1
|
Castro ÍA, Yang Y, Gnazzo V, Kim DH, Van Dyken SJ, López CB. Murine parainfluenza virus persists in lung innate immune cells sustaining chronic lung pathology. Nat Microbiol 2024:10.1038/s41564-024-01805-8. [PMID: 39358466 DOI: 10.1038/s41564-024-01805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/06/2024] [Indexed: 10/04/2024]
Abstract
Common respiratory viruses, including the human parainfluenza viruses, threaten human health seasonally and associate with the development of chronic lung diseases. Evidence suggests that these viruses can persist, but the sources of viral products in vivo and their impact on chronic respiratory diseases remain unknown. Using the murine parainfluenza virus Sendai, we demonstrate that viral protein and RNA persist in lung macrophages, type 2 innate lymphoid cells (ILC2s) and dendritic cells long after the infectious virus is cleared. Cells containing persistent viral protein expressed Th2 inflammation-related transcriptomic signatures associated with the development of chronic lung diseases, including asthma. Lineage tracing demonstrated that distinct functional groups of cells contribute to the chronic pathology. Importantly, targeted ablation of infected cells significantly ameliorated chronic lung disease. Overall, we identified persistent infection of innate immune cells as a key factor in the progression from acute to chronic lung disease after infection with parainfluenza virus.
Collapse
Affiliation(s)
- Ítalo Araújo Castro
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yanling Yang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Victoria Gnazzo
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carolina B López
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Uddbäck I, Michalets SE, Saha A, Mattingly C, Kost KN, Williams ME, Lawrence LA, Hicks SL, Lowen AC, Ahmed H, Thomsen AR, Russell CJ, Scharer CD, Boss JM, Koelle K, Antia R, Christensen JP, Kohlmeier JE. Prevention of respiratory virus transmission by resident memory CD8 + T cells. Nature 2024; 626:392-400. [PMID: 38086420 PMCID: PMC11040656 DOI: 10.1038/s41586-023-06937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies1. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections2-6. However, it is unknown whether memory T cells alone can effectively surveil the respiratory tract to the extent that they eliminate or greatly reduce viral transmission following exposure of an individual to infection. Here we use a mouse model of natural parainfluenza virus transmission to quantify the extent to which memory CD8+ T cells resident in the respiratory tract can provide herd immunity by reducing both the susceptibility of acquiring infection and the extent of transmission, even in the absence of virus-specific antibodies. We demonstrate that protection by resident memory CD8+ T cells requires the antiviral cytokine interferon-γ (IFNγ) and leads to altered transcriptional programming of epithelial cells within the respiratory tract. These results suggest that tissue-resident CD8+ T cells in the respiratory tract can have important roles in protecting the host against viral disease and limiting viral spread throughout the population.
Collapse
Affiliation(s)
- Ida Uddbäck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah E Michalets
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ananya Saha
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Cameron Mattingly
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsten N Kost
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - M Elliott Williams
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Laurel A Lawrence
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charles J Russell
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Mah SL, Linklater DP, Tzanov V, Le PH, Dekiwadia C, Mayes E, Simons R, Eyckens DJ, Moad G, Saita S, Joudkazis S, Jans DA, Baulin VA, Borg NA, Ivanova EP. Piercing of the Human Parainfluenza Virus by Nanostructured Surfaces. ACS NANO 2024; 18:1404-1419. [PMID: 38127731 PMCID: PMC10902884 DOI: 10.1021/acsnano.3c07099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
This paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.5 log reduction in infectivity of human parainfluenza virus type 3 (hPIV-3) after 6 h, a substantially enhanced efficiency, compared to that of smooth Si. Theoretical modeling of the virus-nanospike interactions determined the virucidal action of the nanostructured substrata to be associated with the ability of the sharp nanofeatures to effectively penetrate the viral envelope, resulting in the loss of viral infectivity. Our research highlights the significance of the potential application of nanostructured surfaces in combating the spread of viruses and bacteria. Notably, our study provides valuable insights into the design and optimization of antiviral surfaces with a particular emphasis on the crucial role played by sharp nanofeatures in maximizing their effectiveness.
Collapse
Affiliation(s)
- Samson
W. L. Mah
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
- CSIRO
Manufacturing, Clayton, Victoria 3168, Australia
| | - Denver P. Linklater
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
- Department
of Biomedical Engineering, Graeme Clarke Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vassil Tzanov
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, Tarragona 43007, Spain
| | - Phuc H. Le
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Chaitali Dekiwadia
- RMIT
Microscopy and Microanalysis Facility, STEM College,RMIT University, Melbourne, Victoria 3000, Australia
| | - Edwin Mayes
- RMIT
Microscopy and Microanalysis Facility, STEM College,RMIT University, Melbourne, Victoria 3000, Australia
| | - Ranya Simons
- CSIRO
Manufacturing, Clayton, Victoria 3168, Australia
| | | | - Graeme Moad
- CSIRO
Manufacturing, Clayton, Victoria 3168, Australia
| | - Soichiro Saita
- The KAITEKI
Institute Inc., Chiyoda-ku, Tokyo 100-8251, Japan
| | - Saulius Joudkazis
- Optical
Science Centre, Swinburne University of
Technology, Hawthorn, Melbourne, Victoria 3122, Australia
| | - David A. Jans
- Nuclear
Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia
| | - Vladimir A. Baulin
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, Tarragona 43007, Spain
| | - Natalie A. Borg
- School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Victoria 3083, Australia
| | - Elena P. Ivanova
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Zhou J, Uddback I, Kohlmeier JE, Christensen JP, Thomsen AR. Vaccine induced memory CD8 + T cells efficiently prevent viral transmission from the respiratory tract. Front Immunol 2023; 14:1322536. [PMID: 38164135 PMCID: PMC10757911 DOI: 10.3389/fimmu.2023.1322536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Mucosal immunization eliciting local T-cell memory has been suggested for improved protection against respiratory infections caused by viral variants evading pre-existing antibodies. However, it remains unclear whether T-cell targeted vaccines suffice for prevention of viral transmission and to which extent local immunity is important in this context. Methods To study the impact of T-cell vaccination on the course of viral respiratory infection and in particular the capacity to inhibit viral transmission, we used a mouse model involving natural murine parainfluenza infection with a luciferase encoding virus and an adenovirus based nucleoprotein targeting vaccine. Results and discussion Prior intranasal immunization inducing strong mucosal CD8+ T cell immunity provided an almost immediate shut-down of the incipient infection and completely inhibited contact based viral spreading. If this first line of defense did not operate, as in parentally immunized mice, recirculating T cells participated in accelerated viral control that reduced the intensity of inter-individual transmission. These observations underscore the importance of pursuing the development of mucosal T-cell inducing vaccines for optimal protection of the individual and inhibition of inter-individual transmission (herd immunity), while at the same time explain why induction of a strong systemic T-cell response may still impact viral transmission.
Collapse
Affiliation(s)
- Jinglin Zhou
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Uddback
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob E. Kohlmeier
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Castro ÍA, Yang Y, Gnazzo V, Kim DH, Van Dyken SJ, López CB. Murine Parainfluenza Virus Persists in Lung Innate Immune Cells Sustaining Chronic Lung Pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566103. [PMID: 37986974 PMCID: PMC10659393 DOI: 10.1101/2023.11.07.566103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Respiratory viruses including the human parainfluenza viruses (hPIVs) are a constant burden to human health, with morbidity and mortality frequently increased after the acute phase of the infection. Although is proven that respiratory viruses can persist in vitro, the mechanisms of virus or viral products persistence, their sources, and their impact on chronic respiratory diseases in vivo are unknown. Here, we used Sendai virus (SeV) to model hPIV infection in mice and test whether virus persistence associates with the development of chronic lung disease. Following SeV infection, virus products were detected in lung macrophages, type 2 innate lymphoid cells (ILC2s) and dendritic cells for several weeks after the infectious virus was cleared. Cells containing viral protein showed strong upregulation of antiviral and type 2 inflammation-related genes that associate with the development of chronic post-viral lung diseases, including asthma. Lineage tracing of infected cells or cells derived from infected cells suggests that distinct functional groups of cells contribute to the chronic pathology. Importantly, targeted ablation of infected cells or those derived from infected cells significantly ameliorated chronic lung disease. Overall, we identified persistent infection of innate immune cells as a critical factor in the progression from acute to chronic post viral respiratory disease.
Collapse
Affiliation(s)
- Ítalo Araujo Castro
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Yanling Yang
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Victoria Gnazzo
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Do-Hyun Kim
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Steven J Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Carolina B López
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
6
|
Parsons J, Korsman S, Smuts H, Hsiao NY, Valley-Omar Z, Gelderbloem T, Hardie D. Human Parainfluenza Virus (HPIV) Detection in Hospitalized Children with Acute Respiratory Tract Infection in the Western Cape, South Africa during 2014-2022 Reveals a Shift in Dominance of HPIV 3 and 4 Infections. Diagnostics (Basel) 2023; 13:2576. [PMID: 37568938 PMCID: PMC10417174 DOI: 10.3390/diagnostics13152576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The epidemiology of human parainfluenza viruses (HPIV), particularly its role as a cause of acute respiratory infection (ARI) in infants, has not been formally studied in South Africa. We evaluated HPIV prevalence in diagnostic samples from hospitalized children from public sector hospitals in the Western Cape between 2014 and 2022. HPIV infection was detected in 2-10% of patients, with the majority of infections detected in children less than 1 year of age. Prior to 2020, HPIV 4 (40%) and HPIV 3 (34%) were the most prevalent types, with seasonal peaks in late winter/spring for HPIV 3 and autumn/winter for HPIV 4. HPIV 4A and 4B co-circulated during the seasonal activity between 2014 and 2017. Pandemic restrictions in 2020 had a profound effect on HPIV circulation and the rebound was dominated by waves of HPIV 3, accounting for 66% of detections and a sustained decline in the circulation of HPIV 1, 2 and 4. An immunity gap could account for the surge in HPIV 3 infections, but the decline in prior HPIV 4 dominance is unexplained and requires further study.
Collapse
Affiliation(s)
- Jane Parsons
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
| | - Stephen Korsman
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
| | - Heidi Smuts
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
| | - Nei-Yuan Hsiao
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Ziyaad Valley-Omar
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
| | | | - Diana Hardie
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa; (J.P.); (S.K.); (H.S.); (N.-Y.H.); (Z.V.-O.)
- National Health Laboratory Service, Johannesburg 2193, South Africa;
| |
Collapse
|
7
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Weitzman CL, Ceja G, Leon AE, Hawley DM. Protection Generated by Prior Exposure to Pathogens Depends on both Priming and Challenge Dose. Infect Immun 2022; 90:e0053721. [PMID: 35041488 PMCID: PMC8929379 DOI: 10.1128/iai.00537-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Free-living hosts encounter pathogens at a wide range of frequencies and concentrations, including low doses that are largely aclinical, creating a varied landscape of exposure history and reinfection likelihood. While several studies show that higher priming doses result in stronger immunological protection against reinfection, it remains unknown how the reinfection challenge dose and priming dose interact to determine the likelihood and severity of reinfection. We manipulated both priming and challenge doses of Mycoplasma gallisepticum, which causes mycoplasmal conjunctivitis, in captive house finches (Haemorhous mexicanus), to assess reinfection probability and severity. We found a significant interaction between priming and challenge doses on reinfection probability, with the likelihood of reinfection by a high but not a low challenge dose decreasing exponentially at higher priming doses. While this interaction was likely driven by lower average infection probabilities for low-dose versus high-dose challenges, even the highest priming dose provided only negligible protection against reinfection from low-dose challenges. Similarly, pathogen loads during reinfection were significantly reduced with increasing priming doses only for birds reinfected at high but not low doses. We hypothesize that these interactions arise to some degree from fundamental differences in host immune responses across doses, with single low doses only weakly triggering host immune responses. Importantly, our results also demonstrate that reinfections can occur from a variety of exposure doses and across diverse degrees of standing immunity in this system. Overall, our study highlights the importance of considering both initial and subsequent exposure doses where repeated exposure to a pathogen is common in nature.
Collapse
Affiliation(s)
- Chava L. Weitzman
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Guadalupe Ceja
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Ariel E. Leon
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
9
|
Rafeek RAM, Divarathna MVM, Morel AJ, Noordeen F. Epidemiological and clinical characteristics of children with human parainfluenza virus associated acute respiratory infection in a general hospital in Sri Lanka. JOURNAL OF CLINICAL VIROLOGY PLUS 2021. [DOI: 10.1016/j.jcvp.2021.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Exposure to PM2.5 and PM10 and COVID-19 Infection Rates and Mortality: a one-year observational study in Poland. Biomed J 2021; 44:S25-S36. [PMID: 34801766 PMCID: PMC8603332 DOI: 10.1016/j.bj.2021.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 01/26/2023] Open
Abstract
Background Atmospheric contamination, especially particulate matter (PM), can be associated viral infections connected with respiratory failure. Literature data indicates that intensity of SARS-CoV-2 infections worldwide can be associated with PM pollution levels. Objectives The aim of the study was to examine the relationship between atmospheric contamination, measured as PM2.5 and PM10 levels, and the number of COVID-19 cases and related deaths in Poland in a one-year observation study. Methods Number and geographical distribution of COVID-19 incidents and related deaths, as well as PM2.5 and PM10 exposure levels in Poland were obtained from publicly accessible databases. Average monthly values of these parameters for individual provinces were calculated. Multiple regression analysis was performed for the period between March 2020 and February 2021, taking into account average monthly exposure to PM2.5 and PM10, monthly COVID-19 incidence and mortality rates per 100,000 inhabitants and the population density across Polish provinces. Results Only December 2020 the number of new infections was significantly related to the three analyzed factors: PM2.5, population density and the number of laboratory COVID-19 tests (R2 = 0.882). For COVID-19 mortality, a model with all three significant factors: PM10, population density and number of tests was obtained as significant only in November 2020 (R2 = 0.468). Conclusion The distribution of COVID-19 incidents across Poland was independent from annual levels of particulate matter concentration in provinces. Exposure to PM2.5 and PM10 was associated with COVID-19 incidence and mortality in different provinces only in certain months. Other cofactors such as population density and the number of performed COVID-19 tests also corresponded with both COVID-19-related infections and deaths only in certain months. Particulate matter should not be treated as the sole determinant of the spread and severity of the COVID-19 pandemic but its importance in the incidence of infectious diseases should not be forgotten.
Collapse
|
11
|
Quantifying dose-, strain-, and tissue-specific kinetics of parainfluenza virus infection. PLoS Comput Biol 2021; 17:e1009299. [PMID: 34383757 PMCID: PMC8384156 DOI: 10.1371/journal.pcbi.1009299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/24/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
Human parainfluenza viruses (HPIVs) are a leading cause of acute respiratory infection hospitalization in children, yet little is known about how dose, strain, tissue tropism, and individual heterogeneity affects the processes driving growth and clearance kinetics. Longitudinal measurements are possible by using reporter Sendai viruses, the murine counterpart of HPIV 1, that express luciferase, where the insertion location yields a wild-type (rSeV-luc(M-F*)) or attenuated (rSeV-luc(P-M)) phenotype. Bioluminescence from individual animals suggests that there is a rapid increase in expression followed by a peak, biphasic clearance, and resolution. However, these kinetics vary between individuals and with dose, strain, and whether the infection was initiated in the upper and/or lower respiratory tract. To quantify the differences, we translated the bioluminescence measurements from the nasopharynx, trachea, and lung into viral loads and used a mathematical model together a nonlinear mixed effects approach to define the mechanisms distinguishing each scenario. The results confirmed a higher rate of virus production with the rSeV-luc(M-F*) virus compared to its attenuated counterpart, and suggested that low doses result in disproportionately fewer infected cells. The analyses indicated faster infectivity and infected cell clearance rates in the lung and that higher viral doses, and concomitantly higher infected cell numbers, resulted in more rapid clearance. This parameter was also highly variable amongst individuals, which was particularly evident during infection in the lung. These critical differences provide important insight into distinct HPIV dynamics, and show how bioluminescence data can be combined with quantitative analyses to dissect host-, virus-, and dose-dependent effects. Human parainfluenza viruses (HPIVs) cause acute respiratory infections and can lead to the hospitalization of children. HPIV infection severity may vary due to dose, strain, patient, and whether the infection initiates within the upper or lower respiratory tract. There is a need to determine how the rates of virus spread and clearance change in different infection scenarios in order to better understand varying clinical manifestations. The significance of our research is in identifying the dominant mechanisms driving strain-, dose-, and tissue-specific HPIV infection kinetics, and in pairing bioluminescence data with quantitative analyses to determine how the same virus can yield patient-specific outcomes. This work enhances our understanding of HPIV infection and broadens our knowledge viral dynamics in the upper and lower respiratory tracts.
Collapse
|
12
|
Dawre S, Maru S. Human respiratory viral infections: Current status and future prospects of nanotechnology-based approaches for prophylaxis and treatment. Life Sci 2021; 278:119561. [PMID: 33915132 PMCID: PMC8074533 DOI: 10.1016/j.lfs.2021.119561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/23/2022]
Abstract
Respiratory viral infections are major cause of highly mortal pandemics. They are impacting socioeconomic development and healthcare system globally. These emerging deadly respiratory viruses develop newer survival strategies to live inside host cells and tricking the immune system of host. Currently, medical facilities, therapies and research -development teams of every country kneel down before novel corona virus (SARS-CoV-2) which claimed ~2,828,629 lives till date. Thus, there is urgent requirement of novel treatment strategies to combat against these emerging respiratory viral infections. Nanocarriers come under the umbrella of nanotechnology and offer numerous benefits compared to traditional dosage forms. Further, unique physicochemical properties (size, shape and surface charge) of nanocarriers provide additional advantage for targeted delivery. This review discusses in detail about the respiratory viruses, their transmission mode and cell invasion pathways, survival strategies, available therapies, and nanocarriers for the delivery of therapeutics. Further, the role of nanocarriers in the development of treatment therapy against SARS-CoV-2 is also overviewed.
Collapse
Affiliation(s)
- Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy &, Technology Management, SVKM's NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra 425405, India.
| | - Saurabh Maru
- School of Pharmacy and Technology Management, SVKM's NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra 425405, India.
| |
Collapse
|
13
|
Sendai Virus-Vectored Vaccines That Express Envelope Glycoproteins of Respiratory Viruses. Viruses 2021; 13:v13061023. [PMID: 34072332 PMCID: PMC8230104 DOI: 10.3390/v13061023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), and human parainfluenza viruses (HPIVs) are leading causes of respiratory disease in young children, the elderly, and individuals of all ages with immunosuppression. Vaccination strategies against these pneumoviruses and paramyxoviruses are vast in number, yet no licensed vaccines are available. Here, we review development of Sendai virus (SeV), a versatile pediatric vaccine that can (a) serve as a Jennerian vaccine against HPIV1, (b) serve as a recombinant vaccine against HRSV, HPIV2, HPIV3, and HMPV, (c) accommodate foreign genes for viral glycoproteins in multiple intergenic positions, (d) induce durable, mucosal, B-cell, and T-cell immune responses without enhanced immunopathology, (e) protect cotton rats, African green monkeys, and chimpanzees from infection, and (f) be formulated into a vaccine cocktail. Clinical phase I safety trials of SeV have been completed in adults and 3–6-year-old children. Clinical testing of SeVRSV, an HRSV fusion (F) glycoprotein gene recombinant, has also been completed in adults. Positive results from these studies, and collaborative efforts with the National Institutes of Health and the Serum Institute of India assist advanced development of SeV-based vaccines. Prospects are now good for vaccine successes in infants and consequent protection against serious viral disease.
Collapse
|
14
|
O'Brien B, Goodridge L, Ronholm J, Nasheri N. Exploring the potential of foodborne transmission of respiratory viruses. Food Microbiol 2021; 95:103709. [PMID: 33397626 PMCID: PMC8035669 DOI: 10.1016/j.fm.2020.103709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
The ongoing pandemic involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised the question whether this virus, which is known to be spread primarily though respiratory droplets, could be spread through the fecal-oral route or via contaminated food. In this article, we present a critical review of the literature exploring the potential foodborne transmission of several respiratory viruses including human coronaviruses, avian influenza virus (AVI), parainfluenza viruses, human respiratory syncytial virus, adenoviruses, rhinoviruses, and Nipah virus. Multiple lines of evidence, including documented expression of receptor proteins on gastrointestinal epithelial cells, in vivo viral replication in gastrointestinal epithelial cell lines, extended fecal shedding of respiratory viruses, and the ability to remain infectious in food environments for extended periods of time raises the theoretical ability of some human respiratory viruses, particularly human coronaviruses and AVI, to spread via food. However, to date, neither epidemiological data nor case reports of clear foodborne transmission of either viruses exist. Thus, foodborne transmission of human respiratory viruses remains only a theoretical possibility.
Collapse
Affiliation(s)
- Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | | | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Neda Nasheri
- Food Virology Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
15
|
Yang R, Peng J, Zhai J, Xiao K, Zhang X, Li X, Chen X, Chen ZJ, Holmes EC, Irwin DM, Shan F, Shen X, Chen W, Shen Y. Pathogenicity and transmissibility of a novel respirovirus isolated from a Malayan pangolin. J Gen Virol 2021; 102. [PMID: 33843572 DOI: 10.1099/jgv.0.001586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The identification of SARS-CoV-2-like viruses in Malayan pangolins (Manis javanica) has focused attention on these endangered animals and the viruses they carry. We successfully isolated a novel respirovirus from the lungs of a dead Malayan pangolin. Similar to murine respirovirus, the full-length genome of this novel virus was 15 384 nucleotides comprising six genes in the order 3'-(leader)-NP-P-M-F-HN-l-(trailer)-5'. Phylogenetic analysis revealed that this virus belongs to the genus Respirovirus and is most closely related to murine respirovirus. Notably, animal infection experiments indicated that the pangolin virus is highly pathogenic and transmissible in mice, with inoculated mice having variable clinical symptoms and a fatality rate of 70.37 %. The virus was found to replicate in most tissues with the exception of muscle and heart. Contact transmission of the virus was 100 % efficient, although the mice in the contact group displayed milder symptoms, with the virus mainly being detected in the trachea and lungs. The isolation of a novel respirovirus from the Malayan pangolin provides new insight into the evolution and distribution of this important group of viruses and again demonstrates the potential infectious disease threats faced by endangered pangolins.
Collapse
Affiliation(s)
- Rou Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.,Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinyu Peng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Junqiong Zhai
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou 510070, PR China
| | - Kangpeng Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Xu Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaobing Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaoyuan Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Zu-Jin Chen
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou 510070, PR China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - David M Irwin
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S 1A8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Fen Shan
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou 510070, PR China
| | - Xuejuan Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Wu Chen
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou 510070, PR China
| | - Yongyi Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, PR China
| |
Collapse
|
16
|
Cumulative Effects of Particulate Matter Pollution and Meteorological Variables on the Risk of Influenza-Like Illness. Viruses 2021; 13:v13040556. [PMID: 33810283 PMCID: PMC8065612 DOI: 10.3390/v13040556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
Abstract
The cold season is usually accompanied by an increased incidence of respiratory infections and increased air pollution from combustion sources. As we are facing growing numbers of COVID-19 cases caused by the novel SARS-CoV-2 coronavirus, an understanding of the impact of air pollutants and meteorological variables on the incidence of respiratory infections is crucial. The incidence of influenza-like illness (ILI) can be used as a close proxy for the circulation of influenza viruses. Recently, SARS-CoV-2 has also been detected in patients with ILI. Using distributed lag nonlinear models, we analyzed the association between ILI, meteorological variables and particulate matter concentration in Bialystok, Poland, from 2013–2019. We found an exponential relationship between cumulative PM2.5 pollution and the incidence of ILI, which remained significant after adjusting for air temperatures and a long-term trend. Pollution had the greatest effect during the same week, but the risk of ILI was increased for the four following weeks. The risk of ILI was also increased by low air temperatures, low absolute humidity, and high wind speed. Altogether, our results show that all measures implemented to decrease PM2.5 concentrations would be beneficial to reduce the transmission of SARS-CoV-2 and other respiratory infections.
Collapse
|
17
|
Abstract
The apical junctional complexes (AJCs) of airway epithelial cells are a key component of the innate immune system by creating barriers to pathogens, inhaled allergens, and environmental particles. AJCs form between adjacent cells and consist of tight junctions (TJs) and adherens junctions (AJs). Respiratory viruses have been shown to target various components of the AJCs, leading to airway epithelial barrier dysfunction by different mechanisms. Virus-induced epithelial permeability may allow for allergens and bacterial pathogens to subsequently invade. In this review, we discuss the pathophysiologic mechanisms leading to disruption of AJCs and the potential ensuing ramifications. We focus on the following viruses that affect the pulmonary system: respiratory syncytial virus, rhinovirus, influenza viruses, immunodeficiency virus, and other viruses such as coxsackievirus, adenovirus, coronaviruses, measles, parainfluenza virus, bocavirus, and vaccinia virus. Understanding the mechanisms by which viruses target the AJC and impair barrier function may help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Mahyar Aghapour
- Institute of Medical Microbiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA.,Center for Pediatric Pulmonary Medicine, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Schutzer‐Weissmann J, Magee DJ, Farquhar‐Smith P. Severe acute respiratory syndrome coronavirus 2 infection risk during elective peri-operative care: a narrative review. Anaesthesia 2020; 75:1648-1658. [PMID: 32652529 PMCID: PMC7404908 DOI: 10.1111/anae.15221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
The protection of healthcare workers from the risk of nosocomial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a paramount concern. SARS-CoV-2 is likely to remain endemic and measures to protect healthcare workers against nosocomial infection will need to be maintained. This review aims to inform the assessment and management of the risk of SARS-CoV-2 transmission to healthcare workers involved in elective peri-operative care. In the absence of data specifically related to the risk of SARS-CoV-2 transmission in the peri-operative setting, we explore the evidence-base that exists regarding modes of viral transmission, historical evidence for the risk associated with aerosol-generating procedures and contemporaneous data from the COVID-19 pandemic. We identify a significant lack of data regarding the risk of transmission in the management of elective surgical patients, highlighting the urgent need for further research.
Collapse
Affiliation(s)
- J. Schutzer‐Weissmann
- Department of AnaesthesiaPeri‐operative Medicine, Pain and Critical CareRoyal Marsden Hospital NHS Foundation TrustLondonUK
| | - D. J. Magee
- Imperial School of AnaesthesiaLondonUK
- The Institute of Cancer ResearchLondonUK
| | - P. Farquhar‐Smith
- Department of AnaesthesiaPeri‐operative Medicine, Pain and Critical CareRoyal Marsden Hospital NHS Foundation TrustLondonUK
| |
Collapse
|
19
|
Han M, Rajput C, Ishikawa T, Jarman CR, Lee J, Hershenson MB. Small Animal Models of Respiratory Viral Infection Related to Asthma. Viruses 2018; 10:E682. [PMID: 30513770 PMCID: PMC6316391 DOI: 10.3390/v10120682] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral infections are strongly associated with asthma exacerbations. Rhinovirus is most frequently-detected pathogen; followed by respiratory syncytial virus; metapneumovirus; parainfluenza virus; enterovirus and coronavirus. In addition; viral infection; in combination with genetics; allergen exposure; microbiome and other pathogens; may play a role in asthma development. In particular; asthma development has been linked to wheezing-associated respiratory viral infections in early life. To understand underlying mechanisms of viral-induced airways disease; investigators have studied respiratory viral infections in small animals. This report reviews animal models of human respiratory viral infection employing mice; rats; guinea pigs; hamsters and ferrets. Investigators have modeled asthma exacerbations by infecting mice with allergic airways disease. Asthma development has been modeled by administration of virus to immature animals. Small animal models of respiratory viral infection will identify cell and molecular targets for the treatment of asthma.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Charu Rajput
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Tomoko Ishikawa
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Caitlin R Jarman
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Julie Lee
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Ariza‐Heredia EJ, Chemaly RF. Update on infection control practices in cancer hospitals. CA Cancer J Clin 2018; 68:340-355. [PMID: 29985544 PMCID: PMC7162018 DOI: 10.3322/caac.21462] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/12/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022] Open
Abstract
Therapies in oncology have evolved rapidly over the last years. At the same pace, supportive care for patients receiving cancer therapy has also evolved, allowing patients to safely receive the newest advances in treatment in both an inpatient and outpatient basis. The recognition of the role of infection control and prevention (ICP) in the outcomes of patients living with cancer has been such that it is now a requirement for hospitals and involves multidisciplinary groups. Some unique aspects of ICP for patients with cancer that have gained momentum over the past few decades include catheter-related infections, multidrug-resistant organisms, community-acquired viral infections, and the impact of the health care environment on the horizontal transmission of organisms. Furthermore, as the potential for infections to cross international borders has increased, alertness for outbreaks or new infections that occur outside the area have become constant. As the future approaches, ICP in immunocompromised hosts will continue to integrate emerging disciplines, such as antibiotic stewardship and the microbiome, and new techniques for environmental cleaning and for controlling the spread of infections, such as whole-genome sequencing. CA Cancer J Clin 2018;000:000-000. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Ella J. Ariza‐Heredia
- Associate Professor, Department of Infectious Diseases, Infection Control, and Employee HealthThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Roy F. Chemaly
- Professor, Department of Infectious Diseases, Infection Control, and Employee HealthThe University of Texas MD Anderson Cancer CenterHoustonTX
| |
Collapse
|
21
|
Directed Evolution of an Influenza Reporter Virus To Restore Replication and Virulence and Enhance Noninvasive Bioluminescence Imaging in Mice. J Virol 2018; 92:JVI.00593-18. [PMID: 29899096 DOI: 10.1128/jvi.00593-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Reporter viruses provide a powerful tool to study infection, yet incorporating a nonessential gene often results in virus attenuation and genetic instability. Here, we used directed evolution of a luciferase-expressing pandemic H1N1 (pH1N1) 2009 influenza A virus in mice to restore replication kinetics and virulence, increase the bioluminescence signal, and maintain reporter gene expression. An unadapted pH1N1 virus with NanoLuc luciferase inserted into the 5' end of the PA gene segment grew to titers 10-fold less than those of the wild type in MDCK cells and in DBA/2 mice and was less virulent. For 12 rounds, we propagated DBA/2 lung samples with the highest bioluminescence-to-titer ratios. Every three rounds, we compared in vivo replication, weight loss, mortality, and bioluminescence. Mouse-adapted virus after 9 rounds (MA-9) had the highest relative bioluminescence signal and had wild-type-like fitness and virulence in DBA/2 mice. Using reverse genetics, we discovered fitness was restored in virus rPB2-MA9/PA-D479N by a combination of PA-D479N and PB2-E158G amino acid mutations and PB2 noncoding mutations C1161T and C1977T. rPB2-MA9/PA-D479N has increased mRNA transcription, which helps restore wild-type-like phenotypes in DBA/2 and BALB/c mice. Overall, the results demonstrate that directed evolution that maximizes foreign-gene expression while maintaining genetic stability is an effective method to restore wild-type-like in vivo fitness of a reporter virus. Virus rPB2-MA9/PA-D479N is expected to be a useful tool for noninvasive imaging of pH1N1 influenza virus infection and clearance while analyzing virus-host interactions and developing new therapeutics and vaccines.IMPORTANCE Influenza viruses contribute to 290,000 to 650,000 deaths globally each year. Infection is studied in mice to learn how the virus causes sickness and to develop new drugs and vaccines. During experiments, scientists have needed to euthanize groups of mice at different times to measure the amount of infectious virus in mouse tissues. By inserting a foreign gene that causes infected cells to light up, scientists could see infection spread in living mice. Unfortunately, adding an extra gene not needed by the virus slowed it down and made it weaker. Here, we used a new strategy to restore the fitness and lethality of an influenza reporter virus; we adapted it to mouse lungs and selected for variants that had the greatest light signal. The adapted virus can be used to study influenza virus infection, immunology, and disease in living mice. The strategy can also be used to adapt other viruses.
Collapse
|
22
|
Linster M, Do LAH, Minh NNQ, Chen Y, Zhe Z, Tuan TA, Tuan HM, Su YCF, van Doorn HR, Moorthy M, Smith GJD. Clinical and Molecular Epidemiology of Human Parainfluenza Viruses 1-4 in Children from Viet Nam. Sci Rep 2018; 8:6833. [PMID: 29717150 PMCID: PMC5931535 DOI: 10.1038/s41598-018-24767-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/20/2018] [Indexed: 11/08/2022] Open
Abstract
HPIVs are serologically and genetically grouped into four species that account for up to 10% of all hospitalizations due to acute respiratory infection in children under the age of five. Genetic and epidemiological data for the four HPIVs derived from two pediatric cohorts in Viet Nam are presented. Respiratory samples were screened for HPIV1-4 by real-time PCR. Demographic and clinical data of patients infected with different HPIV were compared. We used a hemi-nested PCR approach to generate viral genome sequences from HPIV-positive samples and conducted a comprehensive phylogenetic analysis. In total, 170 samples tested positive for HPIV. HPIV3 was most commonly detected in our cohort and 80 co-detections of HPIV with other respiratory viruses were found. Phylogenetic analyses suggest local endemic circulation as well as punctuated introductions of new HPIV lineages. Viral gene flow analysis revealed that Viet Nam is a net importer of viral genetic diversity. Epidemiological analyses imply similar disease severity for all HPIV species. HPIV sequences from Viet Nam formed local clusters and were interspersed with sequences from diverse geographic regions. Combined, this new knowledge will help to investigate global HPIV circulation patterns in more detail and ultimately define more suitable vaccine strains.
Collapse
Affiliation(s)
- Martin Linster
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lien Anh Ha Do
- Oxford University Clinical Research Unit-Viet Nam, Ho Chi Minh City, Vietnam
- Murdoch's Children Research Institute, Melbourne, Australia
| | - Ngo Ngoc Quang Minh
- Oxford University Clinical Research Unit-Viet Nam, Ho Chi Minh City, Vietnam
- Children's Hospital 1, Ho Chi Minh City, Vietnam
| | - Yihui Chen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Zhu Zhe
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | | | - Ha Manh Tuan
- Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Yvonne C F Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit-Viet Nam, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mahesh Moorthy
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Clinical Virology, Christian Medical College, Vellore, India.
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
23
|
Mostafa HH, Vogel P, Srinivasan A, Russell CJ. Dynamics of Sendai Virus Spread, Clearance, and Immunotherapeutic Efficacy after Hematopoietic Cell Transplant Imaged Noninvasively in Mice. J Virol 2018; 92:e01705-17. [PMID: 29093083 PMCID: PMC5752929 DOI: 10.1128/jvi.01705-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022] Open
Abstract
There are no approved vaccines or virus-specific treatments for human parainfluenza viruses (HPIVs), which have recently been reclassified into the species Human respirovirus 1, Human respirovirus 3, Human rubulavirus 2, and Human rubulavirus 4 These viruses cause morbidity and mortality in immunocompromised patients, including those undergoing hematopoietic cell transplant (HCT). No small-animal models for noninvasive imaging of respiratory virus infection in the HCT host exist, despite the utility that such a system would offer to monitor prolonged infection, its clearance, and treatment options. We used a luciferase-expressing reporter virus to noninvasively image in mice the infection of murine respirovirus (strain Sendai virus [SeV]), the murine counterpart of HPIV1. Independent of disease severity, the clearance of infection began approximately 21 days after HCT, largely due to the recovery of CD8+ T cells. Immunotherapy with granulocyte colony-stimulating factor (G-CSF) and adoptive transfer of natural killer (NK) cells provided a limited therapeutic benefit. Treatment with a fusion (F) protein-specific monoclonal antibody arrested the spread of lung infection and reduced the disease severity even when treatment was delayed to up to 10 days postinfection but had little observable effect on upper respiratory tract infection. Adoptive transfer of virus-specific T cells at 10 days postinfection accelerated the clearance by 5 days, reduced the extent of infection throughout the respiratory tract, and reduced the disease severity. Overall, the results support investigation of the clinical treatment of respiratory virus infection in the HCT host with monoclonal antibodies and adoptive T-cell transfer; the imaging system should be extendable to other respiratory viruses, such as respiratory syncytial virus and influenza virus.IMPORTANCE Parainfluenza viruses are a major cause of disease and death due to respiratory virus infection in the immunocompromised host, including those undergoing bone marrow transplantation. There are currently no effective treatment measures. We noninvasively imaged mice that were undergoing a bone marrow transplant and infected with Sendai virus, a murine parainfluenza virus (respirovirus). For the first time, we show the therapeutic windows of adoptive T-cell therapy and treatment with a monoclonal antibody to the fusion (F) protein in clearing Sendai virus from the respiratory tract and reducing disease severity. Mice tolerated these treatments without any detectable toxicity. These findings pave the way for studies assessing the safety of T-cell therapy against parainfluenza virus in humans. Adoptive T-cell therapy against other blood-borne viruses in humans has been shown to be safe and effective. Our model of noninvasive imaging in mice that had undergone a bone marrow transplant may be well suited to track other respiratory virus infections and develop novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Heba H Mostafa
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ashok Srinivasan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
24
|
de Vries RD, Ludlow M, de Jong A, Rennick LJ, Verburgh RJ, van Amerongen G, van Riel D, van Run PRWA, Herfst S, Kuiken T, Fouchier RAM, Osterhaus ADME, de Swart RL, Duprex WP. Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets. PLoS Pathog 2017; 13:e1006371. [PMID: 28481926 PMCID: PMC5436898 DOI: 10.1371/journal.ppat.1006371] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/18/2017] [Accepted: 04/23/2017] [Indexed: 12/19/2022] Open
Abstract
Identification of cellular receptors and characterization of viral tropism in animal models have vastly improved our understanding of morbillivirus pathogenesis. However, specific aspects of viral entry, dissemination and transmission remain difficult to recapitulate in animal models. Here, we used three virologically identical but phenotypically distinct recombinant (r) canine distemper viruses (CDV) expressing different fluorescent reporter proteins for in vivo competition and airborne transmission studies in ferrets (Mustela putorius furo). Six donor ferrets simultaneously received three rCDVs expressing green, red or blue fluorescent proteins via conjunctival (ocular, Oc), intra-nasal (IN) or intra-tracheal (IT) inoculation. Two days post-inoculation sentinel ferrets were placed in physically separated adjacent cages to assess airborne transmission. All donor ferrets developed lymphopenia, fever and lethargy, showed progressively increasing systemic viral loads and were euthanized 14 to 16 days post-inoculation. Systemic replication of virus inoculated via the Oc, IN and IT routes was detected in 2/6, 5/6 and 6/6 ferrets, respectively. In five donor ferrets the IT delivered virus dominated, although replication of two or three different viruses was detected in 5/6 animals. Single lymphocytes expressing multiple fluorescent proteins were abundant in peripheral blood and lymphoid tissues, demonstrating the occurrence of double and triple virus infections. Transmission occurred efficiently and all recipient ferrets showed evidence of infection between 18 and 22 days post-inoculation of the donor ferrets. In all cases, airborne transmission resulted in replication of a single-colored virus, which was the dominant virus in the donor ferret. This study demonstrates that morbilliviruses can use multiple entry routes in parallel, and co-infection of cells during viral dissemination in the host is common. Airborne transmission was efficient, although transmission of viruses expressing a single color suggested a bottleneck event. The identity of the transmitted virus was not determined by the site of inoculation but by the viral dominance during dissemination.
Collapse
Affiliation(s)
- Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Martin Ludlow
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alwin de Jong
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Linda J. Rennick
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - R. Joyce Verburgh
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Geert van Amerongen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Peter R. W. A. van Run
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Albert D. M. E. Osterhaus
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - W. Paul Duprex
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Herfst S, Böhringer M, Karo B, Lawrence P, Lewis NS, Mina MJ, Russell CJ, Steel J, de Swart RL, Menge C. Drivers of airborne human-to-human pathogen transmission. Curr Opin Virol 2016; 22:22-29. [PMID: 27918958 PMCID: PMC7102691 DOI: 10.1016/j.coviro.2016.11.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/11/2016] [Accepted: 11/19/2016] [Indexed: 12/02/2022]
Abstract
Chain of pathogen transmission between individual donor and recipient is modeled. Related pairs of efficient and inefficient ‘airborne’ pathogens are contrasted. Drivers operate on tissue, individual, community, country, and global levels. Pandemic risk is heightened by pathogen evolution and changes in host interaction. Ultimate drivers include socio-economic developments and climate changes.
Airborne pathogens — either transmitted via aerosol or droplets — include a wide variety of highly infectious and dangerous microbes such as variola virus, measles virus, influenza A viruses, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Bordetella pertussis. Emerging zoonotic pathogens, for example, MERS coronavirus, avian influenza viruses, Coxiella, and Francisella, would have pandemic potential were they to acquire efficient human-to-human transmissibility. Here, we synthesize insights from microbiological, medical, social, and economic sciences to provide known mechanisms of aerosolized transmissibility and identify knowledge gaps that limit emergency preparedness plans. In particular, we propose a framework of drivers facilitating human-to-human transmission with the airspace between individuals as an intermediate stage. The model is expected to enhance identification and risk assessment of novel pathogens.
Collapse
Affiliation(s)
- Sander Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | - Michael Böhringer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
| | - Basel Karo
- Robert Koch Institut, Department for Infectious Disease Epidemiology, Seestr. 10, 13353 Berlin, Germany; PhD Programme "Epidemiology", Braunschweig-Hannover, Germany
| | - Philip Lawrence
- Université de Lyon, UMRS 449, Laboratoire de Biologie Générale, Université Catholique de Lyon - EPHE, Lyon 69288, France; Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Nicola S Lewis
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Michael J Mina
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rik L de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Christian Menge
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|
26
|
Mostafa HH, Vogel P, Srinivasan A, Russell CJ. Non-invasive Imaging of Sendai Virus Infection in Pharmacologically Immunocompromised Mice: NK and T Cells, but not Neutrophils, Promote Viral Clearance after Therapy with Cyclophosphamide and Dexamethasone. PLoS Pathog 2016; 12:e1005875. [PMID: 27589232 PMCID: PMC5010285 DOI: 10.1371/journal.ppat.1005875] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022] Open
Abstract
In immunocompromised patients, parainfluenza virus (PIV) infections have an increased potential to spread to the lower respiratory tract (LRT), resulting in increased morbidity and mortality. Understanding the immunologic defects that facilitate viral spread to the LRT will help in developing better management protocols. In this study, we immunosuppressed mice with dexamethasone and/or cyclophosphamide then monitored the spread of viral infection into the LRT by using a noninvasive bioluminescence imaging system and a reporter Sendai virus (murine PIV type 1). Our results show that immunosuppression led to delayed viral clearance and increased viral loads in the lungs. After cessation of cyclophosphamide treatment, viral clearance occurred before the generation of Sendai-specific antibody responses and coincided with rebounds in neutrophils, T lymphocytes, and natural killer (NK) cells. Neutrophil suppression using anti-Ly6G antibody had no effect on infection clearance, NK-cell suppression using anti-NK antibody delayed clearance, and T-cell suppression using anti-CD3 antibody resulted in no clearance (chronic infection). Therapeutic use of hematopoietic growth factors G-CSF and GM-CSF had no effect on clearance of infection. In contrast, treatment with Sendai virus-specific polysera or a monoclonal antibody limited viral spread into the lungs and accelerated clearance. Overall, noninvasive bioluminescence was shown to be a useful tool to study respiratory viral progression, revealing roles for NK and T cells, but not neutrophils, in Sendai virus clearance after treatment with dexamethasone and cyclophosphamide. Virus-specific antibodies appear to have therapeutic potential.
Collapse
Affiliation(s)
- Heba H. Mostafa
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ashok Srinivasan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Charles J. Russell
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Microbiology, Immunology & Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
27
|
Fathima S, Simmonds K, Invik J, Scott AN, Drews S. Use of laboratory and administrative data to understand the potential impact of human parainfluenza virus 4 on cases of bronchiolitis, croup, and pneumonia in Alberta, Canada. BMC Infect Dis 2016; 16:402. [PMID: 27514690 PMCID: PMC4982406 DOI: 10.1186/s12879-016-1748-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 08/03/2016] [Indexed: 01/13/2023] Open
Abstract
Background Human Parainfluenza Virus (hPIV) causes severe respiratory illness in infants and adults. Our study describes the association of hPIV1–4 with bronchiolitis, croup, and pneumonia using retrospective laboratory, administrative and public health data. Due to issues including the historic lack of hPIV4 in some commercial respiratory virus panels, the description of the impact of hPIV4 on croup, bronchiolitis, and pneumonia at population levels has often been limited. This study will use routine clinical laboratory data, and administrative data to provide a preliminary description of the impact of hPIV4 on these diseases in our population. Methods A three year cohort of patients positive for hPIV was linked with data from physician visits and hospital admissions to define cases and hospitalization status. International Classification of Disease (ICD-9) codes were used to determine if cases had croup, bronchiolitis, and pneumonia. We also looked at differences in hospitalization status, age and gender among hPIV1–4. All statistical analysis was done using SPSS (Version 19.0.0, IBM Corp© 2010) and Graphpad Prism V6 (GraphPad Software, Inc., 2012). Results Only hPIV1 and hPIV4 specimens had positivity rates greater than 5 % of all specimens sent for respiratory virus panel testing. hPIV1 exhibited a biennial pattern while the pattern for hPIV3 was less interpretable due to lower positivity rates. Circulation patterns for hPIV2 and hPIV4 were not assessed due to the low positivity rates of theses specimens. From 2010 to 2013, there were 2300 hPIV cases with hPIV3 (46 %) being the most common, followed by hPIV1 (27 %), hPIV4 (16 %) and hPIV2 (11 %). The median age was 2 years for all hPIV types. Males were slightly greater than females for hPIV1 and hPIV2, with an equal distribution for hPIV3 and slightly more females than males for hPIV4. hPIV1 and hPIV2 had the highest or proportion of croup while hPIV3 and hPIV4 had the highest proportion of pneumonia. Within hPIV4 cases, distributions of diseases were; pneumonia (21 %, 95 % CI 17.1–25.7), bronchiolitis (18 %, 95 % CI 14.3–22.5), croup (2 %, 95 % CI 0.8–3.9), mixed illness of any of pneumonia, bronchiolitis or croup (4 %, 95 % CI 2.5–7.0) or other respiratory diseases (54 %, 95 % CI 49.1–59.6). Conclusions We used laboratory and administrative data to undertake a descriptive analysis of the association of hPIV1–4 with croup, bronchiolitis and pneumonia. hPIV4 appears to be more associated more with bronchiolitis and pneumonia and less with croup in our population.
Collapse
Affiliation(s)
- Sumana Fathima
- Provincial Laboratory for Public Health (ProvLab), Calgary, AB, Canada
| | - Kimberley Simmonds
- Alberta Health, Edmonton, AB, Canada.,University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jesse Invik
- Provincial Laboratory for Public Health (ProvLab), Calgary, AB, Canada.,University of Calgary, Calgary, AB, T2N 1N4, Canada
| | | | - Steven Drews
- Pathology and Laboratory Medicine, University of Alberta, Edmonton, AB, Canada. .,Provincial Laboratory for Public Health (ProvLab), Edmonton, AB, 2B1.03 WMC, Canada. .,University of Alberta Hospital, 8440-112 St, Edmonton, AB, T6G 2J2, Canada.
| |
Collapse
|
28
|
Fluorescent and Bioluminescent Reporter Myxoviruses. Viruses 2016; 8:v8080214. [PMID: 27527209 PMCID: PMC4997576 DOI: 10.3390/v8080214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022] Open
Abstract
The advent of virus reverse genetics has enabled the incorporation of genetically encoded reporter proteins into replication-competent viruses. These reporters include fluorescent proteins which have intrinsic chromophores that absorb light and re-emit it at lower wavelengths, and bioluminescent proteins which are luciferase enzymes that react with substrates to produce visible light. The incorporation of these reporters into replication-competent viruses has revolutionized our understanding of molecular virology and aspects of viral tropism and transmission. Reporter viruses have also enabled the development of high-throughput assays to screen antiviral compounds and antibodies and to perform neutralization assays. However, there remain technical challenges with the design of replication-competent reporter viruses, and each reporter has unique advantages and disadvantages for specific applications. This review describes currently available reporters, design strategies for incorporating reporters into replication-competent paramyxoviruses and orthomyxoviruses, and the variety of applications for which these tools can be utilized both in vitro and in vivo.
Collapse
|
29
|
Meliopoulos VA, Karlsson EA, Schultz-Cherry S. What can imaging tell us about influenza virus transmission and protection? Future Virol 2016. [DOI: 10.2217/fvl-2016-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of zoonotic influenza infections is a constant threat to public health. One of the major determinants of pandemic potential is the ability to transmit from animal to human and/or human to human via respiratory droplets. Understanding viral tropism and spread is crucial for predicting which viruses represent the most threatening to human health. Recently, a replication-competent influenza reporter virus was described that permitted in vivo imaging and visualization of infection in ferrets for the first time. This review will focus on the applications of luminescent reporter viruses toward understanding transmission of influenza viruses and development of therapeutic interventions.
Collapse
Affiliation(s)
- Victoria A Meliopoulos
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erik A Karlsson
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
30
|
Visualizing real-time influenza virus infection, transmission and protection in ferrets. Nat Commun 2015; 6:6378. [PMID: 25744559 PMCID: PMC4366512 DOI: 10.1038/ncomms7378] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 01/23/2015] [Indexed: 11/29/2022] Open
Abstract
Influenza transmission efficiency in ferrets is vital for risk-assessment studies. However, the inability to monitor viral infection and transmission dynamics in real time only provides a glimpse into transmissibility. Here we exploit a replication-competent influenza reporter virus to investigate dynamics of infection/transmission in ferrets. Bioluminescent imaging of ferrets infected with A/California/04/2009 H1N1 virus (CA/09) encoding NanoLuc (NLuc) luciferase provides the first real-time snapshot of influenza infection/transmission. Luminescence in the respiratory tract and in less well-characterized extra-pulmonary sites is observed, and imaging identifies infections in animals that would have otherwise been missed by traditional methods. Finally, the reporter virus significantly increases the speed and sensitivity of virological and serological assays. Thus, bioluminescent imaging of influenza infections rapidly determines intra-host dissemination, inter-host transmission and viral load, revealing infection dynamics and pandemic potential of the virus. These results have important implications for antiviral drug susceptibility, vaccine efficacy, transmissibility and pathogenicity studies. Ferrets are the main animal model used for research on influenza transmission. Here, the authors investigate the dynamics of infection and transmission in ferrets using a replication-competent influenza reporter virus and real-time bioluminescence imaging.
Collapse
|
31
|
Relationships among dissemination of primary parainfluenza virus infection in the respiratory tract, mucosal and peripheral immune responses, and protection from reinfection: a noninvasive bioluminescence-imaging study. J Virol 2015; 89:3568-83. [PMID: 25589649 DOI: 10.1128/jvi.03581-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Respiratory paramyxoviruses such as respiratory syncytial virus (RSV) and human parainfluenza virus type 1 (HPIV1) to HPIV4 infect virtually all children by the age of 2 to 5 years, leading to partial but incomplete protection from reinfection. Here, we used luciferase-expressing reporter Sendai viruses (the murine counterpart of HPIV1) to noninvasively measure primary infection, immune responses, and protection from reinfection by either a lethal challenge or natural transmission in living mice. Both nonattenuated and attenuated reporter Sendai viruses were used, and three inoculation strategies were employed: intramuscular (i.m.), intranasal (i.n.) at a low dose and low volume, and i.n. at a high dose and high volume. High-dose, high-volume i.n. inoculation resulted in the highest levels of antibody responses and protection from reinfection. Low-dose, low-volume i.n. inoculation afforded complete protection from contact transmission and protection from morbidity, mortality, and viral growth during lethal challenge. i.m. inoculation was inferior to i.n. inoculation at inducing antibody responses and protection from challenge. For individual mice and across groups, the levels of serum binding and neutralizing antibody responses correlated with primary infection and protection from reinfection in the lungs. Contact transmission, the predominant mode of parainfluenza virus transmission, was modeled accurately by direct i.n. inoculation of Sendai virus at a low dose and low volume and was completely preventable by i.n. vaccination of an attenuated virus at a low dose and low volume. The data highlight differences in infection and protection from challenge in the upper versus lower respiratory tract and bear upon live attenuated vaccine development. IMPORTANCE There are currently no licensed vaccines against HPIVs and human RSV (HRSV), important respiratory pathogens of infants and children. Natural infection leads to partial but incomplete protective immunity, resulting in subsequent reinfections even in the absence of antigenic drift. Here, we used noninvasive bioluminescence imaging in a mouse model to dissect relationships among (i) the mode of inoculation, (ii) the dynamics of primary infection, (iii) consequent immune responses, and (iv) protection from high-dose, high-volume lethal challenge and contact transmission, which we find here to be similar to that of a mild low-dose, low-volume upper respiratory tract (URT)-biased infection. Our studies demonstrate the superiority of i.n. versus i.m. vaccination in protection against both lethal challenge and contact transmission. In addition to providing correlates of protection that will assist respiratory virus vaccine development, these studies extend the development of an increasingly used technique for the study of viral infection and immunity, noninvasive bioluminescence imaging.
Collapse
|