1
|
Mourtzakis M, Heckman GA, McKelvie RS. Aging with Heart Failure: Muscle Matters. Can J Cardiol 2024:S0828-282X(24)01013-4. [PMID: 39374777 DOI: 10.1016/j.cjca.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Affiliation(s)
- Marina Mourtzakis
- Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - George A Heckman
- Lawson Research Institute and Western University, London, Ontario, Canada.
| | - Robert S McKelvie
- St Joseph's Health Care London and Western University, London, Ontario, Canada
| |
Collapse
|
2
|
McKendry J, Coletta G, Nunes EA, Lim C, Phillips SM. Mitigating disuse-induced skeletal muscle atrophy in ageing: Resistance exercise as a critical countermeasure. Exp Physiol 2024; 109:1650-1662. [PMID: 39106083 PMCID: PMC11442788 DOI: 10.1113/ep091937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
The gradual deterioration of physiological systems with ageing makes it difficult to maintain skeletal muscle mass (sarcopenia), at least partly due to the presence of 'anabolic resistance', resulting in muscle loss. Sarcopenia can be transiently but markedly accelerated through periods of muscle disuse-induced (i.e., unloading) atrophy due to reduced physical activity, sickness, immobilisation or hospitalisation. Periods of disuse are detrimental to older adults' overall quality of life and substantially increase their risk of falls, physical and social dependence, and early mortality. Disuse events induce skeletal muscle atrophy through various mechanisms, including anabolic resistance, inflammation, disturbed proteostasis and mitochondrial dysfunction, all of which tip the scales in favour of a negative net protein balance and subsequent muscle loss. Concerningly, recovery from disuse atrophy is more difficult for older adults than their younger counterparts. Resistance training (RT) is a potent anabolic stimulus that can robustly stimulate muscle protein synthesis and mitigate muscle losses in older adults when implemented before, during and following unloading. RT may take the form of traditional weightlifting-focused RT, bodyweight training and lower- and higher-load RT. When combined with sufficient dietary protein, RT can accelerate older adults' recovery from a disuse event, mitigate frailty and improve mobility; however, few older adults regularly participate in RT. A feasible and practical approach to improving the accessibility and acceptability of RT is through the use of resistance bands. Moving forward, RT must be prescribed to older adults to mitigate the negative consequences of disuse atrophy.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Giulia Coletta
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Everson A. Nunes
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Changhyun Lim
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
3
|
Walker S, Sahinaho UM, Vekki S, Sulonen M, Laukkanen JA, Sipilä S, Peltonen H, Laakkonen E, Lehti M. Two-week step-reduction has limited negative effects on physical function and metabolic health in older adults. Eur J Appl Physiol 2024; 124:2019-2033. [PMID: 38383794 PMCID: PMC11199225 DOI: 10.1007/s00421-024-05426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE This study determined the effects of a 2-week step-reduction period followed by 4-week exercise rehabilitation on physical function, body composition, and metabolic health in 70-80-year-olds asymptomatic for injury/illness. METHODS A parallel-group randomized controlled trial (ENDURE-study, NCT04997447) was used, where 66 older adults (79% female) were randomized to either intervention or control group. The intervention group reduced daily steps to < 2000, monitored by accelerometer, for two weeks (Period I) and then step-reduction requirement was removed with an additional exercise rehabilitation 4 times per week for 4 weeks (Period II). The control group continued their habitual physical activity throughout with no additional exercise intervention. Laboratory tests were performed at baseline, after Period I and Period II. The primary outcome measure was leg lean mass (LLM). Secondary outcomes included total lean and fat mass, blood glucose and insulin concentration, LDL cholesterol and HDL cholesterol concentration, maximal isometric leg press force (MVC), and chair rise and stair climb performance. RESULTS LLM remained unchanged in both groups and no changes occurred in physical function nor body composition in the intervention group in Period I. HDL cholesterol concentration reduced after Period I (from 1.62 ± 0.37 to 1.55 ± 0.36 mmol·L-1, P = 0.017) and returned to baseline after Period II (1.66 ± 0.38 mmol·L-1) in the intervention group (Time × Group interaction: P = 0.065). MVC improved after Period II only (Time × Group interaction: P = 0.009, Δ% = 15%, P < 0.001). CONCLUSION Short-term step-reduction in healthy older adults may not be as detrimental to health or physical function as currently thought.
Collapse
Affiliation(s)
- Simon Walker
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland.
- NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.
| | - Ulla-Maria Sahinaho
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Sakari Vekki
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Mari Sulonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Jari A Laukkanen
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Sarianna Sipilä
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
- Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Peltonen
- JAMK University of Applied Science, The School of Business, Sport Business, Jyväskylä, Finland
| | - Eija Laakkonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
- Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Maarit Lehti
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| |
Collapse
|
4
|
Hughes AK, Francis T, Rooney J, Pollock R, Witard OC. The effect of protein or amino acid provision on immobilization-induced muscle atrophy in healthy adults: A systematic review and meta-analysis. Exp Physiol 2024; 109:873-888. [PMID: 38424716 PMCID: PMC11140175 DOI: 10.1113/ep090434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Bed rest and limb immobilization are models of muscle disuse associated with skeletal muscle atrophy and reduced strength. The purpose of this systematic review was to examine the impact of protein or amino acid provision before and/or during a period of muscle disuse on muscle atrophy (primary outcome), strength and muscle protein synthesis (secondary outcomes) following a disuse period. We performed a systematic review of Embase, MEDLINE, Web of Science, PubMed and Clinical Trials in December 2022. Eligible studies were randomized controlled trials that combined a dietary protein or amino acid intervention versus control during an experimental model of disuse (bed rest or unilateral limb immobilization) in healthy individuals aged ≥18 years. Nine articles from eight independent trials were identified and rated for risk of bias by two authors. A meta-analysis of muscle mass data revealed no effect (standardized mean difference: 0.2; 95% confidence interval: -0.18 to 0.57, P = 0.31) of protein/amino acid intervention in preventing disuse-induced muscle atrophy. Although the meta-analysis was not conducted on strength or muscle protein synthesis data, there was insufficient evidence in the reviewed articles to support the use of protein/amino acid provision in mitigating the disuse-induced decline in either outcome measurement. Additional high-quality studies, including the reporting of randomization procedures and blinding procedures and the provision of statistical analysis plans, might be required to determine whether protein or amino acid provision serves as an effective strategy to attenuate muscle atrophy during periods of disuse.
Collapse
Affiliation(s)
- Alix K. Hughes
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Thomas Francis
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Jessica Rooney
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Ross Pollock
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Oliver C. Witard
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| |
Collapse
|
5
|
Pinto AJ, Bergouignan A, Dempsey PC, Roschel H, Owen N, Gualano B, Dunstan DW. Physiology of sedentary behavior. Physiol Rev 2023; 103:2561-2622. [PMID: 37326297 PMCID: PMC10625842 DOI: 10.1152/physrev.00022.2022] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/10/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Sedentary behaviors (SB) are characterized by low energy expenditure while in a sitting or reclining posture. Evidence relevant to understanding the physiology of SB can be derived from studies employing several experimental models: bed rest, immobilization, reduced step count, and reducing/interrupting prolonged SB. We examine the relevant physiological evidence relating to body weight and energy balance, intermediary metabolism, cardiovascular and respiratory systems, the musculoskeletal system, the central nervous system, and immunity and inflammatory responses. Excessive and prolonged SB can lead to insulin resistance, vascular dysfunction, shift in substrate use toward carbohydrate oxidation, shift in muscle fiber from oxidative to glycolytic type, reduced cardiorespiratory fitness, loss of muscle mass and strength and bone mass, and increased total body fat mass and visceral fat depot, blood lipid concentrations, and inflammation. Despite marked differences across individual studies, longer term interventions aimed at reducing/interrupting SB have resulted in small, albeit marginally clinically meaningful, benefits on body weight, waist circumference, percent body fat, fasting glucose, insulin, HbA1c and HDL concentrations, systolic blood pressure, and vascular function in adults and older adults. There is more limited evidence for other health-related outcomes and physiological systems and for children and adolescents. Future research should focus on the investigation of molecular and cellular mechanisms underpinning adaptations to increasing and reducing/interrupting SB and the necessary changes in SB and physical activity to impact physiological systems and overall health in diverse population groups.
Collapse
Affiliation(s)
- Ana J Pinto
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Audrey Bergouignan
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Paddy C Dempsey
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Neville Owen
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Centre for Urban Transitions, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - David W Dunstan
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Xie S, Li S, Shaharudin S. The Effects of Combined Exercise with Citrulline Supplementation on Body Composition and Lower Limb Function of Overweight Older Adults: A Systematic Review and Meta-Analysis. J Sports Sci Med 2023; 22:541-548. [PMID: 37711701 PMCID: PMC10499154 DOI: 10.52082/jssm.2023.541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
The combined exercise with citrulline (CIT) supplementation is a potential adjuvant treatment approach to address the declining body composition and lower limb function of overweight older adults. However, research on this approach is limited. Thus, this study performed a meta-analysis review to explore the effects of combined exercise with CIT supplementation on body composition and lower limb function among overweight older adults. The search strategy and manuscript development of this study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Eligible studies were first searched through four databases (Web of Science, Scopus, PubMed, and EBSCO) from January 2003 until April 2023, followed by screening. The main inclusion criteria for the article selection are as follows: 1) Randomized Controlled Trial studies; 2) Participants aged over 55; 3) Studies involved exercise with CIT supplementation for the experimental group and exercise with Placebo (PLA) supplementation for the control group; 4) Body composition and lower limb function were measured at pre- and post-intervention. Subsequently, the Cochrane risk of bias assessment tool was utilized to evaluate the selected studies' quality. The Standardized Mean Difference (SMD) was chosen as the suitable effect scale index, and the mean differences of the data from the selected articles were analyzed using Revman 5.4 software with a 95% Confidence Interval (CI). A total of seven studies fulfilled the inclusion criteria and were selected for the meta-analysis. The included studies involved 105 males and 198 females, where 157 belonged to the PLA group and 146 from the CIT group. Significant improvements were observed among overweight older adults with CIT supplementation in 6-Minute Walking Test (6MWT) (P = 0.04, I2 = 4%), SMD (95% CI) = -0.28 (-0.54, -0.01), and Lower Limb Strength (LLS) (P < 0.01, I2 = 30%), SMD (95% CI) = -0.38 (-0.65, -0.12) compared to those with PLA supplementation. Combined exercise with CIT supplementation could be an effective non-pharmaceutical intervention to improve the physical function of overweight older adults by increasing their muscle strength.
Collapse
Affiliation(s)
- Shihao Xie
- School of Health Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Shuoqi Li
- School of Sports Science, Nantong University, Nantong, Jiangsu, China
| | - Shazlin Shaharudin
- School of Health Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
7
|
Fuchs CJ, Kuipers R, Rombouts JA, Brouwers K, Schrauwen-Hinderling VB, Wildberger JE, Verdijk LB, van Loon LJ. Thigh muscles are more susceptible to age-related muscle loss when compared to lower leg and pelvic muscles. Exp Gerontol 2023; 175:112159. [PMID: 36967049 DOI: 10.1016/j.exger.2023.112159] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND A key hallmark of aging is the progressive loss of skeletal muscle mass. Due to limitations of the various methods typically applied to assess muscle mass, only limited information is available on age-related differences between various muscle groups. This study assessed differences in individual lower body muscle group volumes between healthy young and older males. METHODS Lower body muscle mass assessments were performed in 10 young (age: 27 ± 4 y) and 10 older (age: 71 ± 6 y) healthy, male adults using Dual-energy X-ray Absorptiometry (DXA), single slice (thigh) Computed Tomography (CT), as well as Magnetic Resonance Imaging (MRI). Muscle volumes of all individual muscle groups in the lower body were assessed by MRI. RESULTS Leg lean mass, as assessed with DXA, was not significantly different between older (9.2 ± 1.0 kg) and young (10.5 ± 2.0 kg) men (P = 0.075). Thigh muscle cross-sectional area, as assessed with CT, was significantly lower (by 13 %) in the older (137 ± 17 cm2) compared to young (157 ± 24 cm2) participants (P = 0.044). MRI-derived lower body muscle volume was also significantly lower (by 20 %) in older (6.7 ± 0.9 L) compared to young (8.3 ± 1.3 L) men (P = 0.005). This was primarily attributed to substantial differences in thigh (24 %), rather than lower leg (12 %) and pelvis (15 %) muscle volume in the older vs the young. Thigh muscle volume averaged 3.4 ± 0.5 L in older and 4.5 ± 0.7 L in young men (P = 0.001). Of all thigh muscle groups, the quadriceps femoris showed the most profound difference (30 %) between young (2.3 ± 0.4 L) and older (1.6 ± 0.2 L) men (P < 0.001). CONCLUSIONS The most profound differences in lower body muscle volume between young and older men are observed in the thigh. Within the thigh muscle groups, the quadriceps femoris shows the largest difference in muscle volume between young and older men. Finally, DXA appears less sensitive when compared to CT and MRI to assess age-related differences in muscle mass.
Collapse
|
8
|
Aragon AA, Tipton KD, Schoenfeld BJ. Age-related muscle anabolic resistance: inevitable or preventable? Nutr Rev 2023; 81:441-454. [PMID: 36018750 DOI: 10.1093/nutrit/nuac062] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related loss of muscle mass, strength, and performance, commonly referred to as sarcopenia, has wide-ranging detrimental effects on human health, the ramifications of which can have serious implications for both morbidity and mortality. Various interventional strategies have been proposed to counteract sarcopenia, with a particular emphasis on those employing a combination of exercise and nutrition. However, the efficacy of these interventions can be confounded by an age-related blunting of the muscle protein synthesis response to a given dose of protein/amino acids, which has been termed "anabolic resistance." While the pathophysiology of sarcopenia is undoubtedly complex, anabolic resistance is implicated in the progression of age-related muscle loss and its underlying complications. Several mechanisms have been proposed as underlying age-related impairments in the anabolic response to protein consumption. These include decreased anabolic molecular signaling activity, reduced insulin-mediated capillary recruitment (thus, reduced amino acid delivery), and increased splanchnic retention of amino acids (thus, reduced availability for muscular uptake). Obesity and sedentarism can exacerbate, or at least facilitate, anabolic resistance, mediated in part by insulin resistance and systemic inflammation. This narrative review addresses the key factors and contextual elements involved in reduction of the acute muscle protein synthesis response associated with aging and its varied consequences. Practical interventions focused on dietary protein manipulation are proposed to prevent the onset of anabolic resistance and mitigate its progression.
Collapse
Affiliation(s)
- Alan A Aragon
- is with the Department of Family and Consumer Sciences, California State University, Northridge, California, USA
| | - Kevin D Tipton
- is with the Institute of Performance Nutrition, Edinburgh, Scotland
| | - Brad J Schoenfeld
- is with the Department of Health Sciences, CUNY Lehman College, Bronx, New York, USA
| |
Collapse
|
9
|
Changes in the Mechanical Properties of Fast and Slow Skeletal Muscle after 7 and 21 Days of Restricted Activity in Rats. Int J Mol Sci 2023; 24:ijms24044141. [PMID: 36835551 PMCID: PMC9966780 DOI: 10.3390/ijms24044141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Disuse muscle atrophy is usually accompanied by changes in skeletal muscle structure, signaling, and contractile potential. Different models of muscle unloading can provide valuable information, but the protocols of experiments with complete immobilization are not physiologically representative of a sedentary lifestyle, which is highly prevalent among humans now. In the current study, we investigated the potential effects of restricted activity on the mechanical characteristics of rat postural (soleus) and locomotor (extensor digitorum longus, EDL) muscles. The restricted-activity rats were kept in small Plexiglas cages (17.0 × 9.6 × 13.0 cm) for 7 and 21 days. After this, soleus and EDL muscles were collected for ex vivo mechanical measurements and biochemical analysis. We demonstrated that while a 21-day movement restriction affected the weight of both muscles, in soleus muscle we observed a greater decrease. The maximum isometric force and passive tension in both muscles also significantly changed after 21 days of movement restriction, along with a decrease in the level of collagen 1 and 3 mRNA expression. Furthermore, the collagen content itself changed only in soleus after 7 and 21 days of movement restriction. With regard to cytoskeletal proteins, in our experiment we observed a significant decrease in telethonin in soleus, and a similar decrease in desmin and telethonin in EDL. We also observed a shift towards fast-type myosin heavy chain expression in soleus, but not in EDL. In summary, in this study we showed that movement restriction leads to profound specific changes in the mechanical properties of fast and slow skeletal muscles. Future studies may include evaluation of signaling mechanisms regulating the synthesis, degradation, and mRNA expression of the extracellular matrix and scaffold proteins of myofibers.
Collapse
|
10
|
van der Heijden I, Monteyne AJ, Stephens FB, Wall BT. Alternative dietary protein sources to support healthy and active skeletal muscle aging. Nutr Rev 2023; 81:206-230. [PMID: 35960188 DOI: 10.1093/nutrit/nuac049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To mitigate the age-related decline in skeletal muscle quantity and quality, and the associated negative health outcomes, it has been proposed that dietary protein recommendations for older adults should be increased alongside an active lifestyle and/or structured exercise training. Concomitantly, there are growing environmental concerns associated with the production of animal-based dietary protein sources. The question therefore arises as to where this dietary protein required for meeting the protein demands of the rapidly aging global population should (or could) be obtained. Various non-animal-derived protein sources possess favorable sustainability credentials, though much less is known (compared with animal-derived proteins) about their ability to influence muscle anabolism. It is also likely that the anabolic potential of various alternative protein sources varies markedly, with the majority of options remaining to be investigated. The purpose of this review was to thoroughly assess the current evidence base for the utility of alternative protein sources (plants, fungi, insects, algae, and lab-grown "meat") to support muscle anabolism in (active) older adults. The solid existing data portfolio requires considerable expansion to encompass the strategic evaluation of the various types of dietary protein sources. Such data will ultimately be necessary to support desirable alterations and refinements in nutritional guidelines to support healthy and active aging, while concomitantly securing a sustainable food future.
Collapse
Affiliation(s)
- Ino van der Heijden
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Combined L-Citrulline Supplementation and Slow Velocity Low-Intensity Resistance Training Improves Leg Endothelial Function, Lean Mass, and Strength in Hypertensive Postmenopausal Women. Nutrients 2022; 15:nu15010074. [PMID: 36615732 PMCID: PMC9823738 DOI: 10.3390/nu15010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hypertension is highly prevalent in postmenopausal women. Endothelial dysfunction is associated with hypertension and the age-related decreases in muscle mass and strength. L-citrulline supplementation (CIT) and slow velocity low-intensity resistance training (SVLIRT) have improved vascular function, but their effect on muscle mass is unclear. We investigated whether combined CIT and SVLIRT (CIT + SVLIRT) would have additional benefits on leg endothelial function (superficial femoral artery flow-mediated dilation (sfemFMD)), lean mass (LM), and strength in hypertensive postmenopausal women. Participants were randomized to CIT (10 g/day, n = 13) or placebo (PL, n = 11) alone for 4 weeks and CIT + SVLIRT or PL + SVLIRT for another 4 weeks. sfemFMD, leg LM and muscle strength were measured at 0, 4, and 8 weeks. CIT increased sfemFMD after 4 weeks (CIT: Δ1.8 ± 0.3% vs. PL: Δ−0.2 ± 0.5%, p < 0.05) and 8 weeks (CIT + SVLIRT: Δ2.7 ± 0.5% vs. PL + SVLIRT: Δ−0.02 ± 0.5, p = 0.003). Leg LM improved after CIT + SVLIRT compared to PL + SVLIRT (Δ0.49 ± 0.15 kg vs. Δ0.07 ± 0.12 kg, p < 0.05). Leg curl strength increased greater with CIT + SVLIRT compared to PL + SVLIRT (Δ6.9 ± 0.9 kg vs. Δ4.0 ± 1.0 kg, p < 0.05). CIT supplementation alone improved leg endothelial function and when combined with SVLIRT has additive benefits on leg LM and curl strength in hypertensive postmenopausal women.
Collapse
|
12
|
Salucci S, Bartoletti-Stella A, Bavelloni A, Aramini B, Blalock WL, Fabbri F, Vannini I, Sambri V, Stella F, Faenza I. Extra Virgin Olive Oil (EVOO), a Mediterranean Diet Component, in the Management of Muscle Mass and Function Preservation. Nutrients 2022; 14:nu14173567. [PMID: 36079827 PMCID: PMC9459997 DOI: 10.3390/nu14173567] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
Aging results in a progressive decline in skeletal muscle mass, strength and function, a condition known as sarcopenia. This pathological condition is due to multifactorial processes including physical inactivity, inflammation, oxidative stress, hormonal changes, and nutritional intake. Physical therapy remains the standard approach to treat sarcopenia, although some interventions based on dietary supplementation are in clinical development. In this context, thanks to its known anti-inflammatory and antioxidative properties, there is great interest in using extra virgin olive oil (EVOO) supplementation to promote muscle mass and health in sarcopenic patients. To date, the molecular mechanisms responsible for the pathological changes associated with sarcopenia remain undefined; however, a complete understanding of the signaling pathways that regulate skeletal muscle protein synthesis and their behavior during sarcopenia appears vital for defining how EVOO might attenuate muscle wasting during aging. This review highlights the main molecular players that control skeletal muscle mass, with particular regard to sarcopenia, and discusses, based on the more recent findings, the potential of EVOO in delaying/preventing loss of muscle mass and function, with the aim of stimulating further research to assess dietary supplementation with EVOO as an approach to prevent or delay sarcopenia in aging individuals.
Collapse
Affiliation(s)
- Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Anna Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, 47522 Pievesestina, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
13
|
Morrow A, Gray SR, Bayes HK, Sykes R, McGarry E, Anderson D, Boiskin D, Burke C, Cleland JGF, Goodyear C, Ibbotson T, Lang CC, McConnachie, Mair F, Mangion K, Patel M, Sattar N, Taggart D, Taylor R, Dawkes S, Berry C. Prevention and early treatment of the long-term physical effects of COVID-19 in adults: design of a randomised controlled trial of resistance exercise-CISCO-21. Trials 2022; 23:660. [PMID: 35971155 PMCID: PMC9376905 DOI: 10.1186/s13063-022-06632-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022] Open
Abstract
Background Coronavirus disease-19 (COVID-19) infection causes persistent health problems such as breathlessness, chest pain and fatigue, and therapies for the prevention and early treatment of post-COVID-19 syndromes are needed. Accordingly, we are investigating the effect of a resistance exercise intervention on exercise capacity and health status following COVID-19 infection. Methods A two-arm randomised, controlled clinical trial including 220 adults with a diagnosis of COVID-19 in the preceding 6 months. Participants will be classified according to clinical presentation: Group A, not hospitalised due to COVID but persisting symptoms for at least 4 weeks leading to medical review; Group B, discharged after an admission for COVID and with persistent symptoms for at least 4 weeks; or Group C, convalescing in hospital after an admission for COVID. Participants will be randomised to usual care or usual care plus a personalised and pragmatic resistance exercise intervention for 12 weeks. The primary outcome is the incremental shuttle walks test (ISWT) 3 months after randomisation with secondary outcomes including spirometry, grip strength, short performance physical battery (SPPB), frailty status, contacts with healthcare professionals, hospitalisation and questionnaires assessing health-related quality of life, physical activity, fatigue and dyspnoea. Discussion Ethical approval has been granted by the National Health Service (NHS) West of Scotland Research Ethics Committee (REC) (reference: GN20CA537) and recruitment is ongoing. Trial findings will be disseminated through patient and public forums, scientific conferences and journals. Trial registration ClinicialTrials.gov NCT04900961. Prospectively registered on 25 May 2021 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06632-y.
Collapse
Affiliation(s)
- A Morrow
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Stuart R Gray
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - H K Bayes
- Glasgow Royal Infirmary, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - R Sykes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - E McGarry
- Glasgow Royal Infirmary, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - D Anderson
- Glasgow Royal Infirmary, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - D Boiskin
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - C Burke
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - J G F Cleland
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - C Goodyear
- Institute of Inflammation, Infection and Immunity, University of Glasgow, Glasgow, UK
| | - T Ibbotson
- General Practice and Primary Care, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - C C Lang
- School of Medicine, University of Dundee, Dundee, UK
| | - McConnachie
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - F Mair
- General Practice and Primary Care, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - K Mangion
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M Patel
- University Hospital Wishaw, NHS Lanarkshire, Wishaw, UK
| | - N Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - D Taggart
- NHS Project Management Unit, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - R Taylor
- General Practice and Primary Care, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - S Dawkes
- School for Nursing Midwifery and Paramedic Practice, Robert Gordon University, Aberdeen, UK
| | - C Berry
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Prevention of Loss of Muscle Mass and Function in Older Adults during COVID-19 Lockdown: Potential Role of Dietary Essential Amino Acids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138090. [PMID: 35805748 PMCID: PMC9265941 DOI: 10.3390/ijerph19138090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
As the COVID-19 pandemic became a global emergency, social distancing, quarantine, and limitations in outdoor activities have resulted in an environment of enforced physical inactivity (EPI). A prolonged period of EPI in older individuals accelerates the deterioration of skeletal muscle health, including loss of muscle mass and function, commonly referred to as sarcopenia. Sarcopenia is associated with an increased likelihood of the progression of diabetes, obesity, and/or depression. Well-known approaches to mitigate the symptoms of sarcopenia include participation in resistance exercise training and/or intake of balanced essential amino acids (EAAs) and high-quality (i.e., containing high EEAs) protein. As the pandemic situation discourages physical exercise, nutritional approaches, especially dietary EAA intake, could be a good alternative for counteracting against EPI-promoted loss of muscle mass and function. Therefore, in the present review, we cover (1) the impact of EPI-induced muscle loss and function on health, (2) the therapeutic potential of dietary EAAs for muscle health (e.g., muscle mass and function) in the EPI condition in comparison with protein sources, and finally (3) practical guidelines of dietary EAA intake for optimal anabolic response in EPI.
Collapse
|
15
|
Nunes EA, Stokes T, McKendry J, Currier BS, Phillips SM. Disuse-induced skeletal muscle atrophy in disease and non-disease states in humans: mechanisms, prevention, and recovery strategies. Am J Physiol Cell Physiol 2022; 322:C1068-C1084. [PMID: 35476500 DOI: 10.1152/ajpcell.00425.2021] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decreased skeletal muscle contractile activity (disuse) or unloading leads to muscle mass loss, also known as muscle atrophy. The balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB) is the primary determinant of skeletal muscle mass. A reduced mechanical load on skeletal muscle is one of the main external factors leading to muscle atrophy. However, endocrine and inflammatory factors can act synergistically in catabolic states, amplifying the atrophy process and accelerating its progression. Additionally, older individuals display aging-induced anabolic resistance, which can predispose this population to more pronounced effects when exposed to periods of reduced physical activity or mechanical unloading. Different cellular mechanisms contribute to the regulation of muscle protein balance during skeletal muscle atrophy. This review summarizes the effects of muscle disuse on muscle protein balance and the molecular mechanisms involved in muscle atrophy in the absence or presence of disease. Finally, a discussion of the current literature describing efficient strategies to prevent or improve the recovery from muscle atrophy is also presented.
Collapse
Affiliation(s)
- Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Brad S Currier
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Cuy Castellanos D, Daprano CM, Blevins C, Crecelius A. The theory of planned behavior and strength training in college-aged women. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2022; 70:837-842. [PMID: 32569505 DOI: 10.1080/07448481.2020.1775606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
ObjectivesUsing Theory of Planned Behavior, the objective of this study was to determine how attitudes, subjective norms and perceived behavior control related to intent to strength training by college-aged women. Participants: Participants were college-aged females (N = 162) from a mid-sized private university in the Midwestern United States who were divided into three groups: non-exercisers, cardiovascular-only exercisers, and strength or strength and cardiovascular exercisers. Methods: Participants completed a questionnaire assessing attitudes, subjective norms and perceived behavior control in relation to strength training behavior. MANOVA was utilized to examine the differences between groups. Results: The MANOVA was significant at p < .01. Post hoc analysis indicated strength training participation was significantly higher for non-exercisers and cardiovascular-only exercisers for the attitude and perceived behavior control constructs (p<.05) but not for subjective norm. Conclusions: Perceived behavior control and direct attitude factors may be strong contributors to college-aged women's participation in strength training.
Collapse
Affiliation(s)
| | - Corinne M Daprano
- Department of Health and Sport Science, University of Dayton, Dayton, Ohio, USA
| | - Clarissa Blevins
- Department of Health and Sport Science, University of Dayton, Dayton, Ohio, USA
| | - Anne Crecelius
- Department of Health and Sport Science, University of Dayton, Dayton, Ohio, USA
| |
Collapse
|
17
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Sharlo K, Tyganov SA, Tomilovskaya E, Popov DV, Saveko AA, Shenkman BS. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int J Mol Sci 2021; 23:ijms23010468. [PMID: 35008893 PMCID: PMC8745071 DOI: 10.3390/ijms23010468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.
Collapse
|
19
|
Moore DR. Protein Requirements for Master Athletes: Just Older Versions of Their Younger Selves. Sports Med 2021; 51:13-30. [PMID: 34515969 PMCID: PMC8566396 DOI: 10.1007/s40279-021-01510-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
It is established that protein requirements are elevated in athletes to support their training and post-exercise recovery and adaptation, especially within skeletal muscle. However, research on the requirements for this macronutrient has been performed almost exclusively in younger athletes, which may complicate their translation to the growing population of Master athletes (i.e. > 35 years old). In contrast to older (> 65 years) untrained adults who typically demonstrate anabolic resistance to dietary protein as a primary mediator of the ‘normal’ age-related loss of muscle mass and strength, Master athletes are generally considered successful models of aging as evidenced by possessing similar body composition, muscle mass, and aerobic fitness as untrained adults more than half their age. The primary physiology changes considered to underpin the anabolic resistance of aging are precipitated or exacerbated by physical inactivity, which has led to higher protein recommendations to stimulate muscle protein synthesis in older untrained compared to younger untrained adults. This review puts forth the argument that Master athletes have similar muscle characteristics, physiological responses to exercise, and protein metabolism as young athletes and, therefore, are unlikely to have protein requirements that are different from their young contemporaries. Recommendations for protein amount, type, and pattern will be discussed for Master athletes to enhance their recovery from and adaptation to resistance and endurance training.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, 100 Devonshire Place, Toronto, ON, M5S 2C9, Canada.
| |
Collapse
|
20
|
Antunes M, Kassiano W, Silva AM, Schoenfeld BJ, Ribeiro AS, Costa B, Cunha PM, Júnior PS, Cyrino LT, Teixeira DC, Sardinha LB, Cyrino ES. Volume Reduction: Which Dose is Sufficient to Retain Resistance Training Adaptations in Older Women? Int J Sports Med 2021; 43:68-76. [PMID: 34256389 DOI: 10.1055/a-1502-6361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We compared the effects of different resistance training (RT) volume reduction strategies on muscular strength and lean soft-tissue (LST) in older women. Fifty-seven physically independent women (>60 years) performed a 20-week pre-conditioning phase of a standardized whole-body RT program (eight exercises, three sets, 8-12 repetitions, three sessions a week), and were then randomly assigned to one of the following conditions: reduced volume for a single set (RV1, n=20) or two sets (RV2, n=19), or maintained volume of three sets (MV, n=18) for 8 weeks (specific training phase). Muscular strength in the chest press, leg extension, and preacher curl exercises was determined by one-repetition maximum tests. A dual-energy X-ray absorptiometry device was used to estimate LST. An increase in muscular strength (16.3-32.1%) and LST (3.2-7.9%) was observed after the pre-conditioning phase. There was an increase in chest press for all groups (9.4-16.7%) after the specific training phase. In contrast, only MV increased significantly in the leg extension (4.4%). No between-group differences were revealed for LST in the specific training phase. Our results suggest that reduced RT volume from three to one set per exercise for 8 weeks seems sufficient to retain neuromuscular adaptations in older women.
Collapse
Affiliation(s)
- Melissa Antunes
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Londrina, PR, Brazil
| | - Witalo Kassiano
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Londrina, PR, Brazil
| | - Analiza M Silva
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Brad J Schoenfeld
- Exercise Science Program, Lehman College of CUNY Department of Health Sciences, Bronx, United States
| | | | - Bruna Costa
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Londrina, PR, Brazil
| | - Paolo M Cunha
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Londrina, PR, Brazil
| | - Paulo Sugihara Júnior
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Londrina, PR, Brazil
| | - Letícia T Cyrino
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Londrina, PR, Brazil
| | - Denilson C Teixeira
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Londrina, PR, Brazil
| | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Edilson S Cyrino
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
21
|
Belova SP, Tyganov SA, Mochalova EP, Shenkman BS. Restricted Activity and Protein Synthesis
in Postural and Locomotor Muscles. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Jacksteit R, Stöckel T, Behrens M, Feldhege F, Bergschmidt P, Bader R, Mittelmeier W, Skripitz R, Mau-Moeller A. Low-Load Unilateral and Bilateral Resistance Training to Restore Lower Limb Function in the Early Rehabilitation After Total Knee Arthroplasty: A Randomized Active-Controlled Clinical Trial. Front Med (Lausanne) 2021; 8:628021. [PMID: 34239883 PMCID: PMC8257942 DOI: 10.3389/fmed.2021.628021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Continuous passive motion (CPM) is frequently used during rehabilitation following total knee arthroplasty (TKA). Low-load resistance training (LLRT) using continuous active motion (CAM) devices is a promising alternative. We investigated the effectiveness of CPM compared to LLRT using the affected leg (CAMuni) and both legs (CAMbi) in the early post-operative rehabilitation. Hypotheses: (I) LLRT (CAMuni and CAMbi) is superior to CPM, (II) additional training of the unaffected leg (CAMbi) is more effective than unilateral training (CAMuni). Materials and Methods: Eighty-five TKA patients were randomly assigned to three groups, respectively: (i) unilateral CPM of the operated leg; (ii) unilateral CAM of the operated leg (CAMuni); (iii) bilateral alternating CAM (CAMbi). Patients were assessed 1 day before TKA (pre-test), 1 day before discharge (post-test), and 3 months post-operatively (follow-up). Primary outcome: active knee flexion range of motion (ROMFlex). Secondary outcomes: active knee extension ROM (ROMExt), swelling, pain, C-reactive protein, quality of life (Qol), physical activity, timed-up-and-go performance, stair-climbing performance, quadriceps muscle strength. Analyses of covariances were performed (modified intention-to-treat and per-protocol). Results: Hypothesis I: Primary outcome: CAMbi resulted in a higher ROMFlex of 9.0° (95%CI −18.03–0.04°, d = 0.76) and 6.3° (95%CI −14.31–0.99°, d = 0.61) compared to CPM at post-test and follow-up, respectively. Secondary outcomes: At post-test, C-reactive protein was lower in both CAM groups compared with CPM. Knee pain was lower in CAMuni compared to CPM. Improved ROMExt, reduced swelling, better stair-climbing and timed-up-and-go performance were observed for CAMbi compared to CPM. At follow-up, both CAM groups reported higher Qol and CAMbi showed a better timed-up-and-go performance. Hypothesis II: Primary outcome: CAMbi resulted in a higher knee ROMFlex of 6.5° (95%CI −2.16–15.21°, d = 0.56) compared to CAMuni at post-test. Secondary outcomes: At post-test, improved ROMExt, reduced swelling, and better timed-up-and-go performance were observed in CAMbi compared to CAMuni. Conclusions: Additional LLRT of the unaffected leg (CAMbi) seems to be more effective for recovery of function than training of the affected leg only (CAMuni), which may be mediated by positive transfer effects from the unaffected to the affected limb (cross education) and/or preserved neuromuscular function of the trained, unaffected leg. Trial Registration:ClinicalTrials.gov Identifier: NCT02062138.
Collapse
Affiliation(s)
- Robert Jacksteit
- Department of Orthopaedics, University Medicine Rostock, Rostock, Germany
| | - Tino Stöckel
- Institute of Sport Science, University of Rostock, Rostock, Germany
| | - Martin Behrens
- Department of Orthopaedics, University Medicine Rostock, Rostock, Germany.,Department of Sport Science, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Frank Feldhege
- Institute of Sport Science, University of Rostock, Rostock, Germany
| | - Philipp Bergschmidt
- Department of Traumatology, Orthopaedics and Hand Surgery, Klinikum Südstadt, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, University Medicine Rostock, Rostock, Germany
| | | | - Ralf Skripitz
- Department of Orthopaedics, Roland Klinik, Bremen, Germany
| | | |
Collapse
|
23
|
Deane CS, Willis CRG, Phillips BE, Atherton PJ, Harries LW, Ames RM, Szewczyk NJ, Etheridge T. Transcriptomic meta-analysis of disuse muscle atrophy vs. resistance exercise-induced hypertrophy in young and older humans. J Cachexia Sarcopenia Muscle 2021; 12:629-645. [PMID: 33951310 PMCID: PMC8200445 DOI: 10.1002/jcsm.12706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/26/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy manifests across numerous diseases; however, the extent of similarities/differences in causal mechanisms between atrophying conditions in unclear. Ageing and disuse represent two of the most prevalent and costly atrophic conditions, with resistance exercise training (RET) being the most effective lifestyle countermeasure. We employed gene-level and network-level meta-analyses to contrast transcriptomic signatures of disuse and RET, plus young and older RET to establish a consensus on the molecular features of, and therapeutic targets against, muscle atrophy in conditions of high socio-economic relevance. METHODS Integrated gene-level and network-level meta-analysis was performed on publicly available microarray data sets generated from young (18-35 years) m. vastus lateralis muscle subjected to disuse (unilateral limb immobilization or bed rest) lasting ≥7 days or RET lasting ≥3 weeks, and resistance-trained older (≥60 years) muscle. RESULTS Disuse and RET displayed predominantly separate transcriptional responses, and transcripts altered across conditions were mostly unidirectional. However, disuse and RET induced directly inverted expression profiles for mitochondrial function and translation regulation genes, with COX4I1, ENDOG, GOT2, MRPL12, and NDUFV2, the central hub components of altered mitochondrial networks, and ZMYND11, a hub gene of altered translation regulation. A substantial number of genes (n = 140) up-regulated post-RET in younger muscle were not similarly up-regulated in older muscle, with young muscle displaying a more pronounced extracellular matrix (ECM) and immune/inflammatory gene expression response. Both young and older muscle exhibited similar RET-induced ubiquitination/RNA processing gene signatures with associated PWP1, PSMB1, and RAF1 hub genes. CONCLUSIONS Despite limited opposing gene profiles, transcriptional signatures of disuse are not simply the converse of RET. Thus, the mechanisms of unloading cannot be derived from studying muscle loading alone and provides a molecular basis for understanding why RET fails to target all transcriptional features of disuse. Loss of RET-induced ECM mechanotransduction and inflammatory profiles might also contribute to suboptimal ageing muscle adaptations to RET. Disuse and age-dependent molecular candidates further establish a framework for understanding and treating disuse/ageing atrophy.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK.,Living Systems Institute, University of Exeter, Exeter, UK
| | - Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
| | - Bethan E Phillips
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ryan M Ames
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Nathaniel J Szewczyk
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK.,Ohio Musculoskeletal and Neurological Institute & Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
| |
Collapse
|
24
|
Mahmassani ZS, McKenzie AI, Petrocelli JJ, De Hart NM, Fix DK, Kelly JJ, Baird LM, Howard MT, Drummond MJ. Reduced Physical Activity Alters the Leucine-Stimulated Translatome in Aged Skeletal Muscle. J Gerontol A Biol Sci Med Sci 2021; 76:2112-2121. [PMID: 33705535 DOI: 10.1093/gerona/glab077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Periods of inactivity experienced by older adults induce nutrient anabolic resistance creating a cascade of skeletal muscle transcriptional and translational aberrations contributing to muscle dysfunction. The purpose of this study was to identify how inactivity alters leucine-stimulated translation of molecules and pathways within the skeletal muscle of older adults. We performed ribosomal profiling alongside RNA sequencing from skeletal muscle biopsies taken from older adults (n=8; ~72y; 6F/2M) in response to a leucine bolus before (Active) and after (Reduced Activity) 2-weeks of reduced physical activity. At both visits, muscle biopsies were taken at baseline, 60min (early response), and 180min (late response) after leucine ingestion. Previously identified inactivity-related gene transcription changes (PFKFB3, GADD45A, NMRK2) were heightened by leucine with corresponding changes in translation. In contrast, leucine also stimulated translational efficiency (T.E.) of several transcripts in a manner not explained by corresponding changes in mRNA abundance ("uncoupled translation"). Inactivity eliminated this uncoupled translational response for several transcripts, and reduced the translation of most mRNAs encoding for ribosomal proteins. Ingenuity Pathway Analysis identified discordant circadian translation and transcription as a result of inactivity such as translation changes to PER2 and PER3 despite unchanged transcription. We demonstrate inactivity alters leucine-stimulated "uncoupled translation" of ribosomal proteins and circadian regulators otherwise not detectable by traditional RNA-sequencing. Innovative techniques such as ribosomal profiling continues to further our understanding of how physical activity mediates translational regulation, and will set a path towards therapies that can restore optimal protein synthesis on the transcript specific level to combat negative consequences of inactivity on aging muscle.
Collapse
Affiliation(s)
- Ziad S Mahmassani
- University of Utah Department of Physical Therapy and Athletic Training
| | - Alec I McKenzie
- University of Utah Department of Physical Therapy and Athletic Training
| | | | - Naomi M De Hart
- University of Utah Department of Nutrition and Integrative Physiology
| | - Dennis K Fix
- University of Utah Department of Physical Therapy and Athletic Training
| | - Joshua J Kelly
- University of Utah Department of Nutrition and Integrative Physiology
| | | | | | - Micah J Drummond
- University of Utah Department of Physical Therapy and Athletic Training.,University of Utah Molecular Medicine Program
| |
Collapse
|
25
|
Füzéki E, Schröder J, Carraro N, Merlo L, Reer R, Groneberg DA, Banzer W. Physical Activity during the First COVID-19-Related Lockdown in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052511. [PMID: 33802549 PMCID: PMC7967499 DOI: 10.3390/ijerph18052511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
The spread of the COVID-19 virus was met by a strict lockdown in many countries around the world, with the closure of all physical activity (PA) facilities and limitations on moving around freely. The aim of the present online survey was to assess the effect of lockdown on physical activity in Italy. Physical activity was assessed using the European Health Interview Survey questionnaire. A total of 1500 datasets were analyzed. Differences between conditions were tested with a chi2-based (χ2) test for categorical variables, and with the Student’s t-test for paired data. A fixed effects binary logistic regression analysis was conducted to identify relevant predictor variables to explain the compliance with World Health Organisation (WHO) recommendations. We found a substantial decline in all physical activity measures. Mean differences in walking and cycling metabolic equivalent of task minutes per week (METmin/week), respectively, were 344.4 (95% confidence interval (95% CI): 306.6–382.2; p < 0.001) and 148.5 (95% CI: 123.6–173.5; p < 0.001). Time spent in leisure time decreased from 160.8 to 112.6 min/week (mean difference 48.2; 95% CI: 40.4–56.0; p < 0.001). Compliance with WHO recommendations decreased from 34.9% to 24.6% (chi2 (1, 3000) = 38.306, p < 0.001, V = 0.11). Logistic regression showed a reduced chance (OR 0.640, 95% CI: 0.484–0.845; p = 0.001) to comply with WHO PA recommendations under lockdown conditions. Measures to promote physical activity should be intensified to limit detrimental health effects.
Collapse
Affiliation(s)
- Eszter Füzéki
- Division of Preventive and Sports Medicine, Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (D.A.G.); (W.B.)
- Correspondence:
| | - Jan Schröder
- Department of Sports Medicine, Faculty for Psychology and Human Movement Science, Institute for Human Movement Science, University of Hamburg, Turmweg 2, 20148 Hamburg, Germany; (J.S.); (R.R.)
| | - Nicolò Carraro
- Center for Sports Medicine, Department of Prevention, ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (N.C.); (L.M.)
| | - Laura Merlo
- Center for Sports Medicine, Department of Prevention, ULSS2 Marca Trevigiana, 31100 Treviso, Italy; (N.C.); (L.M.)
| | - Rüdiger Reer
- Department of Sports Medicine, Faculty for Psychology and Human Movement Science, Institute for Human Movement Science, University of Hamburg, Turmweg 2, 20148 Hamburg, Germany; (J.S.); (R.R.)
| | - David A. Groneberg
- Division of Preventive and Sports Medicine, Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (D.A.G.); (W.B.)
| | - Winfried Banzer
- Division of Preventive and Sports Medicine, Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (D.A.G.); (W.B.)
| |
Collapse
|
26
|
Smeuninx B, Elhassan YS, Manolopoulos KN, Sapey E, Rushton AB, Edwards SJ, Morgan PT, Philp A, Brook MS, Gharahdaghi N, Smith K, Atherton PJ, Breen L. The effect of short-term exercise prehabilitation on skeletal muscle protein synthesis and atrophy during bed rest in older men. J Cachexia Sarcopenia Muscle 2021; 12:52-69. [PMID: 33347733 PMCID: PMC7890266 DOI: 10.1002/jcsm.12661] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Poor recovery from periods of disuse accelerates age-related muscle loss, predisposing individuals to the development of secondary adverse health outcomes. Exercise prior to disuse (prehabilitation) may prevent muscle deterioration during subsequent unloading. The present study aimed to investigate the effect of short-term resistance exercise training (RET) prehabilitation on muscle morphology and regulatory mechanisms during 5 days of bed rest in older men. METHODS Ten healthy older men aged 65-80 years underwent four bouts of high-volume unilateral leg RET over 7 days prior to 5 days of inpatient bed rest. Physical activity and step-count were monitored over the course of RET prehabilitation and bed rest, whilst dietary intake was recorded throughout. Prior to and following bed rest, quadriceps cross-sectional area (CSA), and hormone/lipid profiles were determined. Serial muscle biopsies and dual-stable isotope tracers were used to determine integrated myofibrillar protein synthesis (iMyoPS) over RET prehabilitation and bed rest phases, and acute postabsorptive and postprandial myofibrillar protein synthesis (aMyoPS) rates at the end of bed rest. RESULTS During bed rest, daily step-count and light and moderate physical activity time decreased, whilst sedentary time increased when compared with habitual levels (P < 0.001 for all). Dietary protein and fibre intake during bed rest were lower than habitual values (P < 0.01 for both). iMyoPS rates were significantly greater in the exercised leg (EX) compared with the non-exercised control leg (CTL) over prehabilitation (1.76 ± 0.37%/day vs. 1.36 ± 0.18%/day, respectively; P = 0.007). iMyoPS rates decreased similarly in EX and CTL during bed rest (CTL, 1.07 ± 0.22%/day; EX, 1.30 ± 0.38%/day; P = 0.037 and 0.002, respectively). Postprandial aMyoPS rates increased above postabsorptive values in EX only (P = 0.018), with no difference in delta postprandial aMyoPS stimulation between legs. Quadriceps CSA at 40%, 60%, and 80% of muscle length decreased significantly in EX and CTL over bed rest (0.69%, 3.5%, and 2.8%, respectively; P < 0.01 for all), with no differences between legs. No differences in fibre-type CSA were observed between legs or with bed rest. Plasma insulin and serum lipids did not change with bed rest. CONCLUSIONS Short-term resistance exercise prehabilitation augmented iMyoPS rates in older men but did not offset the relative decline in iMyoPS and muscle mass during bed rest.
Collapse
Affiliation(s)
- Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Yasir S. Elhassan
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
- Centre for Endocrinology, Diabetes and MetabolismBirmingham Health PartnersBirminghamUK
| | - Konstantinos N. Manolopoulos
- Institute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
- Centre for Endocrinology, Diabetes and MetabolismBirmingham Health PartnersBirminghamUK
| | - Elizabeth Sapey
- NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust and Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Alison B. Rushton
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Sophie J. Edwards
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Paul T. Morgan
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Andrew Philp
- Garvan Institute of Medical ResearchSydneyNSWAustralia
- St Vincents Medical School, UNSW MedicineUNSW SydneySydneyNSWAustralia
| | - Matthew S. Brook
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Nima Gharahdaghi
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Kenneth Smith
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Philip J. Atherton
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- MRC‐Arthritis Research UK Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamUK
| |
Collapse
|
27
|
Stokes T, Tripp TR, Murphy K, Morton RW, Oikawa SY, Lam Choi H, McGrath J, McGlory C, MacDonald MJ, Phillips SM. Methodological considerations for and validation of the ultrasonographic determination of human skeletal muscle hypertrophy and atrophy. Physiol Rep 2021; 9:e14683. [PMID: 33403796 PMCID: PMC7786033 DOI: 10.14814/phy2.14683] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the current gold standard for measuring changes in muscle size (cross-sectional area [CSA] and volume) but can be cost-prohibitive and resource-intensive. We evaluated the validity of B-mode ultrasonography (US) as a low-cost alternative to MRI for measuring muscle hypertrophy and atrophy in response to resistance training and immobilization, respectively. Fourteen young men performed 10wk of unilateral resistance training (RT) to induce muscle hypertrophy. In the final two weeks of the 10wk, the subjects' contralateral leg was immobilized (IMB). The cross-sectional area of the vastus lateralis (VLCSA) was measured at the mid-thigh before and after each intervention using MRI (VLCSAMRI ) and US (VLCSAUS ). The relationship and agreement between methods were assessed. Reliability of US measurements ranged from good to excellent in all comparisons (ICC >0.67). VLCSA significantly increased after 10 weeks of RT (VLCSAUS : 7.9 ± 3.8%; VLCSAMRI : 7.8 ± 4.5%) and decreased after 2 weeks of IMB (VLCSAUS : -8.2%±5.8%; VLCSAMRI : -8.7 ± 6.1%). Significant correlations were identified between MRI and US at each time point measured (all r > 0.85) and, importantly, between MRI- and US-derived changes in VLCSA. Bland-Altman analysis revealed minimal bias in US measurements relative to the MRI (-0.5 ± 3.0%) and all measurements were within the upper and lower limits of agreement. Our data suggest that B-mode ultrasonography can be a suitable alternative to MRI for measuring changes in muscle size in response to increased and decreased muscle loading in young men.
Collapse
Affiliation(s)
- Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Thomas R Tripp
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Kevin Murphy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Robert W Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Hon Lam Choi
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jessica McGrath
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chris McGlory
- School of Kinesiology and Health Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Karlsen A, Cullum CK, Norheim KL, Scheel FU, Zinglersen AH, Vahlgren J, Schjerling P, Kjaer M, Mackey AL. Neuromuscular Electrical Stimulation Preserves Leg Lean Mass in Geriatric Patients. Med Sci Sports Exerc 2020; 52:773-784. [PMID: 31688649 DOI: 10.1249/mss.0000000000002191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM This study aimed to examine changes in lean mass during hospitalization in geriatric patients and the effect of muscle activation by neuromuscular electrical stimulation. METHODS Thirteen patients (69-94 yr) at a geriatric ward completed tests at hospital admission (days 2-3) and discharge (days 8-10). One leg received daily stimulation of the knee extensors, whereas the other leg served as a control leg. Lean mass was evaluated by dual-energy x-ray absorptiometry scans and muscle thickness by ultrasound scans. Muscle biopsies were collected from both legs at admission and discharge in nine patients and analyzed for fiber size, satellite cell number, and activation and expression of genes associated with muscle protein synthesis and breakdown, connective tissue, and cellular stress. RESULTS The relative decline in leg lean mass and midthigh region lean mass was larger in the control (-2.8% ± 1.5%) versus the stimulated leg (-0.5% ± 1.4%, P < 0.05). Although there were no changes in fiber size or satellite cell number, the mRNA data revealed that, compared with control, the stimulation resulted in a downregulation of myostatin (P < 0.05) and a similar trend for MAFbx (P = 0.099), together with an upregulation of Collagen I (P < 0.001), TenascinC (P < 0.001), CD68 (P < 0.01), and Ki67 (P < 0.05) mRNA. CONCLUSION These findings demonstrate a moderate decline in leg lean mass during a hospital stay in geriatric patients, whereas leg lean mass was preserved with daily neuromuscular electrical muscle activation. At the cellular level, the stimulation had a clear influence on suppression of atrophy signaling pathways in parallel with a stimulation of connective tissue and cellular remodeling processes.
Collapse
|
29
|
Kirwan R, McCullough D, Butler T, Perez de Heredia F, Davies IG, Stewart C. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. GeroScience 2020; 42:1547-1578. [PMID: 33001410 PMCID: PMC7528158 DOI: 10.1007/s11357-020-00272-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic is an extraordinary global emergency that has led to the implementation of unprecedented measures in order to stem the spread of the infection. Internationally, governments are enforcing measures such as travel bans, quarantine, isolation, and social distancing leading to an extended period of time at home. This has resulted in reductions in physical activity and changes in dietary intakes that have the potential to accelerate sarcopenia, a deterioration of muscle mass and function (more likely in older populations), as well as increases in body fat. These changes in body composition are associated with a number of chronic, lifestyle diseases including cardiovascular disease (CVD), diabetes, osteoporosis, frailty, cognitive decline, and depression. Furthermore, CVD, diabetes, and elevated body fat are associated with greater risk of COVID-19 infection and more severe symptomology, underscoring the importance of avoiding the development of such morbidities. Here we review mechanisms of sarcopenia and their relation to the current data on the effects of COVID-19 confinement on physical activity, dietary habits, sleep, and stress as well as extended bed rest due to COVID-19 hospitalization. The potential of these factors to lead to an increased likelihood of muscle loss and chronic disease will be discussed. By offering a number of home-based strategies including resistance exercise, higher protein intakes and supplementation, we can potentially guide public health authorities to avoid a lifestyle disease and rehabilitation crisis post-COVID-19. Such strategies may also serve as useful preventative measures for reducing the likelihood of sarcopenia in general and in the event of future periods of isolation.
Collapse
Affiliation(s)
- Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Deaglan McCullough
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Tom Butler
- Department of Clinical Sciences and Nutrition, University of Chester, Chester, UK.
| | - Fatima Perez de Heredia
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Claire Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
30
|
Pascual-Fernández J, Fernández-Montero A, Córdova-Martínez A, Pastor D, Martínez-Rodríguez A, Roche E. Sarcopenia: Molecular Pathways and Potential Targets for Intervention. Int J Mol Sci 2020; 21:ijms21228844. [PMID: 33266508 PMCID: PMC7700275 DOI: 10.3390/ijms21228844] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Aging is associated with sarcopenia. The loss of strength results in decreased muscle mass and motor function. This process accelerates the progressive muscle deterioration observed in older adults, favoring the presence of debilitating pathologies. In addition, sarcopenia leads to a decrease in quality of life, significantly affecting self-sufficiency. Altogether, these results in an increase in economic resources from the National Health Systems devoted to mitigating this problem in the elderly, particularly in developed countries. Different etiological determinants are involved in the progression of the disease, including: neurological factors, endocrine alterations, as well as nutritional and lifestyle changes related to the adoption of more sedentary habits. Molecular and cellular mechanisms have not been clearly characterized, resulting in the absence of an effective treatment for sarcopenia. Nevertheless, physical activity seems to be the sole strategy to delay sarcopenia and its symptoms. The present review intends to bring together the data explaining how physical activity modulates at a molecular and cellular level all factors that predispose or favor the progression of this deteriorating pathology.
Collapse
Affiliation(s)
| | | | - Alfredo Córdova-Martínez
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Diego Pastor
- Department of Sport Sciences, University Miguel Hernández (Elche), 03202 Alicante, Spain;
| | - Alejandro Martínez-Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Sciences, University of Alicante, 3690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Enrique Roche
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965222029
| |
Collapse
|
31
|
Uchida Y, Ishii H, Tanaka A, Yonekawa J, Satake A, Makino Y, Suzuki W, Kurobe M, Mizutani K, Mizutani Y, Fujimoto M, Ichimiya H, Teramoto C, Tamenishi A, Okamoto H, Watanabe J, Kanashiro M, Amano T, Matsubara T, Ichimiya S, Murohara T. Impact of skeletal muscle mass on clinical outcomes in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Cardiovasc Interv Ther 2020; 36:514-522. [DOI: 10.1007/s12928-020-00725-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/17/2020] [Indexed: 12/30/2022]
|
32
|
F B, L P C, V M, M D, G HB, G G, P G, P N, M AL. High intensity interval training combined with L-citrulline supplementation: Effects on physical performance in healthy older adults. Exp Gerontol 2020; 140:111036. [PMID: 32721549 DOI: 10.1016/j.exger.2020.111036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate the effect of citrulline (CIT) supplementation combined to high intensity interval training (HIIT) on physical performance in healthy older adults. METHODS This study is a secondary analysis from a double-blind, randomized trial. Among the participants (sedentary & inactive older adults aged over 65 yrs), 44 were non obese (BMI <30 kg/m2) and completed the intervention: Placebo + HIIT (PLA; n = 21) or CIT + HIIT (n = 23). All participants ingested either 10 g of CIT supplementation/day or placebo and followed HIIT sessions (30 min/session; cycle: 30 s > 85% of maximal heart rate (HR) and Borg scale >17/20 + 1:50 min at 65% HR and Borg scale between 13 and 16) on an elliptical device 3 times per week over a 12-week period. Body composition, muscle strength, muscle power, functional capacities (unipodal balance; self-paced and fast Timed Up and Go (nTUG; fTUG); chair test; step tests; 4-meter walking test; 6-minute walking test); dietary intake, energy expenditure and biological markers were measured pre and post-intervention. A repeated-measure analysis of variance was used to estimate time (HIIT intervention), group (PLA vs. CIT) and time*group effects. RESULTS The decrease in BMI (p = 0.02) and android fat mass (p = 0.05) were significantly greater in the HIIT+CIT group than in the HIIT+PLA group. Finally, a greater increase in self-paced gait speed (nTUG) (p = 0.02) and fast-paced gait speed (fTUG) (p = 0.03) were also observed in the HIIT+CIT group than in the HIIT+PLA group. CONCLUSION CIT supplementation combined to HIIT is more effective in improving functional capacities and body composition in healthy older adults than HIIT alone.
Collapse
Affiliation(s)
- Buckinx F
- Département des Sciences de l'Activité Physique, GRAPA, Université du Québec À Montréal, Montréal, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada; WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Ageing, Liège, Belgium
| | - Carvalho L P
- Département des Sciences de l'Activité Physique, GRAPA, Université du Québec À Montréal, Montréal, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | - Marcangeli V
- Département des Sciences de l'Activité Physique, GRAPA, Université du Québec À Montréal, Montréal, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | - Dulac M
- Département des Sciences de l'Activité Physique, GRAPA, Université du Québec À Montréal, Montréal, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | - Hajj Boutros G
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | - Gouspillou G
- Département des Sciences de l'Activité Physique, GRAPA, Université du Québec À Montréal, Montréal, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | - Gaudreau P
- Département de Médecine, Université de Montréal, Montréal, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Noirez P
- Département des Sciences de l'Activité Physique, GRAPA, Université du Québec À Montréal, Montréal, Canada; Inserm UMR S-1124 & IRMES EA7329, Université de Paris, Paris, France
| | - Aubertin-Leheudre M
- Département des Sciences de l'Activité Physique, GRAPA, Université du Québec À Montréal, Montréal, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada.
| |
Collapse
|
33
|
Füzéki E, Groneberg DA, Banzer W. Physical activity during COVID-19 induced lockdown: recommendations. J Occup Med Toxicol 2020; 15:25. [PMID: 32817753 PMCID: PMC7422663 DOI: 10.1186/s12995-020-00278-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/04/2020] [Indexed: 02/04/2023] Open
Abstract
Measures aiming at containing the Coronavirus disease 2019 (COVID-19) include isolation, social distancing, and quarantine. Quarantine and other lockdown instruments show promise in reducing the number of COVID-19 infections and deaths. It is reasonable to assume that lockdown leads to reduced levels of physical activity in the general population. Potential detrimental health effects of lockdown, such as psychological distress and physical inactivity induced maladaptations must be addressed. The current review summarizes harmful effects of limited physical activity on mental and physical health due to social distancing and quarantine and highlights the effects of simple physical activity regimes counteracting these detrimental effects, with a special emphasis on acute effects.
Collapse
Affiliation(s)
- Eszter Füzéki
- Division of Preventive and Sports Medicine, Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 9B, 60590 Frankfurt am Main, Germany
| | - David A Groneberg
- Division of Preventive and Sports Medicine, Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 9B, 60590 Frankfurt am Main, Germany
| | - Winfried Banzer
- Division of Preventive and Sports Medicine, Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 9B, 60590 Frankfurt am Main, Germany
| |
Collapse
|
34
|
Moro T, Paoli A. When COVID-19 affects muscle: effects of quarantine in older adults. Eur J Transl Myol 2020; 30:9069. [PMID: 32782767 PMCID: PMC7385699 DOI: 10.4081/ejtm.2019.9069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/16/2020] [Indexed: 12/31/2022] Open
Abstract
At the beginning of 2020 a respiratory diseased named COVID-19 rapidly spread worldwide. Due to the presence of comorbidities and a greater susceptibility to infections, older adults are the population most affected by this pandemic. An efficient pharmacological treatment for COVID-19 is not ready yet; in the meanwhile, a general quarantine has been initiated as a preventive action against the spread of the disease. If on one side this countermeasure is slowing the spread of the virus, on the other side is also reducing the amount of physical activity. Sedentariness is associated with numerous negative health outcomes and increase risk of fall, fractures and disabilities in older adults. Models of physical inactivity have been widely studied in the past decades, and most studies agreed that is necessary to implement physical exercise (such as walking, low load resistance or in bed exercise) during periods of disuse to protect muscle mass and function from catabolic crisis. Moreover, older adults have a blunted response to physical rehabilitation, and a combination of intense resistance training and nutrition are necessary to overcome the loss of in skeletal muscle due to disuse.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Italy
- CIR-Myo, University of Padova, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Italy
- CIR-Myo, University of Padova, Italy
| |
Collapse
|
35
|
Howard EE, Pasiakos SM, Fussell MA, Rodriguez NR. Skeletal Muscle Disuse Atrophy and the Rehabilitative Role of Protein in Recovery from Musculoskeletal Injury. Adv Nutr 2020; 11:989-1001. [PMID: 32167129 PMCID: PMC7360452 DOI: 10.1093/advances/nmaa015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/29/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
Muscle atrophy and weakness occur as a consequence of disuse after musculoskeletal injury (MSI). The slow recovery and persistence of these deficits even after physical rehabilitation efforts indicate that interventions designed to attenuate muscle atrophy and protect muscle function are necessary to accelerate and optimize recovery from MSI. Evidence suggests that manipulating protein intake via dietary protein or free amino acid-based supplementation diminishes muscle atrophy and/or preserves muscle function in experimental models of disuse (i.e., immobilization and bed rest in healthy populations). However, this concept has rarely been considered in the context of disuse following MSI, which often occurs with some muscle activation during postinjury physical rehabilitation. Given that exercise sensitizes skeletal muscle to the anabolic effect of protein ingestion, early rehabilitation may act synergistically with dietary protein to protect muscle mass and function during postinjury disuse conditions. This narrative review explores mechanisms of skeletal muscle disuse atrophy and recent advances delineating the role of protein intake as a potential countermeasure. The possible synergistic effect of protein-based interventions and postinjury rehabilitation in attenuating muscle atrophy and weakness following MSI is also considered.
Collapse
Affiliation(s)
- Emily E Howard
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA,Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Maya A Fussell
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
36
|
Gonzalez-Gerez JJ, Bernal-Utrera C, Anarte-Lazo E, Garcia-Vidal JA, Botella-Rico JM, Rodriguez-Blanco C. Therapeutic pulmonary telerehabilitation protocol for patients affected by COVID-19, confined to their homes: study protocol for a randomized controlled trial. Trials 2020; 21:588. [PMID: 32600378 PMCID: PMC7322707 DOI: 10.1186/s13063-020-04494-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/10/2020] [Indexed: 01/30/2023] Open
Abstract
Background In December 2019, 27 cases of pneumonia, of unknown cause, were identified in the province of Hubei (China). The WHO declared the situation as a Public Health Emergency of International Concern, and it was finally declared a global pandemic on March 11, 2020. The Spanish Government obliges the entire population to remain confined to their homes, with the exception of essential basic services, to stop the spread of COVID-19. Home isolation implies a notable physical deconditioning. Telerehabilitation methods have reported positive experiences, and we propose to study in affected patients of COVID-19, due to the general house confinement of the entire Spanish population. Methods Patients will be recruited in the regions of Andalusia, Murcia, and Valencia (Spain). Patients will remain confined to their homes, and there, they will carry out their assigned exercise program, which will be controlled telematically. Evaluators will attend to carry out all measurements at the beginning, during, and end of the study, telematically controlled. The patients will be randomly divided into three groups, two of them will perform a home exercise program (breathing exercises or non-specific exercises for muscle toning) and the third group will perform sedentary activities, using mental activation techniques, and will act as a sham group. We will evaluate respiratory variables and other variables of the physical state through physical tests, effort, and perceived fatigue. The data will be statistically analyzed, and the hypotheses will be tested between the groups, using the SPSS software, v.24, considering a 95% confidence interval. Discussion We will analyze the results, in terms of the level of fatigue and perceived exertion, physical health, and maintenance of respiratory activity of two types of exercise programs, toning and respiratory, applied in patients affected by COVID-19 during the period of home confinement. We intend to investigate a field not previously studied, such as the repercussion of carrying out a toning and respiratory exercise program in these patients, in historical circumstances that no one had previously observed in Spain, since the general population has never been forced to remain confined in their homes, due to a pandemic infection, by a coronavirus (COVID-19). Observing the effects that these two home exercise programs could produce in patients infected with COVID-19, we will try to better analyze and understand the mechanisms that are associated with the worsening of breathing in this type of patient. Trial registration Brazilian Clinical Trial Registry RBR-6m69fc. Registered on March 31, 2020.
Collapse
Affiliation(s)
- Juan Jose Gonzalez-Gerez
- Fisiosur I+D Research Institute, Garrucha, Almería, Spain.,Deparment Nursing, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
| | - Carlos Bernal-Utrera
- Fisiosur I+D Research Institute, Garrucha, Almería, Spain. .,Doctoral Program in Health Sciences, University of Seville, Seville, Spain.
| | - Ernesto Anarte-Lazo
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Cleofas Rodriguez-Blanco
- Fisiosur I+D Research Institute, Garrucha, Almería, Spain.,Physiotherapy Department, University of Seville, Seville, Spain
| |
Collapse
|
37
|
Moro T, Paoli A. When COVID-19 affects muscle: effects of quarantine in older adults. Eur J Transl Myol 2020. [DOI: 10.4081/ejtm.2020.9069] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
At the beginning of 2020 a respiratory diseased named COVID-19 rapidly spread worldwide. Due to the presence of comorbidities and a greater susceptibility to infections, older adults are the population most affected by this pandemic. An efficient pharmacological treatment for COVID-19 is not ready yet; in the meanwhile, a general quarantine has been initiated as a preventive action against the spread of the disease. If on one side this countermeasure is slowing the spread of the virus, on the other side is also reducing the amount of physical activity. Sedentariness is associated with numerous negative health outcomes and increase risk of fall, fractures and disabilities in older adults. Models of physical inactivity have been widely studied in the past decades, and most studies agreed that is necessary to implement physical exercise (such as walking, low load resistance or in bed exercise) during periods of disuse to protect muscle mass and function from catabolic crisis. Moreover, older adults have a blunted response to physical rehabilitation, and a combination of intense resistance training and nutrition are necessary to overcome the loss of in skeletal muscle due to disuse.
Collapse
|
38
|
Marshall RN, Smeuninx B, Morgan PT, Breen L. Nutritional Strategies to Offset Disuse-Induced Skeletal Muscle Atrophy and Anabolic Resistance in Older Adults: From Whole-Foods to Isolated Ingredients. Nutrients 2020; 12:nu12051533. [PMID: 32466126 PMCID: PMC7284346 DOI: 10.3390/nu12051533] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Preserving skeletal muscle mass and functional capacity is essential for healthy ageing. Transient periods of disuse and/or inactivity in combination with sub-optimal dietary intake have been shown to accelerate the age-related loss of muscle mass and strength, predisposing to disability and metabolic disease. Mechanisms underlying disuse and/or inactivity-related muscle deterioration in the older adults, whilst multifaceted, ultimately manifest in an imbalance between rates of muscle protein synthesis and breakdown, resulting in net muscle loss. To date, the most potent intervention to mitigate disuse-induced muscle deterioration is mechanical loading in the form of resistance exercise. However, the feasibility of older individuals performing resistance exercise during disuse and inactivity has been questioned, particularly as illness and injury may affect adherence and safety, as well as accessibility to appropriate equipment and physical therapists. Therefore, optimising nutritional intake during disuse events, through the introduction of protein-rich whole-foods, isolated proteins and nutrient compounds with purported pro-anabolic and anti-catabolic properties could offset impairments in muscle protein turnover and, ultimately, the degree of muscle atrophy and recovery upon re-ambulation. The current review therefore aims to provide an overview of nutritional countermeasures to disuse atrophy and anabolic resistance in older individuals.
Collapse
Affiliation(s)
- Ryan N. Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Paul T. Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Correspondence: ; Tel.: +44-121-414-4109
| |
Collapse
|
39
|
McGlory C, von Allmen MT, Stokes T, Morton RW, Hector AJ, Lago BA, Raphenya AR, Smith BK, McArthur AG, Steinberg GR, Baker SK, Phillips SM. Failed Recovery of Glycemic Control and Myofibrillar Protein Synthesis With 2 wk of Physical Inactivity in Overweight, Prediabetic Older Adults. J Gerontol A Biol Sci Med Sci 2019; 73:1070-1077. [PMID: 29095970 DOI: 10.1093/gerona/glx203] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Background Physical inactivity impairs insulin sensitivity, which is exacerbated with aging. We examined the impact of 2 wk of acute inactivity and recovery on glycemic control, and integrated rates of muscle protein synthesis in older men and women. Methods Twenty-two overweight, prediabetic older adults (12 men, 10 women, 69 ± 4 y) undertook 7 d of habitual activity (baseline; BL), step reduction (SR; <1,000 steps.d-1 for 14 d), followed by 14 d of recovery (RC). An oral glucose tolerance test was used to assess glycemic control and deuterated water ingestion to measure integrated rates of muscle protein synthesis. Results Daily step count was reduced (all p < .05) from BL at SR (7362 ± 3294 to 991 ± 97) and returned to BL levels at RC (7117 ± 3819). Homeostasis model assessment-insulin resistance increased from BL to SR and Matsuda insulin sensitivity index decreased and did not return to BL in RC. Glucose and insulin area under the curve were elevated from BL to SR and did not recover in RC. Integrated muscle protein synthesis was reduced during SR and did not return to BL in RC. Conclusions Our findings demonstrate that 2 wk of SR leads to lowered rates of muscle protein synthesis and a worsening of glycemic control that unlike younger adults is not recovered during return to normal activity in overweight, prediabetic elderly humans. Clinical Trials Registration ClinicalTrials.gov identifier: NCT03039556.
Collapse
Affiliation(s)
- Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mark T von Allmen
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Robert W Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Amy J Hector
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Briony A Lago
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Amogelang R Raphenya
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brennan K Smith
- Division of Endocrinology and Metabolism, McMaster University, Hamilton, Ontario, Canada
| | - Andrew G McArthur
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | - Steven K Baker
- Division of Physical Medicine and Rehabilitation, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
40
|
Meex RCR, Blaak EE, van Loon LJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes Rev 2019; 20:1205-1217. [PMID: 31240819 PMCID: PMC6852205 DOI: 10.1111/obr.12862] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
Insulin resistance and muscle mass loss often coincide in individuals with type 2 diabetes. Most patients with type 2 diabetes are overweight, and it is well established that obesity and derangements in lipid metabolism play an important role in the development of insulin resistance in these individuals. Specifically, increased adipose tissue mass and dysfunctional adipose tissue lead to systemic lipid overflow and to low-grade inflammation via altered secretion of adipokines and cytokines. Furthermore, an increased flux of fatty acids from the adipose tissue may contribute to increased fat storage in the liver and in skeletal muscle, resulting in an altered secretion of hepatokines, mitochondrial dysfunction, and impaired insulin signalling in skeletal muscle. Recent studies suggest that obesity and lipid derangements in adipose tissue can also lead to the development of muscle atrophy, which would make insulin resistance and muscle atrophy two sides of the same coin. Unfortunately, the exact relationship between lipid accumulation, type 2 diabetes, and muscle atrophy remains largely unexplored. The aim of this review is to discuss the relationship between type 2 diabetes and muscle loss and to discuss some of the joint pathways through which lipid accumulation in organs may affect peripheral insulin sensitivity and muscle mass.
Collapse
Affiliation(s)
- Ruth C R Meex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
41
|
Winett RA, Ogletree AM. Evidence-Based, High-Intensity Exercise and Physical Activity for Compressing Morbidity in Older Adults: A Narrative Review. Innov Aging 2019; 3:igz020. [PMID: 31380470 PMCID: PMC6658199 DOI: 10.1093/geroni/igz020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Indexed: 12/12/2022] Open
Abstract
Recent research in exercise science has important applications for middle-aged and older adults and points to how the programming of individual and multicomponent interventions including theory-based health behavior change strategies may be improved to compress morbidity by delaying or reducing the disabling process. High-intensity interval training and sprint interval training until recently were seen as only applicable to athletes. But recent lab-based research has adapted these interventions for even older adults and demonstrated their safety with beneficial outcomes on cardiometabolic risk factors comparable to or surpassing the usual lower- to moderate-intensity endurance training, and their potential translatability by showing the efficacy of much lower duration and frequency of training, even by systematic stair climbing. Moreover, people report positive affect while engaged in such training. For a century, resistance training was conceived as weightlifting with heavy weights required. Recent research has shown that using a higher degree of effort with lighter to moderate resistance in simple, time efficient protocols result in gains in strength and muscle mass similar to heavy resistance, as well as improvement of cardiometabolic risk factors, strength, body composition, and cognitive, affective, and functional abilities. More effort-based resistance training with moderate resistance may make resistance training more appealing and accessible to older adults. A key potential translational finding is that with correct technique and a high degree of effort, training with inexpensive, portable elastic bands, useable virtually anywhere, can provide appreciable benefits. More emphasis should be placed on long-term, translational interventions, resources, and programs that integrate interval and resistance trainings. This work may improve public health programs for middle-aged and older adults and reflects an emerging evidence base.
Collapse
Affiliation(s)
| | - Aaron M Ogletree
- Health Research and Evaluation, American Institutes for Research, Washington, District of Columbia
| |
Collapse
|
42
|
Beals JW, Burd NA, Moore DR, van Vliet S. Obesity Alters the Muscle Protein Synthetic Response to Nutrition and Exercise. Front Nutr 2019; 6:87. [PMID: 31263701 PMCID: PMC6584965 DOI: 10.3389/fnut.2019.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Improving the health of skeletal muscle is an important component of obesity treatment. Apart from allowing for physical activity, skeletal muscle tissue is fundamental for the regulation of postprandial macronutrient metabolism, a time period that represents when metabolic derangements are most often observed in adults with obesity. In order for skeletal muscle to retain its capacity for physical activity and macronutrient metabolism, its protein quantity and composition must be maintained through the efficient degradation and resynthesis for proper tissue homeostasis. Life-style behaviors such as increasing physical activity and higher protein diets are front-line treatment strategies to enhance muscle protein remodeling by primarily stimulating protein synthesis rates. However, the muscle of individuals with obesity appears to be resistant to the anabolic action of targeted exercise regimes and protein ingestion when compared to normal-weight adults. This indicates impaired muscle protein remodeling in response to the main anabolic stimuli to human skeletal muscle tissue is contributing to poor muscle health with obesity. Deranged anabolic signaling related to insulin resistance, lipid accumulation, and/or systemic/muscle inflammation are likely at the root of the anabolic resistance of muscle protein synthesis rates with obesity. The purpose of this review is to discuss the impact of protein ingestion and exercise on muscle protein remodeling in people with obesity, and the potential mechanisms underlining anabolic resistance of their muscle.
Collapse
Affiliation(s)
- Joseph W Beals
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, United States
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Stephan van Vliet
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
43
|
Oikawa SY, Holloway TM, Phillips SM. The Impact of Step Reduction on Muscle Health in Aging: Protein and Exercise as Countermeasures. Front Nutr 2019; 6:75. [PMID: 31179284 PMCID: PMC6543894 DOI: 10.3389/fnut.2019.00075] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
Declines in strength and muscle function with age—sarcopenia—contribute to a variety of negative outcomes including an increased risk of: falls, fractures, hospitalization, and reduced mobility in older persons. Population-based estimates of the loss of muscle after age 60 show a loss of ~1% per year while strength loss is more rapid at ~3% per year. These rates are not, however, linear as periodic bouts of reduced physical activity and muscle disuse transiently accelerate loss of muscle and declines in muscle strength and power. Episodic complete muscle disuse can be due to sickness-related bed rest or local muscle disuse as a result of limb immobilization/surgery. Alternatively, relative muscle disuse occurs during inactivity due to illness and the associated convalescence resulting in marked reductions in daily steps, often referred to as step reduction (SR). While it is a “milder” form of disuse, it can have a similar adverse impact on skeletal muscle health. The physiological consequences of even short-term inactivity, modeled by SR, show losses in muscle mass and strength, as well as impaired insulin sensitivity and an increase in systemic inflammation. Though seemingly benign in comparison to bed rest, periodic inactivity likely occurs, we posit, more frequently with advancing age due to illness, declining mental health and declining mobility. Given that recovery from inactivity in older adults is slow or possibly incomplete we hypothesize that accumulated periods of inactivity contribute to sarcopenia. Periodic activity, even in small quantities, and protein supplementation may serve as effective strategies to offset the loss of muscle mass with aging, specifically during periods of inactivity. The aim of this review is to examine the recent literature encompassing SR, as a model of inactivity, and to explore the capacity of nutrition and exercise interventions to mitigate adverse physiological changes as a result of SR.
Collapse
Affiliation(s)
- Sara Y Oikawa
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Tanya M Holloway
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
44
|
Possible Improvement of the Sagittal Spinopelvic Alignment and Balance through "Locomotion Training" Exercises in Patients with "Locomotive Syndrome": A Literature Review. Adv Orthop 2019; 2019:6496901. [PMID: 31210991 PMCID: PMC6532306 DOI: 10.1155/2019/6496901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/17/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022] Open
Abstract
On the basis of rapid population aging, in 2007, the Japanese Orthopaedic Association (JOA) proposed a new disease concept "locomotive syndrome" as a degenerative condition of reduced mobility due to the impairment of the musculoskeletal system. Worsened locomotive components, which consist of bones, joints, and intervertebral discs, and muscles and nerves, can lead to symptoms such as pain, limited range of motion, malalignment, impaired balance, and difficulty in walking, ultimately resulting in the requirement of nursing care. "Locomotive syndrome" has gained increased interest in Japan but still not worldwide. Hence, in this brief review, we summarize an updated definition, assessment, and management of "locomotive syndrome". The JOA recommends "locomotion training" exercise intervention to be effective in maintaining motor function that comprises two simple exercises-squatting and single-leg standing. However, the extent to which exercises affect "locomotive syndrome" is unknown. Here, we further report hypothesis-generating patient cases who presented the improved sagittal spinopelvic alignment in standing radiographs and postural stability in piezoelectric force-plate measurements through our 6-month "locomotion training" outpatient rehabilitation program. It is noteworthy that "locomotion training" facilitated these improvements despite the presence of specific disorders including thoracic kyphosis and symptomatic lumbar spinal canal stenosis. This raises the need for further investigations to clarify effects of "locomotion training" exercises on the spinal alignment, global balance, and quality of life in patients with "locomotive syndrome".
Collapse
|
45
|
Oikawa SY, Callahan DM, McGlory C, Toth MJ, Phillips SM. Maintenance of skeletal muscle function following reduced daily physical activity in healthy older adults: a pilot trial. Appl Physiol Nutr Metab 2019; 44:1052-1056. [PMID: 30794431 DOI: 10.1139/apnm-2018-0631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Older adults can experience periods of inactivity related to disease or illness, which can hasten the development of physical disability, in part, through reductions in skeletal muscle strength and power. To date no study has characterized adaptations in skeletal muscle physical function in response to reduced daily physical activity. Participants (15 men, aged 69 ± 2 years; 15 women, aged 68 ± 4 years) restricted their daily steps (<750 steps/day) while being energy restricted (-500 kcal/day) for 2 weeks before returning to normal activity levels during recovery (RC; 1 week). Before and after each phase, measures of knee extensor isometric maximum voluntary contraction (MVC), time-to-peak torque, and physical function were performed and muscle biopsies were taken from a subset of participants. Following the energy restriction and step-reduction phase (ER+SR), MVC was reduced by 9.1 and 6.1 Nm in men and women, respectively (p = 0.02), which returned to baseline after RC in men, but not women (p = 0.046). Maximum isometric tension in MHC IIA fibres (p < 0.01) and maximum power production in MHC I and IIA (p = 0.05) were increased by 14%, 25%, and 10%, respectively, following ER+SR. Reductions in muscle strength could not be explained by changes in single muscle fibre function in a subsample (n = 9 men) of volunteers. These data highlight the resilience of physical function in healthy older men in the face of an acute period of ER+SR and demonstrate sex-based differences in the ability to recover muscle strength upon resumption of physical activity.
Collapse
Affiliation(s)
- Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Damien M Callahan
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Michael J Toth
- Department of Medicine, University of Vermont, Burlington, VT 05401, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
46
|
Liao Y, Peng Z, Chen L, Zhang Y, Cheng Q, Nüssler AK, Bao W, Liu L, Yang W. Prospective Views for Whey Protein and/or Resistance Training Against Age-related Sarcopenia. Aging Dis 2019; 10:157-173. [PMID: 30705776 PMCID: PMC6345331 DOI: 10.14336/ad.2018.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/25/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle aging is characterized by decline in skeletal muscle mass and function along with growing age, which consequently leads to age-related sarcopenia, if without any preventive timely treatment. Moreover, age-related sarcopenia in elder people would contribute to falls and fractures, disability, poor quality of life, increased use of hospital services and even mortality. Whey protein (WP) and/or resistance training (RT) has shown promise in preventing and treating age-related sarcopenia. It seems that sex hormones could be potential contributors for gender differences in skeletal muscle and age-related sarcopenia. In addition, skeletal muscle and the development of sarcopenia are influenced by gut microbiota, which in turn is affected by WP or RT. Gut microbiota may be a key factor for WP and/or RT against age-related sarcopenia. Therefore, focusing on sex hormones and gut microbiota may do great help for preventing, treating and better understanding age-related sarcopenia.
Collapse
Affiliation(s)
- Yuxiao Liao
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Peng
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangkai Chen
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Cheng
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas K Nüssler
- 3Department of Traumatology, BG Trauma center, University of Tübingen, Tübingen, Germany
| | - Wei Bao
- 4Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA
| | - Liegang Liu
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
The Muscle Protein Synthetic Response to Meal Ingestion Following Resistance-Type Exercise. Sports Med 2019; 49:185-197. [DOI: 10.1007/s40279-019-01053-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Ross M, Lithgow H, Hayes L, Florida-James G. Potential Cellular and Biochemical Mechanisms of Exercise and Physical Activity on the Ageing Process. Subcell Biochem 2019; 91:311-338. [PMID: 30888658 DOI: 10.1007/978-981-13-3681-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exercise in young adults has been consistently shown to improve various aspects of physiological and psychological health but we are now realising the potential benefits of exercise with advancing age. Specifically, exercise improves cardiovascular, musculoskeletal, and metabolic health through reductions in oxidative stress, chronic low-grade inflammation and modulating cellular processes within a variety of tissues. In this this chapter we will discuss the effects of acute and chronic exercise on these processes and conditions in an ageing population, and how physical activity affects our vasculature, skeletal muscle function, our immune system, and cardiometabolic risk in older adults.
Collapse
Affiliation(s)
- Mark Ross
- School of Applied Science, Edinburgh Napier University, Edinburgh, Scotland, UK.
| | - Hannah Lithgow
- School of Applied Science, Edinburgh Napier University, Edinburgh, Scotland, UK
| | - Lawrence Hayes
- Active Ageing Research Group, University of Cumbria, Lancaster, UK
| | | |
Collapse
|
49
|
Bowden Davies KA, Pickles S, Sprung VS, Kemp GJ, Alam U, Moore DR, Tahrani AA, Cuthbertson DJ. Reduced physical activity in young and older adults: metabolic and musculoskeletal implications. Ther Adv Endocrinol Metab 2019; 10:2042018819888824. [PMID: 31803464 PMCID: PMC6878603 DOI: 10.1177/2042018819888824] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although the health benefits of regular physical activity and exercise are well established and have been incorporated into national public health recommendations, there is a relative lack of understanding pertaining to the harmful effects of physical inactivity. Experimental paradigms including complete immobilization and bed rest are not physiologically representative of sedentary living. A useful 'real-world' approach to contextualize the physiology of societal downward shifts in physical activity patterns is that of short-term daily step reduction. RESULTS Step-reduction studies have largely focused on musculoskeletal and metabolic health parameters, providing relevant disease models for metabolic syndrome, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), sarcopenia and osteopenia/osteoporosis. In untrained individuals, even a short-term reduction in physical activity has a significant impact on skeletal muscle protein and carbohydrate metabolism, causing anabolic resistance and peripheral insulin resistance, respectively. From a metabolic perspective, short-term inactivity-induced peripheral insulin resistance in skeletal muscle and adipose tissue, with consequent liver triglyceride accumulation, leads to hepatic insulin resistance and a characteristic dyslipidaemia. Concomitantly, various inactivity-related factors contribute to a decline in function; a reduction in cardiorespiratory fitness, muscle mass and muscle strength. CONCLUSIONS Physical inactivity maybe particularly deleterious in certain patient populations, such as those at high risk of T2D or in the elderly, considering concomitant sarcopenia or osteoporosis. The effects of short-term physical inactivity (with step reduction) are reversible on resumption of habitual physical activity in younger people, but less so in older adults. Nutritional interventions and resistance training offer potential strategies to prevent these deleterious metabolic and musculoskeletal effects. IMPACT Individuals at high risk of/with cardiometabolic disease and older adults may be more prone to these acute periods of inactivity due to acute illness or hospitalization. Understanding the risks is paramount to implementing countermeasures.
Collapse
Affiliation(s)
| | - Samuel Pickles
- Institute of Ageing and Chronic Disease,
University of Liverpool, Liverpool, UK
- Obesity and Endocrinology Research Group,
Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Victoria S. Sprung
- Research Institute for Sport and Exercise
Science, Liverpool John Moores University, Liverpool, UK
- Institute of Ageing and Chronic Disease,
University of Liverpool, Liverpool, UK
- Obesity and Endocrinology Research Group,
Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Graham J. Kemp
- Institute of Ageing and Chronic Disease,
University of Liverpool, Liverpool, UK
- Liverpool Magnetic Resonance Imaging Centre
(LiMRIC), University of Liverpool, Liverpool, UK
| | - Uazman Alam
- Institute of Ageing and Chronic Disease,
University of Liverpool, Liverpool, UK
- Obesity and Endocrinology Research Group,
Aintree University Hospital NHS Foundation Trust, Liverpool, UK
- Pain Research Institute, University of
Liverpool, Liverpool, UK
- Division of Endocrinology, Diabetes and
Gastroenterology, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Royal
Liverpool and Broadgreen University NHS Hospitals Trust, Liverpool, UK
| | - Daniel R. Moore
- Faculty of Kinesiology and Physical Education,
University of Toronto, Toronto, ON, Canada
| | - Abd A. Tahrani
- Institute of Metabolism and Systems Research,
College of Medical and Dental Sciences, University of Birmingham,
Birmingham, UK
- Centre of Endocrinology, Diabetes and
Metabolism (CEDAM), Birmingham Health Partners, Birmingham UK
- Department of Diabetes and Endocrinology,
University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daniel J. Cuthbertson
- Institute of Ageing and Chronic Disease,
University of Liverpool, Liverpool, UK
- Obesity and Endocrinology Research Group,
Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
50
|
Reidy PT, McKenzie AI, Mahmassani Z, Morrow VR, Yonemura NM, Hopkins PN, Marcus RL, Rondina MT, Lin YK, Drummond MJ. Skeletal muscle ceramides and relationship with insulin sensitivity after 2 weeks of simulated sedentary behaviour and recovery in healthy older adults. J Physiol 2018; 596:5217-5236. [PMID: 30194727 PMCID: PMC6209761 DOI: 10.1113/jp276798] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Insulin sensitivity (as determined by a hyperinsulinaemic-euglyceamic clamp) decreased 15% after reduced activity. Despite not fully returning to baseline physical activity levels, insulin sensitivity unexpectedly, rebounded above that recorded before 2 weeks of reduced physical activity by 14% after the recovery period. Changes in insulin sensitivity in response to reduced activity were primarily driven by men but, not women. There were modest changes in ceramides (nuclear/myofibrillar fraction and serum) following reduced activity and recovery but, in the absence of major changes to body composition (i.e. fat mass), ceramides were not related to changes in inactivity-induced insulin sensitivity in healthy older adults. ABSTRACT Older adults are at risk of physical inactivity as they encounter debilitating life events. It is not known how insulin sensitivity is affected by modest short-term physical inactivity and recovery in healthy older adults, nor how insulin sensitivity is related to changes in serum and muscle ceramide content. Healthy older adults (aged 64-82 years, five females, seven males) were assessed before (PRE), after 2 weeks of reduced physical activity (RA) and following 2 weeks of recovery (REC). Insulin sensitivity (hyperinsulinaemic-euglyceamic clamp), lean mass, muscle function, skeletal muscle subfraction, fibre-specific, and serum ceramide content and indices of skeletal muscle inflammation were assessed. Insulin sensitivity decreased by 15 ± 6% at RA (driven by men) but rebounded above PRE by 14 ± 5% at REC. Mid-plantar flexor muscle area and leg strength decreased with RA, although only muscle size returned to baseline levels following REC. Body fat did not change and only minimal changes in muscle inflammation were noted across the intervention. Serum and intramuscular ceramides (nuclear/myofibrillar fraction) were modestly increased at RA and REC. However, ceramides were not related to changes in inactivity-induced insulin sensitivity in healthy older adults. Short-term inactivity induced insulin resistance in older adults in the absence of significant changes in body composition (i.e. fat mass) are not related to changes in ceramides.
Collapse
Affiliation(s)
- Paul T. Reidy
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Alec I. McKenzie
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Ziad Mahmassani
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Vincent R. Morrow
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Nikol M. Yonemura
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Paul N. Hopkins
- Cardiovascular GeneticsDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Robin L. Marcus
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Matthew T. Rondina
- Department of Internal Medicine & Molecular Medicine ProgramUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Yu Kuei Lin
- Department of Internal Medicine, Division of EndocrinologyMetabolism and DiabetesUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Micah J. Drummond
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|