherlands
| | - J Arjan Stegeman
- Department of Farm Animal Health, Utrecht University, 3584 CL, the Netherlands
| | - Willem F de Boer
- Resource Ecology Group, Wageningen University & Research, 6708PB Wageningen, the Netherlands
| | - Armin R W Elbers
- Wageningen Bioveterinary Research, 8221RA Lelystad, the Netherlands
| | - Pim van Hooft
- Resource Ecology Group, Wageningen University & Research, 6708PB Wageningen, the Netherlands
| | | | - Alex Bossers
- Wageningen Bioveterinary Research, 8221RA Lelystad, the Netherlands
| | - Stephanie D Jurburg
- Wageningen Bioveterinary Research, 8221RA Lelystad, the Netherlands.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig 04103, Germany
| |
Collapse
|
19
|
Nabil NM, Erfan AM, Tawakol MM, Haggag NM, Naguib MM, Samy A. Wild Birds in Live Birds Markets: Potential Reservoirs of Enzootic Avian Influenza Viruses and Antimicrobial Resistant Enterobacteriaceae in Northern Egypt. Pathogens 2020; 9:pathogens9030196. [PMID: 32155863 PMCID: PMC7157678 DOI: 10.3390/pathogens9030196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Wild migratory birds are often implicated in the introduction, maintenance, and global dissemination of different pathogens, such as influenza A viruses (IAV) and antimicrobial-resistant (AMR) bacteria. Trapping of migratory birds during their resting periods at the northern coast of Egypt is a common and ancient practice performed mainly for selling in live bird markets (LBM). In the present study, samples were collected from 148 wild birds, representing 14 species, which were being offered for sale in LBM. All birds were tested for the presence of AIV and enterobacteriaceae. Ten samples collected from Northern Shoveler birds (Spatula clypeata) were positive for IAV and PCR sub-typing and pan HA/NA sequencing assays detected H5N8, H9N2, and H6N2 viruses in four, four, and one birds, respectively. Sequencing of the full haemagglutinin (HA) gene revealed a high similarity with currently circulating IAV in Egypt. From all the birds, E.coli was recovered from 37.2% and Salmonella from 20.2%, with 66%-96% and 23%-43% isolates being resistant to at least one of seven selected critically important antimicrobials (CIA), respectively. The presence of enzootic IAV and the wide prevalence of AMR enterobacteriaceae in wild birds highlight the potential role of LBM in the spread of different pathogens from and to wild birds. Continued surveillance of both AIV and antimicrobial-resistant enterobacteriaceae in wild birds' habitats is urgently needed.
Collapse
Affiliation(s)
- Nehal M. Nabil
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt; (N.M.N.); (A.M.E.); (M.M.T.); (N.M.H.); (M.M.N.)
| | - Ahmed M. Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt; (N.M.N.); (A.M.E.); (M.M.T.); (N.M.H.); (M.M.N.)
| | - Maram M. Tawakol
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt; (N.M.N.); (A.M.E.); (M.M.T.); (N.M.H.); (M.M.N.)
| | - Naglaa M. Haggag
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt; (N.M.N.); (A.M.E.); (M.M.T.); (N.M.H.); (M.M.N.)
| | - Mahmoud M. Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt; (N.M.N.); (A.M.E.); (M.M.T.); (N.M.H.); (M.M.N.)
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala SE-75185, Sweden
| | - Ahmed Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt; (N.M.N.); (A.M.E.); (M.M.T.); (N.M.H.); (M.M.N.)
- Immunogenetics, The Pirbright Institute, Surrey GU24 0NF, UK
- Correspondence: or
| |
Collapse
|
20
|
Yeo SJ, Than DD, Park HS, Sung HW, Park H. Molecular Characterization of a Novel Avian Influenza A (H2N9) Strain Isolated from Wild Duck in Korea in 2018. Viruses 2019; 11:v11111046. [PMID: 31717636 PMCID: PMC6893532 DOI: 10.3390/v11111046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 01/03/2023] Open
Abstract
A novel avian influenza virus (A/wild duck/Korea/K102/2018) (H2N9) was isolated from wild birds in South Korea in 2018, and phylogenetic and molecular analyses were conducted on complete gene sequences obtained by next-generation sequencing. Phylogenetic analysis indicated that the hemagglutinin (HA) and neuraminidase (NA) genes of the A/wild duck/Korea/K102/2018 (H2N9) virus belonged to the Eurasian countries, whereas other internal genes (polymerase basic protein 1 (PB1), PB2, nucleoprotein (NP), polymerase acidic protein (PA), matrix protein (M), and non-structural protein (NS)) belonged to the East Asian countries. A monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, E627 in the PB2 gene, and no deletion of the stalk region in the NA gene indicated that the A/wild duck/Korea/K102/2018 (H2N9) isolate was a typical low pathogenicity avian influenza (LPAI). Nucleotide sequence similarity analysis of HA revealed that the highest homology (98.34%) is to that of A/duck/Mongolia/482/2015 (H2N3), and amino acid sequence of NA was closely related to that of A/duck/Bangladesh/8987/2010 (H10N9) (96.45%). In contrast, internal genes showed homology higher than 98% compared to those of other isolates derived from duck and wild birds of China or Japan in 2016–2018. The newly isolated A/wild duck/Korea/K102/2018 (H2N9) strain is the first reported avian influenza virus in Korea, and may have evolved from multiple genotypes in wild birds and ducks in Mongolia, China, and Japan.
Collapse
Affiliation(s)
- Seon-Ju Yeo
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (S.-J.Y.); (D.-D.T.)
| | - Duc-Duong Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (S.-J.Y.); (D.-D.T.)
| | - Hong-Seog Park
- GnCBio Inc, 4F, Yegan Plaza, 36, Banseok-ro, Yuseong-gu, Daejeon 34069, Korea;
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (H.W.S.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (S.-J.Y.); (D.-D.T.)
- Correspondence: (H.W.S.); (H.P.)
| |
Collapse
|
21
|
Naguib MM, Verhagen JH, Mostafa A, Wille M, Li R, Graaf A, Järhult JD, Ellström P, Zohari S, Lundkvist Å, Olsen B. Global patterns of avian influenza A (H7): virus evolution and zoonotic threats. FEMS Microbiol Rev 2019; 43:608-621. [PMID: 31381759 PMCID: PMC8038931 DOI: 10.1093/femsre/fuz019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/31/2019] [Indexed: 01/16/2023] Open
Abstract
Avian influenza viruses (AIVs) continue to impose a negative impact on animal and human health worldwide. In particular, the emergence of highly pathogenic AIV H5 and, more recently, the emergence of low pathogenic AIV H7N9 have led to enormous socioeconomical losses in the poultry industry and resulted in fatal human infections. While H5N1 remains infamous, the number of zoonotic infections with H7N9 has far surpassed those attributed to H5. Despite the clear public health concerns posed by AIV H7, it is unclear why specifically this virus subtype became endemic in poultry and emerged in humans. In this review, we bring together data on global patterns of H7 circulation, evolution and emergence in humans. Specifically, we discuss data from the wild bird reservoir, expansion and epidemiology in poultry, significant increase in their zoonotic potential since 2013 and genesis of highly pathogenic H7. In addition, we analysed available sequence data from an evolutionary perspective, demonstrating patterns of introductions into distinct geographic regions and reassortment dynamics. The integration of all aspects is crucial in the optimisation of surveillance efforts in wild birds, poultry and humans, and we emphasise the need for a One Health approach in controlling emerging viruses such as AIV H7.
Collapse
Affiliation(s)
- Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 7 Nadi El-Seid Street, Giza 12618, Egypt
| | - Josanne H Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, 44008 Hus Vita, Kalmar SE-391 82 , Sweden
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 33 El-Buhouth street, Giza 12622, Egypt
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| | - Ruiyun Li
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, Praed Street, London W2 1PG, United Kingdom
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, Uppsala SE-75189, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| |
Collapse
|
22
|
Bergervoet SA, Pritz-Verschuren SBE, Gonzales JL, Bossers A, Poen MJ, Dutta J, Khan Z, Kriti D, van Bakel H, Bouwstra R, Fouchier RAM, Beerens N. Circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands, 2006-2016. Sci Rep 2019; 9:13681. [PMID: 31548582 PMCID: PMC6757041 DOI: 10.1038/s41598-019-50170-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
In this study, we explore the circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands. Surveillance data collected between 2006 and 2016 was used to evaluate subtype diversity, spatiotemporal distribution and genetic relationships between wild bird and poultry viruses. We observed close species-dependent associations among hemagglutinin and neuraminidase subtypes. Not all subtypes detected in wild birds were found in poultry, suggesting transmission to poultry is selective and likely depends on viral factors that determine host range restriction. Subtypes commonly detected in poultry were in wild birds most frequently detected in mallards and geese. Different temporal patterns in virus prevalence were observed between wild bird species. Virus detections in domestic ducks coincided with the prevalence peak in wild ducks, whereas virus detections in other poultry types were made throughout the year. Genetic analysis of the surface genes demonstrated that most poultry viruses were related to locally circulating wild bird viruses, but no direct spatiotemporal link was observed. Results indicate prolonged undetected virus circulation and frequent reassortment events with local and newly introduced viruses within the wild bird population. Increased knowledge on LPAI virus circulation can be used to improve surveillance strategies.
Collapse
Affiliation(s)
- Saskia A Bergervoet
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Jose L Gonzales
- Department of Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Alex Bossers
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Marjolein J Poen
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Nancy Beerens
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.
| |
Collapse
|
23
|
A Global Perspective on H9N2 Avian Influenza Virus. Viruses 2019; 11:v11070620. [PMID: 31284485 PMCID: PMC6669617 DOI: 10.3390/v11070620] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in affected countries and have been found in poultry in many new regions in recent years. In this review, we examine the current global spread of H9N2 avian influenza viruses as well as their host range, tropism, transmission routes and the risk posed by these viruses to human health.
Collapse
|
24
|
Bergervoet SA, Heutink R, Bouwstra R, Fouchier RAM, Beerens N. Genetic analysis identifies potential transmission of low pathogenic avian influenza viruses between poultry farms. Transbound Emerg Dis 2019; 66:1653-1664. [PMID: 30964232 PMCID: PMC6850361 DOI: 10.1111/tbed.13199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
Abstract
Poultry can become infected with low pathogenic avian influenza (LPAI) viruses via (in)direct contact with infected wild birds or by transmission of the virus between farms. This study combines routinely collected surveillance data with genetic analysis to assess the contribution of between‐farm transmission to the overall incidence of LPAI virus infections in poultry. Over a 10‐year surveillance period, we identified 35 potential cases of between‐farm transmission in the Netherlands, of which 10 formed geographical clusters. A total of 21 LPAI viruses were isolated from nine potential between‐farm transmission cases, which were further studied by genetic and epidemiological analysis. Whole genome sequence analysis identified close genetic links between infected farms in seven cases. The presence of identical deletions in the neuraminidase stalk region and minority variants provided additional indications of between‐farm transmission. Spatiotemporal analysis demonstrated that genetically closely related viruses were detected within a median time interval of 8 days, and the median distance between the infected farms was significantly shorter compared to farms infected with genetically distinct viruses (6.3 versus 69.0 km; p < 0.05). The results further suggest that between‐farm transmission was not restricted to holdings of the same poultry type and not related to the housing system. Although separate introductions from the wild bird reservoir cannot be excluded, our study indicates that between‐farm transmission occurred in seven of nine virologically analysed cases. Based on these findings, it is likely that between‐farm transmission contributes considerably to the incidence of LPAI virus infections in poultry.
Collapse
Affiliation(s)
- Saskia A Bergervoet
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, The Netherlandss
| | - Rene Heutink
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlandss
| | - Nancy Beerens
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
25
|
Stachyra A, Góra-Sochacka A, Radomski JP, Sirko A. Sequential DNA immunization of chickens with bivalent heterologous vaccines induce highly reactive and cross-specific antibodies against influenza hemagglutinin. Poult Sci 2019; 98:199-208. [PMID: 30184142 DOI: 10.3382/ps/pey392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/05/2018] [Indexed: 12/18/2022] Open
Abstract
Vaccines against avian influenza are mostly based on hemagglutinin (HA), which is the main antigen of this virus and a target for neutralizing antibodies. Traditional vaccines are known to be poorly efficient against newly emerging strains, which is an increasing worldwide problem for human health and for the poultry industry. As demonstrated by research and clinical data, sequential exposure to divergent influenza HAs can boost induction of universal antibodies which recognize conserved epitopes. In this work, we have performed sequential immunization of laying hens using monovalent or bivalent compositions of DNA vaccines encoding HAs from distant groups 1 and 2 (H5, H1, and H3 subtypes, respectively). This strategy gave promising results, as it led to induction of polyclonal antibodies against HAs from both groups. These polyclonal antibodies showed cross-reactivity between different HA strains in ELISA, especially when bivalent formulations were used for immunization of birds. However, cross-reactivity of antibodies induced against H3 and H5 HA subtypes was rather limited against each other after homologous immunization. Using a cocktail of HA sequences and/or sequential DNA vaccination with different strains presents a good strategy to overcome the limited effectiveness of vaccines and induce broader immunity against avian influenza. Such a strategy could be adapted for vaccinating laying hens or parental flocks of different groups of poultry.
Collapse
Affiliation(s)
- Anna Stachyra
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jan P Radomski
- Interdisciplinary Center for Mathematical and Computational Modeling, Warsaw University, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
26
|
Naguib MM, Verhagen JH, Samy A, Eriksson P, Fife M, Lundkvist Å, Ellström P, Järhult JD. Avian influenza viruses at the wild-domestic bird interface in Egypt. Infect Ecol Epidemiol 2019; 9:1575687. [PMID: 30815236 PMCID: PMC6383604 DOI: 10.1080/20008686.2019.1575687] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Wild birds of the orders Anseriformes (mainly ducks, geese and swans) and Charadriiformes (mainly gulls, terns and waders) constitute the natural reservoir for low pathogenic avian influenza (LPAI) viruses. In Egypt, highly pathogenic avian influenza (HPAI) H5N1 and LPAI H9N2 viruses are endemic in domestic poultry, forming a threat to animal and human health and raising questions about the routes of introduction and mechanisms of persistence. Recently, HPAI H5N8 virus was also introduced into Egyptian domestic birds. Here we review the literature on the role of wild birds in the introduction and endemicity of avian influenza viruses in Egypt. Dabbling ducks in Egypt harbor an extensive LPAI virus diversity and may constitute the route of introduction for HPAI H5N1 and HPAI H5N8 viruses into Egypt through migration, however their role in the endemicity of HPAI H5N1, LPAI H9N2 and potentially other avian influenza virus (AIV) strains - by means of reassortment of viral genes - is less clear. Strengthened surveillance programs, in both domestic and wild birds, that include all LPAI virus subtypes and full genome sequencing are needed to better assess the wild-domestic bird interface and form a basis for evidence-based measures to limit and prevent AIV transmission between wild and domestic birds.
Collapse
Affiliation(s)
- Mahmoud M. Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Josanne H. Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Ahmed Samy
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
- Genetics and Genomics, The Pirbright Institute, Surrey, UK
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mark Fife
- Genetics and Genomics, The Pirbright Institute, Surrey, UK
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Mulatti P, Fusaro A, Scolamacchia F, Zecchin B, Azzolini A, Zamperin G, Terregino C, Cunial G, Monne I, Marangon S. Integration of genetic and epidemiological data to infer H5N8 HPAI virus transmission dynamics during the 2016-2017 epidemic in Italy. Sci Rep 2018; 8:18037. [PMID: 30575785 PMCID: PMC6303474 DOI: 10.1038/s41598-018-36892-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/24/2018] [Indexed: 12/30/2022] Open
Abstract
Between October 2016 and December 2017, several European Countries had been involved in a massive Highly Pathogenic Avian Influenza (HPAI) epidemic sustained by H5N8 subtype virus. Starting on December 2016, also Italy was affected by H5N8 HPAI virus, with cases occurring in two epidemic waves: the first between December 2016 and May 2017, and the second in July-December 2017. Eighty-three outbreaks were recorded in poultry, 67 of which (80.72%) occurring in the second wave. A total of 14 cases were reported in wild birds. Epidemiological information and genetic analyses were conjointly used to get insight on the spread dynamics. Analyses indicated multiple introductions from wild birds to the poultry sector in the first epidemic wave, and noteworthy lateral spread from October 2017 in a limited geographical area with high poultry densities. Turkeys, layers and backyards were the mainly affected types of poultry production. Two genetic sub-groups were detected in the second wave in non-overlapping geographical areas, leading to speculate on the involvement of different wild bird populations. The integration of epidemiological data and genetic analyses allowed to unravel the transmission dynamics of H5N8 virus in Italy, and could be exploited to timely support in implementing tailored control measures.
Collapse
Affiliation(s)
- P Mulatti
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (Padua), Italy.
| | - A Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (Padua), Italy
| | - F Scolamacchia
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (Padua), Italy
| | - B Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (Padua), Italy
| | - A Azzolini
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (Padua), Italy
| | - G Zamperin
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (Padua), Italy
| | - C Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (Padua), Italy
| | - G Cunial
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (Padua), Italy
| | - I Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (Padua), Italy
| | - S Marangon
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (Padua), Italy
| |
Collapse
|
28
|
Lee T, Ahn JH, Park SY, Kim GH, Kim J, Kim TH, Nam I, Park C, Lee MH. Recent Advances in AIV Biosensors Composed of Nanobio Hybrid Material. MICROMACHINES 2018; 9:E651. [PMID: 30544883 PMCID: PMC6316213 DOI: 10.3390/mi9120651] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 11/17/2022]
Abstract
Since the beginning of the 2000s, globalization has accelerated because of the development of transportation systems that allow for human and material exchanges throughout the world. However, this globalization has brought with it the rise of various pathogenic viral agents, such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus, and Dengue virus. In particular, avian influenza virus (AIV) is highly infectious and causes economic, health, ethnical, and social problems to human beings, which has necessitated the development of an ultrasensitive and selective rapid-detection system of AIV. To prevent the damage associated with the spread of AIV, early detection and adequate treatment of AIV is key. There are traditional techniques that have been used to detect AIV in chickens, ducks, humans, and other living organisms. However, the development of a technique that allows for the more rapid diagnosis of AIV is still necessary. To achieve this goal, the present article reviews the use of an AIV biosensor employing nanobio hybrid materials to enhance the sensitivity and selectivity of the technique while also reducing the detection time and high-throughput process time. This review mainly focused on four techniques: the electrochemical detection system, electrical detection method, optical detection methods based on localized surface plasmon resonance, and fluorescence.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jae-Hyuk Ahn
- Department of Electronic Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Sun Yong Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Ga-Hyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jeonghyun Kim
- Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Inho Nam
- Division of Chemistry & Bio-Environmental Sciences, Seoul Women's University, Seoul 01797, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
29
|
Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses 2018; 10:v10090497. [PMID: 30217093 PMCID: PMC6165440 DOI: 10.3390/v10090497] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Influenza A viruses (IAVs) possess a great zoonotic potential as they are able to infect different avian and mammalian animal hosts, from which they can be transmitted to humans. This is based on the ability of IAV to gradually change their genome by mutation or even reassemble their genome segments during co-infection of the host cell with different IAV strains, resulting in a high genetic diversity. Variants of circulating or newly emerging IAVs continue to trigger global health threats annually for both humans and animals. Here, we provide an introduction on IAVs, highlighting the mechanisms of viral evolution, the host spectrum, and the animal/human interface. Pathogenicity determinants of IAVs in mammals, with special emphasis on newly emerging IAVs with pandemic potential, are discussed. Finally, an overview is provided on various approaches for the prevention of human IAV infections.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza 12622, Egypt.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
30
|
Awada L, Tizzani P, Noh SM, Ducrot C, Ntsama F, Caceres P, Mapitse N, Chalvet-Monfray K. Global dynamics of highly pathogenic avian influenza outbreaks in poultry between 2005 and 2016-Focus on distance and rate of spread. Transbound Emerg Dis 2018; 65:2006-2016. [PMID: 30079591 DOI: 10.1111/tbed.12986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023]
Abstract
Highly pathogenic avian influenza (HPAI) is of major importance for human and animal health because of high morbidity and mortality in poultry and the potential for transmission of this zoonotic pathogen to humans. Knowledge of HPAI epidemiology in avian populations and practical information on the temporal and spatial spread of the disease after introduction into a country is important in order to enhance the capacity of predicting and managing epidemics to minimize the negative impacts on human and animal health. Using data reported to the World Organisation for Animal Health between 2005 and 2017 by 199 countries for 14,129 outbreaks in poultry, we used a spatial and time-series analysis to determine that: (a) During the last 12 years, there were two major global peaks in the number of countries affected by HPAI with 23% and 26% of countries affected in 2006 and 2016. (b) Based on the seasonality analysis, spread is the lowest in September, begins to rise in October, and peaks in February. (c) The median distance HPAI outbreaks spread from the index outbreak was 111 km, while the median apparent rate of spread of outbreaks was 1.9 km/day. (d) In 39% of HPAI events, the disease did not spread beyond the index outbreak and the median maximum spread from the index outbreak per event was 45 km. (e) The distance HPAI outbreaks spread from the index outbreak was significantly negatively correlated with the number of outbreaks during the same time period, indicating that the spread of HPAI was lower during global panzootics than during periods of low transmission. These findings are of major importance for veterinary services to design and implement surveillance measures for improving preparedness to minimize the impacts of this disease.
Collapse
Affiliation(s)
- Lina Awada
- World Animal Health Information and Analysis Department, World Organisation for Animal Health, Paris, France.,UMR EPIA, INRA VetAgro Sup, Marcy l'Etoile, France
| | - Paolo Tizzani
- World Animal Health Information and Analysis Department, World Organisation for Animal Health, Paris, France
| | - Susan Marite Noh
- World Animal Health Information and Analysis Department, World Organisation for Animal Health, Paris, France.,Animal Disease Research Unit, USDA-Agricultural Research Service, Pullman, Washington
| | | | - Francois Ntsama
- World Animal Health Information and Analysis Department, World Organisation for Animal Health, Paris, France
| | - Paula Caceres
- World Animal Health Information and Analysis Department, World Organisation for Animal Health, Paris, France
| | - Neo Mapitse
- World Animal Health Information and Analysis Department, World Organisation for Animal Health, Paris, France
| | | |
Collapse
|
31
|
Wille M, Latorre-Margalef N, Tolf C, Halpin R, Wentworth D, Fouchier RAM, Raghwani J, Pybus OG, Olsen B, Waldenström J. Where do all the subtypes go? Temporal dynamics of H8-H12 influenza A viruses in waterfowl. Virus Evol 2018; 4:vey025. [PMID: 30151242 PMCID: PMC6101617 DOI: 10.1093/ve/vey025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Influenza A virus (IAV) is ubiquitous in waterfowl. In the northern hemisphere IAV prevalence is highest during the autumn and coincides with a peak in viral subtype diversity. Although haemagglutinin subtypes H1-H12 are associated with waterfowl hosts, subtypes H8-H12 are detected very infrequently. To better understand the role of waterfowl in the maintenance of these rare subtypes, we sequenced H8-H12 viruses isolated from Mallards (Anas platyrhynchos) from 2002 to 2009. These rare viruses exhibited varying ecological and phylodynamic features. The Eurasian clades of H8 and H12 phylogenies were dominated by waterfowl sequences; mostly viruses sequenced in this study. H11, once believed to be a subtype that infected charadriiformes (shorebirds), exhibited patterns more typical of common virus subtypes. Finally, subtypes H9 and H10, which have maintained lineages in poultry, showed markedly different patterns: H10 was associated with all possible NA subtypes and this drove HA lineage diversity within years. Rare viruses belonging to subtypes H8-H12 were highly reassorted, indicating that these rare subtypes are part of the broader IAV pool. Our results suggest that waterfowl play a role in the maintenance of these rare subtypes, but we recommend additional sampling of non-traditional hosts to better understand the reservoirs of these rare viruses.
Collapse
Affiliation(s)
- Michelle Wille
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Neus Latorre-Margalef
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden.,Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Conny Tolf
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Rebecca Halpin
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD, USA
| | - David Wentworth
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD, USA
| | - Ron A M Fouchier
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Björn Olsen
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| |
Collapse
|
32
|
Dietze K, Graaf A, Homeier-Bachmann T, Grund C, Forth L, Pohlmann A, Jeske C, Wintermann M, Beer M, Conraths FJ, Harder T. From low to high pathogenicity-Characterization of H7N7 avian influenza viruses in two epidemiologically linked outbreaks. Transbound Emerg Dis 2018; 65:1576-1587. [PMID: 29790657 DOI: 10.1111/tbed.12906] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023]
Abstract
The ability of low pathogenic (LP) avian influenza viruses (AIV) of the subtypes H5 and H7 to mutate spontaneously to highly pathogenic (HP) variants is the main reason for their stringent control. On-the-spot evidence from the field of mutations in LPAIV to render the virus into nascent HP variants is scarce. Epidemiological investigations and molecular characterization of two spatiotemporally linked outbreaks caused by LP, and subsequently, HPAIV H7N7 in two-layer farms in Germany yielded such evidence. The outbreaks occurred within 45 days on farms 400 m apart. The LP progenitor virus was identified on both farms, with its putative HP inheritor cocirculating and then dominating on the second farm. As postulated before, mutations in the hemagglutinin cleavage site (HACS) proved to be the most decisive change in the genome of HPAIV, in this case, it was mutated from monobasic (LP) PEIPKGR*GLF into polybasic (HP) PEIPKRKRR*GLF. The full-length genome sequences of both viruses were nearly identical with only ten coding mutations outside the HACS scattered along six genome segments in the HPAIV. Five of these were already present as minor variants in the LPAIV quasispecies of the LPAI-only affected farm. H7-specific seroconversion of part of the chicken population together with the codetection of LPAIV HACS sequences in swab samples of the HPAI outbreak farm suggested an initial introduction of the LP progenitor and a subsequent switch to HPAIV H7N7 after the incursion. The findings provide rare field evidence for a shift in pathogenicity of a notifiable AIV infection and re-inforce the validity of current approaches of control measures to curtail low pathogenic H5 and H7 virus circulation in poultry.
Collapse
Affiliation(s)
- Klaas Dietze
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Annika Graaf
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | | | - Leonie Forth
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Christa Jeske
- Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES), Wardenburg, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Timm Harder
- Friedrich-Loeffler-Institut, Greifswald, Germany
| |
Collapse
|
33
|
van Dijk JGB, Verhagen JH, Wille M, Waldenström J. Host and virus ecology as determinants of influenza A virus transmission in wild birds. Curr Opin Virol 2018; 28:26-36. [DOI: 10.1016/j.coviro.2017.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
34
|
Abstract
Waterbirds are the main reservoir for low pathogenic avian influenza A viruses (LPAIV), from which occasional spillover to poultry occurs. When circulating among poultry, LPAIV may become highly pathogenic avian influenza A viruses (HPAIV). In recent years, the epidemiology of HPAIV viruses has changed drastically. HPAIV H5N1 are currently endemic among poultry in a number of countries. In addition, global spread of HPAIV H5Nx viruses has resulted in major outbreaks among wild birds and poultry worldwide. Using data collected during these outbreaks, the role of migratory birds as a vector became increasingly clear. Here we provide an overview of current data about various aspects of the changing role of wild birds in the epidemiology of avian influenza A viruses.
Collapse
|
35
|
More S, Bicout D, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke HH, Velarde A, Willeberg P, Winckler C, Breed A, Brouwer A, Guillemain M, Harder T, Monne I, Roberts H, Baldinelli F, Barrucci F, Fabris C, Martino L, Mosbach-Schulz O, Verdonck F, Morgado J, Stegeman JA. Avian influenza. EFSA J 2017; 15:e04991. [PMID: 32625288 PMCID: PMC7009867 DOI: 10.2903/j.efsa.2017.4991] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non-negligible risk of AI introduction. The transmission rate between animals within a flock is assessed to be higher for HPAIV than LPAIV. In very few cases, it could be proven that HPAI outbreaks were caused by intrinsic mutation of LPAIV to HPAIV but current knowledge does not allow a prediction as to if, and when this could occur. In gallinaceous poultry, passive surveillance through notification of suspicious clinical signs/mortality was identified as the most effective method for early detection of HPAI outbreaks. For effective surveillance in anseriform poultry, passive surveillance through notification of suspicious clinical signs/mortality needs to be accompanied by serological surveillance and/or a virological surveillance programme of birds found dead (bucket sampling). Serosurveillance is unfit for early warning of LPAI outbreaks at the individual holding level but could be effective in tracing clusters of LPAIV-infected holdings. In wild birds, passive surveillance is an appropriate method for HPAIV surveillance if the HPAIV infections are associated with mortality whereas active wild bird surveillance has a very low efficiency for detecting HPAIV. Experts estimated and emphasised the effect of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures.
Collapse
|