1
|
Jahid MJ, Nolting JM. Dynamics of a Panzootic: Genomic Insights, Host Range, and Epidemiology of the Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b in the United States. Viruses 2025; 17:312. [PMID: 40143242 PMCID: PMC11946527 DOI: 10.3390/v17030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 03/28/2025] Open
Abstract
In late 2021, Eurasian-lineage highly pathogenic avian influenza (HPAI) A(H5N1) viruses from HA clade 2.3.4.4b were first detected in the United States. These viruses have caused severe morbidity and mortality in poultry and have been detected in numerous wild and domestic animals, including cows and humans. Notably, infected cows transmitted the virus to cats, causing extreme pathogenicity and death. While human-to-human spread of the virus has not been recorded, efficient transmission of the bovine-origin virus has also led to extreme pathogenicity and death in ferret models. Recently, markers in PB2 (E627K) and HA (E186D, Q222H), indicating mammalian adaptation mutations, were detected in an H5N1-infected patient manifesting critical illness in Canada. These, combined with instances of interspecies spread of the virus, have raised global public health concerns. This could highlight the potential for the virus to successfully adapt to mammals, posing a serious risk of a global outbreak. A One Health approach is, thereby, necessary to monitor and control the outbreak. This review aims to analyze the epidemiology, transmission, and ecological impacts of HPAI A(H5N1) clade 2.3.4.4b in the U.S., identify knowledge gaps, and inform strategies for effective outbreak management and mitigation.
Collapse
|
2
|
Damodaran L, Jaeger A, Moncla LH. Intensive transmission in wild, migratory birds drove rapid geographic dissemination and repeated spillovers of H5N1 into agriculture in North America. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628739. [PMID: 39763879 PMCID: PMC11702765 DOI: 10.1101/2024.12.16.628739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Since late 2021, a panzootic of highly pathogenic H5N1 avian influenza virus has driven significant morbidity and mortality in wild birds, domestic poultry, and mammals. In North America, infections in novel avian and mammalian species suggest the potential for changing ecology and establishment of new animal reservoirs. Outbreaks among domestic birds have persisted despite aggressive culling, necessitating a re-examination of how these outbreaks were sparked and maintained. To recover how these viruses were introduced and disseminated in North America, we analyzed 1,818 Hemagglutinin (HA) gene sequences sampled from North American wild birds, domestic birds and mammals from November 2021-September 2023 using Bayesian phylodynamic approaches. Using HA, we infer that the North American panzootic was driven by ~8 independent introductions into North America via the Atlantic and Pacific Flyways, followed by rapid dissemination westward via wild, migratory birds. Transmission was primarily driven by Anseriformes, shorebirds, and Galliformes, while species such as songbirds, raptors, and owls mostly acted as dead-end hosts. Unlike the epizootic of 2015, outbreaks in domestic birds were driven by ~46-113 independent introductions from wild birds, with some onward transmission. Backyard birds were infected ~10 days earlier on average than birds in commercial poultry production settings, suggesting that they could act as "early warning signals" for transmission upticks in a given area. Our findings support wild birds as an emerging reservoir for HPAI transmission in North America and suggest continuous surveillance of wild Anseriformes and shorebirds as crucial for outbreak inference. Future prevention of agricultural outbreaks may require investment in strategies that reduce transmission at the wild bird/agriculture interface, and investigation of backyard birds as putative early warning signs.
Collapse
Affiliation(s)
- Lambodhar Damodaran
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania
| | - Anna Jaeger
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania
| | - Louise H. Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania
| |
Collapse
|
3
|
Stanislawek WL, Tana T, Rawdon TG, Cork SC, Chen K, Fatoyinbo H, Cogger N, Webby RJ, Webster RG, Joyce M, Tuboltsev MA, Orr D, Ohneiser S, Watts J, Riegen AC, McDougall M, Klee D, O’Keefe JS. Avian influenza viruses in New Zealand wild birds, with an emphasis on subtypes H5 and H7: Their distinctive epidemiology and genomic properties. PLoS One 2024; 19:e0303756. [PMID: 38829903 PMCID: PMC11146706 DOI: 10.1371/journal.pone.0303756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
The rapid spread of highly pathogenic avian influenza (HPAI) A (H5N1) viruses in Southeast Asia in 2004 prompted the New Zealand Ministry for Primary Industries to expand its avian influenza surveillance in wild birds. A total of 18,693 birds were sampled between 2004 and 2020, including migratory shorebirds (in 2004-2009), other coastal species (in 2009-2010), and resident waterfowl (in 2004-2020). No avian influenza viruses (AIVs) were isolated from cloacal or oropharyngeal samples from migratory shorebirds or resident coastal species. Two samples from red knots (Calidris canutus) tested positive by influenza A RT-qPCR, but virus could not be isolated and no further characterization could be undertaken. In contrast, 6179 samples from 15,740 mallards (Anas platyrhynchos) tested positive by influenza A RT-qPCR. Of these, 344 were positive for H5 and 51 for H7. All H5 and H7 viruses detected were of low pathogenicity confirmed by a lack of multiple basic amino acids at the hemagglutinin (HA) cleavage site. Twenty H5 viruses (six different neuraminidase [NA] subtypes) and 10 H7 viruses (two different NA subtypes) were propagated and characterized genetically. From H5- or H7-negative samples that tested positive by influenza A RT-qPCR, 326 AIVs were isolated, representing 41 HA/NA combinations. The most frequently isolated subtypes were H4N6, H3N8, H3N2, and H10N3. Multivariable logistic regression analysis of the relations between the location and year of sampling, and presence of AIV in individual waterfowl showed that the AIV risk at a given location varied from year to year. The H5 and H7 isolates both formed monophyletic HA groups. The H5 viruses were most closely related to North American lineages, whereas the H7 viruses formed a sister cluster relationship with wild bird viruses of the Eurasian and Australian lineages. Bayesian analysis indicates that the H5 and H7 viruses have circulated in resident mallards in New Zealand for some time. Correspondingly, we found limited evidence of influenza viruses in the major migratory bird populations visiting New Zealand. Findings suggest a low probability of introduction of HPAI viruses via long-distance bird migration and a unique epidemiology of AIV in New Zealand.
Collapse
Affiliation(s)
| | - Toni Tana
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | - Susan C. Cork
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kylie Chen
- Department of Computational Biology, University of Auckland, Auckland, New Zealand
| | - Hammed Fatoyinbo
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Naomi Cogger
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Maree Joyce
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | - Della Orr
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | - Jonathan Watts
- Ministry for Primary Industries, Upper Hutt, New Zealand
| | | | | | | | | |
Collapse
|
4
|
Azeem S, Baroch J, Tewari D, Pabilonia KL, Killian M, Bradel-Tretheway B, Sun D, Ghorbani-Nezami S, Yoon KJ. Molecular Characterization of Non-H5 and Non-H7 Avian Influenza Viruses from Non-Mallard Migratory Waterbirds of the North American Flyways, 2006-2011. Pathogens 2024; 13:333. [PMID: 38668288 PMCID: PMC11054893 DOI: 10.3390/pathogens13040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
The surveillance of migratory waterbirds (MWs) for avian influenza virus (AIV) is indispensable for the early detection of a potential AIV incursion into poultry. Surveying AIV infections and virus subtypes in understudied MW species could elucidate their role in AIV ecology. Oropharyngeal-cloacal (OPC) swabs were collected from non-mallard MWs between 2006 and 2011. OPC swabs (n = 1158) that molecularly tested positive for AIV (Cts ≤ 32) but tested negative for H5 and H7 subtypes were selected for virus isolation (VI). The selected samples evenly represented birds from all four North American flyways (Pacific, Central, Mississippi, and Atlantic). Eighty-seven low pathogenic AIV isolates, representing 31 sites in 17 states, were recovered from the samples. All isolates belonged to the North American lineage. The samples representing birds from the Central Flyway had the highest VI positive rate (57.5%) compared to those from the other flyways (10.3-17.2%), suggesting that future surveillance can focus on the Central Flyway. Of the isolates, 43.7%, 12.6%, and 10.3% were obtained from blue-winged teal, American wigeon, and American black duck species, respectively. Hatch-year MWs represented the majority of the isolates (70.1%). The most common H and N combinations were H3N8 (23.0%), H4N6 (18.4%), and H4N8 (18.4%). The HA gene between non-mallard and mallard MW isolates during the same time period shared 85.5-99.5% H3 identity and 89.3-99.7% H4 identity. Comparisons between MW (mallard and non-mallard) and poultry H3 and H4 isolates also revealed high similarity (79.0-99.0% and 88.7-98.4%), emphasizing the need for continued AIV surveillance in MWs.
Collapse
Affiliation(s)
- Shahan Azeem
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA; (S.A.); (D.S.)
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - John Baroch
- Wildlife Services, Animal & Plant Health Inspection Service (APHIS), United States Department of Agriculture (USDA), Fort Collins, CO 80526, USA
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA;
| | - Kristy L. Pabilonia
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Mary Killian
- National Veterinary Services Laboratories, Animal & Plant Health Inspection Service (APHIS), United States Department of Agriculture (USDA), Ames, IA 50010, USA;
| | - Birgit Bradel-Tretheway
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA;
| | - Dong Sun
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA; (S.A.); (D.S.)
| | - Sara Ghorbani-Nezami
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
6
|
Lebarbenchon C, Boucher S, Feare C, Dietrich M, Larose C, Humeau L, Le Corre M, Jaeger A. Migratory patterns of two major influenza virus host species on tropical islands. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230600. [PMID: 37800153 PMCID: PMC10548098 DOI: 10.1098/rsos.230600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023]
Abstract
Animal migration is a major driver of infectious agent dispersal. Duck and seabird migrations, for instance, play a key role in the spatial transmission dynamics and gene flow of avian influenza viruses (AIV), worldwide. On tropical islands, brown and lesser noddies (Anous stolidus and Anous tenuirostris) may be important AIV hosts, but the lack of knowledge on their migratory behaviour limits our understanding of virus circulation in island networks. Here we show that high connectivity between islands generated by non-breeding dispersive behaviours may be a major driver in the spread and the maintenance of AIV among tropical islands of the western Indian Ocean. Tracking data highlight two types of dispersive behaviours during the non-breeding season: birds either staying in the vicinity of their breeding ground (on Bird Island, Seychelles), or moving to and roosting on other islands in the western Indian Ocean. Migrant birds used a wide range of roosting places from the Tanzanian coasts to the Maldives archipelago and Tromelin Island. Epidemiological data confirm that brown and lesser noddies are major hosts for AIV, although significant variations of seroprevalence between species suggest that other biological and ecological drivers could be involved in virus infection and transmission dynamics.
Collapse
Affiliation(s)
- Camille Lebarbenchon
- Université de La Réunion, UMR Processus infectieux en milieu insulaire tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, 2 rue Maxime Rivière, Sainte-Clotilde, La Réunion, France
| | - Solenn Boucher
- Université de La Réunion, UMR Processus infectieux en milieu insulaire tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, 2 rue Maxime Rivière, Sainte-Clotilde, La Réunion, France
- Université de la Réunion, UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, 15 Avenue René Cassin, Saint Denis, La Réunion, France
| | - Chris Feare
- WildWings Bird Management, Haslemere, Surrey, UK
| | - Muriel Dietrich
- Université de La Réunion, UMR Processus infectieux en milieu insulaire tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, 2 rue Maxime Rivière, Sainte-Clotilde, La Réunion, France
| | | | - Laurence Humeau
- Université de La Réunion, UMR Peuplements végétaux et bioagresseurs en milieu tropical (PVBMT), CIRAD, 15 Avenue René Cassin, Saint Denis, La Réunion, France
| | - Matthieu Le Corre
- Université de la Réunion, UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, 15 Avenue René Cassin, Saint Denis, La Réunion, France
| | - Audrey Jaeger
- Université de la Réunion, UMR Ecologie marine tropicale des océans Pacifique et Indien (ENTROPIE), CNRS IRD, IFREMER, Université de Nouvelle-Calédonie, 15 Avenue René Cassin, Saint Denis, La Réunion, France
| |
Collapse
|
7
|
Alkie TN, Byrne AMP, Jones MEB, Mollett BC, Bourque L, Lung O, James J, Yason C, Banyard AC, Sullivan D, Signore AV, Lang AS, Baker M, Dawe B, Brown IH, Berhane Y. Recurring Trans-Atlantic Incursion of Clade 2.3.4.4b H5N1 Viruses by Long Distance Migratory Birds from Northern Europe to Canada in 2022/2023. Viruses 2023; 15:1836. [PMID: 37766243 PMCID: PMC10536465 DOI: 10.3390/v15091836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
In December 2022 and January 2023, we isolated clade 2.3.4.4b H5N1 high-pathogenicity avian influenza (HPAI) viruses from six American crows (Corvus brachyrhynchos) from Prince Edward Island and a red fox (Vulpes vulpes) from Newfoundland, Canada. Using full-genome sequencing and phylogenetic analysis, these viruses were found to fall into two distinct phylogenetic clusters: one group containing H5N1 viruses that had been circulating in North and South America since late 2021, and the other one containing European H5N1 viruses reported in late 2022. The transatlantic re-introduction for the second time by pelagic/Icelandic bird migration via the same route used during the 2021 incursion of Eurasian origin H5N1 viruses into North America demonstrates that migratory birds continue to be the driving force for transcontinental dissemination of the virus. This new detection further demonstrates the continual long-term threat of H5N1 viruses for poultry and mammals and the subsequent impact on various wild bird populations wherever these viruses emerge. The continual emergence of clade 2.3.4.4b H5Nx viruses requires vigilant surveillance in wild birds, particularly in areas of the Americas, which lie within the migratory corridors for long-distance migratory birds originating from Europe and Asia. Although H5Nx viruses have been detected at higher rates in North America since 2021, a bidirectional flow of H5Nx genes of American origin viruses to Europe has never been reported. In the future, coordinated and systematic surveillance programs for HPAI viruses need to be launched between European and North American agencies.
Collapse
Affiliation(s)
- Tamiru N. Alkie
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (T.N.A.); (O.L.); (D.S.); (A.V.S.)
| | - Alexander M. P. Byrne
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, 10 Addlestone, Surrey KT15 3NB, UK; (A.M.P.B.); (B.C.M.); (J.J.); (A.C.B.)
| | - Megan E. B. Jones
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, PE C1A 4P3, Canada; (M.E.B.J.); (L.B.)
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Benjamin C. Mollett
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, 10 Addlestone, Surrey KT15 3NB, UK; (A.M.P.B.); (B.C.M.); (J.J.); (A.C.B.)
| | - Laura Bourque
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, PE C1A 4P3, Canada; (M.E.B.J.); (L.B.)
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (T.N.A.); (O.L.); (D.S.); (A.V.S.)
| | - Joe James
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, 10 Addlestone, Surrey KT15 3NB, UK; (A.M.P.B.); (B.C.M.); (J.J.); (A.C.B.)
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health 12 Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Carmencita Yason
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Ashley C. Banyard
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, 10 Addlestone, Surrey KT15 3NB, UK; (A.M.P.B.); (B.C.M.); (J.J.); (A.C.B.)
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health 12 Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Daniel Sullivan
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (T.N.A.); (O.L.); (D.S.); (A.V.S.)
| | - Anthony V. Signore
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (T.N.A.); (O.L.); (D.S.); (A.V.S.)
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | - Meghan Baker
- Animal Health Division, Department of Fisheries, Forestry and Agriculture, Government of Newfoundland and Labrador, Provincial Agriculture Building, 204 Brookfield Road, St. John’s, NL A1E 0B2, Canada; (M.B.); (B.D.)
| | - Beverly Dawe
- Animal Health Division, Department of Fisheries, Forestry and Agriculture, Government of Newfoundland and Labrador, Provincial Agriculture Building, 204 Brookfield Road, St. John’s, NL A1E 0B2, Canada; (M.B.); (B.D.)
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, 10 Addlestone, Surrey KT15 3NB, UK; (A.M.P.B.); (B.C.M.); (J.J.); (A.C.B.)
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health 12 Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (T.N.A.); (O.L.); (D.S.); (A.V.S.)
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
8
|
Zhang G, Li B, Raghwani J, Vrancken B, Jia R, Hill SC, Fournié G, Cheng Y, Yang Q, Wang Y, Wang Z, Dong L, Pybus OG, Tian H. Bidirectional Movement of Emerging H5N8 Avian Influenza Viruses Between Europe and Asia via Migratory Birds Since Early 2020. Mol Biol Evol 2023; 40:msad019. [PMID: 36703230 PMCID: PMC9922686 DOI: 10.1093/molbev/msad019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023] Open
Abstract
Migratory birds play a critical role in the rapid spread of highly pathogenic avian influenza (HPAI) H5N8 virus clade 2.3.4.4 across Eurasia. Elucidating the timing and pattern of virus transmission is essential therefore for understanding the spatial dissemination of these viruses. In this study, we surveyed >27,000 wild birds in China, tracked the year-round migration patterns of 20 bird species across China since 2006, and generated new HPAI H5N8 virus genomic data. Using this new data set, we investigated the seasonal transmission dynamics of HPAI H5N8 viruses across Eurasia. We found that introductions of HPAI H5N8 viruses to different Eurasian regions were associated with the seasonal migration of wild birds. Moreover, we report a backflow of HPAI H5N8 virus lineages from Europe to Asia, suggesting that Europe acts as both a source and a sink in the global HPAI virus transmission network.
Collapse
Affiliation(s)
- Guogang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, National Bird Banding Center of China, Beijing, China
| | - Bingying Li
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Jayna Raghwani
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, United Kingdom
| | - Bram Vrancken
- Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Ru Jia
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, National Bird Banding Center of China, Beijing, China
| | - Sarah C Hill
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, United Kingdom
| | - Guillaume Fournié
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, United Kingdom
| | - Yanchao Cheng
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Qiqi Yang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Yuxin Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, United Kingdom
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Spatiotemporal changes in influenza A virus prevalence among wild waterfowl inhabiting the continental United States throughout the annual cycle. Sci Rep 2022; 12:13083. [PMID: 35906292 PMCID: PMC9338306 DOI: 10.1038/s41598-022-17396-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized. We combined two large influenza databases for North America and applied spatiotemporal models to explore patterns in prevalence throughout the annual cycle and across the continental United States for 30 waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to be related to regional duck density, with highest predicted prevalence found across the upper Midwest during early fall, though further study is needed. We documented elevated prevalence in late winter and early spring, particularly in the Mississippi Alluvial Valley. Our results suggest that spatiotemporal variation in prevalence outside autumn staging areas may also represent a dynamic parameter to be considered in IAV ecology and associated risks.
Collapse
|
10
|
Evolution of the North American Lineage H7 Avian Influenza Viruses in Association with H7 Virus's Introduction to Poultry. J Virol 2022; 96:e0027822. [PMID: 35862690 PMCID: PMC9327676 DOI: 10.1128/jvi.00278-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The incursions of H7 subtype low-pathogenicity avian influenza virus (LPAIV) from wild birds into poultry and its mutations to highly pathogenic avian influenza virus (HPAIV) have been an ongoing concern in North America. Since 2000, 10 phylogenetically distinct H7 virus outbreaks from wild birds have been detected in poultry, six of which mutated to HPAIV. To study the molecular evolution of the H7 viruses that occurs when changing hosts from wild birds to poultry, we performed analyses of the North American H7 hemagglutinin (HA) genes to identify amino acid changes as the virus circulated in wild birds from 2000 to 2019. Then, we analyzed recurring HA amino acid changes and gene constellations of the viruses that spread from wild birds to poultry. We found six HA amino acid changes occurring during wild bird circulation and 10 recurring changes after the spread to poultry. Eight of the changes were in and around the HA antigenic sites, three of which were supported by positive selection. Viruses from each H7 outbreak had a unique genotype, with no specific genetic group associated with poultry outbreaks or mutation to HPAIV. However, the genotypes of the H7 viruses in poultry outbreaks tended to contain minor genetic groups less observed in wild bird H7 viruses, suggesting either a biased sampling of wild bird AIVs or a tendency of having reassortment with minor genetic groups prior to the virus's introduction to poultry. IMPORTANCE Wild bird-origin H7 subtype avian influenza viruses are a constant threat to commercial poultry, both directly by the disease they cause and indirectly through trade restrictions that can be imposed when the virus is detected in poultry. It is important to understand the genetic basis of why the North American lineage H7 viruses have repeatedly crossed the species barrier from wild birds to poultry. We examined the amino acid changes in the H7 viruses associated with poultry outbreaks and tried to determine gene reassortment related to poultry adaptation and mutations to HPAIV. The findings in this study increase the understanding of the evolutionary pathways of wild bird AIV before infecting poultry and the HA changes associated with adaptation of the virus in poultry.
Collapse
|
11
|
Hicks JT, Edwards K, Qiu X, Kim DK, Hixson JE, Krauss S, Webby RJ, Webster RG, Bahl J. Host diversity and behavior determine patterns of interspecies transmission and geographic diffusion of avian influenza A subtypes among North American wild reservoir species. PLoS Pathog 2022; 18:e1009973. [PMID: 35417497 PMCID: PMC9037922 DOI: 10.1371/journal.ppat.1009973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/25/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Wild birds can carry avian influenza viruses (AIV), including those with pandemic or panzootic potential, long distances. Even though AIV has a broad host range, few studies account for host diversity when estimating AIV spread. We analyzed AIV genomic sequences from North American wild birds, including 303 newly sequenced isolates, to estimate interspecies and geographic viral transition patterns among multiple co-circulating subtypes. Our results show high transition rates within Anseriformes and Charadriiformes, but limited transitions between these orders. Patterns of transition between species were positively associated with breeding habitat range overlap, and negatively associated with host genetic distance. Distance between regions (negative correlation) and summer temperature at origin (positive correlation) were strong predictors of transition between locations. Taken together, this study demonstrates that host diversity and ecology can determine evolutionary processes that underlie AIV natural history and spread. Understanding these processes can provide important insights for effective control of AIV.
Collapse
Affiliation(s)
- Joseph T. Hicks
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, Department of Epidemiology and Biostatistics, College of Public Health, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Kimberly Edwards
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xueting Qiu
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, Department of Epidemiology and Biostatistics, College of Public Health, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Do-Kyun Kim
- University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, United States of America
| | - James E. Hixson
- University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, United States of America
| | - Scott Krauss
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Webby
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Robert G. Webster
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, Department of Epidemiology and Biostatistics, College of Public Health, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
12
|
Wang D, Li M, Xiong C, Yan Y, Hu J, Hao M, Liang B, Chen J, Chen G, Yang G, Li Y, Zhang J, Gulyaeva M, Shestopalov A, Shi W, Bi Y, Liu H, Wang H, Liu D, Chen J. Ecology of avian influenza viruses in migratory birds wintering within the Yangtze River wetlands. Sci Bull (Beijing) 2021; 66:2014-2024. [PMID: 36654171 DOI: 10.1016/j.scib.2021.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Migratory birds are considered natural reservoirs of avian influenza A viruses (AIVs). To further our viral ecology knowledge and understand the subsequent risk posed by wild birds, we conducted a 4-year surveillance study of AIVs in the bird wintering wetlands of the Yangtze River, China. We collected over 8000 samples and isolated 122 AIV strains. Analyses were then carried out with 108 novel sequenced genomes and data were deposited in GISAID and other public databases. The results showed that the Yangtze River wintering wetlands functioned as a mixing ground, where various subtypes of AIVs were detected harboring a high diversity of nucleotide sequences; moreover, a portion of AIV gene segments were persistent inter-seasonally. Phylogenetic incongruence presented complex reassortment events and distinct patterns among various subtypes. In addition, we observed that viral gene segments in wintering wetlands were closely related to known North American isolates, indicating that intercontinental gene flow occurred. Notably, highly pathogenic H5 and low pathogenic H9 viruses, which usually circulate in poultry, were found to have crossed the poultry/wild bird interface, with the viruses introduced to wintering birds. Overall, this study represented the largest AIV surveillance effort of wild birds within the Yangtze River wintering wetlands. Surveillance data highlighted the important role of wintering wild birds in the ecology of AIVs and may enable future early warnings of novel AIV emergence.
Collapse
Affiliation(s)
- Decheng Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaochao Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juefu Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China
| | - Mengchan Hao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China
| | - Bilin Liang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Guang Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Guoxiang Yang
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Yong Li
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Jun Zhang
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Marina Gulyaeva
- Novosibirsk State University, Novosibirsk 630090, Russia; Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Alexander Shestopalov
- Novosibirsk State University, Novosibirsk 630090, Russia; Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
13
|
Reassortment and Persistence of Influenza A Viruses from Diverse Geographic Origins within Australian Wild Birds: Evidence from a Small, Isolated Population of Ruddy Turnstones. J Virol 2021; 95:JVI.02193-20. [PMID: 33627387 DOI: 10.1128/jvi.02193-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Australian lineages of avian influenza A viruses (AIVs) are thought to be phylogenetically distinct from those circulating in Eurasia and the Americas, suggesting the circulation of endemic viruses seeded by occasional introductions from other regions. However, processes underlying the introduction, evolution and maintenance of AIVs in Australia remain poorly understood. Waders (order Charadriiformes, family Scolopacidae) may play a unique role in the ecology and evolution of AIVs, particularly in Australia, where ducks, geese, and swans (order Anseriformes, family Anatidae) rarely undertake intercontinental migrations. Across a 5-year surveillance period (2011 to 2015), ruddy turnstones (Arenaria interpres) that "overwinter" during the Austral summer in southeastern Australia showed generally low levels of AIV prevalence (0 to 2%). However, in March 2014, we detected AIVs in 32% (95% confidence interval [CI], 25 to 39%) of individuals in a small, low-density, island population 90 km from the Australian mainland. This epizootic comprised three distinct AIV genotypes, each of which represent a unique reassortment of Australian-, recently introduced Eurasian-, and recently introduced American-lineage gene segments. Strikingly, the Australian-lineage gene segments showed high similarity to those of H10N7 viruses isolated in 2010 and 2012 from poultry outbreaks 900 to 1,500 km to the north. Together with the diverse geographic origins of the American and Eurasian gene segments, these findings suggest extensive circulation and reassortment of AIVs within Australian wild birds over vast geographic distances. Our findings indicate that long-term surveillance in waders may yield unique insights into AIV gene flow, especially in geographic regions like Oceania, where Anatidae species do not display regular inter- or intracontinental migration.IMPORTANCE High prevalence of avian influenza viruses (AIVs) was detected in a small, low-density, isolated population of ruddy turnstones in Australia. Analysis of these viruses revealed relatively recent introductions of viral gene segments from both Eurasia and North America, as well as long-term persistence of introduced gene segments in Australian wild birds. These data demonstrate that the flow of viruses into Australia may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within the continent. These findings add to a growing body of evidence suggesting that Australian wild birds are unlikely to be ecologically isolated from the highly pathogenic H5Nx viruses circulating among wild birds throughout the Northern Hemisphere.
Collapse
|
14
|
Fujimoto K, Bahl J, Wertheim JO, Del Vecchio N, Hicks JT, Damodaran L, Hallmark CJ, Lavingia R, Mora R, Carr M, Yang B, Schneider JA, Hwang LY, McNeese M. Methodological synthesis of Bayesian phylodynamics, HIV-TRACE, and GEE: HIV-1 transmission epidemiology in a racially/ethnically diverse Southern U.S. context. Sci Rep 2021; 11:3325. [PMID: 33558579 PMCID: PMC7870963 DOI: 10.1038/s41598-021-82673-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
This study introduces an innovative methodological approach to identify potential drivers of structuring HIV-1 transmission clustering patterns between different subpopulations in the culturally and racially/ethnically diverse context of Houston, TX, the largest city in the Southern United States. Using 6332 HIV-1 pol sequences from persons newly diagnosed with HIV during the period 2010–2018, we reconstructed HIV-1 transmission clusters, using the HIV-TRAnsmission Cluster Engine (HIV-TRACE); inferred demographic and risk parameters on HIV-1 transmission dynamics by jointly estimating viral transmission rates across racial/ethnic, age, and transmission risk groups; and modeled the degree of network connectivity by using generalized estimating equations (GEE). Our results indicate that Hispanics/Latinos are most vulnerable to the structure of transmission clusters and serve as a bridge population, acting as recipients of transmissions from Whites (3.0 state changes/year) and from Blacks (2.6 state changes/year) as well as sources of transmissions to Whites (1.8 state changes/year) and to Blacks (1.2 state changes/year). There were high rates of transmission and high network connectivity between younger and older Hispanics/Latinos as well as between younger and older Blacks. Prevention and intervention efforts are needed for transmission clusters that involve younger racial/ethnic minorities, in particular Hispanic/Latino youth, to reduce onward transmission of HIV in Houston.
Collapse
Affiliation(s)
- Kayo Fujimoto
- Department of Health Promotion and Behavioral Sciences, The University of Texas Health Science Center at Houston, 7000 Fannin Street, UCT 2514, Houston, TX, 77030, USA.
| | - Justin Bahl
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Natascha Del Vecchio
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joseph T Hicks
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Camden J Hallmark
- Division of Disease Prevention and Control, Houston Health Department, Houston, TX, USA
| | - Richa Lavingia
- Department of Health Promotion and Behavioral Sciences, The University of Texas Health Science Center at Houston, 7000 Fannin Street, UCT 2514, Houston, TX, 77030, USA
| | - Ricardo Mora
- Division of Disease Prevention and Control, Houston Health Department, Houston, TX, USA
| | - Michelle Carr
- Division of Disease Prevention and Control, Houston Health Department, Houston, TX, USA
| | - Biru Yang
- Division of Disease Prevention and Control, Houston Health Department, Houston, TX, USA
| | | | - Lu-Yu Hwang
- Department of Epidemiology, Human Genetics, and Environmental Science, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marlene McNeese
- Division of Disease Prevention and Control, Houston Health Department, Houston, TX, USA
| |
Collapse
|
15
|
Nabi G, Wang Y, Lü L, Jiang C, Ahmad S, Wu Y, Li D. Bats and birds as viral reservoirs: A physiological and ecological perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142372. [PMID: 33254850 PMCID: PMC7505891 DOI: 10.1016/j.scitotenv.2020.142372] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 05/04/2023]
Abstract
The birds (class Aves) and bats (order Chiroptera, class Mammalia) are well known natural reservoirs of a diverse range of viruses, including some zoonoses. The only extant volant vertebrates, bats and birds have undergone dramatic adaptive radiations that have allowed them to occupy diverse ecological niches and colonize most of the planet. However, few studies have compared the physiology and ecology of these ecologically, and medically, important taxa. Here, we review convergent traits in the physiology, immunology, flight-related ecology of birds and bats that might enable these taxa to act as viral reservoirs and asymptomatic carriers. Many species of birds and bats are well adapted to urban environments and may host more zoonotic pathogens than species that do not colonize anthropogenic habitats. These convergent traits in birds and bats and their ecological interactions with domestic animals and humans increase the potential risk of viral spillover transmission and facilitate the emergence of novel viruses that most likely sources of zoonoses with the potential to cause global pandemics.
Collapse
Affiliation(s)
- Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Liang Lü
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuan Jiang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shahid Ahmad
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuefeng Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
16
|
Trovão NS, Nolting JM, Slemons RD, Nelson MI, Bowman AS. The Evolutionary Dynamics of Influenza A Viruses Circulating in Mallards in Duck Hunting Preserves in Maryland, USA. Microorganisms 2020; 9:microorganisms9010040. [PMID: 33375548 PMCID: PMC7823399 DOI: 10.3390/microorganisms9010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Duck hunting preserves (DHP) have resident populations of farm-raised mallard ducks, which create potential foci for the evolution of novel influenza A viruses (IAVs). Through an eleven-year (2003–2013) IAV surveillance project in seven DHPs in Maryland, USA, we frequently identified IAVs in the resident, free-flying mallard ducks (5.8% of cloacal samples were IAV-positive). The IAV population had high genetic diversity, including 12 HA subtypes and 9 NA subtypes. By sequencing the complete genomes of 290 viruses, we determined that genetically diverse IAVs were introduced annually into DHP ducks, predominantly from wild birds in the Anatidae family that inhabit the Atlantic and Mississippi flyways. The relatively low viral gene flow observed out of DHPs suggests that raised mallards do not sustain long-term viral persistence nor do they serve as important sources of new viruses in wild birds. Overall, our findings indicate that DHPs offer reliable samples of the diversity of IAV subtypes, and could serve as regional sentinel sites that mimic the viral diversity found in local wild duck populations, which would provide a cost-efficient strategy for long-term IAV monitoring. Such monitoring could allow for early identification and characterization of viruses that threaten bird species of high economic and environmental interest.
Collapse
Affiliation(s)
- Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20814, USA; (N.S.T.); (M.I.N.)
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.M.N.); (R.D.S.)
| | - Richard D. Slemons
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.M.N.); (R.D.S.)
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20814, USA; (N.S.T.); (M.I.N.)
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.M.N.); (R.D.S.)
- Correspondence:
| |
Collapse
|
17
|
Bravo-Vasquez N, Yao J, Jimenez-Bluhm P, Meliopoulos V, Freiden P, Sharp B, Estrada L, Davis A, Cherry S, Livingston B, Danner A, Schultz-Cherry S, Hamilton-West C. Equine-Like H3 Avian Influenza Viruses in Wild Birds, Chile. Emerg Infect Dis 2020; 26:2887-2898. [PMID: 33219648 PMCID: PMC7706983 DOI: 10.3201/eid2612.202063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Since their discovery in the United States in 1963, outbreaks of infection with equine influenza virus (H3N8) have been associated with serious respiratory disease in horses worldwide. Genomic analysis suggests that equine H3 viruses are of an avian lineage, likely originating in wild birds. Equine-like internal genes have been identified in avian influenza viruses isolated from wild birds in the Southern Cone of South America. However, an equine-like H3 hemagglutinin has not been identified. We isolated 6 distinct H3 viruses from wild birds in Chile that have hemagglutinin, nucleoprotein, nonstructural protein 1, and polymerase acidic genes with high nucleotide homology to the 1963 H3N8 equine influenza virus lineage. Despite the nucleotide similarity, viruses from Chile were antigenically more closely related to avian viruses and transmitted effectively in chickens, suggesting adaptation to the avian host. These studies provide the initial demonstration that equine-like H3 hemagglutinin continues to circulate in a wild bird reservoir.
Collapse
|
18
|
Gao F, Kawakubo S, Ho SYW, Ohshima K. The evolutionary history and global spatio-temporal dynamics of potato virus Y. Virus Evol 2020; 6:veaa056. [PMID: 33324488 PMCID: PMC7724251 DOI: 10.1093/ve/veaa056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Potato virus Y (PVY) is a destructive plant pathogen that causes considerable losses to global potato and tobacco production. Although the molecular structure of PVY is well characterized, the evolutionary and global transmission dynamics of this virus remain poorly understood. We investigated the phylodynamics of the virus by analysing 253 nucleotide sequences of the genes encoding the third protein (P3), cylindrical inclusion protein (CI), and the nuclear inclusion protein (NIb). Our Bayesian phylogenetic analyses showed that the mean substitution rates of different regions of the genome ranged from 8.50 × 10-5 to 1.34 × 10-4 substitutions/site/year, whereas the time to the most recent common ancestor of PVY varied with the length of the genomic regions and with the number of viral isolates being analysed. Our phylogeographic analysis showed that the PVY population originated in South America and was introduced into Europe in the 19th century, from where it spread around the globe. The migration pathways of PVY correlate well with the trade routes of potato tubers, suggesting that the global spread of PVY is associated with human activities.
Collapse
Affiliation(s)
- Fangluan Gao
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shusuke Kawakubo
- Laboratory of Plant Virology, Department of Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Department of Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
19
|
Influenza A Viruses in Ruddy Turnstones ( Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses 2020; 12:v12111205. [PMID: 33105913 PMCID: PMC7690596 DOI: 10.3390/v12111205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Each May for over three decades, avian influenza A viruses (IAVs) have been isolated from shorebirds and gulls (order Charadriiformes) at Delaware Bay (DE Bay), USA, which is a critical stopover site for shorebirds on their spring migration to arctic breeding grounds. At DE Bay, most isolates have been recovered from ruddy turnstones (Arenaria interpres), but it is unknown if this species is involved in either the maintenance or movement of these viruses outside of this site. We collected and tested fecal samples from 2823 ruddy turnstones in Florida and Georgia in the southeastern United States during four winter/spring sample periods—2010, 2011, 2012, and 2013—and during the winters of 2014/2015 and 2015/2016. Twenty-five low pathogenicity IAVs were recovered representing five subtypes (H3N4, H3N8, H5N9, H6N1, and H12N2). Many of these subtypes matched those recovered at DE Bay during the previous year or that year’s migratory cycle, suggesting that IAVs present on these southern wintering areas represent a source of virus introduction to DE Bay via migrating ruddy turnstones. Analyses of all IAV gene segments of H5N9 and H6N1 viruses recovered from ruddy turnstones at DE Bay during May 2012 and from the southeast during the spring of 2012 revealed a high level of genetic relatedness at the nucleotide level, suggesting that migrating ruddy turnstones move IAVs from wintering grounds to the DE Bay ecosystem.
Collapse
|
20
|
Park YR, Lee YN, Lee DH, Si YJ, Baek YG, Bunnary S, Theary R, Tum S, Kye SJ, Lee MH, Park CK, Lee YJ. Phylogeographic analysis of H5N1 highly pathogenic avian influenza virus isolated in Cambodia from 2018 to 2019. INFECTION GENETICS AND EVOLUTION 2020; 86:104599. [PMID: 33096302 DOI: 10.1016/j.meegid.2020.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/09/2022]
Abstract
Since 2004, several outbreaks of highly pathogenic avian influenza (HPAI) have been reported in Cambodia. Until 2013, all H5N1 viruses identified in Cambodia belonged to clade 1 and its subclades. H5N1 HPAI viruses belonging to clade 2.3.2.1c have been dominant since the beginning of 2014, with various genotypes (KH1-KH5) reported. Here, we isolated nine H5N1 HPAI viruses from domestic poultry farms and slaughterhouses in Cambodia during 2018-2019 and performed phylogenetic analysis of whole genome sequences. All isolates were classified as H5 clade 2.3.2.1c viruses and all harbored multi-basic amino acid sequences (PQRERRRKR/GLF) at the haemagglutinin (HA) cleavage site. Phylogenetic analysis revealed that the H5N1 isolates in this study belonged to the KH2 genotype, the dominant genotype in Cambodia in 2015. Phylogenetic analysis of the HA gene showed that the isolates were divided into two groups (A and B). The results of Bayesian discrete phylogeography analysis revealed that the viral migration pathways from Vietnam to Cambodia (Bayes factor value: 734,039.01; posterior probability: 1.00) and from Cambodia to Vietnam (Bayes factor value: 26,199.95; posterior probability: 1.00) were supported by high statistical values. These well-supported viral migrations between Vietnam and Cambodia demonstrate that viral transmission continued in both directions. Several factors may have contributed to this, including the free-grazing duck system and movement of poultry-related products. Thus, the results emphasize the need for an enhanced international surveillance program to better understand transboundary infection and evolution of H5N1 HPAI viruses, along with implementation of more stringent international trade controls on poultry and poultry products.
Collapse
Affiliation(s)
- Yu-Ri Park
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea; College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Young-Jae Si
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yoon-Gi Baek
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Seng Bunnary
- Department of Animal Health and Production, National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Ren Theary
- Department of Animal Health and Production, National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Sothyra Tum
- Department of Animal Health and Production, National Animal Health and Production Research Institute, Phnom Penh, Cambodia
| | - Soo-Jeong Kye
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Myoung-Heon Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea.
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| |
Collapse
|
21
|
Wille M, Holmes EC. The Ecology and Evolution of Influenza Viruses. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038489. [PMID: 31871237 DOI: 10.1101/cshperspect.a038489] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The patterns and processes of influenza virus evolution are of fundamental importance, underpinning such traits as the propensity to emerge in new host species and the ability to rapidly generate antigenic variation. Herein, we review key aspects of the ecology and evolution of influenza viruses. We begin with an exploration of the origins of influenza viruses within the orthomyxoviruses, showing how our perception of the evolutionary history of these viruses has been transformed with metagenomic sequencing. We then outline the diversity of virus subtypes in different species and the processes by which these viruses have emerged in new hosts, with a particular focus on the role played by segment reassortment. We then turn our attention to documenting the spread and phylodynamics of seasonal influenza A and B viruses in human populations, including the drivers of antigenic evolution, and finish with a discussion of virus diversity and evolution at the scale of individual hosts.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
22
|
Chen SH, Shen HM, Lu Y, Ai L, Chen JX, Xu XN, Song P, Cai YC, Zhou XN. Establishment and application of the National Parasitic Resource Center (NPRC) in China. ADVANCES IN PARASITOLOGY 2020; 110:373-400. [PMID: 32563332 DOI: 10.1016/bs.apar.2020.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The National Parasitic Resource Center (NPRC) was created in 2004. It is a first-level platform under the Basic Condition Platform Center of the Ministry of Science and Technology of China. The resource centre involves 21 depository institutions in 15 regions of the country, including human parasite and vector depository, animal parasite depository, plant nematode characteristic specimen library, medical insect characteristic specimen library, trematode model specimen library, parasite-vector/snail model specimen library, etc. After nearly 15 years of operation, the resource centre has been built into a physical library with a database of 11 phyla, 23 classes, 1115 species and 117,814 pieces of parasitic germplasm resources, and three live collection bases of parasitic germplasm resources. A variety of new parasite-related immunological and molecular biological detection and identification technologies produced by the resource centre are widely used in the fields of public health responses, risk assessments on food safety, and animal or plant quarantine. The NPRC is the largest and top level resource centre on parasitology in China, and it is a leading technology platform for collecting and identifying parasitic resources.
Collapse
Affiliation(s)
- Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Yan Lu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Xue-Nian Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China.
| |
Collapse
|
23
|
Verhagen JH, Poen M, Stallknecht DE, van der Vliet S, Lexmond P, Sreevatsan S, Poulson RL, Fouchier RAM, Lebarbenchon C. Phylogeography and Antigenic Diversity of Low-Pathogenic Avian Influenza H13 and H16 Viruses. J Virol 2020; 94:e00537-20. [PMID: 32321814 PMCID: PMC7307148 DOI: 10.1128/jvi.00537-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 11/20/2022] Open
Abstract
Low-pathogenic avian influenza viruses (LPAIVs) are genetically highly variable and have diversified into multiple evolutionary lineages that are primarily associated with wild-bird reservoirs. Antigenic variation has been described for mammalian influenza viruses and for highly pathogenic avian influenza viruses that circulate in poultry, but much less is known about antigenic variation of LPAIVs. In this study, we focused on H13 and H16 LPAIVs that circulate globally in gulls. We investigated the evolutionary history and intercontinental gene flow based on the hemagglutinin (HA) gene and used representative viruses from genetically distinct lineages to determine their antigenic properties by hemagglutination inhibition assays. For H13, at least three distinct genetic clades were evident, while for H16, at least two distinct genetic clades were evident. Twenty and ten events of intercontinental gene flow were identified for H13 and H16 viruses, respectively. At least two antigenic variants of H13 and at least one antigenic variant of H16 were identified. Amino acid positions in the HA protein that may be involved in the antigenic variation were inferred, and some of the positions were located near the receptor binding site of the HA protein, as they are in the HA protein of mammalian influenza A viruses. These findings suggest independent circulation of H13 and H16 subtypes in gull populations, as antigenic patterns do not overlap, and they contribute to the understanding of the genetic and antigenic variation of LPAIVs naturally circulating in wild birds.IMPORTANCE Wild birds play a major role in the epidemiology of low-pathogenic avian influenza viruses (LPAIVs), which are occasionally transmitted-directly or indirectly-from them to other species, including domestic animals, wild mammals, and humans, where they can cause subclinical to fatal disease. Despite a multitude of genetic studies, the antigenic variation of LPAIVs in wild birds is poorly understood. Here, we investigated the evolutionary history, intercontinental gene flow, and antigenic variation among H13 and H16 LPAIVs. The circulation of subtypes H13 and H16 seems to be maintained by a narrower host range, in particular gulls, than the majority of LPAIV subtypes and may therefore serve as a model for evolution and epidemiology of H1 to H12 LPAIVs in wild birds. The findings suggest that H13 and H16 LPAIVs circulate independently of each other and emphasize the need to investigate within-clade antigenic variation of LPAIVs in wild birds.
Collapse
Affiliation(s)
- Josanne H Verhagen
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
- Linnaeus University, Department of Biology and Environmental Science, Kalmar, Sweden
| | - Marjolein Poen
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, University of Georgia, Athens, Georgia, USA
| | | | - Pascal Lexmond
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - Srinand Sreevatsan
- Michigan State University, College of Veterinary Medicine, Department of Pathobiology and Diagnostic Investigation, East Lansing, Michigan, USA
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - Ron A M Fouchier
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - Camille Lebarbenchon
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, University of Georgia, Athens, Georgia, USA
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
24
|
Alkhamis MA, Li C, Torremorell M. Animal Disease Surveillance in the 21st Century: Applications and Robustness of Phylodynamic Methods in Recent U.S. Human-Like H3 Swine Influenza Outbreaks. Front Vet Sci 2020; 7:176. [PMID: 32373634 PMCID: PMC7186338 DOI: 10.3389/fvets.2020.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/16/2020] [Indexed: 11/22/2022] Open
Abstract
Emerging and endemic animal viral diseases continue to impose substantial impacts on animal and human health. Most current and past molecular surveillance studies of animal diseases investigated spatio-temporal and evolutionary dynamics of the viruses in a disjointed analytical framework, ignoring many uncertainties and made joint conclusions from both analytical approaches. Phylodynamic methods offer a uniquely integrated platform capable of inferring complex epidemiological and evolutionary processes from the phylogeny of viruses in populations using a single Bayesian statistical framework. In this study, we reviewed and outlined basic concepts and aspects of phylodynamic methods and attempted to summarize essential components of the methodology in one analytical pipeline to facilitate the proper use of the methods by animal health researchers. Also, we challenged the robustness of the posterior evolutionary parameters, inferred by the commonly used phylodynamic models, using hemagglutinin (HA) and polymerase basic 2 (PB2) segments of the currently circulating human-like H3 swine influenza (SI) viruses isolated in the United States and multiple priors. Subsequently, we compared similarities and differences between the posterior parameters inferred from sequence data using multiple phylodynamic models. Our suggested phylodynamic approach attempts to reduce the impact of its inherent limitations to offer less biased and biologically plausible inferences about the pathogen evolutionary characteristics to properly guide intervention activities. We also pinpointed requirements and challenges for integrating phylodynamic methods in routine animal disease surveillance activities.
Collapse
Affiliation(s)
- Moh A Alkhamis
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Health Sciences Center, Kuwait University, Kuwait City, Kuwait.,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Chong Li
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
25
|
Abstract
In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
26
|
Stephens CB, Prosser DJ, Pantin-Jackwood MJ, Berlin AM, Spackman E. The Pathogenesis of H7 Highly Pathogenic Avian Influenza Viruses in Lesser Scaup ( Aythya affinis). Avian Dis 2020; 63:230-234. [PMID: 31131581 DOI: 10.1637/11909-060118-resnote.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/14/2018] [Indexed: 11/05/2022]
Abstract
Waterfowl are the natural hosts of avian influenza virus (AIV), and through migration spread the virus worldwide. Most AIVs carried by wild waterfowl are low pathogenic strains; however, Goose/Guangdong/1996 lineage clade 2.3.4.4 H5 highly pathogenic (HP) AIV now appears to be endemic in wild birds in much of the Eastern Hemisphere. Most research efforts studying AIV pathogenicity in waterfowl thus far have been directed toward dabbling ducks. In order to better understand the role of diving ducks in AIV ecology, we previously characterized the pathogenesis of clade 2.3.4.4 H5 HPAIV in lesser scaup (Aythya affinis). In an effort to further elucidate AIV infection in diving ducks, the relative susceptibility and pathogenesis of two North American lineage H7 HPAIV isolates from the most recent outbreaks in the United States was investigated. Lesser scaup were inoculated with either A/turkey/IN/1403-1/2016 H7N8 or A/chicken/TN/17-007147-2/2017 H7N9 HPAIV by the intranasal route. The approximate 50% bird infectious dose (BID50) of the H7N8 isolate was determined to be 103 50% egg infectious doses (EID50), and the BID50 of the H7N9 isolate was determined to be <102 EID50, indicating some variation in adaptation between the two isolates. No mortality or clinical disease was observed in either group except for elevated body temperatures at 2 and 4 days postinoculation (DPI). Virus shedding was detected up to 14 DPI from both groups, and there was a trend for shedding to have a longer duration and at higher titer levels from the cloacal route. These results demonstrate that lesser scaup are susceptible to both H7 lineages of HPAIV, and similar to dabbling duck species, they shed virus for long periods relative to gallinaceous birds and don't present with clinical disease.
Collapse
Affiliation(s)
- Christopher B Stephens
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA 30605
| | - Diann J Prosser
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD 20708
| | - Mary J Pantin-Jackwood
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA 30605
| | - Alicia M Berlin
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD 20708
| | - Erica Spackman
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA 30605,
| |
Collapse
|
27
|
Evolutionary genetics of canine respiratory coronavirus and recent introduction into Swedish dogs. INFECTION GENETICS AND EVOLUTION 2020; 82:104290. [PMID: 32205264 PMCID: PMC7102562 DOI: 10.1016/j.meegid.2020.104290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
Abstract
Canine respiratory coronavirus (CRCoV) has been identified as a causative agent of canine infectious respiratory disease, an upper respiratory infection affecting dogs. The epidemiology is currently opaque, with an unclear understanding of global prevalence, pathology, and genetic characteristics. In this study, Swedish privately-owned dogs with characteristic signs of canine infectious respiratory disease (n = 88) were screened for CRCoV and 13 positive samples (14.7%, 8.4-23.7% [95% confidence interval (CI)]) were further sequenced. Sequenced Swedish CRCoV isolates were highly similar despite being detected in dogs living in geographically distant locations and sampled across 3 years (2013-2015). This is due to a single introduction into Swedish dogs in approximately 2010, as inferred by time structured phylogeny. Unlike other CRCoVs, there was no evidence of recombination in Swedish CRCoV viruses, further supporting a single introduction. Finally, there were low levels of polymorphisms, in the spike genes. Overall, we demonstrate that there is little diversity of CRCoV which is endemic in Swedish dogs.
Collapse
|
28
|
Kretschmer R, Souza MSD, Barcellos SA, Degrandi TM, Pereira JC, O'Brien PCM, Ferguson-Smith MA, Gunski RJ, Garnero ADV, Oliveira EHCD, Freitas TROD. Novel insights into chromosome evolution of Charadriiformes: extensive genomic reshuffling in the wattled jacana (Jacana jacana, Charadriiformes, Jacanidae). Genet Mol Biol 2020; 43:e20190236. [PMID: 32105288 PMCID: PMC7198006 DOI: 10.1590/1678-4685-gmb-2019-0236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/22/2019] [Indexed: 01/01/2023] Open
Abstract
The order Charadriiformes comprises three major clades: Lari and Scolopaci as sister group to Charadrii. Until now, only three Charadriiformes species have been studied by chromosome painting: Larus argentatus (Lari), Burhinus oedicnemus and Vanellus chilensis (Charadrii). Hence, there is a lack of information concerning the third clade, Scolapaci. Based on this, and to gain a better understanding of karyotype evolution in the order Charadriiformes, we applied conventional and molecular cytogenetic approaches in a species belonging to clade Scolopaci - the wattled jacana (Jacana jacana) - using Gallus gallus and Zenaida auriculata chromosome-specific probes. Cross-species evaluation of J. jacana chromosomes shows extensive genomic reshuffling within macrochromosomes during evolution, with multiple fission and fusion events, although the diploid number remains at high level (2n=82). Interestingly, this species does not have the GGA7-8 fusion, which was found in two representatives of Charadrii clade, reinforcing the idea that this fusion may be exclusive to the Charadrii clade. In addition, it is shown that the chromosome evolution in Charadriiformes is complex and resulted in species with typical and atypical karyotypes. The karyotypic features of Scolopaci are very different from those of Charadrii and Lari, indicating that after divergence, each suborder has undergone different chromosome rearrangements.
Collapse
Affiliation(s)
- Rafael Kretschmer
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular - PPGBM, Porto Alegre, Rio Grande do Sul, RS, Brazil.,University of Cambridge, Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Marcelo Santos de Souza
- Universidade Federal do Pampa, Programa de Pós-graduação em Ciências Biológicas - PPGCB, São Gabriel, Rio Grande do Sul, RS, Brazil
| | - Suziane Alves Barcellos
- Universidade Federal do Pampa, Programa de Pós-graduação em Ciências Biológicas - PPGCB, São Gabriel, Rio Grande do Sul, RS, Brazil
| | - Tiago Marafiga Degrandi
- Universidade Federal do Paraná, Laboratório de Citogenética e Genética da Conservação Animal, Programa de Pós-graduação em Genética, Curitiba, PR, Brazil
| | - Jorge C Pereira
- University of Cambridge, Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Patricia C M O'Brien
- University of Cambridge, Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Malcolm A Ferguson-Smith
- University of Cambridge, Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Ricardo José Gunski
- Universidade Federal do Pampa, Programa de Pós-graduação em Ciências Biológicas - PPGCB, São Gabriel, Rio Grande do Sul, RS, Brazil
| | - Analía Del Valle Garnero
- Universidade Federal do Pampa, Programa de Pós-graduação em Ciências Biológicas - PPGCB, São Gabriel, Rio Grande do Sul, RS, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Belém, PA, Brazil.,Instituto Evandro Chagas, Laboratório de Cultura de Tecidos e Citogenética - SAMAM, Ananindeua, PA, Brazil
| | - Thales Renato Ochotorena de Freitas
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular - PPGBM, Porto Alegre, Rio Grande do Sul, RS, Brazil
| |
Collapse
|
29
|
Park YR, Lee YN, Lee DH, Baek YG, Si YJ, Meeduangchanh P, Theppangna W, Douangngeun B, Kye SJ, Lee MH, Park CK, Lee YJ. Genetic and pathogenic characteristics of clade 2.3.2.1c H5N1 highly pathogenic avian influenza viruses isolated from poultry outbreaks in Laos during 2015-2018. Transbound Emerg Dis 2019; 67:947-955. [PMID: 31769586 DOI: 10.1111/tbed.13430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Since 2004, there have been multiple outbreaks of H5 highly pathogenic avian influenza (HPAI) viruses in Laos. Here, we isolated H5N1 HPAI viruses from poultry outbreaks in Laos during 2015-2018 and investigated their genetic characteristics and pathogenicity in chickens. Phylogenetic analysis revealed that the isolates belonged to clade 2.3.2.1c and that they differed from previous Laos viruses with respect to genetic composition. In particular, the isolates were divided into two genotypes, each of which had a different NS segments. The results of possible migration analysis suggested a high likelihood that the Laos isolates were introduced from neighbouring countries, particularly Vietnam. The recent Laos isolate, A/Duck/Laos/NL-1504599/2018, had an intravenous pathogenicity index score of 3.0 and showed a 50% chicken lethal dose of 102.5 EID50 /0.1 ml, indicating high pathogenicity. The isolated viruses exhibited no critical substitution in the markers associated with mammalian adaptation, but possess markers related to neuraminidase inhibitor resistance. These results emphasize the need for ongoing surveillance of circulating influenza virus in South-East Asia, including Laos, to better prepare for and mitigate global spread of H5 HPAI.
Collapse
Affiliation(s)
- Yu-Ri Park
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea.,College of Veterinary Medicine, Animal Disease Intervention Center, Kyungpook National University, Daegu, Korea
| | - Yu-Na Lee
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Yoon-Gi Baek
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Young-Jae Si
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | | | | | | | - Soo-Jeong Kye
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Myoung-Heon Lee
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine, Animal Disease Intervention Center, Kyungpook National University, Daegu, Korea
| | - Youn-Jeong Lee
- Avian Influenza Research Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| |
Collapse
|
30
|
Kwon JH, Bahl J, Swayne DE, Lee YN, Lee YJ, Song CS, Lee DH. Domestic ducks play a major role in the maintenance and spread of H5N8 highly pathogenic avian influenza viruses in South Korea. Transbound Emerg Dis 2019; 67:844-851. [PMID: 31675474 DOI: 10.1111/tbed.13406] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/05/2019] [Accepted: 10/25/2019] [Indexed: 01/16/2023]
Abstract
The H5N8 highly pathogenic avian influenza viruses (HPAIVs) belonging to clade 2.3.4.4 spread from Eastern China to Korea in 2014 and caused outbreaks in domestic poultry until 2016. To understand how H5N8 HPAIVs spread at host species level in Korea during 2014-2016, a Bayesian phylogenetic analysis was used for ancestral state reconstruction and estimation of the host transition dynamics between wild waterfowl, domestic ducks and chickens. Our data support that H5N8 HPAIV most likely transmitted from wild waterfowl to domestic ducks, and then maintained in domestic ducks followed by dispersal of HPAIV from domestic ducks to chickens, suggesting domestic duck population plays a central role in the maintenance, amplification and spread of wild HPAIV to terrestrial poultry in Korea.
Collapse
Affiliation(s)
- Jung-Hoon Kwon
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - Justin Bahl
- Center for Ecology of Infectious Disease, Department of Infectious Disease, Dept of Epidemiology and Biostatistics, Institute of Bioinformatics, University of Georgia, Athens, GA, USA.,Emerging Infectious Disease, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - David E Swayne
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Chang-Seon Song
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, the University of Connecticut, Storrs, CT, USA
| |
Collapse
|
31
|
Jacquot M, Rao PP, Yadav S, Nomikou K, Maan S, Jyothi YK, Reddy N, Putty K, Hemadri D, Singh KP, Maan NS, Hegde NR, Mertens P, Biek R. Contrasting selective patterns across the segmented genome of bluetongue virus in a global reassortment hotspot. Virus Evol 2019; 5:vez027. [PMID: 31392031 PMCID: PMC6680063 DOI: 10.1093/ve/vez027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
For segmented viruses, rapid genomic and phenotypic changes can occur through the process of reassortment, whereby co-infecting strains exchange entire segments creating novel progeny virus genotypes. However, for many viruses with segmented genomes, this process and its effect on transmission dynamics remain poorly understood. Here, we assessed the consequences of reassortment for selection on viral diversity through time using bluetongue virus (BTV), a segmented arbovirus that is the causative agent of a major disease of ruminants. We analysed ninety-two BTV genomes isolated across four decades from India, where BTV diversity, and thus opportunities for reassortment, are among the highest in the world. Our results point to frequent reassortment and segment turnover, some of which appear to be driven by selective sweeps and serial hitchhiking. Particularly, we found evidence for a recent selective sweep affecting segment 5 and its encoded NS1 protein that has allowed a single variant to essentially invade the full range of BTV genomic backgrounds and serotypes currently circulating in India. In contrast, diversifying selection was found to play an important role in maintaining genetic diversity in genes encoding outer surface proteins involved in virus interactions (VP2 and VP5, encoded by segments 2 and 6, respectively). Our results support the role of reassortment in driving rapid phenotypic change in segmented viruses and generate testable hypotheses for in vitro experiments aiming at understanding the specific mechanisms underlying differences in fitness and selection across viral genomes.
Collapse
Affiliation(s)
- Maude Jacquot
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pavuluri P Rao
- Ella Foundation, Genome Valley Hyderabad, Hyderabad, Telangana, India
| | - Sarita Yadav
- The Pirbright Institute, Pirbright, Woking, Surrey, UK
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Sushila Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Y Krishna Jyothi
- Veterinary Biological and Research Institute, Vijayawada, Andhra Pradesh, India
| | - Narasimha Reddy
- PVNR Telangana Veterinary University, Hyderabad, Telangana, India
| | - Kalyani Putty
- PVNR Telangana Veterinary University, Hyderabad, Telangana, India
| | - Divakar Hemadri
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Karam P Singh
- Centre for Animal Disease Research and Diagnosis, Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Narender Singh Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nagendra R Hegde
- Ella Foundation, Genome Valley Hyderabad, Hyderabad, Telangana, India
| | - Peter Mertens
- The Pirbright Institute, Pirbright, Woking, Surrey, UK.,The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
32
|
Swetnam D, Widen SG, Wood TG, Reyna M, Wilkerson L, Debboun M, Symonds DA, Mead DG, Beaty BJ, Guzman H, Tesh RB, Barrett ADT. Terrestrial Bird Migration and West Nile Virus Circulation, United States. Emerg Infect Dis 2019; 24:2184-2194. [PMID: 30457531 PMCID: PMC6256381 DOI: 10.3201/eid2412.180382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Host migration and emerging pathogens are strongly associated, especially with regard to zoonotic diseases. West Nile virus (WNV), a mosquitoborne pathogen capable of causing severe, sometimes fatal, neuroinvasive disease in humans, is maintained in highly mobile avian hosts. Using phylogeographic approaches, we investigated the relationship between WNV circulation in the United States and the flight paths of terrestrial birds. We demonstrated southward migration of WNV in the eastern flyway and northward migration in the central flyway, which is consistent with the looped flight paths of many terrestrial birds. We also identified 3 optimal locations for targeted WNV surveillance campaigns in the United States—Illinois, New York, and Texas. These results illustrate the value of multidisciplinary approaches to surveillance of infectious diseases, especially zoonotic diseases.
Collapse
|
33
|
Lee DH, Torchetti MK, Hicks J, Killian ML, Bahl J, Pantin-Jackwood M, Swayne DE. Transmission Dynamics of Highly Pathogenic Avian Influenza Virus A(H5Nx) Clade 2.3.4.4, North America, 2014-2015. Emerg Infect Dis 2019; 24:1840-1848. [PMID: 30226167 PMCID: PMC6154162 DOI: 10.3201/eid2410.171891] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eurasia highly pathogenic avian influenza virus (HPAIV) H5 clade 2.3.4.4 emerged in North America at the end of 2014 and caused outbreaks affecting >50 million poultry in the United States before eradication in June 2015. We investigated the underlying ecologic and epidemiologic processes associated with this viral spread by performing a comparative genomic study using 268 full-length genome sequences and data from outbreak investigations. Reassortant HPAIV H5N2 circulated in wild birds along the Pacific flyway before several spillover events transmitting the virus to poultry farms. Our analysis suggests that >3 separate introductions of HPAIV H5N2 into Midwest states occurred during March–June 2015; transmission to Midwest poultry farms from Pacific wild birds occurred ≈1.7–2.4 months before detection. Once established in poultry, the virus rapidly spread between turkey and chicken farms in neighboring states. Enhanced biosecurity is required to prevent the introduction and dissemination of HPAIV across the poultry industry.
Collapse
|
34
|
Eriksson P, Lindskog C, Lorente-Leal V, Waldenström J, González-Acuna D, Järhult JD, Lundkvist Å, Olsen B, Jourdain E, Ellström P. Attachment Patterns of Human and Avian Influenza Viruses to Trachea and Colon of 26 Bird Species - Support for the Community Concept. Front Microbiol 2019; 10:815. [PMID: 31057520 PMCID: PMC6482220 DOI: 10.3389/fmicb.2019.00815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022] Open
Abstract
Avian influenza A viruses (AIVs) have a broad host range, but are most intimately associated with waterfowl (Anseriformes) and, in the case of the H13 and H16 subtypes, gulls (Charadriiformes). Host associations are multifactorial, but a key factor is the ability of the virus to bind host cell receptors and thereby initiate infection. The current study aims at investigating the tissue attachment pattern of a panel of AIVs, comprising H3N2, H6N1, H12N5, and H16N3, to avian trachea and colon tissue samples obtained from host species of different orders. Virus attachment was not restricted to the bird species or order from which the virus was isolated. Instead, extensive virus attachment was observed to several distantly related avian species. In general, more virus attachment and receptor expression were observed in trachea than in colon samples. Additionally, a human seasonal H3N2 virus was studied. Unlike the studied AIVs, this virus mainly attached to tracheae from Charadriiformes and a very limited set of avian cola. In conclusion, the reported results highlight the importance of AIV attachment to trachea in many avian species. Finally, the importance of chickens and mallards in AIVs dynamics was illustrated by the abundant AIV attachment observed.
Collapse
Affiliation(s)
- Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Victor Lorente-Leal
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | | | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Elsa Jourdain
- UMR0346 - EPIA, INRA, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Carter D, Link P, Walther P, Ramey A, Stallknecht D, Poulson R. Influenza A Prevalence and Subtype Diversity in Migrating Teal Sampled Along the United States Gulf Coast. Avian Dis 2019; 63:165-171. [PMID: 31131574 PMCID: PMC11312343 DOI: 10.1637/11850-041918-reg.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/09/2018] [Indexed: 11/05/2022]
Abstract
Wild birds in the order Anseriformes are important reservoirs for influenza A viruses (IAVs); however, IAV prevalence and subtype diversity may vary by season, even at the same location. To better understand the ecology of IAV during waterfowl migration through the Gulf Coast of the United States (Louisiana and Texas), surveillance of blue-winged (Spatula discors) and American green-winged (Anas carolinensis) teal was conducted. The surveillance was done annually during the spring (live capture; 2012-17) and fall (hunter harvested; 2007-17) at times inferred to coincide with northward and southward movements, respectively, for these waterfowl species. During spring migration, 266 low pathogenicity (LP) IAV positive samples were recovered from 7547 paired cloacal-oropharyngeal (COP) samples (prevalence, 3.5%; annual range, 1.3%-8.4%). During fall migration, 650 LP IAV-positive samples were recovered from 9493 COP samples (prevalence, 6.8%; annual range, 0.4%-23.5%). Overall, 34 and 20 different IAV subtypes were recovered during fall and spring sampling, respectively. Consistent with previous results for fall migrating ducks, H3 and H4 hemagglutinin (HA) subtypes were most common; however, H4 subtype viruses predominated every year. This is in contrast to the predominance of LP H7 and H10 HA subtype viruses during spring. The N6 and N8 neuraminidase subtypes, which were usually associated with H4, were most common during fall; the N6 subtype was not recovered in the spring. These consistent seasonal trends in IAV subtype detection in teal are currently not understood and highlight the need for further research regarding potential drivers of spatiotemporal patterns of infection, such as population immunity.
Collapse
Affiliation(s)
- Deborah Carter
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana 70808
| | - Patrick Walther
- United States Fish and Wildlife Service, P.O. Box 278, 4017 FM 563, Anahuac, Texas 77514
- Deceased
| | - Andrew Ramey
- United States Geological Survey, Alaska Science Center, Anchorage, Alaska 99508
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Rebecca Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602,
| |
Collapse
|
36
|
Araujo J, Petry MV, Fabrizio T, Walker D, Ometto T, Thomazelli LM, Scherer AL, Serafini PP, Neto IS, Krauss S, Webster RG, Webby RJ, Durigon EL. Migratory birds in southern Brazil are a source of multiple avian influenza virus subtypes. Influenza Other Respir Viruses 2018; 12:220-231. [PMID: 29143465 PMCID: PMC5820415 DOI: 10.1111/irv.12519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND There is insufficient knowledge about the relation of avian influenza virus (AIV) to migratory birds in South America. Accordingly, we studied samples obtained over a 4-year period (2009-2012) from wild birds at a major wintering site in southern Brazil. METHODS We obtained 1212 oropharyngeal/cloacal samples from wild birds at Lagoa do Peixe National Park and screened them for influenza A virus by RT-PCR amplification of the matrix gene. Virus isolates were subjected to genomic sequencing and antigenic characterization. RESULTS Forty-eight samples of 1212 (3.96%) contained detectable influenza virus RNA. Partial viral sequences were obtained from 12 of these samples, showing the presence of H2N2 (1), H6Nx (1), H6N1 (8), H9N2 (1), and H12N5 (1) viruses. As H6 viruses predominated, we generated complete genomes from all 9 H6 viruses. Phylogenetic analyses showed that they were most similar to viruses of South American lineage. The H6N1 viruses caused no disease signs in infected ferrets and, despite genetic differences, were antigenically similar to North American isolates. CONCLUSIONS Lagoa do Peixe National Park is a source of multiple AIV subtypes, with the levels of influenza virus in birds being highest at the end of their wintering period in this region. H6N1 viruses were the predominant subtype identified. These viruses were more similar to viruses of South American lineage than to those of North American lineage.
Collapse
Affiliation(s)
- Jansen Araujo
- Laboratório de Virologia Clínica e Molecular do Instituto de Ciências Biomédicas (ICB‐II)Universidade de São PauloSão PauloSPBrazil
| | - Maria Virgínia Petry
- Laboratório de Ornitologia e Animais Marinhos (LOAM)Universidade do Vale do Rio dos Sinos, UNISINOSSão LeopoldoRSBrazil
| | - Thomas Fabrizio
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTNUSA
| | - David Walker
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTNUSA
| | - Tatiana Ometto
- Laboratório de Virologia Clínica e Molecular do Instituto de Ciências Biomédicas (ICB‐II)Universidade de São PauloSão PauloSPBrazil
| | - Luciano M. Thomazelli
- Laboratório de Virologia Clínica e Molecular do Instituto de Ciências Biomédicas (ICB‐II)Universidade de São PauloSão PauloSPBrazil
| | - Angelo L. Scherer
- Laboratório de Ornitologia e Animais Marinhos (LOAM)Universidade do Vale do Rio dos Sinos, UNISINOSSão LeopoldoRSBrazil
| | - Patricia P. Serafini
- Centro Nacional de Pesquisa e Conservação das Aves Silvestres (CEMAVE/ICMBio/MMA), BrazilFlorianópolisBrazil
| | - Isaac S. Neto
- Centro Nacional de Pesquisa e Conservação das Aves Silvestres (CEMAVE/ICMBio/MMA), BrazilFlorianópolisBrazil
| | - Scott Krauss
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTNUSA
| | - Robert G. Webster
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTNUSA
| | - Richard J. Webby
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTNUSA
| | - Edison L. Durigon
- Laboratório de Virologia Clínica e Molecular do Instituto de Ciências Biomédicas (ICB‐II)Universidade de São PauloSão PauloSPBrazil
| |
Collapse
|
37
|
Brown Jordan A, Gongora V, Hartley D, Oura C. A Review of Eight High-Priority, Economically Important Viral Pathogens of Poultry within the Caribbean Region. Vet Sci 2018; 5:E14. [PMID: 29373488 PMCID: PMC5876562 DOI: 10.3390/vetsci5010014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 02/07/2023] Open
Abstract
Viral pathogens cause devastating economic losses in poultry industries worldwide. The Caribbean region, which boasts some of the highest rates of poultry consumption in the world, is no exception. This review summarizes evidence for the circulation and spread of eight high-priority, economically important poultry viruses across the Caribbean region. Avian influenza virus (AIV), infectious bronchitis virus (IBV), Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV), avian metapneumovirus (aMPV), infectious bursal disease virus (IBDV), fowl adenovirus group 1 (FADV Gp1), and egg drop syndrome virus (EDSV) were selected for review. This review of serological, molecular, and phylogenetic studies across Caribbean countries reveals evidence for sporadic outbreaks of respiratory disease caused by notifiable viral pathogens (AIV, IBV, NDV, and ILTV), as well as outbreaks of diseases caused by immunosuppressive viral pathogens (IBDV and FADV Gp1). This review highlights the need to strengthen current levels of surveillance and reporting for poultry diseases in domestic and wild bird populations across the Caribbean, as well as the need to strengthen the diagnostic capacity and capability of Caribbean national veterinary diagnostic laboratories.
Collapse
Affiliation(s)
- Arianne Brown Jordan
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies (St. Augustine), Eric Williams Medical Sciences Complex, Mount Hope, Trinidad and Tobago.
| | | | - Dane Hartley
- Veterinary Services Laboratory, Guyana Livestock Development Authority, Agriculture Road, Mon Repos, East Coast Demerara.
| | - Christopher Oura
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, The University of the West Indies (St. Augustine), Eric Williams Medical Sciences Complex, Mount Hope, Trinidad and Tobago.
| |
Collapse
|
38
|
Latorre-Margalef N, Brown JD, Fojtik A, Poulson RL, Carter D, Franca M, Stallknecht DE. Competition between influenza A virus subtypes through heterosubtypic immunity modulates re-infection and antibody dynamics in the mallard duck. PLoS Pathog 2017. [PMID: 28640898 PMCID: PMC5481145 DOI: 10.1371/journal.ppat.1006419] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our overall hypothesis is that host population immunity directed at multiple antigens will influence the prevalence, diversity and evolution of influenza A virus (IAV) in avian populations where the vast subtype diversity is maintained. To investigate how initial infection influences the outcome of later infections with homologous or heterologous IAV subtypes and how viruses interact through host immune responses, we carried out experimental infections in mallard ducks (Anas platyrhynchos). Mallards were pre-challenged with an H3N8 low-pathogenic IAV and were divided into six groups. At five weeks post H3N8 inoculation, each group was challenged with a different IAV subtype (H4N5, H10N7, H6N2, H12N5) or the same H3N8. Two additional pre-challenged groups were inoculated with the homologous H3N8 virus at weeks 11 and 15 after pre-challenge to evaluate the duration of protection. The results showed that mallards were still resistant to re-infection after 15 weeks. There was a significant reduction in shedding for all pre-challenged groups compared to controls and the outcome of the heterologous challenges varied according to hemagglutinin (HA) phylogenetic relatedness between the viruses used. There was a boost in the H3 antibody titer after re-infection with H4N5, which is consistent with original antigenic sin or antigenic seniority and suggest a putative strategy of virus evasion. These results imply competition between related subtypes that could regulate IAV subtype population dynamics in nature. Collectively, we provide new insights into within-host IAV complex interactions as drivers of IAV antigenic diversity that could allow the circulation of multiple subtypes in wild ducks.
Collapse
Affiliation(s)
- Neus Latorre-Margalef
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | - Justin D. Brown
- Pennsylvania Game Commission, Pennsylvania State University, Animal Diagnostic Laboratory, University Park, Pennsylvania, United States of America
| | - Alinde Fojtik
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Deborah Carter
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Monique Franca
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
39
|
Fourment M, Darling AE, Holmes EC. The impact of migratory flyways on the spread of avian influenza virus in North America. BMC Evol Biol 2017; 17:118. [PMID: 28545432 PMCID: PMC5445350 DOI: 10.1186/s12862-017-0965-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
Background Wild birds are the major reservoir hosts for influenza A viruses (AIVs) and have been implicated in the emergence of pandemic events in livestock and human populations. Understanding how AIVs spread within and across continents is therefore critical to the development of successful strategies to manage and reduce the impact of influenza outbreaks. In North America many bird species undergo seasonal migratory movements along a North-South axis, thereby providing opportunities for viruses to spread over long distances. However, the role played by such avian flyways in shaping the genetic structure of AIV populations remains uncertain. Results To assess the relative contribution of bird migration along flyways to the genetic structure of AIV we performed a large-scale phylogeographic study of viruses sampled in the USA and Canada, involving the analysis of 3805 to 4505 sequences from 36 to 38 geographic localities depending on the gene segment data set. To assist in this we developed a maximum likelihood-based genetic algorithm to explore a wide range of complex spatial models, depicting a more complete picture of the migration network than determined previously. Conclusions Based on phylogenies estimated from nucleotide sequence data sets, our results show that AIV migration rates are significantly higher within than between flyways, indicating that the migratory patterns of birds play a key role in viral dispersal. These findings provide valuable insights into the evolution, maintenance and transmission of AIVs, in turn allowing the development of improved programs for surveillance and risk assessment.
Collapse
Affiliation(s)
- Mathieu Fourment
- ithree institute, University of Technology Sydney, Sydney, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.
| | - Aaron E Darling
- ithree institute, University of Technology Sydney, Sydney, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
THE PATHOGENESIS OF CLADE 2.3.4.4 H5 HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUSES IN RUDDY DUCK (OXYURA JAMAICENSIS) AND LESSER SCAUP (AYTHYA AFFINIS). J Wildl Dis 2017; 53:832-842. [PMID: 28513330 DOI: 10.7589/2017-01-003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Waterfowl are the natural hosts of avian influenza virus (AIV) and disseminate the virus worldwide through migration. Historically, surveillance and research efforts for AIV in waterfowl have focused on dabbling ducks. The role of diving ducks in AIV ecology has not been well characterized. In this study, we examined the relative susceptibility and pathogenicity of clade 2.3.4.4 H5 highly pathogenic AIV (HPAIV) in two species of diving ducks. Juvenile and adult Ruddy Duck (Oxyura jamaicensis) and juvenile Lesser Scaup (Aythya affinis) were intranasally inoculated with A/Northern Pintail/WA/40964/2014 H5N2 HPAIV. Additional groups of juvenile Lesser Scaups were inoculated with A/Gyrfalcon/WA/41088/2014 H5N8 HPAIV. The approximate 50% bird infectious doses (BID50) of the H5N2 isolate for adult Ruddy Ducks was <102 50% egg infectious doses (EID50) and for the juvenile Lesser Scaups it was <104 EID50. There were insufficient juvenile Ruddy Ducks to calculate the BID50. The BID50 for the juvenile Lesser Scaups inoculated with the H5N8 isolate was 103 EID50. Clinical disease was not observed in any group; however, mortality occurred in the juvenile Ruddy Ducks inoculated with the H5N2 virus (three of five ducks), and staining for AIV antigen was observed in numerous tissues from these ducks. One adult Ruddy Duck also died and although it was infected with AIV (the duck was positive for virus shedding and AIV antigen was detected in tissues), it was also infected with coccidiosis. The proportion of ducks shedding virus was related to the dose administered, but the titers were similar among dose groups. The group with the fewest ducks shedding virus was the adult Ruddy Ducks. There was a trend for the Lesser Scaups to shed higher titers of virus than the Ruddy Ducks. No virus shedding was detected after 7 d postinoculation in any group. Similar to dabbling ducks, Lesser Scaups and Ruddy Ducks are susceptible to infection with this H5 HPAIV lineage, although they excrete lower titers of virus.
Collapse
|
41
|
Xu Y, Ramey AM, Bowman AS, DeLiberto TJ, Killian ML, Krauss S, Nolting JM, Torchetti MK, Reeves AB, Webby RJ, Stallknecht DE, Wan XF. Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus. J Virol 2017; 91:e02208-16. [PMID: 28202755 PMCID: PMC5391441 DOI: 10.1128/jvi.02208-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/08/2017] [Indexed: 12/12/2022] Open
Abstract
Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.IMPORTANCE In January 2016, a novel H7N8 HPAI virus caused a disease outbreak in turkeys in Indiana, USA. To determine the origin of this virus, we sequenced and analyzed 441 wild-bird origin influenza virus strains isolated from wild birds inhabiting North America. We found that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Our results suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may play an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir. Our study also highlights the importance of a coordinated, systematic, and collaborative surveillance for IAVs in both poultry and wild-bird populations.
Collapse
Affiliation(s)
- Yifei Xu
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, Ohio State University, Columbus, Ohio, USA
| | - Thomas J DeLiberto
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Fort Collins, Colorado, USA
| | - Mary L Killian
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, Ohio State University, Columbus, Ohio, USA
| | - Mia Kim Torchetti
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Andrew B Reeves
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
42
|
Gonzalez-Reiche AS, Nelson MI, Angel M, Müller ML, Ortiz L, Dutta J, van Bakel H, Cordon-Rosales C, Perez DR. Evidence of Intercontinental Spread and Uncommon Variants of Low-Pathogenicity Avian Influenza Viruses in Ducks Overwintering in Guatemala. mSphere 2017; 2:e00362-16. [PMID: 28405632 PMCID: PMC5381266 DOI: 10.1128/msphere.00362-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/15/2017] [Indexed: 01/02/2023] Open
Abstract
Over a hundred species of aquatic birds overwinter in Central America's wetlands, providing opportunities for the transmission of influenza A viruses (IAVs). To date, limited IAV surveillance in Central America hinders our understanding of the evolution and ecology of IAVs in migratory hosts within the Western Hemisphere. To address this gap, we sequenced the genomes of 68 virus isolates obtained from ducks overwintering along Guatemala's Pacific Coast during 2010 to 2013. High genetic diversity was observed, including 9 hemagglutinin (HA) subtypes, 7 neuraminidase (NA) subtypes, and multiple avian IAV lineages that have been detected at low levels (<1%) in North America. An unusually large number of viruses with the rare H14 subtype were identified (n = 14) over two consecutive seasons, the highest number of H14 viruses ever reported in a single location, providing evidence for a possible H14 source population located outside routinely sampled regions of North America. Viruses from Guatemala were positioned within minor clades divergent from the main North American lineage on phylogenies inferred for the H3, H4, N2, N8, PA, NP, and NS segments. A time-scaled phylogeny indicates that a Eurasian virus PA segment introduced into the Americas in the early 2000s disseminated to Guatemala during ~2007.1 to 2010.4 (95% highest posterior density [HPD]). Overall, the diversity detected in Guatemala in overwintering ducks highlights the potential role of Central America in the evolution of diverse IAV lineages in the Americas, including divergent variants rarely detected in the United States, and the importance of increasing IAV surveillance throughout Central America. IMPORTANCE Recent outbreaks of highly pathogenic H7N3, H5Nx, and H7N8 avian influenza viruses in North America were introduced by migratory birds, underscoring the importance of understanding how wild birds contribute to the dissemination and evolution of IAVs in nature. At least four of the main IAV duck host species in North America migrate through or overwinter within a narrow strip of Central America, providing opportunities for diverse IAV lineages to mix and exchange gene segments. By obtaining whole-genome sequences of 68 IAV isolates collected from migratory waterfowl in Guatemala (2010 to 2013), the largest data set available from Central America to date, we detected extensive viral diversity, including gene variants rarely found in North America and gene segments of Eurasian origin. Our findings highlight the need for increased IAV surveillance across the geographical span of bird migration flyways, including Neotropical regions that have been vastly undersampled to date.
Collapse
Affiliation(s)
- Ana S. Gonzalez-Reiche
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Martha I. Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mathew Angel
- Department of Veterinary Medicine, University of Maryland—College Park, College Park, Maryland, USA
| | - Maria L. Müller
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucia Ortiz
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Celia Cordon-Rosales
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Veterinary Medicine, University of Maryland—College Park, College Park, Maryland, USA
| |
Collapse
|
43
|
Wille M, Latorre-Margalef N, Tolf C, Stallknecht DE, Waldenström J. No evidence for homosubtypic immunity of influenza H3 in Mallards following vaccination in a natural experimental system. Mol Ecol 2017; 26:1420-1431. [PMID: 27997047 PMCID: PMC5347849 DOI: 10.1111/mec.13967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022]
Abstract
The Mallard (Anas platyrhynchos) is an important reservoir species for influenza A viruses (IAV), and in this host, prevalence and virus diversity are high. Studies have demonstrated the presence of homosubtypic immunity, where individuals are unlikely to be reinfected with the same subtype within an autumn season. Further, evidence for heterosubtypic immunity exists, whereby immune responses specific for one subtype offer partial or complete protection against related HA subtypes. We utilized a natural experimental system to determine whether homo- or heterospecific immunity could be induced following experimental vaccination. Thirty Mallards were vaccinated with an inactivated H3, H6 or a sham vaccine and after seroconversion were exposed to naturally infected wild conspecifics. All ducks were infected within 2 days and had both primary and secondary infections. Overall, there was no observable difference between groups; all individuals were infected with H3 and H10 IAV. At the cessation of the experiment, most individuals had anti-NP antibodies and neutralizing antibodies against H10. Not all individuals had H3 neutralizing antibodies. The isolated H3 IAVs revealed genetic dissimilarity to the H3 vaccine strain, specifically substitutions in the vicinity of the receptor-binding site. There was no evidence of vaccine-induced homosubtypic immunity to H3, a likely result of both a poor H3 immune response in the ducks and H3 immune escape. Likewise, there was no observed heterosubtypic protection related to H6 vaccination. This study highlights the need for experimental approaches to assess how exposure to pathogens and resulting immune processes translates to individual and population disease dynamics.
Collapse
Affiliation(s)
- M Wille
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden
| | - N Latorre-Margalef
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden.,Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, GA, 30602, USA
| | - C Tolf
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden
| | - D E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, GA, 30602, USA
| | - J Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82, Kalmar, Sweden
| |
Collapse
|
44
|
Joseph U, Su YCF, Vijaykrishna D, Smith GJD. The ecology and adaptive evolution of influenza A interspecies transmission. Influenza Other Respir Viruses 2017; 11:74-84. [PMID: 27426214 PMCID: PMC5155642 DOI: 10.1111/irv.12412] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 12/16/2022] Open
Abstract
Since 2013, there have been several alarming influenza-related events; the spread of highly pathogenic avian influenza H5 viruses into North America, the detection of H10N8 and H5N6 zoonotic infections, the ongoing H7N9 infections in China and the continued zoonosis of H5N1 viruses in parts of Asia and the Middle East. The risk of a new influenza pandemic increases with the repeated interspecies transmission events that facilitate reassortment between animal influenza strains; thus, it is of utmost importance to understand the factors involved that promote or become a barrier to cross-species transmission of Influenza A viruses (IAVs). Here, we provide an overview of the ecology and evolutionary adaptations of IAVs, with a focus on a review of the molecular factors that enable interspecies transmission of the various virus gene segments.
Collapse
MESH Headings
- Animals
- Animals, Wild
- Asia/epidemiology
- China/epidemiology
- Disease Reservoirs/virology
- Ducks/virology
- Evolution, Molecular
- Geese/virology
- Humans
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/pathogenicity
- Influenza A Virus, H7N9 Subtype/physiology
- Influenza A virus/genetics
- Influenza A virus/pathogenicity
- Influenza A virus/physiology
- Influenza in Birds/virology
- Influenza, Human/transmission
- Influenza, Human/virology
- Orthomyxoviridae Infections/transmission
- Orthomyxoviridae Infections/virology
- Phylogeny
- Reassortant Viruses/genetics
- Reassortant Viruses/pathogenicity
- Reassortant Viruses/physiology
- Zoonoses
Collapse
Affiliation(s)
| | | | | | - Gavin J. D. Smith
- Duke‐NUS Medical SchoolSingapore
- Duke Global Health InstituteDuke UniversityDurhamNCUSA
| |
Collapse
|
45
|
Hurst CJ. Of Ducks and Men: Ecology and Evolution of a Zoonotic Pathogen in a Wild Reservoir Host. MODELING THE TRANSMISSION AND PREVENTION OF INFECTIOUS DISEASE 2017. [PMCID: PMC7123570 DOI: 10.1007/978-3-319-60616-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hallmark of disease is that most pathogens are able to infect more than one host species. However, for most pathogens, we still have a limited understanding of how this affects epidemiology, persistence and virulence of infections—including several zoonotic pathogens that reside in wild animal reservoirs and spillover into humans. In this chapter, we review the current knowledge of mallard (Anas platyrhynchos) as host for pathogens. This species is widely distributed, often occupying habitats close to humans and livestock, and is an important game bird species and the ancestor to domestic ducks—thereby being an excellent model species to highlight aspects of the wildlife, domestic animal interface and the relevance for human health. We discuss mallard as host for a range of pathogens but focus more in depth of it as a reservoir host for influenza A virus (IAV). Over the last decades, IAV research has surged, prompted in part to the genesis and spread of highly pathogenic virus variants that have been devastating to domestic poultry and caused a number of human spillover infections. The aim of this chapter is to synthesise and review the intricate interactions of virus, host and environmental factors governing IAV epidemiology and evolution.
Collapse
|
46
|
Wei K, Tang X, Li Y. Genome-scale phylodynamics and evolution analysis of global H7N7 influenza viruses. Vet Microbiol 2016; 193:83-92. [PMID: 27599934 DOI: 10.1016/j.vetmic.2016.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 07/23/2016] [Accepted: 08/03/2016] [Indexed: 11/18/2022]
Abstract
Previous studies lacked of comprehensive analysis about the evolutionary history and phylogeography of global H7N7 viruses. In this study, it is essential to undertake a genome-scale analysis to investigate the evolutionary processes in a global perspective. There was local phylogenetic divergence among eight trees based on individual segments of 132 strains. We detected four reassortments between four distinct groups of viruses divided by HA gene, suggesting intrasubtype reassortment could accelerate the emergence of highly pathogenic virus. The molecular clock estimated that H7N7 virus evolved at a slower evolutionary rate ranged from 1.03E-03 to 2.81E-03subs/site/year. And we also showed that all gene segments of the virus were under strong purifying selection. A total of 11 positively selected sites were detected by at least two out of three methods. We reconstructed the population dynamics of global H7N7 viruses spanning over a century, revealing that temporal trends of the effective population size were consistent with the major epidemics previously reported. Our study adopt a Bayesian phylogeographic approach to investigate the geographic spread of H7N7 viruses, which combined with temporal and spatial information of all sequences. We have confirmed several migration events between different geographic locations supported by higher values of Bayes factor. The diffusion patterns of H7N7 viruses reveal that the virus is more likely to evolve to expand their host ranges even cross the species.
Collapse
Affiliation(s)
- Kaifa Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| | - Xiaoping Tang
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Yuhan Li
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
47
|
Hill NJ, Runstadler JA. A Bird's Eye View of Influenza A Virus Transmission: Challenges with Characterizing Both Sides of a Co-Evolutionary Dynamic. Integr Comp Biol 2016; 56:304-16. [PMID: 27252222 PMCID: PMC5964799 DOI: 10.1093/icb/icw055] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In nature, wild birds and influenza A viruses (IAV) are continually co-evolving, locked into a back-and-forth of resistance and conquest that has approached a stable equilibrium over time. This co-evolutionary relationship between bird host and IAV may appear stable at the organismal level, but is highly dynamic at the molecular level manifesting in a constant trade-off between transmissibility and virulence of the virus. Characterizing both sides of the host-virus dynamic has presented a challenge for ecologists and virologists alike, despite the potential for this approach to provide insights into which conditions destabilize the equilibrium state resulting in outbreaks or mortality of hosts in extreme cases. The use of different methods that are either host-centric or virus-centric has made it difficult to reconcile the disparate fields of host ecology and virology for investigating and ultimately predicting wild bird-mediated transmission of IAV. This review distills some of the key lessons learned from virological and ecological studies and explores the promises and pitfalls of both approaches. Ultimately, reconciling ecological and virological approaches hinges on integrating scales for measuring host-virus interactions. We argue that prospects for finding common scales for measuring wild bird-influenza dynamics are improving due to advances in genomic sequencing, host-tracking technology and remote sensing data, with the unit of time (months, year, or seasons) providing a starting point for crossover.
Collapse
Affiliation(s)
- Nichola J Hill
- Massachusetts Institute of Technology, Division of Comparative Medicine & Department of Biological Engineering, 77 Massachusetts Ave, Cambridge 02139
| | - Jonathan A Runstadler
- Massachusetts Institute of Technology, Division of Comparative Medicine & Department of Biological Engineering, 77 Massachusetts Ave, Cambridge 02139
| |
Collapse
|
48
|
Fleming-Canepa X, Jensen SM, Mesa CM, Diaz-Satizabal L, Roth AJ, Parks-Dely JA, Moon DA, Wong JP, Evseev D, Gossen DA, Tetrault DG, Magor KE. Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks. THE JOURNAL OF IMMUNOLOGY 2016; 197:783-94. [PMID: 27342841 DOI: 10.4049/jimmunol.1502450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
Abstract
MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species.
Collapse
Affiliation(s)
- Ximena Fleming-Canepa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Shawna M Jensen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Christine M Mesa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Laura Diaz-Satizabal
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Alexa J Roth
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Julie A Parks-Dely
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Debra A Moon
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Janet P Wong
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Danyel Evseev
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Desolie A Gossen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - David G Tetrault
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Katharine E Magor
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
49
|
Hill NJ, Ma EJ, Meixell BW, Lindberg MS, Boyce WM, Runstadler JA. Transmission of influenza reflects seasonality of wild birds across the annual cycle. Ecol Lett 2016; 19:915-25. [PMID: 27324078 DOI: 10.1111/ele.12629] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/04/2016] [Indexed: 11/30/2022]
Abstract
Influenza A Viruses (IAV) in nature must overcome shifting transmission barriers caused by the mobility of their primary host, migratory wild birds, that change throughout the annual cycle. Using a phylogenetic network of viral sequences from North American wild birds (2008-2011) we demonstrate a shift from intraspecific to interspecific transmission that along with reassortment, allows IAV to achieve viral flow across successive seasons from summer to winter. Our study supports amplification of IAV during summer breeding seeded by overwintering virus persisting locally and virus introduced from a wide range of latitudes. As birds migrate from breeding sites to lower latitudes, they become involved in transmission networks with greater connectivity to other bird species, with interspecies transmission of reassortant viruses peaking during the winter. We propose that switching transmission dynamics may be a critical strategy for pathogens that infect mobile hosts inhabiting regions with strong seasonality.
Collapse
Affiliation(s)
- Nichola J Hill
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eric J Ma
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Brandt W Meixell
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, 55108, USA.,U.S. Geological Survey, Alaska Science Center, Anchorage, AK, 99508, USA
| | - Mark S Lindberg
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Walter M Boyce
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jonathan A Runstadler
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
50
|
Bahl J, Pham TT, Hill NJ, Hussein ITM, Ma EJ, Easterday BC, Halpin RA, Stockwell TB, Wentworth DE, Kayali G, Krauss S, Schultz-Cherry S, Webster RG, Webby RJ, Swartz MD, Smith GJD, Runstadler JA. Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential. PLoS Pathog 2016; 12:e1005620. [PMID: 27166585 PMCID: PMC4864295 DOI: 10.1371/journal.ppat.1005620] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
Despite evidence for avian influenza A virus (AIV) transmission between wild and domestic ecosystems, the roles of bird migration and poultry trade in the spread of viruses remain enigmatic. In this study, we integrate ecosystem interactions into a phylogeographic model to assess the contribution of wild and domestic hosts to AIV distribution and persistence. Analysis of globally sampled AIV datasets shows frequent two-way transmission between wild and domestic ecosystems. In general, viral flow from domestic to wild bird populations was restricted to within a geographic region. In contrast, spillover from wild to domestic populations occurred both within and between regions. Wild birds mediated long-distance dispersal at intercontinental scales whereas viral spread among poultry populations was a major driver of regional spread. Viral spread between poultry flocks frequently originated from persistent lineages circulating in regions of intensive poultry production. Our analysis of long-term surveillance data demonstrates that meaningful insights can be inferred from integrating ecosystem into phylogeographic reconstructions that may be consequential for pandemic preparedness and livestock protection.
Collapse
Affiliation(s)
- Justin Bahl
- Center for Infectious Diseases, The University of Texas School of Public Health, Houston, Texas, United States of America
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Truc T. Pham
- Center for Infectious Diseases, The University of Texas School of Public Health, Houston, Texas, United States of America
| | - Nichola J. Hill
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Islam T. M. Hussein
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Eric J. Ma
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bernard C. Easterday
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rebecca A. Halpin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Ghazi Kayali
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Michael D. Swartz
- Center for Infectious Diseases, The University of Texas School of Public Health, Houston, Texas, United States of America
| | - Gavin J. D. Smith
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - Jonathan A. Runstadler
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|