1
|
Pagnussatti MEL, de Barros Santos HS, Parolo CCF, Hilgert JB, Arthur RA. Oral microbiota: Taxonomic composition and functional profile in caries-free and in caries-affected individuals - A systematic review. Arch Oral Biol 2024; 168:106070. [PMID: 39226678 DOI: 10.1016/j.archoralbio.2024.106070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE To compare the oral microbiota among caries-free (CF) with caries-affected (CA) individuals, both at taxonomic and at functional levels. DESIGN This systematic review was conducted following PRISMA guidelines. A structured search was carried out in MEDLINE/PUBMED, Web of Science, EMBASE, LILACS, SciELO, Scopus and Google Scholar databases up to September, 2023. Observational studies, without any restriction on date of publication and using next-generation targeted or untargeted sequencing methods for identification of microbial communities were included. Qualitative synthesis was performed from all included studies. RESULTS 54 studies were included (43 cross-sectional; 11 cohort) comprising more than 3486 participants (at least 1666 CF and 1820 CA) whose saliva and/or dental plaque were used as clinical samples. Methodological quality was graded as "fair" for most of the studies. The abundance of 87 bacterial and 44 fungal genera were statistically different among CF and CA individuals. Atopobium spp., Capnocytophaga spp., Lactobacillus spp., Prevotella spp., Scardovia spp., Selenomonas spp. among others were frequently reported as being more abundant in CA individuals. Several functional patterns, such as lipids, carbohydrate, starch, sucrose, amino sugar metabolisms, among others, were identified as being specifically related to CF or to CA conditions. CONCLUSION In spite of the variability among the included studies and of the predominance of qualitative synthesis, groups of microorganisms as well as specific functional profiles coded by the assessed microbiota are differently abundant among caries-affected and caries-free individuals. These results need to be interpreted with caution considering the limitations inherent to each assessed primary study.
Collapse
Affiliation(s)
- Maria Eduarda Lisbôa Pagnussatti
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| | - Heitor Sales de Barros Santos
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| | - Clarissa Cavalcanti Fatturi Parolo
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| | - Juliana Balbinot Hilgert
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil; National Council for Research and Development (CNPq).
| | - Rodrigo Alex Arthur
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2492, Porto Alegre 90035-003, Brazil.
| |
Collapse
|
2
|
Marincak Vrankova Z, Brenerova P, Bodokyova L, Bohm J, Ruzicka F, Borilova Linhartova P. Tongue microbiota in relation to the breathing preference in children undergoing orthodontic treatment. BMC Oral Health 2024; 24:1259. [PMID: 39434101 PMCID: PMC11492670 DOI: 10.1186/s12903-024-05062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Mouth breathing (MB), a risk factor of oral dysbiosis and halitosis, is linked with craniofacial anomalies and pediatric obstructive sleep apnea. Here, we aimed to analyze tongue microbiota in children from the perspective of their breathing pattern before/during orthodontic treatment. METHODS This prospective case-control study included 30 children with orthodontic anomalies, 15 with MB and 15 with nasal breathing (NB), matched by age, sex, and body mass index. All underwent orthodontic examination and sleep apnea monitoring. Tongue swabs were collected before starting (timepoint M0) and approx. six months into the orthodontic therapy (timepoint M6). Oral candidas and bacteriome were analyzed using mass spectrometry technique and 16S rRNA sequencing, respectively. RESULTS MB was associated with higher apnea-hypopnea index. At M0, oral candidas were equally present in both groups. At M6, Candida sp. were found in six children with MB but in none with NB. No significant differences in bacterial diversity were observed between groups and timepoints. However, presence/relative abundance of genus Solobacterium was higher in children with MB than NB at M0. CONCLUSIONS Significant links between MB and the presence of genus Solobacterium (M0) as well as Candida sp. (M6) were found in children with orthodontic anomalies, highlighting the risk of halitosis in them.
Collapse
Affiliation(s)
- Zuzana Marincak Vrankova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, Brno, Czech Republic
- Clinic of Stomatology, Institution Shared With St. Anne´s University Hospital, Faculty of Medicine, Masaryk University, Pekarska 53, Brno, Czech Republic
| | - Petra Brenerova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Lenka Bodokyova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jan Bohm
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Filip Ruzicka
- Clinic of Microbiology, Institution Shared With St. Anne ́s University Hospital, Faculty of Medicine, Masaryk University, Pekarska 53, Brno, Czech Republic
| | - Petra Borilova Linhartova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, Brno, Czech Republic.
| |
Collapse
|
3
|
Uchino T, Uchida M, Ito R, Fujie S, Iemitsu K, Kojima C, Nakamura M, Shimizu K, Tanimura Y, Shinohara Y, Hashimoto T, Isaka T, Iemitsu M. Effects of different exercise intensities or durations on salivary IgA secretion. Eur J Appl Physiol 2024; 124:2687-2696. [PMID: 38634902 PMCID: PMC11365859 DOI: 10.1007/s00421-024-05467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE This study aimed to examine changes in salivary immunoglobulin A (s-IgA) secretion at different intensities or durations of acute exercise. METHODS Twelve healthy untrained young males were included in randomized crossover trials in Experiment 1 (cycling exercise for 30 min at a work rate equivalent to 35%, 55%, and 75% maximal oxygen uptake [ V ˙ O2max]) and Experiment 2 (cycling exercise at 55% V ˙ O2max intensity for 30, 60, and 90 min). Saliva samples were collected at baseline, immediately after, and 60 min after each exercise. RESULTS Experiment 1: The percentage change in the s-IgA secretion rate in the 75% V ˙ O2max trial was significantly lower than that in the 55% V ˙ O2max trial immediately after exercise (- 45.7%). The percentage change in the salivary concentration of cortisol, an s-IgA regulating factor, immediately after exercise significantly increased compared to that at baseline in the 75% V ˙ O2max trial (+ 107.6%). A significant negative correlation was observed between the percentage changes in saliva flow rate and salivary cortisol concentration (r = - 0.52, P < 0.01). Experiment 2: The percentage change in the s-IgA secretion rate in the 90-min trial was significantly lower than that in the 30-min trial immediately after exercise (-37.0%). However, the percentage change in salivary cortisol concentration remained the same. CONCLUSION Our findings suggest that a reduction in s-IgA secretion is induced by exercise intensity of greater than or equal to 75% V ˙ O2max for 30 min or exercise duration of greater than or equal to 90 min at 55% V ˙ O2max in healthy untrained young men.
Collapse
Affiliation(s)
- Takamasa Uchino
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masataka Uchida
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Reita Ito
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Shumpei Fujie
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Keiko Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Chihiro Kojima
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Mariko Nakamura
- Department of Sport Science and Research, Japan Institute of Sports Sciences, Nishigaoka Kita-ku, Tokyo, Japan
| | - Kazuhiro Shimizu
- Department of Sport Science and Research, Japan Institute of Sports Sciences, Nishigaoka Kita-ku, Tokyo, Japan
| | - Yuko Tanimura
- Department of Sport Science and Research, Japan Institute of Sports Sciences, Nishigaoka Kita-ku, Tokyo, Japan
| | - Yasushi Shinohara
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.
| |
Collapse
|
4
|
Saravanan C, S M N Mydin RB, Mohamed Sheriff NR, Kaur G, Singh Dhaliwal S, Musa MY. Salivaomics in head and neck cancer. Clin Chim Acta 2024; 565:119952. [PMID: 39216814 DOI: 10.1016/j.cca.2024.119952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Salivaomics is a promising method for the early detection and monitoring of head and neck cancer (HNC). By analyzing salivary proteomics, RNA, and DNA, it identifies biomarkers that distinguish HNC patients from healthy individuals. Saliva's non-invasive, easily collectible nature and affordability make it an advantageous screening tool. Multiomics approaches, which explore genetic mutations, gene expression patterns, protein profiles, and metabolite levels, provide a comprehensive molecular perspective that enhances clinical applicability. The approaches enhance the precision of diagnoses, enable the development and application of targeted therapies, and contribute to the overall advancement of personalized medicine. Despite its potential, larger-scale studies are essential for validating biomarkers, and assessing sensitivity, accuracy, and specificity in detecting HNC. This review highlights salivaomics' potential as a non-invasive, accessible biological sample for early disease detection in HNC and underscores the value of multiomics in advancing this research. Salivaomics offers significant insights into the underlying mechanisms of HNC, enabling the discovery of robust, non-invasive biomarkers for improved disease management.
Collapse
Affiliation(s)
- Chandrarohini Saravanan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM), 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Rabiatul Basria S M N Mydin
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM), 13200 Kepala Batas, Pulau Pinang, Malaysia.
| | - Nur Rizikin Mohamed Sheriff
- School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; Division of Research & Innovation, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Satvinder Singh Dhaliwal
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Australia; Duke-NUS Medical School, National University of Singapore, Queenstown, Singapore; Singapore University of Social Sciences, 463 Clementi Road, Clementi 599494, Singapore
| | - Muhamad Yusri Musa
- Department of Clinical Medicine, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia; Pusat Perubatan, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang 84001, Malaysia
| |
Collapse
|
5
|
Vohra M, Rajaraman V, Shenoy A, M R. Impact of Fixed Partial Dentures on Oral Microbial Flora and Gingival Health: An In Vitro Assessment of Salivary Microbial Profiles. Cureus 2024; 16:e65220. [PMID: 39184586 PMCID: PMC11343327 DOI: 10.7759/cureus.65220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction The oral cavity hosts diverse microorganisms affected by factors like pH, temperature, and oxygen levels, influencing disease potential. Dentists manage oral diseases and improve aesthetics using durable restorations. Understanding periodontal response to crowns and fixed partial dentures (FPDs) is essential for effective treatment. This study aims to assess the impact of FPDs on periodontal health by comparing microbial colonies in individuals with and without FPDs. The hypothesis is that there will be no difference in microbial flora and gingival health between the two groups. Materials and methods This in vitro study utilized 40 salivary samples divided into two groups: 20 from patients with FPDs/crowns (Group 1) and 20 from patients without (Group 2). Unstimulated saliva was collected, diluted, and cultured on nutrient agar and Sabouraud Dextrose Agar to quantify anaerobic bacteria and Candida colonies. Colony counts were scored from 0 to IV based on colony-forming unit (CFU), and microscopic examination identified the types of microbes present. Data were analyzed using an unpaired t-test with IBM SPSS Statistics for Windows, Version 26 (Released 2019; IBM Corp., Armonk, New York, United States), with significance set at p < 0.05. Results The independent t-test analysis showed significantly higher mean CFUs of anaerobic microbes in Group 1 (experimental) compared to Group 2 (control) (p = 0.000). However, mean CFUs of Candida did not significantly differ between groups (p = 0.194). Microscopic examination identified Enterococcus faecalis, Pseudomonas aeruginosa, Candida albicans, Staphylococcus aureus, and Streptococcus mutans in the experimental group, whereas the control group contained only Staphylococcus aureus and Streptococcus mutans. Conclusion Individuals with FPDs exhibit higher concentrations of anaerobic microbes and specific bacteria, suggesting an increased risk of gingival inflammation and emphasizing the importance of maintaining good oral hygiene.
Collapse
Affiliation(s)
- Maaz Vohra
- Department of Prosthodontics and Implantology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vaishnavi Rajaraman
- Department of Prosthodontics and Implantology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Amrutha Shenoy
- Department of Prosthodontics and Implantology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rithanya M
- Department of Prosthodontics and Implantology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
6
|
Wong HH, Hung CH, Yip J, Lim TW. Metagenomic Characterization and Comparative Analysis of Removable Denture-Wearing and Non-Denture-Wearing Individuals in Healthy and Diseased Periodontal Conditions. Microorganisms 2024; 12:1197. [PMID: 38930579 PMCID: PMC11205920 DOI: 10.3390/microorganisms12061197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Removable denture wearers are at an increased risk of developing periodontal diseases due to biofilm deposition and microbial colonization on the denture surface. This study aimed to characterize and compare the metagenomic composition of saliva in denture wearers with different periodontal statuses. Twenty-four community-dwelling elders were recruited and grouped into denture wearers with active periodontitis (APD), non-denture wearers with active periodontitis (APXD), denture wearers with stable periodontal health conditions (SPCD), and non-denture wearers with stable periodontal health conditions (SPCXD). Saliva samples were collected and underwent Type IIB restriction-site-associated DNA for microbiome (2bRAD-M) metagenomic sequencing to characterize the species-resolved microbial composition. Alpha diversity analysis based on the Shannon index revealed no significant difference between groups. Beta diversity analysis using the Jaccard distance matrix was nearly significantly different between denture-wearing and non-denture-wearing groups (p = 0.075). Some respiratory pathogens, including Streptococcus agalactiae and Streptococcus pneumoniae, were detected as the top 30 species in saliva samples. Additionally, LEfSe analysis revealed a substantial presence of pathogenic bacteria in denture groups. In the cohort of saliva samples collected from community-dwelling elders, a remarkable abundance of certain opportunistic pathogens was detected in the microbial community.
Collapse
Affiliation(s)
| | | | | | - Tong-Wah Lim
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (H.-H.W.); (C.-H.H.); (J.Y.)
| |
Collapse
|
7
|
Longest AK, Rockey NC, Lakdawala SS, Marr LC. Review of factors affecting virus inactivation in aerosols and droplets. J R Soc Interface 2024; 21:18. [PMID: 38920060 DOI: 10.1098/rsif.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
The inactivation of viruses in aerosol particles (aerosols) and droplets depends on many factors, but the precise mechanisms of inactivation are not known. The system involves complex physical and biochemical interactions. We reviewed the literature to establish current knowledge about these mechanisms and identify knowledge gaps. We identified 168 relevant papers and grouped results by the following factors: virus type and structure, aerosol or droplet size, temperature, relative humidity (RH) and evaporation, chemical composition of the aerosol or droplet, pH and atmospheric composition. These factors influence the dynamic microenvironment surrounding a virion and thus may affect its inactivation. Results indicate that viruses experience biphasic decay as the carrier aerosols or droplets undergo evaporation and equilibrate with the surrounding air, and their final physical state (liquid, semi-solid or solid) depends on RH. Virus stability, RH and temperature are interrelated, but the effects of RH are multifaceted and still not completely understood. Studies on the impact of pH and atmospheric composition on virus stability have raised new questions that require further exploration. The frequent practice of studying virus inactivation in large droplets and culture media may limit our understanding of inactivation mechanisms that are relevant for transmission, so we encourage the use of particles of physiologically relevant size and composition in future research.
Collapse
Affiliation(s)
- Alexandra K Longest
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| | - Nicole C Rockey
- Department of Civil and Environmental Engineering, Duke University , Durham, NC, USA
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University , Atlanta, GA, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| |
Collapse
|
8
|
Miyoshi S, Kawamoto A, Ninomiya Y, Hamada Y, Shimizu H, Honda Y, Takahashi K. Exploration of reference genes for the development of a diagnostic kit on vascular aging in human saliva. Dent Mater J 2024; 43:172-178. [PMID: 38246628 DOI: 10.4012/dmj.2023-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Identifying reliable biomarkers in saliva can be a promising approach to developing a rapid diagnostic kit for detecting vascular aging. This study investigated the most suitable reference gene for polymerase chain reaction (PCR) in saliva that is not affected by vascular aging variables. Whole saliva samples were collected to assess the expression of reference genes: actin beta (ACTB), 18S ribosomal RNA (18S rRNA), beta-2-microglobulin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The most abundantly expressed gene was 18S rRNA, and the least expressed gene was GAPDH. Four genes were ranked according to their relative stability, as determined by mathematical algorithms, indicating that ACTB and 18S rRNA were stably expressed as reference genes. 18S rRNA was identified as the most promising reference gene for detecting systemic diseases using saliva from patients with vascular aging in these limited experimental conditions.
Collapse
Affiliation(s)
| | - Akiyo Kawamoto
- Department of Geriatric Dentistry, Osaka Dental University
| | - Yuichi Ninomiya
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences
| | | | - Hideo Shimizu
- Department of Internal Medicine, Osaka Dental University
| | | | | |
Collapse
|
9
|
Roca C, Alkhateeb AA, Deanhardt BK, Macdonald JK, Chi DL, Wang JR, Wolfgang MC. Saliva sampling method influences oral microbiome composition and taxa distribution associated with oral diseases. PLoS One 2024; 19:e0301016. [PMID: 38547181 PMCID: PMC10977688 DOI: 10.1371/journal.pone.0301016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/09/2024] [Indexed: 04/02/2024] Open
Abstract
Saliva is a readily accessible and inexpensive biological specimen that enables investigation of the oral microbiome, which can serve as a biomarker of oral and systemic health. There are two routine approaches to collect saliva, stimulated and unstimulated; however, there is no consensus on how sampling method influences oral microbiome metrics. In this study, we analyzed paired saliva samples (unstimulated and stimulated) from 88 individuals, aged 7-18 years. Using 16S rRNA gene sequencing, we investigated the differences in bacterial microbiome composition between sample types and determined how sampling method affects the distribution of taxa associated with untreated dental caries and gingivitis. Our analyses indicated significant differences in microbiome composition between the sample types. Both sampling methods were able to detect significant differences in microbiome composition between healthy subjects and subjects with untreated caries. However, only stimulated saliva revealed a significant association between microbiome diversity and composition in individuals with diagnosed gingivitis. Furthermore, taxa previously associated with dental caries and gingivitis were preferentially enriched in individuals with each respective disease only in stimulated saliva. Our study suggests that stimulated saliva provides a more nuanced readout of microbiome composition and taxa distribution associated with untreated dental caries and gingivitis compared to unstimulated saliva.
Collapse
Affiliation(s)
- Cristian Roca
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alaa A. Alkhateeb
- Department of Dental Health Sciences, School of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington, United States of America
| | - Bryson K. Deanhardt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jade K. Macdonald
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Donald L. Chi
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington, United States of America
- Department of Health Systems and Population Health, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Jeremy R. Wang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Matthew C. Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
10
|
Shettigar L, Sivaraman S, Rao R, Arun SA, Chopra A, Kamath SU, Rana R. Correlational analysis between salivary and blood glucose levels in individuals with and without diabetes mellitus: a cross-sectional study. Acta Odontol Scand 2024; 83:101-111. [PMID: 37823574 PMCID: PMC11302642 DOI: 10.1080/00016357.2023.2267678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE To estimate the association of patient-related demographic, socioeconomic status, physical activity, stress, and dietary factors influencing the relationship between salivary and blood glucose levels in individuals with and without diabetes mellitus (DM). METHOD This cross-sectional study was conducted on 166 participants with and without DM. Saliva and blood were collected to estimate the glucose levels. Age, gender, occupation, socioeconomic and education level, BMI, hip to waist circumference, stress, dietary pattern, lifestyle, physical activity, family history of diabetes, and type of diabetes were recorded. The association of saliva to predict blood glucose levels was analysed using Spearman Rank Correlation and how these patient-related factors influence the correlation was estimated for future machine learning models. The difference in medians for various groups was calculated using the Mann-Whitney U Test or Kruskal Wallis Test. RESULTS Blood glucose level is not significantly correlated to salivary glucose level. However, a statistically significant difference in the median blood glucose levels for diabetic participants (median = 137) compared to healthy controls (p-value < .05) was noted. The correlation between blood and salivary glucose was more positive for higher levels of glucose (Spearman 0.4). Age, alcohol consumption, monthly wages, intake of vegetables, and socioeconomic status affect blood glucose levels. CONCLUSION A correlation between saliva and blood glucose levels in healthy individuals was weak. Saliva should only be used as a monitoring tool rather than a diagnostic tool and is more reliable for patients with poorly controlled diabetes mellitus.
Collapse
Affiliation(s)
- Laasya Shettigar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sanchita Sivaraman
- UBC School of Population and Public Health, British Columbia, Vancouver, Canada
| | - Rohini Rao
- Department of Data Science and Computer Applications, Manipal Institute of Technology (MIT), Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sanjana Akhila Arun
- Department of Data Science and Computer Applications, Manipal Institute of Technology (MIT), Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India.
| | - Shobha U Kamath
- Department of Biochemistry, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Raju Rana
- Department of Biochemistry, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
11
|
Atteya SM, Amer HA, Saleh SM, Safwat Y. The effect of nano silver fluoride, self-assembling peptide and sodium fluoride varnish on salivary cariogenic bacteria: a randomized controlled clinical trial. Clin Oral Investig 2024; 28:167. [PMID: 38388987 PMCID: PMC10884112 DOI: 10.1007/s00784-024-05562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVES To compare the antibacterial effect of Nanosilver Fluoride varnish (NSF) varnish, P11-4 and Sodium Fluoride (NaF) varnish against salivary Streptococcus mutans (S. mutans) and Lactobacilli. METHODS 66 patients aged 10-24 years old were randomly assigned to receive single application of NSF, P11-4 or NaF varnish. Baseline unstimulated saliva samples were collected before the agents were applied and S.mutans and Lactobacilli colony forming units (CFU) were counted. After one, three and six months, microbiological samples were re-assessed. Groups were compared at each time point and changes across time were assessed. Multivariable linear regression compared the effect of P11-4 and NSF to NaF on salivary S. mutans and Lactobacilli log count at various follow up periods. RESULTS There was a significant difference in salivary S. mutans log count after 1 month between P11-4 (B= -1.29, p = 0.049) and NaF but not at other time points nor between NSF and NaF at any time point. The significant reduction in bacterial counts lasted up to one month in all groups, to three months after using P11-4 and NaF and returned to baseline values after six months. CONCLUSION In general, the antimicrobial effect of P11-4 and NSF on salivary S. mutans and Lactobacilli was not significantly different from NaF varnish. P11-4 induced greater reduction more quickly than the two other agents and NSF antibacterial effect was lost after one month. CLINICAL RELEVANCE NSF varnish and P11-4 have antimicrobial activity that does not significantly differ from NaF by 3 months. P11-4 has the greatest antibacterial effect after one month with sustained effect till 3 months. The antibacterial effect of NSF lasts for one month. NaF remains effective till 3 months. TRIAL REGISTRATION This trial was prospectively registered on the clinicaltrials.gov registry with ID: NCT04929509 on 18/6/2021.
Collapse
Affiliation(s)
- Sara M Atteya
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Champollion St, Egypt, Azarita, Alexandria, 21527, Egypt.
| | - Hala A Amer
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Champollion St, Egypt, Azarita, Alexandria, 21527, Egypt
| | - Susan M Saleh
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Champollion St, Egypt, Azarita, Alexandria, 21527, Egypt
| | - Yara Safwat
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Pappalardo VY, Azarang L, Zaura E, Brandt BW, de Menezes RX. A new approach to describe the taxonomic structure of microbiome and its application to assess the relationship between microbial niches. BMC Bioinformatics 2024; 25:58. [PMID: 38317062 PMCID: PMC10840258 DOI: 10.1186/s12859-023-05575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Data from microbiomes from multiple niches is often collected, but methods to analyse these often ignore associations between niches. One interesting case is that of the oral microbiome. Its composition is receiving increasing attention due to reports on its associations with general health. While the oral cavity includes different niches, multi-niche microbiome data analysis is conducted using a single niche at a time and, therefore, ignores other niches that could act as confounding variables. Understanding the interaction between niches would assist interpretation of the results, and help improve our understanding of multi-niche microbiomes. METHODS In this study, we used a machine learning technique called latent Dirichlet allocation (LDA) on two microbiome datasets consisting of several niches. LDA was used on both individual niches and all niches simultaneously. On individual niches, LDA was used to decompose each niche into bacterial sub-communities unveiling their taxonomic structure. These sub-communities were then used to assess the relationship between microbial niches using the global test. On all niches simultaneously, LDA allowed us to extract meaningful microbial patterns. Sets of co-occurring operational taxonomic units (OTUs) comprising those patterns were then used to predict the original location of each sample. RESULTS Our approach showed that the per-niche sub-communities displayed a strong association between supragingival plaque and saliva, as well as between the anterior and posterior tongue. In addition, the LDA-derived microbial signatures were able to predict the original sample niche illustrating the meaningfulness of our sub-communities. For the multi-niche oral microbiome dataset we had an overall accuracy of 76%, and per-niche sensitivity of up to 83%. Finally, for a second multi-niche microbiome dataset from the entire body, microbial niches from the oral cavity displayed stronger associations to each other than with those from other parts of the body, such as niches within the vagina and the skin. CONCLUSION Our LDA-based approach produces sets of co-occurring taxa that can describe niche composition. LDA-derived microbial signatures can also be instrumental in summarizing microbiome data, for both descriptions as well as prediction.
Collapse
Affiliation(s)
- Vincent Y Pappalardo
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Biostatistics Centre, Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Leyla Azarang
- Biostatistics Centre, Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Renée X de Menezes
- Biostatistics Centre, Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 318] [Impact Index Per Article: 318.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
14
|
Fey JMH, Bikker FJ, Hesse D. Saliva Collection Methods Among Children and Adolescents: A Scoping Review. Mol Diagn Ther 2024; 28:15-26. [PMID: 37950136 PMCID: PMC10786738 DOI: 10.1007/s40291-023-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Saliva can be used for screening and diagnostic purposes. Although multiple saliva collection methods are available, their use in children can be limited due to lack of cooperation, developmental stage, and age. The aim of this scoping review was to comprehensively appraise the different methods of saliva collection among both children and adolescents by assessing the available scientific literature. METHODS A literature search was performed using the databases PubMed, Embase, and Web of Science. Eligible studies on saliva collection methods among children and adolescents were included for this review. RESULTS The literature search identified 249 eligible articles, of which 205 had a cross-sectional study design. Four distinct saliva collection methods have surfaced: the drooling method, the absorption method, the spitting method, and the suction method. Among infants or children under the age of 6 years, the suction and absorption methods were most preferred. The drooling and spitting methods were only applicable among children above the age of 3 years. When children were not willing to cooperate, the absorption method was most feasible. In adolescents and older children, no specific method was found to be preferred over another method. CONCLUSION Overall, saliva collection is well tolerated by children and adolescents, with the absorption and suction methods being preferred with young and uncooperative children.
Collapse
Affiliation(s)
- Juliette M H Fey
- Department of Paediadtric Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Daniela Hesse
- Department of Paediadtric Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Martini T, Câmara JVF, Dionizio A, Ventura TMO, Cassiano LDPS, de Souza E Silva CM, Taira EA, Araujo TT, Santos LA, Ferrari CR, Magalhães AC, Carvalho TS, Baumann T, Lussi A, Rios D, de Oliveira RB, Palma-Dibb RG, Buzalaf MAR. Proteomic analysis of stimulated saliva in gastroesophageal reflux disease patients with and without erosive tooth wear: Observational study. J Dent 2023; 139:104724. [PMID: 37797812 DOI: 10.1016/j.jdent.2023.104724] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVE To evaluate the difference in the proteomic profile of stimulated saliva in patients with gastroesophageal reflux disease (GERD) with (GE) and without (GNE) erosive tooth wear (ETW), regarding both human and bacterial proteins. METHODS Stimulated saliva (SS) was collected from 16 patients (8/group). Samples were centrifuged at 4.500 g for 15 min under refrigeration to remove all debris. The supernatant from each saliva sample was taken and frozen at -80 °C. After extracting the proteins, they were submitted to reverse phase liquid chromatography and mass spectrometry (nLC-ESI-MS/MS). Label-free proteomic quantification was performed using Protein Lynx Global Service (PLGS) software (p < 0.05) for human and bacterial proteins. RESULTS In total, 67 human proteins were common for GNE and GE groups. GNE group presented, compared to GE group, increase in proteins that confer antimicrobial and acid resistant properties, such as cystatins, histatin and immunoglobulins. However, GNE group had a marked decrease in subunits of hemoglobin (α, β and delta). Regarding bacterial proteins, for SS, 7 and 10 unique proteins were identified in the GE and GNE groups, respectively. They are related to protein synthesis and energy metabolism and interact with human proteins typically found in saliva and supramolecular complexes of the acquired pellicle. CONCLUSIONS Our data indicate that the stimulation of the salivary flow increases acid resistant and antimicrobial proteins in saliva, which might protect against ETW. CLINICAL SIGNIFICANCE This pioneer study showed important differences in the human and bacterial proteome of SS in patients with GERD with or without ETW.
Collapse
Affiliation(s)
- Tatiana Martini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil.
| | - João Victor Frazão Câmara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| | - Talita Mendes Oliveira Ventura
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| | - Luiza de Paula Silva Cassiano
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| | - Cíntia Maria de Souza E Silva
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| | - Even Akemi Taira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| | - Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| | - Lethycia Almeida Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| | - Carolina Ruis Ferrari
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| | - Thiago Saads Carvalho
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Hochschulstrasse 6, Bern 3012, Switzerland
| | - Tommy Baumann
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Hochschulstrasse 6, Bern 3012, Switzerland
| | - Adrian Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Hochschulstrasse 6, Bern 3012, Switzerland
| | - Daniela Rios
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| | - Ricardo Brandt de Oliveira
- Ribeirão Preto School of Medicine, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Regina Guenka Palma-Dibb
- Ribeirão Preto School of Dentistry, University of São Paulo, Av. do Café - Subsetor Oeste - 11 (N-11), Ribeirão Preto, SP 14040-904, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75 - Vila Regina, Bauru, SP 17011-220, Brazil
| |
Collapse
|
16
|
Manchanda S, Sardana D, Peng S, Lo ECM, Chandwani N, K Y Yiu C. Is Mutans Streptococci count a risk predictor of Early Childhood Caries? A systematic review and meta-analysis. BMC Oral Health 2023; 23:648. [PMID: 37679718 PMCID: PMC10483843 DOI: 10.1186/s12903-023-03346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND The review aims to determine the risk predictability of mutans streptococci in the development of carious lesions in children with primary dentition. METHODS Longitudinal observational studies with at least 6 months follow-up and evaluating mutans streptococci presence in caries-free children under 6 years of age for the development of any cavitated or non-cavitated carious lesion. Six databases and grey literature were searched without any restrictions. Risk of bias was evaluated using the New Castle Ottawa scale for longitudinal studies, and the certainty of the evidence was evaluated by Grading of Recommendations Assessment, Development and Evaluation using GRADEpro software. Meta-analysis was performed using a random effect (DerSimonian and Laird, DL) model, and heterogeneity was evaluated using tau-squared, I2 statistics and prediction interval. Sensitivity analysis was performed to assess the relationship between the mutans streptococci presence at baseline and the caries development, according to the sample and methods used for the microbiological assessment and the length of follow-up of the studies. Publication bias was checked by funnel plot using a random effect (DerSimonian and Laird, DL) model. RESULTS Twelve studies met the inclusion criteria and were included in the review. Four studies received a maximum of 9 stars, and among the remaining eight studies, six received 8 stars and the rest two studies were assigned 7 stars in the risk of bias scale. After pooling the results quantitatively, odds ratio (OR) was found to be 4.13 (95% CI: 3.33, 5.12), suggesting that children with mutans streptococci had 4 times higher odds of developing caries later (p < 0.001). Four studies were pooled to compare future caries experience among children with and without mutans streptococci at baseline, obtaining standardized mean difference (SMD) of 0.85 (95% CI: 0.33, 1.37), indicating a large effect (p < 0.001). Certainty of evidence was found to be moderate, and no publication bias was reported by the funnel plot criteria of symmetry. CONCLUSIONS Presence of mutans streptococci in a preschool child is a risk predictor for future caries experience. Early identification of children with increased caries-risk may facilitate in implementation of appropriate preventive strategies.
Collapse
Affiliation(s)
- Sheetal Manchanda
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, Hong Kong
| | - Divesh Sardana
- Department of Paediatric Dentistry, Health Sciences Centre College of Dentistry, The University of Oklahoma, Oklahoma, USA
| | - Simin Peng
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, Hong Kong
| | - Edward C M Lo
- Department of Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, Hong Kong
| | - Neeta Chandwani
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Cynthia K Y Yiu
- Department of Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, Hong Kong.
| |
Collapse
|
17
|
Alt-Holland A, Huang X, Mendez T, Singh ML, Papas AS, Cimmino J, Bairos T, Tzavaras E, Foley E, Pagni SE, Baleja JD. Identification of Salivary Metabolic Signatures Associated with Primary Sjögren's Disease. Molecules 2023; 28:5891. [PMID: 37570863 PMCID: PMC10421170 DOI: 10.3390/molecules28155891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Sjögren's disease (SjD) is the second most prevalent autoimmune disorder that involves chronic inflammation of exocrine glands. Correct diagnosis of primary SjD (pSjD) can span over many years since disease symptoms manifest only in advanced stages of salivary and lachrymal glandular destruction, and consensus diagnostic methods have critical sensitivity and selectivity limitations. Using nuclear magnetic resonance (NMR) spectroscopy, we determined the composition of metabolites in unstimulated saliva samples from 30 pSjD subjects and 30 participants who do not have Sjögren's disease (non-Sjögren's control group, NS-C). Thirty-four metabolites were quantified in each sample, and analysis was conducted on both non-normalized (concentration) and normalized metabolomics data from all study participants (ages 23-78) and on an age-restricted subset of the data (ages 30-70) while applying false discovery rate correction in determining data significance. The normalized data of saliva samples from all study participants, and of the age-restricted subset, indicated significant increases in the levels of glucose, glycerol, taurine, and lactate, as well as significant decreases in the levels of 5-aminopentanoate, acetate, butyrate and propionate, in subjects with pSjD compared to subjects in the NS-C group. Additionally, a significant increase in choline was found only in the age-restricted subset, and a significant decrease in fucose was found only in the whole study population in normalized data of saliva samples from the pSjD group compared to the NS-C group. Metabolite concentration data of saliva samples from all study participants, but not from the age-restricted subset, indicated significant increases in the levels of glucose, glycerol, taurine, and lactate in subjects with pSjD compared to controls. The study showed that NMR metabolomics can be implemented in defining salivary metabolic signatures that are associated with disease status, and can contribute to differential analysis between subjects with pSjD and those who are not affected with this disease, in the clinic.
Collapse
Affiliation(s)
- Addy Alt-Holland
- Department of Endodontics, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
- Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
| | - Xuejian Huang
- Program in Pharmacology and Drug Development, Tufts University Graduate School of Biomedical Sciences, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Tatiana Mendez
- Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
| | - Mabi L. Singh
- Department of Diagnostics Sciences, Division of Oral Medicine, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
| | - Athena S. Papas
- Department of Diagnostics Sciences, Division of Oral Medicine, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
| | - Joseph Cimmino
- Department of Diagnostics Sciences, Division of Oral Medicine, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
| | - Tiffany Bairos
- Department of Diagnostics Sciences, Division of Oral Medicine, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
| | - Elizabeth Tzavaras
- Department of Diagnostics Sciences, Division of Oral Medicine, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
| | - Elizabeth Foley
- Department of Diagnostics Sciences, Division of Oral Medicine, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
| | - Sarah E. Pagni
- Department of Public Health and Community Service, Division of Biostatistics and Experimental Design, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA 02111, USA
| | - James D. Baleja
- Program in Pharmacology and Drug Development, Tufts University Graduate School of Biomedical Sciences, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Medical Education, Tufts University Graduate School of Biomedical Sciences, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
18
|
Basilicata M, Pieri M, Marrone G, Nicolai E, Di Lauro M, Paolino V, Tomassetti F, Vivarini I, Bollero P, Bernardini S, Noce A. Saliva as Biomarker for Oral and Chronic Degenerative Non-Communicable Diseases. Metabolites 2023; 13:889. [PMID: 37623833 PMCID: PMC10456419 DOI: 10.3390/metabo13080889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Saliva is a very complex fluid and it is essential to maintain several physiological processes and functions, including oral health, taste, digestion and immunological defenses. Saliva composition and the oral microbiome can be influenced by several factors, like diet and smoking habits, and their alteration can represent an important access point for pathogens and, thus, for systemic illness onset. In this review, we explore the potentiality of saliva as a new tool for the early detection of some pathological conditions, such as oral diseases, chronic degenerative non-communicable diseases, among these chronic kidney disease (CKD). We also examined the possible correlation between oral and systemic diseases and oral and gut microbiota dysbiosis. In particular, we deeply analyzed the relationship between oral diseases and CKD. In this context, some salivary parameters can represent a new device to detect either oral or systemic pathologies. Moreover, the positive modulation of oral and gut microbiota induced by prebiotics, postbiotics, or symbiotics could represent a new possible adjuvant therapy in the clinical management of oral diseases and CKD.
Collapse
Affiliation(s)
- Michele Basilicata
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenza Paolino
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Flaminia Tomassetti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Vivarini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
19
|
Bang E, Oh S, Ju U, Chang HE, Hong JS, Baek HJ, Kim KS, Lee HJ, Park KU. Factors influencing oral microbiome analysis: from saliva sampling methods to next-generation sequencing platforms. Sci Rep 2023; 13:10086. [PMID: 37344534 DOI: 10.1038/s41598-023-37246-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
The exploration of oral microbiome has been increasing due to its relatedness with various systemic diseases, but standardization of saliva sampling for microbiome analysis has not been established, contributing to the lack of data comparability. Here, we evaluated the factors that influence the microbiome data. Saliva samples were collected by the two collection methods (passive drooling and mouthwash) using three saliva-preservation methods (OMNIgene, DNA/RNA shield, and simple collection). A total of 18 samples were sequenced by both Illumina short-read and Nanopore long-read next-generation sequencing (NGS). The component of the oral microbiome in each sample was compared with alpha and beta diversity and the taxonomic abundances, to find out the effects of factors on oral microbiome data. The alpha diversity indices of the mouthwash sample were significantly higher than that of the drooling group with both short-read and long-read NGS, while no significant differences in microbial diversities were found between the three saliva-preservation methods. Our study shows mouthwash and simple collection are not inferior to other sample collection and saliva-preservation methods, respectively. This result is promising since the convenience and cost-effectiveness of mouthwash and simple collection can simplify the saliva sample preparation, which would greatly help clinical operators and lab workers.
Collapse
Affiliation(s)
- Eunsik Bang
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Uijin Ju
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Jin-Sil Hong
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyeong-Jin Baek
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
20
|
Kumari S, Samara M, Ampadi Ramachandran R, Gosh S, George H, Wang R, Pesavento RP, Mathew MT. A Review on Saliva-Based Health Diagnostics: Biomarker Selection and Future Directions. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-18. [PMID: 37363139 PMCID: PMC10243891 DOI: 10.1007/s44174-023-00090-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
The human body has a unique way of saying when something is wrong with it. The molecules in the body fluids can be helpful in the early detection of diseases by enabling health and preventing disease progression. These biomarkers enabling better healthcare are becoming an extensive area of research interest. Biosensors that detect these biomarkers are becoming the future, especially Point Of Care (POC) biosensors that remove the need to be physically present in the hospital. Detection of complex and systemic diseases using biosensors has a long way to go. Saliva-based biosensors are gaining attention among body fluids due to their non-invasive collection and ability to detect periodontal disease and identify systemic diseases. The possibility of saliva-based diagnostic biosensors has gained much publicity, with companies sending home kits for ancestry prediction. Saliva-based testing for covid 19 has revealed effective clinical use and relevance of the economic collection. Based on universal biomarkers, the detection of systemic diseases is a booming research arena. Lots of research on saliva-based biosensors is available, but it still poses challenges and limitations as POC devices. This review paper talks about the relevance of saliva and its usefulness as a biosensor. Also, it has recommendations that need to be considered to enable it as a possible diagnostic tool. Graphical Abstract
Collapse
Affiliation(s)
- Swati Kumari
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Mesk Samara
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | | | - Sujoy Gosh
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Haritha George
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL USA
| | - Rong Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL USA
| | - Russell P. Pesavento
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Mathew T. Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
21
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
22
|
Koopaie M, Kolahdooz S, Fatahzadeh M, Aleedawi ZA. Salivary noncoding RNA in the diagnosis of pancreatic cancer: Systematic review and meta-analysis. Eur J Clin Invest 2022; 52:e13848. [PMID: 35906804 DOI: 10.1111/eci.13848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic cancer is considered one of the most deadly malignancies, primarily because of its diagnostic challenges. We performed a systematic review and diagnostic meta-analysis to evaluate the diagnostic value of noncoding salivary RNAs in pancreatic cancer diagnosis. METHODS Our investigation involved pertinent studies published in PubMed, Scopus, Web of Science, LIVIVO, Ovid and also the Google Scholar search engine. Specificity and sensitivity were calculated, as were positive and negative likelihood ratios (PLR and NLR), and the diagnostic odds ratio (DOR). The summary receiver-operating characteristics and area under the curve were plotted and assessed. RESULTS This meta-analysis and systematic review involved and examined five studies that contained 145 study units with a total of 2731 subjects (1465 pancreatic cancer patients versus 1266 noncancer controls). The pooled specificity, sensitivity, NLR, PLR and DOR were 0.783 (95% CI: 0.759-0.805), 0.829 (95% CI: 0.809-0.848), 0.309 (95% CI: 0.279-0.343), 3.386 (95% CI: 2.956-3.879) and 18.403 (95% CI: 14.753-22.954), respectively, with the area under the curve (AUC) equal to 0.882. Subgroup analyses were conducted based on the saliva type (unstimulated and stimulated), mean age of patients, sample size, type of control, serum carbohydrate antigen 19-9 (CA19-9) level and type of salivary noncoding RNA (microRNA (miRNA) and long noncoding RNA (lncRNA)). CONCLUSIONS The results of our systematic review and meta-analysis suggest that noncoding RNA biomarkers in the stimulated saliva could be a promising approach for accurate pancreatic cancer diagnosis in the early stages.
Collapse
Affiliation(s)
| | | | - Mahnaz Fatahzadeh
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Zainab Abdulkareem Aleedawi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Dentist, Private Dental Clinic, Beirut, Lebanon
| |
Collapse
|
23
|
Tonge JJ, Keevil BG, Craig JN, Whitaker MJ, Ross RJ, Elder CJ. Salivary Steroid Collection in Children Under Conditions Replicating Home Sampling. J Clin Endocrinol Metab 2022; 107:3128-3136. [PMID: 35961299 DOI: 10.1210/clinem/dgac419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Measurement of salivary glucocorticoids is an accepted method for testing adrenal function but there are few data on stability during home collection. Current salivary collection techniques require active participation or present a choking hazard and are unsuitable for young children. OBJECTIVE We sought to compare different salivary collection methods; assess the stability of salivary glucocorticoids under conditions replicating home collection; and assess patient tolerability and caregiver acceptability of a salivary collection device for young children, a swab encased in an infant pacifier (SaliPac). METHODS Six healthy adults collected salivary samples using a Salivette Cortisol, passive drool, and SalivaBio at night, waking, and 3 Pm for five days. Time to collect 1-mL saliva using the SalivaBio and SaliPac and caregiver acceptability were assessed in 30 children younger than 6 years. Saliva was stored at 4 °C, room temperature (RT), and 50 °C for 24, 48, 72 hours and 1 week to replicate potential postage conditions. Salivary cortisol and cortisone concentrations were measured by mass spectrometry. RESULTS There was no difference in salivary glucocorticoid concentrations using the 3 collection methods. Salivary cortisol and cortisone were stable for 72 hours at RT and 4 °C, and repeated freeze-thaw cycles did not cause significant degradation. In children younger than 6 years the SalivaBio and SaliPac were well tolerated and collected sufficient saliva for salivary steroid analysis in less than 4 minutes. CONCLUSION Salivette, passive drool, and SalivaBio collect samples with comparable salivary cortisol and cortisone concentrations, which are stable under conditions replicating home collection. SaliPac is an acceptable device for salivary sampling in young children.
Collapse
Affiliation(s)
- Joseph J Tonge
- Academic Unit of Medical Education, Medical School, University of Sheffield, S10 2RX Sheffield, UK
| | - Brian G Keevil
- Department of Clinical Biochemistry, University Hospital of South Manchester NHS Trust, M23 9LT Manchester, UK
| | - Jessica N Craig
- Academic Unit of Medical Education, Medical School, University of Sheffield, S10 2RX Sheffield, UK
| | - Martin J Whitaker
- Department of Oncology & Metabolism, University of Sheffield, S10 2RX Sheffield, UK
| | - Richard J Ross
- Department of Oncology & Metabolism, University of Sheffield, S10 2RX Sheffield, UK
| | - Charlotte J Elder
- Department of Oncology & Metabolism, University of Sheffield, S10 2RX Sheffield, UK
- Department of Endocrinology, Sheffield Children's NHS Foundation Trust, S10 2TH Sheffield, UK
| |
Collapse
|
24
|
Bane SP, Thosar NR, Rathi NV, Deshpande MA, Deulkar PV. Comparative Evaluation of Antibacterial Efficacy of Emblica Officinalis Lollipop Against Streptococcus Mutans Counts in Institutionalized Visually Impaired Children. Cureus 2022; 14:e28207. [PMID: 36158435 PMCID: PMC9484705 DOI: 10.7759/cureus.28207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/20/2022] [Indexed: 11/05/2022] Open
Abstract
Background Among the 1.21 billion population of India, 26.8 million individuals have disabilities, and around five million are visually impaired. These children encounter problems related to oral health maintenance, thus further leading to dental problems. Even though Pediatric dentists treat visually impaired children for their oral problems, they emphasize mainly on the prevention of dental caries. Dental caries has a multifactorial etiology, and dentists are unable to find a complete solution for its prevention. However, reducing Streptococcus mutans has been seen to reduce the caries rate in the past. The use of the herbal product Emblica officinalis to reduce Streptococcus mutans levels has been documented. An affordable delivery system is required to use Emblica officinalis for its anticaries action. Thus, a unique delivery system of herbal sugar-free lollipops containing Emblica officinalis extract was made and can effectively deliver antimicrobial action in visually impaired children. Aim To evaluate the antibacterial efficacy of Emblica officinalis lollipop on Streptococcus mutans counts and pH levels in institutionalized visually impaired children. Method A total of 60 institutionalized visually impaired children (age: 4 to 14 years) were selected. The study consisted of two groups (experimental “Emblica officinalis lollipop” and control “placebo lollipop”), and the children were divided equally into both groups. Children from the study and control groups were subjected to the respective lollipops twice daily for seven days. Streptococcus mutans count and pH count were evaluated at baseline and after seven days post-intervention of the respective lollipop. Results The results showed that in both groups, Streptococcus mutans count was reduced post-intervention. However, the efficacy of the study group (Emblica officinalis lollipop) in inhibiting the Streptococcus mutans count was better than the control group (placebo lollipop). An increase in the pH level was seen post-intervention for both the study and control groups. And on the intergroup comparison, no statistical significance was found. Conclusion The use of Emblica officinalis lollipop is effective in inhibiting the Streptococcus mutans count when compared with the placebo lollipop. While marginal pH change was seen in both groups. Thus, the herbal modality most acceptable without any pharmaceutical concerns should be chosen. Emblica officinalis lollipops can be used in institutionalized visually impaired children to reduce the oral Streptococcus mutans count and maintain a healthy oral cavity.
Collapse
|
25
|
Lu C, Zhao Q, Deng J, Chen K, Jiang X, Ma F, Ma S, Li Z. Salivary Microbiome Profile of Diabetes and Periodontitis in a Chinese Population. Front Cell Infect Microbiol 2022; 12:933833. [PMID: 35979090 PMCID: PMC9377223 DOI: 10.3389/fcimb.2022.933833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Aim There is a bidirectional association between diabetes and periodontitis. However, the effect of diabetes on the periodontitis salivary microbiota has not been elucidated. The aim of this study was to determine the effect of the presence of diabetes on the microbiota among Chinese patients with periodontitis. Materials and Methods Unstimulated whole saliva samples were collected from the periodontitis with diabetes group (TC), chronic periodontitis group (CP), and periodontally healthy and systemically healthy group (H) by spitting method. Bacterial genomic DNA was PCR-amplified at the V4 variable region of 16S rRNA gene. The library was constructed according to the obtained sequence results, and biological analysis and statistical analysis were carried out. Functional prediction of three groups of microbial communities was performed by the PICRUSt algorithm. Results There was no significant difference in bacterial diversity between the TC and CP groups. Compared with the H group, the TC group and CP group presented a higher diversity of salivary flora. Firmicutes, Streptococcus, Haemophilus, Veillonella, and Haemophilus parainfluenzae dominated the H group. Corynebacterium, Leptotrichia, Dialister, Comamonas, Capnocytophaga, Catonella, Filifactor, Campylobacter, Treponema, Campylobacter concisus, Prevotella oralis, and Porphyromonas gingivalis were significantly enriched in the TC and CP groups. Among them, Treponema and P. oralis were the most abundant in the TC group. The PICRUSt results showed that many pathways related to cell motility and functional metabolism of the salivary microbial flora changed in the TC group and the CP group. Conclusions Diabetes was not the main factor causing the altered diversity of salivary microbiota in patients with periodontitis; however, the presence of diabetes altered the abundance of some microbiota in saliva.
Collapse
Affiliation(s)
- Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qingtong Zhao
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Jianwen Deng
- School of Stomatology, Jinan University, Guangzhou, China
| | - Kexiao Chen
- School of Stomatology, Jinan University, Guangzhou, China
| | - Xinrong Jiang
- School of Stomatology, Jinan University, Guangzhou, China
| | - Fengyu Ma
- School of Stomatology, Jinan University, Guangzhou, China
| | - Shuyuan Ma
- Medical Center of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zejian Li
- Medical Center of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou City, China
- *Correspondence: Zejian Li,
| |
Collapse
|
26
|
Lu H, Zou P, Zhang Y, Zhang Q, Chen Z, Chen F. The sampling strategy of oral microbiome. IMETA 2022; 1:e23. [PMID: 38868567 PMCID: PMC10989882 DOI: 10.1002/imt2.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/01/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2024]
Abstract
There are multiple habitats in the oral cavity with bacteria, fungi, viruses, and protozoa residing in, which together constitute the oral micro-ecosystem. These microflorae in the oral cavity primarily include saliva, supragingival dental plaque, subgingival dental plaque, submucosal plaque around implants, plaque in root canals, and plaque on the mucosal surface. The interest and knowledge of the microbiome have dynamically increased with the advancement of technology. Therefore, a reliable, feasible, and practical sampling strategy for the oral microbiome is required for the investigation. This paper introduced the sampling strategy of oral microorganisms, consisting of sample collection, transport, processing, and storage. The materials and devices involved in this study are all commonly used in clinical practice or laboratory. The feasibility and reliability of the sampling methods described in this paper have been verified by multiple studies.
Collapse
Affiliation(s)
- Hongye Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouChina
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Peihui Zou
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital StomatologyBeijingChina
| | - Zhibin Chen
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital StomatologyBeijingChina
| |
Collapse
|
27
|
Cornejo CF, Salgado PA, Molgatini SL, Gliosca LA, Squassi AF. Saliva sampling methods. Cariogenic streptococci count using two different methods of saliva collection in children. ACTA ODONTOLOGICA LATINOAMERICANA : AOL 2022; 35:51-57. [PMID: 35700542 DOI: 10.54589/aol.35/1/51] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/01/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study is to compare the efficacy of two methods for collecting saliva samples from infants under 2 years of age for cariogenic streptococci (CS) count. Two collection methods were applied in 11 infants. In Method (A), saliva samples were collected by swabbing the inner cheek mucosa and floor of the mouth in figure of eight motions with a sterile cotton swab until it was soaked. In method (B), saliva samples were collected by aspiration of 1 ml of saliva with a sterile plastic syringe on the floor of the mouth, after stimulation with glove. The samples were cultured in modified Gold's broth (MSMG), and on trypticase, yeast extract, sucrose, cystine and bacitracin culture medium (TYSCB). In method (A), the swab with the sample was unloaded in situ on TYSCB and placed in PBS medium for transport. Then, 100 μl of the eluate was seeded in MSMG. In method (B) 100 μl were seeded in TYSCB and 100 μl in MSMG. Both culture media were incubatedundercapnophilicconditions for 48 hours at 37 °C. Colony forming units (CFU/ml) were counted by calibrated operators (kappa = 0.75). The presence of cariogenic streptococci (CS) (Streptococcus mutans-Streptococcus sobrinus) was determined by qPCR in the samples collected by both methods. The CFU/ml counts in MSMG differed significantly between methods (p = 0.021). In TYSCB, the recovery of CFU/ml was higher in method (A), without significant difference (p = 0.705). The molecular technique detected presence of CS, with no difference between collection methods. Collecting saliva samples by swabbing proved more effective in terms of recovery of microorganisms, and did not affect the detection of presence of CS by molecular techniques.
Collapse
Affiliation(s)
- Celina F Cornejo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Buenos Aires, Argentina.
| | - Pablo A Salgado
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Microbiología y Parasitología, Laboratorio de Diagnóstico Microbiológico, Buenos Aires, Argentina
| | - Susana L Molgatini
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Microbiología y Parasitología, Laboratorio de Diagnóstico Microbiológico, Buenos Aires, Argentina
| | - Laura A Gliosca
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Microbiología y Parasitología, Laboratorio de Diagnóstico Microbiológico, Buenos Aires, Argentina
| | - Aldo F Squassi
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Buenos Aires, Argentina
| |
Collapse
|
28
|
Rasing NL, Janus SIM, Kreutz G, Sveinsdottir V, Gold C, Nater UM, Zuidema SU. The Impact of Music on Stress Biomarkers: Protocol of a Substudy of the Cluster-Randomized Controlled Trial Music Interventions for Dementia and Depression in ELderly Care (MIDDEL). Brain Sci 2022; 12:brainsci12040485. [PMID: 35448016 PMCID: PMC9026401 DOI: 10.3390/brainsci12040485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, a large cluster-randomized controlled trial was designed-Music Interventions for Dementia and Depression in ELderly care (MIDDEL)-to assess the effectiveness of music interventions on depression in care home residents with dementia (ClinicalTrials.gov NCT03496675). To understand the pathophysiological mechanisms, we observed the effect of repeated music interventions on stress in this population since chronic stress was associated with depression and an increased risk for dementia. An exploratory study was designed to assess: (1) changes in hair cortisol concentrations as an indicator of longer-term stress; (2) whether baseline stress is a predictor of therapy outcome; (3) pre- and post-treatment effects on salivary α-amylase and cortisol response as an indicator of immediate stress in 180-200 care home residents with dementia and depressive symptoms who partake in the MIDDEL trial. Insights into mediatory effects of stress to explain the effect of music interventions will be gained. Hair cortisol concentrations were assessed at baseline and at 3, 6, and 12 months along with the Perceived Stress Scale. Salivary α-amylase and cortisol concentrations were assessed at 1, 3, and 6 months. Saliva was collected just before a session and 15 and 60 min after a session, along with a stress Visual Analogue Scale.
Collapse
Affiliation(s)
- Naomi L. Rasing
- Department of General Practice and Elderly Care Medicine, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands; (S.I.M.J.); (S.U.Z.)
- Correspondence:
| | - Sarah I. M. Janus
- Department of General Practice and Elderly Care Medicine, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands; (S.I.M.J.); (S.U.Z.)
| | - Gunter Kreutz
- Department of Music, Speech and Music Lab, Carl von Ossietzky University Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany;
| | - Vigdis Sveinsdottir
- NORCE Norwegian Research Centre AS, Nygårdsgaten 112, 5008 Bergen, Norway; (V.S.); (C.G.)
| | - Christian Gold
- NORCE Norwegian Research Centre AS, Nygårdsgaten 112, 5008 Bergen, Norway; (V.S.); (C.G.)
- Department of Clinical and Health Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria;
| | - Urs M. Nater
- Department of Clinical and Health Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria;
| | - Sytse U. Zuidema
- Department of General Practice and Elderly Care Medicine, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands; (S.I.M.J.); (S.U.Z.)
| |
Collapse
|
29
|
Besbes A, Khemiss M, Bragazzi N, Ben Saad H. The Impacts of Ramadan Intermittent Fasting on Saliva Flow-Rate and Metabolic Data: A Systematic Review. Front Nutr 2022; 9:873502. [PMID: 35464020 PMCID: PMC9019589 DOI: 10.3389/fnut.2022.873502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
The aim of this systematic review was to report the impacts of Ramadan intermittent fasting (RIF) on salivary flow-rate (SFR) and metabolic parameters. A thorough literature search was carried out using the databases PubMed and Scopus from their inception up to 15 July 2021. The Boolean connectors used in PubMed were (Saliva [Mesh] AND Fasting [Mesh]). The same keywords were used in Scopus. Inclusion criteria were defined using PICOS. The research included all original studies involving “healthy” adults and published in English. Methodological quality assessment was performed utilizing the Joanna Briggs Institute Critical Appraisal Tool, which allows attributing scores from 1 to 11 to the selected studies. Two authors carried out the literature search, study selection, and data extraction. Differences on issues were resolved by a third author if necessary. The systematic review protocol was registered within the “Open Science Framework” (Doi: 10.17605/OSF.IO/DE7BH). Six articles met the inclusion criteria. All studies were heterogeneous and had a high score of bias and several methodological differences. The following parameters were collected: SFR, melatonin, cortisol, glucose, immunoglobulin A (IgA), uric-acid, alkaline phosphatase (ALP), and aspartate aminotransferase (AST). The SFR decreased by 10% during Ramadan in fasting subjects. The circadian pattern of melatonin remained unchanged during Ramadan, but melatonin levels dropped significantly from baseline. The salivary cortisol levels were unchanged or increased during Ramadan. The salivary glucose levels were decreased. ALP increased significantly, whilst uric-acid and AST decreased significantly. Salivary IgA decreased during the last week of Ramadan. To conclude, there is a trend toward a decrease in SFR and the content of the majority of the biomarkers investigated, with the exception of ALP and uric-acid. These changes cannot be easily attributed to any single factor (hydration status, dietary habits, physical activity, or hygiene habits). Systematic Review Registration: [https://osf.io/de7bh/], identifier [Doi: 10.17605/OSF.IO/DE7B].
Collapse
Affiliation(s)
- Amira Besbes
- Laboratory Research of Medical and Molecular Parasitology and Mycology, LR12ES08, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
- Unit of Microbiology, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Mehdi Khemiss
- Department of Dental Medicine, Fattouma Bourguiba University Hospital, University of Monastir, Monastir, Tunisia
| | - Nicola Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
- Department of Health Sciences, Postgraduate School of Public Health, University of Genoa, Genoa, Italy
- NIHR Leeds Musculoskeletal Biomedical Research Unit, Section of Musculoskeletal Disease, Chapel Allerton Hospital, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
- *Correspondence: Nicola Bragazzi,
| | - Helmi Ben Saad
- Research Laboratory “Heart Failure, LR12SP09”, Faculty of Medicine, Hospital Farhat Hached, University of Sousse, Sousse, Tunisia
| |
Collapse
|
30
|
Kaan AM, Brandt BW, Buijs MJ, Crielaard W, Keijser BJ, Zaura E. Comparability of microbiota of swabbed and spit saliva. Eur J Oral Sci 2022; 130:e12858. [PMID: 35218587 PMCID: PMC9305955 DOI: 10.1111/eos.12858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
In general, saliva is used for microbiota analysis in longitudinal studies, and several collection methods are being used. Using a robust sample collection procedure is important, as it may influence salivary composition. This study explored the comparability of the microbiota of swabbed and spit saliva. Twenty‐two females participated in this cross‐sectional study. The bacterial composition of the three saliva samples (swab collected by the participant (SW‐P), swab collected by the researcher (SW‐R), and spit (SP) was assessed by 16S rRNA gene amplicon sequencing. The bacterial composition of the swabbed and the spit saliva was significantly different irrespective of the operator, and Shannon diversity was significantly higher in spit saliva than in SW‐P and SW‐R. The salivary microbiota of spit and swabbed adult saliva differs significantly. Research on microbial composition therefore requires collection of similar saliva sample types in all study participants.
Collapse
Affiliation(s)
- Amke Marije Kaan
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands
| | - Mark J Buijs
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands
| | - Wim Crielaard
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands
| | - Bart Jf Keijser
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands.,Netherlands Organisation for applied scientific research (TNO), Microbiology and Systems Biology Zeist, The Netherlands
| | - Egija Zaura
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Kharel S, Ojha R, Bist A, Joshi SP, Rauniyar R, Yadav JK. Salivary alpha-synuclein as a potential fluid biomarker in Parkinson's disease: A systematic review and meta-analysis. Aging Med (Milton) 2022; 5:53-62. [PMID: 35309157 PMCID: PMC8917264 DOI: 10.1002/agm2.12192] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Lewy bodies are the pathological hallmarks of Parkinson's disease. There is a need for effective biomarker that is cost effective, less invasive, and easily reproducible with good sensitivity and specificity and can be used to diagnose the condition early and track its severity and progression. Alpha-synuclein (α-syn), an integral component of the Lewy body, is found in saliva and can be a potential answer to the above concerns. Methods PubMed, EMBASE, Google Scholar, and CNKI databases, along with additional sites, were searched from January 2010 to August 2021. Standard mean difference (Hedges' g) with 95% CI was used to show an association. Statistical analysis was done using STATA software version 16 (StataCorp). Results We found a significant reduction in the mean difference of total salivary α-syn among PD patients compared to healthy controls. However, the mean difference of oligomeric α-syn and oligo/total salivary α-syn ratio was significantly increased among PD patients compared to healthy controls. Conclusion Our systematic review and meta-analysis found that salivary α-syn parameters (total, oligomeric, oligo/total) can be considered a simple, easy-to-use, cost-effective, and reliable diagnostic biomarker for PD and its progression.
Collapse
Affiliation(s)
- Sanjeev Kharel
- Maharajgunj Medical CampusTribhuvan University Institute of MedicineKathmanduNepal
| | - Rajeev Ojha
- Department of NeurologyTribhuvan University Institute of MedicineKathmanduNepal
| | - Anil Bist
- Maharajgunj Medical CampusTribhuvan University Institute of MedicineKathmanduNepal
| | - Surya Prakash Joshi
- Maharajgunj Medical CampusTribhuvan University Institute of MedicineKathmanduNepal
| | - Robin Rauniyar
- Maharajgunj Medical CampusTribhuvan University Institute of MedicineKathmanduNepal
| | - Jayant Kumar Yadav
- Department of Internal MedicineTribhuvan University Institute of MedicineKathmanduNepal
| |
Collapse
|
32
|
Elmokanen M, Ezzat M, Ibrahim A, Shaalan O. Effect of dissolving xylitol chewable tablets versus xylitol chewing gum on bacterial count and salivary pH in geriatric bedridden patients: A randomized clinical trial. J Int Oral Health 2022. [DOI: 10.4103/jioh.jioh_205_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
33
|
Metsäniitty M, Hasnat S, Salo T, Salem A. Oral Microbiota-A New Frontier in the Pathogenesis and Management of Head and Neck Cancers. Cancers (Basel) 2021; 14:cancers14010046. [PMID: 35008213 PMCID: PMC8750462 DOI: 10.3390/cancers14010046] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma (HNSCC) is a group of common and aggressive tumors. Recently, oral microbiota has been credited as an important player in carcinogenesis. However, the available knowledge is not always consistent and sometimes conflicting. Therefore, the present comprehensive systematic review of the current clinical reports was conducted to evaluate the role of oral microbiota in HNSCC. Importantly, this study addresses whether oral microbiota targeting could provide diagnostic, prognostic or therapeutic utility in cancer patients. We also discussed the current limitations of this newly emerging field and the potential related strategies for the management of patients with HNSCC and possibly other solid tumors. Abstract Head and neck squamous cell carcinoma (HNSCC) comprises the majority of tumors in head and neck tissues. The prognosis of HNSCC has not significantly improved for decades, signifying the need for new diagnostic and therapeutic targets. Recent evidence suggests that oral microbiota is associated with carcinogenesis. Thus, we conducted a comprehensive systematic review to evaluate the current evidence regarding the role of oral microbiota in HNSCC and whether their targeting may confer diagnostic, prognostic or therapeutic utility. Following the screening of 233 publications retrieved from multiple databases, 34 eligible studies comprising 2469 patients were compiled and critically appraised. Importantly, many oral pathogens, such as Porphyromonas gingivalis and Fusobacterium nucleatum were linked to certain oral potentially malignant lesions and various types of HNSCC. Furthermore, we summarized the association between the expression profiles of different oral bacterial species and their tumorigenic and prognostic effects in cancer patients. We also discussed the current limitations of this newly emerging area and the potential microbiota-related strategies for preventing and treating HNSCC. Whilst many clinical studies are underway to unravel the role of oral microbiota in cancer, the limited available data and experimental approaches reflect the newness of this promising yet challenging field.
Collapse
Affiliation(s)
- Marjut Metsäniitty
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
| | - Shrabon Hasnat
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, Helsinki University Hospital (HUS), 00029 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (M.M.); (S.H.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Department of Pathology, Helsinki University Hospital (HUS), 00029 Helsinki, Finland
- Correspondence:
| |
Collapse
|
34
|
Reitano E, de’Angelis N, Gavriilidis P, Gaiani F, Memeo R, Inchingolo R, Bianchi G, de’Angelis GL, Carra MC. Oral Bacterial Microbiota in Digestive Cancer Patients: A Systematic Review. Microorganisms 2021; 9:2585. [PMID: 34946186 PMCID: PMC8707512 DOI: 10.3390/microorganisms9122585] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
The relation between the gut microbiota and human health is increasingly recognized. Recently, some evidence suggested that dysbiosis of the oral microbiota may be involved in the development of digestive cancers. A systematic review was conducted according to the PRISMA guidelines to investigate the association between the oral microbiota and digestive cancers. Several databases including Medline, Scopus, and Embase were searched by three independent reviewers, without date restriction. Over a total of 1654 records initially identified, 28 studies (2 prospective cohort studies and 26 case-controls) were selected. They investigated oral microbiota composition in patients with esophageal squamous cell carcinoma (n = 5), gastric cancer (n = 5), colorectal cancer (n = 9), liver carcinoma (n = 2), and pancreatic cancer (n = 7). In most of the studies, oral microbiota composition was found to be different between digestive cancer patients and controls. Particularly, oral microbiota dysbiosis and specific bacteria, such as Fusobacterium nucleatum and Porphyromonas gingivalis, appeared to be associated with colorectal cancers. Current evidence suggests that differences exist in oral microbiota composition between patients with and without digestive cancers. Further studies are required to investigate and validate oral-gut microbial transmission patterns and their role in digestive cancer carcinogenesis.
Collapse
Affiliation(s)
- Elisa Reitano
- Division of General Surgery, Department of Translational Medicine, Maggiore della Carità Hospital, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Nicola de’Angelis
- Unit of Digestive and HPB Surgery, CARE Department, Henri Mondor Hospital, AP-HP, 94010 Créteil, France; (N.d.); (G.B.)
- Faculté de Santé, Université Paris Est, UPEC, 94010 Créteil, France
| | - Paschalis Gavriilidis
- Department of HBP Surgery, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK;
| | - Federica Gaiani
- Gastroenterology and Endoscopy Unit, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy;
- Microbiome Research Hub, University of Parma, 43126 Parma, Italy
| | - Riccardo Memeo
- Unit of HPB Surgery, General Regional University Hospital F. Miulli, Acquaviva delle Fonti, 72021 Bari, Italy;
| | - Riccardo Inchingolo
- Unit of Interventional Radiology, General Regional Hospital F. Miulli, Acquaviva delle Fonti, 72021 Bari, Italy;
| | - Giorgio Bianchi
- Unit of Digestive and HPB Surgery, CARE Department, Henri Mondor Hospital, AP-HP, 94010 Créteil, France; (N.d.); (G.B.)
| | - Gian Luigi de’Angelis
- Gastroenterology and Endoscopy Unit, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy;
| | - Maria Clotilde Carra
- Service of Odontology, Department of Periodontology, Rothschild Hospital, AP-HP, Université de Paris, U.F.R. of Odontology-Garanciere, 75006 Paris, France;
| |
Collapse
|
35
|
Shawahna R, Zyoud A, Naseef O, Muwafi K, Matar A. Salivary Lead Levels among Workers in Different Industrial Areas in the West Bank of Palestine: a Cross-Sectional Study. Biol Trace Elem Res 2021; 199:4410-4417. [PMID: 33394307 DOI: 10.1007/s12011-020-02567-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022]
Abstract
Saliva is a biofluid that can easily be obtained and used for biomonitoring lead levels in occupationally and environmentally exposed individuals. The aims of this study were to determine salivary lead levels among workers in different industrial areas in the West Bank of Palestine and investigate the association between sociodemographic and occupational characteristics of the workers and their salivary lead levels. Salivary samples were obtained from workers in different industrial areas in metal-free polyethylene tubes. The samples were analyzed for their lead contents using a pre-validated inductively coupled plasma-mass spectrometric method. A total of 97 salivary samples were analyzed. The median salivary lead level was 1.84 μg/dL an IQR of 5.04 μg/dL. Salivary lead levels were significantly higher in workers who were 40 years and older (p value = 0.031), had 3 children or more (p value = 0.048), worked in repair workshops (p value = 0.012), worked in industrial areas for 20 years or more (p value = 0.048), did not consume fruits on regular basis (p value = 0.031), and smoked for 30 years or more (p value = 0.013). Multiple linear regression showed that smoking of 30 years old or more was a significant (p value < 0.001) predictor of higher salivary lead levels. Salivary lead levels among workers from different industrial areas of the West Bank were comparable to those occupationally exposed to lead in more industrialized and urbanized areas of the world. Smoking was a predictor of higher salivary lead levels.
Collapse
Affiliation(s)
- Ramzi Shawahna
- Department of Physiology, Pharmacology and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University, New Campus, Building: 19, Office: 1340, P.O. Box 7, Nablus, Palestine.
- An-Najah BioSciences Unit, Centre for Poisons Control, Chemical and Biological Analyses, An-Najah National University, Nablus, Palestine.
| | - Ahed Zyoud
- Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, Palestine
| | - Omar Naseef
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Kamil Muwafi
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Abdullah Matar
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
36
|
Solaz‐García A, Lara‐Cantón I, Peña‐Bautista C, Cháfer‐Pericás C, Cañada‐Martínez AJ, Pinilla‐González A, Vento M, Sáenz‐González P. Non-invasive monitoring of saliva can be used to identify oxidative stress biomarkers in preterm and term newborn infants. Acta Paediatr 2021; 110:3255-3260. [PMID: 34403512 DOI: 10.1111/apa.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
AIM The aim of this study was to appraise the feasibility and reproducibility of applying a validated analytical method to determine salivary oxidative stress biomarkers in newborn infants. METHODS Prospective observational single-centre study was carried out in level III neonatal intensive care unit. Eligible patients were preterm infants and healthy full-term newborn infants. Salivary samples were analysed in the chromatographic system. RESULTS A total of 23 premature newborn infants and 13 full-term newborns were included. We analysed salivary levels of oxidative stress biomarkers for 5-F2t isoprostane, 15-E2t isoprostane, prostaglandin E2 and prostaglandin F2α. The multivariate predictive model showed a positive association between female and 5-F2t isoprostonae, and between female sex and prostglandin F2α. In addition, we found a positive association between gestational age and levels of prostaglandin E2 . Furthermore, in the premature group, we found a positive association between the inspired fraction of oxygen and levels of prostaglandin G2 . CONCLUSION We identified and determined lipid peroxidation biomarkers in term and preterm newborn infants' saliva using specific and validated mass spectrometry technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Máximo Vento
- Neonatal Research Unit Health Research Institute La Fe Valencia Spain
- Division of Neonatology University and Polytechnic Hospital La Fe Valencia Spain
| | - Pilar Sáenz‐González
- Neonatal Research Unit Health Research Institute La Fe Valencia Spain
- Division of Neonatology University and Polytechnic Hospital La Fe Valencia Spain
| |
Collapse
|
37
|
Mazzitelli C, Ionescu A, Josic U, Brambilla E, Breschi L, Mazzoni A. Microbial contamination of resin composites inside their dispensers: An increased risk of cross-infection? J Dent 2021; 116:103893. [PMID: 34798151 DOI: 10.1016/j.jdent.2021.103893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To evaluate the effects of microorganisms' contamination inside the dispensing syringes of different types of resin-based composites (RBCs). METHODS This study encompassed two sections. First, an anonymous electronic survey was submitted via Google forms to Italian dentists to acquire information about composite handling during clinical procedures. Then, a bench test was performed on nanohybrid RBCs differing in matrix chemistry and fillers [FiltekTM Supreme XTE (3MTM); Venus Pearl (Kulzer GmbH); Admira Fusion x-tra (Voco)] to evaluate the microbial viability on their surfaces with/out photocuring. Uncured RBCs were exposed to standardized inocula of Streptococcus Mutans, Candida Albicans, Lactobacillus Rhamnosus, or mixt plaque in an in vitro model reproducing clinical restorative procedures. Half of the RBC specimens were cured after exposure. Microbial viability was assessed using an MTT-based test. Statistical analysis included three-way ANOVA and Tukey's tests (p<0.05). RESULTS Among 300 dentists completing the survey, the majority declared to use the spatula to carry the RBCs from the syringe to the dental cavity (50% same spatula; 35% two spatulas). However, 80% of respondents had personal feelings that using one spatula could be a source of cross-contamination. In vitro results using one spatula showed microbial contamination of all RBCs after one hour of storage. The contamination levels depended on the used strain and RBC type (p<0.0001), but photocuring did not reduce contamination (p = 0.2992). CONCLUSIONS Microbial species' viability on uncured RBCs and after photocuring shows the existence of a considerable risk of cross-infection. Clinical procedures in Restorative Dentistry need to acknowledge and to reduce such risk during RBCs handling. CLINICAL SIGNIFICANCE Dentists must be aware of the possibility of cross-infection during restorative procedures, especially when the same spatula is repeatedly used for placing RBC in the cavity.
Collapse
Affiliation(s)
- C Mazzitelli
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - A Ionescu
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, via Pascal 36, Milan 20133, Italy
| | - U Josic
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - E Brambilla
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, via Pascal 36, Milan 20133, Italy
| | - L Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy.
| | - A Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| |
Collapse
|
38
|
Buchan E, Kelleher L, Clancy M, Stanley Rickard JJ, Oppenheimer PG. Spectroscopic molecular-fingerprint profiling of saliva. Anal Chim Acta 2021; 1185:339074. [PMID: 34711319 DOI: 10.1016/j.aca.2021.339074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/04/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023]
Abstract
Saliva analysis has been gaining interest as a potential non-invasive source of disease indicative biomarkers due to being a complex biofluid correlating with blood-based constituents on a molecular level. For saliva to cement its usage for analytical applications, it is paramount to gain underpinning molecular knowledge and establish a 'baseline' of the salivary composition in healthy individuals as well as characterize how these factors are impacting its performance as potential analytical biofluid. Here, we have systematically studied the molecular spectral fingerprint of saliva, including the changes associated with gender, age, and time. Via hybrid artificial neural network algorithms and Raman spectroscopy, we have developed a non-destructive molecular profiling approach enabling the assessment of salivary spectral changes yielding the determination of gender and age of the biofluid source. Our classification algorithm successfully identified the gender and age from saliva with high classification accuracy. Discernible spectral molecular 'barcodes' were subsequently constructed for each class and found to primarily stem from amino acid, protein, and lipid changes in saliva. This unique combination of Raman spectroscopy and advanced machine learning techniques lays the platform for a variety of applications in forensics and biosensing.
Collapse
Affiliation(s)
- Emma Buchan
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Liam Kelleher
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Michael Clancy
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK.
| |
Collapse
|
39
|
Potential of Salivary Biomarkers in Autism Research: A Systematic Review. Int J Mol Sci 2021; 22:ijms221910873. [PMID: 34639213 PMCID: PMC8509590 DOI: 10.3390/ijms221910873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
The diagnostic process for autism spectrum disorders (ASD) is based on a behavioral analysis of the suspected individual. Despite intensive research, no specific and valid biomarker has been identified for ASD, but saliva, with its advantages such as non-invasive collection, could serve as a suitable alternative to other body fluids. As a source of nucleic acid of both human and microbial origin, protein and non-protein molecules, saliva offers a complex view on the current state of the organism. Additionally, the use of salivary markers seems to be less complicated not only for ASD screening but also for revealing the etiopathogenesis of ASD, since enrolling neurotypical counterparts willing to participate in studies may be more feasible. The aim of the presented review is to provide an overview of the current research performed on saliva in relation to ASD, mutual complementing, and discrepancies that result in difficulties applying the observed markers in clinical practice. We emphasize the methodological limitations of saliva collection and processing as well as the lack of information regarding ASD diagnosis, which is critically discussed.
Collapse
|
40
|
Abstract
Measurement of saliva microbes is promoted as a way to detect oral and systemic disease, yet there is a multitude of factors that affect the oral microbiome. The salivary microbiome is influenced by biofilm of shedding (epithelial) and non-shedding (tooth) surfaces. Methods for study of the salivary microbiome are by no means standardized, and differences in sample collection, storage, and processing can all affect results to some degree. Here we describe one method of saliva collection that has been validated for reproducibility. Standard 16S rRNA gene analysis is done using the Human Oral Microbiome Database library which results in analysis that is straightforward. Everything about this procedure except the library synthesis and DNA sequencing itself can easily be done in-house. To gauge the ability of salivary microbial analytics to distinguish between edentulous and dentate oral conditions, differences in the saliva microbiome of subjects with and without teeth were examined. Fifty-two dentate and 49 edentulous subjects provided stimulated saliva samples. 16S rRNA gene sequencing, QIIME-based data processing, and statistical analysis were done using several different analytical approaches to detect differences in the salivary microbiome between the two groups. Bacteria diversity was lower in the edentulous group. Remarkably, all 31 of the most significant differences in taxa were deficits that occurred in the edentulous group. As one might expect, many of these taxa are attributed to dental plaque and gingival sulcus-associated bacteria verifying that the measurement of 16S rRNA genes in the bacteria of the saliva can be used to reproducibly measure expected differences in the oral microbiome that occur with edentulism or other conditions and diseases.
Collapse
|
41
|
Castillo-Lopez E, Petri RM, Ricci S, Rivera-Chacon R, Sener-Aydemir A, Sharma S, Reisinger N, Zebeli Q. Dynamic changes in salivation, salivary composition, and rumen fermentation associated with duration of high-grain feeding in cows. J Dairy Sci 2021; 104:4875-4892. [PMID: 33663833 DOI: 10.3168/jds.2020-19142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022]
Abstract
Salivary secretions are essential for the regulation of digestive processes, as well as rumen and cow health. This research evaluated the effects of the duration of high-grain feeding, and of the time relative to a meal, on salivation, saliva properties, feed bolus characteristics, chewing activity, ruminal and reticular volatile fatty acids, as well as salivary and ruminal pH. Nine nonlactating cannulated Holstein cows were sampled at 1 and 23 d after transition to a 65% grain diet (short term and long term, respectively). Both before and after a controlled meal (2.5 kg of dry matter, offered over 4 h), unstimulated saliva was taken orally for composition analysis. Stimulated salivation and feed boli characteristics were evaluated by collection of ingesta from cardia during 30 min. Chewing and ruminal pH were measured during the controlled meal and for a total of 6 h thereafter. Results from unstimulated saliva showed no effect of the duration of high-grain feeding on bicarbonate, phosphate, total proteins, mucins, lysozyme, and buffer capacity, but increased osmolality at the long term. Lysozyme activity did not differ with high-grain feeding duration, but tended to be lower after the meal. In contrast to short-term-fed cows, the long-term-fed cows increased both meal consumption and feed bolus size, but decreased chewing and feed ensalivation (5.2 vs. 4.6 ± 0.50 g of saliva/g of dry matter), and had lower pH of the stimulated saliva (7.00 vs. 6.67 ± 0.076). These cows also had decreased chewing index (66.5 vs. 45.4 min/kg of neutral detergent fiber), and despite the increase in stimulated saliva buffer capacity (0.027 vs. 0.039 ± 0.006), mean ruminal pH decreased (6.31 vs. 6.11 ± 0.065) during ad libitum feeding. Both in the rumen and reticulum, the concentration of total volatile fatty acids was lower and propionate proportion was higher at the long term. Linear regression analyses revealed a positive influence of the flow rates of salivary bicarbonate and phosphate on ruminal pH during the short term. For every 1-mol increment in the flow of bicarbonate or phosphate, ruminal pH increased by 0.062 or 0.439 units, respectively. Overall, salivary buffers are key determinants of ruminal pH regulation, especially during short-term grain feeding. However, in the long term, ruminal pH drop during ad libitum feeding was stronger, and this effect seems to be exacerbated by increased feed bolus size, accompanied by reductions in feed ensalivation, stimulated saliva pH, and chewing index.
Collapse
Affiliation(s)
- Ezequias Castillo-Lopez
- Institute of Animal Nutrition and Functional Plant Compounds, and Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Renee M Petri
- Institute of Animal Nutrition and Functional Plant Compounds, and Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sara Ricci
- Institute of Animal Nutrition and Functional Plant Compounds, and Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Raul Rivera-Chacon
- Institute of Animal Nutrition and Functional Plant Compounds, and Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Arife Sener-Aydemir
- Institute of Animal Nutrition and Functional Plant Compounds, and Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, and Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Nicole Reisinger
- Institute of Animal Nutrition and Functional Plant Compounds, and Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, and Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
42
|
Zaura E, Pappalardo VY, Buijs MJ, Volgenant CMC, Brandt BW. Optimizing the quality of clinical studies on oral microbiome: A practical guide for planning, performing, and reporting. Periodontol 2000 2021; 85:210-236. [PMID: 33226702 PMCID: PMC7756869 DOI: 10.1111/prd.12359] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With this review, we aim to increase the quality standards for clinical studies with microbiome as an output parameter. We critically address the existing body of evidence for good quality practices in oral microbiome studies based on 16S rRNA gene amplicon sequencing. First, we discuss the usefulness of microbiome profile analyses. Is a microbiome study actually the best approach for answering the research question? This is followed by addressing the criteria for the most appropriate study design, sample size, and the necessary data (study metadata) that should be collected. Next, we evaluate the available evidence for best practices in sample collection, transport, storage, and DNA isolation. Finally, an overview of possible sequencing options (eg, 16S rRNA gene hypervariable regions, sequencing platforms), processing and data interpretation approaches, as well as requirements for meaningful data storage, sharing, and reporting are provided.
Collapse
Affiliation(s)
- Egija Zaura
- Department of Preventive DentistryAcademic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamthe Netherlands
| | - Vincent Y. Pappalardo
- Department of Preventive DentistryAcademic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamthe Netherlands
| | - Mark J. Buijs
- Department of Preventive DentistryAcademic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamthe Netherlands
| | - Catherine M. C. Volgenant
- Department of Preventive DentistryAcademic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamthe Netherlands
| | - Bernd W. Brandt
- Department of Preventive DentistryAcademic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
43
|
Relvas M, Regueira-Iglesias A, Balsa-Castro C, Salazar F, Pacheco JJ, Cabral C, Henriques C, Tomás I. Relationship between dental and periodontal health status and the salivary microbiome: bacterial diversity, co-occurrence networks and predictive models. Sci Rep 2021; 11:929. [PMID: 33441710 PMCID: PMC7806737 DOI: 10.1038/s41598-020-79875-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
The present study used 16S rRNA gene amplicon sequencing to assess the impact on salivary microbiome of different grades of dental and periodontal disease and the combination of both (hereinafter referred to as oral disease), in terms of bacterial diversity, co-occurrence network patterns and predictive models. Our scale of overall oral health was used to produce a convenience sample of 81 patients from 270 who were initially recruited. Saliva samples were collected from each participant. Sequencing was performed in Illumina MiSeq with 2 × 300 bp reads, while the raw reads were processed according to the Mothur pipeline. The statistical analysis of the 16S rDNA sequencing data at the species level was conducted using the phyloseq, DESeq2, Microbiome, SpiecEasi, igraph, MixOmics packages. The simultaneous presence of dental and periodontal pathology has a potentiating effect on the richness and diversity of the salivary microbiota. The structure of the bacterial community in oral health differs from that present in dental, periodontal or oral disease, especially in high grades. Supragingival dental parameters influence the microbiota’s abundance more than subgingival periodontal parameters, with the former making a greater contribution to the impact that oral health has on the salivary microbiome. The possible keystone OTUs are different in the oral health and disease, and even these vary between dental and periodontal disease: half of them belongs to the core microbiome and are independent of the abundance parameters. The salivary microbiome, involving a considerable number of OTUs, shows an excellent discriminatory potential for distinguishing different grades of dental, periodontal or oral disease; considering the number of predictive OTUs, the best model is that which predicts the combined dental and periodontal status.
Collapse
Affiliation(s)
- M Relvas
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - A Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain
| | - C Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain
| | - F Salazar
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - J J Pacheco
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - C Cabral
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - C Henriques
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - I Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain.
| |
Collapse
|
44
|
Abstract
Evidence on the role of the oral microbiome in health and disease is changing the way we understand, diagnose, and treat ailments. Numerous studies on diseases affecting the oral cavity have revealed a large amount of data that is invaluable for the advancements in diagnosing and treating these diseases. However, the clinical translation of most of these exploratory data is stalled by variable methodology between studies and non-uniform reporting of the data.Understanding the key areas that are gateways to bias in microbiome studies is imperative to overcome this challenge faced by oral microbiome research. Bias can be multifactorial and may be introduced in a microbiome research study during the formulation of the study design, sample collection and storage, or the sample processing protocols before sequencing. This chapter summarizes the recommendations from literature to eliminate bias in the microbiome research studies and to ensure the reproducibility of the microbiome research data.
Collapse
Affiliation(s)
- Divya Gopinath
- Oral Diagnostic & Surgical Sciences Department, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia.
| | - Rohit Kunnath Menon
- Clinical Dentistry (Prosthodontics), School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Bescos R, Brookes ZL, Belfield LA, Fernandez-Sanjurjo M, Casas-Agustench P. Modulation of oral microbiota: A new frontier in exercise supplementation. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Minarovits J. Anaerobic bacterial communities associated with oral carcinoma: Intratumoral, surface-biofilm and salivary microbiota. Anaerobe 2020; 68:102300. [PMID: 33246097 DOI: 10.1016/j.anaerobe.2020.102300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
It was estimated that more than 700 bacterial species inhabit the oral cavity of healthy humans. Anaerobes comprise a significant fraction of the oral bacteriome and play an important role in the formation of multi-species biofilms attached to various anatomical sites. Bacterial biofilms are also associated with pathologic laesions of the oral cavity, including oral squamous cell carcinoma (OSCC), and distinct oral taxa could also be detected within the tumors, i.e. in deep biopsy samples. These observations suggested that certain oral bacteria or oral bacterial communities may play a causative role in oral carcinogenesis, in addition to the well characterized risk factors of oral cancer. Alternatively, it was also proposed that a subset of oral bacteria may have a growth advantage in the unique microenvironment of OSCC. Recently, a series of studies analysed the OSCC-associated bacterial communities using metataxonomic, metagenomic and metatranscriptomic approaches. This review outlines the major differences between the community structure of microbiota in tumor biopsy, surface-biofilm and salivary or oral wash samples collected from OSCC patients, compared to corresponding samples from control persons. A special emphasis is given to the anaerobic bacteria Fusobacterium nucleatum and Fusobacterium periodonticum that were characterised repeatedly as "OSCC-associated" in independent studies. Predicted microbial functions and relevant in vivo experimental models of oral carcinogenesis will also be summarized.
Collapse
Affiliation(s)
- Janos Minarovits
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, H-6720 Szeged, Tisza Lajos krt. 64 Hungary.
| |
Collapse
|
47
|
The effectiveness and acceptability of a portable pediatric sialometer: A new technique for saliva collection. Arch Oral Biol 2020; 118:104847. [DOI: 10.1016/j.archoralbio.2020.104847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
48
|
Omori M, Kato-Kogoe N, Sakaguchi S, Fukui N, Yamamoto K, Nakajima Y, Inoue K, Nakano H, Motooka D, Nakano T, Nakamura S, Ueno T. Comparative evaluation of microbial profiles of oral samples obtained at different collection time points and using different methods. Clin Oral Investig 2020; 25:2779-2789. [PMID: 32975702 DOI: 10.1007/s00784-020-03592-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/15/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Recently, the oral microbiome has been found to be associated with oral and general health status. Although various oral sample collection protocols are available, the potential differences between the results yielded by these protocols remain unclear. In this study, we aimed to determine the effects of different time points and methods of oral sample collection on the outcomes of microbiome analysis. MATERIALS AND METHODS Oral samples were collected from eight healthy individuals at four different time points: 2 h after eating, immediately after teeth brushing, immediately after waking up, and 2 h after eating on the subsequent day. Four methods of saliva collection were evaluated: spitting, gum chewing, cotton swab, and oral rinse. Oral microbiomes of these samples were compared by analyzing the bacterial 16S rRNA gene sequence data. RESULTS The oral microbial composition at the genus level was similar among all sample collection time points and methods. Alpha diversity was not significantly different among the groups, whereas beta diversity was different between the spitting and cotton swab methods. Compared with the between-subject variations, the weighted UniFrac distances between the groups were not minor. CONCLUSIONS Although the oral microbiome profiles obtained at different collection time points and using different methods were similar, some differences were detected. CLINICAL RELEVANCE The results of the present study suggest that although all the described protocols are useful, comparisons among microbiomes of samples collected by different methods are not appropriate. Researchers must be aware of the issues regarding the impact of saliva collection methods.
Collapse
Affiliation(s)
- Michi Omori
- Department of Dentistry and Oral Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Nahoko Kato-Kogoe
- Department of Dentistry and Oral Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan.
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Nozomu Fukui
- Department of Dentistry and Oral Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kayoko Yamamoto
- Department of Dentistry and Oral Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Yoichiro Nakajima
- Department of Dentistry and Oral Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Kazuya Inoue
- Department of Dentistry and Oral Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Hiroyuki Nakano
- Department of Dentistry and Oral Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takaaki Ueno
- Department of Dentistry and Oral Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| |
Collapse
|
49
|
Eydou Z, Jad BN, Elsayed Z, Ismail A, Magaogao M, Hossain A. Investigation on the effect of vitamin C on growth & biofilm-forming potential of Streptococcus mutans isolated from patients with dental caries. BMC Microbiol 2020; 20:231. [PMID: 32731889 PMCID: PMC7393720 DOI: 10.1186/s12866-020-01914-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Streptococcus mutans is a major cause of dental caries. Its capacity to produce biofilm is fundamental in the pathogenesis of this ubiquitous condition. As maintaining a healthy dentition is a genuine goal given the contemporary advance in caries control, researchers are striving to achieve a breakthrough in caries therapy. We are taking the anti-cariogenic properties of vitamin C a step-further, considering the well-known evidence of the inversely proportionate relationship between salivary levels of vitamin C and dental caries. The aim of this study was to determine MIC, MBC, biofilm prevention concentration (BPC), and derivative measures of vitamin C against fresh clinical isolates of S. mutans to evaluate its efficacy as an anti-cariogenic agent. RESULTS Based on the data of four independent experiments done in quadruplicates, we found a concentration-dependent inhibitory effect of vitamin C on all S. mutans strains tested. The average MBC, MIC, and BPC of vitamin C were found to be 10.16, 9.38, and 5.61 mg/ml, respectively. Spectrophotometric quantitation of crystal violet showed diminished biofilm formation in the presence of vitamin C (p < 0.05). When compared with gentamicin, vitamin C produced a zone of inhibition that was three times as large against the clinical isolates. CONCLUSION Our results show that vitamin C has a negative effect on S. mutans growth and biofilm formation. Being the first to meticulously utilize BPC to explore a well-known effect of vitamin C, this report aims to help in the instigation of trials of higher evidence that will ultimately culminate in repurposing vitamin C as a novel anti-cariogenic agent, albeit further studies are required to provide auxiliary evidence in this context.
Collapse
Affiliation(s)
- Zehdi Eydou
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE.
| | - Bader Naser Jad
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE
| | - Zeyad Elsayed
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE
| | - Anas Ismail
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE
| | - Michael Magaogao
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE
| | - Ashfaque Hossain
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, UAE
| |
Collapse
|
50
|
Zhu C, Yuan C, Wei FQ, Sun XY, Zheng SG. Comparative evaluation of peptidome and microbiota in different types of saliva samples. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:686. [PMID: 32617306 PMCID: PMC7327340 DOI: 10.21037/atm-20-393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Clinical and research interest in salivary peptidome and microbiota is ever-growing owing to its great value for diagnosis, risk assessment and prediction of prognosis in oral and systemic diseases. Saliva can be stimulated for the purpose of rapid collection, but currently there are no studies systematically addressing the similarities and differences of salivary peptidome and microbiota in different types of samples. The purpose of this study was to investigate the variations of salivary peptidome and microbial profiles in response to different stimulating conditions. Methods Unstimulated saliva and three types of stimulated saliva samples (olfaction, gustation, and mastication stimulated saliva) were collected from 10 systematically and orally healthy donors. The peptidome profiles were detected by weak cation exchange magnetic beads and analyzed through matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF MS), while their microbial profiles were analyzed by 16S rDNA V3-V4 hypervariable region amplicon sequencing utilizing the Illumina MiSeq PE300 platform. The distance matrixes of salivary peptidome and microbial profiles were generated and the intra-individual distances were extracted, then the variations brought by different sampling conditions and repeated collections were compared. Results By comparisons of the overall salivary peptidome and microbial profiles, olfactory stimulation led to minimal variations comparing with that of unstimulated saliva, but appreciable variations were observed between saliva samples collected with gustatory/masticatory stimulation and unstimulated saliva. The three types of stimulated saliva exhibited significantly different peptidome and microbial profiles. Conclusions Stimulated saliva collected in response to olfactory stimulation is an appropriate alternative to unstimulated saliva, whereas gustatory/masticatory stimulation introduced appreciable variations. It is suggested that only one type of stimulating method should be used throughout one peptidome/microbiome research, which provides comprehensive insight into the optimization of sampling methods for salivaomic studies in the future.
Collapse
Affiliation(s)
- Ce Zhu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Chao Yuan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Fang-Qiao Wei
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiang-Yu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shu-Guo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|